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ABSTRACT: Identifying optimal management policies for systems made up by similar components is 
a challenging task, due to dependence in the components’ behavior. In this setting, observations 
collected on one component are also relevant for learning the behavior of others. Probabilistic graphical 
models allow for consistent inference using all available data, taking dependence among components 
into account, while optimizing system operation. In this paper we propose a framework for 
management of systems made by similar components based on hierarchical Bayesian modeling, called 
Multiple Uncertain Partially Observable Markov Decision Processes (MU-POMDP), that overcomes 
some limitations of a previously proposed approaches. We describe a detailed numerical algorithm to 
learn the system parameters within this framework and we investigate its performance with an example 
of management of a wind farm (i.e., the system) made up by turbines of the same type (i.e., the 
components). 

 
1. INTRODUCTION 
Optimal policies for operation and maintenance 
of systems can be identified under the 
assumption of independent components, or of 
components governed by the same model. 
However, it is challenging to represent systems 
made by different but similar components. In this 
case, component parameters should be treated as 
a set of interdependent random variables, and 
inference performed so that observations 
collected on any component is also relevant, to a 
certain degree, in the management of others. 
Many infrastructure systems can be modeled 
using this framework. 

Markov Decision Process (MDP) (Bertsekas 
1996, Sutton and Barto 1998) and Partially 
Observable MDP (POMDP) (Smallwood and 
Sondik 1973, Sondik 1978) are classic 
frameworks for sequential operation. 
Specifically, POMDP assumes that evolution of 
the component state follows the Markov 

property, but allows for partial and/or imperfect 
observation of that state. 

One limitation of these frameworks is that 
the stochastic modeling of the state evolution 
(i.e. the “transition probabilities”) and, in case of 
POMDP, of the observations (i.e. the “emission 
probabilities”) is not affected by uncertainty nor 
it is updated by data processing. However, in 
many applications, these models are uncertain, 
and different for each individual component. 
Ross et al. (2011) have proposed the Bayes-
Adaptive POMDP (BA-POMDP) framework 
that allows to treat models as random variables 
and to update their distribution as data are 
analyzed during the management process. 
However, exact algorithms in this framework 
require high computational complexity and 
become easily intractable for systems with a high 
number components and states. Approximate 
methods for optimal management under model 
uncertainty have been proposed by Jaulmes et al. 
(2005a,b) and, recently, by ourselves 
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(Memarzadeh et al. 2013,2014a). The latter 
method, called PLUS (Planning and Learning in 
Uncertain dynamic Systems), is structured in two 
phases: learning and planning. In the learning 
phase, it makes use of Markov Chain Monte 
Carlo (MCMC) Gibbs sampling (Carter and 
Kohn 1994). The planning phase is based on an 
approximation which neglects the exploratory 
value of future learning of the model, to make 
the algorithm efficient and tractable. Details 
about PLUS can be found in Memarzadeh et al. 
(2014a). When applied to the management of a 
set of components, the learning approach of 
PLUS can be implemented in two alternative 
ways: independent models can be tuned for each 
component, or a single model can be updated by 
processing data from all components. While 
these two implementations are suitable for some 
applications, they are not for systems made by 
components that we assume to be similar, but not 
identical. Following a preliminary publication on 
systems with similar components (Memarzadeh 
et al. 2014b), in this paper we generalize PLUS 
to a framework we called Multiple Uncertain 
POMDP (MU-POMDP) that is based on 
hierarchical Bayesian modeling. This framework 
allows assuming specific levels of similarities 
among components, and consistently processing 
observations collected at system level. 

The motivation for this research is to 
improve operation and maintenance of wind 
farms. MDP and POMDP have been applied to 
management in this field (Byon et al. 2010, Byon 
and Ding 2010, Nielsen and Sorensen 2012). 
Turbines can be understood as components, and 
their deterioration modeled as a stochastic 
process, depending on the actions taken. 
Epistemic uncertainties on deterioration of 
different components can be assumed as 
dependent, as turbines are instances of the same 
structural model. On the other hand, differences 
on component construction and position lead to 
slight or significant dissimilarities among 
deterioration processes. Similar considerations 
can be made on the monitoring systems 
providing observations about the condition state. 

For these reasons, MU-POMDP can be a suitable 
framework for this application. 

The following parts of this paper present the 
MU-POMDP framework (2), and compare its 
performance with that of PLUS on a numerical 
example (3) before drawing conclusions (4). 

2. THE MU-POMDP SCHEME 
The MU-POMDP scheme targets the 
management of a set of components, each 
defined by a POMDP whose transition and 
emission probabilities are modeled as dependent 
random variables defined by hyper-parameters. 

Figure 1 shows the graphical model of the 
MU-POMDP, where circles define random 
variables, squares decision variables, diamonds 
utility variables, dots fixed parameters, and 
arrows define dependence among variables. In 
that graph, 𝑆 indicates the component state, 𝐴 the 
maintenance action, 𝑍 the available observation 
and 𝑅 the monetary reward (or loss, if value is 
negative). Subscript “𝑘, 𝑡” refers the variable to 
component 𝑘 at time 𝑡. Variables 𝑍 are shaded to 
indicate that they can be directly observed.  

We consider a 𝐾 -component system. For 
each 𝑘 = 1,… ,𝐾, model parameter 𝐓!  indicates 
the transition probability of component 𝑘, and 
model parameter 𝐎! indicates the corresponding 
emission probability. 

 

 
Figure 1. MU-POMDP scheme for a two-component 
system represented as a probabilistic graphical 
model. 

POMPD 
Comp 1

POMPD 
Comp 2
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Additional layers model the prior 
distributions: hyper-parameters are marked as 
𝛼! , 𝛃! , 𝛼!  and 𝛃!  in Figure 1: the first two 
define the dependence in the transitions, while 
the latter ones that of emissions. While model 
parameters are different for each component, 
hyper-parameters are common to the entire 
system. Parameter 𝛈! and 𝛈!, 𝜆!, and 𝜆! define 
the distribution of those hyper-parameters. As 
apparent in Figure 1, the model parameters (e.g. 
𝐓!  and 𝐓! ) of different components are not 
marginally independent, because of the common 
hyper-parameter parents. Consequently, 
observations on any component, by affecting the 
knowledge of the hyper-parameters, affect in 
turn model parameters of other components as 
well. The overall management task is to select 
actions to minimize the expected sum of the 
discounted losses (Bertsekas 1996). As in the 
PLUS approach, MU-POMDP is composed by 
two phases: learning and planning. The planning 
phase is the same as PLUS (Memarzadeh et al. 
2014a), as the samples produced by the learning 
phase are fully compatible with PLUS planning, 
without the need for any adjustment.  

The learning phase represents the posterior 
distribution of all variables, conditional to all 
observations 𝑍  and actions 𝐴  observed up to 
present time. In principle, once each distribution 
in the probabilistic graphical model is 
analytically defined, posterior distributions could 
be computed theoretically. However, exact 
learning is generally not feasible for the graph 
presented in Figure 1, and approximate methods 
need to be adopted. 
2.1. MCMC updating scheme 
Extending the approach used in PLUS, learning 
in MU-POMDP is based on Gibbs sampling, 
which is an effective implementation of MCMC. 
Figure 2 reports a scheme of the inference 
process. In the figure, the upper bar indicates a 
collection of variables, from the beginning of the 
management process up to a specific time. For 
example, 𝑆!,!  indicates the state trajectory 
𝑆!,!,… , 𝑆!,!  for component 𝑘. The superscript 
(𝑗) refers to the 𝑗-th samples generated by the 

MCMC algorithm. At component level, the 
sampling of states and model parameters is 
identical to that adopted by PLUS. At system 
level, the hyper-parameters are generated 
conditional to the sampled model parameters for 
all components. This task can be accomplished, 
if needed, by using the Metropolis-Hastings (M-
H) approach (MacKay 2003). In summary, 
Figure 2 can be read as a recipe for generating 
samples from the joint posterior distribution: 
after initialization, state trajectories and model 
parameters are sampled for each component, 
then hyper-parameters are sampled at system 
level, and these steps are alternated. The Burn-in 
phase is discarded and the remaining part of the 
random walk is kept. 

 

 
Figure 2. The proposed MCMC sampling approach 

2.2. Probabilistic models and inference 
The graphical model in Figure 1 requires a 
specific assignment of marginal and conditional 
distributions for every random variable. A 
feasible set of distributions for MU-POMDP, 
inspired by Kemp et al. (2007), is defined as 
follows: 

𝛼!   ~  Exponential 𝜆! , 𝛼!~  Exponential 𝜆!   
𝛃!   ~  Dirichlet 𝛈! , 𝛃!  ~  Dirichlet 𝛈!   

𝐓!  ~  Dirichlet 𝛼!𝛃! , 𝐎!  ~  Dirichlet 𝛼!𝛃!   
𝐓! ⊥ 𝐓! ∣ 𝛼! ,𝛃! , 𝐎! ⊥ 𝐎! ∣ 𝛼! ,𝛃!    
  𝑆!,!    ∣ 𝑆!,!!!,𝐴!,!  ~  Multinomial 𝐓!   
    𝑍!,! ∣ 𝑆!,! ,𝐴!,!          ~  Multinomial 𝐎!  

(1) 

As in the PLUS approach, state trajectories 
are sampled using forward filtering backward 
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sampling (FFBS) (Fruhwirth-Schnatter 2006). 
The Dirichlet distribution on model parameters is 
appropriate in this context, because it is 
conjugate prior for the multinomial distribution, 
and this facilitates the implementation of the 
Gibbs approach. Because of this, samples of 
model parameters can be easily generated, as in 
the PLUS algorithm. It is worth clarifying the 
role of hyper-parameters 𝛼  and 𝛃  in the 
definition of the prior distribution of model 
parameters. Matrix 𝛃 defines the expected value 
of the corresponding model parameters, while 
scalar variable 𝛼 affects the uncertainty of model 
parameters: a high value of 𝛼  induces a low 
variance. 

 

 
Figure 3. M-H algorithm for sampling hyper-
parameters on transition probabilities. 

 
Samples of hyper-parameters 𝛼! and 𝛃! can 

be generated following the recipe reported in 
Figure 3, based on the M-H algorithm (the 
corresponding procedure for 𝛼!  and 𝛃!  being 
identical, with obvious changes in the input 
variables). Input variables are the parameters 
defining the prior distribution (𝜆! and 𝛈!), the 
transition probabilities for all components (𝐓) 
which, following Gibbs, are obtained by 
sampling. Inputs 𝜎! and 𝑐! control the step size 
of the M-H proposal distribution in the direction 

of 𝛼!  and 𝛽!  respectively, while 𝐽 is the length 
of the Markov Chain. In Figure 3, 
Dirichlet 𝐱; 𝐲  is the value assumed by the 
Dirichlet distribution with parameters 𝐲 at 𝐱. 𝑃 
indicates the un-normalized joint distribution of 
hyper-parameters and model parameters that, 
following Eq. (1), reads: 
𝑃 𝐓,𝛼! ,𝛃! , 𝜆! ,𝛈!

= 𝜆! exp −𝜆!𝛼!
×Dirichlet 𝛃!;𝛈!
× Dirichlet 𝐓!;𝛼! ,𝛃!

!

!!!
 

(2) 

At any state during the management 
process, this procedure provides samples of 
model parameters, hyper-parameters and state, to 
be used in the planning phase. 

3. NUMERICAL VALIDATION 
3.1. PLUS as alternative processing approach 
We compare MU-POMDP performance with 
PLUS on a numerical example similar to that 
presented in Memarzadeh et al. (2014a). Figure 4 
shows the graphical models for PLUS algorithm 
used for comparison, which models transition 
and emission for all components as identical. 

Actually, it should be noted that, for 
practical applications of PLUS, the additional 
layer of hyper-parameters is unnecessary and the 
prior of model parameters can be defined 
directly. However, in order to achieve a fair 
comparison between MU-POMDP and PLUS, 
we make use of the same arrangement of layers 
and values for 𝜆,𝜼 , and for conditional 
distributions of hyper-parameters and model 
parameters, to get the same marginal distribution 
for model parameters across the two approaches. 
3.2. Parameters for numerical investigation 
For the purpose of validation, we consider a 
wind farm made up by 5 turbines of the same 
type placed in similar environmental conditions. 
The state condition of each turbine is discretized 
into three possible states where 𝑠 = 1 refers to 
an intact structure, 𝑠 = 2 to a damaged one, and 
𝑠 = 3 to the failure of the turbine; the agent 

input:  , , , , ,
initialize ,
for  do

sample 

sample 

p-ratio 

q-ratio 

accept = p-ratio q-ratio
sample  
if  

,   
else

,   
end

end
output: hyper-parameters  , 
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receives observations from a set of four possible 
observations where 𝑧 = 1  suggests that the 
turbine is undamaged, 𝑧 = 2 and 𝑧 = 3 indicate 
two symptoms of damage, and 𝑧 = 4 indicates 
the failure of the turbine; three actions are 
available: Do-Nothing (DN), Repair (RE), and 
Visual Inspection (VI). When the agent chooses 
DN, the condition state of the turbine degrades 
owing to fatigue and aging, potentially causing a 
structural failure and a relevant economical loss. 
In turn, the agent can perform a costly 
intervention (i.e., RE) to avoid failure and 
improve the condition state of the turbines. VI 
better measures the condition state of the turbine 
(that evolves according to the degradation model, 
as for DN). Each time step is assumed to be six 
months, and the agent takes one action per 
turbine at each time step. 

