- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Optimal planning with approximate model-based reinforcement...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Optimal planning with approximate model-based reinforcement learning Kao, Hai Feng
Abstract
Model-based reinforcement learning methods make efficient use of samples by building a model of the environment and planning with it. Compared to model-free methods, they usually take fewer samples to converge to the optimal policy. Despite that efficiency, model-based methods may not learn the optimal policy due to structural modeling assumptions. In this thesis, we show that by combining model- based methods with hierarchically optimal recursive Q-learning (HORDQ) under a hierarchical reinforcement learning framework, the proposed approach learns the optimal policy even when the assumptions of the model are not all satisfied. The effectiveness of our approach is demonstrated with the Bus domain and Infinite Mario – a Java implementation of Nintendo’s Super Mario Brothers.
Item Metadata
Title |
Optimal planning with approximate model-based reinforcement learning
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2011
|
Description |
Model-based reinforcement learning methods make efficient use of samples by
building a model of the environment and planning with it. Compared to model-free
methods, they usually take fewer samples to converge to the optimal policy. Despite that efficiency, model-based methods may not learn the optimal policy due to
structural modeling assumptions. In this thesis, we show that by combining model-
based methods with hierarchically optimal recursive Q-learning (HORDQ) under
a hierarchical reinforcement learning framework, the proposed approach learns the
optimal policy even when the assumptions of the model are not all satisfied. The
effectiveness of our approach is demonstrated with the Bus domain and Infinite
Mario – a Java implementation of Nintendo’s Super Mario Brothers.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2012-01-04
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-ShareAlike 3.0 Unported
|
DOI |
10.14288/1.0052158
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2012-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-ShareAlike 3.0 Unported