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ABSTRACT: An initial investigation towards a probabilistic risk assessment framework for 

infrastructure systems subjected to hurricanes is presented. An idealized probabilistic spatial-temporal 

hurricane model is proposed for the purpose of investigating infrastructure performance and 

redundancy. The investigated infrastructure is an electrical network, corresponding to a synthetic IEEE 

benchmark system, which is modeled by a physical power flow model. The response of the 

infrastructure network to hurricane events is evaluated in terms of the overall power loss, considering 

the power flow characteristics of the network and potential cascading failures. It is found that while the 

network component failure probabilities are strongly dependent on the hazard characteristics, this does 

not hold for the overall network damage after simulation of the cascading failures. The computed 

average power loss level tends to be rather insensitive to the number and combination of initially 

triggered network components.  

1. INTRODUCTION 

Modeling of damages and risks caused by natural 

hazards to infrastructure networks is an active 

field of research and development. The daily 

lives of millions of people necessitate reliable 

access to the resources and services that such 

networks supply: power, water, gas and oil, 

transportation and telecommunication. Even 

moderate service disruptions of these networks 

often lead to sizeable losses and affect public 

health and safety. This effect is pronounced in 

the context of natural hazards such as tropical 

cyclones, which can lead to large scale systemic 

damages. It has been estimated that in the US 

alone, power outages due to hurricane events 

lead to yearly nationwide costs ranging between 

18 to 33 billion USD (Whitehouse 2013). 

Multiple studies of the vulnerability of 

power networks and the occurrence of outages in 

hurricane prone regions have been conducted 

mainly for the US. Earlier studies developed 

regression models to predict the spatial 

distribution of power outages based on outage 

data from past hurricanes along with physical 

data and environmental conditions of the system 

component sites (Han et al. 2009; Liu et al. 2005; 

Liu et al. 2008).  

Power outages often result from cascades of 

failures of individual network components 

(Crucitti et al. 2004). Triggering events such as 

hurricanes can lead to the damage of multiple 

components simultaneously, which then might 

lead to further line overloads (Koç et al. 2013). 

Often, diffuse overall network damages occur 

that are due to cascading failures after the initial 

triggering event(s). Some more recent studies 

accounted for cascading failures during 

hurricanes (Dueñas-Osorio and Vemuru 2009; 

Javanbakht and Mohagheghi 2014; Ouyang and 

Dueñas-Osorio 2012; Ouyang and Dueñas-

Osorio 2014; Winkler et al. 2010).  
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Considering the importance of system 

dependencies in power networks, this paper 

presents a first idealized development and 

implementation of a probabilistic risk framework 

for the assessment of hurricane impacts, which 

incorporates such dependencies. This study 

addresses the difficulty of assessing the damages 

caused by a natural hazard as potential common 

cause for failure events of individual network 

components, while considering the physical 

dependency of these components. The suggested 

approach is applied to a synthetic transmission 

power system.  

The paper is organized as follows: Section 2 

introduces the methodology and Section 3 

describes the numerical application. The results 

are presented in Section 4 while Section 5 

provides conclusions and future research 

questions. 

2. METHODS 

2.1. Probabilistic risk assessment 

Risk is commonly defined as the expected 

consequences of hazards. Consequences are a 

function of the exposure and vulnerability of the 

assets subjected to the hazard (Varnes 1984). The 

dependence of risk on hazard, exposure, and 

vulnerability can be expressed by the following 

generic equation: 

𝑅 = ∫ 𝑝(ℎ) [∫ 𝑝(𝑑|ℎ)𝐶(𝑑, ℎ)d𝑑
𝐷

]
𝐻

dℎ       (1) 

𝑝(𝑑|ℎ)  is the probability distribution of 

damage 𝑑 conditional on a hazard intensity ℎ; it 

describes the vulnerability. 𝐶(𝑑, ℎ) is the cost as 

a function of damage and hazard intensity, it 

describes the exposure; 𝑝(ℎ)  is the probability 

distribution of the hazard intensity.  

In agreement with Eq. (1), risk is here 

quantified as the expected loss of power supply 

due to hurricanes. In Figure 1, the overall 

framework is visualized for hurricanes. The 

hazard model comprises a hazard genesis and 

hazard realization (Section 2.2). The 

infrastructure model includes the network 

inventory, i.e., location and characteristics of 

assets, and the vulnerability. The latter describes 

the component failure probability conditional on 

the hazard intensity, here: wind load. The 

resulting damage to the network in terms of 

power loss [%] is then simulated using a physical 

power flow model (Section 2.3 and 2.4). The 

exposure terms, i.e., the costs associated with the 

power loss and damages, are not part of this 

study and will be included in future applications. 

 

 

Figure 1: Overall modeling approach. 

 

The assessment of the vulnerability of an 

infrastructure network is challenging, primarily 

because of the large number of components and 

their mutual dependencies. The exhaustive 

assessment of the effect of all combinations of 

component failures on the system performance is 

computationally intractable already for smaller 

networks. As an example, the network 

considered in Section 3 of this paper has 58 

components, which results in 2
58

=2.9E17 

combinations of binary component states, posing 

challenges with respect to computational 

treatability. 
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2.2. Hurricane hazard model 

For the purpose of this initial investigation, a 

simple hypothetical hurricane model is 

introduced. A hurricane event is treated as a 

random process in space, time, and intensity. The 

occurrence of hurricane events is modelled by a 

Poisson process with an occurrence rate λ that is 

assumed constant for the total study area. 

Hurricanes are categorized according to 

their intensity, following the Saffir-Simpson 

Scale. This scale categorizes hurricanes by their 

maximum wind speeds into five categories. The 

(site-specific) probability of the hurricane falling 

into any one of these categories is according to 

Table 1. 

Table 1: Site specific probability of hurricane intensity 

given hurricane occurrence; data based on Ouyang and 

Dueñas-Osorio (2014).  

Hurricane intensity  [m/s] P(Intensity| Hurricane) 

1 [33-42 ] 0.53 

2 [43-49 ] 0.19 

3 [50-58 ] 0.15 

4 [59-70 ] 0.08 

5 [>70 ] 0.05 

 

A function 𝑤(𝑟)  is fitted to the observed 

static gradient wind fields of hurricanes Katrina, 

Wilma, and Ivan (NOAA 2013), to model the 

wind field (Eq. 2). See Figure 2 for the 

appropriate maximum wind speed model for 

hurricane Ivan. 𝑊(𝑟)  is the one minute 

directionless wind gust speed at 10 m open 

terrain at each site of interest within the study 

area, as a function of the distance 𝑟  from the 

hurricane center.  

𝑤(𝑟) =
2𝑟 ∙𝑟𝑚𝑎𝑥(𝑤𝑚𝑎𝑥−𝑓)

(𝑟2+𝑟𝑚𝑎𝑥
2)

+ 𝑓    (2) 

As specified in Eq. (2) and illustrated in 

Figure 3, the model generates a circularly shaped 

wind field. It uses three parameters: maximum 

hurricane wind speed 𝑤𝑚𝑎𝑥  [m/s], the distance 

of the maximum wind speed to the hurricane eye 

𝑟𝑚𝑎𝑥  [m], and offset 𝑓 [m/s], which is the 

asymptotic decay level of the wind field at great 

distances (infinity). 𝑊𝑚𝑎𝑥  is defined 

conditionally on the hurricane intensity, by a 

uniform probability distribution within the wind 

speed intervals according to Table 1. For a 

hurricane of category 5, an interval of 70 to 90 

m/s is assumed. 𝑅𝑚𝑎𝑥 and 𝑓 are also modeled by 

independent uniform distributions. 

 

 

 
Figure 2: Modelled maximum wind speed curve, red (Eq. 

2), together with data from hurricane Ivan, blue. 

 

 

The temporal component of the model is 

implemented as time steps of 1 hour after 

landfall ( 𝑥0, 𝑦0, 𝑡0 ), as the hurricane center is 

assumed to move 12 hours inland with a 

translational speed of 15 km/h (Javanbakht and 

Mohagheghi 2014). The initial landfall location 

of the hurricane eye at the study area’s lower 

boundary (coastline) is chosen according to a 

uniform distribution. At each time step, the eye 

location is updated according to hurricane track 

direction 𝛽, which is assumed to follow a normal 

distribution centered on the south-to-north 

direction. At each time step and at each location 

of interest, the wind speed value is calculated 

according to Eq. (2). An overview of all 

variables and assumptions is given in Table 2. 
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Figure 3: 2D contour lines of one realization of the wind 

field at landfall (x0,y0,t0), indication of 1 hour time steps of 

hurricane eye track, and georeferenced power network in 

a 300x300 km
2
 study area. 

 

2.3. Infrastructure model 

2.3.1. Power grid inventory  

A power system has three main functional parts: 

power generation, power transmission between 

generators and substations, and power 

distribution system. In a graph representation of 

a power grid, nodes represent generation, 

transmission, and distribution buses, substations 

and transformers, while lines model the 

transmission lines/cables and transformers, 

which are weighted by the admittance 

(impedance) values.  

2.3.2. Vulnerability: Component fragility 

models 

The component fragility models describe the 

damage probability of the individual network 

components as a function of the hazard 

characteristics. Here, fragility models are based 

on the 10 m wind gust speed alone, independent 

of direction and duration. As a further 

simplification, no distinction is made between 

different node types and each node is seen as a 

single unit. The same holds for the transmission 

lines. 

 
Table 2: Model variables, probability distributions and assumptions  

Variable 
Probability distribution and 

assumptions 
Comments and data source 

Hurricane occurrence  Poisson distribution λ =
0.5

𝑦𝑒𝑎𝑟
; Ouyang and Dueñas-Osorio (2014) 

Landfall position Uniform distribution 
Location on lower boundary of study area 

(coastline, 400km length) 

Hurricane intensity  Pr(Intensity| Hurricane) Ouyang and Dueñas-Osorio (2014); see Table 1 

Max hurricane wind speed, 

wmax [m/s] 
Uniform distribution  

The given hurricane intensity determines the 

regarding range 

Distance eye to  wmax,  rmax [m] Uniform distribution Range 10 to 100 km 

Offset, 𝑓 [m/s] Uniform distribution   Range 5 to 15 m/s 

Track direction, 𝛽 [degree] Normal distribution 
Emphasis on south-north directions; 

μ=90°;σ=15° 

Component damage state, dij  Fragility Pr(dij|w) following Eq. 3 Parameters according to Figure 4. 

Component failure, Fi   
Line segment Pr(Fij=yes|dij)= [0.001, 0.01, 0.1,0.2,0.6]   

Node  Pr(Fij=yes|dij)= [0.0001,0.001,0.01,0.1,0.5]   
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For four predefined damage levels 

(minimal, moderate, severe, and major damage), 

lognormal fragility curves describe the 

probability of the 𝑖 th node to have reached a 

damage state 𝑑𝑗 as function of wind speed 𝑤: 

Pr(𝐷𝑖 ≥ 𝑑𝑗|𝑊𝑖 = 𝑤) =

∫
1

𝜎𝑗√2𝜋𝑤
exp (

−(ln(𝑤)−𝜇𝑗)
2

2𝜎𝑗
2 )

𝑤

0
d𝑤 (3) 

The fragility functions are summarized in 

Figure 4. The probability of failure of a network 

component given wind speed Pr(𝐹𝑖|𝑊𝑖 = 𝑤) is 

calculated according to Eq. (4): 

Pr(𝐹𝑖|𝑊𝑖 = 𝑤) = 

∑ Pr(𝐹𝑖|𝐷𝑖 = 𝑑𝑖𝑗) Pr(𝐷𝑖 = 𝑑𝑖𝑗|𝑊𝑖 = 𝑤)𝑑𝑖𝑗
  (4) 

The conditional probabilities Pr(𝐹𝑖|dij)  of 

component failure given the damage state are 

summarized in Table 2 . 

 
 

 
Figure 4: Fragility curves for four damage states, dj 

(minimal, moderate, severe, and major damage). 

 

The reliability evaluation of a transmission 

line is performed by spatial segmentation of the 

line. Each segment is assumed to have fully 

correlated performance, and is subjected to the 

wind speed at its midpoint. Different segments 

are considered to have independent performance 

for given wind speed. Each line is treated as a 

series system that fails if one line segment fails. 

The definition of the segment length has high 

importance. As the number of segments 

increases, the reliability of the lifeline decreases 

(Selçuk and Yücemen 1999). For the time being, 

a segment length of 10 km is used in this study.  

2.3.3. Consequences: Network response model 

In earlier studies, different approaches to account 

for changes in the power flow after potential 

component failure events were used. Some 

studies apply topological measures and 

properties of networks. Motter and Lai (2002) 

estimate the load at a node by the total number 

of shortest paths passing through the node 

(betweenness), which is altered, as soon as a 

node of the network fails. A topological 

network model  has been used by Winkler et al. 

(2010) to model cascading failures in 

forthcoming hurricane events. As a result of this, 

reliability could be linked to topological features, 

such as meshedness, centrality and clustering. 

The more compact and irregular a network is 

built, the more reliable it is. 

To overcome constraints of a purely 

topological model, the power flow in the network 

can be computed with a physics-based model. 

This allows accounting for the dependency of 

network components and to estimate if, and to 

which extent, initial component failures cascade 

through the network and cause partial or overall 

network collapse. Physical models estimate 

power flows across the grid according to 

Kirchhoff’s laws. Here, the applied model is 

built on direct current (DC) power flow 

equations that are linearized approximations of 

the alternating current (AC) power flow 

equations and only consider flow of active 

power; see e.g. Van Hertem et al. (2006) for 

more detailed explanations. 

The maximum power flow that a line can 

tolerate is the line capacity  𝐶𝑖 , defined as the 

product of tolerance parameter 𝛼𝑖  and initial 

load 𝐿𝑖(0). In case of a line overload, the line is 

here assumed to be deactivated deterministically, 
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e.g., by a circuit breaker, neglecting the 

possibility that protection devices could also 

suffer a (hidden) failure. 

The failure of one or more components 

changes the topology of the power grid and 

eventually subdivides the grid into several 

unconnected sub-grids. The following algorithm 

assesses the consequences of the cascading 

failure in terms of overall power loss [%] and 

active link loss after a potential hurricane event 

has affected the study area:  

1) Line and node threat determination; in case a 

node fails, all lines connected to it are also 

deactivated.  

2) All threated lines are cut from the topology 

(zero line flow). As a result of the removal, 

some parts of the grid may end up to be split 

into disconnected sub-grids. In each sub-

grid, it is checked whether power generating 

sources are still available or not. If there are 

none, the sub-grid is inactive as a whole. If 

there is power generation available, the 

power is redistributed among the remaining 

nodes, which may cause successive line 

overloads and thus further line removals 

from the grid. In this process, load shedding 

is not accounted for, i.e. the potential ability 

of the network operator to intentionally 

interrupt supply to certain areas in order to 

contain overall damage. 

3) The (isolated) networks are reevaluated by 

repeating step 2 until convergence is 

reached.  

4) The resulting damage, after the iterating 

algorithm finishes, is quantified by the 

fraction of the not-satisfied power demand 

(power loss [%]).  

The described physical flow algorithm 

(steps 1 to 4) is implemented in MATCASC, an 

open source MATLAB tool for modeling 

cascading failures in power grids (Koç et al. 

2013).  

3. NUMERICAL APPLICATION 

The synthetic IEEE 24-bus power system (UW 

1999) is georeferenced by projecting it onto a 

300x300km
2
 study area. Each substation and 

transmission line segment is assigned a x,y-

coordinate; the complete network is shown in 

Figure 3. The substations capacities and the 

technical parameters for the transmission lines, 

such as reactance and capacity, are obtained from 

the test case file (UW 1999). Figure 3 depicts the 

test case network in a georeferenced context, 

together with an example hurricane realization. 

Hurricane scenarios are simulated using 

Monte Carlo simulation, thus generating 

information about landfall position, track 

direction, and hurricane intensity parameters for 

1000 random hurricane events.  

3.1. Results 

3.1.1. Hazard and power system simulation 

results 

Based on MCS, we find that there is only a 7% 

probability of the network remaining completely 

intact after a hurricane. The probability that 

component failures occur but do not result in 

power loss is 0.11 (resilience). 82% of hurricanes 

lead to a power loss in the system of some sort. 

The overall average (expected) power loss is 

69%. Conditional on a power loss occurring, the 

expected power loss is 73%. With 0.12 

probability, the overall power loss is greater than 

90%.  

When looking at the dependence of the 

number of deactivated lines after cascading 

failures on the number of initially triggered 

components, a positive correlation can be found 

with a correlation coefficient of 0.63. 

