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Abstract

Model-based reinforcement learning methods make efficient use of samples by
building a model of the environment and planning with it. Compared to model-free

methods, they usually take fewer samples to converge to the optimal policy. De-
spite that efficiency, model-based methods may not learn the optimal policy due to

structural modeling assumptions. In this thesis, we show that by combining model-
based methods with hierarchically optimal recursive Q-learning (HORDQ) under

a hierarchical reinforcement learning framework, the proposed approach learns the
optimal policy even when the assumptions of the model are not all satisfied. The

effectiveness of our approach is demonstrated with the Bus domain and Infinite
Mario – a Java implementation of Nintendo’s Super Mario Brothers.
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Chapter 1

Introduction

Reinforcement learning (RL) addresses the problem of finding an optimal policy

in a stochastic environment. In the RL setting, an agent interacts with the environ-
ment, optimizing its behaviour to maximize the received rewards. In many appli-

cations, it is expensive to acquire samples from the environment, so it is important
to for the agent to learn an effective policy in as few samples as possible.

RL methods can be broadly classified into two classes: model-based and model-
free. Model-based methods learn an effective policy by constructing the model

from samples and simulating experiences from the model. It generally requires
fewer samples to learn the optimal policy.

R-MAX [20] learns the model by exploring parts of the domain. To learn

an accurate model, the agent needs to explore every state m times. Thus, it is
impractical to apply such method to large domains.

For large domains, it is necessary to apply machine learning algorithms to
generalize the knowledge to unvisited states. Learning the model is a supervised

learning problem: given the agent’s current state and action, the learning algorithm
needs to predict the next state and reward. Many supervised learning algorithms

can generalize over unvisited states.
Methods based on factored Markov decision processes (FMDPs) assume the

problem has some factored structure, and use specialized algorithms that exploit
the structure [15, 18, 38, 40]. However, not all of problems have the factored

structures. Thus, the applicability of these methods are limited.
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Hester and Stone [17] observed that modeling relative transition effects of ac-

tions is more generalizable than modeling their absolute values. They proposed
RL-DT to model relative effects with decision trees.

Walsh et al. [38] proposed KWIK (Know What It Knows) linear regression
to learn the transition probabilities and applied it to Stochastic STRIPS domains

while assuming the preconditions and effects of each action are known in advance.
Degris and Sigaud [10] proposed SDYNA, which extended Dyna [34] by learn-

ing the structure of a problem with incremental decision trees. Sutton et al. [36]

introduced linear Dyna – a combination of Dyna and linear function approxima-
tion. Instead of enumerating all states, which is not feasible for large problems,

their methods predict the features of the next state and reward, using function ap-
proximation techniques.

Model-based methods are powerful techniques. That allows us to predict the
outcome of the agent behaviour and plan over it. They can effectively reduce the

number of samples which are required to find a good policy. With the learned
model, it is easy for model-based methods to generalize the knowledge to novel

scenarios. However, it is difficult for model-based methods to learn optimal poli-
cies. The possible reasons are:

• Inaccuracy of the underlying supervised learning algorithms: most of model-

based methods rely on supervised learning algorithms to learn the model.
When these algorithms predict incorrectly, a suboptimal policy might be

learned.

• Structure assumption of the model: most model-based methods have some
assumptions on the structure of model. For example, the methods based

on FMDPs assume the problem has some factored structure; Linear Dyna

[36] assumes the features of next state can be predicted with linear function
approximation. When the assumptions are incorrect, a suboptimal policy

will be learned.

• Impossibility to learn all the effects: as indicated in [38], to learn the effects
in stochastic STRIPS domains is NP-Hard. If the number of all possible

effects is small, it is possible to enumerate all of them and exclude the effects
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with small probability. However, since the problem is NP-Hard, there are no

known efficient solutions to resolve it.

• Computational constraints: even if we can learn all the effects, it may be

too expensive to consider all of them during the planning process. Due to
the stochastic nature of MDP, each effect may result in several possible out-

comes given the same state and action. If we consider too many effects dur-
ing the planning process, the number of states in a planning envelope might

become too large to compute.

On the other hand, model-free methods learn the Q-function directly. There are
no simulation steps for model-free methods and modeling is unnecessary. The ex-

isting linear function approximation algorithms for model-free methods have been
successfully applied to large domains [7, 32]. However, these methods may have

slower learning rates since they cannot predict the outcome of the agent’s behaviour
and are unable to use planning techniques to search for a better policy. Instead, they

need to collect the samples by trial-and-error. This makes it more difficult for these
methods to generalize to novel scenarios.

In this thesis, we investigate the possibility of combining both model-based
and model-free methods and get the best of each - simulate the experiences from

samples to increase the learning rate and learn an optimal policy even when the
assumption of model is not satisfied.

To combine these two methods, we need a framework which can incorporate
different RL algorithms. One possible choice is hierarchical reinforcement learn-

ing (HRL). We show that by combining model-based methods with hierarchically
optimal recursive Q-learning (HORDQ) [1], which is a model-free method, we can

guarantee that the overall policy will converge to the optimal one even when our

model fails to approximate the problem. Our approach assumes the task hierarchy
for an MDP is given. The hierarchy can either be designed manually or learned by

automatic hierarchy discovery techniques [16].
We are not the first to try to combine different RL methods within the HRL

framework. Ghavamzadeh and Mahadevan [13] combined value function-based
RL and policy gradient RL to handle continuous MDP problems. Cora [8] in-

corporated model-based, model-free and Bayesian active learning into the MAXQ
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framework. Nevertheless, these methods seek recursive optimality in the learning

process, thus they fail to satisfy any optimality condition when one of the subtasks
fails to find its optimal policy. In contrast, our method learns the optimal policy

without the requirement that all of the policies of the subtasks need to be optimal. It
is more robust and allows us to incorporate approximate approaches into the same

framework.

1.1 Contributions
We are the first to address the problem of learning the optimal policy when the

structural assumption of the model-based methods is not satisfied.
Our contribution are:

• Deriving the condition of a task hierarchy that the hierarchically optimal

policy is equal to the optimal policy when some of the policy of subtasks in
the task hierarchy are suboptimal.

• Developing a hierarchical reinforcement learning framework which allows

unsafe state abstraction without the loss of optimality guarantee

• Introducing pseudo-rewards to the HORDQ algorithm and show that it can

improve the learning rate of the HORDQ algorithm.

1.2 Thesis organization
We provide a brief review of reinforcement learning in Chapter 2. That includes
Markov decision processes (MDPs), semi-Markov decision processes (SMDPs),

and hierarchical reinforcement learning (HRL). Our main theory is presented in
Chapter 3. We provide the experimental results on the Bus domain and Infinite

Mario in Chapter 4. Finally, conclusions, limitations, and directions for future
work are discussed in Chapter 5.

4



Chapter 2

Background

In this chapter, we introduce the basic concept of reinforcement learning (RL) , the

Markov decision process (MDP) and semi-Markov decision process (SMDP) for-
malisms. We describe the solution methods of MDPs, that include model-free and

model-based methods. Then we review the concepts and algorithms in the hierar-
chical reinforcement learning (HRL) framework. We present a brief introduction

of previous work in the RL field. For more comprehensive introductions of MDP,
SMDP and RL, please refer to the standard texts [19, 27, 30, 35]. A more theoretic

treatment of RL is provided by Bertsekas and Tsitsiklis [6]. Barto and Mahadevan
provide an excellent review on HRL [4].

2.1 Reinforcement learning
Reinforcement learning (RL) is a collection of methods which allow an agent to
execute a sequence of actions and improve its actions by the rewards which are

provided by the environment. There are two kinds of RL learning tasks – episodic
and continuing tasks. In an episodic task, there are some terminal states that will

terminate the current task (episode) when one of them is encountered. For the
episodic task, an action only affects the subsequently received rewards within the

current episode. There are no terminal states for a continuing task. Therefore, the
sequence of actions which are executed by the agent will be infinite.

In the RL setting, the environment can be modeled in several formalisms. One
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of the most commonly adopted formalisms is that of Markov decision processes

(MDPs). An MDP assumes that the state of the environment is fully observable,
and each action takes a single step to finish. Semi-Markov decision processes

(SMDPs) remove the latter assumption and allow the action to take several time
steps. Partially observable Markov decision processes (POMDPs) remove the for-

mer assumption and the agent needs to decide the actions without access to the full
state of the environment. MDPs and SMDPs are introduced in Sections 2.2 and

2.4. POMDPs are orthogonal to our work, thus they will not be covered.

2.2 Markov decision processes
Definition 1 A Markov decision process is formalized as a tuple < S,A,P,R >,

where:

• S is a finite set of states of the environment.

• A is a finite set of actions.

• P : S×A× S→ [0,1] is the transition function which defines a probability

distribution over the possible next states.

• R : S×A→R is the reward function which defines the reward after executing

a certain action at a certain state.

Given a state of the environment, a policy π : S→ A dictates what action should

be performed at that state. The value function V π : S→ R represents the expected

cumulative reward when policy π is followed from state s.

The value function is defined as:

V π(s) = E[R(s0,π(s0))+ γR(s1,π(s1))+ γ2R(s2,π(s2))+ . . . |s0 = s,π], (2.1)

where γ ∈ [0,1] is the discount factor which discounts the future reward to the

present value.
The value function satisfies the Bellman equation [5]:

V π(s) = ∑
s′

P(s′|s,π(s))[R(s,π(s))+ γV π(s′)] (2.2)
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Similarly, the action-value function (or Q-function) represents the expected

cumulative reward after action a is executed in state s and policy π is followed

thereafter. The Q-function is defined as:

Qπ(s,a) = E[
∞

∑
t=0

γ tR(st ,at)|s0 = s,a0 = a,π] (2.3)

The Bellman equation for the Q-function is:

Qπ(s,a) = ∑
s′

P(s′|s,a)[R(s,a)+ γQπ(s′,π(s′))] (2.4)

We are interesting in finding the optimal policy, which is the policy that yields

a value that is as high as the value of any other policies in all states. It is defined
as:

π∗(s) = argmax
a∈A

[R(s,a)+ γ ∑
s′

P(s′|s,a)V ∗(s′)], (2.5)

where V ∗ is the optimal value function. It satisfies the following equation:

V ∗(s) = max
π

V π(s) = max
a∈A

[R(s,a)+ γ ∑
s′

P(s′|s,a)V ∗(s′)] (2.6)

Likewise, the optimal Q-function is the solution of the following equation:

Q∗(s,a) = max
π

Qπ(s,a) = R(s,a)+ γ ∑
s′

P(s′|s,a)max
a′∈A

Q∗(s′,a′) (2.7)

2.3 Solution methods for MDPs
There are several types of methods to solve an MDP problem. If the transition
and reward functions are known as a priori, the optimal policy can be computed

with dynamic programming (DP) algorithms. These methods are considered offline
algorithms, since they are performed without the interaction with the environment.

In the field of RL, people are more interested in solving problems where the
underlying MDP is unknown in the beginning. Due to the lack of a priori model,

it is necessary for the agent to interact with the environment and collect samples
to acquire the statistical knowledge of the MDP. Therefore, the methods to solve
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these problems are considered online algorithms.

Depending on how samples are processed, a distinction is made between model-
based and model-free methods. Model-based methods use samples to construct a

model of environment and use the techniques such as dynamic programming to
compute the optimal policy from it. On the other hand, model-free methods do not

learn the model but directly learn a policy or value function.
For both types of methods, an exploration policy is required to guide the sam-

pling process. The simplest strategy is to select an action which leads to the highest

value. However, this strategy does not allow the agent to explore the states which
are not visited before. A better approach is to use ε-greedy method. Such a method

allows the agent to abandon the best action and choose a random action with a very
small probability ε . The higher the probability, the more likely that the agent would

explore the new actions. However, if the exploration probability is too high, it will
increase the time to converge.

2.3.1 Model-free methods

Most of the model-free methods fall into the category of the temporal difference
(TD) learning. The main idea of temporal difference learning methods is to itera-

tively estimate the new values based on the old estimates. After the agent selects
an action, the value of the previous state is updated based on the immediate reward

and the value of current state.
The equation to update the value function in TD learning is:

V (St)←V (St)+α[rt+1 + γV (St+1)−V (St)],

where V (st) is the value function of the state st . V (st) is the expected reward when
the agent reaches state st . rt+1 is the reward given to the agent when it chooses the

action at state st .
SARSA[29] and Q-learning[39] are the most popular TD methods. SARSA is

an on-policy TD approach, which indicates that it learns from the current policy.
Different from other TD approaches, SARSA updates the Q-value from the value

of the next state-action pair. The Q-value is updated by:
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Q(st ,at)← Q(st ,at)+α[rt+1 + γQ(st+1,at+1)−Q(st ,at)],

where Q(s,a) is the expected reward when the agent takes the action a at the state

s. α is a constant step-size parameter. γ is the discount factor.

Algorithm: SARSA

Initialize Q(s,a) arbitrarily
Repeat (for each episode):

Initialize s

Choose a based on s using policy derived from Q (e.g., ε-greedy method)

Repeat (for each step of episode):
Take action a, obtain reward r and next state s′ from the environment

Choose a′ based on s′ using policy derived from Q (e.g., ε-greedy method)

Q(s,a)← Q(s,a)+α[r+ γQ(s′,a′)−Q(s,a)]

s← s′

a← a′

Until s is terminal

Q-Learning is an off-policy TD approach. Compared to SARSA, Q-Learning
updates the Q value by the highest value of the next possible state-action, rather

than the next state-action executed by the agent. The Q value is updated by:

Q(st ,at)← Q(st ,at)+α[rt+1 + γ max
a

Q(st+1,a)−Q(st ,at)],

where maxa Q(st+1,a) is the highest value of the next possible state-action.
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Algorithm: Q-Learning

Initialize Q(s,a) arbitrarily

Repeat (for each episode):
Initialize s

Repeat (for each step of episode):
Choose a based on s using policy derived from Q (e.g., ε-greedy method)

Take action a, obtain reward r and next state s′ from the environment
Q(s,a)← Q(s,a)+α[r+ γmaxa′Q(s′,a′)−Q(s,a)]

s← s′

Until s is terminal

2.3.2 Model-based methods

Model-based methods construct a model of the environment from the samples and
conduct a planning process over it. With the constructed model, these methods can

predict the outcome of the agent’s action, and choose an optimal action that can
achieve the highest predictive reward. Since this type of methods makes efficient

use of samples, they often require fewer samples to learn a good policy than model-
free methods. They are important to the applications where computation is cheap

and the interactions of the environment are expensive.
A straightforward approach is to build the model by learning the transition

function and reward function, then use dynamic programming (DP) to compute the
solution of the Bellman equations (Equation 2.7).

The solution of the Bellman equation is unique, but there might be several
policies which can have the same value function. The most well-known dynamic

programming algorithms are value iteration [5] and policy iteration [19].
Value iteration iteratively applies the Bellman equation to update the values

for all possible states. In theory, value iteration requires an unbounded number of
iterations to converge to the optimal value function V ∗. In practice, we stop when

the maximal update is smaller than certain amount.
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Algorithm: Value Iteration

Initialize V (s) arbitrarily

Repeat:
for s ∈ S do

V (s)←maxa[R(s,a)+ γ ∑s′ P(s′|s,a)]V (s′)

end for

Until maximal update smaller than δ

Policy iteration separates the iterative process into two stages. The first stage

is policy evaluation, which computes the value function for current policy. The
second stage is policy improvement, which improves the policy by choosing a bet-

ter action based on the value function computed in previous stage. Policy iteration
often quickly converges in a few iterations.

Algorithm: Policy Iteration

Initialize π1 arbitrarily

k← 1
Repeat:

Repeat:
for s ∈ S do

Qπk(s,a)← [R(s,πk(s))+ γ ∑s′ P(s′|s,πk(s))Qπk(s′,πk(s))]

end for

Until maximal update smaller than δ
for s ∈ S do

πk+1(s)← argmaxa Qπk(s′,a)

end for

k← k+1
Until πk+1 = πk

Another popular class of model-based methods is the Dyna architecture [34].

Dyna [34] uses the learned model to generate extra experiences through the simu-
lating process, but the underlying learning algorithm is still a TD method.
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2.4 Semi-Markov decision processes
Semi-Markov decision processes (SMDPs) [27] extend MDPs to handle the actions

which may take several steps to finish. It allows us to handle the problem which
the agent cannot make a decision for every step. The state may be updated several

times between each decision made by the agent. SMDPs provide a way to model
these temporal-extended actions, which make them an important tool to describe

the environment of hierarchical reinforcement learning.

Definition 2 A semi-Markov decision process (SMDP) is formalized as a tuple

< S,A,P,R >, where:

• S is a finite set of states of the environment.

• A is a finite set of actions.

• P : S×N×A× S→ [0,1] is a multi-step transition function. P(s′,N|s,a)
denotes the probability that state is transited from s to s′ after action a is

taken at state s and finished in exact N steps.

• R : S×N× A→ R is the reward function which defines the reward after

executing a certain action at a certain state.

The formalism of SMDP is similar to an MDP, except that the transition func-

tion and reward function now include the duration of actions.
The definition of value function for SMDP is:

V π(s) = E[R(s0,π(s0))+ γN0R(s1,π(s1))+ γN1R(s2,π(s2))+ . . . |s0 = s,π] (2.8)

The definition is similar to equation 2.1, except that the reward is discounted by
the duration of actions.

The Bellman equation for SMDP can be described as:

V π(s) = ∑
s′,N

P(s′,N|s,π(s))[R(s′,N|s,π(s))+ γNV π(s′)], (2.9)
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Similarly, the Q-function for SMDP is defined as:

Qπ(s,a) = ∑
s′,N

P(s′,N|s,a)[R(s′,N|s,a)+ γNQπ(s′,π(s′))]. (2.10)

The optimal value function and Q-function satisfy the following equations:

V ∗(s) = max
a∈A

[R(s,a)+ ∑
s′,N

γNP(s′,N|s,a)V ∗(s′)] (2.11)

Q∗(s,a) = R(s,a)+ ∑
s′,N

γNP(s′,N|s,a)max
a′∈A

Q∗(s′,a′) (2.12)

2.5 Hierarchical reinforcement learning
The idea of Hierarchical reinforcement learning (HRL) framework is to decompose
a large MDP into several smaller subtasks. Each subtask is responsible to learn a

policy of part of the original state space. It allows us to adopt a divide-and-conquer
strategy and focus on finding the optimal policy for a part of the original problem

(state decomposition). It also allows us to group a sequence of actions together and
share it for several subtasks (temporal abstraction). Finally, it allows us to ignore

the features which are irrelevant to the subtask (spatial abstraction).
Singh [31] presented Hierarchical DYNA (H-DYNA) which extends Dyna to

learn a hierarchy of abstract models. Singh proposed a gating architecture which
switches between temporal-extended actions and adopted H-DYNA to solve the

problem. Dayan and Hinton [9] introduced Feudal Q-learning, a hierarchical method
that recursively partitions the problem in both spatial and temporal scales.

The above methods depend on the MDP formulation. However, they are not
suitable for the problem of HRL. In HRL, the agent makes decisions when each

temporal-extended actions are finished, thus the state may change several times
between each decision. The SMDP model which we have described in section 2.4

is a better alternative. The application of SMDP model to HRL led to developing
powerful HRL methods such as options [33], MAXQ [12], hierarchies of abstract

machines (HAMs) [25], and HORDQ [1].

The options framework introduced by Sutton et al. [33] extends Q-learning
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to include temporal-extended actions with hard-coded policies. In options frame-

work, the temporal-extended actions are indivisible and opaque units which are
called ”options”. Because the MDP combined with the options is an SMDP, they

proposed SMDP Q-learning, which is the SMDP version of one-step Q-learning.
It updates the Q-function after each option is terminated.

Parr and Russell [25] introduced HAMs. They observed that the execution
of a hierarchical policy resembles finite-state machines. The state of a machine

includes the internal execution states as well as the current state of the agent. They

showed that the whole hierarchical learning process can be reduced to learning the
optimal policy for a flat SMDP with each state of the SMDP, which corresponds to

the finite-state machine.
The MAXQ framework is one of the early methods that combine temporal

abstraction with state abstraction. Unlike the options framework or HAMs which
reduce the problem to a single SMDP, MAXQ decomposes the problem into several

MDPs. Each MDP corresponds to a subtask in the hierarchy. The main idea of
MAXQ is to decompose the value function into the expected reward that the agent

will receive after an action is finished and the expected reward that the agent will
receive on the completion of a subtask. The problem of MAXQ framework is that

the learning process of each subtask is isolated from the rest of hierarchy. Since
each subtask is unaware of the consequence of its decision after the subtask is

completed, the agent will learn a recursively optimal policy, which is worse than
a hierarchically optimal policy, which can be learned by the options, HAMs, or

HORDQ.
To address the problem, Andre and Russell [1, 2] introduced hierarchically

optimal recursive decomposed Bellman equations Their method decomposes the
value function into three parts. The first two parts are identical to the MAXQ de-

composition. The additional part is the expected reward after the subtask is com-
pleted. With the additional part, they are able to show that a hierarchical optimal

policy can be learned with hierarchically optimal recursive decomposed Q-learning
(HORDQ).

Since the MAXQ framework and HORDQ are more relevant to our work, we
provide more details about their formalisms and algorithms in the following sec-

tions.
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2.5.1 The MAXQ decomposition

Definition 3 Given an MDP M, the MAXQ framework decomposes M into a fi-

nite set of subtasks M′ = {M0,M1, . . . ,Mn}, where M0 is the root subtask. A non-

primitive subtask Mi is defined as a tuple <Ui,Ai,Ri >, where:

• Ui is a termination predicate. It partitions the state space into active states Si

and terminal states Ti. If subtask Mi enters any terminal state, it terminates

immediately and returns control to the parent subtask.

• Ai is a set of actions which are accessible to subtask Mi. An action can

be either primitive or composite. If it is composite, it simply invokes the

corresponding subtask. No recursive calls are allowed in the hierarchy.

• Ri is the reward function for subtask Mi. The reward function is defined for

transitions to terminal states, and the rewards are zero elsewhere. Note that

the reward function might be different from the one of MDP M. The reward

function is served to encourage the agent to achieve the subgoal of each

subtask rather than achieve the optimal performance in the original MDP

M. It is the programmer’s responsibility to design the hierarchy in a way

that the optimal performance of the original MDP can be achieved.

Definition 4 A hierarchical policy π = {π0,π1, . . . ,πn} is a set which contains all

subtask policies.

The subtask policy πi : Si→ Ai maps an active state to an action to execute.

In the MAXQ framework, the Q-function is decomposed as:

Qπ(i,s,a) = E[
∞

∑
t=0

γ trt ] = E[
N−1

∑
t=0

γ trt ]+E[
∞

∑
t=N

γ trt ] (2.13)

= Qπ
r (i,s,a)+Qπ

c (i,s,a), (2.14)

where rt is the random variable of the reward that the agent receives at step t and
N is the number of primitive actions to finish action a. Qπ

r represents the expected
cumulative reward for executing action a at state s. Qπ

c is the expected cumulative
reward after action a is finished.
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Qπ
r and Qπ

c satisfy the following equations:

Qπ
r (i,s,a) =

{
Qπ

r (a,s,πa(s))+Qπ
c (a,s,πa(s)) if a is composite

Σs′P(s′|s,a)R(s′|s,a) if a is primitive
(2.15)

Qπ
c (i,s,a) = ∑

s′,N
Pπ(i,s′,N|s,a)γN [Qπ

r (i,s
′,πi(s′))+Qπ

c (i,s
′,π(s′))], (2.16)

To learn the recursively optimal policy, MAXQ-Q learning iteratively updates

the estimates of Qr and Qc:

Qt+1
r (i,s,a)← (1−αt)Qt

r(i,s,a)+αtRt(s′|s,a) if a is primitive (2.17)

Qt+1
c (i,s,a)← (1−αt)Qt

c(i,s,a)+αtγN [Qt
r(i
′,s′,a′)+Qt

c(i
′,s′,a′)] (2.18)

2.5.2 The HORDQ learning

Andre and Russell [1] introduced hierarchically optimal recursive decomposed

Bellman equations which extend the decomposition of MAXQ in a way that hi-
erarchical optimality can be guaranteed.

The Q-value is decomposed as:

Qπ(i,s,a) = E[
∞

∑
t=0

γ trt ] = E[
N1−1

∑
t=0

γ trt ]+E[
N2−1

∑
t=N1

γ trt ]+E[
∞

∑
t=N2

γ trt ] (2.19)

= Qπ
r (i,s,a)+Qπ

c (i,s,a)+Qπ
e (i,s,a), (2.20)

where rt is the random variable of the reward that the agent receives at step t, N1 is

the number of primitive actions to finish action a, and N2 is the number of primitive
actions to finish subtask Mi. Qπ

r is the expected cumulative reward for executing
action a. Qπ

c is the expected cumulative reward when subtask Mi finishes after the
execution of action a. Qπ

e is the expected cumulative reward when the episode ends
after the execution of subtask Mi .

They show that a hierarchically optimal policy can be learned with hierarchi-
cally optimal recursive Q-learning (HORDQ):
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Figure 2.1: A simple maze problem [12].

Qt+1
r (i,s,a)← (1−αt)Qt

r(i,s,a)+αtRt(s′|s,a) if a is primitive (2.21)

Qt+1
c (i,s,a)← (1−αt)Qt

c(i,s,a)+αtγN [Qt
r(i
′,s′,a′)+Qt

c(i
′,s′,a′)] (2.22)

Qt+1
e (i,s,a)←

{
(1−αt)Qt

e(i,s,a)+αtγN [Qt
e(i
′,s′,a′)] if s′ ∈ Si

(1−αt)Qt
e(i,s,a)+αtγN [Qt(i′,s′,a′)] if s′ ∈ Ti

(2.23)

2.5.3 Recursive optimality vs hierarchical optimality

There are three definitions of optimality in HRL [12]:

Definition 5 Optimality: An optimal policy π∗ for MDP M is a policy that achieves

the highest cumulative reward among all policies for the MDP.

Definition 6 Recursive Optimality: A recursively optimal policy for MDP M with

hierarchical decomposition M′ = {M0,M1, . . . ,Mn} is a policy π = {π0,π1, . . . ,πn}
such that each policy πi achieves the highest cumulative pseudo-reward for the

corresponding subtask Mi, assuming fixed policies for its child subtasks.
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Figure 2.2: The task hierarchy of the simple maze problem.

Definition 7 Hierarchical Optimality: Given PiH , which is the set of all policies

consistent with hierarchy H, then a hierarchically optimal policy for MDP M is

a policy π∗ ∈ PiH that achieves the highest cumulative reward among all policies

π ∈ PiH .

An optimal policy is what we want to find for any MDP M. However, it may

not be possible due to the constraints imposed by the hierarchy. Instead of seeking
optimality, we can seek hierarchical optimality or recursive optimality, which are

two important optimality guarantees in HRL.
Recursive optimality guarantees that the policy of each subtask is optimal given

the policies of its child subtasks. In this form of optimality, each subtask learns the
optimal policy while ignoring the policy from its ancestors and the all subsequent

rewards after the agent arrives the terminal states of the subtask. Recursive opti-
mality allows the policy of subtask to be reused for different hierarchies. Since

each subtask only needs to seek the optimality within its own subproblem, it is also
possible to adopt state abstraction by ignoring the state variables which are irrele-

vant to the subproblem. The MAXQ-Q [12] algorithm converges to a recursively

optimal policy.
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A hierarchically optimal policy is the policy which achieves the highest cumu-

lative reward given the hierarchical constraints. The hierarchically optimal policy
is a stronger form of optimality. It may achieve a higher cumulative reward than

a recursively optimal policy. In hierarchical optimality, the policy of each subtask
may not be optimal within its own subproblem, but the overall policy of the entire

hierarchy is optimal. The HAMQ [25], SDMP [33], tracked Q and HORDQ [1]
algorithms learn a hierarchically optimal policy.

