- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Considerations regarding the duality rotation.
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Considerations regarding the duality rotation. Levman, Garry
Abstract
Maxwel l's equations for the vacuum are invariant under the duality rotation; however, the significance of this invariance is not well understood. The purpose of this thesis is to consider the duality rotation in greater detail than has been done previously. The duality invariance of Maxwell's equations is discussed, and it is shown that the only duality invariants bilinear in the electric and magnetic fields are arbitrary linear combinations of the components of the stress-energy-momentum tensor. It is also shown that the most general linear field transformation which leaves Maxwell's vacuum equations invariant is the duality rotation. The usual Lagrangian density for the electromagnetic field does not exhibit duality invariance. It is shown, however, that if one takes the components of the electromagnetic field tensor as field variables, then the most general Lorentz invariant Lagrangian density bilinear in the electomagnetic fields and their first derivatives is determined uniquely by the requirement of duality invariance. The ensuing field equations are identical with the iterated Maxwell equations. It is further shown that in neutrino theory the Pauli transformation of the second kind corresponds to the duality rotation.
Item Metadata
Title |
Considerations regarding the duality rotation.
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1970
|
Description |
Maxwel l's equations for the vacuum are invariant under the duality rotation; however, the significance of this invariance is not well understood. The purpose of this thesis is to consider the duality rotation in greater detail than has been done previously. The duality invariance of Maxwell's equations is discussed, and it is shown that the only duality invariants bilinear in the electric and magnetic fields are arbitrary linear combinations of the components of the stress-energy-momentum tensor. It is also shown that the most general linear field transformation which leaves Maxwell's vacuum equations invariant is the duality rotation. The usual Lagrangian density for the electromagnetic field does not exhibit duality invariance. It is shown, however, that if one takes the components of the electromagnetic field tensor as field variables, then the most general Lorentz invariant Lagrangian density bilinear in the electomagnetic fields and their first derivatives is determined uniquely by the requirement of duality invariance. The ensuing field equations are identical with the iterated Maxwell equations. It is further shown that in neutrino theory the Pauli transformation of the second kind corresponds to the duality rotation.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-05-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0084790
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.