- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- DrSMC : a sequential Monte Carlo sampler for deterministic...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
DrSMC : a sequential Monte Carlo sampler for deterministic relationships on continuous random variables Spencer, Neil
Abstract
Computing posterior distributions over variables linked by deterministic constraints is a recurrent problem in Bayesian analysis. Such problems can arise due to censoring, identifiability issues, or other considerations. It is well-known that standard implementations of Monte Carlo inference strategies break down in the presence of these deterministic relationships. Although several alternative Monte Carlo approaches have been recently developed, few are applicable to deterministic relationships on continuous random variables. In this thesis, I propose Deterministic relationship Sequential Monte Carlo (DrSMC), a new Monte Carlo method for continuous variables possessing deterministic constraints. My exposition focuses on developing a DrSMC algorithm for computing the posterior distribution of a continuous random vector given its sum. I derive optimal settings for this algorithm and compare its performance to that of alternative approaches in the literature.
Item Metadata
Title |
DrSMC : a sequential Monte Carlo sampler for deterministic relationships on continuous random variables
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2015
|
Description |
Computing posterior distributions over variables linked by deterministic constraints is a recurrent problem in Bayesian analysis. Such problems can arise due to censoring, identifiability issues, or other considerations. It is well-known that standard implementations of Monte Carlo inference strategies break down in the presence of these deterministic relationships. Although several alternative Monte Carlo approaches have been recently developed, few are applicable to deterministic relationships on continuous random variables. In this thesis, I propose Deterministic relationship Sequential Monte Carlo (DrSMC), a new Monte Carlo method for continuous variables possessing deterministic constraints. My exposition focuses on developing a DrSMC algorithm for computing the posterior distribution of a continuous random vector given its sum. I derive optimal settings for this algorithm and compare its performance to that of alternative approaches in the literature.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2015-08-26
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0166643
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2015-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada