- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015) /
- Probabilistic risk assessment of infrastructure networks...
Open Collections
International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015)
Probabilistic risk assessment of infrastructure networks subjected to hurricanes Scherb, Anke; Garrè, Luca; Straub, Daniel
Abstract
An initial investigation towards a probabilistic risk assessment framework for infrastructure systems subjected to hurricanes is presented. An idealized probabilistic spatial-temporal hurricane model is proposed for the purpose of investigating infrastructure performance and redundancy. The investigated infrastructure is an electrical network, corresponding to a synthetic IEEE benchmark system, which is modeled by a physical power flow model. The response of the infrastructure network to hurricane events is evaluated in terms of the overall power loss, considering the power flow characteristics of the network and potential cascading failures. It is found that while the network component failure probabilities are strongly dependent on the hazard characteristics, this does not hold for the overall network damage after simulation of the cascading failures. The computed average power loss level tends to be rather insensitive to the number and combination of initially triggered network components.
Item Metadata
Title |
Probabilistic risk assessment of infrastructure networks subjected to hurricanes
|
Creator | |
Contributor | |
Date Issued |
2015-07
|
Description |
An initial investigation towards a probabilistic risk assessment framework for infrastructure systems subjected to hurricanes is presented. An idealized probabilistic spatial-temporal hurricane model is proposed for the purpose of investigating infrastructure performance and redundancy. The investigated infrastructure is an electrical network, corresponding to a synthetic IEEE benchmark system, which is modeled by a physical power flow model. The response of the infrastructure network to hurricane events is evaluated in terms of the overall power loss, considering the power flow characteristics of the network and potential cascading failures. It is found that while the network component failure probabilities are strongly dependent on the hazard characteristics, this does not hold for the overall network damage after simulation of the cascading failures. The computed average power loss level tends to be rather insensitive to the number and combination of initially triggered network components.
|
Genre | |
Type | |
Language |
eng
|
Notes |
This collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver.
|
Date Available |
2015-05-21
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0076124
|
URI | |
Affiliation | |
Citation |
Haukaas, T. (Ed.) (2015). Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Vancouver, Canada, July 12-15.
|
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada