Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Spiral grain in second growth Douglas fir and western hemlock Elliott, Geoffrey Kenyon 1957

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1957_A6 E5 S6.pdf [ 4.69MB ]
Metadata
JSON: 831-1.0302311.json
JSON-LD: 831-1.0302311-ld.json
RDF/XML (Pretty): 831-1.0302311-rdf.xml
RDF/JSON: 831-1.0302311-rdf.json
Turtle: 831-1.0302311-turtle.txt
N-Triples: 831-1.0302311-rdf-ntriples.txt
Original Record: 831-1.0302311-source.json
Full Text
831-1.0302311-fulltext.txt
Citation
831-1.0302311.ris

Full Text

SPIRAL GRAIN IN SECOND GROWTH DOUGLAS FIR AND WESTERN HEMLOCK by GEOFFREY KENYON ELLIOTT B,. Sc. (For.) (Wales), 1 9 5 5  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF FORESTRY i n the Department of FORESTRY  We accept t h i s t h e s i s as conforming required  to the  standard  THE UNIVERSITY OF BRITISH COLUMBIA September, 1 9 5 7  i ABSTRACT S p i r a l g r a i n i n timber may of lumber and plywood.  cause severe  In the primary f o r e s t p r o d u c t s  i n d u s t r i e s the presence- of s p i r a l g r a i n i n the i n cross-grained properties deviation strength  twisting  products.  tree r e s u l t s  Cro.ss g r a i n a f f e c t s the  of lumber to a marked degree..  strength  Thus a g r a i n  of 1 In 2f? (2°l8') r e s u l t s i n decreased t e n s i l e whereas a slope  compression  (5°43')  of 1 i n 10  w i l l reduce  strength.  S p i r a l g r a i n i s a c o n d i t i o n w e l l known to the wood technologist was  and  the  considered the  recently published  silviculturalist.  U n t i l recently i t  e x c e p t i o n r a t h e r than the papers, however, and author, strong  produced to show t h a t  s p i r a l g r a i n Is the  the  in trees.  hemlock. medium and  normal growth  three s i t e s were chosen:  investigate  Two  crown c l a s s e s f o r each  were sampled from each s i t e and .class f o r each species  three t r e e s  were f e l l e d  and  western  a good, a  s i t e i n a t y p i c a l B r i t i s h Columbia  f o r e s t of second growth.  investigated.  been  of second-growth Douglas f i r and  Accordingly a low  evidence has  T h i s t h e s i s i s designed to  s p i r a l pattern  Prom  from u n p u b l i s h e d  data a v a i l a b l e to the  pattern  rule.  coastal species  i n each crown  their spiral  patterns  ii  A general  trend  of s p i r a l i t y was  t w i s t being i n i t i a l l y l e f t left  and  (at f i r s t ) ,  established,,  decreasing  becoming r i g h t ' w i t h i n c r e a s i n g age.  holds good f o r both The established  This  to  the  pattern  species.  e f f e c t of s i t e on s p i r a l development  was  as h i g h l y s i g n i f i c a n t with both s p e c i e s .  h i g h q u a l i t y s i t e s the development was  the  chief factor influencing  spiral  found to be d i s t a n c e from the p i t h .  s i t e s of lower q u a l i t y , age  from the p i t h was  the most s i g n i f i c a n t i n f l u e n c e  On  On  found to have  on s p i r a l development.  In p r e s e n t i n g the  this thesis in partial fulfilment  requirements f o r an advanced degree at the  of  University  of B r i t i s h Columbia, I agree t h a t  the  L i b r a r y s h a l l make  it  and  study.  f r e e l y available f o r reference  I  further  agree t h a t permission f o r e x t e n s i v e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may  be granted by the  Department or by h i s r e p r e s e n t a t i v e .  Head o f  my  I t i s understood  that  copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l  gain  s h a l l not  be allowed without my  Department o The U n i v e r s i t y of B r i t i s h Vancouver 8\ Canada.  Columbia,  written  permission.  iii  CONTENTS Page Introduction  1  L i t e r a t u r e Survey  $ 17  M a t e r i a l s and Methods Results: I. II. III: IV. V. VI.  General  Pattern  The I n f l u e n c e  •. • •  21 22  of Height  The I n f l u e n c e of Age and Radius Between Sites'.  22  The I n f l u e n c e  2$  of Age .and Radius W i t h i n S i t e s  The I n f l u e n c e of Crown C l a s s The I n f l u e n c e of S i t e  Conclusions  .  .  27 27 28  BIBLIOGRAPHY: Literature Cited General  . .  Bibliography  69 71  iv  LIST OF TABLES Table No.  1 and 3  2  to ll].  26  15"  to  27  to 38  39  and If0  Page E x p l a n a t i o n of T a b u l a r Symbols  30  Tables of Average Angles at Each Decade. .  31  B a s i c Data of A l l Trees from P l o t 1  .  .  .  3  2  . . .  38-If3  Basic Data of A l l Trees from Plot 3  . . .  kk~k-9  Basic Data of A l l Trees from P l o t  Correlation Coefficients  Calculated  f o r Both S p e c i e s Ifl and If 1  32- 7  A n a l y s i s of V a r i a n c e f o r Both Species  50 . .  5>1  V  LIST OF FIGURES F i g u r e No. 1 and  2  Page A c t u a l S p i r a l vs Age a t Breast Height f o r Both Species  3  to  7 11  15  $2-$3  1 .. .  5i+"57  t o 10  B a s i c Data f o r A l l Trees from P l o t 2 . . .  58-61  t o lk  B a s i c Data f o r A l l Trees from P l o t 3 . . .  62-65  16  Radius vs Age Curve f o r Both S p e c i e s . . .  66-67  17  The S p i r a l G r a i n Measuring Instrument  and  6  ,  B a s i c Data f o r A l l Trees from P l o t  . .  68  vi  ACKNOWLEDGMENT  The  author- wishes t o extend h i s thanks t o  the F o r e s t Products L a b o r a t o r i e s Laboratory,  of Canada, Vancouver  f o r t h e i r k i n d a s s i s t a n c e throughout the  work and the loan of the S p i r a l G r a i n Measuring Instrument. Acknowledgments are a l s o due t o Dr. R.W. Wellwood, F a c u l t y of F o r e s t r y , the author's f a c u l t y a d v i s o r f o r help Dr.  i n formulation  and l a y o u t of the work, and t o  J..H.G. Smith f o r h e l p f u l advice  l a y o u t and s t a t i s t i c a l  aid.  i n the experimental  Thanks are a l s o due t o the  F a c u l t y of F o r e s t r y f o r the use of f a c i l i t i e s a t the U n i v e r s i t y R e s e a r c h F o r e s t , Haney, B r i t i s h Columbia..  SPIRAL, GRAIN IN SECOND GROWTH DOUGLAS FIR AND: WESTERN HEMLOCK  Introduction  The  s p i r a l h a b i t of growth i s of .common manifes-  t a t i o n i n nature.  S p i r a l development might be Considered  as an e x p r e s s i o n of a widespread plasmic i n o r i g i n . not r e s t r i c t e d  tendency which i s p r o t o -  C e r t a i n l y the t w i s t found i n nature i s  to any p a r t i c u l a r group  the animal world there are pronounced  of organisms.  In  twists- developed i n  the group. Molluaca, both i n the. d e x t r a l and the s i n i s t r a l direction.  The . s p i r a l .arrangement is. not c o n f i n e d to. the  animal kingdom, s i n c e t e n d r i l s of the c o t t o n p l a n t and the c l i m b i n g p a r t s of other plants, e x h i b i t the phenomenon. .Cotton, f i b r e s themselves  show both l e f t 1  and r i g h t  spiral  2 development.  Twist  organisms, f o r the  is. not  confined  to the m u l t i c e l l u l a r  s p i r a l development of c e r t a i n b a c t e r i a l  •colonies, i s w e l l known. The  occurrence of s p i r a l development at the  c e l l u l a r l e v e l has. become w e l l known i n recent  sub-  years.  S p i r a l trends have been e s t a b l i s h e d i n muscle f i b r e s , the  and  s p i r a l arrangement i n c e l l u l o s e f i b r e s i s w e l l  established  (21) .  The  s p i r a l nature of chromosomes .as  they appear i n the d i v i d i n g n u c l e u s has to the  cytologist.  long.been known  With the advent of the  microscope the h e l i c a l n a t u r e of the  electron  cellulose f i b r i l s  in  the primary c e l l walls: of cambial t i s s u e i n c e r t a i n p l a n t s .has become w e l l e s t a b l i s h e d .  E l e c t r o n microphotograph.s  have a l s o i n d i c a t e d the s p i r a l a r c h i t e c t u r e of c e r t a i n f l a g e l l a and  c i l i a found i n the animal kingdom.  appendages are p u r e l y p r o t e i n a c e o u s i n nature. been shown t h e o r e t i c a l l y t h a t c e r t a i n p r o t e i n s  These I t has of  high  m o l e c u l a r weight i n the v i t a m i n group must have a s p i r a l make-up. expression in  Hence we  can h y p o t h e s i z e that s p i r a l i s the  of a widespread tendency which i s  protoplasmic  origin. In view of the u n i v e r s a l nature .of s p i r a l i t y i t  i s not trees.  s u r p r i s i n g that the phenomenon i s e x h i b i t e d i n U n t i l r e c e n t l y however the  s p i r a l e d t r e e has  been  3  taken as the exception  r a t h e r than the r u l e .  Recent work  i n I n d i a and Canada has shown t h a t t w i s t Is an e x p r e s s i o n of the normal growth p a t t e r n i n t r e e s . One i n f l u e n c e of s p i r a l g r a i n i n waod i s t o causesevere t w i s t i n g of lumber and plywood.  I n the p r i m a r y  f o r e s t p r o d u c t s i n d u s t r i e s , the presence o f s p i r a l g r a i n i n the t r e e r e s u l t s i n c r o s s - g r a i n e d p r o d u c t s .  The e f f e c t s  of cross g r a i n on the s t r e n g t h p r o p e r t i e s of wood has long been e s t a b l i s h e d .  There i s a r e d u c t i o n of about J4. per cent  i n bending s t r e n g t h when the slope o f the g r a i n i s I i n .25",• ( 2 ° l 8 » ) ; w i t h a. slope of 1 i n 1 0 1 9 per cent.  ) the r e d u c t i o n i s  The s t i f f n e s s Of a beam Is a l s o reduced by  s l o p i n g g r a i n , but t o a l e s s e r degree-, the  corresponding  r e d u c t i o n f o r the same V a r i a t i o n s of slope being i v e l y 3 and' 1 1 per- cent.  Timber used f o r t o o l handles and  cooperage should under no circumstances,  exceed a slope of  1 In 25",. and a l l p r o d u c t s r e q u i r i n g a bent timber be  s t r a i g h t grained.  respect-  should  The l o s s i n s t r e n g t h i s due to the  f a c t that b a s i c s t r e s s e s -are e s t a b l i s h e d on the b a s i s that the f o r c e s act e i t h e r p a r a l l e l to the g r a i n or at r i g h t angles  to i t .  I t i s evident then t h a t any  departure  i n g r a i n alignment i s r e g i s t e r e d as a r e d u c t i o n i n the s t r e n g t h of the wood p i e c e .  The  occurrence  of s p i r a l g r a i n leads to the degrad-  ing of logs p a r t i c u l a r l y i n the p e e l e r g r a d e s . Douglas f i r ,  1  For  g r a i n slope should not exceed 1 i n 1 2  f o r logs of 3 0 " - 3 5 " i n diameter. logs 3 6 " i n diameter and  0  With western hemlock  Over are degraded i f the  of g r a i n exceeds 1 i n 1 2 .  (lj 36»)  slope  In F i g u r e 1 i t i s shown t h a t  the average s p i r a l of Douglas f i r f o r the b e s t area ( P l o t l ) , i s 2°R  at 6 0 y r s .  I f the graph is. p r o j e c t e d to  1 2 0 y r s . a s p i r a l of between 6°R ;can be p r e d i c t e d .  (1  i n 9) and  8°R  (1  i n 7)  Such a s p i r a l development would cause  s e r i o u s degrade of the l o g , and would Impair the p r o p e r t i e s of the  sampled,  mechanical  lumber.  The work that t h i s t h e s i s r e p r e s e n t s i s a d i r e c t r e s u l t of an i n v e s t i g a t i o n undertaken by the author, R.W.  Kennedy of the U n i v e r s i t y of B r i t i s h Columbia, a t the  Vancouver Laboratory Canada.  of the F o r e s t Products  Investigated  N o r t h c o t t , the  spiral  author  the r e l a t i o n s h i p between s p i r a l development  site quality.  growing on two The  L a b o r a t o r i e s of  In c o n j u n c t i o n with a more g e n e r a l study of  g r a i n under the d i r e c t i o n of P.L.  and  and  Red  ald'er (Alnus rubra. Bong.) trees,  different  c o n c l u s i o n reached  s i t e s were examined f o r s p i r a l i t y .  was. t h a t there e x i s t e d a s t r o n g  c o r r e l a t i o n between s p i r a l , ute .spiral..,-and-.age.  expressed  The• p r e s e n t  as cumulative- a b s o l -  i n v e s t i g a t i o n examines ••  F o r e s t r y Handbook f o r B r i t i s h Columbia, The F o r e s t Club, U n i v e r s i t y of B r i t i s h Columbia,- Vancouver, 1 s t edition, 1953.  5 the p o s s i b i l i t y  of s i m i l a r trends  e x i s t i n g i n the econom-  i c a l l y more important Douglas f i r (Pseudotsuga m e n z i e s i i (Mirb) Franco) and  western hemlock .(Tsuga h e t e r o p h y l l a  (Raf) Sarg) .  Literature  The  literature  Survey  concerning  observations  and  theories l88l  p e r t a i n i n g to s p i r a l g r a i n i n p l a n t s goes back to when C.B...Clarke ( 6 )  wrote on Right-hand and  c o n t o r t i o n , i n a paper p u b l i s h e d Linnaean S o c i e t y .  The  observation  with mechanism:.  by the J o u r n a l  phenomenon has been the  some f i f t y papers since t h i s reports, on the  Left-hand of  the  object  time, many of which are- o n l y  of s p i r a l and  few  are  Concerned  R e a l experimentation began w i t h the  c o n t r i b u t i o n s of H.G-. the I n d i a n F o r e s t  Champion ( 3 )  (4)  (£)  Service,., between 1 9 2 ^  problem of t w i s t i n C h i r p i n e  of  (Pinus  and  classic  worked f o r 1930^  longifolia  on  the  Rox.).  S i r H a r r y .Champion! s work remains the b a s i s f o r contemporary study In the  field.  E a r l i e r n a t u r a l i s t s were w e l l aware of twiat i n plants.  The  phenomenon was: noted by H a r t i g  Schlich i n 1896  and  i n I n d i a we  much to Smythies  owe  t w i s t e d p a r e n t s and  Nis.bet i n 190$.  got  Of the  (22),  who  in.11888, e a r l y work r a i s e d se.ed of  s t r a i g h t - g r a i n e d progeny.  6  Cannings (.2) t w i s t and  r a i s e d seed from parent t r e e s w i t h a r i g h t  got  s e e d l i n g s w i t h a. pronounced l e f t  twist.  Troupe ( 2 3 ) , i n a s i l v i c u l t u r a l t r e a t i s e - on .Pinus long-jf o l i a twisted  (Rox), noted that twisted  and  t r e e s gave both  s t r a i g h t - g r a i n e d progeny.  Troupe s e r i o u s l y  doubted the then current b e l i e f that h e r e d i t y was. sole c o n t r o l l i n g i n f l u e n c e on s p i r a l ! t y . Troupe's i n v e s t i g a t i o n s . , H..G. t i g a t i o n s i n t o the  the  Subsequent to  .Champion began h i s "Inves-  O r i g i n of Twisted F i b r e " .  Champ ion's works on t h i s problem were: published' between 1 9 2 5  and  1930  i n the o f f i c i a l p u b l i c a t i o n s of  Indian F o r e s t S e r v i c e under whose auspices, the work undertaken. (Pinus  other p a r t s of A s i a .  remarkable s p i r a l growth, and  interim report  (3)  C h i r showed some- very Champion produced  Champion d e a l t w i t h the  evidence  In his. f i r s t possibilities,  of i n h e r i t a n c e governing t w i s t i n Pinus l o n g i f o l i a . r e s u l t of progeny t e s t s on seeds from s e l e c t e d ranging  from areas where s p i r a l was  where s p i r a l was  produce a v a r y i n g but  a  prominent to areas were drawn,  to a l l t r e e s  to  small p r o p o r t i o n  of  i n d i v i d u a l s with t w i s t e d f i b r e , the left  As  localities,  rare,, the f o l l o w i n g c o n c l u s i o n s  ( i ) " I t i s a common c h a r a c t e r  being  pine  indigenous to  of some t r e e s w i t h almost h o r i z o n t a l g r a i n .  and  was  I n v e s t i g a t i o n s were conducted u s i n g C h i r  long i f o l i a , Rox.) , a l o n g l e a f p i n e  I n d i a and  the  twist  at f i r s t , , changing to r i g h t w i t h  7 w i t h p a s s a g e -of time-,, v a r y i n g g r e a t l y with (ii)  i n length  species..  There i s p r o b a b l y a c e r t a i n  amount of" f l u c t u a t i n g  v a r i a t i o n i n the d i r e c t i o n of the f i b r e f o r occasional  e x c e p t i o n s t o t h i s g e n e r a l rule.,,  others perhaps being traceable, inhibitive. (iii)  accounting  to. s p e c i a l  influences,  I n a r e a s where t w i s t  i s especially frequent,  twisted  fibre,, or the tendency t o produce i t , i s unquestiona b l y c a p a b l e o f b e i n g t r a n s m i t t e d f r o m one. g e n e r ation  to. t h e n e x t .  ( i v ) C o n d i t i o n s f o u n d i n e x i s t i n g f o r e s t make t h e i n h e r i t a n c e o f t w i s t a s an a c q u i r e d c h a r a c t e r i s t i c cult (y)  t o a c c e p t as- a s a t i s f a c t o r y  In- s u c h a r e a s , a t w i s t e d ated p o s s i b l y  diffi-  explanation,  v a r i e t y may have, o r i g i n -  b y a simple- l o s s , m u t a t i o n o f a f a c t o r  c o n t r o l l i n g the orientation  of t h e g r o w i n g  .Such m u t a t i o n must h a v e o r i g i n a t e d  cells.  independently i n  many areas', i t s s u r v i v a l b e i n g f a v o u r e d b y t h e c o n tinued  selection  of the straight.er trees  ( v i ) Sound f o r e s t management on t h e g e n e r a l l y  f o r removal. accepted  l i n e s , , e s p e c i a l l y as r e g a r d s s e e d - s e l e c t i o n thinning of It  should r e s u l t i n time i n t h e e l i m i n a t i o n  twisted  i s from this  into, t h e r o l e  and  trees." -  work t h a t  of heredity  we a c c r u e t h e f i r s t  and o t h e r f a c t o r s  Champion's d e f i n i t i o n o f s p i r a l f o r h i s  Inkling  i n governing  twist.  experiments- began a t 7 ° .  T h i s i s v a l i d f r o m t h e u t i l i z a t i o n p o i n t o f view,, b u t i t s h o u l d  be- emphasized when he speaks of e l i m i n a t i n g  spiral  a l t o g e t h e r by sound f o r e s t management. I n a f u r t h e r s e t of e x p e r i m e n t s , Champion. (I4.) combined seed of f i v e parentage t y p e s on f o u r areas, i n e v e r y combina t i o n . To- o b v i a t e  i n some r e s p e c t  t h e i n f l u e n c e - o f random  p a r e n t a l f e r t i l i z a t i o n , , the t y p e s of seed used were as f o l l o w s (a) Prom a s t r a i g h t - g r a i n e d l o c a l i t y . , , where the. i n c i d e n c e of s p i r a l , , i . e . more t h a n 7°, i s rare.,, perhaps 2 p e r cent maximum. (b) Prom a s t r a i g h t - g r a i n e d l o c a l a r e a , as n e a r as poss i b l e to. the. p a r t i c u l a r p l a n t i n g area-, where, t h e p e r c e n t a g e of t w i s t e d t r e e s i s l e s s than 1 0 . (c) Prom t w i s t e d trees' s e l e c t e d from t h e p r e d o m i n a n t l y straight  locality.  (d) Prom s t r a i g h t t r e e s s e l e c t e d f r o m the p r e d o m i n a n t l y twisted  locality.  (e) Prom a l o c a l i t y where t h e i n c i d e n c e e x t r e m e l y common, a t l e a s t 95 per  of s p i r a l i s cent.  Prom t h i s i t f o l l o w s t h a t the f o u r l o c a l i t i e s  chosen  were: (a) S t r a i g h t - g r a i n e d , where- the- incidence: of s p i r a l  was  2 per cent. (b) S t r a i g h t - g r a i n e d , where- the incidence- of s p i r a l 10 p e r c e n t . (c) Intermediate., where the incidence- of s p i r a l was' 60 p e r c e n t . (d) Twisted,, where the incidence: o f s p i r a l 95 p e r c e n t .  was  was  9  Champion drew, t h e f o l l o w i n g c o n c l u s i o n s from t h i s experiment. (i)  "The h y p o t h e s i s  that s p i r a l i t y i s inherited i s  completely v i n d i c a t e d .  I t cannot be a t t e s t e d  t h a t a 100 p e r cent t w i s t e d p a r e n t g i v e 100 p e r cent t w i s t e d progeny.  crop  will  Some two-  t h i r d s o f the second r o t a t i o n c r o p , however, was found t o be t w i s t e d beyond s e r v i c e a b i l i t y f o r timber.  T h i s .conclusion h o l d s good when  seed f r o m 100 p e r cent t w i s t e d l o c a l i t y i s p l a n t e d on any s i t e , (ii)  The seed f r o m s t r a i g h t - g r a i n e d areas g i v e s a crop v i r t u a l l y f r e e o f t w i s t on a l l s i t e s ,  (iii)  I n a l l cases t h e . s e e d l i n g s r e f l e c t t o some degree the t w i s t i n t h e i r  parents."  There i s a g e n e r a l c o n c l u s i o n w h i c h Can be drawn f r o m t h i s p a r t o f Champion's work.  