UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Highly efficient thermo-optic switches on silicon-on-insulator Murray, Kyle

Abstract

We analyze and demonstrate the performance of dense dissimilar waveguide routing as a method for increasing the efficiency of thermo-optic phase shifters on a silicon-on-insulator platform. Optical, mechanical, and thermal models of the phase shifters are developed and used to propose metrics for evaluating device performance. The lack of cross-coupling between dissimilar waveguides allows highly dense waveguide routing under heating elements and a corresponding increase in efficiency. We demonstrate a device with highly dense routing of 9 waveguides under a 10 μm wide heater and, by thermally isolating the phase shifter by removal of the silicon substrate, achieve a low switching power of 95 μW, extinction ratio greater than 20 dB, and less than 0.1 dB ripple in the through spectrum. The device has a footprint of less than 800 μm x 180 μm. The increase in waveguide density achieved by using dissimilar waveguide routing is found not to negatively impact the switch response time.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada