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ABSTRACT

Maxwell's equations for the vacuum are inVariant under thé
duality rotation; however, the significance of this iﬁvariance
is not well understood. The purpose of this thesis is to consider
the duality rotation in gféater detail than has been done
préviously. The duality invariance of Maxwell's equations is
discussed, and it is shown that the only duality invariants
bilinear in the electric and magnetic fields are arbitrary linear
combinations of the components of the stress—energ;-momentum
tensor. It is also shown that the most general linear field
transformation which le?Qes Maxwell's vacuum equations invariant
is the duality rotatibﬁ. The usual Lagrangian density for the
electromagnetic field does not exhibit duality invariance. It is
shown, however, that if one takes the components of the electro-
-magnetic field tensor as field variables, then the most general"
Lorentz invariant Lagrangian densityvbilinear in the electo- )
maqnetic fields and their first derivatives is determined "
uniddély by the requirement of duality invariance. The ensuing
field equations are identicél with the iterated Maxwell equations.
It is further shown thaﬁ in néutriﬁo theory the Pauli transForﬁ-

ation of the second kind corresponds to the duality rotation.
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0. INTRODUCTION

N
After the introduction of the complex field vector

F = E+iB Maxwell’s equations for the vacuum1,
Ix E o+ aﬁ/bt =0
VE =0
(0.1) _
VX8 - E/3t =0
'v.8 =0,

take the form

v X F - i)f/3t =0
(0:2) :
V-f = 0 .,

These equations are invariant under the transformation

Eo» g = ei®

0.3) :

o F* =5 Fx' = Frg*if
where F* = £ - iB. Misner and Wheeler (1957) have named this

transformation the duality rotation. Milner (1927)2 used the
'anlity rotation to simplify the soclution of Maxwell's equations
with sources; however, his paper seems to have been forgotten,
Recently, interest in this invariance property of Maxwell's
‘vacuum equations has been revived by Witten (1962), Calkin (5965),
Schwinger (1969), and Kaempffer (1970). Schwinger has developed
a theory of strongly intgracting particles by requiring that the
duality invariance oF_Maxwell'é equations without sources be

maintained in the equations with sources. Kaempffer has



considered the gquantum field theory associated with duality
invafiant action principles, |

This‘thesis contains some elementary consideratibns
regafdihq'ﬁhe duality fotatioh. The major result of the research
outlined here can be summarized in the following ﬁhrée

propositions:

1. The only duality invariants bilinear in the electric and
magnetic fields are arbitrary linear combinations of the

components of the stress-energy-momentum tensor.

2. The most general linear field transformation leaving
Maxwell's vacuum equations invariant is, up to a normal-

ization Féctor, the duality rotatiaon.

3. The most general Lorentz invariant Lagrangian density bilinear
in the electromagnetic field tensor and its Firs£ derivaﬁives
ié Uhiquely determined by the rtequirement of duality

invariance.
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1. DUALITY PAIRS AND DUALITY INVARIANTS

In terms of the electric field E and the magnetic field B

the duality rotation (0.3) becomes

im

—> E' = E cos B8 +'5'sin 8

(1.1)

_‘__>BI.

-

‘0

]

-g sin 8 + B cos B8 .

-

(E,B) forms a "duality pair” with "angle of rotation” 8.

Another important duality pair exists. Ffrom £ and B one can
form the Lorentz scalar %(@2 - §2) and the Lorentz pseudoscalarS,

E.B . Under the duality rotation they transform as

E'*B' = E+B cos 28 ¢ %(B2 - Ez),sin 28

.2 2 2
)

(B'" - E - Ez) cos 28 ;

N

= -£:8B sin 28 + (B

-

therefore, they form a duality pair with anglé of rotation 28.
From equation (1.2) it follows that the usual Lagrangian density
for the 919ctromagne£ic field

(1.3) o L =-3(8% - £9)

is not duality invariant. Misner and Wheeler (1957) have

introduced

(1.4) tnow = (£-8)% + 287 - €9)

which is duality invariant; however, Ly_p is fourth order in the

electromagnetic fields.

Besides Ly_, there are several other duality invariants,



The Poynting vector § = £ %8, the electromagnetic energy density

2 2 .
& = 3(E° + B”), and Maxwell's stress tensor

—tl

= - ( EE + BB )

are all duality invariant. It should be noted here that the

electromagnetic field potentials A and ¢ ,

-vd st

v <A,

m
-

(1.5)
| B

transform in a very complicated manner. They are not fundamental
quantities, however, since they cannot be defined uniquely.
Although clasgical electrddynamics is simplified by the |
introduction of potentials, electromagnetic phenomena can be
studied, at least in principle, without the introduction of
potentials. ‘ .

The question arises whe£her any other dvuality ihvariants
exist."As a partial answer to this question consider an
arbitrary function of the fieldsS’f = f(Ey +yBg ) . Under an

infinitesimal duality transformation E and B transform as

€' =€ + o8
(1.6)

B' =B - eE
where 8<< 1. Then

Sf = F(E', ,B'g ) - F(E_ ,Bg )
(.73 - = g . 8 g,.

If f is a duality invariant, &§f = 0 and-



- oF I

Consider the case where f is bilinear in the electric and

magnétic fields; thereﬁdre,

(1.9) 2oy B * bugBuBa *+ Cxg EuBg

where Bug bﬁd‘. Cx@ 3re real constants. Without loss bF 
generality we may take ajx, = 2g and qm6(= 95« . Equations
(1.8) now gives

(1.10) 22,5 8¢ *.Cug BuBa = Zbu g BBy *CygBiEs o

In equation (1.10) £ and B may be considered to be a set of six -

arbitrary real numbers. Setting £ = C gives Co,g * Cgot = 0
since 3*54 is symmetric. Equation (1.10) now becomes
(1.11) - S gBhBs = By BB

which yields 8,4 = byg i therefore, f can be written

(1.12) CF =ag (BEg + BBy ) + Cuy EaBag

where axﬂ.is symmetric and c,g1is skew symmetric. Inspection
of equation (1.12) reveals that the only duality invariants
bilinear in the electric and magnetic fields are arbitrary linear

combinations of & and the components of S and T. 1If the

electromagnetic stress-energy-momentum tensor T,



~51

= -S,
T = _5% N

51 52 53 -¢

—L

is introduced, the above fesult can be statedz thé,only duality
invariants bilinear in the electric and magnetic fields are
arbitrary linear combinations of the components of T.
In.Schwinger's theory of strongly interacting pérticles.
méxwell's vacuum equations are extended to include both electric

and magnetic charges by writing

VX £+ 28/t = -Jp
VE =
(1.13) E T P
. VX B - JE/ = Jg
V-8 i

2

Joe and‘dom'are the electric and magnetic charge densities; Jeg and
Jm are the electric and magnetic current density vectors. It is
postulated that under the duality rotation both QPeAvdom ) and
(ge,gm) transform as duality pairs with angle of rotation 8 .,

In this case (PgPm, %Lb % -jDZJ) and (Jg*Jny %[gg - Jg])‘are
duality pairs with angle of rotation 28 . The following are
duality invariants: J°g + UO%, gg + g%,-ge X Jm, and Jgdm + Jﬁée .

In conclusion we note for completeness that

5= ih s
E = %_f°f*
’ T = I



“

2 _g%) + 18

3 FeF =

Nf=—~

(e

The transformation properties of the above quahtities_Foilow now

from equation (0.3) .
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2. A CUVARIANT FORMULATION OF THE DUALITY ROTATION

Maxwell's equations form the basis of a Lofentz covariant
- theory. As a result it is convenient to write the duality
rotation in a manifestly Loréntz covariant form. In such a form
the significancé of the term "duality" also becomes apparent.

In the following.the Minkowski metric tensor gnn has thé
diagonal elements -1, -1, 54,»+ﬁ. The dual oF»a second fank

. : mn . . 6
contravariant tensaor A is defined as

- - mnrTs
(2.1) AT E 5(-g)T? e TArs

L rs . ‘ : s mn
where Apn = gmprgnsh is the associated covariant tensor of A

and g = det gpn - é_mnrs is @ completely skew symmetric relative

. ) 1234 _ -3
tensor of weight w = +1 with & = +1.. The factor (-q)
ensures that A™ is a pseudotensor3 rather than a relative tensor.

. Similarly, the dual of a second rank covariant tensor Bg, is

defined as

rs ' =
€ mnrsP

"t
N~
—~

1
is]
S’

(2{2) Bmn

- where an gmrgnsB

the associated contravariant tensor of
Bmn 2nd 9™ = gnn + € mnrs iS @ completely skew symmetric
relative tensor of weight w = -1 with €434 = -1. With the

-abave conventions

) ~TSs ~
(2'3) . ergnsc = Cmn *
It can now be shown that for an arbitrary éntisymmetric tensor

D™ = _p" gne has D™ = -p™" ,



With this preparation consider the electromagnetic field

tensor
(2.4) FT0 =

The dual of F"" is given by

81
. -~ B2
. (2.5) F7 = .
. o , ,83 \ '
0
Fm” and F™ are second rank, contravariant, skew symmetric

tensors. Maxwell's vacuum equations (0.1) can now be written

A 1 mn
. F 'n = 0
(2.6) | .
rn ~ 0
' S mn mn . . Tmn
where ,, = ?/axm. Setting 6™ = F™ 4+ iF gives
(2.7) Gm”,n =0 .

Equation (2.7) is invariant under the transformation

(2.8) " —> '™ o ™" 18
which can be rewritten as.
. . ~ -
| ) Fr™ = F™ cos 8 + F'" sin 8
' (F™yv = _F™ sin 8 + F cos 8 .
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= ' ~ o
Since F™" = F™ , (an)' = (F'mn) . When expanded in terms of
E and B equation (2.9) is exactly the duality rotation (1.1). A
problem arises because Fmh is a. tensor while‘Fmn is a pseudo-
tensor. If F'™ is to be a tensor and-‘l;—"mn is to be a pseudo-
, tensdr, then B must be a pseudoscalar. With this assumption the
duality rotation (2.9) is a Lorentz covariant transformation.. All

the results of section 1 can now be proved using the covariant

notation. One need only observe that

mn 2 2
$F™F = 3(8° - EY)
| 1emn —
(z.10) A Fon = 0B
T = F rnr—ASnr Frg +

Although Maxwell's =2guations are first crder diFFefential

equations they are equivalent to the second order system

mn
: e =0
(2.11)

~mn
F v”r,é 0

obtained by differentiating (2.6) by x¥ . The integration of

equations (2.11) gives

mn o .m

F 0 = C
(2.12) »

mn _ m

F n = D

where c™ and 0™ are vector constants of integration which ean be
set equal to zero by the principle of isotropy of spacetime.

They must be set to zero if the vacuum is to be Lorentz invariant.
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3. COORDINATE AND FIELD.TRANSFORMATIONS

Any coordinate transfo;ﬁétion induces a transformation of
the electric and magnetic Fields. Under a Lorentz transform-
ation, for examplé, the eléctromagnetic-Fields an transform
as a Second rank contravariant tensor. The duality rotation
differs fundamentally.from the Lorentz tranéfcrmation since it
does not possess an associated coordinate transformation. .The
duality rotation is a field transformation rather than a co-

ordinate transformation. Three questions immediately occur:

1. What is the most general group C of coordinate transqum-

ations under which Maxwell's vacuum equations are covariant?

2. What is the most general group D of field transformations
leaving Maxwell's vacuum equations invariant?

¥
3, For a given field transformation d €D does there exist a

coordinate transformation ce C which induces d?

It is weli known (Appendix A) that the full covariance group

“of Maxwell'’s equations is the fifteen parameter group of
conformal transformatiohs7. in this sectian 2 partial ansuwer
“is obtained to question 2. It is shown that the most general
"linear field transformation leaving Maxwell's vacuum equatiohs
invériant is, up to a normalization factor, the duality rotation.
The answer to question 3:is not yet known,

The most general linear electrohagnetic field transformation
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can-be written

f

' : ‘ LM omn TS
(3.1) _ Fe = AT s O
where Amnrs are real constants. Since F'™ = Nl ,.an = -f" ,
~mn “nm o, mn . : . -
and F = -F the constants A ., satisfy the symmetry condition
' ' mn nm mn nm .
(3.2) ' Allrs + A rg = A gp + A gy .

The invariance of Maxwell's vacuum equations under transformation

(3.1) implies

n rs
_ Am rs ' wn =0
(3.3)
AMmn Frs e 0
rs yn =
" where
. Pa™ )
mn ' -% mnkl
(3.4) Al s = %(‘9). =3 Akirs .

In equation (3.3) the coefficients of FTS cannot be set equal

'n
to zero since the Frs'n are dependent. The following conditions

' S
exist on the Fr 'n

K s
S8 s Floun

=0
. ;_ "% knab TS
(3.5)  3(-g) & " "Bar s F in =0
a 5 b a TS
(87,86 g *+6 .8 5)F ,,=0 .

Equations (3.3) can‘now be simplified by Lagrange's method
of undetermined multipliers. Each equation of constraint in (3.5)
is multiplied'by an undetermined real constant. . The resulting

equations are added to (3.3a) giving
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' 1
mn m k n 1 =% . m knab
(A “rgs = a k g r % s ~ 7('9) b I <& gar gbs

(3.6) " 1
mn a a TS
r ab[% rS s + 2 r% s] ) F 'n =0

" where amk . bmk , and fﬂmnab are the undetermined multipliers.
By choosing'the constants so that the coefficients of the

dependent Frs disappear cne ohtains

'n

) Amn

rs

k n -% m knab -
= amkg I‘S 5 + %(-Q) b k E gar gbs

(3.7)
— m b
f, nab (%arsbs + % rgas)

Transformation (3.1) now becomes

(3.8) Frmnoz g™ PR ™ PR

the 7 ™ rs Not appearing due to the skew swmmet”y of F"

Similarly, equations (3.3h) and (3.5) yield

(3.9) F.mn._ m kn gm '}kn

where c™ I ‘and d K are real constants.
Equations (3.8) and (3.9) can be Slmpllfled further by
use of equation (3.4); however, it is more convenient.to work
directly with the equatioﬁs themselves. From the skew symmetry
mn ~,mn . . .
of F° and F° one can' easily show (Appendix B) that the off-
diagohal elements of amk R bmk , ka , and dmk are zero -so that
equations (3.8) and (3.9) read

Fro= - 82 o+ b2

¢

(3.10) R | a, o by
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Fro= | F o+

o)
N
A
N
= \

where a. b

m * Cpand d are real constants. Expanding these

equations in terms of £ and B gives four equations for each
component of E' and B' . In Appendix B it is shown that these

equations are consistent only if
(3.11) a =d Ta , b =-c Eb

where a and b are constants. Setting a=rcosB8 , b=rsinB , and

a2 + b2 = r2 gives
F*™ 2 rcos BF™ 4+ sing F™"
(3.12) ~
' pomn = ~-r sin 8 F™ + r cos @8 F™M

" Equations (3.12) are the duality rotation (2.9) with a normal-

ization factor r .
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4. THE CONSTRUCTION OF FIELD THEORIES

A pﬁysical system with inFinite‘degrees of Fréeddm is
described By a set of field Functidns &ﬂA = ﬁ’A(xm) and by a set
6ﬁ diFFerential equatiohs for the Fieids V?A. In the Lagrangian
formulation of field theory all theiproperties of the system are

assumed to be embodied in a Lagrangian density

' | | AL LA A |

(ll.1) v L :v L ( Y H Y 'm; (/ 'mn; ) ) L

From the action

(4.2) W= §Ld4x

one can obtain the field equations

(4.3) Py T rr?nia—“LA - .= 0
) o A XY ,m xT x99 , MmN

by appiibation‘of Hamilton's principle S W = 0 . If the action W
is invariant under a group of transformations any conserved .
currents which exist may be obtained from Noether's theorems
(see Schroeder, 1968). Historically field equations are usually
discovered béFOre their corresponding Lagrangian density. Nevef-
theless, the Lagrangian density is considered tb bhe fundamental.
In this section a method is outlined for obtaihing a system's
Lagrangian density withbut complete knowledge of the system's
field equations,. | |

The Fofm of a Lagrangian density suitable for thé descrip—

tion of a physical system is severely restricted if the order
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and the degrée of the systém are knﬁwn; A system is of order k
if the field equations contain no derivatives of the fields
higher thanm k th order. A system is of deqree m if the Fie1d§
and the field gfadients have maximum total power. m in the field
equations., The Simplést‘possible case is a system of order and
degree 1; however, this conditionvprdves tovbe too restrictive.
It has begn Found that mosp physical systems have order 2 ahd
degree 1. Such a system has linear, second orderifield equatiﬁng
so that the Lagrangian density must be bilinear in the fields and
their first derivativesy Only systems of this type will be
consiaered in the Following;‘

If a physical system possesses an intrinsic symmetry, we
expect, by Noether's theorems, that the Lagrangian.density for the
system exhibits this symmetry by being invariant under an
associated'group of ﬁrénsfo:mations. The universal validity of
the principle of special relativity implies, for éxample, that a
physical systems Lagrangian density must be Lorentz invariant. By
Nogﬁher's'First theorem the consérvation af linear mamentum,
angular momentum, and energy ?ollows. The imposition of invar-
iance properties on a Lagrangian density often determines the |
Lagrangian density up to a multiplicative factor. Two examples
will be considered: a phége invariant complex Lorentz scalar field
and a gauge invariant Lorentz vector field.

Consider a complex Lorentz scalar field Y’= 7’1 ? i 702 .

ﬁp and Y$¥* = 7’1 - i jbz will be taken as the field variables,

If the Lagrangian density is Lorentz invariant and bilinear in .
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the fields and their first derivatives, then it must be a linear

combination of the following Lorentz scalars:

AL

J1 = ('/2 A . JA =
(a».a) Jp = Y*? -J5’ =4 x o o %o
g = P% Y Jg = L*m YT

If the Lagrangian density is alsoAinuariant under the phase
transformation

i ¢ o™ 18

‘70*""5.90*' - -7o*e+i8 ,

(4..5) 

then only J3 and Jg can appear; therefore, for a phase inVariant

comblex scalar field the Lagrangian density has the form

-

~

06)_A ' /L—S=8Y*7ﬂ +b'L]ﬂ*,mSpvm

where a and b are constants. The field equatians

]
[an]

b Sp’mm}- a ¥

(a.7)

n
o

bL/*'mm - a Px

follow from Hamilton's principle. The phase transformation (4.5)
is a one parameter continuous transformation. By Noether's first
theorem a conservation law exists. Under the infinitesimal

- phase transformation

SN
]

Y - i ¥

(4.8) :
Px ¢+ ig P *

<
*
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the Lagrangian density Lg transforms as

Sl = L - Lg

-iB(DLyb@?’;ie(BLybﬂmh{m
(4.9) : | |
+i8 (DLS/JY*)V* +i8 (2 LS/")(/*m)Y?m

P LS
189 QY’La’p +183 (9 5‘79>

where equation (4.3) has been used for simplification. Since by

construction $Lg = 0, one has that

(4.10)- o ’~_’ Bjm/agm = 0

where

(4.11) "= BLe/ay,m Y - Glelogx, )F .

It is easily shown from equation (4.6) that

(4.12) M=t (YT o @rMex) |

inspection of these results shows that the phase inbafiant complex
scalar Field{is'cdmpletely equivalent to the complex Klein-
Gordon field.

As a final example consider a Lorentz vector field Am whose

Lagrangian density is invariant under the gauge transformation

(4.13) | Ap ™ A'n = Ag ¢+ h g

where h = h(x™) is a scalar function. For linear, second order,
.Lorentz covariant Field‘QQUations the Lagrangian density Ly

"must be of the form
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(11.14) o L = Z Cm Km

V m=1

where the ch are real constants and

- : m n
Ky = AMAL Ky = A" A

. ’ n
(4.15) , _
m,nAm‘n - Ky,

m,n
AT An,m

are Lorentz scalars. Under transformation (4.13) Ly — L{j where

¢y
L] o .
(4.16) Ly = E%.Cm Kt
and
m m
K{ = Kq +2A h,m + h' h,m
m,n , MmN
| Ky = Kg #2A7'"h 0+ h'h
(4.17)
v . m o N y M n
K3 = K= +2A ’mh n * h‘ h?* n
. m,n , MmN
K4 = K, +2A h,mn h h,mn .
Since the . lLorentz scalars Km are linearly independent,LU =_LQ
implies
(4.18) Cq4 = €3 = o , Cop = -CA .
It is conventional to choose ¢, = % . This choice gives
. ' . - _;L -m n my N
(4.19) Ly = 5(A" Anm = A Am’n) .
The resulting field equations are
. . , N
(A.QD)- ) | . (Am’n - An'm) =0 .
If we set F/ = A™* " _ An’ﬂ then equation (4.20) becomes an'n =
- . ?
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Since FM" = AT o AM ™ ymplies that £ n = 0 we see that the
. ’ . .

gauge invariant vector field is equivalent to the electromagneticll

field. Note that

Ly
(4.21) :

]
Nl
S~

™

The gauge transformation (4.13) depends analytically on the first
derivatives of a scalar function h. A conserved current exists,

but the conservation law is satisfied identically.
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5. A DUALITY INVARTIANT ACTION DRINCIDLE8

| Schwingef's theory (1969) of strongly interacting particles
requiresbthe_introduction of magnetic as well as electric charges,
and although this procedure symmetrizes Maxwell's equations in a
pleasing mannef, it introduces a new problem. If magnetic and
electric charges and currents are allowed, electromagnetic field
potentials may not exist; thefefdre, a reformulation of the
classicél theorf independeﬁt of the existence of potentials.is
desirable. In this section a development in this direction is
aﬂtempted,

The usual Lagrangian density for the electromagnetic field
(1.3) L= 3%(E°-8"),

although Lorentz ‘invariant; is not dualityvinvariant. The
guestion arises whether a Lagrangian denéity Lp exists whichiis
both Lorentz and duality invariant. This section contains a -
derivation, using the methods of section 4, of the most general
Lorentz and duality invariant Lagrangian density bilinear in the
electromagnetic field tensor g and its first derivatives an,k .
The requiremént of duality invariance is Sufficient to determine
the Lagrangian dgnsify Lp up to a multiplicative constant. The
components of the field tensor can then be tfeated as Fiéld
variables. |

If the theory is‘to be Lorentz Covafiént; LD must be formed
from the-scélars and scalar densities of F™" and its derivatives.
For linear field equations.COntaining no derivatives higher than'
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fhe second,'LD must be bilinear in an ahd an'k H thereﬁpré, Lp
must be a linear comﬁination of scalars and scélaf densities |
bilinear in an and an,k . |

For an arbitrary tehsor A™" there are fourteen linearly .

[ .
independent Lorentz scalars of the required type (Kaempffer, 1968):

Jp = A" | Jg = AMKa

Joy = AmnAnm Jg .= Amn,kAkn’m

J3 = AmmAnn  | Jip = Amm?kAnk’"
(s.1) o = AMKAL .,J11 = A At

Jg = Amﬂ;kAa%’k Jyg = Amn’n km'k

Js = Amm,kAhh,k ' Jqg = Amn,mAkn’k

J7 = Amn{kAmk’n | J1Ar= Amm'kAkn'n .