I t i s that  whatever a d d i t i o n a l f a c t o r s come i n t o p l a y t h e tendency t o develop t w i s t e d f i b r e i s i n h e r i t e d . C o n c u r r e n t w i t h these e x p e r i m e n t s ,  Champion  i n i t i a t e d an i n v e s t i g a t i o n i n t o o t h e r p o s s i b l e c a u s a t i v e e f f e c t s of s p i r a l .  Kadambi ( 1 1 ) c o n t i n u e d  experiments a f t e r Champion l e f t I n d i a .  these  The experiments  i n v o l v e d v a r i o u s methods of i n d u c i n g t w i s t . methods were used:  with  Three main  10  (1)  Debarking  a p o r t i o n of the stem; t h i a caused no  . a p p r e c i a b l e change i n the s p i r a l (2)  Topping, by removal  development.  of the t e r m i n a l bud and a  p o r t i o n of the l a s t year's growth; here the s p i r a l seemed t o show some s i g n i f i c a n t  increase  from the t i p p e d p o i n t upwards. (3) i S t r a n g u l a t i o n ; In t h i s was p r o b a b l y  case an induced  spiral  produced.  In g e n e r a l the experiment  failed  to show that  s p i r a l could be induced by any e x t e r n a l agencies t o the tree.  In t h i s way the i n f l u e n c e of man and h i s domestic  animals was discounted as a cause of s p i r a l . From the e a r l y 19301s "American S c i e n c e " has f e a t u r e d many short a r t i c l e s  on the t w i s t i n t r e e s ,  although most have been i n the- form of o b s e r v a t i o n s r a t h e r than e x p e r i m e n t a t i o n . Montana, observed  Wentworth (2l|_), working  a predominant r i g h t  twist.  evidence- and evidence from l i t e r a t u r e , predominant r i g h t predominant l e f t  on p i n e s i n With  he p o s t u l a t e d a  s p i r a l i n the n o r t h e r n hemisphere and a s p i r a l i n the southern hemisphere.  implication i n this  Butler  (l), in  193k-, noted apple t r e e s t w i s t e d mainly to the l e f t southern hemisphere.  The  theory i s that the earth's r o t a t i o n  a f f e c t s the s p i r a l i n an a n t i p o d a l way.  spiral effect  this  i n the  He advanced the theory t h a t the  i s p h o t o t r o p i c and discounted the i n f l u e n c e  of  s o i l , wind and weather.  Jones  t h a t maples i n Massachusetts and elms to the l e f t .  (10),  showed  were s p i r a l l e d t o the r i g h t  A l s o i n 1931,  J a c o t (9)  that i n n o r t h e r n China, Thuja o r l e n t a l l s s p i r a l , and Thuja o c c i d e n t a i l s right.  i n 1931,  (L)  observed showed  (L) showed s p i r a l t o the  In t h i s o b s e r v a t i o n t h e r e was no obvious  t i o n with exposure,  left  correla-  i n c l i n a t i o n of the t r e e or other  r e a d i l y observed environmental f a c t o r s .  (13)  Koehler  1+00  made o b s e r v a t i o n s on a l p i n e f i r and found that of  specimens examined .85 per cent showed r i g h t t w i s t , llf per Cent showed l e f t t w i s t and 1 per cent no t w i s t .  No  concerning the age of the specimens measured are  available  H e r r i c k (8)  examined 1572  t r e e s i n L o u i s i a n a where  data  53  per cent were t w i s t e d to the r i g h t , 2L|_ p e r cent to the l e f t arid 33 per cent not at a l l . R e c e n t l y , at the Vancouver Laboratory of the F o r e s t Products L a b o r a t o r i e s of Canada, NorthCott (data so f a r unpublished) has  (18)  expounded the theory that  the s p i r a l h a b i t i s the normal growth p a t t e r n i n t r e e s . In  support of t h i s theory, evidence i s quoted from mature  t r e e s , p o l e s and s a p l i n g s ; of 502' specimens taken from 11  s p e c i e s which were measured at the Vancouver l a b o r a t o r y  only 3 specimens showed no s p i r a l . r e v e a l s at l e a s t 86  survey  s p e c i e s i n which s p i r a l has been  recorded, and Champion (3) 167  A literature  s p e c i e s examined 111  quoting Braun says that of exhibited s p i r a l grain.  If  12 i n t e r l o c k e d g r a i n i s added to the c l a s s i f i c a t i o n of g r a i n , and not doing  there  seems t o be no  logical justification for  so, then a large- percentage of t r o p i c a l hardwoods  are i n c l u d e d .  K r i b s .(.If?) l i s t s 2f?8 species of which 7 if per  cent are subject to i n t e r l o c k e d g r a i n . recorded  spiral  In t r e e s on a l l c o n t i n e n t s  equator; i t i s recorded s t r u c t u r e s and  i n the  S p i r a l i s therefore  on both s i d e s of the  simplest  anatomical  the most complex of both c o n i f e r s and  hard-  woods . A r a t h e r more important aspect Vancouver i s the establishment s p i r . a l i t y w i t h i n the t r e e .  of a d e f i n i t e p a t t e r n  s p i r a l > and  decreases to the  of  With mature Douglas f i r , f o r  example, the g e n e r a l p a t t e r n i s to b u i l d left  of the work i n  to a maximum  as the t r e e becomes o l d e r the l e f t u n t i l i t becomes zero and  becomes a r i g h t  spiral.  age p a t t e r n and  i n d i v i d u a l t r e e s may  angle thence  T h i s , however,, i s only the  aver-  d e v i a t e markedly.  Nor  i s t h i s g e n e r a l p a t t e r n the only one.  for  example, the  W i t h red a l d e r ,  i n i t i a l s p i r a l i s r i g h t changing to. l e f t ,  again w i t h i n d i v i d u a l s d i f f e r i n g markedly from the norm. The  d i v e r s i f i c a t i o n of the  i n d i v i d u a l with the norm w i t h i n  a s p e c i e s , p a r t i c u l a r l y with regard s p i r a l , and  t o the  s e v e r i t y of  the d i f f e r e n c e s between the normal p a t t e r n s  of the species examined, leads to the view t h a t p a t t e r n i s a product of the i n d i v i d u a l t r e e .  spiral  13  N o r t h c o t t expresses t h i s view and i s w e l l s u b s t a n t i a t e d by the evidence of Champion ( 3 ) • Kennedy and E l l i o t t (Alnus r u b r a Bong.), the s p i r a l developed  (12), working  w i t h red a l d e r  showed a s t r o n g c o r r e l a t i o n between by the tree>  expressed as the Cumul-  a t i v e Absolute S p i r a l , ^ and the age of the t r e e .  This  i m p l i e s that the p o t e n t i a l s p i r a l of any i n d i v i d u a l w i t h i n a s p e c i e s depends upon the age of the i n d i v i d u a l . at a g i v e n merchantable  Hence  diameter, the t r e e which takes  l o n g e s t to r e a c h t h i s diameter i s l i a b l e to have the greatest p o t e n t i a l s p i r a l .  The i n f l u e n c e of s i t e  as  expressed by r a t e of growth t h e r e f o r e seems to have an e f f e c t on s p i r . a l i t y .  In the case of red a l d e r the f a s t e s t  r a t e of growth produces actual s p i r a l .  the l e a s t p o t e n t i a l and  Thus on the b e t t e r of two  the  least  s i t e s , at lj_0 years  / o of age there had  developed  a 1/2  R.  actual s p i r a l ,  which  represented a 6° Cumulative Absolute S p i r a l over a r a d i u s of 5>.5> Inches.  On the slower growing  a 6°L. a c t u a l s p i r a l had developed  site-,, at kO years  r e p r e s e n t i n g a 6-§-°  Cumulative Absolute S p i r a l over a r a d i u s of 9-5 I n a recent paper  inches.  on the " S i l v i c u l t u r a l I m p l i c a -  tions- of S p i r a l Grain- i n Pinus •longif.olla, i n South A f r i c a " , . Cumulative Absolute S p i r a l i s a method of e x p r e s s i n g the s p i r a l developed by the t r e e throughout I t s age, without regard to the d i r e c t i o n of s p i r a l . I t i s an a d d i t i v e function. 1  14  R a u l t and Marsh (19)  have shown t h a t here too the q u a l i t y  of the s i t e and the age of the t r e e are important f a c t o r s affecting spirality. i n g e n e r a l produced  In t h i s case the slower growing the l e a s t s p i r a l .  as though the e a r l i e r evidence that  sites  I t seems,- t h e r e f o r e ,  s i t e q u a l i t y has  little  influence, on the development of s p i r a l c h a r a c t e r i s t i c s i s contradicted. that  However, t h e r e i s s t i l l no e v i d e n c e to show .  such c h a r a c t e r s  as s o i l types, climate  any d i r e c t s i g n i f i c a n c e on .'.<:  spirality.  There have been many s p e c u l a t i o n s  cause of s p i r a l g r a i n f o r m a t i o n . the influence- of the wind. Champion (3)  conducted  Howard, quoted by Roa since- i t caused hemisphere,  and aspect have  Among the e a r l i e s t  In 190$,  the f i r s t (21),  as to the  Cooper, quoted  experiments, and  was. by 1932,  in  suggested the a c t i o n of wind  o v a l Crown f o r m a t i o n and, i n the n o r t h e r n  the e c c e n t r i c growth thereby induced would l e a d  to t w i s t from the l e f t  to the r i g h t .  The wind t h e o r y i s i n  f a c t supported by a c e r t a i n amount of c i r c u m s t a n t i a l  evidence-,  but i t has never been proved  safely  dismissed. ation.  Kohl (14)  Cambial  i n 1933  seems t o determine  follows  offered  c e l l s divide*\by  t a n g e n t i a l l y by an oblique  elongation,  c o n c l u s i v e l y and can be  an anatomical explan-  a r a d i a l c e l l plate  plate.  The oblique  cell  and wall  the p i t c h of the path the c e l l s take i n  which i s d i a g o n a l l y  around  the path of l e a s t r e s i s t a n c e .  the tree s i n c e  this,  Kohl concludes by  15  saying  the p i t c h of the d i v i s i o n of the  an i n h e r i t e d c h a r a c t e r  and  so the  c e l l w a l l might  s p i r a l i n the  be  parent  tree might very w e l l be r e f l e c t e d to- some degree i n the progeny. Kadambi ( l l ) , i n 195l>- showed a p a r a l l e l between i n t e r l o c k e d g r a i n and  s p i r a l g r a i n , and  demonstrated  the tendency to pronounced s p i r a l i s d e t e c t a b l e embryo. by the  C e r t a i n l y s p i r a l i t y can t w i s t i n g of the  trees, i n the  Haskins and  Moore- (7)  r a d i a t i o n and straightened  detected i n the  They exposed c i t r u s seedlings  The  t w i s t ; l a t e r the  explanation  offered  l o g i c a l character  The  i m p l i c a t i o n that  i s keenly evident  the p h y s i o l o g i c a l aspect was (16)  who  seedlings the  Cells leading  to  e f f e c t s of  the  t w i s t is; a p h y s i o -  here.  