Dietterich [12] demonstrates the difference of recursively and hierarchically

optimal policies with a simple Maze problem (Figure 2.1). A robot starts at left
room and it needs to reach the goal G in the right room. It has three primitive

actions, North, South and East. The robot receives a reward of -1 for each move.
There are two subtasks, Exit and GotoGoal. Subtask Exit terminates when the

robot exits the left room, and GotoGoal terminates when the robot reaches the
goal. The arrows in Figure 2.1 show the recursively optimal policy. The arrows

in the left room indicate a policy which seeks to exit the left room with minimum
steps. The arrows in the right room seek a shortest path to the goal. Note that the

policy in the shaded area is recursively optimal but not hierarchically optimal nor
optimal. A hierarchically optimal policy should exit the left room by the upper

door, but a recursively optimal policy always exits the room with minimum moves
since a recursively optimal policy ignores the consequences after the subgoal is

achieved.
Despite the fact that a hierarchically optimal policy is better than a recursively

optimal policy, the algorithms which learn the hierarchically optimal policy do
not always yield a speedup over the flat algorithms such as Q-learning or SARSA

[2, 12].
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Chapter 3

Learning the optimal policy with
HORDQ

In this chapter, we show how to exploit the property of hierarchical optimal rein-
forcement learning to help model-based methods learn the optimal policy by com-

bining them with model-free methods. The main idea is to exploit the fact that a
hierarchically optimal reinforcement learning method allows a subtask to know the

”consequence” of its own action, thus it will pursue a subgoal only when it leads
to the optimal policy. It allows the subtask to act optimally regardless of which

subgoal is set by its parent subtask.
However, a hierarchically optimal method alone cannot guarantee that the opti-

mal policy can be always learned. To ensure that the optimal policy can be learned,
we need to ”patch” the hierarchy to allow some subtasks to be able to solve the

whole MDP on their own. The result is presented in section 3.1.
It is worth noting that what we are seeking is optimality, not recursive opti-

mality nor hierarchical optimality. Since we allow some of subtasks to learn a
suboptimal policy, the recursive optimality cannot be achieved. The hierarchical

optimality cannot be achieved as well before the hierarchy is patched. In Theorem
2, we show that the hierarchically optimal policy is equal to optimal policy with a

patched hierarchy. In other words, seeking the optimality or hierarchical optimality
are the same with a patched hierarchy.

In this work, we follow a hierarchical formulation that is similar to the MAXQ
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framework [12]. An MDP M is decomposed into a finite set of subtasks M′ =

{M0,M1, . . . ,Mn}, where M0 is the root subtask. Each subtask is defined by 3 tuples
<Ui,Ai,Ri >, where Ui is a termination predicate that partitions the state space into

active states Si and terminal states Ti. Ai is a set of actions for subtask Mi, and Ri

is the reward function for subtask Mi. There are two types of actions: primitive

and composite. A primitive action corresponds to one of the actions in MDP M,
which takes one step to finish. A composite action corresponds to a subtask in the

hierarchy, which will not finish before the subtask arrives one of its terminal states.

Different from MAXQ, the reward function Ri is separated into internal reward
function and external reward function. The internal reward function is equivalent

to the reward function of MAXQ. It defines the pseudo-reward that encourages the
agent to pursue the subgoal of each subtask. The internal reward function is defined

for terminal states, and zero elsewhere. The external reward function is identical to
the reward function of MDP M. It encourages the agent to pursue the goal defined

by the original MDP M. The analysis in section 3.1 assumes the pseudo-reward is
zero everywhere. The issues with the pseudo-reward are discussed in section 3.2.

3.1 Optimal planning with task hierarchy

Figure 3.1: The Taxi Domain.

We illustrate our idea with the task hierarchy of Taxi domain [12] (Figure 3.2
and 3.1). The taxi problem is an episodic task. For each episode, the taxi starts at a
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random location. To finish the task, the taxi needs to go to the passenger’s location,

pick up the passenger, go to the destination, and put down the passenger. The task
can be further decomposed two subtasks: Get and Put. The goal of subtask Get is

to move the taxi to the passenger’s location and pick up the passenger. The goal of
subtask Put is to put down the passenger at the destination.

Assume the policy of subtask Root is suboptimal and always invokes Get even
when the passenger is already in the taxi. Optimality can be guaranteed if subtask

Get learns to deliver the passenger to his destination and put him down. Or suppose

the policy of Root always chooses Put. If subtask Put learns to navigate to the
passenger’s location and pick him up when he is not in the taxi, we will have the

optimal policy because it does not matter which decision is made by Root, the
passenger can always be picked up and delivered to the destination.

The above example provides two observations. First, in order to guarantee
optimality, subtasks Get and Put need to act optimally in regards to the goal of

whole problem, not the subgoal of each subtask. It implies that we need to seek
hierarchical optimality rather than recursive optimality.

Second, optimality cannot be guaranteed without modification of the hierar-
chy. In the original hierarchy, subtask Get has no access to action Putdown. Even

though subtask Get delivers the passenger to the destination, it cannot put him
down. We need to modify the hierarchy to let subtask Get be able to solve the

problem on its own. A way to achieve that is to let subtask Get have access to
action Putdown.

Figure 3.2: The task hierarchy of Taxi domain.
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We define which subtasks shall act optimally with the following definition:

Definition 8 C(H) = {M j1 ,M j2 , . . . ,M jk} is a leaf cover of hierarchy H if there

is no subtask Mi /∈ C(H) which has access to a primitive action. Furthermore,

TC(H) is a total leaf cover if it is a leaf cover and all primitive actions are directly

or indirectly (through child subtasks) accessible for every subtask Mi ∈ TC(H).

We can always find a leaf cover for a hierarchy by including all subtasks which

have access to primitive actions. The total leaf cover can be constructed from the
leaf cover by adding the missing primitive actions. Consider the task hierarchy

in the Taxi domain in Figure 3.2, if we add action Pickup and Putdown to sub-
task Navigate, we get a total leaf cover which consists of subtasks Get, Put, and

Navigate.
This conversion increases the exploration space because each subtask needs to

explore more actions. It may increase the time to learn the optimal policy. How-
ever, as we show in our experiment, a good approximate model can effectively

increase the learning rate, so the time to learn the optimal policy might still de-
crease overall.

Andre and Russell [1, 2] introduced hierarchical optimal recursive decomposed
Bellman equations which extend the decomposition of MAXQ in a way that hier-

archical optimality can be guaranteed.
The Q-value is decomposed as:

Qπ(i,s,a) = E[
∞

∑
t=0

γ trt ] = E[
N1−1

∑
t=0

γ trt ]+E[
N2−1

∑
t=N1

γ trt ]+E[
∞

∑
t=N2

γ trt ] (3.1)

= Qπ
r (i,s,a)+Qπ

c (i,s,a)+Qπ
e (i,s,a), (3.2)

where rt is the random variable of the reward that the agent receives at step t, N1 is

the number of primitive actions to finish action a, and N2 is the number of primitive
actions to finish subtask Mi. Qπ

r is the expected cumulative reward for executing
action a. Qπ

c is the expected cumulative reward when subtask Mi finishes after the
execution of action a. Qπ

e is the expected cumulative reward when the episode ends
after the execution of subtask Mi .
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Qπ
r can be computed as:

Qπ
r (i,s,a) =

{
Qπ

r (a,s,πa(s))+Qπ
c (a,s,πa(s)) if a is composite

Σs′P(s′|s,a)R(s′|s,a) if a is primitive
(3.3)

Qπ
c can be computed as:

Qπ
c (i,s,a) = ∑

s′,N
Pπ

Si
(i,s′,N|s,a)γN [Qπ

r (i,s
′,πi(s′))+Qπ

c (i,s
′,π(s′))], (3.4)

where Pπ
Si
(i,s′,N|s,a) is the probability that s′ is the first state in Si which is en-

countered after the execution of action a which takes exactly N steps to finish.
And Qπ

e :

Qπ
e (i,s,a) = ∑

s′,N
Pπ

Ti
(k,s′,N|s,a)γN [Qπ(k,s′,πk(s′))], (3.5)

where k is the index of parent subtask which invoked subtask Mi.
To guarantee the optimality, we cannot use the Q-value of parent subtask Mk

to update Qπ
e of subtask Mi because the Q-value might not be correct due to the

biased model. Instead, we update Qπ
e with the Q-value of next subtask in TC(H).

Hence, we modify Equation 3.5 as:

Qπ
e (i,s,a) = ∑

s′,N
PTi(i

′,s′,N|s,a)γN [Qπ(i′,s′,πi′(s′)], (3.6)

where i′ is the next subtask in TC(H) that will be invoked, Pπ
Ti
(i′,s′,N|s,a) is the

probability that s′ is the first state in Ti which is encountered after the execution

of action a which takes exactly N steps to finish. Note that the property of leaf
cover ensures that we can always find such subtask Mi′ before any primitive action

is executed.