Nevertheless, already for small numbers of 

initially failed components, the total number of 

failures after considering the cascading failures 

may be large. This effect has also been stated in 

Motter and Lai (2002), especially when the 

tolerance limits alpha for single parts of the grid 

or for the network as a whole are small. Because 

of this effect, the resulting power loss is not very 

sensitive to the number of initially failed lines, as 

evident from Figure 5. 
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Figure 5: Dependence of power loss on number of initially 

failed lines.  

Figure 6 shows the probability of line and 

node failure and average percentage of active 

lines after cascading failure conditional on the 

different hurricane classes.  

 

 
Figure 6: Hurricane intensity levels and regarding 

probability of node/line failure.  

 

3.1.2. Impact of hurricane parameters on 

component and network failure 

To investigate the dependence of initial 

components failure events on different model 

parameters, receiver operating characteristic 

(ROC) curves are shown in Figure 7. A ROC 

curve plots model sensitivity against the 

complement of the model specifity. The 

sensitivity is defined as the probability of a 

model to predict correctly a failure event (true 

positive rate). The specifity is the probability that 

a model correctly predicts non-failure events 

(true negative rate). The greater the area 

underneath the ROC curve (AUC), the higher are 

specifity and sensitivity, and thus the better the 

corresponding model explains the failure event 

(Mason and Graham 2002). 

The highest AUC value is reached for a 

model combined of the following variables with 

increasing prognostic character: offset, hurricane 

class, rmax, wind speed at node 1 (near the 

coastline). The wind speed at node 1 (see Figure 

3) differentiates very well between remote and 

critical hurricane tracks. The hurricane’s offset 

has only negligible influence on the failure event 

of single network components. 

The dependence of the overall system 

performance (power loss) after hurricane events 

and subsequent cascading failure on the 

individual parameters of the hurricane model is 

significantly less pronounced than for component 

failures (Figure 8). The low impact of the 

hurricane parameters mainly stems from the fact 

that values of power loss predicted by the applied 

physical network model are insensitive to the 

number of component failures, given that at least 

one network component failed (see Figure 5).  

 

 

 

Figure 7: ROC curves: Influence of hurricane model 

parameters on the component failure event.  
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Figure 8: ROC curves: Influence of hurricane model 

parameters on the overall network damage (power loss). 

 

4. CONCLUDING REMARKS 

The main focus of this work is the inclusion of a 

physically-based system failure model within a 

hurricane simulation context. With the assumed 

model parameters, the network components have 

high probability of failure. Further, the physical 

power flow response model produces high 

overall system damage values in most cases, i.e. 

it does not differentiate between different hazard 

scenarios as already the failure of one or few 

component(s) lead to high power losses due to 

cascading effects. Consequently, more sensitive 

physical models will be considered in the future. 

This could be aided by comparing different 

alternative models, e.g. more complex AC 

models (Javanbakht and Mohagheghi 2014) and 

different performance metrics as they are 

discussed in Cavalieri et al. (2014). 

In relation to the dynamic hazard model and 

in order to aim for a (near-)real time model, the 

implementation of a dynamic component into the 

power flow model is needed, so that the 

cascading failure evolvement can be evaluated in 

accordance with the hurricane time steps. For the 

time being, only the overall damage after hazard 

occurrence is assessed.  

For real applications, the idealized hazard 

model must be replaced by state-of-the-art 

models, and system-specific fragility curves 

should be used. A further refinements is the 

reconsideration of the segmentation method for 

modeling the reliability of transmission lines, 

e.g. according to suggestions in Selçuk and 

Yücemen (1999) and SelÇuk and Yücemen 

(2000). Furthermore, the cost and follow-up 

consequences of power losses should be added to 

the model. Ideally, the model would also include 

required restoration efforts (time and costs), as 

carried out for instance in Ouyang and Dueñas-

Osorio (2012) and in Ouyang and Dueñas-Osorio 

(2014). 

Finally, in order to draw conclusions about 

the risk in monetary terms, and in order to 

express the potential overall costs during a 

defined time period, the distribution network in a 

given study area would have to be assessed 

similar to Winkler et al. (2010). The inclusion of 

percentages of households and businesses 

without power after a disruptive event would 

facilitate complete cost quantification dependent 

on outage localization and size.  
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