Other work on  done by McKinney and  demonstrated a p h o t o p e r i o d i c  to- X-ray  i s that  s p i r a l i t y . This abnormality ceased a f t e r the gone..  of  have shown that X-ray r a d i a t i o n might  r a d i a t i o n caused abnormal mitosis- of the  X-ray had  seedling  seedbeds becomes p r a c t i c a l .  induced a l e f t Out.  i n the  cotyledons-,, so that c u l l i n g  undesirable  induce s p i r a l i t y .  be  that  Sando  e f f e c t . Under  short  photoperiods c e r t a i n v a r i e t i e s of wheat showed both a r i g h t and  a left  twist.  The  conclusion  reached r e f l e c t s , upon  Current thought t h a t a g e n e t i c a l e f f e c t was ponsible*  "Granting that the  character  to i n h e r i t a b l e c h a r a c t e r i s t i c s , , the  the  e n t i r e l y res-  -of t w i s t i n g i s  e x p r e s s i o n of t h i s  due  c h a r a c t e r may reviewing  be- due  to environment".  world l i t e r a t u r e  Richens  (20,  on f o r e s t g e n e t i c s ,  concluded  that both environment and g e n e t i c f a c t o r s p l a y a r o l e i n determining the. t w i s t of t r e e s . There seems to be  little  doubt that  p l a y s an important r o l e i n the determination That h e r e d i t y p l a y s  the only r o l e may  heredity of  w e l l be  spirality.  doubted,  although no a u t h o r i t a t i v e statement can be made as to  the  d e f i n i t e demarcation of the c h a r a c t e r i s t i c s purported  to  p l a y t h e i r p a r t i n s p i r a l development.  in  I t i s the- way  Which the g e n e t i c a l r o l e is. enacted which must decide i t s ultimate- e f f e c t upon s p i r a l i t y .  I t i s known that  s p i r a l i t y of the p a r e n t s is, b r o a d l y geny, but  the  r e f l e c t e d i n the pro-  extreme- v a r i a t i o n found between t r e e s growing  on the same s i t e and presumably of l i m i t e d parentage shows that h e r e d i t y i s not  entirely responsible.  Certainly  s p i r a l i t y has not been i s o l a t e d i n any p l a n t to a given of genes or a given p a i r of homologous chromosomes.  set  Thus  the p u r e l y genotypic e f f e c t of h e r e d i t y must f o r the moment be discounted. present,  The  seems to, be  phenotypic e f f e c t , although i t must be so l o o s e l y bound to the environment  that the s o l u t i o n to. the- problem must be  sought in. seme-  b a s i c e n t i t y common to a l l p l a n t s e x h i b i t i n g s p i r a l i t y . Since the most i l l u m i n a t i n g trend that s p i r a l development can be  of thought seems to be  Influenced  by growth rate--,,  the p h y s i o l o g i c a l f a c t o r s concerned w i t h r e g u l a t i o n of  17 growth r a t e would  seem to p r o v i d e an encouraging l e a d .  The problem, however, has now r e s o l v e d i t s e l f i n t o one of such magnitude  that no s i n g l e group of r e s e a r c h workers  can hope to s o l v e I t . What s t a r t e d out as a problem f o r the  wood anatomist now  forestry.  encompasses the whole- f i e l d of  I f the problem i s worth s o l v i n g i t must be  approached from a l l angles and w i t h f u l l support between a l l groups i n the f i e l d  of . f o r e s t r y .  M a t e r i a l s and Methods.  The m a t e r i a l f o r t h i s study was- c o l l e c t e d  from  sample p l o t s on the U n i v e r s i t y Research F o r e s t at Haney, B r i t i s h Columbia, i n the Lower F r a s e r V a l l e y .  The fore-st  i s considered as t y p i c a l of the B r i t i s h Columbia  coastal  f o r e s t and i s predominantly a mixture of Douglas f i r , western hemlock and western red cedar. the  samples were taken i s even-aged,  i n the old-growth timber i n 1867. the 38),  The area from- which  the r e s u l t of a f i r e  Certain variations i n  ages do appear, as shown i n the d a t a sheets. .(Tables 3~ but f o r the purposes of p r a c t i c a l f o r e s t r y the area  i s considered  even-aged.  Three p l o t s were -c.hos.en>. with s i t e , i n d i c e s 110,  90,.  and li]-0,. which i s a common range of s i t e q u a l i t y on  18.  the area, and r e p r e s e n t s  a r a t h e r poor f o r e s t growth  ( S i t e V) through to a r a t h e r good f o r e s t growth ( S i t e III)„^ Two s p e c i e s , Douglas f i r and western hemlock, were sampled from each p l o t . two  The i n d i v i d u a l t r e e s were s e l e c t e d from  crown classes-, the Dominant-Codominant .class: and the  Intermediate  class.  Three i n d i v i d u a l s from each crown c l a s s  f o r each s p e c i e s were c o l l e c t e d . t r e e s , comprising per  18 from each s p e c i e s , 6 from each  species averaging The  site  3 from each crown c l a s s p e r s i t e .  t r e e s were f e l l e d  were taken a t the 4 l / 2 - f o o t 1.0-foot  T h i s gave- a t o t a l of 3 6  and cross' s e c t i o n a l d i s c s  (breast h e i g h t )  l e v e l , the  l e v e l , the 2 0 - f o o t l e v e l and at 2 0 - f o o t i n t e r v a l s '  t h e r e a f t e r to a 3 - i n c h diameter.  The method of measuring  the s p i r a l was t h a t adopted by Kennedy and E l l i o t t ( 1 2 ) , and  developed at the Vancouver Laboratory  of the F o r e s t  Products L a b o r a t o r i e s  of Canada.  The d i s c s were s p l i t  with a straight-edged  wedge along  a convenient  diameter  f r e e of knots or other d e f e c t s which might cause abnormal grain deviation. the  The s p l i t f o l l o w e d  the g r a i n and exposed  s p i r a l p a t t e r n , the o p e r a t i o n b e i n g  done while  s e c t i o n was i n the green c o n d i t i o n t o prevent due  to d i f f e r e n t i a l shrinkage.  the c r o s s  s p i r a l Changes  A c t u a l s p i r a l measurements  were made- at 1 0 - y e a r increments from the pith..  The i n c r e -  ments:-were- measured, on either- side- of-the- p i t h and an •  -- •  1 S i t e Q u a l i t y - - a s d e f i n e d from U n i t e d S t a t e s Department of A g r i c u l t u r e T e c h n i c a l B u l l e t i n No. 2 0 1 . . . "The Y i e l d of Douglas F i r i n the P a c i f i c Northwest." 1 9 4 9 . ' McArdle and Meyer.  average v a l u e f o r each decade was' c a l c u l a t e d .  The p i t h o f  each s e c t i o n was chosen as t h e r e f e r e n c e l i n e from' which the s p i r a l d e t e r m i n a t i o n s were made..  The measuring  ment was'a m o d i f i e d b e v e l p r o t r a c t o r ( P i g . 17) to w i t h i n l / 2 ° .  instru-  accurate  The k n i f e edge was. p l a c e d f i r m l y on t h e  p i t h and a t each decade the- angle o f the" g r a i n was measured by means .of t h e a d j u s t a b l e , p r o t r a c t o r , e i t h e r .as a r i g h t or a l e f t d e v i a t i o n f r o m t h e p i t h a x i s .  The r a d i u s f r o m  the p i t h t o .each S p i r a l measurement was ...also .annotated. 1  The  experimental design therefore incorporates  t h e e f f e c t on . s p i r a l o f age f r o m t h e p i t h , r a d i u s , crown c l a s s and. s i t e .  The p r i m a r y i n f l u e n c e s were t e s t e d i n an  a n a l y s i s of variance:, t h e e f f e c t of age and diameter on s p i r a l were g r a p h i c a l l y represented,, .and. r e g r e s s i o n analyses, were- made on these .curves (Figures' 3 t o lk) . G r a p h i c a l r e p r e s e n t a t i o n of t h e d a t a a r e not e a s i l y a n a l y s e d when t h e a c t u a l s p i r a l angles,,, which v a r y f r o m l e f t t o r i g h t w i t h i n a g i v e n c r o s s s e c t i o n , are- Used. Hence t h e concept  o f the a b s o l u t e s p i r a l angle was" used,  by which the d i r e c t i o n o f s p i r a l i t y i s i g n o r e d . 1  This i s  a v a l i d concept f r o m t h e p r a c t i c a l p o i n t of v i e w s i n c e o n l y t h e a b s o l u t e degree of s p i r a l i t y a f f e c t s properties.  timber  .Furthermore> t h e a b s o l u t e s p i r a l angle a t  any p o i n t was- p l o t t e d as t h e c u m u l a t i v e figure-, which r e p r e s e n t s the t o t a l number o f degrees through which t h e  s p i r a l had p r o g r e s s e d f r o m t h e p i t h .  T h i s also, r e p r e s e n t s  the p o t e n t i a l s p i r a l a t t a i n a b l e by t h e t r e e ;  F o r example,  i f a t r e e had a maximum I4. r i g h t s p i r a l a t .10 years,, 'and 0  changed s t e a d i l y t o .a- 5° l e f t  s p i r a l .at $0 y e a r s , t h e  c u m u l a t i v e a b s o l u t e s p i r a l angle would be 9 ° a t 5>0 y e a r s ; The  p o t e n t i a l s p i r a l f o r t h i s p a r t i c u l a r specimen would  a l s o be 9 ° 'at $0 years: d i s r e g a r d i n g s p i r a l change.  t h e d i r e c t i o n of the  The p r i n c i p l e of the cumulative' a b s o l u t e  angle was .used by Kennedy and E l l i o t t with red  ( 1 2 ) I n t h e i r work  alder.. A l l t r e e s were t a k e n f r o m Sample- P l o t s a t t h e  U n i v e r s i t y Research Forest.  T h i s was made p o s s i b l e  because o f severe damage due t o snow break* and .only snow-broken t r e e s were removed f o r measurement. The l i m i t s imposed by t h i s , method o f sampling a r e shown when comparisons of growth r a t e a r e made.  The b e s t r a t e ' o f growth i s  r e c o r d e d i n some P l o t I I trees., Site- Index 1 1 0 , and i n g e n e r a l P l o t I-, S i t e I n d e x ll+O-, shows as t h e second b e s t growth r a t e o f t h e t h r e e p l o t s .  Another f a c t o r  leading  to t h i s c o n d i t i o n  i s the; l a c k of Dominant t r e e s  for  The group d e s i g n a t e d as f a s t e s t growing  measurement.  