Theorem 1 Let C(H) be a leaf cover of hierarchy H, if Qπ = Qπ
r +Qπ

c +Qπ
e and

Qπ
r , Qπ

c ,and Qπ
e follow Equations (3.3-3.4) and (3.6), we have Qπ satisfies:

Qπ(i,s,a) =

{
∑s′ P(s′|s,a)[R(s′|s,a)+ γQπ(i′,s′,πi′(s′))], if a: primitive

Qπ(a,s′,πa(s′)), if a:composite
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Although we changed the formula for Qπ
e , the argument of Theorem 10 in [1] still

holds. We do not repeat the proof here.

With Theorem 1, we can prove that the optimal policy can be learned if there
exists a total leaf cover for the hierarchy:

Theorem 2 Given an MDP M and a hierarchy H that decomposes M into a finite

set of subtasks M′ = {M0,M1, . . . ,Mn}, let Ap denote the set of primitive actions

for M, Q∗(i,s,a) be the optimal Q-function for subtask Mi, and Q∗(s,a) be the

optimal Q-function for M. If TC(H) is a total leaf cover of H, we have Q∗(i,s,a) =

Q∗(s,a),∀s ∈ Si,a ∈ Ap,Mi ∈ TC(H)

Proof: Let π f : S→ Ap be a policy for M. We can construct a hierarchical policy π ,

such that πi(s) = π f (s) = a, if a ∈ Ap, ∀Mi ∈ TC(H) (if a is not directly accessible

by Mi, we can let πi(s) be one of its composite actions). From Theorem 1, we
know:

Qπ(i,s,a) = ∑
s′

P(s′|s,a)[R(s′|s,a)+ γQπ(i′,s′,πi′(s′))]. (3.7)

If a2 = πi′(s′) is a composite action, we have Qπ(i′,s′,a2) = Qπ(a2,s′,πa2(s
′)). We

can keep applying the substitution until πak(s
′) ∈ Ap, for some k. Since there are

no indirect or direct recursive calls allowed in the hierarchy, the substitution can be
done in finite steps. Now we have:

Qπ(i,s,a) = ∑
s′

P(s′|s,a)[R(s′|s,a)+ γQπ(ak,s′,πak(s
′))]. (3.8)

Note that ak ∈ TC(H) because all subtasks which have direct access to primitive
actions belong to TC(H). By the construction of π , we have πak(s

′) = π f (s′).

Compare (3.8) to the Bellman equation of the flat MDP:

Qπ f (s,a) = ∑
s′

P(s′|s,a)[R(s′|s,a)+ γQπ f (s′,π f (s′))]. (3.9)

Equations (3.8) and (3.9) are identical except for the Q values. Due to the

uniqueness of the Bellman equation, we have Qπ f (s,a) = Qπ(i,s,a),∀s ∈ Si,a ∈
Ap, i ∈ TC(H). If π f (s) = π∗f (s), Q∗(s,a) is a solution to equation (3.8). So we
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have Q∗(i,s,a) ≥ Q∗(s,a). Since a hierarchical policy cannot be better than an

optimal policy, we have Q∗(s,a)≥ Q∗(i,s,a). Thus we have Q∗(i,s,a) = Q∗(s,a).
Q.E.D.

Note that the above proof does not pose any constraints on the policy of sub-
tasks Mi /∈ TC(H). If we adopt any learning algorithms for such subtasks, we still

have the same optimality guarantee. We can compute the optimal policy using ei-
ther policy iteration or value iteration algorithms. The arguments of Theorem 11

and 13 of [1] hold in our case. We do not repeat the arguments here.

The previous equations assume we have complete knowledge about the prob-
lem and can compute the Q-value with dynamic programming. If not, we can esti-

mate the Q-value with the hierarchically optimal recursive Q-learning (HORDQ) 1

update rules:

Qt+1
r (i,s,a)← (1−αt)Qt

r(i,s,a)+αtRt(s′|s,a) if a is primitive (3.10)

Qt+1
c (i,s,a)← (1−αt)Qt

c(i,s,a)+αtγN [Qt
r(i
′,s′,a′)+Qt

c(i
′,s′,a′)] (3.11)

Qt+1
e (i,s,a)←

{
(1−αt)Qt

e(i,s,a)+αtγN [Qt
e(i
′,s′,a′)] if s′ ∈ Si

(1−αt)Qt
e(i,s,a)+αtγN [Qt(i′,s′,a′)] if s′ ∈ Ti

(3.12)

where i′ is the index of next subtask in TC(H) that will be invoked and a′ =

argmaxbQt(i′,s′,b).

Unfortunately, the convergence of HORDQ is an open problem (Conjecture
1 of [1]). However, if we let all subtasks in TC(H) have access to all primitive
actions directly, the convergence to the optimal policy can be guaranteed.

Theorem 3 Let TC(H) be a total leaf cover for a hierarchy H, and Qt = Qt
r +

Qt
c +Qt

e. If we use equations (3.10-3.12) to update the Q-values for all subtasks in

TC(H), we have limt→∞Qt(i,s,a) = Q∗(i,s,a) if the following conditions hold:

• Every subtask in TC(H) has access to all primitive actions and can only

execute primitive actions
1Also called ALispQ-learning in [1, 2]
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• A greedy in the limit with infinite exploration (GLIE) exploration policy is

followed by every subtask in TC(H)

• Var{Rt(s′|s,a)} is finite

• ∑t αt = ∞ and ∑t α2
t ≤ ∞

• 0 < γ < 1 or γ = 1 and all policies πi are proper

Proof:

Qt+1(i,s,a) =Qt+1
r (i,s,a)+Qt+1

c (i,s,a)+Qt+1
e (i,s,a)

=(1−αt)Qt
r(i,s,a)+αtRt(s′|s,a) +

(1−αt)Qt
c(i,s,a)+αtγN [Qt

r(i
′,s′,a′)+Qt

c(i
′,s′,a′)] +

(1−αt)Qt
e(i,s,a)+αtγN [Qt

e(i
′,s′,a′)]

=(1−αt)[Qt
r(i,s,a)+Qt

c(i,s,a)+Qt
e(i,s,a)] +

αt [Rt(s′|s,a)+ γN [Qt
r(i
′,s′,a′)+Qt

c(i
′,s′,a′)+Qt

e(i
′,s′,a′)]]

=(1−αt)Qt(i,s,a)+αt [Rt(s′|s,a)+ γNQt(i′,s′,a′)]

Since a and a′ are primitive actions, the HORDQ rule identical to the standard

Q-learning update rule. Therefore, it converges under the same condition as Q-
learning. Q.E.D.

3.2 Pseudo-reward
One of the problem of hierarchically optimal RL is that policy πi of subtask Mi

is determined by the reward of the original MDP. There are no pseudo-rewards
which are allowed as in MAXQ. Due to the lack of pseudo reward, each subtask

Mi lacks the motivation to pursue the subgoal defined by the hierarchy, thus it
makes the hierarchical design useless. It is necessary to add some pseudo-rewards

to encourage each subtask to pursue the subgoal. However, we cannot guarantee
optimality with a nonzero pseudo-reward.

In fact, the above argument illustrates the difference between the hierarchically
optimal policy and the recursively optimal policy. As shown in the experiment of
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[2], hierarchically optimal RL learns a better policy than the one of recursively

optimal RL. However, its learning rate is slower than the recursively optimal one.
Since neither approach is better than the other in terms of learning rate and the

quality of policy, there are no reason to stick to one of them. With the introduction
of pseudo-reward, we can alternate the agent’s behavior between the hierarchically

optimal RL and the recursively optimal RL.
An approach is to use positive reward to encourage the effective exploration

in the early stage, and gradually decrease it to 0 to learn the hierarchically opti-

mal policy. Since the hierarchically optimal policy is equal to the optimal policy
when the hierarchy contains a leaf cover, the optimal policy will be learned with a

pseudo-reward equal to 0. The result in presented in Chapter 4.

28



Chapter 4

Empirical study

In this chapter, we demonstrate the effectiveness of our approach in a Bus domain

and the Infinite Mario domain. The Bus domain is a 6 by 6 grid world problem.
We have 2304 states in this domain, so it is small enough to apply table-lookup

methods to learn the optimal policy. In this experiment, we combine table-lookup
HORDQ and an approximate model-based method to illustrate how to increase the

learning rate and learn a near-optimal policy with our approach.
For large problems with more than millions of states, it is not possible to use

table-lookup methods to learn the optimal policy. Instead, it is necessary to adopt
function approximation techniques to learn the policy. However, the optimality

guarantee of Theorem 2 relies on table-lookup methods and does not hold for func-

tion approximation techniques. With function approximation, it is not possible to
learn the optimal policy anymore. We illustrate our work with Infinite Mario to

show that despite the fact that the optimality guarantee is lost in large problems,
we can still use model-free methods to help model-based methods handle the ef-

fects which are not included in the model.

4.1 Bus domain
The Bus domain is introduced in this section. We use it as an example to show that
model-based methods can have faster learning rates, even with a biased model. We

also use it to illustrate how to combine them with model-free methods to improve
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(a) (b)

Figure 4.1: (a) The Bus domain (b) A task graph for the Bus domain.

the learned policy.
Figure 4.1(a) shows the Bus domain. The bus starts at S. Its task is to pickup all

passengers marked as P and return to S. The bus can move North, South, East, or
West. There is a reward of -1 applied for each action. There is a 0.1 probability for

the bus to move in a random direction. It stays put when trying to cross a wall. The

passengers are picked up automatically when the bus moves into the location of a
passenger. The passengers can be picked up in any order. The episode ends when

it finishes the task. There are two possible locations for road construction. They
are marked as A and B. If the bus passes a construction site, it will get damaged

with probability 1 and has the probability of 0.25 of breaking down for each step
afterwards. There is a reward of −50 if the bus breaks down and the episode ends

immediately. At the beginning of an episode, the status of the road is randomly
chosen from no construction, A is under construction, or B is under construction.

There is a 0.05 probability for the road status to change for each step. The world
is divided into six areas. There are six subtasks Move(1), . . . , and Move(6) which

move the bus to the corresponding area. Subtask Move(t) can only be invoked if t

is the adjacent area. The subtask terminates if the bus exits the current area. When

it terminates, a pseudo-reward is applied if the bus arrives at designated area t and
0 otherwise. The task hierarchy is shown in Figure 4.1(b).

A state can be described by a 8-tuple (x,y,h, p1, p2, p3,a,b), where (x,y) is the
location of the bus, h shows if the bus is damaged, pi indicates if the correspond-
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ing passenger has been picked up or not, and a and b are binary variables which

indicate the status of the construction sites.
Since the six subtasks Move(1), . . . , and Move(6) cover all primitive actions,

they form a total leaf cover of the hierarchy. We used HORDQ in the subtasks
to guarantee the convergence to the optimal policy. Subtask Root adopted our

approximate model-based method.

4.1.1 Planning with static assumptions

Suppose the variables of our model are reduced to (x,y, p1, p2, p3) and assume that
the damage status and road conditions are static during the planning process, our

model can learn that a large penalty will be received when the bus is damaged.
However, our model cannot learn that the bus will get damaged if it passes through

a construction site. The model is certainly biased in this case, thus it cannot learn
the optimal policy. The objective of the experiment is to show that the optimal

policy can still be learned if we combine the model-based approach with HORDQ.
Let state s = (x,y), where x consists of planning variables and y consists of

environment variables. Following the MAXQ approach, we decompose the Q-
function as:

Qπ(i,x, j) = Qπ
r (i,x, j)+Qπ

c (i,x, j), (4.1)

where Qπ
r (i,x, j) is provided by the child subtask M j.

The task of subtask Mi is to compute Qπ
c (i,x, j) by:

Qπ
c (i,x, j) = ∑

x′
Pπ

m(x
′|s, j)[Qπ

r (i,x
′,πi(x′))+Qπ

c (i,x
′,πi(x′))], (4.2)

With the formula above, the Q-values can be computed by dynamic program-
ming.

For simplicity, we use the multi-time model [33] to model the transition func-

tion:
Pm(x|s, j) =

∞

∑
N=1

γNP(x,N|s, j). (4.3)
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Pm(x|s, j) can be estimated by:

P̃m(x|s, j) = (1−α)P̃m(x|s, j)+α[γNδx′x], (4.4)

for all x ∈ Si, where δx′x = 1 if x′ = x and is 0 otherwise.

4.1.2 Empirical results in the Bus domain

Figure 4.2(a) shows the learning curves with different levels of pseudo-rewards.
With pseudo-reward +60, it learned a suboptimal policy because the pseudo-reward

is too large to make subtask Move(t) ignore the penalty of breakdown. As a result,
the subtask followed the instruction of its parent too strictly.

On the other hand, if we do not impose any pseudo-reward, the optimal policy
can be learned, but the learning rate is slower than SARSA(0) learning. Since

subtask Move(t) has no incentive to follow the instruction of its parent subtask,
the learning process is similar to SARSA(0) learning except it has six different Q-

functions to learn (one for each subtask) instead of one. Thus it takes longer to
learn the optimal policy.

With an appropriate pseudo-reward, we can get a near-optimal policy while the
learning rate is faster than SARSA(0). Our experiment shows that a pseudo-reward

of +5 is enough to make subtask Move(t) follow the order of Root in most of the
times, but it is not enough for the subtask to ignore the breakdown penalty. For

example, when Root executes Move(4) to move the bus from area 3 to area 4 and
the road at location A is under construction, Move(4) subtask will learn it is a bad

decision with HORDQ. Instead of moving to area 4, Move(4) may move to area 1
or 5 to avoid the breakdown penalty. In turn, Root learns that Move(4) cannot be

executed in such a scenario, thus it will seek an alternative plan if the same scenario
is encountered.

To illustrate the undesirable result when some suboptimal subtasks exist in
the hierarchy and the MAXQ framework is adopted, we combine our approximate

model-based approach and MAXQ-Q learning in our experiment. The combination
learns a suboptimal policy similar to HORDQ with high pseudo-reward. Since

MAXQ does not estimate the consequence of its action outside its own subtask,
Move(t) will move to area t at any cost. It leads to the frequent damage of the bus.
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To simulate the performance of the combination of a poorly-approximated

model-based method and HORDQ, we replaced our model-based approach with
a random policy. The result is shown in Figure 4.2(b). In this case, SARSA(0) has

the fastest learning rate. It takes more time for Move(t) to realize that the policy
of Root is bad with higher pseudo rewards. Nevertheless, it will eventually learn a

near-optimal policy. The combination of random policy and MAXQ presented the
worst result.

This result shows that a good approximate model can help increase the learning

rate with the combination of HORDQ. If the model is poor, HORDQ serves as a
fail-safe mechanism to keep the agent from repeating the same poor policy over and

over again. On the other hand, MAXQ learned a poor policy in both cases. This
evidence suggests that in order to construct a robust HRL algorithm, it is beneficial

to incorporate HORDQ in the hierarchy.
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Figure 4.2: The learning curve for the Bus domain, averaged over 400
episodes. (a) With our model-based approach. (b) With random pol-
icy. The pseudo-reward is shown in parentheses. The parameters are
α = 0.1 and γ = 1. All algorithms follow an ε-greedy exploration pol-
icy with ε = 0.1.
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4.2 Infinite Mario
We use Infinite Mario to show the effectiveness of our approach in large domains.

Large domains contain more than millions of states, so it makes table-lookup meth-
ods not applicable due to the curse of dimensionality. Approximation techniques

are required to handle these problems, but the optimality guarantee will be lost.
It is interesting to see how our work will perform with function approximation

techniques, especially when model-free methods cannot learn the optimal policy.

4.2.1 Previous work

Infinite Mario is an open source Java implementation of Nintendo’s Super Mario

Brothers game. It received much attention in the AI community possibly due to the
two AI competitions – RL 2009 competition1 and Mario AI competition2, which

were held in 2009. The objective of these competitions is to build the best agent
that can play this classic side-scrolling arcade-style game.

The RL 2009 competition required competitors to use RL algorithms to build
their agents. On the other hand, the Mario AI 2009 competition [37] did not pose

any restrictions on the underlying technique. It encouraged competitors to use
neural networks, genetic genetic programming, fuzzy logic, temporal difference

learning, and human ingenuity.
The observation of Mario AI in RL 2009 competition contains the location and

speed of Mario and other monsters, as well as the 22×16 tiles on the screen. The
agent receives +100 reward when it finishes a level, +1 reward when collects a coin,

and -10 reward when it dies.
Mohan and Laird [21] combined HRL and Soar-RL [24] to build a Mario agent.

In their hierarchy, the task is divided to ”Grab Coin”, ”Search Question”, ”Tackle
Monster”, ”Avoid Pit”, and ”Move to Goal”. The root subtask chooses one of these

subtasks to execute based on the learned preferences. Each subtask deals with at
most one object. For example, the ”Grab Coin” subtask is considered successful

only when the specified coin is collected. Thus, the number of subtasks available
for the root task to choose depends on the current objects in the screen.

1http://2009.rl-competition.org/
2http://julian.togelius.com/mariocompetition2009/
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Gibson and Risk [14] adopts the options framework. The master agent can

execute 3 options – a SARSA(λ ) agent, a ”pit specialist” agent, and a rule-based

agent. The ”pit specialist” concerns only with the pits, and is available only when
there is a pit within 4 tiles of Mario. The master agent uses SMDP Q-learning to

learn which option to execute given a state.
Ringstad et al. [41] used a modified linear SARSA algorithm to build the agent.

The input features are the locations of the 3 nearest monsters or pits. Their idea

is to design an agent that can finish the level as fast as possible. To encourage the

agent to finish the level, they rewarded the agent when it traverses intervals of 10
tiles away from the start. Their method won the Mario AI championship of RL

competition 2009.
The state observation of Mario AI 2009 competition [37] includes 22×22 tiles

on the screen, the location and the speed of monsters, and the status of Mario such
as ”isMarioOnGround” or ”mayMarioJump”.