For an arbitrary skew symmetric tensor there are only four

linearly independent scalars:

mn : Y - rrmn,k
,J1 =F " Fan o = F an,k
(5.2) y | .
_ emn,k v _ ~mn k
Jg = e ka.n ' Jg = F ,ﬂka°
“where an = -an . For an arbitrary tensor AT thére are ten

linearly independent scalar densities of the required type

(Pellegrini and Plebanski, 1963):

Kq

klmn '
; Ak1Amn

i}

_klmn _rs : )
K2 € a kl,mAnr,s
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= M&lmn_rsy

K3 & 9" A1, mPrn, s
. klmn_rs, S
Kg =& Mg Akl[mArs,n

_' klmn TS, '
~ Kg - € 9 Akl.rAmn,s

- ~klmn _rs -
Kg =¢ 9" " Akr, 1%mn, s

(5.3) K - klmn rSA . A
7 " -9 rk,17mn,s

. TS
Kg =& 9" Arr,1%ms,n

klmn rs
9 T Ark,1Pms,n

klmn TS,

9

Kig = ¢ rk,1Psm,n .

' . mn s »
For a skew symmetric tensor F the above scalar densities reduce

to the following five scalar densities: .

4

' klmn :
Ky =& T Fafan

v _ _klmn_rs '
Ko =€ 8 Fkl,mrnr,s,
9. 3 =€ 9 "ki,r ' mn,s
y .
- _klmn_rs
Kg =€ g °f r.lan,s
Y klmn _ TS
Ks 8 Frr,1 ms,n .

The Lagrangian density LD is therefore of the form

o
) v
(5.5) ' . LD = ;a ame * muumem

where a_ and bm'are real constants.

One can now require that Lp be invariant under the duality



24
rotation (2.9). It is mathematipally convenient, however, to

require only that Ly be invariant under the transformation

-~

mn wmn
(5.6) FN — and  Foo > Fo

. obtained by setting 8 = 37T in equations (2.9). As will be seen;_
the invariance of Lp under this special case of the duality
rotation guarantees its invariance under the full duality rotation.

Under transformation (5.6) Ly — Ly where

< v s -
(5.7) . L6.= ;%,‘am & + E%?me;
and
J{ = ?mnf%n
jé = an,k?%h,k
is = an’kg%k,n
"JZ = ?mn,nka,k
(5.8) ;{v= 1 F
R% = éklmngrS;%i'anr’s
| Ké-? éklmngrsgkl,rrmn,s
_~§A i eklmngrSFLr,lF%n,s
;é B €klmngrsflrle%S;n )

After a short calculation (see Appendix C) one finds

Jg o= =dp Jy = -dp
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v V4 v v v
NN S RY Ji o= =37y + Js
v. _ v V. _ v
K] = -Kq Koy = <Ky

(5.9) v . . .
K3 = -Kg Kp = -Kg
V.' v v

The requirement.LD = L6 giyes
2a1j1 + 3(4agy + az + aa)jz‘} (az -_aa)j3
.(5f10), ' + (ad - 83)jA‘¥ 2b1§1‘+ 3(4b, + bS)RZ
375

v v .V
+ 2b,Kq + 3(4by + bg)K, + boKo = 0 .

v v
Since J and K, are linearly independent

2aq = 0 o 2a, + %(as + a,) =
as - aa = D . .. 2b1 =
(5.11) , '
2bg = O S 2b, + 3bg =
bg = O . 2by + 3be =

The solution of equations (5.11) is

. 31 = b1 = b2 = b3 = ba = b5 = 0
(5.12) '

82 = —%63 = -%84 .
By choosing a, = 1 ane can write Lo aé
\ o, emn,k ' mn, k. mn K
(5.13) lp=F Fon,ic = 2F Fak,n = 2F. .nka’
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Only scalars appear in the Lagrangian density Lps @nd its lLorentz
invariance is thus manifest. Alternatively, if LD is written in
terms of the complex field vectors_F and F*,
OF* 9F .[P,f*.(vxvr) _?,.F.('VXF*)]
b =5t ot * 13t -3t - |

(5.14) :

‘ s (@XER)(TXF) - (TEX)(VF)
its duality invariance becomes manifest on account of transformation.

(0.3).
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6. THE ITERATED MAXWELL EQUATIONS AND CONSERVED CURRENT

If the components of the electromagnetic field tensor g
are tfeated.as field variables, one obtains from Hamilton's

principle

(6.1) % ﬁ;LD(Fm”,k)_ddx =0
the field equations
’ mn, k mk,n _
(6.2) . ‘ F - 4F 7 e =0 .

k
Since Lp 'is duality invariant, equations (6.2) imply that

(6-3) ’ 7 : an’kk - Aka’nk = O .

mn, k

F |, and Fmie | @re skew symmetric in (m,n); therefore,

equations (6.2) and (6.3) can be rewritten as

mn, k mk, n nk,m '
F Kk -_2(F K - F k) =0
(6.4) ~ |
~mn, k ~mk, N ~nk,m - )
F K - 2( '-k - F k) = D . #

. In terms of the complex field vector F the field equations (6.4)

" become

(6.5) 32_1-’/31:2 - vzf - 29x(VYXF - i3F/3t) = 0 .

These equations permit longitudinal modes as solutions. If
‘these modes are eliminated by the imposition of the subsidiary

condition

(0.2b) - ' v.eF =0,
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then equation (A.5) can be written as

(6.6) (U - i) (Y% - 13/5t) F = 0

which is identical with the iterated Maxweli's vacuum equations,
It is clear that Maxwell's vacuum equations imply the duality
invariant field equations. Similarly, if equatibns (6.2) and

(6{3) are solved with the subsidiary condition
(6.7) F K T 0

Maxwell's equations are obtained in the form (2.12).
In the usual field-theoretical formulation of vacuum

electrodynamics the Lagrangian density is

’ - mn
(6.8) L=-1/4 F"0F o

with the subsidiary condition
(6.9) , F = Ap,n - A

where A is the field 4-potential. This condition holds if and
only if

(2.6b) | o200,
y N

The subsidiary conditioﬁ (6.9) is thus eguivalent to assuming
equation (2.6b). The components of the field potential A_ are
treated as the field variables to obtain Maxwell's equations (2.635.
This approach is far from satisfactory since the Am are not |
measurable gquantities. The Field potential is defined »onl;/ up to

a gauge transformation, and appears only as an intermediary
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quantity in calculations. The approach Qsing the duality

'invariant Laqrangian.density Lp avoids this prdblém by treating

the components of the field tensor F™ as the Fieid variébles.

It is'interesting, nevertheless, to consider the effect of the

subsidiary condition (6.9) on the duality invariant Formulation.
Since equation (6;9) implies (2.6b) one obtains from

equation (6.3)

mﬁ,k

(6.10) - F L =0
and as a result
(6.7) | o™k =0

therefore, condition (6.9) also gives Maxwell's vacuum equatiohs
in the form (?.12). The field potential-Am can also be treated as
the field variable in the duality invariant action principle (6.1).

From equation (5.13) one has

(6.11) L = T LY S 2Am'kkﬁm.n” - 28K ™ A K .

Ha&iitoﬁ's principle now -yields
Y

(6.12) EiEg o2 20, 13 r1}£0 =0

DA Ix" OA m X" x fbAs,mn

‘or

(5.13) , ' A Aﬁ?snnm - As'm”mn = b

or

(6.14) - | pmsen V; D .
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Equation (6.14) is implied by thevduality invariant equation
(6.2) since if equation (6.2) is diFFerentiated with respect to

x™ one obtains

mn,k . mk,n
(6.15) Fo em = 4F km-= 0 .

. | )
The skew symmetry of Fwn implies that g ’nkm = 0 so that (6.14)

results from equation (6.15).
The duality rotation -is a one parameter continuous trans-
formation; therefore, by Noether's first theorem a conserved cur-

rent exists. From the infinitesimal duality rotation .

(6.16) o o2 ™ g FM7

one obtains

(6.17) Slp=82o F™M . g T
oF oFm

1]

The field equations allow equation (6.17) to be rewritten as

_ d AL ~mn
(6.18) SLy, =8 = ( 9dLp F .
D Ik 'Ban'k '

Since the Lagrangian density L, is duality invariant $ Lp = 0 and

(6.19) S (’BLD Nmn>
k| <z £ =0
‘ _ax_ Dan,k _ L

or

(6.20) ' % /3x = o




where

(6.21)

so that

(6.22)

31
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7. THE DUALITY ROTATION IN QUANTUM MECHANICS

Maxwell'§ equations (0.2) can be written as a Schroedinger
equatioﬁ for momentum-handedness. -If this is done, thé qQantum
mechanical signiFicaﬁce.oF the duality rotation becomes apparent;
aﬁd a duality oberator.can be introduced. There is then an
exact correspondence the duality rotation and the Pauli transform-
ation of the.seqond kind in neutfino theory.
| Consider the quantum mechanical momentum operator § = -1V,

Equation (0.2) can be written

N .

. A
| 0 -iPg Py Fq Fy
. ' . ~ BN A
-162 ia'] 0 Fa . r3'
or
~ _
(7.2) HFE = i3dF/)t
where -
' A N ral A
H =S54 Py =35°P
A 0 0 O
5, = 0 0 -i
. 0 i O
(7.3) - R 0 0 i
: . So = D 0 o0 -
| | i 00
A 0-i 0\
53 - i 0 D .
0 0 O

. Fa) .
The 3X 3 matrices S, are angular momentum operators of spin

J =1, They satisfy the commutation relations
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(So(vS(;X = i{a(/d{s‘o’
SO‘SU‘ 21 .

(7.&)

where {%GU-is the three dimensional Levi-Civita tensor. For F*
the equation corresponding to (7.2) is

A

(7.5) | HE* = -i oF*/2t .

Classicélly, S+P is the magnitude of the momentum P times.
the component of the spin angular momentum S in the direction of -
‘the momentum. To conveft to guantum mechanics one uses therwéllf
known recipe of replacihg classical quantities by their cor-

: fesponding quantum mechanical operatorss therefore,

In >
.
o2

(7.6) A 5P =

ﬁ is seen to be the momentum-handedness operator, and equations

(7.2) and (7.5) are Schroedinger equations in homentum-handedness
with F and F* as state vectors.
- Consider a beam of photons with energy & and momentum k .

One has -

i(kex - wt)
—i(kex - wo t)

t=
n

> e
| X > e

(7.7)

=
*
"

where w2 = k2 . The substitution of (7.7) into equations (7.2)

and (7.5) yields

o
Ix
tm

"

€
el

(7.8)

Y IR TT% S
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Thus F represénts a right-handéd photon and F* represents a
left-handed photon. The duality rotation (0.3) is now seen to .
be a phase transformation of the quantum mechanical state vectors .
F and F*, Note, however, that the phase Factbr of F*.is the
~complex conjugate of the phase factor of_f; This fact distinquishes
the duality rotation From‘a true phase transformation where all
" the state.vectors are multiplied by the same phase factor. |

It is convenient to find a duality operator for the purpose

of comparing the duality rotation and the Pauli transformation of

(1)
Ce (L)
CL -

% is a 6x1 matrix and the gm are 6 X6 matrices. Equations (7.2)

“the second kind. Let

S
1

oM
H

(7.9)

'

and (7.5) now read
(7.10) gmé/ax”'#z = 0.
The S”‘satisFy the commutation relations

C$" %] = -a3

ol

(7.11) ~ | . >
| L $% 67%] = -ifugw Z

b8
1
/\
owd
Y
b
R
~—

where
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(o)

has the same properties as the imaginary unit i since

The matrix-

SS

5,2 A\ 3 5 5,4 -
(7.12) ($°)° = -1, ()7 = -8, and (§7)" =1 .
Therefore, .
| 5
(7.13) I e-g% = 1cos 8-5° sinB .
By writing‘
. £
(FYy =
g 0
: 0
(Fx) = ( >
_ - Fx
one obtains
5 S |

e‘.88 (F) C= 8_18 (F) ’ T

(7.14) c _
. —8 . *.g
e (F*) = 't (F*) .
as® | ' '

e is the desired duality operator.

It can now be shown that the duality transformation
Acorresponds to the Pauli transformation of the second kind in
neutrino theory. The field equations for the neutrino (see Lurié:

19683 Kaempffer, 1965) are given by

(7.15) | ka377w$ =O;
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where the‘b’k are 4 %4 matrices satisfying the anticommutation

relations

(7.16) Lak, wlh o gkt

R o : ' -
Vo= (L) is a 4>*1 matrix, R and L being the state functions
of the'right- and left-handed neutrino respectively. If as

above one sets

(?..17) ‘ . (R) = (g)
(L\ = (E) 2>
then
B (B = 19 (R
(7.18) 5 o
e 8 (1Y = e*1B ()

Equations (7.18) are called the Pauli transformation of the
second kind. The above transformation clearly corresponds to

the duality rotation.
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8. CONCLUSION

This thesis demonstrates tHat the duality invariénce of.
Maxwell's vacuum equations contains greéter significance than is
generally believed. The considerations outlined here have been
mainly classical in nature. Most interesting is the possibility
of extending these results by the methods of quantum field tHeoryf
BOtH Schwinger (1969) and Kaempffer (1970) have used the duélity |
invariance of Maxwell's vacuum equations as a stepping stone tﬁ a
theory of elemenfary parficles. With the evidence now at hand
such efforts must be considered to be in the realm of speculation,
It is the author's hopé, however. that this thesis provides some

justification for Further Wwork along these lines.
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NOTES

?

Natural units (K = ¢ = 1) are used throughout the thesis.

Electromagnetic quantities are rationalized.
The author is indebtéd to F. Peet for this reference.
For the significance of the term "pseudo" see Appendix A.

I is always a unit matrix whose dimensionality is determined

by context. The components of [ are SAB where gAB is the

" Kronecker symhol.

Greek indices run from one to three; latin indices, from one

to four. Repeated indices are summed. The indices 1, 2, 3, 4
refer, respectively, to the spatial coordinates x, y,.é, and to
the time coordinate_ti |

The dual.is variously‘befined in Physics 1itefature. The
definition here follows Witten (1962). Robertsbn and Noonan

| %

(1968) omit the factor (-g)'%'. Corson (1953) replaces (-g)_

- L .
with (g) % . For the significance of the factor see Appendix A.

The conformal group contains the Lorentz transformations, the
translations, the dilations, and the_special‘conFormal trans-

formations,

This section is based on a paper accepted for publication in

the Canadian Journal of Physics (Levman, 1970).
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APPENDIX A: THE CONFORMAL GROUP

Before proceeding to a discussion of the conformal group
of transformations C some terminology which is often confused
in Physics literature must be clarified (see Schouten, 1951),

Consider a qroup A of coordinate transformations

x-m - xcm(xn)
(A.1) ‘ _
J = det(9x/3x*) §.0 .

A geometrical object ‘with respect to A is a set of functions -

G = Gabcéég...(xm) transforming under A according to
'.. a e 9 ‘ ’ -)x'i }“Kf‘ . &0
(A.2) G'lelmn.‘.z LJ‘T JW j——;a . 00 _ax'n l.'o Gabcdef...

(i,j, %, ... ) are contravariant indices; (1,m,n, ... ) are
covariant indices. If T =W=20, then G is said to be a tensor

with respect to A, If T

§

0, G is a relative tensor of weight W.

For T = 0D and W = 1 G is a tensor density since Sde is a tensor.

If W 0, G is an absolute relative tensor of weight 7. Lastly, -
iF‘w = T =:t1; G is called a pseudotensor. A péeudotensor
transforms like a tensor up to a-éign. Consider, as an example;.
the Levi—Civita.symbol €™TS . with respect to the generai group
of mon-singular coordinate transformations £ is a relative tensor
oF‘weight +1; however, £€may be considered a Lorentz pseuodtensor
and a translation tensor.

It is the purpose of this appendix to find the most generél

group of transfaormations under which Maxwell's vacuum equations

are covariant. If Maxwell's equations
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F™, =0
(2.6) .
F™, =0

'n

are to be covariant under a qroup of transformations R, then -

~
F™  ang F™7,

n "must be geometrical objects with respect to R.

n
This requiremént actually defines what is meant by the covariance
of (2.6) with r95pect-to R. Note that Maxwell's equations are
Lorentz covariant and that'.Fmn is a Lorentz contravariant tensor;
ﬂhereforé,‘we fequire,that R conﬁain the Lorentz group and that

the transformation property of F™ Under R reduce to the tensor

transformation under the Lorentz group. Since
(A.3) - J(Lorentz) = %1

the above condition requires W = 0 for R so that an is 2t most
an R absolute relative tensor.

Consider the scale transformation (dilation)
(A.4) - X = 5 X .

~Under this transformation charge and current are invariant. Since

: . 2
dimension (E) = charge/(distance)
(A.5) '
dimension (B) = current/(distance)
/
cne has
£~ E'=97¢
(A.6) ,
B8 =s7E.
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maxwell's vacuum equations (0.1) are clearly invariant under
(A.4) and (A.5). The dilation group is therefore a subgroup of

R. From equation (A.6) it follows that

(A.7) FM s ™ e ()T ™

however, from equation (A.2) with W = 0

(A.8) ~ F™ s o™ L (g4 T g2 ™0
since

_ J(dilation) = s-4
(a.9) s

Syt (dilation)

i
[&]
3
=3

For equations (A.7) and (A.8) to be consistent T = 7. Similarly,

- Q3
T =20 for F_ . Since

9 Frs

(A'1O).A' : - F = Omr 9ns

mn

= -4 ., -As a result, under the group R

%n must have weight T =
g transforms as
mn
' ‘ -3 )xr )xs
(A1) ot = WIT7 Shm S50 opg .