are the Codominant-Dominant crown c l a s s .  available  Sufficient  evidence was -obtained t o i n d i c a t e r e a l d i f f e r e n c e s p l o t s I and I I , and p l o t I I I , - a l t h o u g h maximum perhaps have n o t been measured.  between  differences  21 Results: I.  General P a t t e r n The g e n e r a l p a t t e r n of s p i r a l i t y observed i n  Douglas, f i r and western hemlock i s presented  i n Tables 1  and 2.  The same- data are shown g r a p h i c a l l y i n F i g u r e s 1  and 2.  I t i s emphasized that these data r e p r e s e n t .only  .average values, c a l c u l a t e d  to the n e a r e s t l/k°.  A. great  d e a l .of v a r i a t i o n e x i s t s between i n d i v i d u a l t r e e s , as i s shown by r e f e r e n c e to Tables 3 38. -  C e r t a i n c o n c l u s i o n s can be drawn from average level,  data.  C o n s i d e r i n g the k l / 2 - f o o t  and the average  these  (breast h e i g h t )  f i g u r e s f o r both s p e c i e s on a l l p l o t s ,  the g e n e r a l t r e n d i s an i n c r e a s e , w i t h age, from .zero to: a: maximum l e f t  s p i r a l Which decreases  a t e l y r e t u r n s to zero.  The decrease  Increasing r i g h t s p i r a l . a left  spiral,  left,  i s .continued as an  Some t r e e s , however, never  to r i g h t and back again  e.g. P l o t 2,. t r e e F,-. Table 1-8-  i n i t i a l left  exhibit,  e.g.- P l o t 1, t r e e ,L, Table 12, whereas others  show a f l u c t u a t i n g s p i r a l from l e f t to  i n i n t e n s i t y and u l t i m -  Others  show, a h i g h  s p i r a l , which, although d e c r e a s i n g with  i n c r e a s i n g age, never a c t u a l l y a t t a i n s a r i g h t e.g.. P l o t 2, t r e e J , Table 19. develop an immediate r i g h t  Furthermore  spiral,  some, t r e e s  s p i r a l which continues  throughout  the . l i f e of the t r e e , e.i'g.Plot 1, t r e e J,.. Table lk. A l l  22 these  combinations of s p i r a l i t y show the v a r i a t i o n which  can be expected II.  around the general  trend.  The I n f l u e n c e of Height The  i n f l u e n c e of height i s i n g e n e r a l u n c e r t a i n .  T h i s i s i n p a r t due t o the f a c t t h a t the average a c t u a l s p i r a l .developed 2  •  was not very great and In no case- d i d I t exceed FP t o the 20-foot l e v e l , with both  species on  the three d i f f e r e n t areas:,- the s p i r a l tends to i n c r e a s e with height. and  T h i s confirms, p r e v i o u s observations made by Smythi.es  quoted by Troupe (23)  d i c t o r y to the evidence concerning  on Pinus  presented  longifoiia.  I t i s contra-  by Kennedy and E l l i o t t  red alder,, where the s p i r a l decreased  with h e i g h t .  In Tables I and 2 are shown the average v a l u e s f o r each species on each area.  Whereas a g e n e r a l trend i s i n d i c a t e d ,  there i s no s i g n i f i c a n t c o n c l u s i o n to. be drawn from the i n f l u e n c e of h e i g h t on s p i r a l development. III.  The I n f l u e n c e of Age and Radius Between S i t e s In F i g u r e s 3,"*" 1 > and. 1 1 are shown the e f f e c t  Douglas f i r of age on. s p i r a l development expressed cumulative  absolute s p i r a l at the B.H. l e v e l .  with  as, the  The.average  l i n e s ' l i n n f i g u r e s - 7 ahd^iib ; are c u r v i l i n e a r , , and show, t h a t c  the s p i r a l angle changes most r a p i d l y i n youth and to a; l e s s e r degree.- t h e r e a f t e r . absolute- s p i r a l s  At comparable ages the cumulative*,  on the three p l o t s are somewhat v a r i a b l e .  F i g u r e 3 shows an almost s t r a i g h t l i n e  relationship.  .23 P l o t s .1. and 2, t h e b e t t e r s i t e s , showed a v e r y c l o s e r e l a t i o n s h i p ; P l o t 3. the p o o r e s t , always showed a h i g h e r s p i r a l angle.  Thus a t $0 y e a r s P l o t 1 shows a. c u m u l a t i v e  a b s o l u t e s p i r a l o f k l/k°, P l o t 2 of k l/k°, P l o t 3 of  7 1A°. Because s p i r a l angle changes, w i t h age from the p i t h I t must a l s o change w i t h d i s t a n c e f r o m the p i t h .  Figures  k, 8-, and 12 i n d i c a t e t h i s change when c u m u l a t i v e  absolute  s p i r a l i s plotted against radius.  Again there i s a close  s i m i l a r i t y between P l o t s 1 and 2, which a r e markedly d i f f e r e n t f r o m P l o t 3«  Thus a t a k.0-inch  radius Plot 3  shows ,a .cumulative a b s o l u t e s p i r a l of 7 l/k°, whereas the c o r r e s p o n d i n g s p i r a l s f o r P l o t s 1 and 2 a r e 3 3/k° and li° respectively.  Some e x p l a n a t i o n pf t h i s d i s s i m i l a r i t y i s  i n d i c a t e d i n F i g u r e 1$ which shows t h e r e l a t i o n s h i p between r a d i u s and age f o r the Douglas f i r of a i l t h r e e p l o t s .  At  $0 y e a r s o f age, t h e average r a d i u s of P l o t 3 i s 3-1 i n c h e s , whereas the average P l o t 2 t r e e has a r a d i u s of k.Z inches and an .average .Plot 1 tree. k.$ i n c h e s . T h e r e f o r e , because o f t h e c o i n c i d e n c e o f t h e r e l a t i v e growth r a t e s of the f i r on P l o t s 1 and. 2,  the same r e l a t i v e  spiral,  expressed as c u m u l a t i v e a b s o l u t e s p i r a l , i s developed. S i n c e the g r e a t e s t .change I n s p i r a l occurs on P l o t 3> I t f o l l o w s t h a t the. slower growth r a t e produces the g r e a t e r change I n s p i r a l angle-.  24 A s i m i l a r c o n d i t i o n e x i s t s with hemlock,- where again the g r e a t e s t change i n s p i r a l occurs on the poorer The e f f e c t i s not so w e l l marked as i n the f i r  1  site.  because  the d i f f e r e n c e s .between 'the three p l o t s are not .as- w e l l defined;  13,-  Thus F i g u r e s %  and- 9 i n d i c a t e t h a t at  50  ye.ars the cumulative absolute s p i r a l developed f o r .Plots 2,  and 3 are $ l/k°,  5 3/4°,  and 6 l/2°  The  corresponding r a d i i at 5>0 years  3-8  inches and 3-4  inches.  respectively.  ( F i g . 16)  are 4-7  ( F i g . 16).  radius. P l o t 2 shows a cumulative P l o t 3' of 7°  and P l o t  from  that at a g i v e n  r a d i u s P l o t s .2 and 3 w i l l d i f f e r from P l o t 1.  o f 6 1/2°,  Age-  From the i n f o r m a t i o n c i t e d  the Douglas f i r i t i s to be expected  4.0-inch  inches,  In t h i s case ..Plots- I I and I I I  show the c l o s e s t resemblance to each other on the Radius graph  1 of  At a  absolute  spiral  5 . 9  I t i s evident that both age and r a d i u s have c o n s i d erable i n f l u e n c e upon s p i r a l development i n both Douglas f i r and western hemlock. v a r i a n c e , Tables 1+1  .In the g e n e r a l analysis; of  and 1\Z, age has  a highly significant  e f f e c t upon s p i r a l f o r both s p e c i e s . With a more complete s t a t i s t i c a l analysis^  shown i n Tables 39  and 40>  the  simple c o r r e l a t i o n c o e f f i c i e n t s f o r age. and f o r r a d i u s are s i g n i f i c a n t i n a l l cases.  1,  25 IV.  The I n f l u e n c e of Age and R a d i u s W i t h i n S i t e s The f o r e g o i n g r e s u l t s i n d i c a t e t h a t where a  considerable difference  i n growth r a t e occurs between  s i t e s , then the d i f f e r e n c e  i n s p i r a l development may be  a t t r i b u t e d t o s i t e f a c t o r s c o n t r o l l i n g growth r a t e .  The  problem remains as t o which i s the more Important f a c t o r g o v e r n i n g the s p i r a l , - age o r r a d i u s ?  The d a t a , at t h e b r e a s t  h e i g h t l e v e l were s u b j e c t e d t o a s t a t i s t i c a l a n a l y s i s t o determine t h e r e l a t i v e importance o f age and r a d i u s cumulative absolute s p i r a l .  on  The- c o r r e l a t i o n c o e f f i c i e n t s  are shown i n T a b l e s 39 „an.d Ij-Q.'  The r e s u l t s may be sum-  m a r i s e d as f o l l o w s : (1)  A l l zero-order or simple -correlation c o e f f i c i e n t s were h i g h l y s i g n i f i c a n t .  Age and a l l o t h e r  factors l i n e a r l y associated correlated  w i t h i t were h i g h l y  w i t h s p i r a l i t y f o r b o t h s p e c i e s and  on a l l s i t e s .  R a d i u s was s t r o n g l y  correlated  w i t h s p i r a l i t y f o r b o t h s p e c i e s and on a l l s i t e s . The weakest c o r r e l a t i o n , , w h i c h was w i t h and "r"  spiral  r a d i u s f o r Douglas f i r on P l o t I I I , had a n ;  of 0.394 which was w e l l w i t h i n t h e l i m i t s  of a c c e p t a b i l i t y a t the 5 p e r cent l e v e l o f significance. (2)  The r e l a t i v e importance of r a d i u s  and age on  c u m u l a t i v e a b s o l u t e s p i r a l angle .can be- seen  26  by comparing p a r t i a l c o r r e l a t i o n c o e f f i c i e n t s " . . F o r f i r the e f f e c t of r a d i u s on s p i r a l , age h e l d c o n s t a n t ,  with  i s s m a l l f o r P l o t s 3 and 2.  However- f o r P l o t 1 the e f f e c t of r a d i u s i s h i g h l y s i g n i f i c a n t , , b u t when r a d i u s i s h e l d constant  t h e e f f e c t of age i s s m a l l .  In this  case r a d i u s seems t o have t h e s t r o n g e s t on s p i r a l i t y .  effect  I n P l o t I I the e f f e c t of r a d i u s  i s s t r o n g e r than t h e e f f e c t o f age. where the simple  I n P l o t 3,  c o r r e l a t i o n of s p i r a l a g a i n s t  r a d i u s i s lower than t h a t of s p i r a l a g a i n s t age,, the e f f e c t of age shows a s t r o n g e r i n f l u e n c e on spirality.  T h i s i s a l s o e v i d e n t i n the h i g h  p a r t i a l c o r r e l a t i o n c o e f f i c i e n t of s p i r a l and age a g a i n s t r a d i u s . As f a r as hemlock i s concerned t h e p a r t i a l c o r r e l a t i o n c o e f f i c i e n t s i n d i c a t e the- s t r o n g e r i n f l u e n c e of r a d i u s on c u m u l a t i v e on a l l p l o t s .  