UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Growth, mineral uptake and phosphorus metabolism of Pisum sativum L. as influenced by air and soil temperatures,… Adedipe, Nurudeen Olorun-Nimbe 1969

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1969_A1 A34.pdf [ 8.83MB ]
Metadata
JSON: 831-1.0104042.json
JSON-LD: 831-1.0104042-ld.json
RDF/XML (Pretty): 831-1.0104042-rdf.xml
RDF/JSON: 831-1.0104042-rdf.json
Turtle: 831-1.0104042-turtle.txt
N-Triples: 831-1.0104042-rdf-ntriples.txt
Original Record: 831-1.0104042-source.json
Full Text
831-1.0104042-fulltext.txt
Citation
831-1.0104042.ris

Full Text

J  GROWTH, MINERAL UPTAKE AND PHOSPHORUS METABOLISM OF PISUM SATIVUM L. AS INFLUENCED BY A I R AND SOIL TEMPERATURES, PHOSPHORUS NUTRITION AND GROWTH RETARDING CHEMICALS  by  NURUDEEN OLORUN-NIMBE ADEDIPE B.S.A., U n i v e r s i t y  of British  C o l u m b i a , 1966  A THESIS SUBMITTED I N PARTIAL FULFILMENT OF THE REQUIREMENTS  FOR THE DEGREE OF  DOCTOR OF PHILOSOPHY  i n t h e Department of PLANT SCIENCE  We a c c e p t t h i s t h e s i s a s c o n f o r m i n g t o t h e required  standard  THE UNIVERSITY OF B R I T I S H COLUMBIA A p r i l , 1969  In p r e s e n t i n g an  this  thesis  advanced degree at  the  Library  I further for  shall  the  his  of  this  agree that  of  be  available  g r a n t e d by  gain  Science  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada  April  29 ,  1969  for  for extensive  permission.  Plant  British  the  It i s understood  thes.is f o r f i n a n c i a l  Department of  Date  University  permission  representatives.  written  f u l f i l m e n t of  make i t f r e e l y  s c h o l a r l y p u r p o s e s may  by  in p a r t i a l  Columbia  shall  requirements  Columbia,  Head o f my  be  I agree  r e f e r e n c e and copying of  that  not  the  for  that  Study.  this  thesis  Department  or  c o p y i n g o r pub 1 i c a t i o n allowed without  my  Supervisor:  P r o f e s s o r D o u g l a s P. Ormrod  ABSTRACT  I n greenhouse and c o n t r o l l e d e n v i r o n m e n t the  influences of temperature, P nutrition-,  of 3 growth r e t a r d i n g chemicals mineral  composition  were i n v e s t i g a t e d .  experiments,  and f o l i a r  sprays  on t h e g r o w t h , y i e l d and  o f Pisum sativum  L. c v . D a r k S k i n P e r f e c t i o n  The u t i l i z a t i o n o f P u n d e r 4 a i r and s o i l  t e m p e r a t u r e r e g i m e s w i t h i n t h e p h y s i o l o g i c a l r a n g e was a l s o studied. to  The d w a r f i n g  e f f e c t o f h i g h t e m p e r a t u r e was r e l a t e d  t h a t due t o r e l a t i v e l y  high concentrations  o f growth r e t a r d i n g  chemicals. Banded P f e r t i l i z e r , per  a p p l i e d a t r a t e s o f up t o 352 l b .  a c r e , i n c r e a s e d p l a n t growth, pea y i e l d  N, P, K, Ca and Mg. 5 minerals  P increased the t o t a l  contents  of a l l  i n a l l 3 t i s s u e s ( v i n e , pod and p e a s e e d ) ,  m u l t i p l e e f f e c t s on m i n e r a l producing  and t h e u p t a k e o f  pea y i e l d  concentrations.  b u t had  E f f i c i e n c y of P i n  i n c r e a s e was maximum a t t h e 44 l b . p e r a c r e  rate. The pea  yield,  h i g h a i r t e m p e r a t u r e o f 30° d e c r e a s e d growth,,  and t o t a l m i n e r a l  t u r e o f 21°.  The h i g h s o i l  u p t a k e , compared w i t h a temperat e m p e r a t u r e o f 18° i n c r e a s e d  these  3 g r o u p s o f v a r i a b l e s , as c o m p a r e d w i t h a t e m p e r a t u r e o f 10°. Increases  i n mineral  concentration a t the high a i r temperature  were l a r g e l y due t o " c o n c e n t r a t i o n e f f e c t s ' ' r e s u l t i n g  from  iv.  smaller plants.  I n c r e a s e s due  to the high s o i l  temperature  were a b s o l u t e b e c a u s e t h e y o c c u r r e d e v e n i n b i g g e r p l a n t s . Increase due  i n m i n e r a l uptake at the h i g h s o i l  t o i n c r e a s e d r o o t g r o w t h , b u t was  bolic activity. was  The  e f f e c t of s o i l  g r e a t e r t h a n on t r a n s l o c a t i o n  temperature  was  t h e most e f f e c t i v e  temperature  i n t o t h e pea  on t o t a l  absorption  seed.  i n t e r m s o f g r o w t h and  2,4-dichlorobenzyl tributylphosphonium was  at  yield  c h l o r i d e (Phosfon)  stimulation. a t 100  t h e most e f f e c t i v e w i t h r e s p e c t t o g r o w t h r e t a r d a t i o n ,  markedly decreased  pea  yield.  N-N-dimethylamino succinamic  ( B - N i n e ) a t c o n c e n t r a t i o n s o f 1 and a l t e r i n g growth p a t t e r n .  not  a r e s u l t o f i n c r e a s e d meta-  ( 2 - c h l o r o e t h y l ) trimethylammonium c h l o r i d e (Cycocel) 1 ppm  was  100  ppm  was  ineffective  ppm  but acid in  E f f e c t s of the growth r e t a r d i n g chemicals  on m i n e r a l u p t a k e l a r g e l y r e f l e c t e d p l a n t s i z e d i f f e r e n c e s , and were not a b s o l u t e e f f e c t s .  C y c o c e l and  t i o n s a r e p r o m i s i n g f o r use  i n a r r e s t i n g e x c e s s i v e v e g e t a t i v e growth  and  i t s attendant  deformative  to the  Phosfon  a t low  i n i n c r e a s i n g pea  concentra-  yield  without  effects.  The and  p r o b l e m s , and  Phosfon  e f f e c t s of r e l a t i v e l y high concentrations of  were s i m i l a r t o t h o s e  of high temperatures  p l a n t d w a r f i n g , changes i n m i n e r a l c o m p o s i t i o n l e v e l s of Glucose,  G-l-P,  and  Cycocel  with respect alteration  G-6-P, F-6-P, F l , 6 - P , ADP  and  in  ATP.  I t appears t h a t h i g h c o n c e n t r a t i o n s of growth r e t a r d i n g chemicals and  high temperatures  t i o n o f ATP sequence.  depress  p l a n t g r o w t h by r e d u c i n g t h e  i n the p h o s p h o r y l a t i o n of sugars, i n the  utiliza-  glycolytic  V.  The  nearest-optimal  f o r p l a n t g r o w t h and m i n e r a l For is  uniformity  a i r and s o i l t e m p e r a t u r e  regime  u p t a k e was t h e 21/13/18° d a y / n i g h t / s o i l .  i n the nomenclature o f p l a n t growth r e g u l a t o r s , i t  s u g g e s t e d t h a t g r o w t h r e t a r d i n g c h e m i c a l s be c a l l e d  "RETARDINS".  vi. TABLE OF CONTENTS Section  Page  INTRODUCTION  1  1.  REVIEW OF LITERATURE  4  A.  4  TEMPERATURE AND PLANT GROWTH 1.1  B.  G e n e r a l A s p e c t s o f Temperature and P l a n t Growth P r o c e s s e s  4  1.2  S o i l Temperature and P l a n t Growth  6  1.3  Temperature and the.Growth o f t h e Pea P l a n t  10  1.4  S o i l T e m p e r a t u r e a n d t h e G r o w t h o f Some P l a n t s  12  1.5  F i e l d Manipulation  13  1.6  Apparatus f o r C o n t r o l l i n g  o f S o i l Temperature S o i l Temperature  MINERAL NUTRITION OF PLANTS  14 15  1.7  Soil-Plant Relationships  i nPlant Nutrition  1.8  Mechanism(s) o f I o n Uptake  1.9  M i n e r a l Uptake and T r a n s p o r t i n P l a n t s  1.10 M i n e r a l U p t a k e a s I n f l u e n c e d  15 16  by Temperature  1.11 E f f i c i e n c y o f P h o s p h o r u s F e r t i l i z e r P l a c e m e n t  19 21 23  1.12 C a s e f o r P l a n t A n a l y s i s a n d I n t a c t - P l a n t Nutrition C.  25  THE PHYSIOLOGY OF GROWTH RETARDING CHEMICALS  27  1.13 G e n e r a l A s p e c t s o f G r o w t h R e t a r d i n g  27  Chemicals  1.14 S t r u c t u r a l R e q u i r e m e n t s f o r A c t i v i t y  28  1.15 P o s s i b l e M o d e ( s ) o f A c t i o n  29  1.16 E f f e c t s o f G r o w t h R e t a r d i n g Plants  Chemicals on 30  vii.  Section D.  2.  Page BIOCHEMICAL ASPECTS OF TEMPERATURE,  PHOSPHORUS  AND GROWTH RETARDING CHEMICAL RESPONSES  32  1.17  B i o c h e m i s t r y o f Temperature Response  32  1.18  C a r b o h y d r a t e s and M i n e r a l U p t a k e  36  1.19  R o l e and M e t a b o l i s m o f Phosphorus i n P l a n t s  36  1.2 0  G r o w t h R e t a r d i n g C h e m i c a l s and P l a n t Metabolism  43  MATERIALS AND METHODS  46  2.1  Experiments Conducted  46  2.2  C o n t r o l o f A i r and S o i l T e m p e r a t u r e s and S o i l Moisture  2.3  3.  Soil, Fertilizer Application,  47 Planting  and H a r v e s t i n g  53  2.4  A p p l i c a t i o n o f Growth R e t a r d i n g C h e m i c a l s  55  2.5  A n a l y t i c a l Techniques  56  2.6  Statistical  60  Analyses o f Data  RESULTS 3.1  62 P l a n t Response t o Phosphorus  Fertilizer  i n t h e Greenhouse 3.2  62  E f f e c t s o f P h o s p h o r u s N u t r i t i o n on G r o w t h and M i n e r a l U p t a k e a t 3 P r e - f r u i t i n g Growth  S t a g e s a s I n f l u e n c e d by A i r a n d  S o i l Temperatures 3.3  65  E f f e c t s o f P h o s p h o r u s N u t r i t i o n on Y i e l d Factors at Estimated Marketable Maturity of  P e a s a s I n f l u e n c e d by A i r a n d S o i l  Temperatures  74  viii. Section  Page 3.4  Mineral Translocation Patterns  3.5  Comparative Growth, P l a s t i d  81  P i g m e n t and  M i n e r a l Responses o f t h e P l a n t t o F o l i a r Applications of Cycocel,  P h o s f o n and  B - N i n e a t Low C o n c e n t r a t i o n s 3.6  81  E f f e c t s o f Temperature and A p p l i e d P h o s p h o r u s on G l u c o s e , H e x o s e p h o s p h a t e s and A d e n o s i n e p h o s p h a t e s i n P e a t i s s u e s  3.7  Effects of Cycocel  88'  a n d P h o s f o n on  G l u c o s e , H e x o s e p h o s p h a t e s and A d e n o s i n e p h o s p h a t e s i n 5-day o l d P e a R a d i c l e s 4,  91  DISCUSSION  95  4.1  Growth Responses t o Phosphorus N u t r i t i o n  4.2  M i n e r a l Uptake Responses t o Phosphorus Nutrition  4.3  95  98  Comparative Growth, P l a s t i d  Pigment and  M i n e r a l Responses o f the P l a n t t o F o l i a r Applications of Cycocel,  Phosfon and  B - N i n e a t Low C o n c e n t r a t i o n s 4.4  Phosphorus M e t a b o l i s m as I n f l u e n c e d  102 by  T e m p e r a t u r e , P h o s p h o r u s a n d G r o w t h Retarding  Chemicals  104  5,  SUMMARY AND CONCLUSIONS  113  6,  BIBLIOGRAPHY  117  IX ,  L I S T OF TABLES T a b l e No. 1  Page E f f e c t s of phosphorus f e r t i l i z a t i o n yield house.  2  on g r o w t h  f a c t o r s o f p e a p l a n t s grown i n t h e g r e e n V a l u e s a r e f o r one p l a n t .  E f f e c t s of phosphorus f e r t i l i z a t i o n  63 on t h e  c o n c e n t r a t i o n s and t o t a l c o n t e n t s o f N, P, K, and Mg  and  Ca  i n t h e v i n e , pod and p e a o f g r e e n h o u s e -  grown p l a n t s , 3  64  An e x a m p l e o f a Combined A n a l y s i s o f V a r i a n c e Computer Output f o r Main E f f e c t s .  4  66  F V a l u e s and t h e s i g n i f i c a n c e s o f M a i n at  e a c h g r o w t h s t a g e , and o f e a c h p l a n t  at  crop maturity.  Part I.  Effects tissue  D r y m a t t e r and  mineral concentrations. 5  67  F V a l u e s and t h e s i g n i f i c a n c e s o f M a i n at  e a c h g r o w t h s t a g e , and o f e a c h p l a n t  at  crop maturity.  Part I I . Total  Effects tissue  mineral  contents. 6  E f f e c t s o f a i r and s o i l t e m p e r a t u r e s on  68 Growth  Response o f pea p l a n t s at 3 p r e - f r u i t i n g s t a g e s to 7  phosphorus f e r t i l i z a t i o n .  E f f e c t s o f a i r and s o i l t e m p e r a t u r e s and  69 phosphorus  n u t r i t i o n on t h e c o n c e n t r a t i o n s o f 5 m i n e r a l s i n the  pea v i n e a t 3 p r e - f r u i t i n g growth s t a g e s .  71  E f f e c t s o f a i r and phosphorus  soil  temperatures  and  n u t r i t i o n on t h e t o t a l c o n t e n t s o f  5 m i n e r a l s i n t h e pea v i n e a t 3 p r e - f r u i t i n g growth s t a g e s . G r o w t h c h a r a c t e r i s t i c s and y i e l d p e a s as i n f l u e n c e d by a i r and t u r e s and  factors i n  soil  tempera-  phosphorus.  M i n e r a l u p t a k e and d i s t r i b u t i o n  i n the  root,  v i n e , pod and p e a s e e d as i n f l u e n c e d by a i r and s o i l  t e m p e r a t u r e s and  phosphorus.  Mineral concentrations, percent of dry matter. M i n e r a l u p t a k e and d i s t r i b u t i o n  i n the  root,  v i n e , pod and p e a s e e d as i n f l u e n c e d by a i r and  soil  t e m p e r a t u r e s and  phosphorus.  M i n e r a l c o n t e n t s , m i l l i g r a m s per  plant.  A b s o r p t i o n and t r a n s l o c a t i o n o f N, P, K, and Mg at  as i n f l u e n c e d by p h o s p h o r u s  4 a i r and s o i l  nutrition  temperature regimes.  E f f e c t s o f Cycocel,> P h o s f o n and g r o w t h and y i e l d  B-Nine  on  f a c t o r s i n peas.  E f f e c t s o f C y c o c e l , P h o s f o n and B - N i n e p l a s t i d pigment  Ca  c o n t e n t s o f pea  M i n e r a l c o m p o s i t i o n and t o t a l  on  plants.  c o n t e n t s i n pea  p l a n t s as i n f l u e n c e d by two c o n c e n t r a t i o n s C y c o c e l , P h o s f o n and  R-Mine.  of  T a b l e No. 16  Effect  o f t e m p e r a t u r e on G l u c o s e , Hexose  p h o s p h a t e s , ADP a n d ATP l e v e l s pea r a d i c l e s . compounds 17  Fresh weight  i n /aM/g  Tissue levels  o f G l u c o s e , Hexose  t e m p e r a t u r e s and a p p l i e d  18  compounds  Effects of  (F.W.) i n g . ,  F.W.  ADP a n d ATP a s i n f l u e n c e d  of  o f 5-day o l d  phosphates,  by a i r and s o i l phosphorus.  i n ;uM/g f r e s h  Levels  weight.  o f C y c o c e l and P h o s f o n on t h e l e v e l s  G l u c o s e , H e x o s e p h o s p h a t e s , ADP a n d ATP i n  5-day o l d p e a r a d i c l e s .  Fresh weight  i n g , compounds  F.W.  in/U'M/g  (F.W.)  xii. L I S T OF  FIGURES  F i g u r e No. 1  Page E x t e r i o r of growth c a b i n e t showing s w i t c h , t h e r m o s t a t s and p i l o t  2  time  l i g h t bulbs.  I n t e r i o r o f growth c a b i n e t showing  pot  placement 3  48  I n t e r i o r o f growth c a b i n e t showing w a t e r b a t h , c o l d water c o i l e d copper tube  3  thermostat  and t h e r m i s t o r s . 4  4-8  49  Schematic diagram of S o i l  Temperature  C o n t r o l Equipment  50  5  R e f r i g e r a t e d W a t e r Tank.  51  6  B o u y o u c o s M o i s t u r e M e t e r and m a t e r i a l s f o r s o i l moisture c a l i b r a t i o n .  7  E f f e c t s o f a i r and s o i l  51  t e m p e r a t u r e s on  g r o w t h a t 0 and 44 l b . P/A. 8  E f f e c t of phosphorus  fertilization  growth o f the p l a n t at the air 9  and s o i l  per 10  pot  on  nearest-optimum  temperature combination.  E f f e c t s o f a i r and s o i l phosphorus  75  77  t e m p e r a t u r e s and  on t h e number and s i z e o f  peas  (4 p l a n t s ) .  77  E f f e c t s o f B - N i n e , C y c o c e l and P h o s f o n a t 1 and 100 ppm  on g r o w t h o f t h e p l a n t .  87  Typical  absorption spectra of glucose  hexose phosphates phosphates  (glu),  (PIP) and a d e n o s i n e  ( A P ) o f 5-day o l d p e a r a d i c l e s  grown a t 25°.  1 g of fresh  t i s s u e was  used.  Comparative r a t e e f f e c t s  of Cycocel  P h o s f o n on P u t i l i z a t i o n  p a t t e r n s i n 5-day  o l d p e a r a d i c l e s grown a t 25°.  and  xiv.  ACKNOWLEDGEMENTS I w i s h t o t h a n k D r . D o u g l a s P. O r m r o d , P r o f e s s o r , Department o f P l a n t S c i e n c e , U n i v e r s i t y o f B r i t i s h  Columbia,  u n d e r whose s u p e r v i s i o n t h i s  for his  s t u d y was u n d e r t a k e n ,  academic and t e c h n i c a l a d v i c e d u r i n g r e s e a r c h , and f o r h i s guidance  i n the preparation of this  thesis.  Deep a p p r e c i a t i o n i s e x t e n d e d ,  f o r i n d i v i d u a l and  c o l l e c t i v e a d v i c e , and f o r t h e r e v i e w o f t h i s t h e s i s , t o t h e members o f my g r a d u a t e  committee;  Dr.  V.C. B r i n k , C h a i r m a n , D e p a r t m e n t o f P l a n t  Dr.  G.W.  Dr.  L . E . Lowe, D e p a r t m e n t o f S o i l  Dr.  W.B.  Mr.  A.R. M a u r e r , V e g e t a b l e  Eaton, Department o f P l a n t  Science  Science  Science  S c h o f i e l d , Department o f Botany  A g a s s i z Research  Physiologist,  Station  I am a l s o i n d e b t e d t o D r . K.F. F l e t c h e r a n d Mr.  V„W. C a s e , f o r m e r l y o f t h e S o i l R e s e a r c h  A g a s s i z Research soil  Unit of the  Station, f o r providing experimental  s o i l and  a n a l y s i s data. I am g r a t e f u l t o M e s s r s .  I . D e r i c s a n d L. S c r u b b ,  t e c h n i c i a n s , f o r h e l p w i t h l a b o r a t o r y equipment.  Valuable  a s s i s t a n c e i n t h e c o m p u t e r p r o g r a m m i n g o f d a t a was g i v e n by D r . G.W.  Eaton.  I thank Mrs.  N.O. A d e d i p e f o r h e r h e l p w i t h l a b o r i o u s  m a n u a l o p e r a t i o n s a n d M i s s D i a n e Sherwood f o r h e r a c c u r a t e typing of this  thesis.  XV .  F i n a n c i a l a i d , g r a t e f u l l y a c k n o w l e d g e d , was  provided  by C a n a d a D e p a r t m e n t o f A g r i c u l t u r e and t h e N a t i o n a l  Research  C o u n c i l o f Canada t h r o u g h  through  Postgraduate  Scholarship.  s u p p o r t o f t h e p r o j e c t and  1  INTRODUCTION  The  p e a ( P i s u m s a t i v u m L.) i s a c o o l w e a t h e r  grown e x t e n s i v e l y i n t h e Lower M a i n l a n d o f B r i t i s h n o r t h w e s t e r n Washington Combined a c r e a g e 6 0,000.  State, Great B r i t a i n  i n British  Columbia, i n  and A u s t r a l i a .  C o l u m b i a and W a s h i n g t o n  Two i m p o r t a n t f a c t o r s  limiting  species,  pea y i e l d  i s over a r e warm  t e m p e r a t u r e s and d e f i c i e n c y o f p l a n t n u t r i e n t s , n o t a b l y The and W a s h i n g t o n  c l i m a t e o f the pea-growing  areas of B r i t i s h  Columbia  i s v a r i a b l e , n o t o n l y from e a s t t o west b u t a l s o  from year t o year. the  phosphorus.  I t has been e s t a b l i s h e d w i t h e x p e r i m e n t s a t  A g a s s i z R e s e a r c h S t a t i o n and a t t h e U n i v e r s i t y o f B r i t i s h  Columbia, over 3 seasons, that a small  difference  i n t h e mean  temperature o f t h e growing season can a f f e c t y i e l d s T h i s means t h a t t h e c o o l e r w e a t h e r  significantly.  near the sea c o a s t a l l o w s f o r  a l o n g e r g r o w i n g s e a s o n t h a n does t h e w e a t h e r  of areas  farther  i n l a n d where h i g h e r t e m p e r a t u r e s may d e c r e a s e y i e l d s .  On t h e  o t h e r h a n d t h e l a t t e r may be more f a v o u r a b l e f o r e a r l y  spring  planting. Phosphorus increases i n yield  f e r t i l i z a t i o n has l e d t o . c o n s i d e r a b l e  because  most s o i l s  areas are phosphorus-deficient. phosphorus  by  slightly  so t h a t l e s s v i n e i s h a n d l e d p e r u n i t  peas h a r v e s t e d . Phosphorus  the  H i g h e r p e a y i e l d s due t o  f e r t i l i z a t i o n a r e a l s o accompanied  higher pea:vine r a t i o , of  i n the pea-growing  i s frequently deficient  Lower M a i n l a n d o f B r i t i s h  i n the s o i l s of  C o l u m b i a , and v a l u e s l o w e r t h a n  2  10 pounds a v a i l a b l e P p e r a c r e h a v e b e e n r e p o r t e d . are  therefore necessary to c l a r i f y  and s o i l  the separate e f f e c t s of a i r  t e m p e r a t u r e s on t h e r e s p o n s e o f p e a s t o  added t o a d e f i c i e n t early planting fertilizer  soil.  For example,  i n c o l d e r s o i l s may  phosphorus  i t i s possible  r e q u i r e more  fertiliza-  some o f t h e a d v e r s e e f f e c t s o f h i g h t e m p e r a t u r e s  i n warm p e a - g r o w i n g  areas.  Many e x p e r i m e n t s h a v e b e e n c a r r i e d o u t t o o p t i m u m a i r o r optimum s o i l peas.  that  phosphorus  t h a n f o r warmer s o i l s , o r t h a t p h o s p h o r u s  t i o n could offset  Experiments  temperature f o r the growth  However, t h e combined  e f f e c t s o f a i r and  t u r e s , and t h e r e s p o n s e t o p h o s p h o r u s a c t i n g f a c t o r h a v e had  establish  little  fertilization  investigation.  i n f o r m a t i o n about the r e l a t i v e  soil  of  temperaas an  inter-  Much o f t h e  importance of the shoot  r o o t t e m p e r a t u r e s has been o b t a i n e d , t h e r e f o r e ,  and  indirectly.  A l s o , most o f t h e e x p e r i m e n t s r e p o r t e d h i t h e r t o w e r e n o t c a r r i e d out a t d i f f e r e n t growth  stages o f growth, but u s u a l l y a t  one  s t a g e ; and h a v e a l s o s c a r c e l y b e e n c a r r i e d o u t t o c r o p  maturity to e l u c i d a t e mineral d i s t r i b u t i o n patterns i n the d i f f e r e n t p a r t s o f t h e WHOLE, SOIL-GROWN p l a n t . It  i s p o s s i b l e t h a t growth r e t a r d i n g c h e m i c a l s  may  be u s e d t o a c h i e v e a r e d u c t i o n o f t h e p l a n t v i n e and c o n s e q u e n t l y to  reduce problems  associated with excessive vegetative  w i t h o u t r e d u c i n g pea y i e l d , o r perhaps p r o m o t i n g The homogeneity  g a r d e n p e a was  chosen because  growth  yield.  of i t s r e l a t i v e  of populations, e a s i l y observable morphological  3  characters,  e l o n g a t e stem growth u s e f u l f o r n u t r i e n t  absorption  and t r a n s l o a t i o n s t u d i e s , and i t s i n c r e a s i n g e c o n o m i c  importance  in  British  the a g r i c u l t u r a l i n d u s t r y  C o l u m b i a and e l s e w h e r e . was  used because  a relatively of  The  o f t h e Lower M a i n l a n d o f c u l t i v a r Dark  o f i t s wide commercial acceptance based  specific objectives  1.  Growth  2.  Phosphorus in  tenderness  of the present studies  The  c h a r a c t e r i s t i c s and y i e l d  the d i f f e r e n t p a r t s influence  on:  factors.  of the plant  of a p p l i e d phosphorus  Optimum a i r and s o i l p r o d u c t i o n o f peas  on t h e u p t a k e  and  temperature combination f o r e f f i c i e n t  and u t i l i z a t i o n  3 growth r e t a r d i n g  at crop maturity.  and a l s o t o d e t e r m i n e :  Comparative responses of the p l a n t of  temperatures  were:  u p t a k e a t 3 p r e - f r u i t i n g s t a g e s , and d i s t r i b u t i o n  d i s t r i b u t i o n o f N, K, Ca and Mg;  5.  on  peas.  t o d e t e r m i n e t h e e f f e c t s o f a i r and s o i l  4.  Perfection  h i g h p e a : v i n e r a t i o , medium h e i g h t and  The  3.  Skin  chemicals:  of plant t o low  nutrients.  concentrations  Cycocel, Phosfon  and  B-Nine. 6.  Possible  differences  i n phosphorus  utilization  as r e f l e c t e d  by some s p e c i f i c m e t a b o l i c p h o s p h o r y l a t e d compounds. 7.  Possible  r e l a t i o n s h i p s between t e m p e r a t u r e r e s p o n s e s  growth r e t a r d i n g c h e m i c a l responses, since  the dwarfing  e f f e c t s o f h i g h t e m p e r a t u r e on t h e p e a p l a n t cally  and  are morphologi-  s i m i l a r t o t h o s e o f g r o w t h r e t a r d i n g c h e m i c a l s on  many p l a n t s .  4  1.  A. 1.1  REVIEW OF LITERATURE  TEMPERATURE AMD PLANT GROWTH G e n e r a l A s p e c t s o f Temperature and P l a n t Growth  An  increase  Processes  o f temperature almost i n v a r i a b l y  the r a t e o f a chemical r e a c t i o n .  increases  F o r a homogeneous s y s t e m i t i s  known t h a t t h e r a t e i s d o u b l e d o r t r e b l e d f o r e a c h 10° r i s e o f t e m p e r a t u r e , a n d e v e n f o r many h e t e r o g e n e o u s p u r e l y reactions.  The a p p l i c a t i o n o f i n f o r m a t i o n  chemical reactions difficult;  obtained  t o t h e complex chemistry  chemical  with  of a living  isolated plant i s  i t i s i n f a c t dangerous t o t h i n k o f p l a n t growth i n  terms o f simple information  chemical r e a c t i o n s , o r t o apply  obtained  with  directly  i s o l a t e d enzyme s y s t e m s ( N i e l s e n a n d  Humphries, 1965). Nevertheless,  a l l reactions  occurring  i n plant  f o l l o w t h e b a s i c l a w s o f t h e r m o d y n a m i c s and r a t e theory.; is,  an i n c r e a s e  i n p l a n t growth processes w i t h  t e m p e r a t u r e , f r o m a minimum where t h e r e up  cells that  increase i n  i s relative  inactivity  t o a maximum b e y o n d w h i c h g r o w t h i s h a m p e r e d m a i n l y due t o  the d e n a t u r a t i o n  of proteins.  However, t h e p l a n t b e i n g  e n t i t y made up o f c o m p l e x c o n s t i t u e n t s , s u r v i v e s v a r i a t i o n s and f l u c t u a t i o n s i n t e m p e r a t u r e . t h a t one o f t h e m a i n d e f e n c e m e c h a n i s m s p l a n t  i n most  a livingcases,  I t i s thought c e l l s may p o s s e s s  to r e s i s t t h e d e l e t e r i o u s e f f e c t s o f low o r h i g h  temperatures,  i s t h e development o f p r o t o p l a s m which can r e s i s t t h e chemical and  p h y s i c a l aspects of these  temperatures.  5  To a d d t o t h e c o m p l e x i t y o f p l a n t r e s p o n s e t o t e m p e r a t u r e , i t i s known t h a t optimum t e m p e r a t u r e f o r g r o w t h i s a f f e c t e d as much by t h e medium u s e d t o grow p l a n t s a s i t i s by t h e s u p p l y o f n u t r i e n t s a v a i l a b l e and placement  i n soils  ( K n o l l et_ a l . , 1964:. B r o u w e r ,  their  1959 ) .  An optimum h a s t h e r e f o r e b e e n c o n s i d e r e d t o be t h e r e s u l t o f 2 o p p o s i n g mechanisms a t work i n a p l a n t , s y n t h e t i c and t h e o t h e r d e g r a d a t i v e .  one  At cool temperatures the  d e g r a d a t i v e m e c h a n i s m , l a r g e l y r e s p i r a t i o n , i s s l o w e d down more t h a n t h e s y n t h e t i c , l a r g e l y p h o t o s y n t h e s i s . As  tempera-  t u r e s a r e r a i s e d , t h e r a t e s o f b o t h t h e s y n t h e t i c and d e g r a d a t i v e p r o c e s s e s i n c r e a s e , t h e l a t t e r more r a p i d l y u n t i l compensation  a  t e m p e r a t u r e i s a t t a i n e d above w h i c h t h e r e i s a  net loss of dry matter.  Exceptions to this  general rule  will,  o f c o u r s e , o c c u r i n t h e c a s e o f p l a n t s s u c h as c o r n and s u g a r cane w h i c h h a v e no r e s p i r a t i o n i n t h e l i g h t Tregunna,  (Downton and  1968). I n a c t i v a t i o n o f c e r t a i n enzyme  s y s t e m s may  occur  a t t e m p e r a t u r e s w e l l below t h a t a t which p r o t e i n s a r e denatured  (about 60°).  n o t be p r o d u c e d 1957).  As a r e s u l t c e r t a i n m e t a b o l i t e s may  and p l a n t g r o w t h w i l l  be r e d u c e d  Hence t h e s u p p l y o f c a r b o h y d r a t e s and  essential  m e t a b o l i t e s may w e l l be t h e d e t e r m i n i n g f a c t o r s i n g optimum t e m p e r a t u r e s f o r p l a n t g r o w t h . f o r example,  (Bonner,  i n establish-  Weissman  (1964),  suggested t h a t l e a v e s a r e dependent t o a con-  s i d e r a b l e e x t e n t on amino a c i d c o n s t i t u e n t s p r o d u c e d i n t h e r o o t s , f o r b u i l d i n g up p r o t e i n .  He f u r t h e r s u g g e s t e d  that  6  amino a c i d s  are synthesized  only  i n the root.  i s reasonable t o suggest that s o i l as,  From t h i s i t  t e m p e r a t u r e i s as l i m i t i n g  i f n o t more l i m i t i n g t h a n , a i r t e m p e r a t u r e , f o r p l a n t  growth. 1.. 2  S o i l Temperature, a n d P l a n t  The the weathered regolith its  soil  i s a dynamic  Growth  n a t u r a l body c o n s i s t i n g o f  and b i o l o g i c a l l y molded upper p a r t o f t h e  (Buckman a n d B r a d y , 1 9 6 0 ) .  S o i l temperature  exerts  i n f l u e n c e on p l a n t g r o w t h t h r o u g h i t s p h y s i c a l , c h e m i c a l  and b i o l o g i c a l e f f e c t s on r o o t g r o w t h . reactions  Some o f t h e c h e m i c a l  i n t h e s o i l w h i c h a r e i n f l u e n c e d by t e m p e r a t u r e a r e  hydration, h y d r o l y s i s , oxidation, carbonation One by s o i l  and s o l u t i o n .  o f t h e most i m p o r t a n t p h y s i c a l f a c t o r s  temperature i s the v i s c o s i t y of water.  influenced  As t h e  temperature i s increased  t h e number o f h y d r o g e n  water diminishes  o f t h e r m a l movements o f t h e m o l e c u l e s ,  and t h e r e f o r e other  t h e energy o f a c t i v a t i o n w i l l  decrease.  w o r d s t h e l o w e r t h e t e m p e r a t u r e t h e more  bonding there greater  i s , a n d t h e more t h e h y d r o g e n  i s the v i s c o s i t y Entry  metabolic enters  because  bonds i n  hydrogen  bonding, the  ( N i e l s e n and Humphries,  o f water i n t o plant roots  a c t i v i t y , and t h e r e f o r e  In  1965).  d e p e n d s p a r t l y on  on t e m p e r a t u r e .  Some w a t e r  t h e r o o t p a s s i v e l y , a n d c o l d may s l o w i t s e n t r y by  increasing i t s viscosity  ( N i e l s e n and Humphries,  1966).  7  J  Kramer (1949) a t t r i b u t e d r e d u c e d u p t a k e o f w a t e r by t r a n s p i r i n g plants i n cold soils across the l i v i n g  to increased r e s i s t a n c e t o water  c e l l s o f t h e r o o t , and he r e p o r t e d  movement (1956)  t h a t t h e a d d i t i v e e f f e c t s o f t e m p e r a t u r e on v i s c o s i t y a n d p e r m e a b i l i t y o f protoplasm decreased the uptake o f water a t 5° t o a q u a r t e r o f t h a t a t 25°. Much i s known a b o u t t h e e f f e c t o f t e m p e r a t u r e on m i n e r a l a b s o r p t i o n b o t h by i s o l a t e d r o o t s a n d i n t a c t  plants.  U p t a k e o f i o n s d e p e n d s on e n e r g y s u p p l i e d by o x i d a t i o n o f c a r b o h y d r a t e s a n d a b s o r p t i o n i s t h e r e f o r e s l o w e d by c o l d temperature.  N u t r i e n t u p t a k e by i n t a c t p l a n t s i s o p t i m a l a t  l o w e r t e m p e r a t u r e t h a n i s t h a t o f e x c i s e d r o o t s , w h i c h shows t h a t t h e s h o o t i n f l u e n c e s u p t a k e by t h e r o o t a t h i g h e r temperatures.  N i e l s e n e t aJL. ( 1 9 6 0 ) f o u n d i o n s t o be more  c o n c e n t r a t e d i n t h e r o o t s o f l u c e r n e a t 5° t h a n ""at 1 2 ° , a l t h o u g h t o t a l u p t a k e was g r e a t e r a t 12°.  This they  attributed  t o e i t h e r t h e f a c t t h a t t r a n s p o r t from t h e r o o t s i s impeded a t 5 ° , o r b e c a u s e s u g a r s a r e more c o n c e n t r a t e d i n r o o t s a t  5°.  However, t h e g r o s s s i z e o f t h e r o o t s y s t e m - measured as t o t a l w e i g h t o r l e n g t h - i s n o t an e s t i m a t e o f i t s a b s o r b i n g c a p a c i t y because a l a r g e and c h a n g i n g p r o p o r t i o n o f t h e system ceases t o absorb  ( N i e l s e n and H u m p h r i e s , 1 9 6 6 ) .  They  also  c o n t e n d e d t h a t when r o o t s a r e a t a l o w t e m p e r a t u r e t h e y u s e l e s s c a r b o h y d r a t e s , a l l o w i n g carbohydrates t o accumulate i n t h e l e a f , t h u s s l o w i n g p h o t o s y n t h e s i s and s h o r t e n i n g t h e l i f e span o f t h e l e a f .  8  Temperature a f f e c t s i o n uptake  and t r a n s p o r t  through t h e p l a n t s i m i l a r l y because both a r e  energy-dependent  p r o c e s s e s , and a r e t h u s much s l o w e r i n t h e c o l d . (1955) suggested  Shtrausberg  t h a t c o l d r o o t s d i m i n i s h e d movement o f  n u t r i e n t s t o t h e s h o o t o f cucumber p l a n t s and s o i n h i b i t e d growth. Gas  exchange i n t h e s o i l  f u n c t i o n of temperature.  Temperature a f f e c t s n o t o n l y t h e  r a t e a t which oxygen i s used the r a t e a t which  atmosphere i s a l s o a  i n metabolic processes, but also  i t reaches t h e r o o t system.  A supply o f  o x y g e n i n t h e r o o t zone i s n e c e s s a r y t o m a i n t a i n r e s p i r a t i o n . Since the rate o f r e s p i r a t i o n varies with temperature, the s u p p l y o f o x y g e n n e c e s s a r y t o m a i n t a i n optimum p l a n t might  be e x p e c t e d a l s o t o v a r y w i t h t e m p e r a t u r e .  metabolism  Cannon  (1925) a t t r i b u t e d  t h e n e c e s s i t y f o r h i g h e r oxygen c o n c e n t r a -  tions i n the s o i l  atmosphere i n o r d e r t o m a i n t a i n normal  growth of  root  at higher temperatures, t o the decreasing s o l u b i l i t y  oxygen i n t h e s o i l  s o l u t i o n w i t h temperature  increase.  L e t e y ejt a l . ( 1 9 6 1 ) h o w e v e r w e r e o f t h e o p i n i o n t h a t i n c r e a s e d d i f f u s i o n r a t e o f oxygen t o t h e r o o t s u r f a c e i s more i m p o r t a n t b e c a u s e o f a h i g h e r d i f f u s i o n t h r o u g h b o t h gas and l i q u i d . high s o i l  temperatures  low t e m p e r a t u r e s .  coefficient  Oxygen d i f f u s i o n r a t e s a t  w e r e f o u n d t o be h i g h e r t h a n t h o s e a t  They a l s o showed t h a t t h e a c c u m u l a t i o n o f  Ca a n d P i n c o t t o n a n d s u n f l o w e r was s t i m u l a t e d by i n c r e a s e d oxygen s u p p l y .  I n a subsequent  r e p o r t ( L e t e y e t a l . , 1962)  9  o x y g e n d i f f u s i o n r a t e s w e r e shown t o i n c r e a s e 1.8% rise  in soil  temperature  One  f o r a g i v e n oxygen  per  degree  concentration.  o f t h e most i m p o r t a n t b i o l o g i c a l e f f e c t s o f  soil  temperature  i s i t s i n f l u e n c e on m i c r o b i a l  This  is particularly  activities.  i m p o r t a n t w i t h t h e pea p l a n t , a legume,  most i f n o t a l l o f t h e n i t r o g e n n u t r i t i o n o f w h i c h i s d e p e n d e n t on t h e a c t i v i t i e s leguminosarum. in  of the symbiotic b a c t e r i a , Rhizobium  G e n e r a l l y , i t i s t o be e x p e c t e d t h a t a r i s e  temperature, w i t h i n l i m i t s , would  lead to  increased  nodulation  and g r e a t e r n i t r o g e n - f i x i n g c a p a c i t i e s o f t h e  bacteria.  M e y e r and A n d e r s o n  h i g h t e m p e r a t u r e o f 30°  (19 59) f o u n d t h a t a m o d e r a t e l y  inhibited  symbiotic N f i x a t i o n i n  s u b t e r r a n e a n c l o v e r grown i n n u t r i e n t a g a r . c u l t u r e s , Mes Lupinus  (19 59) r e p o r t e d  l u t e u s and P i s u m  Later, using  t h a t p l a n t s of V i c i a  sativum reacted  t h e r e s u l t s o f M e y e r and A n d e r s o n . t e m p e r a t u r e f r o m 18, 19 o r 21°  soil  faba,  i n accordance  with  An i n c r e a s e i n day  t o e i t h e r 25 o r 27°  generally  d e c r e a s e d N p e r c e n t a g e and t h e t o t a l N c o n t e n t o f t h e p l a n t s . An  increase i n the night temperature  f r o m 10 t o 21°  generally  "  a l s o decreased the t o t a l N content although a c t u a l N percentage often increased.  I t was  emphasized  d e p e n d on w h e t h e r t h e s p e c i e s  that response  would  i s a warm- o r c o o l - t e m p e r a t u r e  plant. It  i s thus evident  on p l a n t g r o w t h  that the e f f e c t s of  temperature  a r e as c o m p l e x as t h e p l a n t i t s e l f .  The  e f f e c t s o f t e m p e r a t u r e a r e t h e r e f o r e n o t o n l y on t h e p l a n t  10  p e r se b u t a l s o on t h e p h y s i c a l and c h e m i c a l s t a t u s o f , and biological activities complex 1.3  i n , t h e s o i l o n one h a n d , and t h e  m e t a b o l i c r e a c t i o n s i n t h e p l a n t on t h e o t h e r h a n d . Temperature  and t h e Growth  o f t h e Pea p l a n t  Some o f t h e e a r l y r e p o r t s o n t h e e f f e c t s o f t e m p e r a t u r e on t h e g r o w t h a n d d e v e l o p m e n t B e a t t i e e t a l . (1942).  o f p e a s were s u m m a r i z e d  The p e a i s a c o o l w e a t h e r  by  species.  H i g h t e m p e r a t u r e c h e c k s i t s growth and c a u s e s i t t o f l o w e r and f o r m p o d s b e f o r e t h e p l a n t h a s a t t a i n e d enough s i z e t o b e a r a good c r o p , w h i l e c o o l w e a t h e r p e r m i t s a l o n g c o n t i n u e d g r o w t h a n d t h e f o r m a t i o n o f many pods t h a t do n o t r e a c h t h e harvest stage prematurely.  B r e n c h l e y (19 20) showed t h a t t h e  maximum r a t e o f i n c r e a s e i n t h e w e i g h t o f t h e p e a p l a n t was obtained p r i o r to flowering.  The r a t e f e l l  o f fafter reaching  t h i s maximum, b u t an a b r u p t r i s e was o b s e r v e d f o r a p e r i o d w h i c h may h a v e b e e n c o n n e c t e d w i t h t h e i n i t i a t i o n o f s e x u a l reproduction. L a t e r , Went (195 7) f o u n d t h a t g e r m i n a t i o n a t a h i g h t e m p e r a t u r e o f 26° was f a s t e r b u t t h e p l a n t s w e r e u n i f o r m t h a n when g e r m i n a t e d a t 23 o r 20°.  less  However, t h e  o p t i m a l t e m p e r a t u r e f o r stem e l o n g a t i o n d e c r e a s e d i n t h e c o u r s e of development.  A t t h e h i g h e s t t e m p e r a t u r e h a r d l y a n y s e e d s were  s e t , a n d p e a w e i g h t was l o w .  O n l y one o r a f e w s e e d s  developed  p e r p o d w i t h one o r two pods p e r p l a n t ; w h i l e a t t h e l o w e r t u r e s a l l o v u l e s grew i n t o s e e d s .  tempera-  F r e s h and d r y w e i g h t s o f t h e  11  w h o l e p l a n t w e r e a f f e c t e d b y t h e e n v i r o n m e n t i n a s i m i l a r way t o stem  elongation. Highkin  ( 1 9 6 0 ) showed t h a t a l a c k o f d a y / n i g h t  t u r e f l u c t u a t i o n was i n h i b i t o r y The  tempera-  f o r growth o f the pea p l a n t .  e x p e r i m e n t s i n d i c a t e d t h e need f o r c e r t a i n e n v i r o n m e n t a l  fluctuations during explanation  given  the e n t i r e l i f e  by H i g h k i n  cycle of the plant.  was t h a t an e n v i r o n m e n t  f l u c t u a t i o n s o n a 2 4-hour b a s i s  One  with  i s i n b e t t e r agreement  with  endogenous d i u r n a l rhythms w h i c h o c c u r i n p l a n t s as w e l l as i n a n i m a l s and a c o n s t a n t "incompatible" plant.  with  t e m p e r a t u r e e n v i r o n m e n t was  the " b i o l o g i c a l clock" operating  daily  work,  portions of  cycle. Wang a n d B r y s o n  (1956) f u r t h e r p o i n t e d  r e s p o n s e o f peas t o t e m p e r a t u r e v a r i e s w i t h stage o f development.  They d i v i d e d t h e l i f e  underground, s e e d l i n g , vegetative and  i n the  T h i s had l e d t o t h e wide u s e , i n e x p e r i m e n t a l  o f d i f f e r e n t t e m p e r a t u r e s i n t h e day and n i g h t the  considered  out that the  the plant's cycle  and r e p r o d u c t i v e  into stages,  showed t h a t t h e o p t i m u m t e m p e r a t u r e r a n g e c h a n g e d  a b o u t 14-24° t o 18-31° f o r t h e f i r s t  from  two s t a g e s ,  and t o  10-21° a s t h e p l a n t p a s s e d t h r o u g h t h e l a s t two  stages.  R e l a t i v e l y high  y i e l d s o f peas a r e o b t a i n e d  i n the  Lower M a i n l a n d o f B r i t i s h C o l u m b i a a s a r e s u l t o f g e n e r a l l y favourable  climatic conditions.  Studies  (1966) however i n d i c a t e d t h a t y i e l d s v a r y and  p l a n t i n g dates.  by F l e t c h e r e t a l . widely  between l o c a t i o n s  They e s t a b l i s h e d o p t i m u m s e a s o n a l  temperature f o r peas, i n f i e l d  experiments at Agassiz  mean and V a n c o u v e r .  12  A t A g a s s i z where t e m p e r a t u r e s exceeded  optimum t h e y o b t a i n e d  negative c o r r e l a t i o n of temperature with t o t a l dry matter p e a s p e r pod and p e a y i e l d .  At Vancouver  where  characteristics.  The  21-2 2°.  and  of  tempera-  some o t h e r  o p t i m u m t e m p e r a t u r e f o r p e a s was In c o n t r o l l e d environment  yield,  temperatures  were s u b o p t i m u m , t h e y o b t a i n e d a p o s i t i v e c o r r e l a t i o n t u r e w i t h t o t a l d r y m a t t e r y i e l d , pea y i e l d  a  growth  suggested  to  be a b o u t  studies,  Stanfield  et  a l . ( 1 9 6 6 ) f o u n d t h a t t h e c o m b i n a t i o n o f h i g h day and h i g h .  n i g h t t e m p e r a t u r e s c a u s e d an i n c r e a s e i n t h e number o f n o d e s t o the  f i r s t flower.  T i l l e r i n g was  t e m p e r a t u r e s and was  most p r o l i f i c  a b s e n t a t 32°  at the  day t e m p e r a t u r e .  lower Pea  yield  d e c r e a s e d as t e m p e r a t u r e i n c r e a s e d a b o v e 16/10° d a y / n i g h t  tempera-  t u r e s , due m a i n l y t o a r e d u c t i o n i n t h e number o f pods p e r  plant.  On  a d r y m a t t e r a c c u m u l a t i o n p e r day b a s i s , v i n e g r o w t h  a b o v e and b e l o w to  a t e m p e r a t u r e optimum w h i c h s h i f t e d f r o m  16/10° i n t h e c o u r s e o f p l a n t 1•  S o i l Temperature  4  decreased 21/16  development.  and t h e G r o w t h o f Some P l a n t s  T h e r e h a s n o t b e e n much r e s e a r c h i n t h e a r e a o f t h e i n t e r a c t i o n o f a i r and One  soil  t e m p e r a t u r e s on t h e g r o w t h o f  o f t h e f e w r e p o r t s on t h e e f f e c t o f s o i l  growth  i s t h a t o f Mack e t a l ^ . (19 6 4 ) .  peas.  t e m p e r a t u r e on  In a greenhouse  experiment  w i t h peas, d u r i n g which a i r t e m p e r a t u r e f l u c t u a t e d between maximum and  13°  1 7 , 21 and  2 5°.  minimum, s o i l  30°  t e m p e r a t u r e s were m a i n t a i n e d a t  They f o u n d t h a t d r y w e i g h t s o f p e a p l a n t s  e a r l y b l o o m were u s u a l l y h i g h e s t a t s o i l 25° .  pea  t e m p e r a t u r e s o f 21  13,  at and  13  The  influence of s o i l  o t h e r p l a n t s has been w i d e l y 1959 ) , s n a p b e a n and b a r l e y to  t e m p e r a t u r e on t h e g r o w t h o f  studied.  (Mack e t a l . , 1 9 6 4 ; S i n g h a n d Mack.  ;  1966),  (Power e t a l . , 1 9 6 3 ) g r o w t h h a v e b e e n f o u n d g e n e r a l l y  increase with increase i n s o i l  30°.  Tomato ( L i n g l e a n d D a v i s ,  Dormaar and K e t c h e s o n  also obtained  t e m p e r a t u r e f r o m a b o u t 10 t o  (1960) and N i e l s e n e t a l . (1961)  i n c r e a s e s i n t h e y i e l d o f c o r n as r o o t  tempera-  t u r e s w e r e i n c r e a s e d f r o m 5 t o 27°. 1.5  Field Manipulation  of Soil  Temperature  M o s t o f t h e work on i n f l u e n c i n g s o i l the  field  mulches  has been w i t h mulches.  of plant residues  germination  Unfortunately  lower the s o i l  1965).  Anderson  the natural  t e m p e r a t u r e and d e l a y  and e a r l y growth o f c r o p s p l a n t e d  and H u m p h r i e s ,  temperature i n  i n them ( N i e l s e n  and R u s s e l l (1964) o b t a i n e d  a  d e c r e a s e o f 0-3° f o r e a c h 1000 l b . / A o f b r i g h t w h e a t s t r a w . The  e f f e c t o f such mulches  i s to delay maturity  and t o r e d u c e  y i e l d s where a p p r e c i a b l e q u a n t i t i e s o f c r o p r e s i d u e s  are l e f t  on t h e s u r f a c e . Translucent  p l a s t i c f i l m s warm t h e s o i l  m i t t i n g much i n s o l a t i o n t o t h e s o i l  beneath.  by t r a n s -  Black  films  a b s o r b t h e i n s o l a t i o n , h e a t up and c o n d u c t much o f t h e h e a t the  atmosphere  temperature  leaving the s o i l  ( C l a r k s o n , 1960).  b e n e a t h a t n e a r l y t h e same *  into  14  L a r s o n and W i l l i s rows c a n a f f e c t s o i l  (195 7) showed t h a t t h e d i r e c t i o n o f  t e m p e r a t u r e s , n o r t h - s o u t h ones  permitting  more r a d i a t i o n t o r e a c h t h e s o i l w i t h r e s u l t a n t h e a t i n g t h a n east-west 1.6  ones. Apparatus  f o r Controlling  Soil  Temperature  W h i l e t h e r e h a v e b e e n many d i f f e r e n t p h y s i c a l  arrange-  ments o f a p p a r a t u s f o r c o n t r o l l i n g r o o t t e m p e r a t u r e s , t h e use o f w a t e r a s a c o o l i n g o r h e a t i n g medium h a s b e e n a common Thus C a m p b e l l Willis '  and P r e s l e y  ( 1 9 4 5 ) , C o o p e r e t a l . ( 1 9 6 0 ) and  e t a l . (1963) have d e s c r i b e d o p e r a t i o n s u s i n g w a t e r t o  control soil  temperature.  M e d e r s k i and Jones ture i n the f i e l d , plants.  (196 3) c o n t r o l l e d s o i l  soil  temperature.  temperatures  Mack a n d E v a n s  however e x c a v a t e d t h e i r p l o t a r e a and l a i d  placed over  T h i s t y p e o f work g i v e s a b e t t e r u n d e r s t a n d i n g o f  the p r a c t i c a l  implications of s o i l  more c o n t r o l l e d e n v i r o n m e n t  temperature  e f f e c t s , but  w o r k i s r e q u i r e d t o r e d u c e t h e number  t r e a t m e n t s needed f o r f i e l d  1965) .  (1965)  i n pipes to carry  b o t h h e a t e d and c o o l e d w a t e r t o c o n d i t i o n t h e s o i l the p i p e s .  tempera-  u s i n g h e a t i n g c a b l e s i m b e d d e d u n d e r rows o f  They w e r e t h u s o n l y a b l e t o work w i t h  above t h e normal  of  feature.  trials  ( N i e l s e n and Humphries,  15 B,  MINERAL NUTRITION OF PLANTS  1.7  Soil-Plant Relationships i n Plant Nutrition  If  other  are not l i m i t i n g  f a c t o r s s u c h as l i g h t , t e m p e r a t u r e a n d w a t e r  growth, then the appropriate  n u t r i e n t s may be l i m i t i n g . net  shift  there soil the  supply  of  P l a n t growth r e q u i r e s a continuous  o f ions from the s o i l  system i n t o t h e p l a n t ; t h a t i s ,  i s a steady i n p u t o f i o n s from t h e s o l i d phase i n t o t h e s o l u t i o n , and a c o n t i n u o u s m e t a b o l i c  soil  s o l u t i o n by t h e p l a n t  removal of ions  ( F r i e d and S h a p i r o ,  I o n u p t a k e by p l a n t s f r o m a s o i l  from  1961).  s y s t e m may be d i v i d e d  into 4 steps: (a)  the r e l e a s e o f the i o n from the s o l i d soil  (b)  phase i n t o t h e  solution  t h e movement o f t h e i o n f r o m a n y p o i n t i n t h e s o i l  solution  to the v i c i n i t y of the root (c)  t h e movement o f t h e i o n f r o m t h e v i c i n i t y o f t h e r o o t the  (d)  root  t h e movement o f t h e i o n t o t h e s h o o t o f t h e p l a n t The  is  into  o v e r a l l process of i o n absorption  thus considered  a m u l t i - s t e p phenomenon i n w h i c h v a r i o u s  may be r a t e l i m i t i n g ,  depending  on e x t e r n a l ( s o i l )  (plant) c o n d i t i o n s , the l a t t e r being  (Brouwer, The  steps  and i n t e r n a l  especially related to a  series of p h y s i o l o g i c a l processes concerning supply  and t r a n s p o r t  growth and energy  1965).  t r a n s f e r o f i o n s between t h e s o i l  s o l u t i o n phase i s a p p a r e n t l y  not rate l i m i t i n g  p h a s e and t h e f o reither  16  phosphorus  (P) o r c a t i o n s i n the o v e r a l l i o n u p t a k e  Thus f o r two  acid soils  and  one  ( 1 9 5 7 ) d e m o n s t r a t e d t h a t 13 hour. be the  The  soil  t o 15  rate of formation  greater  calcareous l b . P/A  of s o i l  Ohlrogge p r o c e s s and  can  i s therefore best  grams/plant/day or hour.  be r e l e a s e d  o f P by  a f a c t o r of at l e a s t  (1962) c o n s i d e r s  n u t r i e n t u p t a k e as a r a t e  e s t a b l i s h e s the  delivery capacity  crop.  a l s o remarked t h a t each phase o f p l a n t  Mechanism(s) of Ion  " P a s s i v e " and i n t o the  development  phases of and  plant  understood  can  Uptake  " a c t i v e " mechanisms o f the  r o o t have been p r o p o s e d .  t h e work o f Hylmo ( 1 9 5 8 ) ,  a c o n t i n u a t i o n of the  soil  so-called  "outer" or  limiting,  i o n uptake should  tion.  described  nourished  a s s e m b l e d i n t o an u n d e r s t a n d a b l e c y c l e .  1.8  by  an a d e q u a t e l y  Only a f t e r the  development have been c o m p l e t e l y t h e y be  from  e x p r e s s e d as a r a t e , t h a t i s  This  attention.  to  250.  per u n i t of time to maintain  deserves greater  each  found  the p l a n t  of a s o i l He  F r i e d et a l .  s o l u t i o n P was  than the r a t e of a b s o r p t i o n  s o l u t i o n by  soil,  process.  Generally,  and  Passive Epstein  i t i s not.  be  But  (1960).  This  envisions  into  the  i f d i f f u s i o n were r a t e -  d i r e c t l y p r o p o r t i o n a l to The  high  ions  entry i s supported  s o l u t i o n i n t o the r o o t  " f r e e " space.  entry of  temperature  concentra-  coefficients  of i o n accumulation f o r monovalent anions i n c l u d i n g phosphate, and  cations also indicate that d i f f u s i o n  ( F r i e d and  Shapiro,  1961).  i s not  rate-limiting  17  Active entry  o f i o n s , which i m p l i e s t h e use o f  e n e r g y , i s s u p p o r t e d by t h e work o f B r o u w e r ( 1 9 5 6 ) , Honert e t a l . (1955).  metabolic  and v a n den  I t i s g e n e r a l l y known t h a t t h e p a r t i t i o n  o f i o n s between s o l u t i o n and p l a n t  tissue deviates  f r o m t h e p a r t i t i o n w h i c h i s t o be  e x p e c t e d on t h e b a s i s o f f r e e  diffusion  (Brouwer, 1965).  A l t h o u g h much e f f o r t h a s b e e n  d e v o t e d t o t h e s t u d y o f t h e mechanisms u n d e r l y i n g ions, there only  isstill  conclusion  certainty i s that  d e p e n d s on m e t a b o l i c a l l y p r o d u c e d e n e r g y .  ( B u t l e r , 1953). transport  The this  Such a  i s a r r i v e d a t from t h e i n f l u e n c e o f oxygen  t e m p e r a t u r e , and i n h i b i t o r s o f m e t a b o l i s m , n o t a b l y  the  transport of  no c l e a r i n s i g h t i n t o t h e p r o c e s s .  s t a t e m e n t t h a t may be made w i t h  transport  considerably  supply,  dinitrophenol  The way i n w h i c h t h i s e n e r g y i s t r a n s f e r r e d t o  process,  According  however, remains  unclear.  to the electrochemical  theory  o f anion  r e s p i r a t i o n a s d e v e l o p e d by L u n d e g a r d h ( 1 9 5 5 ) , a d i r e c t r e l a t i o n s h i p e x i s t s between r e s p i r a t i o n and i o n . u p t a k e , and p a r t i c u l a r l y between a n i o n r e s p i r a t i o n and a n i o n t r a n s p o r t . assumed t o be t r a n s p o r t e d same t i m e e l e c t r o n s direction.  along  adsorption  only  tracks,  while  The c a t i o n s move i n w a r d s by e x c h a n g e a g a i n s t  the theory  one t r a n s p o r t  atthe  p r o d u c e d i n r e s p i r a t i o n move i n t h e r e v e r s e  i o n , also a product of r e s p i r a t i o n . against  The a n i o n s a r e  are that  the H  Most o f t h e c r i t i c i s m s  i t i s b a s e d on t h e a s s u m p t i o n o f  mechanism f o r a n i o n s and c a t i o n s .  18 Although the electrochemical theories of respiration  ( L u n d e g a r d h , 1 9 5 5 ) , and r e d o x pump (Conway, 1953)  h a v e h a d many s u p p o r t e r s , the  anion  c a r r i e r theory,  Hagen ( 1 9 5 2 ) .  much a t t e n t i o n i s now b e i n g  paid to  e s p e c i a l l y a f t e r t h e work o f E p s t e i n and  The e s s e n t i a l f e a t u r e s  i n the functioning of  c a r r i e r s a r e t h e c o m b i n a t i o n o f i o n and c a r r i e r m o l e c u l e s t h e membrane, t h e movement membrane,  o f t h e i o n - c a r r i e r complex a c r o s s the  and t h e subsequent d i s c h a r g e  t h e membrane.  outside  o f t h i s complex i n s i d e  A f t e r the d i s s o c i a t i o n of the ions  from the  c a r r i e r , t h e i o n s a r e p r e v e n t e d f r o m b a c k d i f f u s i o n by t h e impermeability  o f t h e membrane t o f r e e i o n s  This  theory  data  o f k i n e t i c a n a l y s i s (Thomas, 1 9 5 6 ) .  ( E p s t e i n , 1960).  i s b e l i e v e d t o be t h e most s a t i s f a c t o r y one b a s e d on  A number o f g r o u p s o f compounds h a v e b e e n s u g g e s t e d as c a r r i e r s still  although  unknown.  energy-rich  the chemical  Some p o s t u l a t e d  nitrogenous  of the c a r r i e r s i s  compounds i n c l u d e  phosphorylated  compounds ( S t e w a r d and S t r e e t , 1947)  and  ribonucleoproteins  the  n u c l e i c a c i d p o r t i o n binds  moiety binds  nature  (Tanada, 1956).  the anions.  Tanada s u g g e s t e d  the cations while  that  the protein  T h e r e seems t o be c o m p l e t e  agree-  ment t h a t i o n - b i n d i n g compounds m i g h t be c a p a b l e o f r e a d i l y u n d e r g o i n g o x i d a t i o n and r e d u c t i o n , o r o f u n d e r g o i n g some change i n energy l e v e l compounds  s u c h as w o u l d be i n v o l v e d w i t h  (Gauch, 1956).  phosphorylated  I n v i e w o f t h e i n c r e a s i n g amount o f  evidence that "energy-rich" triphosphate  organic  p h o s p h a t e s s u c h as a d e n o s i n e  (ATP) a c t as i n t e r m e d i a t e s  i n energy t r a n s f e r , i t  seems n o t u n r e a s o n a b l e t o c o n c l u d e t h a t a c t i v e t r a n s p o r t , other  other  endergonic processes,  like  d e p e n d s on e n e r g y d e r i v e d more o r l e s s  19 directly  from such  inhibitors but  such  substances.  The e f f e c t s o f p h o s p h o r y l a t i o n  a s DNP, on s a l t a b s o r p t i o n s u p p o r t s  s o f a r t h e r e i s no d i r e c t e x p e r i m e n t a l  this conclusion,  evidence  (Sutcliffe,  1962 ) . The  p o s i t i o n of the r a t e - l i m i t i n g step or steps i n the  o v e r a l l process  o f n u t r i e n t a b s o r p t i o n and t r a n s p o r t i s n o t  known f o r a l l e n v i r o n m e n t a l  c o n d i t i o n s and p l a n t s p e c i e s . I t .  c a n c o n c e i v a b l y be d u r i n g movement o f t h e i o n t o t h e v i c i n i t y o f the p l a n t r o o t , a t the t u r n - o v e r o f t h e i o n - c a r r i e r complex, o r at the t r a n s p o r t step t o the p l a n t t o p .  ( F r i e d and S h a p i r o ,  1961). 1.9  M i n e r a l Uptake and T r a n s p o r t  The  mineral composition  i n Plants  of a tissue  since i t i s subject to the physico-chemical growth processes. tions Others  in.young  changes m a n i f e s t i n i n high  t i s s u e a n d a r e d i l u t e d as t h e t i s s u e  are present  gradually  Some e l e m e n t s a r e p r e s e n t  i s dynamic  increase.  concentraenlarges.  i n low c o n c e n t r a t i o n s i n young t i s s u e and The a c c u m u l a t i o n  of dry weight  dilutes a l l  e l e m e n t s u n l e s s an i n f l u x o f m i n e r a l s o f f s e t s t h i s e f f e c t . There a r e i n s t a n c e s i n which a d d i t i o n s o f elements  lowered  o r h a d no e f f e c t on e l e m e n t c o n c e n t r a t i o n i n t h e p l a n t , b u t when t o t a l e l e m e n t p e r l e a f i n s t e a d o f c o n c e n t r a t i o n was t h e r e was a good c o r r e l a t i o n w i t h y i e l d ( S m i t h , Next t o t h e s u p p l y o f elements, of the t i s s u e  i s probably  the m i n e r a l composition  considered,  1962).  t h e p h y s i o l o g i c a l age  t h e most i m p o r t a n t  of a given species.  factor  affecting  Concentrations of  20  N, P and K d e c r e a s e w i t h age vegetables  (Bradley  and F l e m i n g , 1 9 6 0 ) .  age i n J a p a n e s e m i n t increase  with  M a c L e a n and constant. the  age  Byers  i n a p p l e ( R o g e r s e t a l . , 1953)  (Singh  and  i n vegetables.  M also decreases  Singh, 1968). With respect  (196 8) f o u n d t h a t Ca and Mg  and  with  Ca and  Mg  t o pea  plants,  remained  relatively  They e s t a b l i s h e d t e n t a t i v e l e v e l s o f N, P and K f o r  s t e m a p e x a t t h e 5 t h t o 8 t h - n o d e s t a g e s as 3.5,  0.20  and  2.5-3.0% r e s p e c t i v e l y . R e d i s t r i b u t i o n of elements w i t h i n the p l a n t c o n t i n u o u s p r o c e s s and one ( R o g e r s et_ aJL. , 1 9 5 3 ) . reflect and  as a n o t h e r  loses  Also, d i f f e r e n t parts of a plant  the P s t a t u s o f the p l a n t t o d i f f e r e n t degrees  Berry,  1961).  continuously  Studies  circulating  1958), but not l a t e r a l l y plants  t i s s u e gains  is a  with  will (Ulrich  t r a c e r P showed t h a t P i s  up and down t h e p l a n t  (Biddulph  ( R i n n e and L a n g s t o n , 1 9 6 0 ) .  show a ' l o s s o f l e a f K c o n c o m i t a n t w i t h  fruit  e t al_. ,  Many development.  N and K a r e r e g a r d e d as m o b i l e  (Lundegardh, 1947), but Bowling  and W e a t h e r l e y  that  (19 6 4) r e p o r t e d  communis r o o t s was are of  99% o f K a b s o r b e d by  accumulated i n the root t i s s u e s .  usually relatively  i m m o b i l e , b u t Mg  Ricinus  Ca and  Mg  c a n move u n d e r s t r e s s  deficiency. The  increase This  supply  o f one  e l e m e n t may  r e s u l t i n a simultaneous  i n the t i s s u e l e v e l o f t h a t element  as w e l l as i n a n o t h e r .  i s r e f e r r e d t o as a s y n e r g i s t i c e f f e c t , some e x a m p l e s o f i  which are:  the increase  i n l e a f Ca o f a v o c a d o f r o m a p p l i e d  ( E m b l e t o n et_ aJL. , 1958 ) , t h e i n c r e a s e resulting  i n l e a f Mg  of tung  N  also  f r o m a p p l i e d N ( N e f f e t a l _ . , 1 9 5 8 ) , and t h e d e c r e a s e  i n t o t a l N c o n t e n t o f J a p a n e s e m i n t due t o P d e f i c i e n c y  (Singh  21  and S i n g h , 1 9 6 8 ) . and p h o s p h a t e  E f f e c t s o f s u c h i o n s as n i t r a t e , s u l p h a t e  i n stimulating the absorption of other ions i s  p r o b a b l y due t o enhancement o f m e t a b o l i s m  (Sutcliffe,  1962).  A n t a g o n i s t i c e f f e c t s , t h a t i s where an i n c r e a s e i n one e l e m e n t  l e a d s t o a d e c r e a s e i n a n o t h e r , have a l s o  been  r e p o r t e d , n o t a b l y t h e d e c r e a s e i n l e a f P r e s u l t i n g f r o m an i n c r e a s e i n N s u p p l y t o V a l e n c i a orange  ( R e i t z and K o o , 1 9 6 0 ) .  M u l t i - e l e m e n t e f f e c t s , t h a t i s where t h e s u p p l y o f one  e l e m e n t may a f f e c t t h e t i s s u e c o n t e n t s o f o t h e r e l e m e n t s  are  a l s o common.  F o r example,  i n citrus,  an i n c r e a s e i n B has  no e f f e c t o n N, b u t i n c r e a s e s P and Ca w h i l e i t d e c r e a s e s K a n d Mg ( S m i t h a n d R e u t h e r , 1.10  1951).  M i n e r a l Uptake  a s I n f l u e n c e d by  Temperature  M i n e r a l u p t a k e by p l a n t s may be i n f l u e n c e d by e n v i r o n m e n t a l f a c t o r s , p r o m i n e n t among w h i c h a r e n u t r i e n t  availability  as w e l l a s s h o o t a n d r o o t t e m p e r a t u r e s . Increased s o i l of  soluble s o i l  t e m p e r a t u r e may r a i s e t h e c o n c e n t r a t i o n  and f e r t i l i z e r  P by i n c r e a s i n g t h e r a t e o f  m i n e r a l i z a t i o n of organic P or the chemical decomposition of insoluble of  i n o r g a n i c f o r m s o f P.  P i n solution  The e q u i l i b r i u m  i s a l s o r a i s e d by h i g h e r s o i l  ( A r a m b a r r i and T a l i b u d e e n , 1959). may r e d u c e P s o l u b i l i t y  increased s o i l  temperatures  However, h i g h e r s o i l  temperatures  by i n c r e a s i n g t h e r a t e o f i m m o b i l i z a t i o n  and c h e m i c a l f i x a t i o n o f P i n t h e s o i l . of  concentration  Thus, t h e net r e s u l t  t e m p e r a t u r e on P s o l u b i l i t y  will  depend o n  22  the  r e l a t i v e r a t e s a t w h i c h t h e s e p r o c e s s e s change w i t h  ture.  T h e s e r a t e s may v a r y c o n s i d e r a b l y f r o m one s o i l  (Hinman e t a l . , In  temperat o another  1962).  addition, variations  in soil  t e m p e r a t u r e may  also  a f f e c t n u t r i e n t u p t a k e t h r o u g h c h a n g e s i n t h e amount o f , root extension. growth  When t e m p e r a t u r e  i s reduced below  and e x t e n s i o n a r e a l s o r e d u c e d .  optimum, r o o t  T h i s may be due t o  reduced t r a n s l o c a t i o n o f carbohydrates from the t o p s , o r t o reduced n u t r i e n t uptake from the s o i l , o r both  (Richards et a l . ,  1952). A number o f s t u d i e s h a v e b e e n c a r r i e d o u t t o d e t e r m i n e the  interactive  influences of s o i l  t i o n on P u p t a k e . Mack e t a l _ .  I n a greenhouse  (1964) m a i n t a i n e d s o i l  t e m p e r a t u r e and P f e r t i l i z a e x p e r i m e n t w i t h p e a s and temperatures o f about  beans,  13, 17,  21 a n d 25° w i t h r a t e s o f P a p p l i c a t i o n r a n g i n g f r o m 0 t o 280 l b . per acre.  P i n c r e a s e d i n t h e bean and pea p l a n t s w i t h  and a p p l i e d P.  D u r i n g the e a r l y stages o f t h e growth  an i n c r e a s e i n s o i l  1963).  of corn,  t e m p e r a t u r e i n c r e a s e d t h e u p t a k e o f N, P a n d  K, b u t d i d n o t s i g n i f i c a n t l y p l a n t s sampled  temperature  influence the composition of corn  a t 60 d a y s o r a t m a t u r i t y ( M e d e r s k i and J o n e s ,  The P c o n t e n t o f a n n u a l r a n g e f o r a g e l e g u m e s  also  i n c r e a s e d w i t h t e m p e r a t u r e a n d P f e r t i l i t y ( M c K e l l e t a l _ . , 1962 ) . S i n g h a n d Mack ( 1 9 6 6 ) f o u n d t h a t w h i l e P a n d K c o n t e n t s o f snapbean s h o o t s were i n c r e a s e d a t h i g h s o i l  temperatures o f  up t o 24°, t h e r e was no c o n s i s t e n t e f f e c t o f s o i l N, Ca a n d Mg c o n t e n t s .  t e m p e r a t u r e on  G e n e r a l l y , P was h i g h e s t i n s h o o t and p o d ,  K i n p o d , Ca i n s h o o t , a n d Mg i n r o o t and s h o o t .  I n t h e tomato  23  plant, Locascio  and Warren (1960) r e p o r t e d  with increase i n s o i l L i n g l e and Davis  soil  t e m p e r a t u r e up t o b e t w e e n 21 a n d 30°.  o f t h e tomato p l a n t tended t o d e c r e a s e a t  temperatures.  N i e l s e n and Cunningham ( 1 9 6 4 ) ,  f o u n d t h a t w i t h i n t h e r a n g e o f 11 t o 2 8° greatly the  increased percent  concentrations The  o f N, P a n d K i n I t a l i a n  effect of soil-applied  temperature than a t a higher  beans (Apple  increased  Ca a n d Mg b u t h a d l i t t l e  soil  and B u t t s , 1953), corn  however,  soil  temperature  i n f l u e n c e on  ryegrass.  P i n i n c r e a s i n g the per-  c e n t a g e P i n t h e p l a n t s was s i g n i f i c a n t l y soil  content  ( 1 9 5 9 ) a l s o f o u n d i n c r e a s e i n P, b u t Ca a n d  Mg c o n c e n t r a t i o n s high  increase i n P  greater at a  lower  temperature, f o r pole  (Ketcheson,  1957), and  r e d c l o v e r ( R o b i n s o n e t aJL. , 1959 ). 1.11  E f f i c i e n c y o f Phosphorus F e r t i l i z e r  Placement  Some o f t h e methods o f a p p l i c a t i o n o f f e r t i l i z e r s a r e banding, surface broadcasting  a n d l e a v i n g on s o i l  discing into the s o i l ,  a p p l i c a t i o n , and a d d i n g t o i r -  r i g a t i o n water.  foliar  Some f e r t i l i z e r  surface or  m a t e r i a l s may be s a t i s f a c t o r i l y  a d d e d by s e v e r a l o f t h e a b o v e a p p l i c a t i o n m e t h o d s . fertilizer  Other  m a t e r i a l s a r e r a t h e r s p e c i f i c i n t h a t they  must be  a p p l i e d by a c e r t a i n method i f good r e s u l t s a r e t o be o b t a i n e d . Phosphorus i s c l a s s i f i e d  as an " i m m o b i l e " n u t r i e n t  b e c a u s e i t does n o t r e a d i l y move i n t h e s o i l . n u t r i e n t s , f o r e x a m p l e n i t r o g e n , may become  While  "mobile"  positionally  a v a i l a b l e f o r p l a n t a b s o r p t i o n b y two f o r c e s :  by v i r t u e o f i t s  m o v i n g i n t o t h e r o o t z o n e , o r by v i r t u e o f r o o t g r o w t h t o t h e  24  nitrogen, P i s positionally because of r o o t e x t e n s i o n one  quantity  makes P p o s i t i o n a l l y  P has  of f e r t i l i z e r  placement methods. fertilizer  permitted  P a b s o r b e d by  P.  Only  a v a i l a b l e to  the  determination  the  p l a n t s was  that  less f o r broadcast  seed or f o r m i x i n g i n the  s u c h f a c t o r s as  c h e m i c a l form of  s o i l moisture,  The  temperature,  was  i n v e r s e l y r e l a t e d to s o i l moisture  to f i e l d  capacity  plants) greatly increased p h o s p h a t e by  oats.  This  (achieved the  lowering  by  the  means t h a t d u r i n g  c l o v e r , e s p e c i a l l y a t low  the  b a n d p l a c e m e n t was  dry  periods  of  periods  super-  broad-  more r e a d i l y a b s o r b e d  temperatures.  of P i n a p o r t i o n of the  made d u r i n g  moisture  P from  the  the soil  root  particularly o f low  t h a t make most o f t h e i r g r o w t h d u r i n g  for  They c o n c l u d e d  t h e more e f f e c t i v e b e c a u s e o f an  t h a t band a p p l i c a t i o n w o u l d be seedings  of s o i l  R o b i n s o n et a l . (1959) e s t a b l i s h e d  red  corn  d a i l y watering  s u p e r i o r i t y of band placement o v e r P mixed w i t h  concentration  and  tension.  uptake of f e r t i l i z e r  p l o u g h e d - u n d e r P m i g h t be  t h a n b a n d e d P.  are  P.  Simpson (1960) a l s o o b s e r v e d t h a t the  c a s t and  than  row.  O l s e n e_t a l . ( 1 9 6 1 ) f o u n d t h a t P u p t a k e by  tension  the  p l a n t u p t a k e o f b a n d e d compared w i t h b r o a d c a s t P  d e p e n d e n t on  seedlings  of  plants with d i f f e r e n t  N e l s o n e t a l . (1949) r e p o r t e d  P a b s o r b e d by  placement w i t h  e f f e c t s on  the  zone o f f e r t i l i z e r  (Welch e t a l , 1966). Radioactive  for  i n t o the  action force therefore  plants  a v a i l a b l e t o the p l a n t p r i m a r i l y  zone.  that  increased  They e m p h a s i z e d  important:  (1)  for  t e m p e r a t u r e , (2) f o r c r o p s c o l d w e a t h e r , and  (3)  for  25  soils in  low  i n a v a i l a b l e phosphate, p a r t i c u l a r l y i f they are  fixing  capacity. N e l s o n et a l . (1949) s t a t e d t h a t  P i n the P per  row  was  acre,  frequently  three  i s r a i s e d to a higher  l e v e l by  o f band a p p l i c a t i o n as expected to  1.12  the  influenced questionable  the  the  and  a universal  chemical  Soil analysis  c a s e s where h i g h  available P  soil  known t o g i v e  not  the soil  advantage  soil  includes  is  analysis  the  use  of  fertility acids,  neutral salts for extracting particular nutrients This  shown a c o m p l e t e r a n g e o f e r r o r and  was  of a  method o f d e t e r m i n i n g s o i l  method may  e r r o r s made, i n c l u d i n g c a s e s where s o i l  fertilizer,  of  Intact-Plant Nutrition  b e c a u s e many c a s e s h a v e b e e n c i t e d p o i n t i n g t o  4.6)  status  uptake of s a l t s from the  p r e d i c t i n g n u t r i e n t needs.  pH  P status  broadcast a p p l i c a t i o n  by many f a c t o r s makes s o i l  (Lundegardh, 1947). b a s e s , and  initial  with  decrease.  fact that  as  concluded  compared  fertility  compared w i t h  l b s . broadcast  locations  fertilization,  Case f o r P l a n t A n a l y s i s  The  and  As  fertilizer  W e l c h et_ a l . ( 1 9 6 6 )  at three  r e l a t e d to the  l b s . of  400  r e l a t i v e e f f i c i e n c y o f b r o a d c a s t as  to which P i s applied.  w o u l d be  200  e f f e c t i v e as  different soils  b a n d e d P a p p e a r s t o be soil  as  i n increasing corn y i e l d s .  working with t h a t the  high  are and  obtained  low  P  a n a l y s i s f o r P'have  (60-145 l b s . p e r a strong  1964).  misleading  prediction  unreliability.  (28-30 l b s . p e r  (Clements,  be  There  acre foot  response to  are  at  phosphate  a c r e f o o t ) where r e s p o n s e  26  Thus s o i l  a n a l y s i s may  g i v e readings which  show  r e l a t i o n s h i p e i t h e r t o p l a n t a b s o r p t i o n o r r e s p o n s e , and concluded t h a t the o c c a s i o n a l c o r r e l a t i o n o f s o i l crop y i e l d  c a n o n l y be r e g a r d e d as f o r t u i t o u s .  between s o i l degree  a n a l y s i s and  of r e l i a b i l i t y  analysis  adequacy, s i n c e o n l y those n u t r i e n t plant determine p l a n t and  soil  growth  A  comparison  (Lundegardh,  i s t h u s v e r y w i d e l y u s e d as a g u i d e t o  and  fruiting.  a n a l y s e s may  nutrient requirement, r e l i a b i l i t y  i n a higher  1947).  Tissue  nutrient  s a l t s which have e n t e r e d t h e However a c o m b i n a t i o n  be t h e i d e a l  E v e n where t i s s u e a n a l y s i s  Clements  analysis with  l e a f a n a l y s i s has r e s u l t e d  f o r the l a t t e r  no  of  approach.  i s u s e d as a g u i d e  to  i s s t r e n g t h e n e d by t h e u s e  intact plants for nutrient studies.  Thus i t has b e e n  of  suggested  by W i l l i a m s ( 1 9 5 5 ) t h a t much c a u t i o n i s n e c e s s a r y when u s i n g r e s u l t s from a b s t r a c t procedures the i n t e r p r e t a t i o n of growth Sutcliffe  s u c h as t i s s u e  culture for  processes w i t h i n the i n t a c t  plant.  ( 1 9 6 2 ) i s a l s o o f t h e o p i n i o n t h a t w h i l e much c a n  l e a r n e d about  t h e m e c h a n i s m o f i o n movements a t t h e  be  cellular  l e v e l by t h e s t u d y o f homogenous t i s s u e s , t h e r e l e v a n c e o f  such  k n o w l e d g e t o t h e p r o c e s s e s g o i n g on i n t h e i n t a c t p l a n t must u l t i m a t e l y be d e m o n s t r a t e d  r a t h e r t h a n assumed.  27  C.  THE PHYSIOLOGY OF GROWTH RETARDING CHEMICALS 1.13  General  The  d i v i s i o n and c e l l  e l o n g a t i o n i n shoot t i s s u e s  regulate plant height p h y s i o l o g i c a l l y without  effects. be  Chemicals  t e r m '.'growth r e t a r d a n t " i s u s e d f o r a l l c h e m i c a l s  that slow c e l l and  A s p e c t s o f Growth R e t a r d i n g  formative  The p h y s i o l o g i c a l a c t i o n r e q u i r e d f o r a c h e m i c a l t o  a growth r e t a r d a n t excluded  many k i n d s o f g r o w t h r e g u l a t o r s  such as auxins., h e r b i c i d e s o f growth r e g u l a t o r t y p e , inhibitors (Cathey.  l i k e maleic  hydrazide,  and g e r m i n a t i o n  growth  inhibitors  1964). S e v e r a l groups o f growth r e t a r d i n g chemicals  been r e p o r t e d .  They b e l o n g  to quite distinct  b u t h a v e s i m i l a r e f f e c t s on p l a n t g r o w t h . ammonium c a r b a m a t e s  (Halevy  have  chemical  classes  They i n c l u d e  quaternary  and C a t h e y , 1 9 6 0 ) , phosphonium  compounds ( P r e s t o n a n d L i n k , 1 9 5 8 ) , a n d s u c c i n a m i c  acid deriva-  t i v e s . ( R i d d e l l e t a l . , 1962).  (2-chloroethy1)trimethy1ammonium c h l o r i d e  (Cycocel)  2,4-dichlorobenzylCI  tributyIphosphonium chloride  (Phosfon)  28  N-dimethylamino acid  succinamic  (B-Nine)  W h i l e some o f t h e compounds a r e p a r t i c u l a r l y on  some g r o u p s o f p l a n t  species,  there  active  i s no o b v i o u s c o r r e l a t i o n  between taxonomic c l a s s i f i c a t i o n and p l a n t response t o a p a r t i c u l a r compound. 55  species 1.14.  C a t h e y and S t u a r t  t e s t e d were r e s p o n s i v e  (1961) found t h a t  19 o u t o f  t o s o i l applications of Cycocel.  S t r u c t u r a l Requirements f o r A c t i v i t y  Substituted  Cholines.  ammonium c h l o r i d e ( C y c o c e l , considered  CCC) i s t h e most a c t i v e .  an a n a l o g o f c h o l i n e .  s a l t s a r e a c t i v e compounds.  (2-chloroethyl) trimethylI t was  The b r o m i d e a n d c h l o r i d e  The t r i m e t h y l q u a t e r n a r y  ammonium  c a t i o n i s n e c e s s a r y f o r a c t i v i t y , any s u b s t i t u t i o n f o r even one  m e t h y l group has been found t o produce n e a r l y  compounds. the  For optimal  substituent  2,4-dichlorobenzyl The  a c t i v i t y , the carbon chain which  a t t h e end s h o u l d  Phosphoniums.  inactive " contains  be 2 c a r b o n s i n l e n g t h .  The most a c t i v e s t r u c t u r e i s t h a t o f  tributylphosphonium  chloride  (Phosfon).  t r i b u t y l q u a t e r n a r y phosphonium c a t i o n i s n e c e s s a r y f o r  a c t i v i t y , any s u b s t i t u t i o n o f s h o r t e r a l k y l groups o r p h e n y l g r o u p s f o r e v e n one b u t y l g r o u p l e a d s optimal the  activity  to loss of a c t i v i t y .  t h e benzene r i n g s h o u l d  have a s u b s t i t u e n t i n  4 - p o s i t i o n a n d be s m a l l i n s i z e , n u c l e o p h i l i c and n o n -  ionizable.  For  29  Succinamic  acids.  (B-Nine, A l a r ) i s unique retardant.  N-dimethylamino  succinamic  acid  i n i t s c h e m i c a l s t r u c t u r e as a  I t does not c o n t a i n a benzene r i n g ,  growth  quaternary  ammonium o r p h o s p h o n i u m c a t i o n , o r s u b s t i t u e n t s t h a t a r e o f s m a l l s i z e , n u c l e o p h i l i c and and p h o s p h o n i u m s . C-C-N-N s y s t e m  non  ionizable  l i k e the s u b s t i t u t e d c h o l i n e s  B-Nine i s a f r e e , i o n i z a b l e a c i d w i t h t h e  found  i n B - h y d r o x y e t h y l h y d r a z i n e and  hydrazine.  The  u n s a t u r a t e d form, N-dimethylamino  acid  was  u n s t a b l e i n aqueous s o l u t i o n s .  (CO^)  maleic  maleamic The  analogous  compounds d e r i v e d f r o m p h t h a l i c a c i d w e r e i n a c t i v e .  The  o f B - N i n e were a c t i v e compounds b u t l e s s so t h a n t h e  acids.  The  m e t a l and a l k a n o l a m i n e  and  f u n c t i o n e d as g r o w t h 1.15  amides  s a l t s o f B-Nine were r e a d i l y  r e t a r d a n t s (Cathey,  formed  1964).  P o s s i b l e Mode(s) o f A c t i o n  C e r t a i n growth gibberellic acid  (GA)  r e t a r d a n t s h a v e b e e n shown t o  production i n Fusarium  (Hinneman e t a l . , 1965)  and p e a  seeds  reduce  moniliforme  ( B a d l e v e_t a l _ . , 1965 ).  O t h e r r e p o r t s show an i n t e r a c t i o n w i t h a u x i n r a t h e r t h a n Cleland  ( 1 9 6 5 ) and  action with auxin. diffusible growth  K u r a i s h i and M u i r  ( 1 9 6 3 ) showed an  K u r a i s h i and M u i r o b s e r v e d  The  e f f e c t on a u x i n has  operate through a decrease  inter-  a decrease  endogenous a u x i n c o n t e n t i n p l a n t s t r e a t e d  retardants.  GA.  in  with  been s u g g e s t e d  to  i n b i o s y n t h e s i s as shown f o r t a l l  and d w a r f p e a s by Reed e t a l . ( 1 9 6 5 ) o r by an i n c r e a s e i n a u x i n d e g r a d a t i o n as shown f o r c u c u m b e r by H a l e v y  ( 1 9 6 3 ) , o r by  both.  30  B e c a u s e t h e e f f e c t s o f g r o w t h r e t a r d a n t s a r e i n many aspects  opposite to those  o f g i b b e r e l l i n s , t h e y were g e n e r a l l y  designated a n t i g i b b e r e l l i n s . t h a t t h e y be  Lockhart  (1962), however,  considered a n t i m e t a b o l i t e s , s i n c e the route  u l t i m a t e e x p r e s s i o n by t h e p l a n t s may r e g a r d t o the sequence of m e t a b o l i c expressions.  I t thus  steps leading to  seems t h a t t h e p r i m a r y  More b a s i c a s p e c t s  such  e f f e c t s of  of metabolism  may  1.16  hormonal  be  reviewed  (1.20).  E f f e c t s of Growth R e t a r d i n g Chemicals  The  the  be i n v o l v e d .  F u r t h e r w o r k on t h e p o s s i b l e m e c h a n i s m o f a c t i o n w i l l under " B i o c h e m i c a l Aspects''  to  vary with species i n  growth r e t a r d a n t s are not n e c e s s a r i l y r e s t r i c t e d t o the level.  suggested  on  Plants  plant growth-regulating p r o p e r t i e s of (2-chloro-  e t h y l ) t r i m e t h y l a m m o n i u m c h l o r i d e ( C y c o c e l ) were r e p o r t e d f o r w h e a t by T o l b e r t ( 1 9 6 0 ) who f r o m 0.13  t o 1300  ppm  found  that concentrations  ranging  l e d to a r e d u c t i o n i n s i z e , which  was  a c c o m p a n i e d by a d a r k e r g r e e n c o l o u r t h a n i n u n t r e a t e d p l a n t s . Adedipe e t a l . (1968) found pea  1.3  ppm  to s t i m u l a t e the growth  p l a n t s , to reduce the c h l o r o p h y l l c o n c e n t r a t i o n of  l e a v e s , and  t o i n c r e a s e pea  yield.  Knavel  Untreated  pea  (196 8) r e p o r t e d t h a t  C y c o c e l - t r e a t e d t o m a t o p l a n t s c o n t a i n e d more N, than other p l a n t s .  of  P,  Ca and  Mg  p l a n t s c o n t a i n e d more K t h a n  the  treated plants. 2,4-dichlorobenzyl tributylphosphonium chloride (Phosfon)  was  r e p o r t e d by P r e s t o n and  Link  (1958) t o r e t a r d  the  g r o w t h o f a l a r g e number o f s p e c i e s mungbean and  sweet  The succinamic  pea.  growth-retarding  c a p a b i l i t i e s of  a c i d ( B - N i n e ) have been r e p o r t e d  (1965) f o r p e t u n i a s for  i n c l u d i n g soybean, snapbean,  and  a p p l e s , p e a r s and  b e t w e e n 500  and  c u c u m b e r s , and  by  sweet c h e r r i e s .  2000 ppm  retarded  the  N-dimethylamino  by J a f f e and  B a t j e r e_t a l _ . ( 1 9 6 4 )  Generally, g r o w t h and  concentrations caused  m a r k e d i n c r e a s e i n t h e amount o f b l o o m on t h e f r u i t following spring.  A p p l i c a t i o n s o v e r two  w e r e f o u n d t o h a v e no o f N,  P,  apples  K,  Ca,  Mg,  appreciable  Mn,  Zn,  P and  Ca  B; f r u i t  t h a n by  acted  suppressing  as a g e n e r a l  trees  consecutive  s e t and Knavel  i n tomato p l a n t s .  B - N i n e a t a c o n c e n t r a t i o n o f 2000 ppm a b o u t 4 0% and  a the  years  i n f l u e n c e on t h e f o l i a r  (Southwick et a l . , 1968), but  i n c r e a s e s i n N,  Isenberg  total yield (196 8)  levels of  reported  When a p p l i e d t o  reduced shoot  length  i n h i b i t o r of growth  growth of p a r t i c u l a r organs  peas,  rather  (Sprent,  1967) . I n c o m p a r a t i v e s t u d i e s by C a t h e y and w i t h b u c k w h e a t and hypocotyls,  sweet pea,  P h o s f o n was  more e f f e c t i v e Both Cycocel  cucumber  i n growth  t o B-Nine d i d not p e r s i s t  ( M a j u m d e r , 1 9 6 8 ) ; and  t h a n B-Nine f o r r e d u c i n g  and  (Knavel, 1968).  to Phosfon  (1961)  ammonium compounds ( i n c l u d i n g  G r o w t h r e t a r d a t i o n due  l o n g as t h a t due  by Moore (196 7) w i t h  f o u n d t o be more e f f e c t i v e  r e t a r d a t i o n than quaternary Cycocel).  and  Stuart  B - N i n e i n c r e a s e d N,  Cycocel  as was  t o m a t o p l a n t growth..  P and  Ca and  decreased  T h e s e g r o w t h r e t a r d a n t s h a v e h i t h e r t o most  f r e q u e n t l y been used a t h i g h  concentration.  K  D.  BIOCHEMICAL ASPECTS OF TEMPERATURE, PHOSPHORUS AND GROWTH RETARDING CHEMICAL RESPONSES 1.17  B i o c h e m i s t r y o f Temperature Response  Went ( 1 9 4 4 ) gave one o f t h e e a r l y r e p o r t s c o n c e r n i n g the  e f f e c t s o f t e m p e r a t u r e on p h y s i o l o g i c a l p r o c e s s e s .  In the  t o m a t o p l a n t , t r a n s l o c a t i o n o f s u g a r s was f o u n d t o be g r e a t e r at  18° t h a n a t 26.5°C, w h i l e t h e u p t a k e o f r a d i o p h o s p h o r u s  f r o m t h e s o i l was g r e a t e r a t 2 6.5 t h a n a t 18°.  B o n n e r (194 3)  r e p o r t e d a s e t o f e x p e r i m e n t s i n w h i c h t h i a m i n e was a p p l i e d t o Cosmos p l a n t s grown a t d i f f e r e n t t e m p e r a t u r e r e g i m e s .  The  r e s p o n s e s o b t a i n e d were t a k e n t o i n d i c a t e a case o f a c h e m i c a l l y r e p a r a b l e low temperature l e s i o n  (Bonner,  1957).  G a l s t o n a n d Hand ( 1 9 4 9 ) p r e s e n t e d d a t a t o p r o v i d e evidence f o r a high-temperature induced reduction o f the a b i l i t y of  t h e pea p l a n t t o s y n t h e s i z e adenine.  These r e s u l t s  were  o b t a i n e d f r o m e x p e r i m e n t s on t h e a d d i t i o n o f a d e n i n e a l o n e , and i n t h e p r e s e n c e o f IAA t o s u b - a p i c a l s e c t i o n s o f e t i o l a t e d p e a e p i c o t y l s a t 25 and 35°. the  G a l s t o n (1957) l a t e r  reported  response t o adenine o f i n t a c t green p l a n t s o f pea. A l l  p l a n t s were k e p t a t 2 3° d u r i n g t h e d a y b u t d i f f e r e n t g r o u p s were s u b j e c t e d t o d i f f e r e n t n i g h t t e m p e r a t u r e s r a n g i n g f r o m 2 t o 30°. The  responses l i s t e d  f o r stem h e i g h t and stem f r e s h w e i g h t a r e  l e s s pronounced t h a n f o r l e a f f r e s h w e i g h t , where a d e n i n e appears t o e x e r t i t s g r e a t e s t e f f e c t .  However, even i n t h i s  c a s e , t h e s t i m u a l t i o n b y a d e n i n e i s much t h e same o v e r t h e e n t i r e temperature range, i n d i c a t i n g that temperature i s not i n d u c i n g an a d e n i n e d e f i c i e n c y .  L a n g r i d g e and G r i f f i n g  (1959),  33  in a statistical  a n a l y s i s o f t h e pea d a t a concluded t h a t t h e r e  w e r e no s i g n i f i c a n t growth  temperature-adenine  i n t e r a c t i o n s as f a r as  i n e p i c o t y l l e n g t h was c o n c e r n e d .  K e t e l l a p e r and Bonner  (1961) a l s o o b s e r v e d t e m p e r a t u r e - i n d u c e d i n h i b i t i o n o f p l a n t growth. the  P l a n t s w e r e grown a t d i f f e r e n t t e m p e r a t u r e s ,  including  o p t i m a l temperature, and s p r a y e d r e g u l a r l y w i t h a m i x t u r e o f  B v i t a m i n s , v i t a m i n C, c a s e i n h y d r o l y s a t e , s u c r o s e o r r i b o s i d e s . A p p l i c a t i o n o f 1 0 % s u c r o s e s o l u t i o n t o p e a p l a n t s grown i n artificial  light  a t 23° d a y and 17° n i g h t t e m p e r a t u r e s  (23/17°)  c a u s e d a 56% i n c r e a s e i n d r y w e i g h t , w h i c h made t h e d r y w e i g h t e q u a l t o t h a t o f p l a n t s grown i n o p t i m a l c o n d i t i o n s  (17/17°).  T r e a t m e n t o f p e a p l a n t s k e p t a t 30/2 3° w i t h a v i t a m i n B m i x t u r e or  r i b o s i d e s gave up t o 4 0 % i n c r e a s e i n d r y w e i g h t . Many o f t h e s e g r o w t h  stimulations reportedf o r  f l o w e r i n g p l a n t s were however o f poor r e p r o d u c i b i l i t y .  More  c l e a r - c u t r e s u l t s have been o b t a i n e d w i t h A r a b i d o p s i s t h a l i a n a , using aseptic culture techniques, closely m e n t a l c o n d i t i o n s and s t a t i s t i c a l growth  interactions.  high temperature  controlled  environ-  t e s t s f o r temperature-supplement-  L a n g r i d g e and G r i f f i n g  lesions i n the plant.  (1959) d e t e c t e d  They grew 43 r a c e s a t  c o n s t a n t t e m p e r a t u r e o f 2 5 , 30 a n d 31.5°.  Five of these races  w e r e d e p r e s s e d i n g r o w t h , and m o r p h o l o g i c a l l y a b n o r m a l when c u l t u r e d a t 31.5°.  F u r t h e r e x p e r i m e n t s e s t a b l i s h e d t h a t i n two  races the temperature  l e s i o n was c o m p l e t e l y p r e v e n t e d i f b i o t i n  was s u p p l i e d a t t h e r a t e o f 3 ug p e r p l a n t .  The t e m p e r a t u r e  34 ^ l p s i o n i n t h e t h i r d r a c e was p a r t i a l l y  alleviated  i n the presence  o f c y t i d i n e a t 250 / u g / p l a n t , w h i l e t h e o t h e r two r a c e s d i d n o t respond t o supplements. implications  I t was c o n c l u d e d t h a t t h e r e a r e g e n e t i c  i n the response of p l a n t s t o temperature; i n t h i s  c a s e , t h e r e a r e two gene f u n c t i o n s . G e n e r a l l y , t h e o r g a n i c compounds most o f t e n u s e d t o counteract high temperature e f f e c t s are glutamic a c i d , biotin  ( L a n g r i d g e , 196 3) and a d e n i n e .  d i f f e r e n c e s i n , and m u l i p l i c i t y  thiamin,  With r e s p e c t t o the  o f , compounds r e q u i r e d ,  L a n g r i d g e o f f e r e d some e x p l a n a t i o n s .  At temperature  extremes  t h e r a t e o f g r o w t h may be l i m i t e d by t h e v e l o c i t y o f a s i n g l e reaction.  I n many m i c r o o r g a n i s m s g r o w t h c e a s e s a t t e m p e r a t u r e s  usually only s l i g h t l y  a b o v e t h e o p t i m u m , b u t may be r e s t o r e d  by t h e a d d i t i o n o f a s i n g l e s u b s t a n c e . ture i s raised  a little  I f the growing  tempera-  h i g h e r , a f u r t h e r s u b s t a n c e becomes  n e c e s s a r y a n d t h e s e r e q u i r e m e n t s become p r o g r e s s i v e l y numerous w i t h i n c r e a s i n g t e m p e r a t u r e .  more  Thus, temperature  lesions  do n o t f o r m a homogeneous c l a s s a s f a r as m e c h a n i s m s r e s p o n s i b l e f o r the requirements are concerned.  The p o s s i b l e c a u s e s f o r  h i g h temperature growth requirements i n c l u d e  (a) a c c e l e r a t e d  breakdown o f m e t a b o l i t e s (b) o c c u r r e n c e o f r a t e  imbalance  ( c ) n o n - f o r m a t i o n o f a d a p t i v e enzymes due t o h e a t of r i b o n u c l e i c a c i d  destruction  (RNA) a n d ( d ) r e v e r s i b l e and i r r e v e r s i b l e  h e a t i n a c t i v a t i o n o f enzymes. Another approach t o the temperature l e s i o n problem i s to analyze plants subjected t o d i f f e r e n t temperatures. w o u l d show w h i c h compounds o r g r o u p s o f compounds become  This  35  limiting.  I n s u c h a s t u d y , P o t t s and Ormrod (19 69)  p h o s p h o r u s - c o m p o u n d s f r a c t i o n a t i o n work w i t h showed t h a t t h e r e and  t h e pea p l a n t  was no c h a n g e i n t h e l e v e l s o f o r g a n i c ,  t o t a l p h o s p h o r u s f o r up t o 6 d a y s when p l a n t s w e r e  ferred abruptly  f r o m 25/15° t o 35/25° ( d a y / n i g h t  O n l y a f t e r 6 d a y s was t h e r e  lipid  trans-  temperatures).  a d e f i n i t e increase  phosphorus, the c o n t r i b u t o r t o which could but  i n their  i n inorganic  n o t be a c c o u n t e d f o r ,  c o n t r i b u t i o n s p o s s i b l y from n u c l e i c a c i d o r p r o t e i n f r a c t i o n s  were s u g g e s t e d . clude  They c o n c l u d e d t h a t t h e i r r e s u l t s do n o t p r e -  the p o s s i b i l i t y  within the organic  that the concentrations  o f compounds  phosphorus f r a c t i o n d i d vary.  Such  specific  compounds i n c l u d e a d e n y l i c a c i d , h e x o s e p h o s p h a t e s and a d e n o s i n e p h o s p h a t e s i n E u g l e n a ( A l b a u m , 1 9 5 2 ) and o t h e r  plants.  I m p a i r e d r e s p i r a t i o n and p h o t o s y n t h e s i s obviously at high  temperatures.  increases declines up  constitute a significant  Ormrod and B u n t e r  i n 4 c u l t i v a r s of r i c e , with  e f f i c i e n t production  they found t h a t high This  oxidation increased  reported  followed  increase  by r a p i d  i n temperature out that  does n o t n e c e s s a r i l y i m p l y  o f ATP.  from t h e r o o t s  phorylation.  (1961)  B e e v e r s a n d Hanson ( 1 9 6 4 ) p o i n t e d  rapid oxidation of substrate  obtained  f a c t o r i n d e c l i n i n g growth  i n seedling respiration rates  t o 37 o r 4 3 ° .  could  Working w i t h  an  mitochondria  and s h o o t s o f e t i o l a t e d c o r n  seedlings,  temperatures d i d uncouple o x i d a t i v e  was e v i d e n t  b e t w e e n 40 and 45° where  b u t P/0 r a t i o s d e c l i n e d .  p i r a t i o n and p h o s p h o r y l a t i o n  were i m p a i r e d ,  phossubstrate  A t 50° b o t h phosphorylation  resto  36  a h i g h e r degree.  Root m i t o c h o n d r i a appeared  t o be  somewhat  more s e n s i t i v e t o h i g h t e m p e r a t u r e s t h a n w e r e s h o o t m i t o c h o n d r i a . Between 30 and  50°  root mitochondria suffered  80%  inhibition  o f p h o s p h o r y l a t i v e e f f i c i e n c y , c o m p a r e d w i t h 58% f o r  shoot  mitochondria. El-Sharkawy  and H e s k e t h  (1964) r e p o r t e d  gas-exchange  e x p e r i m e n t s f o r a s p e c i e s e a c h o f Sorghum, H e l i a n t h u s , G o s s y p i u m and T h e s p e s i a .  Net p h o t o s y n t h e t i c r a t e s w e r e d e p r e s s e d  20 m i n u t e s by h i g h t e m p e r a t u r e s  o f up t o 60°.  The  within  effects  of  t e m p e r a t u r e on p l a n t m e t a b o l i s m a r e t h u s e f f e c t s on t h e many component p r o c e s s e s and r e a c t i o n s i n t h e 1.18  C a r b o h y d r a t e s and M i n e r a l  There or i n h i b i t  plant.  Uptake  a r e a number o f s u b s t a n c e s w h i c h e i t h e r  s a l t u p t a k e by an i n f l u e n c e on m e t a b o l i s m .  stimulate Among  t h o s e w h i c h promote a b s o r p t i o n a t s u i t a b l e c o n c e n t r a t i o n s a r e s o l u b l e s u g a r s and o t h e r r e s p i r a t o r y 1962).  substrates  Humphries (1956) d e m o n s t r a t e d  a positive  (Sutcliffe, correlation  between the r e d u c i n g sugar c o n t e n t o f e x c i s e d b a r l e y r o o t s s a l t uptake.  I n t h e same e x p e r i m e n t s , s u c r o s e c o n t e n t seemed  e i t h e r t o be u n r e l a t e d o r t o show a n e g a t i v e c o r r e l a t i o n absorption.  and  ]h i n t a c t a n g i o s p e r m s ,  with  absorption of s a l t s i s  s o m e t i m e s d e p r e s s e d w i t h t h e o n s e t o f f l o w e r i n g , and t h i s i s correlated with a f a l l 1.19.  i n the l e v e l of carbohydrates i n the  R o l e and M e t a b o l i s m o f P h o s p h o r u s  General Aspects.  roots.  i n Plants  In a d d i t i o n t o the c h e m i c a l energy  bound i n t h e c o m p o n e n t s o f t h e c e l l  d u r i n g g r o w t h , some c o m p o n e n t s  37  o f a l l o r g a n i s m s a r e b r o k e n down c o n t i n u o u s l y a n d must be replaced, a process  d e s c r i b e d as maintenance.  Synthesis of  m a t e r i a l f o r g r o w t h and m a i n t e n a n c e , an e n d e r g o n i c  process,  i s p o s s i b l e only i f coupled with exergonic r e a c t i o n s .  Many  p l a n t c e l l s m a i n t a i n c o n c e n t r a t i o n s o f i o n s and m e t a b o l i t e s i n the vacuoles a l s o a process process little  against a chemical  or electrochemical gradient,  coupled with exergonic r e a c t i o n s .  r e q u i r i n g such  c o u p l i n g , but about which  i s known, i s p r o t o p l a s m i c s t r e a m i n g  Another relatively  or cyclosis  (Rowan,  1966). I n t h e economy o f l i f e (which  processes,  i s d e f i n e d as t h e b i o c h e m i c a l p r o c e s s  or phosphoryl  radicals  phosphorylation by w h i c h p h o s p h a t e  a r e t r a n s p o r t e d t o an a c c e p t o r by a  t r a n s f e r r e a c t i o n ) occupies  a p l a c e comparable t o t h a t o f  n u c l e i c a c i d s i n p r o t e i n s y n t h e s i s and h e r e d i t a r y t r a n s m i s s i o n , o f p r o t e i n s a s s p e c i f i c c a t a l y s t s , and o f o x i d a t i o n - r e d u c t i o n systems i n energy t r a n s f e r .  As a c o n s e q u e n c e o f p h o s p h o r y l a t i o n  t h e r e a c t i v i t y o f a compound i n c r e a s e s .  T h i s i s due,  cases, t o the capacity f o r s u b s t i t u t i n g the phosphoryl  i n many group  w i t h o t h e r groups o r r a d i c a l s , t o a h i g h e r c a p a c i t y f o r b i n d i n g a c t i v e c o n s t i t u e n t s , e.g. e n z y m a t i c complexes w i t h metal  ions  (Marre,  Phosphorylation(s). which orthophosphate are with  1961).  The i m p o r t a n t m e c h a n i s m s by  i s incorporated into organic  (1) Photophosphorylation respiration.  p r o t e i n s , or f o r forming  phosphate  and (2) P h o s p h o r y l a t i o n  coupled  38  PHOTOSYNTHETIC PHOSPHORYLATION i s d e f i n e d a s t h e l i g h t i n d u c e d f o r m a t i o n o f ATP by c h l o r o p l a s t s . ATP  The s y n t h e s i s o f  by i s o l a t e d c h l o r o p l a s t s i n l i g h t w i t h o u t t h e a i d o f m i t o -  c h o n d r i a was f i r s t  d e s c r i b e d by A r n o n e_t a l . ( 1 9 5 4 ) .  When  c o n d i t i o n s w e r e a r r a n g e d s o t h a t a s s i m i l a t i o n o f e x o g e n o u s CO2 was p r e v e n t e d , i s o l a t e d c h l o r o p l a s t s u s e d l i g h t e n e r g y t o esterify  i n o r g a n i c phosphate.  A t l e a s t two f u n d a m e n t a l  f e r e n c e s were a p p a r e n t w h i c h d e m o n s t r a t e d t h a t t h i s  dif-  light-  i n d u c e d ATP f o r m a t i o n was n o t i d e n t i c a l w i t h o x i d a t i v e  phosphory-  l a t i o n by m i t o c h o n d r i a . ATP f o r m a t i o n i n t h e i l l u m i n a t e d chloroplasts occurred: and  ( 1 ) w i t h o u t t h e n e t c o n s u m p t i o n o f 0^,  (2) w i t h o u t t h e a d d i t i o n o f a c h e m i c a l s u b s t r a t e t o supply  t h e f r e e energy f o r t h e s y n t h e s i s o f pyro-phosphate bonds. only  " s u b s t r a t e " t h u s consumed i n p h o t o s y n t h e t i c  lation i s light  The  phosphory-  ( W h a t l e y and L o s a d a , 1 9 6 4 ) .  A l a r g e p a r t o f t h e f r e e e n e r g y w h i c h w o u l d be l o s t from t h e c e l l C0  2  as h e a t i f hexose were o x i d i z e d d i r e c t l y t o  and w a t e r , i s r e t a i n e d as c h e m i c a l energy t h r o u g h s y n t h e s i s  o f ATP. PHOSPHORYLATION COUPLED WITH RESPIRATION a r e o f two types:  (1)  "Substrate l e v e l phosphorylation" i n which the  p h o s p h o r y l a t i o n i s o f an i n t e r m e d i a t e d i r e c t l y of o x i d a t i o n o f the r e s p i r a t o r y  substrate.  i n t h e pathway  Two o f s u c h  phosphory-  l a t i o n s o c c u r , one c o u p l e d t o t h e o x i d a t i o n o f g l y c e r a l d e h y d e 3-phosphate i n t h e g l y c o l y t i c pathway  ( B e e v e r s , 1 9 6 1 ) , and t h e  o t h e r c o u p l e d t o t h e o x i d a t i o n o f s u c c i n y l coenzyme A.  33  (succinyl-CoA) 1955). DNP  i n the c i t r i c  Substrate  (Beevers,  coupled  w i t h the  phosphorylations  r e a c t i n g w i t h NAD,  the  H o w e v e r , ATP is  formed  chain.  c<-ketogluterate  s y s t e m a l l ADP  w o u l d be  converted  l a t t e r w o u l d b l o c k t h e a c c e p t a n c e o f P by  ADP. ADP  (Rowan, 1 9 6 6 ) .  irreversible  r a t e of the g l y c o l y t i c  pyruvate  l a s t two  pathway w i l l  be  s u b s t r a t e s of the f o u r  r e a c t i o n s (hexokinase,  g l y c e r o k i n a s e and  kinase).  a function controlling  phosphofructokinase, ATP  at the f i r s t  phospho-  two,  and  r e a c t i o n s c o u l d a c t as r e g u l a t o r s i n a  f e e d b a c k mechanism.  Concentrations  h a v e b e e n f o u n d t o be rates  c i t r a t e and  In a simple  of the c o n c e n t r a t i o n s of the  at the  at 3 steps of the  i s r e m o v e d i n k i n a s e r e a c t i o n s i n w h i c h more  The  ADP  by  3 atoms o f P a r e e s t e r i f i e d f o r e a c h atom  of oxygen absorbed. and  uncoupled  steps of the e l e c t r o n t r a n s p o r t  are coupled  Thus, w i t h the a c i d s , p y r u v a t e ,  t o ATP  are not  " O x i d a t i v e p h o s p h o r y l a t i o n " , i s used f o r the  phosphorylation The  l e v e l phosphorylations  Alivisatos,  1961).  (2)  chain.  a c i d c y c l e (Kaufmann and  of s u b s t r a t e s , not  the r a t e - l i m i t o r s  enzymes,  i n these r e a c t i o n  (Rowan, 1 9 6 6 ) . The  s i t e of a c t i v a t i o n  t h e s e m e c h a n i s m s c a n be  of the g l y c o l y t i c  d e t e c t e d by u s i n g t h e  pathway  by  cross-over  t h e o r e m o f Chance et_ a l . ( 1 9 5 8 ) w h i c h s t a t e s t h a t a c o n t r o l site  in a  c h a i n of r e a c t i o n i s i d e n t i f i e d under c o n d i t i o n s of  i n c r e a s i n g f l u x by t h e p o i n t a t w h i c h t h e r e i s a between r e l a t i v e mediates.  But  intermediates  d e p l e t i o n and  i n applying this i n yeast  relative  cross-over  accumulation  of  inter-  theorem t o the a n a l y s i s of  (Ghosh and  Chance, 1964), the  glycolytic  activation  40  of  the pentose phosphate  t i o n o f G-6-P  pathway which would  must be c o n s i d e r e d .  lower the concentra-  D e s p i t e t h i s , however, the  d e t e c t i o n o f c r o s s - o v e r p o i n t s a p p e a r s t o be t h e most method o f e x a m i n i n g t h e r e g u l a t i o n o f m e t a b o l i c r a t e  fruitful (Rowan,  1966) . G r o w t h and D e v e l o p m e n t .  Phosphorus  metabolism  i n v o l v e s many a s p e c t s o f p l a n t g r o w t h p r o c e s s e s .  As  nucleic  a c i d s d i r e c t p r o t e i n s y n t h e s i s ; and p r e c u r s o r s o f p r o t e i n s , p o l y s a c c h a r i d e s and f a t s a r e f o r m e d by t h e t r a n s f e r o f or  pyrophosphate  phosphate  groups from n u c l e o s i d e t r i p h o s p h a t e s ,  metabolism o f phosphorus  i s directly  the  concerned i n growth  and  development. W h i l e t h e dependence o f i n t e r c o n v e r s i o n o f c a r b o h y d r a t e s and r e l a t e d 1961)  compounds, amino a c i d m e t a b o l i s m  and f a t m e t a b o l i s m  ( S t u m p f , 1955)  on p h o s p h a t e  (Marre, transfer  p o t e n t i a l energy has been d e m o n s t r a t e d a t t h e m o l e c u l a r the  i n v o l v e m e n t o f p h o s p h o r y l a t i o n i n a number o f  level,  physiological  p r o c e s s e s i s s t r o n g l y s u g g e s t e d by o b s e r v a t i o n s i n _ v i v o . u p t a k e o f s o l u t e s , g r o w t h by c e l l w a l l e x t e n s i o n ,  Active  translocation,  and t h e c o n t r o l o f r e s p i r a t i o n r a t e s a r e some o f t h e more prominent processes. A c t i v e uptake of s o l u t e s . by p l a n t c e l l s  Accumulation of  electrolytes  a g a i n s t an e l e c t r o c h e m i c a l g r a d i e n t o r o f  non-  e l e c t r o l y t e s a g a i n s t a c h e m i c a l g r a d i e n t must be c o u p l e d w i t h an e x e r g o n i c p r o c e s s .  E v i d e n c e s t r o n g l y s u g g e s t s t h a t some  common b a s i c p h o s p h a t e  transfer potential  energy-requiring  m e c h a n i s m s i s r e q u i r e d f o r t h e a c t i v e u p t a k e o f any (Laties,  1959).  solute  41  G r o w t h by c e l l and  wall extension.  the synthesis of protoplasm  a r e o b v i o u s l y phosphate  p o t e n t i a l energy-dependent processes a s p e c t s , such accepts  G r o w t h by c e l l  transfer  i n several essential  as p r o t e i n and n u c l e i c a c i d  syntheses.  I f one  the idea of a c e n t r a l r o l e of p e c t i n anabolism  extension, the necessary  division  i n cell  dependence o f t h i s type o f growth  a p p e a r s a s a b i o l o g i c a l c o r o l l a r y b e c a u s e ATP i s r e q u i r e d i n t w o , or p o s s i b l y three steps of p e c t i n biosynthesis:hexose ( o r u r o n i c a c i d ) p h o s p h o r y l a t i o n , UTP s y n t h e s i s f o r U D P - s u g a r f o r m a t i o n , and a c t i v a t i o n o f m e t h i o n i n e Translocation.  bundle-sheath  of translocation.  i n t o t h e s i e v e t u b e , and w i t h i n t h e s i e v e  movement i n e a c h s t a g e .  The l i k e l y  isolated  from  tube.  i n t h e mechanism o f  mechanisms a r e p h o s p h o r y l a t i o n  o f s u g a r s , a n d movement by p r o t o p l a s m i c sucrose  Photosynthate  from c h l o r o p l a s t t o bundle-sheath,  P h o s p h a t e t r a n s f e r c o u l d be c o n c e r n e d  The  1961).  Phosphate t r a n s f e r has been  i m p l i c a t e d i n t h e mechanism moves i n t h r e e s t a g e s :  (Marre,  streaming  as t h e p r e d o m i n a n t s u g a r  (Canny, 1962).  i n t h e phloem  f r o m many p l a n t s c o u l d be i n e q u i l i b r i u m w i t h a s u g a r - p h o s p h a t e w h i c h c o u l d be t h e t r a n s i t m o l e c u l e . pation of protoplasmic streaming suggests  that protoplasmic  i n translocation,  streaming  p h o r y l a t i o n o f ATP ( K a m i y a ,  With r e s p e c t t o the p a r t i c i -  i s coupled  evidence  w i t h dephos-  1960).  P h o s p h o r y l a t i o n and M e t a b o l i c c o n t r o l .  As e s s e n t i a l  phosphorylative steps are i n v o l v e d i n p r a c t i c a l l y a l l metabolic pathways, i t appears obvious and  t h a t t h e e f f i c i e n c y o f enzymes  the levels of substrates involved i n phosphorylation  42  r e a c t i o n s c l o s e l y c o n t r o l any  important process  i n the  A-number o f d a t a i n d i c a t e t h a t i n h i g h e r p l a n t s , ATP, P^  l e v e l s may  Hatch  and  typical  c o n t r o l g l y c o l y t i c and  Turner  (1959) demonstrated  glycolysis  required  and  oxidative  i n an a c e t o n e  adenine  cell. ADP  and  metabolism.  t h a t the o p e r a t i o n of  powder e x t r a c t f r o m pea  nucleotides.  seeds,  Hess (196 3) h o w e v e r  maintained  t h a t P^ does n o t  f i n d a p l a c e i n t h e scheme o f  glycolytic  f l u x c o n t r o l i n a s c i t e tumour c e l l s .  He  demonstrated  t h a t under s t e a d y - s t a t e c o n d i t i o n s g l y c o l y t i c r a t e i s c o n t r o l l e d by ATP.  The  i n h i b i t i o n of g l y c o l y s i s  attributed to a direct and  e a r l i e r reported  i n h i b i t i o n of glyceraldehyde  of a l c o h o l dehydrogenase  Levels of Phosphorylated  (Mossberry  ejt a l _ . ,  o f most o f t h e  1964).  phosphorylated  i n t e r m e d i a t e s t h a t o c c u r i n a n i m a l t i s s u e s and isms have been documented, r e l a t i v e l y  few  i n lower  data are  c o n c e r n i n g the average c o n c e n t r a t i o n of the main  logical  dehydrogenase  Intermediates i n Higher P l a n t s  While the presence  c o n s t i t u e n t s and  available  phosphorylated  A survey of recent r e p o r t s (Marre,  i n d i c a t e s t h a t h e x o s e p h o s p h a t e and  adenosine  components.  p r e d o m i n a t e among s u g a r  1961)  phosphate,  t o g e t h e r w i t h P^ a r e p r o b a b l y t h e q u a n t i t a t i v e l y more  between L a n d  organ-  t h e i r changes i n r e l a t i o n t o v a r i o u s p h y s i o -  situations.  and w i d e s p r e a d  was  important  I t appears t h a t hexosemonophosphates  esters,, t h e i r c o n c e n t r a t i o n s r a n g i n g  6 AiM/gram f r e s h w e i g h t .  c o n c e n t r a t i o n s are s i g n i f i c a n t l y and  2 juM/gram f r e s h w e i g h t .  ATP  and ADP  G-l-P  and  Fl,6-P  l o w e r , r a n g i n g between  A c c o r d i n g t o a few  c o n c e n t r a t i o n s v a r y b e t w e e n 0.2  and  data  0.3  available  1 /iM/gram f r e s h  3  weight.  A q u a l i t a t i v e evaluation of other nucleoside  p h o s p h a t e s i n p e a t i s s u e s shows t h a t g u a n o s i n e and  uridine triphosphate  lower  concentrations.  weight i n corn then l e v e l l e d 1.20  auxins it  C h e m i c a l s and P l a n t M e t a b o l i s m  e f f e c t s o f g r o w t h r e t a r d a n t s on g i b b e r e l l i n s o r  o r t h e i r i n t e r a c t i o n s have r e c e i v e d wide a t t e n t i o n , b u t  is still  c o n t r o v e r s i a l as t o w h i c h i s t h e more b a s i c a l l y Cleland  t h e r e was l i t t l e  (1955),  however found i n s t a n c e s  g i b b e r e l l i n s or auxins.  do,  that the i n h i b i t o r y e f f e c t s should  hormonal  He f e l t ,  a s some o t h e r i n v e s t i g a t o r s n o t be r e s t r i c t e d t o t h e  level. In support  aspects  of Cleland's  v i e w , a few o t h e r  (1966)  reported  that Cycocel  (which  c h l o r o c h o l i n e c h l o r i d e b e c a u s e i t i s an a n a l o g stimulated the a c t i v i t y from spinach  spinach  i s also  Tanaka called  of choline)  of p a r t i a l l y purified choline  kinase  and p e a l e a v e s , b u t i t i n h i b i t e d t h e a c t i v i t y o f  choline kinase.  isolated  biochemical  o f growth r e t a r d a n t e f f e c t s have been o b s e r v e d .  Tolbert  on p l a n t  i n which  o r no m u t u a l a n t a g o n i s m b e t w e e n t h e r e t a r d a n t s  and  yeast  per unit dry  and Hageman, 1 9 6 0 ) .  Growth R e t a r d i n g  influenced.  and  i n much  s e e d l i n g s was maximum b e t w e e n 5 and 6 d a y s and o f f (Cherry  The  triphosphate  (GTP and UTP) a r e p r e s e n t  T o t a l nucleotide content  poly-  The a c t i v i t y o f d i f f e r e n t C y c o c e l  growth corresponded t o t h e i r choline kinase. leaves  s t i m u l a t o r y e f f e c t on  Stimulation of choline kinase of  increased with increase i n Cycocel  f r o m 13 t o 1300 ppm.  analogs  Cycocel  concentration  thus stimulated choline  kinase  44  activity  and  the  u t i l i z a t i o n of choline-C  incorporation into lipids  and  (that i s , the  insoluble constituents  p l a n t ) , w h i c h e f f e c t s were r e v e r s e d  by  i n d w a r f and  tall  the  g i b b e r e l l i n A^.  Reed e t a l . ( 1 9 6 5 ) f o u n d t h a t t h e shoot e l o n g a t i o n  of  p e a s by  inhibition  of  B - N i n e was  correlated 14  with  the  i n h i b i t i o n of the 14  mdoleacetaldehyde-2-C  o x i d a t i o n of tryptamme-2-C . . .  by way  of diamine oxidase,  p r e p a r e d f r o m e p i c o t y l s o f young p l a n t s . a c t i o n o f B - N i n e was dimethylhydrazine by  D a h l g r e n and  a t t r i b u t e d t o the  in vivo.  Their  and  growth r e t a r d i n g  formation  of  1,1-  s t u d i e s c o n f i r m e d e a r l i e r work  formation  of  t o be  decomposition of the  p r o d u c e d by t h e  may  1,1-dimethyl-  1,1-dimethylhydrazinium hydrogen maleate.  compounds were r e p o r t e d catalyzed  homogenates  Simmerman ( 1 9 6 3 ) w h i c h s u g g e s t e d t h a t CO^^  r e t a r d p l a n t growth because of the hydrazine  The  xn  to  Both  intramolecularly  growth r e t a r d a n t s  i n aqueous  solutions. Brook e t a l . (1967) found t h a t P h o s f o n t r e a t m e n t o f pea  p l a n t r e s u l t e d i n a d e c r e a s e i n s o l u b l e RNA  i n ribosomal  RNA.  The  nucleic acids  more r e s i s t a n t t o RNAse d e g r a d a t i o n a c t i v i t y was  and  and  e n d o g e n o u s RNAse I t was  suggested  these a l t e r a t i o n s i n n u c l e i c a c i d metabolism could  retarded  increase  f r o m t r e a t e d t i s s u e s were  lower i n t r e a t e d t i s s u e s .  a l t e r a wide v a r i e t y of m e t a b o l i c  an  that  i n turn  processes r e s u l t i n g i n  growth. Ormrod and  dichlorophenoxyacetic  Williams acid  (1960) found t h a t  50 yug o f  (2,4-D) o r g i b b e r e l l i c a c i d  T r i f o l i u m p l a n t a p p l i e d as a s p r a y c a u s e d a s t r i k i n g  the  2,4-  per  increase  45  in acid-soluble inorganic  o r g a n i c p h o s p h o r u s and  P as q u i c k l y  as one m i n u t e a f t e r t r e a t m e n t .  et a l . (1964) suggested b e n z y l a d e n i n e was  a concurrent decrease  that  respiration  The  effects  Tuli  i n h i b i t i o n by N -  a consequence of i n h i b i t i o n of  ( g l y c o l y t i c ) kinases.  of growth  respiratory  r e t a r d a n t s may  t o induce changes i n a u x i n s o r g i b b e r e l l i n s o r b o t h , but also  a f f e c t and  are a f f e c t e d  in  by o t h e r a s p e c t s o f p l a n t  be these  metabolism.  46  2. 2.1  MATERIALS AND  Experiments  METHODS  Conducted  D u r i n g the p e r i o d between June the  following (a)  of peas  e x p e r i m e n t s were c a r r i e d o u t : A greenhouse  to 5 levels  investigated.  experiment i n which the response  ( 0 , 4 4 , 88, 176,  352  l b . / A ) o f P„  A t t h e end o f t h i s e x p e r i m e n t  176) w e r e c h o s e n f o r c o n t r o l l e d (b)  19 6 6 and F e b r u a r y 19 6 9  Effects  environment  o f a i r and  soil  3 levels  was ( 0 , 44,  studies.  t e m p e r a t u r e s and  the  3 l e v e l s o f P on m i n e r a l u p t a k e and g r o w t h a t 6 t h n o d e , 1 0 t h node and f u l l (c)  bloom s t a g e s . Effects  o f a i r and  soil  t e m p e r a t u r e s and  3 l e v e l s o f P on m i n e r a l u p t a k e and d i s t r i b u t i o n i n t h e vine,  pod and p e a s e e d .  were a l s o  ppm  c h a r a c t e r i s t i c s and  Effects  on c h l o r o p h y l l  o f C y c o c e l . P h o s f o n and  yield  c a r r i e d out i n the (e)  This experiment  was  o f t e m p e r a t u r e , C y c o c e l and P h o s f o n  l e v e l s o f G l u c o s e , H e x o s e p h o s p h a t e s , ADP  (f)  a t 1 and  greenhouse.  Effects  o l d pea r a d i c l e s .  B-Nine  concentration, mineral composition,  g r o w t h c h a r a c t e r i s t i c s and p e a y i e l d .  the  root,  observed. (d)  100  Growth  the  and ATP  on  i n 5-day  Seeds w e r e g e r m i n a t e d i n p e t r i d i s h e s .  E f f e c t s o f a i r and  soil  t e m p e r a t u r e s and P on  the  l e v e l s o f compounds i n ( e ) i n t h e l e a f and r o o t o f  old  plants.  30-day  47  2.2  C o n t r o l o f A i r and S o i l T e m p e r a t u r e s  For  and S o i l M o i s t u r e  temperature s t u d i e s , a c o n t r o l l e d  environment  m u l t i p l e g r o w t h chamber w i t h 4 c a b i n e t s , a s d e v e l o p e d and d e s c r i b e d by Ormrod ( 1 9 6 2 ) was u s e d . were c o n t r o l l e d  i n each c a b i n e t  (Fig. 1).  c a b i n e t s w e r e o f wood c o n s t r u c t i o n . the  A i r and s o i l  temperatures  E s s e n t i a l l y the  Movement o f a i r t h r o u g h  c a b i n e t was b y means o f f a n s w h i c h c i r c u l a t e d  refrigerated  i n - c o m i n g a i r , and t h e i n t e r n a l a i r p a s s e d t h r o u g h l i g h t to  panels  t h e t o p o f t h e c a b i n e t s and t h e n c e t o t h e e x t e r i o r . L i g h t was p r o v i d e d by a c o m b i n a t i o n o f 10 c o o l - w h i t e  f l u o r e s c e n t lamps and 2 40-watt t u n g s t e n f i l a m e n t lamps.  The  l i g h t p a n e l s w e r e 70 cm a b o v e p l a n t - c o n t a i n e r l e v e l , a n d p r o v i d e d a light  i n t e n s i t y o f about  a Weston M o d e l at n  n  (measured  with  756 I l l u m i n a t i o n M e t e r w i t h o u t c o s i n e f i l t e r )  50 cm b e l o w t h e l i g h t s .  Intermatic  16 00 f o o t - c a n d l e s  The p h o t o p e r i o d , c o n t r o l l e d by an  t i m e s w i t c h , was 16 h o u r s i n a 2 4 - h o u r  S o i l t e m p e r a t u r e i n e a c h c a b i n e t was  cycle.  controlled  by t h e u s e o f w a t e r b a t h s i n w h i c h t h e p o t s w e r e i m m e r s e d (Fig. et  2).  T h i s system i s s i m i l a r t o t h a t employed  a l . (1963).  by W i l l i s  The w a t e r b a t h s m e a s u r e d 90 X 45 X 30 cm.  180 X 0.5 cm c o p p e r t u b e was c o i l e d one end o f t h e t u b e c o i l  A  i n each b a t h ( F i g . 3 ) .  was a t t a c h e d a c o l d - w a t e r - i n l e t  To  rubber  t u b e , w h i l e t h e o t h e r end was c o n n e c t e d t o t h e w a r m - w a t e r - o u t l e t . Cold water (Fig.  (3-5°) was c i r c u l a t e d f r o m a r e f r i g e r a t e d  4, 5 ) .  tank  The a s c e n t o f c o l d w a t e r t o t h e c o l d - w a t e r - i n l e t  48  Fig.  2.  I n t e r i o r o f growth c a b i n e t showing pot placement.  49  Fig.  3.  I n t e r i o r o f growth c a b i n e t showing water b a t h , c o l d w a t e r c o i l e d c o p p e r t u b e , t h e r m o s t a t and t h e r m i s t o r s .  A B C D E F 6  Water Tank R e f r i g e r a t i o n Motor Refrigeration Coil Water Pump Water Tube from Pump Copper M a n i f o l d I n l e t Water Tube  Fig.  H I J K L M  Water Bath Solenoid Valve Thermostat Copper Tube C o i l O u t l e t Water Tube Water  Schematic diagram o f s o i l temperature c o n t r o l equipment.  ig.  5.  R e f r i g e r a t e d water  tank.  52  was f o r c e d by a pump. c o o l i n g o f water operated  The c o i l e d t u b e e n s u r e d  continuous  i n t h e b a t h , as n e e d e d , t h r o u g h  solenoid valve.  a thermostat-  Water r e t u r n e d t o t h e r e f r i g e r a t e d  t a n k m a i n l y by g r a v i t y . B e c a u s e s o i l m o i s t u r e i s known t o i n f l u e n c e P by p l a n t s  (Simpson,  1960),  i t was n e c e s s a r y t o k e e p t h e s o i l  m o i s t u r e c o n t e n t c l o s e t o optimum f o r P u p t a k e , w h i c h to f i e l d  capacity.  to minimize  c o n t e n t between temperature  regimes  and P l e v e l s .  the p o t s submerged i n t h e w a t e r b a t h s  Instruments  M o d e l BN-2A B o u y o u c o s M e t e r  In addition,  were u s e d  drainage.  the I n d u s t r i a l and gypsum r e s i s t a n c e  the moisture content of the s o i l  ( F . C . ) and p e r m a n e n t w i l t i n g  sunflower seedlings  moisture  d i d n o t have f r e e  was c a r r i e d o u t , u s i n g  b l o c k s , t o determine capacity  i s close  A l s o , s o i l m o i s t u r e c o n t r o l was d e s i r a b l e  v a r i a t i o n s due t o d i f f e r e n c e s i n s o i l  A trial  uptake  point  (P.W.P.).  at f i e l d Pea and  ( F i g . 6 ) . An e a r l i e r t r i a l  with  ' ' I r r o m e t e r " t e n s i o m e t e r s was u n s a t i s f a c t o r y w i t h r e s p e c t t o sensitivity. and p e a d a t a . The  T h e r e were m i n o r d i f f e r e n c e s i n t h e s u n f l o w e r The l a t t e r was  used.  m o i s t u r e c o n t e n t a t e s t i m a t e d F.C.  (72-hour  d r a i n a g e a f t e r s a t u r a t i o n ) was a b o u t 28% o f o v e n d r y w e i g h t of s o i l .  T h i s gave 10 2% on t h e B o u y o u c o s m e t e r and was r e g a r d e d  as 1 0 0 % .  P.W.P. was a b o u t 1 0 % o f o v e n d r y w e i g h t  which  corresponded To  6 kg o f s o i l  of s o i l ,  t o 1 5 % on t h e m e t e r .  determine  t h e amount o f w a t e r r e q u i r e d  t o 1 0 0 % on t h e m e t e r , v a r y i n g  w a t e r were a d d e d and t h e p e r c e n t a g e  to bring  known q u a n t i t i e s o f  c h a n g e s on t h e m e t e r  recorded.  C a l c u l a t i o n s showed t h a t a b o u t  5 5 ml o f water  r e q u i r e d t o r a i s e t h e m e t e r r e a d i n g 1% w i t h i n t h e r a n g e to  100%.  The  soil  w a t e r e d a c c o r d i n g t o i n d i c a t e d r e q u i r e m e n t , w h i c h was  a i r and two  f o u r a i r and s o i l soil  oftener  soil  t e m p e r a t u r e s were combined  temperature regimes.  t e m p e r a t u r e s o f 2 1 / 1 3 / 1 0 , 2 1 / 1 3 / 1 8 , 3 0 / 2 1 / 1 0 , 30/21/18°. cabinets contiguous to the r e f r i g e r a t e d tank c a r r i e d  10°  soil  temperature  2.3  Soil,  F e r t i l i z e r A p p l i c a t i o n s , P l a n t i n g and H a r v e s t i n g  B r i t i s h C o l u m b i a was  following composition: 4 ppm;  e x c h . K, 0.3  e x c h . Mg, g.  1.6  The  the  (Fig. 4).  A l o w - P Monroe S i l t used. pH  Loam f r o m t h e Lower F r a s e r  Valley  Chemical analyses i n d i c a t e d  ( w a t e r ) . 6.1;  N, 0.24%; a v a i l .  m.e./lOO g; e x c h . C a , 10.8  m.e./lOO  weight of a i r - d r y  soil  u s e d as t h e P s o u r c e .  g;  fertilizer  Each p o t , i n c l u d i n g  s u p p l y 44 and w h i l e 0.8  176  The  l b . P/A  controls,  g / p o t was  weight of f e r t i l i z e r  were 1.4  and  r e q u i r e d f o r 165  A greenhouse  s t u d y was  5.6  6 kg.  (20% ^2^5^  2  s u p p l y 16 5 l b . K/A.  m.e./  i n t h e 4 L p o t u s e d was  r e c e i v e d a b a s a l d r e s s i n g of muriate of potash (60% K 0) to  the P,  m.e./lOO g; t o t a l e x c h a n g e a b l e b a s e s , 18.4  A commercial superphosphate was  into  These were d a y / n i g h t /  The  100  was  the h i g h e r temperatures.' Two  of  20  M e t e r r e a d i n g s were s u b s e q u e n t l y t a k e n e v e r y 3 d a y s  up t o t h e 6 t h node s t a g e , and d a i l y t h e r e a f t e r .  at  was  required  required to  g respectively,  l b . K/A.  c a r r i e d out to e s t a b l i s h  a  r e s p o n s e c u r v e o f p e a p l a n t s grown i n t h e e x p e r i m e n t a l s o i l at  5 l e v e l s o f P:  0, 4 4 , 88, 176  and  352  lb./A.  3 levels  54  (0,  44, 176) w e r e s u b s e q u e n t l y c h o s e n  temperature of  studies.  The  maximum e f f i c i e n c y  t h e 176  l b . l e v e l was The  f o r t h e a i r and  44 l b . l e v e l was  chosen  soil  on t h e  (pea y i e l d p e r u n i t o f P a p p l i e d ) , chosen  The  b r o a d c a s t o v e r and  p o t was  filled  3.5  kg o f  was  was  then  in  a b a n d , u s i n g a 10 cm.  The  P fertilizer  of  the s o i l  experiment fresh  was  band.  used t o c o v e r the f e r t i l i z e r .  t h e s o i l was  The  (0.5  each  d i s c a r d e d and t h e p o t f i l l e d  with  kg)  soil.  " N i t r a g i n " about  s a t i v u m L. c v . D a r k S k i n  30 m i n u t e s  before planting.  inoculum  6 s e e d s w e r e sown  o u t s i d e t h e p e r i p h e r y o f t h e f e r t i l i z e r - band u s i n g a  marked peg  t o o b t a i n a r e p r o d u c i b l e d e p t h o f 2 cm.  l a y e r o f p e a t moss was evaporation.  (between  s p r e a d on t o p o f t h e s o i l  50 0 ml o f w a t e r was  were t r a n s f e r r e d 7 and  w a t e r i n g was each p o t .  A 3  cm  to minimize  a d d e d t o e a c h p o t and t h e  i n t o the treatment c a b i n e t s .  At  pots  2-node s t a g e  10 d a y s a f t e r s e e d i n g ) , t h e s e e d l i n g s w e r e  thinned to 4 per pot, f o r u n i f o r m i t y .  From t h i s  stage onward,  done a c c o r d i n g t o t h e r e q u i r e m e n t s o f t h e 4 p l a n t s Water from a b o t t l e k e p t i n t h e w a t e r b a t h  used f o r the 6 pots in  and  rest  P e r f e c t i o n were t r e a t e d w i t h a s l u r r y o f p e a t base  in  soil  After  Seeds o f p e a , P i s u m  3 cm.  soil  applied  d i a . f u n n e l as a c o n v e n i e n t  r e p r o d u c i b l e marker f o r the f e r t i l i z e r  mixed  w i t h 2 kg o f  and a gypsum r e s i s t a n c e b l o c k p u t i n p l a c e . onto the b l o c k .  and  to provide a supra-optimal rate.  b a s a l d r e s s i n g o f K was  u n i f o r m l y w i t h the s o i l .  poured  basis  (2 r e p l i c a t e s e a c h o f t h e 3 l e v e l s o f  that bath, to minimize v a r i a t i o n s  in soil  temperature'.  was P) The  \  55  departure  of soil  o n l y about 1°.  temperature  t o an e x t e r n a l l y  situated Yellow  Springs  resistance bridge.  At the p r e - d e f i n e d growth stages node, f u l l  was  T e m p e r a t u r e s were r e a d u s i n g a s y s t e m o f  t h e r m i s t o r s connected Instruments  from water bath temperature  bloom and e s t i m a t e d m a r k e t a b l e  p l a n t s were c u t a t s o i l  level.  ( 6 t h node, 1 0 t h m a t u r i t y o f peas) the  F u l l b l o o m was r e g a r d e d  as t h e  s t a g e a t w h i c h e a c h o f t h e 4 p l a n t s i n a p o t was a t 0.5 blossom stage according t o the c l a s s i f i c a t i o n by M a u r e r et_ a l . ( 1 9 6 6 ) . e s t i m a t e d by p o d - f i l l . v i n e , pod a n d p e a s e e d separated (1961).  from s o i l  m a t u r i t y o f p e a s was  The p l a n t was s e p a r a t e d components.  into root,  The r o o t was  carefully  were d e t e r m i n e d  The t i s s u e s were d r i e d  immediately  a s h e d i n a m u f f l e f u r n a c e a t 500° . w i t h i n the temperature  and d r y -  D r y a s h i n g a t 500° i s  r a n g e g i v e n by C l a r k s o n  ( 1 9 6 6 ) as  i n agreement w i t h r e s u l t s o b t a i n e d w i t h wet a s h i n g .  2.4  A p p l i c a t i o n o f Growth R e t a r d i n g  A t t h e 5 t h t o 6 t h node s t a g e e a c h p l a n t was s p r a y e d  Chemicals  (15 d a y s a f t e r  0.1% " T r i t o n B-1956" s u r f a c t a n t , u s i n g a  plunger  sprayer with 4 j e t s .  surfactant only.  con-  domestic  C o n t r o l p l a n t s were s p r a y e d  with  The p o t s w e r e t h e n p l a c e d on t h e g r e e n h o u s e  bench i n a randomized complete b l o c k d e s i g n . replicates  seeding)  w i t h 10 m l o f r e t a r d i n g c h e m i c a l  taining  one  after  i n a f o r c e d a i r oven a t  60° f o r 48 h o u r s , w e i g h e d , g r o u n d i n a W i l e y m i l l  being  developed  by t h e f l o t a t i o n method o f M c K e l l e t a l .  Fresh weights  harvesting.  Marketable  scheme  ( b l o c k s ) f o r each t r e a t m e n t ,  r e p e t i t i o n of the entire  There were 6  and 2 r u n s  s e t up) o f t h e  (that i s ,  experiment.  56  For r a d i c l e  s t u d i e s , 10  s t e r i l i z e d p e t r i dishes. added. a t 2 5°  The  10 ml o f r e t a r d i n g c h e m i c a l  Techniques  PLASTID PIGMENTS. c h l o r o p h y l l and  cabinets  dark.  ^Analytical  Two  days b e f o r e  carotenoid analyses  r e p r e s e n t a t i v e samples taken 2 youngest nodes.  s i z e , was  on  expanded l e a v e s a t  g s a m p l e , made up  used.  of 9 to  Leaves were c u t  g r o u n d w i t h a c i d - w a s h e d s a n d and  acetone using a c h i l l e d mortar.  harvesting,  were c a r r i e d o u t  from f u l l y  U s u a l l y , 0.5  l e a v e s d e p e n d i n g on p i e c e s and  was  p e t r i d i s h e s were t r a n s f e r r e d i n t o g r o w t h  i n the  2.5  seeds were p l a c e d i n steam-  CaCO^  i n cold  t h e e x t r a c t s c e n t r i f u g e d a t 2000 rpm,  pooled  A b s o r b a n c e was  Spectrophotometer  1 cm  quartz  r e a d w i t h a Beckman DU  cells.  Concentrations  von  Wettstein's  done,  made t o v o l u m e . using  o f c h l o r o p h y l l s a and  c a l c u l a t e d a c c o r d i n g t o MacKinney's (1940) s p e c i f i c coefficients.  15  into  R e p e a t e d e x t r a c t i o n was and  the  ( 1 9 5 7 ) e q u a t i o n was  b were  absorption used  to  calculate carotenoid concentration. MINERAL COMPOSITION. follows:  C h e m i c a l a n a l y s i s was  s e m i - m i c r o K j e l d a h l f o r N;  P by  K by  flame emission  photometry  a Texas Instruments  of minerals and  Servo R i t e r  II recorder.  i n p l a n t t i s s u e s were computed f r o m  dry weight  data.  Mg  by  atomic  (A.O.A.C.,  u s i n g an E v a n s E l e c t r o s e l e n i u m A t o m i c A b s o r p t i o n and  as  phospho-molybdate  c o l o r i m e t r y u s i n g a Beckman C c o l o r i m e t e r ; Ca and a b s o r p t i o n ; and  done  flame  1965)  photometer,  T o t a l amounts composition  57  PHOSPHORYLATED COMPOUNDS.  H e x o s e p h o s p h a t e s , ADP  and A T P , a s w e l l as g l u c o s e , were s p e a r a t e d by i o n e x c h a n g e c h r o m a t o g r a p h y , w i t h t h e use o f b o r a t e c o m p l e x i n g as d e v e l o p e d by Khym and Cohn (195 3) a n d l a t e r u s e d f o r t h e s e p a r a t i o n o f p h o s p h a t e s f r o m Scenedesmus by Goodman e t a l . ( 1 9 5 5 ) . A combination of cold extraction s i m i l a r t o that s u g g e s t e d by B i e l e s k i 1968,  ( 1 9 6 4 ) and c h e m i c a l i n h i b i t i o n  (Shaw,  B u r s t o n , 1 9 6 2 ) was u s e d t o i n h i b i t p h o s p h a t a s e s  i t was f o u n d more e f f e c t i v e t h a n c o l d a c i d s L i q u i d N was added  freezing of the tissue.  f o r 5 minutes i n c o l d  c o n t a i n i n g 0.001M NaF a t -20°.  The  80% e t h a n o l  The e x t r a c t was c o n c e n t r a t e d  C h l o r o p h y l l and p h o s p h o l i p i d s w e r e r e m o v e d  w i t h h e x a n e , a s t h i s was f o u n d t o be more s a t i s f a c t o r y e t h a n o l - p e t r o l e u m e t h e r method u s e d by Goodman e t a l _ . The  tissue.  The homogenate was c e n t r i f u g e d  a t 9000 X g f o r 15 m i n u t e s a t 0-2°. i n v a c u o t o 10 m l .  (Rowan, 1 9 6 6 ) .  t o 1.0-2.0 g o f f r e s h p l a n t  T h i s r e s u l t e d i n an immediate t i s s u e was t h e n h o m o g e n i z e d  because  e x t r a c t was k e p t a t -20° u n t i l  than (1955 ) .  i t was r e q u i r e d f o r a n a l y s i s .  S e p a r a t i o n o f t h e compounds was done by a n i o n exchange  u s i n g Dowex 1 - X8 (200-400  mesh) i n C l ~ f o r m .  The  e x c h a n g e r was washed f r e e o f f i n e s by r e p e a t e d d e c a n t a t i o n a n d slurried  i n t o a 3 0 X 1.5 cm " P h a r m a c i a " c o l u m n .  The e x c h a n g e r  was c o n v e r t e d t o t h e C l ~ f o r m by r u n n i n g 2 0 b e d v o l u m e s HC1 t h r o u g h t h e c o l u m n . 2 0 bed volumes  o f 1M  E x c e s s C l ~ was removed by r u n n i n g  o f w a t e r t h r o u g h t h e column.  58  An  LKB U l t r o r a c  separate the e f f l u e n t .  7000 f r a c t i o n c o l l e c t o r was  An  LKB  P e r i s t a l t i c pump was  r e g u l a t e t h e e l u t i o n r a t e a t 2.5 f r a c t i o n c o l l e c t o r , pump and r e f r i g e r a t o r , and  ml/minute.  The  used  used  to  to  column,  e l u e n t r e s e r v o i r were a l l i n a  t e m p e r a t u r e was  k e p t a t 3°.  The  column  r e g e n e r a t e d a f t e r e a c h s a m p l e r u n , and a g i v e n r e s i n bed  was was  u s e d f o r a maximum o f 6 s a m p l e r u n s . Ba and  K s a l t s o f a u t h e n t i c p h o s p h o r y l a t e d compounds  were o b t a i n e d f r o m Mann R e s e a r c h L a b o r a t o r i e s , New a u t h e n t i c compounds w e r e ; glucose-6-phosphate  The  glucose-l-phosphate dipotassium;  dibarium; fructose-6-phosphate barium;  f r u c t o s e 1,6-diphosphate  b a r i u m ; a d e n o s i n e monophosphate  a d e n o s i n e d i p h o s p h a t e b a r i u m ; and  (200-400 mesh) was  dihydrate;  adenosine t r i p h o s p h a t e dibarium.  A s t r o n g c a t i o n e x c h a n g e r , Dowex 50W form  Y.ork.  - X8  in  H  +  u s e d b a t c h w i s e t o c o n v e r t t h e Ba and  s a l t s o f t h e a u t h e n t i c compounds t o t h e i r a c i d s . w e r e n e u t r a l i z e d w i t h I N NH^OH and  s t o r e d a t -20°.  The  solutions The  s o l u t i o n s o f t h e a u t h e n t i c compounds w e r e r u n t h r o u g h c o l u m n t o d e t e r m i n e t h e r e c o v e r y o f e a c h compound.  K  the  A succession  o f e l u t i n g a g e n t s were used f o r s e l e c t i v e l y d e s o r b i n g t h e p h o s p h o r y l a t e d compounds. u s e were as  The  e l u t i n g a g e n t s and t h e o r d e r o f  follows:  Compound  E l u t i n g agent NH^OH  E f f l u e n t vol.., ml.  Glucose  .001M  150  G-l-P  .025  NH^Cl +-.01M ^ ^°7  3 0 0  G-6-P  .025  N H C 1 + .0025 MH^OH +  300  B  2  4  .001M  K B 0 2  4  ?  59  Compound F-6-P  E l u t i n g agent  E f f l u e n t v o l . , ml,  .025 NH^Cl + .0025 NH^OH + .00001M  K B 0 2  4  300  7  ADP  .01M HC1  300  Fl,6-P  .02M HC1 + .02M KC1  300  ATP  .02M HC1 + .20M KC1  300  Recovery percentages  o f t h e a u t h e n t i c compounds  v a r i e d b e t w e e n 94 f o r G - l - P a n d 102 f o r G l u c o s e , thus  s i m i l a r t o those  and were  o b t a i n e d b y Goodman e t a l . ( 1 9 5 5 ) .  R e c o v e r y was d e t e r m i n e d  by comparing a m i x t u r e  o f t h e compounds  s e p a r a t e d o n t h e c o l u m n w i t h i n d i v i d u a l compounds n o t r u n through  t h e column. A f t e r separation, the very d i l u t e  compound was c o n c e n t r a t e d  i n v a c u o t o 6-8 m l . f o r t h e h e x o s e  p h o s p h a t e s a n d 15 m l f o r t h e a d e n o s i n e n e e d e d no c o n c e n t r a t i o n .  s o l u t i o n o f each  The f i n a l  phosphates.  Glucose  e x t r a c t o f e a c h compound  was n e u t r a l i z e d w i t h NH^OH a n d a n a l y z e d . For t h e q u a n t i t a t i v e d e t e r m i n a t i o n o f glucose and the phosphorylated  s u g a r s , Dreywood's a n t h r o n e  reagent  ( M o r r i s , 1 9 4 8 ) u s e d b y Khym a n d Cohn ( 1 9 5 3 ) was f o u n d  method t o be  u n s a t i s f a c t o r y w i t h t h e p e a e x t r a c t s due t o t h e f o r m a t i o n o f brown c o l l o i d a l p a r t i c l e s .  