The techniques which are adopted by the competitors of Mario AI competition
include A∗ search, genetic programming, hand-coded policy, a hybrid method of

neural network and A∗ search, and Cyberneurons. In general, A∗ search achieves
the best result, and hand-coded policy falls the second. Robin Baumgarten [37]

won the championship of the Mario AI competition in 2009. His idea is to create
a physics engine that can accurately predict the next state of Mario, and use A∗

search to find a path to the right border of the screen as fast as possible. Since his
approach requires the agent to have the complete knowledge of the environment,

the approach falls into the category of classical planning.
Ross et al. [28] used supervised learning to learn the direct policy mapping

between input features and the primitive actions. The input features are 22× 22
tiles around Mario in previous 4 frames, the state of Mario and the last 6 actions.

The tiles include the types of the ground, blocks, and monsters. The state of Mario
includes the types (small, big and fire Mario) as well as a binary feature to indicate

if Mario touches the ground or not. The training data is obtained through search-
based methods similar to Baumgarten’s work [37].

The above approaches either depend on game-specific information (”isMari-
oOnGround”) or depend on the information that is difficult to be retrieved from

image features (the location and size of pits). In this section, we introduce an ap-
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proach of building an agent for Infinite Mario without using such information. We

only restrict the agent to use the features provided by the simulator of Infinite Mario
from RL competition 2009. The features can be retrieved from the screen directly,

therefore it allow us to generalize our approach to other video games without the
need to redesign specialized features for each individual problem.

4.2.2 Infinite Mario domain

We use the 2009 RL competition environment to conduct our experiment. The

action space of Infinite Mario consists of 4 buttons which correspond to the original
Nintendo controller. These buttons are:

• Direction pad: left or right

• A button: jump

• B button: speed

Mario can choose to press these buttons or not, so the number of possible actions
are 3×2×2 = 12 actions.

We exclude action ”speed”, ”jump speed” and ”no op” from the action space,
since they do not seem to be relevant to the optimal policy. The agent can execute

9 actions in our experiment.
The screen of Infinite Mario is comprised of a matrix of 22× 16 tiles. The

matrix is an array of characters, with each element representing the type of tile.
The types of tile are brick, question-block, coin, pipe, empty tile, the finish line

and Mario.
Besides the tile information, the information of moving objects are also pro-

vided. The moving objects are Mario, Red Koopa, Green Koopa, Goomba, Spikey,
Piranha Plant, Mushroom, Shell, Fire Flower and Fireball. The information of each

object includes x- and y-positions, x- and y-velocities, and type of object. Note that
the positions and velocities are continuous, so a quantization technique might be

required.
The tile information can be captured from screen with basic image processing

techniques [23]. The location and speed of monsters can be obtained by applying
computer vision techniques such as object tracking or optical flow.
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Figure 4.3: (a) A screenshot of Infinite Mario (b) A planning process con-
ducted by the search-based method.

The levels are generated with 3 parameters: random seed, type, and difficulty.

The difficulty ranges from 0 (easiest) to 9 (hardest).
The agent will receive the following rewards:

• +100: finishing a level

• +1: collecting a coin

• +1 : hitting a question block

• +1 : killing a monster

• -0.01 : step cost

• -50 : getting killed

Besides, we apply a reward equal to the displacement of x-position to encour-

age the agent to move as right as possible and penalize the agent if it moves to
left.

4.2.3 The model-based method for Mario domain

We adopt the model-based method to learn the transition function of Mario. The

state of Mario can be described by a 4-tuple (x,y,dx,dy), where are the location and
velocities of Mario. The ranges of x, y, dx and dy are [0,318], [0,15], [−2.5,2.5],
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and [−2.5,2.5]. These variable are continuous, so it is not possible to enumerate

all possible states of Mario with dynamic programming techniques. It is possible
to discretize the variables, but the resulting state space would still be too large if

we want to predict the dynamics of Mario precisely.
Instead of discretizing the variables, we used the regression tree algorithm in

the Orange package [11] to predict the future position and speed of Mario. The fea-
tures are the current speed of Mario and the tiles within 5 by 5 area around Mario

(Fig. 4.3(a)). There are 27 variables. Since each action has different dynamics, we

build different trees for different actions. Given the current state and action, the
regression trees should predict the speed and position of the following state. The

regression trees predict the relative changes of positions εx = x′−x and εy = y′−y

since modeling relative change might generalize better across states [17]. How-

ever, the relative changes of speeds do not generalize well, so we predict the value
of speeds directly. The x-position, y-position, x-speed and y-speed are the class

variables for the regression trees. For simplicity, we separately build regression
trees for different class variables and actions. In our current implementation, there

are 9 actions and 4 class variables, so we have 36 regression trees to model the
dynamics of Mario.

We borrowed the idea of Baumgarten [37], using the search-based method to
find a sequence of actions that moves Mario to the right edge of the screen as fast

as possible. Instead of hard-coding the objective of the search process, we add a
possible reward to the agent if it moves to the right and a negative reward otherwise.

We adopt a simple k-step lookahead greedy search in our planning process. It
begins with the current state of Mario. Then it expands one node in the search

tree by applying all possible actions. To avoid fully expanding the whole search
tree to the maximum depth, which is 6 in our experiment, we use greedy search

and expand the node with the largest predicted reward. The process stops after
the number of nodes exceeds 300, then the search algorithm returns a sequence of

actions which achieves the highest predicted reward. To reduce the computation
time spent on searching, the search algorithm will return immediately if there is

a sequence of action which gets more than +6 reward. There are 96 = 531,441
nodes in the fully-expanded tree. Since we only search a very small part of it, it is

possible for the search algorithm to return a suboptimal sequence. The locations of
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monsters and other objects are assumed to be the same during the planning process.

It is crucial for the search-based method to learn when Mario is going to be
killed. However, the number of samples right before Mario gets killed is limited

by the number of episodes due to the fact that the episode terminates immediately
after the death of Mario. To efficiently use the available samples, we use a single

regression tree to learn the reward function. The input features of the regression
tree are the features for the transition function plus the action of the agent.

The strength of the above method is that it has the terrain knowledge and can

move efficiently to finish a level.
Since we only model the dynamics of Mario, effects such as the dynamics of

other objects or the interactions between objects are ignored.
Here is the list of effects which are not included in the model:

• Monsters may appear at the right edge of the screen

• Monsters disappear at the left edge of the screen

• Monsters can be killed by Mario, a fireball, or a moving shell

• Monsters can be killed by falling into a pit

• Koopma can be turned into a shell

• Mario can kick a shell to make it move

• Jump on top of a moving shell will make it stop

• Fire Mario can attack with fireballs

• Small Mario can be turned into Big Mario by consuming a mushroom

• Big Mario can be turned into Fire Mario by consuming a fire flower

• Coins, mushrooms and fire flowers can be consumed by Mario

To learn the transition function perfectly, it is necessary to learn all the effects
correctly. However, learning the effects for a stochastic problem is NP-Hard [38]

and heuristic solutions are required to solve it [26].
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Our work provides an alternative approach to this problem–instead of learning

all possible effects, we only learn part of them and let model-free methods handle
the scenarios associated with the effects which are not included in the model.

The 5 by 5 tiles around Mario include the monsters as well, so it is possible
for the model-based method to learn the imminent death caused by moving Mario

directly to monsters. What it cannot handle is the delayed death cases, which
happen when Mario moves very close to monsters, but does not touch it. In such

a scenario, it doesn’t matter which action Mario is going to take, the subsequent

death is guaranteed. This also happens when Mario moves to a position which
will be surrounded by monsters. After Mario moves to such a position, Mario will

be killed inevitably. The supervised learning can only learn the reward function
with immediate reward. When the death is actually caused by a decision made few

steps before, it is difficult for a supervised learning algorithm to figure out such a
relationship. On the other hand, such a delayed feedback will propagate back to

previous states with model-free methods such as SARSA(λ ), so it is not a problem

for these methods.

4.2.4 The model-free method for Mario domain

Since the model-based method cannot deal with the interaction between objects,
we use a model-free method to handle it.

The features of model-free methods include the types and locations of moving
objects other than Mario itself. To reduce the number of features, we do not include

the speed of objects. As noted in [14], it is more generalizable if we use ”egocentric
representation”. That is, we use the relative positions between Mario and objects

as the features instead of the absolute positions.
Since the number of monsters can be any arbitrary number, we cannot use

linear SARSA which depends on a fixed feature size. Instead, we use relational
approaches here. We incorporated relational temporal difference learning (RTDL)

[3] with HORDQ. RTDL is a relational extension to linear SARSA, thus it does not
work for continuous variables. To discretize them, we simply round each variable

to the nearest integer.
Unlike previous approaches [14, 21, 22, 41], we do not include the location of
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pits in our features. Since the pit is not a moving object nor does it occupy a single

tile, it is not available in the input features. Previous approaches relied on prior
knowledge of the shape and size of pits to parse the tile information and extract

the location of a pit. We argue that this would not contribute to the generality
of the method. It would be possible to include the pit information by using the

whole screen (22×16) as the feature. But the potential huge state space makes it
inapplicable in practice (14352 states with 14 different types of tiles) Moreover, it

is not necessary to include the pit information in model-free methods, since the pit

can be handled by the model-based method.

4.2.5 The hybrid approach

Figure 4.4: A task hierarchy for Infinite Mario

We combine the model-based method and model-free method with the task

hierarchy shown in Fig. 4.4. The model-based method is responsible for subtask
Root and the model-free method is for subtask Action(t). For each step, subtask

Root selects one of the actions to execute. Subtask Action(t) then decide if it is
going to follow the action suggested by Root or not. If it does, Action(t) will

receive a pseudo-reward. Since Action(t) is the only subtask that executes the
primitive action, the behaviour of the agent solely depends on its decision. Subtask

Root can only influence its decision with the pseudo-reward. Note that Action(t)

will terminate immediately after executing a single primitive action. There is no
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Method Name # of finishing a level
SARSA 1
Model+HORDQ(10) 277
Model+HORDQ(20) 64
Model 0

Table 4.1: The number of times for Mario to finish the level within 1000 runs

temporal and spatial abstraction in this hierarchy. That means that we do not enjoy

any benefits from adopting the HRL framework. In fact, the reason we adopted the
HRL framework is to combine different methods. And the benefit of doing so does

not come from the HRL framework, but from the power of combining model-free
and model-based methods.

Unlike our approach with the Bus domain, we do not have individual subtask
Action(t) defined for each primitive action. Since subtask Action(t) knows that it

will be rewarded if it follows the action of Root, there is no need for us to sep-
arately learn the Q-function for every possible action. Instead, we use a single

subtask Action(t) to learn the Q-function for the original MDP. And the decision
of Action(t) is biased with the pseudo-reward when it is going to select the best

action to execute. Thus, the method presented here does not have the overhead of
maintaining multiple Q-functions as in our method for Bus domain.

For this special hierarchy, the pseudo-reward imposes a very interesting prop-
erty: the policy is identical to the policy of model-free method when a pseudo-

reward is equal to zero and it is identical to the one of model-based method given
a sufficiently large pseudo-reward. We can adjust the value of pseudo-reward to

alternate the agent’s behaviour between two different methods.

4.2.6 The result of Infinite Mario

The level is generated with Infinite Mario simulator of RL competition 2009. The

random seed is 1247 with type 0 and the difficulty is 3. The maximum distance
for Mario to move to the right is 315. Beyond that, the level is finished with +100

reward.
Table 1 shows the number of times for Mario to finish the level within 1000
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Figure 4.5: The distance that Mario moves for each episode, averaged over
20 episodes. The parameters are α = 0.05 and γ = 0.7. The exploration
policy ε-greedy with ε = 0.01.

episodes. Unsurprisingly, the model-based and model-free method are difficult to

finish a level because they may fail to handle either monsters or pits. The model-
based method only includes the dynamics of Mario, and ignores the rest of effects

in game. Thus, the learned policy can get Mario killed. On the other hand, the
features of model-free method do not include the information of pits, so it may fall

into a pit.

Figure 4.5 shows the distance travelled by Mario with different pseudo-rewards.
Unlike the experiment in the Bus domain, the model-based method does not have

a better learning rate then the model-free method. The problem is that the model-
based method may lead Mario to be killed by a monster in an early state, thus it

suffers a decreased learning rate.
If we combine both methods, we can see that Mario now can learn a better

policy since it can avoid both pits and monsters. If we increase the pseudo-reward,
the chances for Mario to be killed will increase, as it follows the action of model-

based method more often. If we decrease the pseudo-reward, the chances to fall
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into a pit will increase, as the model-free method ignores the pit completely.

Our approach actually suggests a way to mix different methods and learn a
better policy.
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Chapter 5

Conclusions

Model-based methods are powerful tools. They allow us to predict the outcome

of the agent behaviour and plan over it. They can effectively reduce the number
of samples which are required to find the optimal policy. However, model-based

methods may not be able to learn the optimal policy due to the structural assump-
tions. In this work, we propose an approach to combine the approximate model-

based method with the model-free method (HORDQ) under the HRL framework.
We are able to show that our approach can learn the optimal policy even when

the assumptions of model are not satisfied. Furthermore, we show that optimality
is guaranteed for any subtask policy as long as the conditions of Theorem 2 are

satisfied.

In this chapter, we share our experiences about how to apply our theory to
design a system. Since the performance of a system highly depends on the value of

pseudo-rewards, we will also introduce some heuristics for choosing an appropriate
pseudo-reward. Finally, we discuss limitations and possible directions for future

works.

5.1 System design
An important design principle of the system is to design the model-based method
first, and the model-free method later. We need to decide the features used by

the model-based methods, the underlying supervised learning algorithms and most
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importantly, the effects which we would like to include in our model. Then we run

the experiments, and observe the scenarios where the model-based method fails.
Based on the observations, we design a set of features for model-free methods to

handle these scenarios. Note that we don’t need to design a set of features to handle
the whole problem, but only part of it. We only need the model-free method to take

control when the model-based method fails. Therefore, we can reduce the number
of features for model-free methods and let the overall system successfully handle

all scenarios.

Since our work is about how to use model-free methods to improve the learned
policy of model-based methods, it is not necessary to adopt our method if model-

based methods can learn the optimal policy on their own.
Our work is not the only solution when model-based methods fail. Another

alternative is to improve the quality of the model by including more domain knowl-
edge. For example, in our Infinite Mario experiment, we did not include any effects

of the interactions between monsters and Mario. It is possible to hand-code the pre-
conditions and postconditions of these effects, as Walsh et al. proposed in [38]. In

fact, the source code of Infinite Mario is publicly available. There is no need to
use model-based methods to learn the model. Instead, we can simulate the experi-

ences of the agent with the simulator of Infinite Mario. Since the environment and
the model are identical, there are no biases which will be introduced during the

simulation process. This is what Baumgarten, the champion of Mario AI compe-
tition 2009, did with his A∗ method for Mario AI [37]. With the complete domain

knowledge, it is unlikely for any RL methods to outperform his work.
However, the key idea of RL is to build an adaptive agent. Not only do we

want the agent to perform well in a problem which we know very well, but we also
want the agent to adapt itself to novel problems which we cannot foresee when we

design the agent. If we put too much domain knowledge into the agent’s design, we
forbid it from adapting itself when the prior knowledge does not hold anymore. In

this work, we introduce an alternative – instead of designing an omnipotent model-
based agent, we divide the learning task into different parts and let model-free

methods handle the parts which model-based methods cannot do.
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5.2 Choosing an appropriate pseudo-reward
It is important to choose an appropriate pseudo-reward. If we choose a pseudo-

reward which is too small, the policy of the agent will be similar to the policy of a
model-free method. Therefore, we may lose the benefit of the faster learning rate.

On the other hand, if the pseudo-reward is too large, the policy will be similar to
the model-model method, which may be suboptimal when the assumptions of the

model are not all satisfied.
It is easy to determine when a pseudo-reward is too large by looking at the

difference between the expected reward of the optimal policy and the policy of
model-based method. If a pseudo-reward is larger than this difference, the model-

free method will follow the policy of the model-based method strictly, and the
combined policy will be the same as the policy of model-based method.

In our experiments (Sections 4.1.2 and 4.2.6), a pseudo-reward larger than the
expected death penalty is considered ”too large”, since it will let the model-free

method follow the instruction of model-based method even when it will result in
the death of the agent. If we choose a pseudo-reward which is smaller than it, the

model-free method will choose an action that avoids the death of the agent.
It is more difficult to decide if the pseudo-reward is large enough. For small

problems, if we adopt table-lookup HORDQ as the model-free method, the op-
timal policy will be learned when the pseudo-reward is decreased to zero. So a

viable strategy is to choose some pseudo-reward, which is not too large, and grad-
ually decrease it to zero. For large problems, we have adopted model-free methods

with function approximation techniques , therefore the optimal policy might not be
learned when the pseudo-reward is zero. Instead, we need to find out an optimal

pseudo-reward which can maximize the expected reward. A way to decide it is to
conduct the experiment with the model-free method, and choose a pseudo-reward

which is large enough to encourage the model-free method to follow the policy of
model-based one.

5.3 Limitations and future work
The quality of learned policy depends on the chosen model-free method, the model-

based method and the pseudo-reward. Since we can control the pseudo-reward to
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decide if the combined policy should be similar to model-free or model-based one,

the combined policy can never be worse than any of them.
Since our work is a combination of the two, it will fail in scenarios where both

methods fail. We could only improve on this scenario if we apply better model-free
or model-based methods.

Nevertheless, our work is not useful when one method outperforms another. In
general, model-based methods learn faster than model-free methods because of the

efficient use of samples, but it may not be true for some problems. If the chosen

model-based method is worse than the model-free method in both learning rate and
the learned policy, it is pointless to combine both methods. Similarly, if the model-

free method fails to handle the scenarios where the model-based method fails or
the model-based method can learn the optimal policy, it is not necessary to apply

our work. Our work has its edge when the model-based method learns faster than
the model-free method but learns a worse policy compared to the model-free one.

For small problems, if the model-based method fails to learn the optimal policy, we
learn the optimal policy by combining it with table-lookup HORDQ as we prove

in Theorem 2. For large problems, it is difficult since approximated model-free RL
may not learn the optimal policy. It is necessary to have the knowledge about the

domain and apply the knowledge to choose some good features.
We introduced the theory of improving the quality of the policy of model-based

methods. However, we don’t have any theory regarding the learning rate. It is true
that if the model-based method is ”approximately good”, we can enjoy the faster

learning rate, as we showed in the Bus domain experiment. Nevertheless, there is
no theory to tell if a model-based method is approximately good or not. A possible

direction of future work is to investigate what kind of properties of model-based
methods are necessary to increase the learning rate and how much they can increase

when they are combined with model-free methods.
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