absolute- s p i r a l  On P l o t 3,- the: i n f l u e n c e o f age-  equals t h a t of r a d i u s , as shown by t h e p a r t i a l •correlation c o e f f i c i e n t s .  The simple  coefficients  i n d i c a t e the s t r o n g e r i n f l u e n c e of age p a r t i c u l a r l y on P l o t 3.  The i n d i c a t i o n i s t h a t on t h e  slower growing s i t e ( P l o t 3), age has t h e p r e dominant i n f l u e n c e on the change in. s p i r a l a n g l e .  On the fas.ter growing s i t e s ( P l o t s 1 and 2 ) , the i n f l u e n c e - of r a d i u s ' i s i n c r e a s e d t o p r e dominate over the i n f l u e n c e of age.  Both  f a c t o r s have a h i g h l y s i g n i f i c a n t e f f e c t the c u m u l a t i v e V.  absolute  on  spiral.  The' I n f l u e n c e of Crown C l a s s I n Tables .1+1 and l\Z i s shown an a n a l y s i s of  v a r i a n c e f o r the whole experiment. i s e v i d e n t t h a t crown c l a s s has  the l e a s t e f f e c t on  development of s p i r a l c h a r a c t e r s . significance with f i r . d a t a sheets  Prom these t a b l e s i t  The e f f e c t has  V i s u a l examination  the  no  o f the b a s i c  (Tables 3-3-8) w i l l c o n f i r m t h a t w i t h i n a.  g i v e n s i t e , and w i t h i n one- s p e c i e s * a d i v i s i o n i n t o crown C l a s s e s i s of l e s s importance t h a n other f a c t o r s . VI.  The  I n f l u e n c e of S i t e  D i f f e r e n c e s i n the s p i r a l c h a r a c t e r i s t i c s o f the two s p e c i e s on the t h r e e p l o t s have a l r e a d y been d i s cussed.  The  s i t e d i f f e r e n c e s are most marked w i t h Douglas  f i r , - and f r o m the a n a l y s i s , of v a r i a n c e (Table lj.1) the e f f e c t of s i t e i s - shown to be. h i g h l y s i g n i f i c a n t . .  On  the same t h r e e p l o t s , where, d i f f e r e n c e s i n the growth r a t e .of w e s t e r n hemlock are not w e l l d e f i n e d , the  differ-  ences t h a t e x i s t do not show as h i g h a s i g n i f i c a n c e :  they do w i t h f i r (Table 1+2) . under t e s t I s the c u m u l a t i v e  I n b o t h cases  the  as  effect  a b s o l u t e s p i r a l : * which i s .  28 a measure of the change i n s p i r a l a n g l e .  F i g u r e s 1 and  .2 show the average a c t u a l s p i r a l s developed by each s p e c i e s on .each p l o t .  The s i t e of slowest growth i n  each case shows the s t r o n g e s t i n i t i a l , s p i r a l and the g r e a t e s t subsequent s p i r a l change. initial  development, The  weakest  development, and. the l e a s t change i n s p i r a l angle,,  i s a c h a r a c t e r i s t i c of the sit'e where growth, i s f a s t e s t . S p i r a l change .on the b e t t e r of t h e t h r e e s i t e s samples i s governed t o a l a r g e e x t e n t by radius,- so t h a t r a p i d i n c r e a s e i n r a d i u s may  tend t o r e s u l t i n an i n c r e a s e i n  spirality.  .Conclusions  1.  There I s a g e n e r a l p a t t e r n of s p i r a l  development  i n b o t h Douglas f i r .and western hemlock on the three s i t e s studied. f o r m of an i n i t i a l  T h i s p a t t e r n t a k e s the  l e f t s p i r a l which,- w i t h  i n c r e a s i n g age and r a d i u s , d e c r e a s e s t o the .left,; passes t h r o u g h zero,- and becomes a r i g h t .spiral-. 2.  I n d i v i d u a l t r e e s of t h e same s p e c i e s and on t h e same s i t e , although, c o n t r i b u t i n g t o the: g e n e r a l pattern, v a r y considerably In t h e i r Spiral  development.-  individual  29  3.  The h i g h e s t average- a c t u a l s p i r a l s on the- p o o r e s t s i t e s .  a r e measured  The g r e a t e s t change i n  s p i r a l angle o c c u r s under thes.e ..conditions, so t h a t i n a g e n e r a l way the s l o w e s t growing t r e e s e x h i b i t t h e g r e a t e s t amount of s p i r a l  develop-  ment i [(..  On t h e slower growing  sites  the change i n s p i r a l  Is h i g h l y c o r r e l a t e d w i t h t h e age o f the t r e e . On s i t e s  of h i g h e r q u a l i t y , , a l t h o u g h age i s  c o r r e l a t e d highly,, radius exerts the strongest i n f l u e n c e on s p i r a l i t y .  30  EXPLANATION OF SYMBOLS USED IN THE FOLLOWING TABLES Tables 3 to 38. i n c l u s i v e  Sec  - H e i g h t , i n f e e t , of the c r o s s s e c t i o n a l  disc  taken from the t r e e . 2 Act  - A c t u a l average s p i r a l angle, i n degrees.  .3  ,  .  C.A..S.  — Cumulative absolute s p i r a l angle,-, i n degrees.  Had  - Radius from the pith,., i n inches...  Age-  •- Age from the pith,, i n years-.  There- are t h r e e crown c l a s s i f i c a t i o n s used i n Table s 3 - 38: Dom.  -  Dominant  Codom.  -  Godominant  Inter.  -  Intermediate  31 TABLE. 1. TABLE OP AVERAGE ANGLES (to. t h e n e a r e s t l/k°) AT EACH DECADE DOUGLAS F I R  Plot 1  H e i g h t of • section" i n tree ( f t . ) k  1/2L 1 l/kL 1 1/2L 1 1/kL 2. l/l+L  1/2  1 1 1 1  10 .20 60  k  10 20  kO 60  Plot  3  k  10  1/2  ho  Plot 2  Age. (years)  1/2  10 20  ho  20  • 30  l/kL 3 AXIL. 0 2 l / k L 1 1/kL 1 1/2L 1 1/2L 2 l/l\L. 1 3 A L  .' ko. 0 3A-R IL 1 1/2L. 1 3A-L  .60  1R 3/kR 1/2L 1/2L  1/2L 1 l/kL IL 1/2L  1/2L 1/2L 0  1/2R  2L IL 1/2L. 3AL 1 3/kL 1 3/kL 1 3/kE 2L 1 1/kL 1. l/ii-L .1. 1/2L • L. 1/1|L  lAR  3AR  IL  1/2L IAL  0 l/kL. IL 1/2L IL 3/kL 3/i|L 1 1/2L  3AL  2R 1 l/kR 2R  1R  1R  0  0  1R 0  ,60.  TABLE 2. .WESTERN HEMLOCK  Plot 1  H e i g h t of .s.ect.ion. .intree ( f t . ) k  1/2  10 20  kO Plot 2  60  k 1/2  10 20  kO 60  10'  20  JO.  IL IL IL 1 1/2L 1/2L  3/kL 0 3/kL 1/2R  3/kL 3/kL  3/1+R  0 3/kL 1/2R 0 1R  2L 2 1/2L 2 l A L 1 3AL  1/kL 1 1/2L 3A-L 0  1/2L IL 1/kR 0  1 3/i+L. 1 1/kL 1 3/kL 2 3/kL 2L IL , I L - •.. 0 .  1/2L 3/kL 0 L/kR,  6'0  i/m  03/kL. 1/2L 1/2R  3/kR 1 1/2L. 1/kL 1/2R  1/2R 1/2L 1 1/kR 0  1/2R 1/2R 1R  1 1/kR 1/2R  3/kR 1/2R  1 3/kR 1/2R 1/2R  1 1/2R  Plot  3  k 1/2  10 20  ho . 60  ,  0  32  TABLE 3 Plot Sec  1  1  Tree C Act  2  1L  1/2L 1/2R  i/2«  4  1/2R  1 0  1/2L  1  10 '  1/2R 2 l/lfR 2 1/2R  C.A.S. 1  1 1/2 .2 1/2  7 1/2  3  Rad^ Age 1 4  2.6 3-5 3.9 4-3 4-7 5.0 5.2 1.8 2.9 3.6 4.1  2  1  ACt  3/4.L  1/2L 1/2L  1  10 20 30  1  1/2L  3/4'L  kO  1/4L  IR  2L  2.0 3.7  30  1/2L,  5.0 5.3  3.2  20  1/2R  4.1  40  IR  ,  4.4  50  1 2  1/2R  if. 7  60  If . 9  6,8  1  1/2R 3/4R 1/2R 1/2L 1/2L.  .if.2 kO  V4R  .4.4  1/41. ...  1.7  2.1  3,3 3.8  2  1  L  V2L  G 1  R  3.0 3.3 3.7 4.0  Dom F i r  C.A.S.  1 2  3/4'  3/4L •2 3/4 40. 1 I/4L 3 1/4 50 60 4 1/2' 1/2R 4 , 70 1 1./4R' $ 3/4 2.3/4R- 7 1/4 80  4.8  IR  0  10 20 30  Sec'  Tree: D  3 1/4R 4 i/4R 5R  20'  6  Plot 1  5.0 10 •»• 2 R 60 2 1/2R 70 2 I/J4R 74 1 3/4L 10: 2L  1 1/4L.  40  Inter F i r  2R 4 2 3 / 4 * 4 3/4 3 3/4R $ 3/4 5 1/2R 7 1/2  5  TABLE 4  10. 20 30  l/ifL  20. '  ifO I  $0  40 50  2R  0.9 1.7 3.0 3-7 4.2  40 50  1.8. 2.8 3.5 3.9 4.2  40 50-  4-5 4-9 5.2  1  1.8 2.8  10 20  3.4  40 i f . l 50  3/4L  1.7 2.6  .2 3/4L 3L 1 3/4L 1L . 1/i+R  30  3.8  2  1/2R  60 70 78 10 20. 30.  4-7  if.5  1/2.L  10 20 3.0  60 68.  k.$  1/2R  3/4R  60'  Rad^ Age  2  2L 1L  58  10 20 30  IR  3  . 61  10 20 3 . 2 30  3.5 3;9  40 50 l f . 0 53  2,1 2.6  10 20 30  3.1  1^8.  1.4  2.9  40  33-  TABLE 6.  TABLE: 5 P l o t 1. Sec  x  Tree. E  Act 0  4 1/2* IR  1/2R  2R kR  10  IAL  1 1/2R 0  2L  3L  20  1  1 3/i+L  2L  1/2L: 1/2L 1/2L.  ho 1  60  1  l/lflx  1L 1 1/2L 2L  1.0  l/4 1/2  2  3  5 1/2R  0,  C.A.S 3 Radk Age 0  1/1+L  .Plot 1  Dom F i r -  1/2 1/2  2.1  2.9  3.6 k.3  5.o  Sec  1  1.0 20 30  kO  5o 58  Tree H 2 Act 1 1/2L.  3/kL  4  1/2'  1/2L  0  1/2R 3/kR 1 l/kR  1.1  10  0.  2.1  20  1 1  2.9  30  .10.  '  ko 5o  1 1  h-7  55  2L  l.k 2.5  10 20  3-L  3.3  30  k.O  k.6  '  ho  1.4  10  2.5  20  3.3 3-8  30 38  1.2  10  2.k  20  2.8  26  6.0 ,»  1/k  2  1/2  1/2  3 3 1/2 3 3/4 k  l/k  1.5  2 . 8 3.8  10 20 30  k.3  kO  4-5  5o 60  k.6 k.8  65  2.0  10  3.5 4.0  20  4.3 4 , 5 4.6-  30 40. 50  55  2,0  10  3.5 4.0  20 30  1/hL. 3 1/2L 3 1/2L  4-4 4.6  40 5o.  4.7  52  3L . 3 1/2L 3 1/kL 3 1/kL 3L  2.1  10  3.1  .20  3.9 4 . 1  40  kL  1.8  10  2.5 3.0  20  3 IAL;  3  kO '  1 2  3/4L  2 20  C.A.S.3 Rad k Age  1/2L, 1/2L 3/kL 3/kL;  3.6 k.k  .Oodom F i r  5 5  1/kL 1/kL.  6L.  3.6  3.3  30 48.  30 40  3i+  TABLE 8  TABLE 7 .Plot 1 Sec.  Tree F  C.A.S.. Act 1/2 1/2R 3AL  0.  k 1/2'  20  0  2 1/2R 4 1/2R 5 1/2R 1/2R 1L IR 1 1/2R 2R 2 1/2R 3R  10  !  1 1/2L ,2L 3AL 3AL  IR  2R  kO '  2 1/2L 1 3/kL  1 2 2  7 8  3 A 1/2 1/2  Rad. 1.5 3.1  k.O  5,1  54 5.7  2;0 3 k.3  4  4-7 5.1  5.5 5.7 2.3  3.5 4.0  4.5 4.8 5.o  Plot Age 10 20 30  40  5o.  10 20 30. 40 5o 60 66 10 20 30 40  4-'2  2 l/kL  4.6  3AL  '  IR  3/4R  44 1.83.3  3.5 3.9  4.2  4  1/21  Tree B Ac:.t l/kR 2L  -1/4L 3/4L  1 1  0 5  3 3  1/2  Rad.  Age.  1.2 2.3  3.5  10 20  4-2  30 kO  1.9  1  1/kL 3AL  1 1/4L  '  1/4 2 i/4  i/4L  1L.  20  ). A. S.  5 1/4 4.7 5 3/4 5,i  2L 10 , '  Inter F i r  1/2L  1 1/2L 1 3/4L 1 3/4L 1 3/4L  2L  3,0 3- 7  4.6  40 50 58  4.0 4- 3 2.0 2.9 3,6  4.0  1 1/4L 2 1/2L 2 3/kL  50 58  2 1  I/4L  1.8 2.8 3-2  3.5  10 20  1 1 2 2  1/kL  30  ko  5o  4o  6.0 «  3/4L  1/2L 1/kL  3/4L  50 60  1.0 20 30  44  60.  IAR. 1/2R  Sec.  5o 10 20 30.  3 A L  1  6.0 70  2.1 3,2 3.7  lAL  60  Inter F i r  10 20 30 k0. 50  3.9  10 20 30 40 48  1.3 2.1 2.7 3.2  10 20 30 40  3:5  TABLE 1 0  TABLE 9 Plot 1  Dom Hemlock  Tree K  C.A.S. Act 1 3 A L ^ 1 3/kL1 3/4 2 1/2L 2 1/2 1 / 2 ' 3L 2 3 A L 3 3 1 A 3L ! 1  4  1/2 10.0 3/kL 3k 1/k  0  1.9 3.8 5.2 5.9 6.6 7.5 8.1  1/2L  2  ,1  40  '  1/2L  2L 2L 1 2  20  1/4L 1/2L  4 1/2 10.6  Age 10 20 30 40 5o 60 70 75  ko ^o 10 20 30 40 5o 60 68  1/2L 1 3/4L .2 1/2L. 2 1/2L  2.5 4.1 5.2 6.0 6.8 7 4  10 20 30 4o 5o 60  2.1 3.6 4.6. 5.5 6.2 6.5  10 20 30 40 5o 54  0  GLIAL, 1/2L  3AR  1  3/kR  1 3/kR  Tree A r  Act .2L 1 1/2L 1/2R 4 1/2'- 1 3/kR 3/4R 1/4R  1 3/kR 1/2L 1/2R 10 «  60 70  2.3 4-3 5.2 5.9 6.6 7.0 7.5  1  Sec  10 20 30  '1/2R. 1 1/2L 2 1/2L 2 1/2L 2 1/4L 2L 1 3/4L  IL;  601  1.6 3.7 5-4 7.0 8.3 9.1  3 3  2L 10  3  Rad.  