 

 
Figure 4. Probabilistic graphical models of PLUS 

 
Parameters of priors for hyper-parameters 

are fixed as follow: 

𝜆! = 𝜆! = 1
1000  

𝜼!,!",!" = 𝜅  ×   
0.57 0.28 0.15
0 0.67 0.33
0 0 1

  

𝜼!,!" = 𝜅  ×   
0.67 0.33 0
0.67 0.33 0
0.67 0.33 0

 
 

 

𝜼!,!",!" = 𝜅  ×   
0.57 0.28 0.15 0
0.15 0.57 0.28 0
0 0 0 1

 

𝜼!,!" = 𝜅  ×   
0.67 0.33 0 0
0.33 0 0.67 0
0 0 0 1

 

where subscripts report the action symbol, 𝜅 
controls the skewness of the prior and has been 
fixed to 50, so that the corresponding coefficient 
of variation of the samples is about 0.26. 
Parameter 𝜆 controls the correlation among the 
model parameters across components: as 𝜆 
decreases, the correlation increases, and it is 
about 75% given the values reported above. 
Entries in square brackets define the expected 
value of transition and emission probabilities: for 
example, the expected value of the probability 
that the undamaged turbine becomes damaged 
under DN is 28%. The costs for repair, visual 
inspections and down-time due to failure are 
assumed to be US $10,000, $500, and $50,000, 
respectively. The discount factor is assumed to 
be 𝛾 = 0.95 . The initial belief state for all 
turbines is defined as 𝑏! = 0.8 0.2 0 , which 
means that the agent believes that, at the 
beginning of the process, the turbines are in the 
intact state with 80% probability and in damaged 
state with 20% probability. 
3.3. Scheme for numerical validation 
To investigate the performance of MU-POMDP 
and compare it with PLUS, we simulate the 
response of a system characterized by model 
𝚯∗ = 𝛉!∗ ,𝛉!∗ ,… ,𝛉!∗ , where 𝛉!∗ = 𝐓!∗,𝐎!∗  
defines transition and emission probabilities for 
component 𝑘. Comparison is performed in terms 
of effectiveness of learning and planning. 

For learning, we evaluate the accuracy in 
inferring condition state (i.e. the accuracy of 
beliefs). At time step 𝑡 , the probability 
distribution of states for the entire farm is 
defined as 𝑃 𝐬!!! 𝚯∗,𝐙! ,𝐀! , where 𝐬! =
𝑠!,!  , 𝑠!,! ,… , 𝑠!,! , 𝐙! = 𝑍!,! ,𝑍!,! ,… ,𝑍!,! , 
𝐀! = 𝐴!,! ,𝐴!,! ,… ,𝐴!,! . Corresponding 
distributions not knowing the actual models are 
𝑃 𝐬!!! 𝐙! ,𝐀! ,ℱ , where framework ℱ  indicate 

POMPD 
Comp 1

POMPD 
Comp 2
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MU-POMDP or PLUS. This latter distribution 
can be approximated via Monte Carlo: 

𝑃 𝐬!!! 𝐙! ,𝐀! ,ℱ   ≅ 𝑃 𝐬!!! 𝐙! ,𝐀! ,𝚯 !

!

!!!

 (3) 

where samples 𝚯 !
!!!
!
~𝑝 𝚯 𝐙! ,𝐀! ,ℱ  are 

generated according to the posterior distribution 
within framework ℱ, using the scheme outlined 
in Figure 2. 

Error in the inference can be measured by 
the Kullback-Leibler (KL) divergence (Cover 
and Thomas 2006), that is a measure of 
information lost when one distribution is used to 
approximate another: 

𝜀 𝚯∗,𝐙! ,𝐀! ,ℱ =  
KL 𝑃 𝐬!!! 𝚯∗,𝐙! ,𝐀! ,𝑃(𝐬!!! ∣ 𝐙! ,𝐀! ,ℱ)  (4) 

Function 𝜀 𝚯∗,𝐙! ,𝐀! ,ℱ  depends on the 
specific framework (MU-POMDP or PLUS) and 
realization of model, actions, observations. 
Despite expected value can be taken (as done in 
Memarzadeh et al. 2014b), in this paper we 
validate the effectiveness of MU-POMDP vs 
PLUS on a specific realization. To do so, we 
have sampled farm model 𝚯∗  from the MU-
POMDP priors outlined above, and actions 𝐀! 
and observations 𝐙!  consequently. For 𝑡 = 60 
and 5 turbines, we estimate via sampling that 
𝜀 𝚯∗,𝐙! ,𝐀! ,ℱ = PLUS = 5.47% , and 
𝜀 𝚯∗,𝐙! ,𝐀! ,ℱ = MU_POMDP = 2.93% . As 
expected, since data are simulated from the MU-
POMDP framework, this is more effective in 
identifying the correct beliefs. 

Figure 5 reports examples of the inference 
process, plotting samples for one entry in the 
transition matrix under DN, for component 1 and 
2. The red star shows the value used for 
simulating the data, while the green points shows 
the samples generated from the prior distribution 
under MU-POMDP (a), the posterior at 𝑡 = 60 
(b), and the posterior for PLUS (c). It is worth 
noting that variables are dependent under MU-
POMDP and identical under PLUS (and that the 
generating model assumes similar but not 
identical values). 

 

 
Figure 5. Examples of samples of model parameter 
(green dots) and exact value (red star) for MU-
POMDP (a-b) and PLUS (c). 

In light of this, it is worth describing in 
details how different agents consider the 
collected observations, for the sake of inferring 
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the model parameters. According to the MU-
POMDP formulation, observations can be 
partitioned in two subsets. As shown in Figure 1, 
observations 𝐙!, collected on component 𝑘, are 
particularly useful to infer model parameters 
𝛉! = 𝐓! ,𝐎! , and we can call them “direct 
measures”. On the other hand, observations 𝐙!!!, 
collected on all components except the 𝑘-th one, 
are also useful for inferring 𝛉!, but only via the 
hyper-parameters 𝛼  and 𝛃 , and we call them 
“indirect measures”. In the limit for 𝐾  and 𝑡 
going to infinite, the set of indirect measures is 
equivalent to a perfect observation of the hyper-
parameters. This, however, would not allow 
getting a perfect prediction of 𝛉!. On the other 
hand, for 𝑡 going to infinite and if all actions are 
sufficiently explored, the set of direct measures 
correspond to observing 𝛉!  directly. Figure 4 
shows that PLUS does not apply the distinction 
between direct and indirect measures: it puts all 
measures on the same level, for the sake of 
inferring 𝛉. 

We can quantify the effect of learning by 
measuring the KL at different times: Table 1, 
reports the KL for transition and emission 
probabilities, computed with a formula similar to 
Eq.4. It can be noted how KL decays with time, 
and how that of MU-POMDP is less than that of 
PLUS. 

 
Table 1. Comparison of KL of MU-POMDP and 
PLUS for transition and emission models 
 t = 0 t = 60 
MU-POMDP: transition 0.0215 0.0348 
PLUS: transition 0.0158 0.0161 
MU-POMDP: emission 0.0039 0.0120 
PLUS: emission 0.0037 0.0053 

 

3.4. Simulation of the planning phase 
In the last numerical campaign, we investigate 
the economic impact of adopting MU-POMDP, 
showing how the more accurate learning 
algorithm, which accounts for discrepancies in 
the component models, allows for a more 
effective planning phase. 

Figure 6 shows the cost of operation and 
maintenance for the farm (i.e. the negative 
reward) as a function of the time step for (i) an 
agent with perfect knowledge about the actual 
model parameters (black line), (ii) an agent 
following MU-POMDP (red line), and (iii) an 
agent following PLUS (blue line). Estimates are 
based 16 independent simulations in the time 
domain. Agent (i) represents a lower limit for the 
cost, as she has no uncertainty on the model 
parameters. For the specific example, the benefit 
of adopting MU-POMDP instead of PLUS can 
be quantified in about 2K$ per turbine per time 
steps, that is a value similar to the gap between a 
perfect knowledge on the model and MU-
POMDP. Of course, these values depend on the 
specific application, and are not constant in time. 
Coefficient of variation for results is around 0.2. 

 

 
Figure 6. Average cost of O&M per time and turbine 
for three agents. 

4. CONCLUSIONS 
We have proposed the MU-POMDP framework 
using hierarchical Bayesian modeling approach. 
It extends our previously proposed PLUS 
algorithm by allowing selecting a level of 
similarity between components of the system. 
The computational complexity of the MU-
POMDP framework is higher than PLUS as it 
requires an extra layer of hyper-parameters to 
model the dependence among components and it 
is linear with number of components. 
Specifically, MU-POMDP makes use of the M-H 
scheme, and this asks for numerical calibration, 
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e.g. in the selection of appropriate proposal 
distributions and burn-in phases. The practical 
efficiency of this framework will depend on its 
detailed numerical implementation. However, we 
have shown on a simple application that it has 
the potential for significant improvement with 
respect to other formulations. Furthermore, 
applications to systems with high costs for 
operation and maintenance, as wind farms, easily 
justify the adoption of accurate and 
computationally complex frameworks. 
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