This equation does not reduce correctly to the Lorentz form

unless g’ = q

nn Orony This condition is also necessary if indices

are to be raised and lowered in a consistent manner. Hence

equation-(A,11) becomes

(A.12) ) gmnz\J,—%g“‘i‘fm %ﬁ’?n QI‘S e
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The Qroup of transformations C satisfyiné equation (A.12).is
called the conFormal.group (see Isham; 1970)."It.wi11 now be
" shown that Maxwell's vacuum equations (2.6) are covariant_
under any group of transformations for which F™" is an absolute
relative.tensor of weight T = 1. From the considerations above,
the only physically admissable transformations are those
satisfying equation (A.12): therefore, the conformal group C
.Forms the full covariance gfoup of Maxwell's equations,

iF'Fmﬁ is an absolute relative contravariant tensor of

weight T = 1, then
.F.mnjn = (UVaxfn)(ax'm/er)(Dx'n/axs) FLs

13l (P x"™/axTIxS) FTS
(A.13) :

o (X /20 M) (3% /3xT) (3710w xT) FTE

+\J\(ax'm/axr)(Bxfn/axS)DFrs/bx'n .

The second term on the right of equation (A.13) vanishes due to

the skew symmetry of F™. Since
- £y |
(A.14) 20 2u/0x™ = (xR M) (0 x " /ax™axK)

the first and third term subtract to zero. Equation (A.13)

‘now becomes

mn ’ T TN
(R.15) iy =l Ox"™/ox ) Fo0,
so that an'n is an absolute vector of weight T = 1, 0One can
now conclude that F™, = 0 implies F°" , = 0. Similarly,
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—~

mn

F n = 0 is a covariant equation. Note, however, that Fmn
?

transFormé as a relative tensor of weibht W =1, The factor
(-g) appearing in the deFinitionvoF'an is unnecessary for
Lorenfz covariance, but is4impqrtant in this context. Note also
that the duality rotatién (2.9) is conformal covariant if B8 is

a conformal pseudoscalar.

In summary,_the full covariance group of Maxwell's vacuum
equations is the conformal group defined by equation (A.12) .
Under the conformal group an is an absolute relative tensor of
meight T =1, Fmn is a tensor density, and F__ is a ténsor. The
dﬁality rotation parameief_e transForms as a pseudoscalar.

If equation (A.12) is solved one finds that the conformal

group consists of Lorentz transformations, tranmslations, dilations, .

énd'the special conformal transformations

| v : -1
(A°16),_ x'M = (x™ o+ xnxn/ﬁm YO 1+ 2x34n-+‘@gén xrxr )
where/gm are constants. It is interesting to note that the
conformal group can be defined as the group of transformations

< e

for which

(A.17) dx" dx_ = 0

is a covariant}eduation (see Robertson énd_Ndonan, 1968). This
definition of C implies that the conFormangrqup is the group of
transformations which leaves the light-cone invariant. Finally,
the term "conformal" is used since.the group C is also the group‘
of transformatidns leaving angles invariant._

In conclusion note that Maxwell's eduations with'charge



46

! . an Jm

y =
A.18
( ) con
. "n -

m , the cHarge current density,

are also conformal covariant. J
must be, by equation (A.18), an absclute relative tensor of weight
T =1. This transformation property for J" is consistent with

equation (A.5) since a volume V transforms under dilations

according to V' = s3 v,
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APPENDIX B: ON EQUATIONS (3.8) AND (3.9)

Since F'™ = _F'™™ gne obtains from equation (3.8)

| ' | 21 1 3 1 a1

0 = L a11 L a12 F +aqf +a , F
1 ~11 1 ~21 1 31 ~

(B.1)
1 1 1 1 |
= -a 1 83 + a 3 82 + a 4 E‘] - b 2E3
+ b13 E2 - b14 81 .

Any two constant fields E and B satisfy Maxwell's vacuum
equations. As a result, for equation (B.1) to be valid for
arbitrary constant vectors E and B we must have

(8.2) _812 - a13 - a1a b o = b‘l3 = p)

Similarly, all other off-diagonal elements of a", , b™ c™, and
Vdmk are zeroj equation (3.10) results.

The expansion of equation (3.10) in terms of £, 8, E' and B'

giyes
F'a1 = E»{ = aA E1 - bd 81
14 .
-F' = E1 = a4 Eq4 - b4 B4
B'3 .
.( ") W23 o
F = E1 = d2 £q1 + cp By
-F'-:52 = ,E{ = dg B9 + c7 By .
Equations (B.3) are consistent only if

(B.4) aq = 2y =Ad2,
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Continuing in the same manner one easily verifies equation
(3.11) . With this step the reduction of equation (3.1) to

equation (3.12) is completed.
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APPENDIX C:  ON EQUATIONS (5.9)

In the'derivétion of equations (5;9) the following identities

are useful:

gklmn_gkrst = - ,%i‘:’:
e TR
grkgslgtmgun 5klmn = -8 Efstu :
%:2 equals +1 if (1,m,n) is an evgn'permutation of (r,s,t)i.equals

-1 if (1,m,n) is an odd permutation of (r,s,t), and equals 0 in

: 1mn
- all other cases..g :g is defined similarly.- g?g and gr:t can be
represented in terms of the Kronecker symbol as
mn Smr Sms
S = det
TS n n
NS b s
(C.2) (1 %1 gl'
. T S t
c lmn  _ : m m m
rst = det S r % S 5 t ) !
n n n ’
% r S s - 8 t
) v, ~mn> : N
As an example, consider Jj = F an . From equations (C.1)
and (C.2)
oo klmn L, b e
J»] = 5(‘@) & an '2-("9) gklrsF
mn TS
(c.3) = -3 00 Foof

l.
' .
Lo
-