Plot  1R 2R. 2 1/2R 4 1/2R 5.R. 3L  20  3/4L  lAR  '  V4R  3/kR 3R  1 1/2L 0 40  j-  1/2R 1/2R  3/kR  60 X  1 1/2L 1/2R 1 3/kR 2. 1/2R-  Codom Hemlock  C ..A.S. Rad. 2 0: 6 2 3  1/2" 1/2:  5 6 7  3/4 1/4 3/4  4 3/4  1..6.  2.5  Age 10 20 30  3.3  k.O  5o 60 70  0.7 i .4 2.3 3.0 3.5 4.2  10 2.0 30 ko 5o 6.0 68  k.5 5.Q  4-5  2.2 3.0 3.5 4-1  10 20 30 4o 5o 60  1.3 2.2 3.0 3.6. 4.0  10 20 30 40 48.  1.0 .2.0 •2.9 3.1  10 20. 30 36  1.1  36  TABLE 12  TABLE 11 Plot 1  Tree I  Codom Hemlock  Act 3..A.S. 2 1/2L 2 1/2 .2 3/kL 2 3 / 4 1 1/kL 4 i / k k 1/21 5 3/k 1 1/2R 2 8. 1 / k 8 3/k 3 1/kR Sec  3/m  IL. •o.  10 *•  20 <  ho  60»  Rad. l.k .2.0 2.6 3.0 3.6, 4-3 4-9  1.3 1.7 2.k 3.1 3.8  Age 10 20 30 kO 50  60 70 10 20 30 40 5o 60 6.6  1 1/2R 2 1/kR 3R 3 1/kR kR  4.5  1 1/kL 1/2R 1R 1 1/kR 2 3/kR 3R  1.1 1.8 .2.1 2.6 3.1 3.5  10 20 30 40 5o 61  0 1/2R 1 1/2R 2R 2R  1.2 1.7 2.0 .2.4 .2.8  lo20 30 ko 5o  0 2R 2 3/kR 3 1/2R  1.1 1.7 2.0 2.5  10 20 30 4o  k.l  Tree L  Plot 1 Sec  I n t e r Hemlock  C.A.S. Act .0 0, 1R 1 3R 3 4 i / 2 « 2R 4 1 1/2R 4 1/2 3 1/2R 6 1/2 3 3/kR 6 3/k kR 7 3L 10  i  1/2R 3 3/kR 1R 1 1/2R 2 1/kR 2 1/4R, 0  20  !  IL. IL  1 1/2L 1 1/2L 1 1/2L 5L  40 »  60  '  IL.  0  1/2L 1/2R  0 1 1/2R 1 3/kR 3R  Rad 1.0 l.k 2.6 3.2 3.7 3.9 k.2 4-5  1.0 .2.0 2.9  3.4 3.7  4.1  44  1.2 .2.0  3.4 3 9 4-2 ?  4.4  Age 10 20 30 ko 50  60 7Q 78 10 20 30 kO 5o 60 65 10 20 30 ko 5o 56  1.5 2.5 3.3 3.6 3.8  10 20 30 kO 5o  1.1 2.0  10 20 30 35  2.5 .2.8.  37  •TABLE 13 Plot  1  Tree  Sec.  k  Rad. 1.1 1.8 2.5 3.1 3.6  Age  4.0 4.3  60 70  1/2R 1/2R l/2R 1/2R  1.2 2.1 2.8  3/kR  kO  I n t e r Hemlock  Act. C.A.S. 1/2 1/2L 1 1/2 1 1/2L 2 1/2 1/2L 1/2-1 1 3 / k L 3 3 A 2L 4 , 2 1 / 2 L 4 1/2 5 2L  10 «  20  G  TABLE  '  3.4  10 20  Plot  5o  Tree J  4  10 20  1  l/kL  1/4L  1/4L  30  40 5o  1/4L  10 »  4-1 -4-3  60 68  3/4R 1 1/2R 1/1/2R  1.3 2.0 2- 7 3.2  10 .20  1 3 A L  3.9  1/2L 1/2L. 1/2L 1/2L 1 1/kL 1 1/2L 1L. 1L 1L.  3- 4 3.7  5o  4.1  1 1/2L 1L 1/2L 0 0 1/2R  1.1 1.8 2.3 2.7 3.0. 3.2  10 20  .20 «•  60 65  30.  ko  5o 52  ' 1 1  Age 10 .20 30 4o 5o 60 65  l.l 2.2 3.1 3.9 4-5  5.o  10 20 30 .40 5o 60  5.2  62  1.5 2.7 3.6 4-5 4-9  1/2R 1/2R 1/2R 1/2R  1.3 2.6 3.0 3.5 4.0  10 20 30 4o 46  1.2 2.3 3.0  10 20 30 36  4.2  0  60  Rad. 0.9 1.8. 3.0 k.2 5.0 5.6 5.8  1/kR  1L 0  40  Hemlock  10 20 30 40 5o 56  3/4L 1/4L  30  ko.  Inter  C.A.S. Act. 0 0 i 3/4R 1 3/4 1/2R 3 1/2' 3/4R 3 1/4 2R 4 1/2 3 1/4R 5. 3 / 4 5R 7 1/2  Sec.  30  ko  1  lk  3 A L 3/4R l/kR 1/kR  3.4  38  TABLE 16  TABLE l 5 Plot 2  Tree D Act  Sec  3L  .C.A.S.  3/kL  0 k l/2=«  1/2L 1R 0  r  10  r  1/2R  2L 1 .2 3/4L 2 1/2L,  3L .  2 3/kL  20 •»•  0 1 1/kR 1 1/kR 3/kR 3/kR  6 0 •«  3 5  1/k 6 6 1/2 8 9 9 1/2  Rad 2.3 3.0 3.9 4-3  4-7  Age  10 .20 30  40  5.0  5o 60  5.1  63  2.0 3.0 3.6 k.O k.3  10 20 30  4-5  .6  •7  3.0  3.7  ko 5o 58  10 20 30 kO  4.2  5o  2L 1 1/kL 1/kL  1.7 2.7 3.3 3.7  10 20 30  1 1/kL 1 1/kL 2L  2.3  3 1/kL ho  Plot 2  Dom F i r  1.5  2.8.  40  10 20 28  Tree E.  Dom F i r  C.A.S. Rad Act 2.0 3/4L 3/4 3.3 1 IL. 1/2L 1 1/2 k . 3 2 1/2- 5.2 4 1/2' 1/2R 2 1/2 5.8 l/2R 2 1/2 6 . 5 1/2R S.ec  1.0. •  2L 1 1/4L 1 3/4L 2 1/2L. 2 3/4L 2 1/2L.  20 »  60 10 20 30  ko  5.9  5.6  5o 55  3/4L. 3/4L 3/4L:  .2.0 3.2  .4.2  20  30  5.o  ko  3/4L  5.6  5o  1,9 3.0 3.9  10 20  1/2L  3 1/4L  3L  60 «  4.2  5o  5.o  .2 l / 2 L 4o  2.1 3.3  Age 10 20 30 kO  10  30  2L 1 1/2L  4-6 4.9  40 45  1 1/2L .2 1/4L 2 1/2L 2 3/4L  1.6 2.8 3.6 3.8.  10 20 30 34  39  TABLE 1 8 .  TABLE 1 7 Plot 2  Act  Sec  4  Tree I  1/2  i  0 1 2 2 2 1  2L 1 1/kL 1L 10.  '  0 0  1/2R 2 1/2L 1 1/kL 20  «  IAL  1 1/2R 1 3/kR  kO  C-.A.S. 0  3/kR 1/2R 1/2R 1/2R 3/kR  1 IAL3/kL  1/4L  1/kL  Plot 2  Dom P I r  1  3/4  2 2 2 3  1/2 1/2 1/2  1/k  Rad  Age  1.3 2.0  10  2.5  3.1 3.5  5o  4.0  58  4  1 / 2 '  1L  33/4R /4L  1.4  10.  2.1 2.7 3.2 3.6  20  5o  1  4.0  55  2R  1.2 .2.1 2.8 3-2 3.9  10  1  20 30 40 48  1.4  10  2.2 .2.8 3.1  20  30 36  3  1  20  T  '  40  30  5 6.  i / 4 3 / 4  5.2  58  1.9 2.9  20  3.4  30  3.9  4o 50  1/2R 1/2R  4.2 4-5  1/2L  1/4L  5o  io-  54  1.8  10  2.7  20  2L.  3.3  30  1  3.6  4o 5o  3 / 4  3/4L  4-2 1.4  10  2.6  20  1L.  3.3  1  30  4-3  40  4 . 5  42  1  60  20  3-4 4-2 4.6.  1/2R 1/2L 40  10  2.9  i / 4  1/kR '  Age  4 5  i/4R  10  Rad 1.7"  1/2L  30  kO  1  1/4L  30  Dom F i r  C.A.S.  Act 1L IR  Sec  20  kO  Tree P  1 1  1/2L 1/2L  3/4L. 3/4L.  1.5  10  2.6  20  4o  TABLE 19 P l o t .2  Tree J  TABLE 20  C .A.S. Rad Act 1 1/kL. 1 1 A 1.3 .2.0 1/2L. 2 k l/2« 1/2L 2 2.5 1/2L 2 2.7 3/kL 2 i A 2.9 Sec.  :  3/kL  3L  io  1 l/kL 1 1/2L.  t  0  1 1/kR 1 1/kR .2 1/2L  20 «  1  3/kL 1/2L 1/kR  3/kR 2L ko  1/2E. 1R 2 1/2R  Plot 2  Inter F i r  2 iA  3.1 l.k 2.2  2.6 2.8  Age 10 20  30  ko  5o  60  30  2.9  5o 56  1.5 2.1 2.5 3.0 3.1  10 20 30  3.1  1.2 1.8 2.2 2.6  Act 1 1/kL 1/2L k 1/2« 1 1/kR 2R 2 1/2R Sec  3R  10 20  ko  kO  io r  20 .»•  10 20  kO 1  Inter F i r .A..S. Rad  1 A 1.5 2.1 2.3 ^ 1/2 3.2 3-7 5 1/2 3.9  1/2R 1 1/2R 2R  1.3 1.7 2.3 2.83.3  1 1/2L 1/2L 1R 2 1/2R  1.1 1.5 1.9 2.3 2-4  0  k6  30 38  Tree C  3/kL  2 1/2E. 1 1/2L. 1AL 1/2R  1.3  1.6 2.1 2.6  Age  10 20 30 kO  5o 56  10 .20  30  ko  5o 10 20  30  40 42  10 20  30  4o  41  TABLE .21 Plot 2 Sec  Tree K  1/2'  C-.A.S. Rad  1 3/kL  1 3/k  1/2R  2 3/kR  kR 3R 0.  1L.  10.  0 0.  •  2L ' 1/2L 3 1/kR 1 I/2R 1 I/2R: .2 3/kL  ko  3/kL  1/kR  IR  3  1/k  4 , 6 l/k 1/2 8 1/2  7  1.0 1.5 2.0 2,4 2.8 3.1 0.9 1.6 2.0  2.k  Age 10 20  50 60  30  ko.  1.0 1.6 2.0 2.3 .2.8  10 20 30 40 5o  0.9  10 20 30 3.8.  1.8 2.1  Sec  1  Tree G Act 1 3/kL 0  IR 4  1/2'  1 3/kR 4  i/hE  1  1/2L  6R  10 20  3.0  l.k  Plot 2  30  kO  50 55  .2.7  1L  .20 *  Codom Hemlock  Act  IAL  4  TABLE 22  2 1/kL 10  1L 0  1/2R  1  1/kR  2 1/2L 1 3/kL. 1L 20 1  3/i|H IR 3L  .2L  3/kL  kO ! 0  Codom Hemlock C.A.S. Rad  3A  1 2 1/2 .3 1/2  h  lA  6 3 A .8- 1 / 2  1 4 2.2 3.2 3.8 4-5 5.0  1.3  2.k 3.3 4.1 4.5 k.6  1.7  3.1 3.9 4.5 4.6 1.5 2.6 3.3  3.8.  Age 10 20 30  ko  •50 58. 10 20 30  ko 50 53  10 20 30  ko k2 10 20 30 38  42  TABLE. 24  TABLE .23 Plot 2 Sec  Tree B. Act  2L  Codom Hemlock  C.A.S. Rad  2  3/kL 3/kL 3/4L  5 1/4 4.8  1 4 1/2' 1 1/2L 4 1/2  10 -1  20  40  -i  Age  1.2: 10 20 3 l A 2.6 30 k 1/4 3.7  0 6 .2. 1/2L 2 1/2L 2 1/2L 2 1/2L 0 2 1/2E  4.3  5.3  1.6. 3.7  .2.8. k.3  4,8 5.1  kO  50 56  1.6 2.7 3-4 4.. 0.  10 .20 30 40 47  o  1.1 .2.1 2.9  10 20 30 32  IL  1/2L 1/2L  3.2  Tree L. Act  Sec  I n t e r Hemlock  C.A.S. Rad  1 1/2L 1 1/2 1 1A L 1/4L 1 3/4 4 1/21 1R 2 1/2R 2 3/4 3 1/2R 4 1/2L 5 1/2 3/4R 6 1/2  10 20 30 40 10 50 53 •  2 3/4L IL 1 1/2L IL 1 1/kL.  4.6  Plot 2  •  .20 •»•  1  1/2R  2 1/4R 2 3/kR 3 1/2R 2 1/kL 1/2L 1 1/2R 2 1/kR 2. 3/kR O  40  1 1  1/kR 1/kR  Age  1.3 1.8. 2.2 2.7 3.3  10 20 30  1.0.  10 20 30  4.1 1.4 .2.0  kO  50 60  40 50 54  .2.8 3.4 3.6 1.0 10 1.8 20 2.2 30 2.6 40 2.9 Hh 1.4 10 1.9 20 •2.5 30  43  TABLE Plot 2  Tree A  Sec  4  I n t e r Hemlock  Act 1 1/2L 1 1/2R l/2» I L l/kL 1 1/kR 1 1/4R  C.A.S. Rad 1 1/2 1.0 k 1/2 1.9  1AL 1/4L  1.1 1.8 2.5 3.1 3.5 3.7  10 »  20 ••'  40  TABLE 26  25  1 1/kR 1/kR 1 1/kR 1R 2L  0  2.5 7 7 3/4 3.3 9 1/4 3.6 9 1/4 3.9  1.3  2.2  1 3/kR 1 3/kR 1R  2.7 3.3 3.5  2L 1R 1 3/kR 1 1/kR  1.3 2.0 2.6 2.9  Age  10 20 30 kO 50 55 10 20 30  ko  Plot Sec  4 1/2'  10 .20  30 38  Act  2 3/kE  10 ?  20 '  40 •*  Inter Hemlock  C . A. S ,Rad 2 3/4 1.1 k l A 2.2  1 1/2L 1 1/kL. 4 IL 1/2L k  1/2 2.9 3.5 3/4 4-1 5 1/4  Age  10 20 30 kO 50  I..4  2.4 3.3 '4.1 4-3  10 .20 30 40 44  2 1/2L IL 1/2R .2. 1/2R.  1.4 1.7 2.2 2.6  10 20 30 37  2L 1 1/2E 1/2L  1.8. 2.1 2.5  10 20 30  4 3/4L 3 1/4L  5o 52  10 20 30 40 47  Tree H  2  2L.  3L  1 1/2L  hh  TABLE 27 Plot 3 Sec.  Tree H Act  1 1/kR IR  TABLE. 28 Plot 3  Dom F i r  C.A.S. Rad  0.9 1.6 2.1 2.5 3-0 3.3  1lA 1 1/2 0 h 1/2' 1 i/h-L 2 1/2 1 l/J+L, 3 3 A 1 1/kL 3 3/k 3 3 A 1.1 2 1/kL. 1 3AL 1.8 1/kL 2.3 2.7 l/2L 10 4 1 1/kL 3.0 1 1/2L 3.2 1 1/2L 1.1 .2 1/kL 1.7 1L 2.2 1/kR 2.6 20 ' 1/kR 2.81/kR 1.1 1L ' 1.7 2.2 ho 1 IAL. 2.3 1 1/2L  Age  10 20  Sec  Act  30  kO  50  60 10 20 30  kO  50 55  10 20 30  ho h&-  10. .20 30 35  10 »  .20  ho  Tree I  I  Dom F i r  C.A.S. Rad  Age  3 1/kL- 3 1/2 0.7 10 .2 3/kL. k 1.5 20 1 1/2L h 3/h 2.2 30 1 1/kL 5 2.7:' ho 3/kL 5 1/2 3.2 5o 3/hL 5 1/2 3.7 60 2L. 1.0 10 2L 1.2 20 1/1/kL 2.2 30 ko 3AL 2.7 50 0 3.3 55 • 1/2R 3.6 2L. 1.1 10 3 1/2L 1.7 20 ML. 2.4 30 hL 2.9 ho kL 3.2 . h3 2 1/2L 1.0. 10 2 3/kL 2.2 20 3L 2.3 30  45  TABLE .29 Plot 3  Sec  TABLE 30.  Tree J Codom F i r Act C.A.S. Rad Age  3 1.0 1 3/kL. 4 3/4 1.7 IR 7 2.6 4 1/2' 1 3/4* 7 3/4 3.0 4 1/kR 10 1/k 3-8 5 3/kR 11 3 A 4-3 2 1/2L 0.7 l .l 1 1/2L 1/kR 1.7 10 » 1/kL 2.2 1/kR 2.6 1/2R 3.1 1 3AL 1.0 1 1/2L 1.9 20 t 1/2L 2.4 1/2L 3.0 1/2L 3.5 3L  1/2L  1 1/2L 1 1/kL 1 1/lj.L  1.2 1.6 2.3 3.0  !  10 20 30 40 50 58  10 20 30  40 5o 54  10 20 30  40 5o  10 20 30 36  Plot 3 Tree F Inter F i r C.A.S. Rad Sec. Act Age 3L. 1.0 10 3  1L.  4  1/4L 3/kR  1/2'  1/2R  IR  2L 10 '•  20 -1  '  1.7  2.3  2.9  3-5  4.0 1.3  2.0  2L 1L 1L  2.5  0 0  10  1  1/2L 1/2L  .2.6  .1 3/4L 1  1/2L  1  1/2L  61 10 20 30  3.6 1.4  2 l/2L  40 5o  4o 5o 57  1/2L  1L  20 30  3.0 3.4  1  1/4L 1/4L  40  5 5 3/4 6 3/4 7 7 1/2  2.0  3-1  3.6  3.6 1.1  2.0  2.6. 3.0  20 30  40 5o 5i  10 20 30 39  46 TABLE 32  TABLE 31 Plot 3 Sec.  k  Tree C  C.A.S. Rad  Act 2 1/2L 2 1/2L  3/kL,  1/2'  1/kR 1/kR  10 -1  3/kL  4 IAL  5L. 4L.  2 1/kL. 3AL  20 «  1 1/2L.  1 3/kL 0 3/kR  ko  5 6.  1/2L 2  2 1/2 1.-3 2 1/2 1.9  4 i/k  1R  1/2L IL. 1 1/2L 2L  Plot 3  Inter F i r  i/k  2.k  2.9 3.3 3.7 1.3 1.9  2.J|  2.8 3.2 3.5 1.1 1.8 2.3 2.8 3.2 1.1 1.9  2.3  .2.6  Age  10 .20 30 k0: 50 60 10 .20 30 ko  50 57 10 20 30 ko  5o 10 20 30 36  Sec  Tree E Act  Inter F i r C.A.S. Rad  2 1/2L 2 1/4 0.9 1 1/kR 5 3/4 1.5 2 1/4L. 9 1/4 1.7 4 1/2' 1R 12 1/2 1.9 1 1/kR. 12 3/4 2.2 3/kR 13 1/4 •2.3 2L 1.0 1/2L 1.5 1R 1.-6 2R 10 ? 2.0 2 1/2R 2.1 3R 2.2 3L 1.0. 2L 1.5 20 » 3/4L 1..8 1/4R 2.0 IR 2.1  Age  10 20 30 40 50 60 10 20 30 40 50 54 10 20 30 40 46  47 TABLE 33 Plot 3 Sec  k  Act  1/2L 1/kL 1/2E. 1/2L 1 1/2L 1/2R 1 1/2R 2R. 2R  3 1/2L 3 1/4L 2 3/4  10 •' 1 1/kL 1/2R 2R 2R • I  20 '  or  2L  C.A.S. Rad 3 1/2 O.k  Age  H  0.5 1.8  °' o  6  0.6  7  3 3  2.3 2.6  L  3/4R wr£  1/kR  2  2  L  1/2L 1/2L  C.A.S. Rad  Age  6 6 l/k 7 1/4 5-0  62  1 1/k 1 l/k 1 1/k 3 1/2  1.0 10 1.7 20 2.5 30 3-2 kO 3.9 50 k.7 60 1.1 10 2.0 20  9  1  0  2  0  2.7 40 30 3.0 47 0.9 I-  6  10 20 30 kO  2.6. 30 3.3. kO k.3 50 4.7 56  10 1.9 20 2.8 3 ^ 30 kO LO  ,  1/2L 3 IAL  2  1 1/kL. 1 1/kL. 1 1/kL. 1/2' IR 3 1/2R 3 1/kR 2 1/kR  Dom Hemlock  1L 6 1L 10 1/2R 1.6 20 10 ' 2R 2.2 30 1 1/kR 2.6. kO 3/4R 3.050 3.2 55  ?4  /  k  Act  3k  0.4 0.7  .20  l  Tree A  Sec  6 3 3/4 0.6 10 k 1.0 l k k 1.3 20 6 1.9 30 8, .2.5 kO 9 2.8 50 9 1/2 3.2 6 0 9 1/2 3-3 62  «  WOT  4 1/2L  1 40'  Plot 3  Tree G" Dom Hemlock  3 3 3 1/2' 3  or, ,  TABLE  kor  1  0 2/R IR  X  2  R  IR i / 4  Ijf : R  IAE  1L  To  1.1 10 :O TO 2.1 20 r>  3  L  3  ,  6  3  6  k8  TABLE. 36.  TABLE 3 5 Plot 3 Sec  "Tree L Act 2 1/2L 2 1/2 1 l/kL  k 1/2-  0  1/kL  1/kR 1/kR 3/kL 3/kL 10  '  1 1/2L 1 1/kL 1 I/I4L.. 1 l/kL  Dom Hemlock C.A.S. Rad  2 2  1/2 1/2  3  3/k  I1/k ^  k  5  1.1 1.8 2.2 2.6 3.2 3.8 3-9  1.1 1-7  2.k 2.9  3-k  3.6.  Plot 3  Age 10. .20  Sec  kO  k  Act  1/2'  ko  0 1 1/2R 1 3/kR  3R  60 62 10 20 30  3L  20 ••'!•  1 1/2L  IL  kO  1/2R 1/2R  1..2 2.0 3.0 3.6  1.3 1.8  C.A.S. Rad  Age  1 2 2  30 kO  1/2  1 1/2L 0 0 10  1/kR  •  1/2  1.0 1.8 2.7 3.7  3A k.k , kl A k.8  k  3 1/kR  1R  1.1 2.0 3.0 3.9 k.8  10 20  50 58.  10 20 30  ko 5o  50 53 2L  ZL  Dom Hemlock  1/2L  30  50  Tree K  10 20 30  kO  10 20  20  kO  1/kR  1R 1 1/kR 1 1/kR  1 1 2 2  1/kL 3/kR 1/2R  3/kR  1.3 2.3 3.3  k.O  k-3 1.3 2.5 3.3 3.7  10 20 30  kO k6  10 20 30 36  49  TABLE 3 8  TABLE 3 7 Plat 3 Sec  Tree D Act kL  2 1/2L 2L 4 i/2» i 3/4L 1 3/4L 1 0  1/4L  2L. 2 3/4L 3 1/2L .2 1/2L 3/4L 3/4L 1/2E.  10  20 «  40  '  I n t e r Hemlock C.A.S. Rad Age i| 0 . k . 6 5 1/2 6. 6 1/4 6 6 .8-  1/4 3/4  0.7 1.2 1.7 2.3 3.0 3.8.  10 20 30  0.4  6 10 20 30  0.8  1.4  1.9 2.6 3.2 3'.:6  4o  Plot 3 Sec.  Tree B Act  C-.A.S. Rad  Age  1L  1 1 1/4 2 l/Z  10 20 30 ko50 60  3/4L 1/2R  4 1 / 2 « 2 3/4R 2R  50 61  IR 2L 10  '  kO 50 55  2L 1 3/kL 1L 1 1/2L  0.5 1.3 1.9 2.5' 3.1  10 20 30 40 49  2 1/2L 1 3/4L 1 1/2L  0.8 1.5 2-4  10 20 25  3/4L 1 1/2L 1/2R 2R IR  2L 20  '  0 0  1/2L 1/2L 3/4R  0  40  I n t e r Hemlock  1/2R 1 1/2R 1/2R  4 3/4 5 1/2 6 1/2  1.1 1.9 2.5 2.9  3-4 3-9  0.6 1.2 1.9 2.5 2.8 3.4  10 20 30  kO 50 58  1.4 2.1 2.5 2.9 3.5 3.6  20 30 40  0.8 1.6 2.3 2.7  10 20 30 36  10  5o 5i  5o  TABLE 3 9 -CORRELATION COEFFICIENTS BETWEEN RADIUS, AGE AND CUMULATIVE. ABSOLUTE. SPIRAL.: DOUGLAS FIR. Classification Zero  Statistic r  Order Correlations  Partial Correlation's  r  1 2 4 5  All Plots  Plot  rspiral.radius ^age.radius  1 2 3 0.892^ 0.558§ 0,5625 0 . 9 5 7 5 0.6-195 0 . 3 9 4 ^ 0.969^ 0.8k5^ 0.9085  s p i r a l age.radius S p i r a l radius.age  0.0k8 0.26k 0.533 0.8.332 0 . 3 3 3 0 . 3 3 8 -  spiral.age  -  Significant Significant Significant Significant  at at at at  0.57L5 0-334? 0.8JJ.i5  k  1  0.1 0.05 0.01 O.OOl  per per per per  cent cent cent cent  TABLE kO CORRELATION COEFFICIENTS BETWEEN RADIUS, AGE AND CUMULATIVE ABSOLUTE SPIRAL: WESTERN HEMLOCK Classification Zero  Statistic r  Order  p  Correlations  r  Partial Correlations-  r r  All Plots  Plot  spiral.age  1 2 0.656^ 0.8425  3 0.682^  0.87k5  age.radius  0.7675  0.928^  0.868>  s p i r a l age.radius s p i r a l radius.age  0.0463 0.4633 0.847^ 0.45 -4-- 0 . 6 3 o 5 0 . 7 5 4 5  s p i r a l ..radius  0 . 5 2 6 ^ O.filOg 0 . 4 2 9 3 0 . 3 2 k 2 0.8825  1 - S i g n i f i c a n t a t 0 . 0 2 p e r cent 4 - S i g n i f i c a n t a t 0 . 0 1 per cent 5 - S i g n i f i c a n t a t 0 . 0 0 1 per- cent  TABLE .kl - DOUGLAS FIR ANALYSIS OF VARIANCE TO .SHOW COMPARATIVE EFFECT OF SITE, CROWN CLASS AND AGE ON CUMULATIVE ABSOLUTE SPIRAL DF .  Effect  2 1 5 99  153-5602 16.6245 267.2k07 350.9355  107  788.3519  Site Crown C l a s s Age Residual Total  SS  MS 76.7801 16.6245 53.kk8l 3.6298  Vr. 21.1527 .k. 5 8 0 0 1 lij..72k8. 3 3  3  - Significant  at 0 . 0 p e r cent  level  1  - Significant  at 5 . 0 ~per cent  level  TABLE k 2 - WESTERN HEMLOCK ANALYSIS OF VARIANCE TO SHOW COMPARATIVE EFFECT OF' SITE, CROWN CLASS AND AGE ON CUMULATIVE. ABSOLUTE SPIRAL Effect Site Crown C l a s s Age Residual  Total  DF.  SS  MS.  2 1 5 99  22.9306 3-7939 294.H+41 255-0221  11.4653 3-7939 58.828.8 2.5759  107  579.8907  Vr. • 4.4509 1.4.728. 22.838l3  1  3  - Significant  a t 0 . 1 p e r Cent  level  1  - Significant  a t 5 . 0 ' p e r cent  level  F i g . 10 Cumulative Absolute S p i r a l vs Radius P l o t 2 - Western Hemlo.ck h-  1  F i g . 11 Cumulative  Absolute S p i r a l vs Age  P l o t 3 - Douglas  o^ ro  F i g . l 5 Radius vs Age Graph - At B r e a s t Height - Douglas F i r  o^  F i g . 17 The S p i r a l G r a i n Measuring  Instrument  69  LITERATURE 1.  B u t l e r , B.T., Twisted (1903),  2.  674-,  1931.  3.  1915.  Trees, S c i e n c e 73  i n Chir pine, Indian F o r . k l  Champion, H.G., C o n t r i b u t i o n s Toward a Knowledge of Twisted F i b r e ' i n T r e e s , I n d i a n F o r . Rec. 1 1 , P t . I I , 11-80,  4..  trunks of Apple  Cannings, P., Twisted f i b r e (4.),. 1 1 2 - 1 1 6 ,  CITED  1925.  .Champion, H.G., An I n t e r i m Report on the Progress of I n v e s t i g a t i o n s , i n t o the O r i g i n of Twisted F i b r e i n Pinus l o n g i f o l i a Roxb. Indian F o r . , 53 ( 1 ) , 1 8 - 2 2 , 1927.  5.  Champion, H.G-., Second I n t e r i m Report on the Progress of I n v e s t i g a t i o n s . i n t o the O r i g i n of Twisted F i b r e i n Pinus l o n g i f o l i a Roxb. I n d i a n F o r . , % ( 1 2 ) , 5 1 1 - 2 0 , 1930.  6.  C l a r k e , C.B.,  On Right-hand  7.  Haskins, P. and Moore, N., The P h y s i o l o g i c a l B a s i s of the T w i s t i n g H a b i t In P l a n t Growth, Science- 7 7 ( 1 9 9 k ) , 2 8 3 ,  J . L i n n . Soc. 18  (112),  and Left-hand C o n t o r t i o n ,  4.68-73,  l88l.  1933.  8.  H e r r i e k , E.H., F u r t h e r notes (1975),  9. 10.  ij.06.-7,  on Twisted T r e e s , Science 7 6  1932.  J a c o t , A.P., Tree T w i s t , Science 74- ( 1 9 2 7 ) , Jones, A.T., Trees w i t h Twisted 567,  567, 1931.  Bark, Science 74- ( 1 9 2 7 ) ,  1931.  11.  Kadambi, K.,.. and D a b r a l , S,N. , On Twist i n C h i r (Pinus l o n g i f o l i a Roxb) , I n d i a n F o r . .81 ( l ) , 5 8 - 6 4 , 1 9 5 5 -  12.  Kennedy, R.W.-.and E l l i o t t , G.K., A l d e r (Alnus r u b r a Bong.)  13.  Koehler, A., More about Twisted G r a i n i n Trees, Science 73 ( 1 8 9 6 ) , 4 7 7 , 1 9 3 1 .  lk.  Kohl> E . J . , An E x p l a n a t i o n of the Cause of S p i r a l G r a i n i n Trees, Science 78. ( 2 0 1 2 ) , 5 8 - 9 , 1 9 3 3 -  S p i r a l G r a i n i n Red ( I n the p r e s s ) .  70  15>.  K r i b s , D.A., Commercial F o r e i g n Woods on the American Market, a Manual o f T h e i r S t r u c t u r e , I d e n t i f i c a t i o n , Uses and D i s t r i b u t i o n , T r o p i c a l Wood Laboratory, S t a t e C o l l e g e , Pa., 1 9 5 0 .  16.  McKinney and Sando, .Journal of H e r e d i t y 2$ ( 7 ) , 2 6 1 - 2 6 3 , 1931.  17-  M i s r a , .P.,- Observations On S p i r a l G r a i n i n the Wood of Pinus l o n g i f o l i a Roxb. F o r e s t r y 1 3 ( 2 ) , 1 1 8 - 3 3 , 1939.  18.  N o r t h c o t t , P.L., The Mechanism o f S p i r a l G r a i n the p r e s s ) .  19.  R a u l t , J . P . and Marsh, E.E., The.Incidence and I m p l i c a t i o n s of S p i r a l G r a i n i n Pinus' long I f o l i a Roxb. In South A f r i c a and i t s e f f e c t on Converted Timber,. S. A f r . F o r . Prod. I n s t . , P r e t o r i a West, Paper presented a t Comm. F o r . Conf., Canada, 1 9 5 2 .  20.  Richens, R., F o r e s t Tree Breeding and G e n e t i c s , • I m p e r i a l ' A g r i c u l t u r e Bureau, J o i n t P u b l i c a t i o n No. . 8 , pp. 1 - 7 9 , 1 9 4 5 .  21.  Roa, H.S., The Phenomenon of Twisted 80  (in  Trees, I n d i a n F o r .  ( 3 ) , 165-70, 1954.  22'.  Smythi-es, E.A., Notes on the Twisted F i b r e i n C h i r p i n e , Indian F o r . k l ( 3 ) , 6 . 9 - 7 5 , 1 9 1 5 -  23.  Troupe, R.S., S i l v i c u l t u r e of I n d i a n T r e e s , V o l 3 : 1 0 5 6 - 6 1 , . U n i v e r s i t y o f Oxford Press, 1 9 2 1 .  2k.  Wentworth, C.K.,. Twist i n " the G r a i n of Coniferous Science 7 3 ( 1 - 8 8 5 ) , 1 9 2 , 1 9 3 0 .  Trees,  7  GENERAL BIBLIOGRAPHY  1  1.  Banks-, G.H., S p i r a l G r a i n and Its' E f f e c t on the S t r e n g t h of South A f r i c a n Grown P i n e s , J.S. A f r . F o r . Ass.., No, 2 3 : 1 - 6 , 1 9 5 3 .  2.  Bhat,-R..V. and-Singh, M.M., Wrapping Papers from C h i r (Pinus l o n g i f o l i a . Roxb) of Twisted G r a i n , Indian For,  1  8 1 (12), 7 6 5 - 7 3 , 1 9 5 5 -  3.  C a s t l e , E.S., S p i r a l Growth and R e v e r s a l :of S p i r a l l i n g I n Phycomycetes, and T h e i r B e a r i n g on Primary W a l l S t r u c t u r e , Amer. J . Bot., 2 9 , 6 6 k , 19k2.  k.  G r i f f i t h , A.L,, Twisted F i b r e i n C o n i f e r s , I n d i a n F o r . 7 2 ( 1 1 1 ) , 5 1 2 - 3 , 191+6.  5.  Jacobs, M.R.., The Occurrence and Importance Of S p i r a l G r a i n i n Pinus r a d i a t a i n the F e d e r a l C a p i t a l T e r r i t o r y , L e a f l . F o r . .Bur. Aust. No. 5 0 , 1 9 3 5 .  6.  Krogh, P..M.D., The T w i s t i n g of Wooden Telephone Poles' i n S e r v i c e i n South A f r i c a , S. A f r . F o r . Prod. I n s t . P r e t o r i a West, Paper presented a t Comm. F o r . Conf., Canada,. 1 9 5 2 .  7.  M i s r a , P., C o r r e l a t i o n Between E c c e n t r i c i t y and S p i r a l G r a i n i n the wood of Pinus l o n g i f o l i a , F o r e s t r y 1 7 : 67-80, 19k3.  8.  Wardrop, A.B, and Dadswell, H.E., The Development and S t r u c t u r e of Wood F i b r e s , Aust. Pulp and Pap. I n d . Tech. Ass. Proc. 8 , 6-26, 1 9 5 k .  References quoted here have not been used by the In t h i s work, 1  author  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0302311/manifest

Comment

Related Items