T h i s may h a v e r e s u l t e d f r o m  f e r e n c e by n i t r a t e o r n i t r i t e  (Juo and S t o t z k y , 1967).  method o f S c o t t e_t a l _ . (1967 ) e m p l o y i n g a c i d was u s e d i n s t e a d .  The  concentrated sulphuric  T h i s method i s b a s e d o n t h e f o r m a t i o n  of u l t r a v i o l e t - a b s o r b i n g furan aldehydes acid.  inter-  i nstrong sulphuric  60  To  0.5 m l o f s u g a r s o l u t i o n i n a 20 X 2 cm. t e s t  t u b e was r a p i d l y added 40 m l o f 9 5 % r e a g e n t g r a d e  sulphuric  a c i d f r o m an a u t o m a t i c p i p e t t e , and t h e s o l u t i o n m i x e d .  The  t u b e was c o r k e d and p l a c e d i n a 70° w a t e r b a t h f o r 30 m i n u t e s . The  t u b e was t h e n c o o l e d t o room t e m p e r a t u r e .  Absorbance  was  r e a d w i t h a U n i c a m SP 800 U l t r a v i o l e t s p e c t r o p h o t o m e t e r , u s i n g 1 cm q u a r t z c e l l s .  Maximum a b s o r b a n c e  was f o u n d t o be a t 322 mju.  of the carbohydrates  T h i s method was f o u n d t o be v e r y  satisfactory, p a r t i c u l a r l y with respect to r e p r o d u c i b i l i t y . Absorbance  o f ADP and ATP was r e a d d i r e c t l y a f t e r c o n c e n t r a t i o n  i n vacuo.  Maximum a b s o r b a n c e  a t pH 7.0 was a t 260 mu.  C o n t e n t s were e x p r e s s e d p e r u n i t f r e s h w e i g h t b e c a u s e w e r e no s i g n i f i c a n t d i f f e r e n c e s the  there  i n the percent dry matter o f  tissues. 2.6  S t a t i s t i c a l A n a l y s e s o f Data  All  d a t a w e r e e x a m i n e d by t h e a n a l y s i s  u s i n g an IBM M o d e l 7044 e l e c t r o n i c For  t h e greenhouse  computer.  experiment  i n which the response  o f p e a s t o 5 l e v e l s o f P was i n v e s t i g a t e d , complete  b l o c k d e s i g n was u s e d .  of variance  the randomized  The p o t s w e r e p l a c e d i n a  manner i n w h i c h t h e 5 l e v e l s o f P w e r e a l o n g t h e b e n c h , while the 4 replicates constituted The  4 b l o c k s a c r o s s t h e bench.  b l o c k e f f e c t was n o t s i g n i f i c a n t , s o d a t a were r e a n a l y z e d  a c c o r d i n g t o t h e completely randomized In the c o n t r o l l e d environment randomized  d e s i g n was u s e d w i t h i n  design. work, t h e c o m p l e t e l y  each temperature  regime.  61  E a c h e x p e r i m e n t was c o n d u c t e d t w i c e . each o f 2 r e p l i c a t e s the  combined  T h e r e w e r e t h u s 2 RUNS  f o r a t o t a l of 4 replicates  analysis  (pots).  o f v a r i a n c e t h e r e was a t e s t i n g  In  term  f o r each o f t h e f o l l o w i n g :  Run, T e m p e r a t u r e ,  all  Significant interactions occurred  possible  interactions.  b e t w e e n t e m p r a t u r e and p h o s p h o r u s d a t a f o r main e f f e c t s a n a l y s e s were a l s o  Phosphorus  i n t h e combined  a t each growth s t a g e .  and  analysis  of  Therefore, individual  made f o r t h e s i m p l e e f f e c t o f p h o s p h o r u s  a t e a c h g r o w t h s t a g e and e a c h t e m p e r a t u r e r e g i m e . For tions  the growth r e t a r d a n t experiment, the 2 c o n c e n t r a -  o f e a c h o f t h e 3 compounds and t h e c o n t r o l  as d i f f e r e n t t r e a t m e n t s .  were r e g a r d e d  There were t h u s 7 t r e a t m e n t s .  The  r a n d o m i z e d c o m p l e t e b l o c k d e s i g n was u s e d w i t h t r e a t m e n t s a l o n g t h e b e n c h , and t h e 6 r e p l i c a t e s the  bench.  (blocks,  pots) across  T h e r e w e r e 2 r u n s o f t h e e x p e r i m e n t so t h a t  was a t e s t i n g t e r m f o r Run, B l o c k , T r e a t m e n t  there  and t h e i r  interactions. T r e a t m e n t means w e r e s u b j e c t e d t o D u n c a n ' s range t e s t differences  (Duncan,  multiple  1955) f o r d e t e r m i n a t i o n o f s i g n i f i c a n t  among i n d i v i d u a l means.  62  3. 3.1  RESULTS  P l a n t Response t o Phosphorus F e r t i l i z e r i n t h e Greenhouse  When p e a p l a n t s were grown i n t h e g r e e n h o u s e , P fertilizer pod  a p p l i e d a t r a t e s o f b e t w e e n 0 a n d 352 l b . / A ,  w e i g h t , pea w e i g h t and t o t a l d r y m a t t e r ,  plant height  and mean i n t e r n o d e  E x p r e s s e d as p e r c e n t generally highest  length  b u t h a d no e f f e c t on  (Table 1 ) .  of dry matter,  i n t h e pea seed  (Table  N and P w e r e  2).  W h i l e N was  i n t h e p o d , P was l e a s t i n b o t h t h e pod a n d t h e v i n e . Mg c o n c e n t r a t i o n s least  i n the pea,  were h i g h e s t  increased  i n the vine.  least  K, Ca and  W h i l e Ca a n d Mg w e r e  K was l e a s t i n t h e p o d .  E x p r e s s e d as t o t a l m i l l i g r a m s o f u p t a k e , M i n t h e pea s e e d was s l i g h t l y l e s s t h a n i n t h e v i n e , w h i l e more i n t h e s e e d t h a n i n t h e v i n e .  P was  K, Ca and Mg w e r e  slightly greatest  i n the vine. Applied P increased the concentrations contents pod  o f N i n t h e v i n e , p o d and p e a s e e d .  P i n t h e v i n e and  i n c r e a s e d w i t h a p p l i e d P i n a l l t i s s u e s except t h e pea seed.  P h a d no e f f e c t on t h e c o n c e n t r a t i o n s t i s s u e s with the exception seed. all  and t o t a l  o f s l i g h t c h a n g e s i n Ca i n t h e p e a  P however i n c r e a s e d t h e t o t a l  tissues.  o f K, Ca a n d Mg i n a l l  contents  of a l l minerals i n  T a b l e 1.  E f f e c t s o f P h o s p h o r u s F e r t i l i z a t i o n on g r o w t h and y i e l d f a c t o r s o f p e a p l a n t s grown i n t h e g r e e n h o u s e , V a l u e s a r e f o r one p l a n t .  Plant height (cm)  Mean internode length (cm)  Vine dry weight (g)  8 7.0a*  4.9a  2 .97c  2 .5c  44  90 . 5a  5 .0a  3.63b  88  90. 8a  5 . 0a  176  91.0a  352  93. 5a  Lbs. P per acre 0  Pod  No.  Peas Fresh weight <g>  1.03c  12. 5d  4.78d  1.01c  5 . 01c  3 .5b  1.46b  19 .5c  10 .38c  2.19b  7.28b  3.78ab  3 . 8ab  1.56ab  22 .0b  11.71b  2 .55b  7.89ab  5.0a  3.98ab  4 . Oab  1.67a  22.8b  12.38ab  2.6 3ab  8 . 28a  5 . 0a  4 .33a  4 . 3a  1. 83a  24.5a  13 .20a  2.85a  9 .01a  No.  Dry weight (g)  Dry weight <g>  Total dry matter <g>  E a c h f i g u r e i s t h e mean o f 4 r e p l i c a t e s . F i g u r e s f o l l o w e d by t h e same l e t t e r w i t h i n a p a r t i c u l a r measurement a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05 a c c o r d i n g t o Duncan's m u l t i p l e r a n g e t e s t .  05 CO  T a b l e 2.  Plant tissue  E f f e c t s o f P h o s p h o r u s F e r t i l i z a t i o n on t h e c o n c e n t r a t i o n s a n d t o t a l c o n t e n t s o f N, P, K, Ca a n d Mg i n t h e v i n e , p o d a n d p e a o f g r e e n h o u s e grown p l a n t s . Lbs. P per acre  Per cent of dry matter N  P  K  Ca  Milligrams Mg  N  P  Vine  0 44 88 176 352  2 .65 c" 2 .98b 3. 04b 3. 2 8ab 3. 34a  1. 96a 0 ,13d 0 . 15d 2 .27a 2. 07a 0 .16c 0 .19b 2. 18a 2 .11a 0 .23a  3 .25a 3 .84a 3 .80a 3 .75a 3 .76a  0 .43a 0 • 48a 0 .43a 0 .41a 0 .41a  79c 109b 116b 13 l a b 144a  3d 5c 5c 7b 10a  Pod  0 44 88 176 352  1. 18b 1. 47b 1. 60a 1. 70a 1. 83a  0 .12b 0 . 17b 0 .17b 0 . 23a 0 .27a  1. 26a 1. 17a 1. 24a 1. 37a 1. 23a  1 .57a 1 .74a 1 .85a 1 .61a 1 .69a  0 . 31a 0 .34a 0 .32a 0 .31a 0 . 30a  13c 21b 25ab 28ab 33a  Id 2c 2c 4b 6a  Pea  0 44 88 176 352  3. 64b 4. 33a 4. 37a4. 39a 4. 42a  0 .34a 0 .34a 0 . 35a 0 . 35a 0 .39a  1. 58a 1. 59a 1. 51a 1. 60a 1. 47a  0 .10d 0 .11c 0 .11c 0 .12b 0 .13a  0 . 19a 37c 0 .20a 95b 0 • 19a 112ab 0 .19a 115a 0 .21a 126a  3c 7b 9b 9b 12a  per plant K  58b 82a 79a 87a 91a 13b 17b 19ab 23a 23a 16c 35b 38b 42a 42a  Ca 94c 139b 143ab 149ab 163a  Mg 13b 17a 17a 17a 18a  16b 25a 29a 27a 31a  3b 5a 5a 5a 5a  Id 2c 2c 3b 4a  2c 5b 5b 5b 6a  E a c h f i g u r e i s t h e mean o f 4 r e p l i c a t e s . F i g u r e s f o l l o w e d by t h e same l e t t e r w i t h i n a p a r t i c u l a r element and t i s s u e a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t P = 0.0 5 a c c o r d i n g t o Duncan's m u l t i p l e r a n g e t e s t .  65  3.2  E f f e c t s o f Phosphorus Uptake  a t 3 P r e - f r u i t i n g Growth Stages as I n f l u e n c e d  by A i r a n d S o i l  The  N u t r i t i o n on Growth and M i n e r a l  Temperatures  u t i l i z a t i o n o f P i n promoting growth  m i n e r a l u p t a k e v a r i e d w i t h t h e a i r and s o i l T h i s was e v i d e n t f r o m t h e s i g n i f i c a n t t u r e and phosphorus  and i n f l u e n c i n g  temperature  combinations.  i n t e r a c t i o n s between  f o r most o f t h e v a r i a b l e s  tempera-  i n t h e combined  a n a l y s i s o f v a r i a n c e ( T a b l e s 3, 4 a n d 5 ) . The s i m p l e e f f e c t s o f phosphorus  a t each t e m p e r a t u r e r e g i m e were t h e r e f o r e  determined.  GROWTH Plant Height.  A p p l i e d P h a d no e f f e c t on p l a n t h e i g h t and mean  i n t e r n o d e l e n g t h a t t h e 6 t h a n d 1 0 t h node s t a g e s ( T a b l e 6 ) . A t full  b l o o m , P a t t h e 44 l b . / A r a t e i n c r e a s e d p l a n t h e i g h t a t a l l  temperature regimes  e x c e p t a t t h e c o o l a i r and l o w s o i l  tempera-  t u r e c o m b i n a t i o n (21/13/10° d a y / n i g h t / s . o i l ) where P h a d no significant effect.  The i n f l u e n c e o f P a t t h e 176 l b . / A r a t e  was n o t s i g n i f i c a n t l y d i f f e r e n t f r o m t h a t a t t h e 44 l b . / A r a t e . Dry M a t t e r P r o d u c t i o n .  A t t h e 6 t h node s t a g e , P h a d no e f f e c t  on t h e d r y w e i g h t o f p l a n t s a t a l l t e m p e r a t u r e r e g i m e s at 38%  21/13/18° where P a t t h e 176 l b . / A r a t e i n c r e a s e d v i n e w e i g h t (Table 6 ) . A t t h e 1 0 t h node a n d f u l l  bloom s t a g e s , P i n c r e a s e d  the  dry weight o f p l a n t s a t a l l temperature regimes.  due  t o P were g r e a t e r a t t h e h i g h s o i l  at  except  Increases  t e m p e r a t u r e o f 18° t h a n  10°. ' A l s o , t h e i n c r e a s e due t o P a t t h e h i g h s o i l  temperature  was g r e a t e r a t t h e c o o l d a y / n i g h t a i r t e m p e r a t u r e o f 21/13° t h a n  T a b l e 3.  An e x a m p l e o f a Combined A n a l y s i s f o r Main E f f e c t s  Mean Sq  o f V a r i a n c e Computer Output  DF  Sum Sq  Run  1  0.00047  0.00047  Temp  3  0.76092  0 .25354  RXT ( A )  3  0.01246  0.00415  Phosph  2 -  0.40887  0.20444  ERR ( B )  71.11  0 .0001  TXP  6  0.18363  0.03061  ERR ( B )  10.65  0 .0023  ERR ( B )  8  0.02299  0.00287  Error  24  0.92475  0.03853  Total  47  2.31410  Source  Variable : Temp: Phosph:  Dry w e i g h t o f p l a n t s  Error  RXT ( A )  F  Prob.  00.01  0 . 8 779  61.09  0 . 0069  0.11  0.07  a t t h e 1 0 t h node s t a g e  21/13/10 , 2 1 / 1 3 / 1 8 , 30/21/10 , 30/21/18.; Day/night/soil°C 0, 4 4 , 176 l b s . P p e r  acre.  0 .9502  0 .9994  Table 4.  F values and the s i g n i f i c a n c e s of Main E f f e c t s a t each growth stage, and o f each p l a n t t i s s u e a t crop maturity. Part I. Dry matter and mineral concentrations.  P r e - f r u i t i n g stages Treat. effects  Variable  Crop maturity  6th node  10th node  Full bloom  52.9** 18.7** 7.5**  61.1** 71.1** 10.7**  24.9* 175.3** 18.7**  Root 3.5n.s. 106.8** 4.9*  Vine 6 3.9** 65.0** 5.2*  Pod 7 0.8** 57.2** 4.9*  Pea 15 .0* 61 2 .On.s.  Dry weight  Temp. Phos. TXP  %N  Temp. Phos. TXP  127.3** 34.2** 1.5n.s.  8.8n.s. 28.7** 6.2*  6.9n.s. 9.8** 4.9*  10.4n.s. 41.0** 0.7n.s.  8.2n.s. 11.0** 1.7n.s.  2.9n.s. 9.3** 0.9n.s.  %P  Temp. Phos. TXP  178.4** 42.1** 1.2n.s.  2.6n.s. 145.1** 2.7n.s.  10.6* 262.5** 1.6n.s .  4.On.s. 55.1** 4.7*  30.3** 33.4** 2.1n.s.  O.ln.s. 4.On.s. 0.6n.s. .  %K  Temp. Phos. TXP  17 0.0** 5.7* 14.2**  149.7** 0.4n.s. 23.1**  179.2** 2.6n.s. 3.3n.s.  23.5* • 2.7n.s. 1.7n.s.  2 .6n.s. 0 .5n.s. 1 .ln.s.  %Ca  Temp. Phos. TXP Temp. Phos. TXP  ' %Mg  12 .7n.s. 7 . 9* 0 .7n.s. 2 .5n.s. 106 .0** 12 .4**  65.1** 79.5** 8.3**  194.3** 10.0** 5.4**  5.5n.s . 1.On.s. 2.7n.s.  7.On.s. 24.1** 3.4n.s.  3.7n.s. 245.9** 2.9n.s.  26.5* 15.5** 1.5n.s.  8.2n.s. 330.3** 7.9**  8.In.s. 1.4n.s. 0.4n.s.  226 . 1** 6 '.8* 7 .1**  15.7* 5.1* 0.4n.s.  8.2n.s. 1.On.s. 0.8n.s.  1.9n.s. 13.9** 0.8n.s.  643.6** 2.2n.s. 7.6*  100.4** 27.3** 1.8n.s.  5.On.s. O.ln.s. 0.2n.s.  15 .0* 0 .4n.s. 0 .3n.s.  CD - J  Table 5.  F values and the s i g n i f i c a n c e s of Main E f f e c t s at each growth stage, and of each p l a n t t i s s u e a t crop maturity. Part I I . T o t a l mineral contents.  P r e - f r u i t i n g stages Variable  Treat. effects  Crop maturity  6th node  10th node  Full bloom  Root  mg. N  Temp. Phos. TXP  81.3** 43.5** 13.2**  13.2* 89.3** 26.5**  148.9** 265.4** 20.9**  1.4n.s.66.5** 5.6*  mg. P  Temp. Phos. TXP  79.6** 75.2** 10.1**  50.9** 125.1** 4.6*  44 .4** 86.9** 7.4**  1.6n.s. 101.2** 9.7**  mg. K  Temp. Phos. TXP  154.5** 33.8** 20.8**  26.2* 48.8** 7.1**  27.7* 244.4** 25.4**  mg. Ca  Temp. Phos. TXP  399.2** 6.7* 5.6*  35.7** 54 .1** 18.5**  16.8* 93.1** 13.0**  mg. Mg  Temp. Phos. TXP  168.1** 31.1** 7.7**  55.1** 29.7** 7.6**  26.7* 186.8** 15.2**  25.9* 79 . 5** 6.4**  Vine  Pod  Pea  30 . 3** 65 .7** 7 .5**  17.2* 3.9n.s. 1.In.s.  85.8** 133.1*^* 6.7**  23 .6* 89 . 2** 4 .'6* 47 2ftft 112 . 2** 6 . 1**  7.3n.s. 17.4** 1.6n.s.  179 . 0** 152.3** 4.2*  306.5** 116.7** 9.8**  57.0** 105.8** 5.4*  1.3n.s . 3 2.4** 2.3n.s.  57 . 8** 66 .9** 6 . 2**  5 . On.s. 17.0** 0.9n.s.  65.3** 55.7** 3.5n.s .  35.3** 38.0** 1.6n.s.  43 .8** 79 . 7** 5 .2*  26.0* 55.2** 2.8n.s.  43.6** 8 5.2** 4 . 2*  00  Table  6,  E f f e c t s o f A i r and S o i l Temperatures phosphorus f e r t i l i z a t i o n .  on Growth Response o f pea p l a n t s a t 3 p r e - f r u i t i n g  6th node  10th node  Plant height cm  Mean internode length cm  Vine dry weight g  0 44 176  11 .5a* 12 .5a 12 . 0a  1 . 89a 2 .08a 2 .00a  21/13/18  0 44 176  14 . 3a 14 . 0a 15 .5a  30/21/10  0 44 176  9 .3a 8 .8a 8 . 5a  30/21/18  0 44 176  9 . 5a 9 .5a 10 . 5a  Temp. Regime Day/Night/Soil °C  Lbs. P per acre  21/13/10  stages t o  F u l l bloom  Plant height cm  Mean internode length cm  Vine dry weight g  Plant height cm  Mean internode length cm  Vine dry weight g  0 .19a 0 .22a 0 .23a  18 . 8a 21 . 0a 20 . 0a  1 .86b 2 • 11a 2 .00a  0 . 30b 0 . 38a 0 . 39a  43 • 8a 50 . 0a 50 .5a  3 ,40a 3 .40a 3 . 29a  0 • 65b 1 .35a 1 .8 2a  2 .38a 2 . 34a 2 • 58a  0 . 31b 0 . 33b 0 .43a  28 .5a 29 .3a 29 .3a  2 .85a 2 .93a 2 .93a  0 .42b 0 .75a 0 . 88a  49 .3b 69 .0a 66 . 0a  3 .45b 4 • 01a 3 . 84a  0 .95b 3 .45a 3 .23a  1 . 58a 1 .37a 1 .42a  0 .18a 0 .18a 0 .16a  18 . 8a 19 . 8a 17 . 3a  1 .90a 1 .91a 1 .93a  0 .32a 0 .44a 0 .43a  30 .3b 44 . 8a 42 . 0a  2 .15b 2 .79a 2 . 56a  0 .50b 1 .24a 1 .21a  1 .61a 1 . 66a 1 .78a  0 .22a 0 .25a 0 .28a  19 • 0a 20 . 3a 18 . 3a  1 • 90a 2 .03a 1 • 83a  0 . 34b 0 .53a 0 .52a  31 • 5b 44 . 8a 45 . 3a  2 • 13a 2 .43a 2 .46a  0 .53b 1 .4 3a 1 .46a  Each f i g u r e i s t h e mean o f 4 r e p l i c a t e s . F i g u r e s f o l l o w e d by t h e same l e t t e r w i t h i n a p a r t i c u l a r t e m p e r a t u r e regime, growth stage and v a r i a b l e a r e not s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05 a c c o r d i n g t o Duncan's m u l t i p l e range t e s t .  CT) CO  70 at  30/21°.  P e f f e c t s on d r y w e i g h t a t t h e 44 l b . / A were n o t  s i g n i f i c a n t l y d i f f e r e n t f r o m t h o s e a t t h e 176 temperature regimes.  The  P were g r e a t e r a t f u l l  lb./A r a t e at a l l  m a g n i t u d e o f w e i g h t i n c r e a s e s due  to  b l o o m t h a n a t t h e 1 0 t h node s t a g e .  MINERAL UPTAKE Mineral Concentrations.  When e x p r e s s e d as p e r c e n t o f d r y m a t t e r , 1  N g e n e r a l l y d e c r e a s e d . w i t h p l a n t age the  1 0 t h node t o t h e f u l l  remained  relatively  from the 6th node, t h r o u g h  bloom s t a g e s (Table 7 ) .  P and  constant at a l lthree stages.  Ca and  i n c r e a s e d a t t h e 1 0 t h node s t a g e , b u t d e c r e a s e d a t f u l l to  a b o u t t h e same l e v e l s as a t t h e 6 t h node s t a g e .  however m i n o r v a r i a t i o n s  i n t r e n d s due  K Mg  bloom  There  t o P l e v e l and  were  temperature  regime. A t t h e 6 t h node s t a g e , P a t t h e 176  lb./A increased  N c o n c e n t r a t i o n o n l y a t t h e c o o l a i r and h i g h s o i l regime  (21/13/18°).  P a t b o t h r a t e s o f a p p l i c a t i o n had  s i g n i f i c a n t e f f e c t s on K> l e v e l s of P generally of  temperature  Ca and Mg  concentrations.  no  Tissue  i n c r e a s e d w i t h a p p l i e d P, b u t t h e m a g n i t u d e  i n c r e a s e d P u p t a k e d e p e n d e d on t h e t e m p e r a t u r e  regime.  A t t h e 1 0 t h node s t a g e , a p p l i e d P a t t h e 176  lb./A  r a t e , b u t g e n e r a l l y n o t a t t h e 44 l b . / A r a t e , i n c r e a s e d c o n c e n t r a t i o n e x c e p t a t 30/21/10°.  P had  N  some i n f l u e n c e on  K  and Ca c o n c e n t r a t i o n s , b u t h a d no s i g n i f i c a n t e f f e c t on  Mg  concentration.  concen-  Both r a t e s of a p p l i e d . P i n c r e a s e d the P  t r a t i o n of plants at a l l temperature At f u l l  regimes.  b l o o m P d e c r e a s e d N c o n c e n t r a t i o n a t 21/13/18°  b u t had no s i g n i f i c a n t e f f e c t a t t h e o t h e r 3 t e m p e r a t u r e P g e n e r a l l y h a d no i n f l u e n c e on K and Mg d e c r e a s e d Ca a t a l l t e m p e r a t u r e r e g i m e s  regimes.  concentrations while i t except  21/13/18°.  71 T a b l e 7.  E f f e c t s o f A i r and S o i l T e m p e r a t u r e s and P h o s p h o r u s n u t r i t i o n on t h e c o n c e n t r a t i o n s o f 5 m i n e r a l s i n t h e pea v i n e a t 3 p r e - f r u i t i n g growth s t a g e s .  Growth Stage  Day/Night/Soil °C  6th node  21/13/10  10th node'  *  Per cent of dry matter M  p  K  Ca  Mg  176  4 .13a* 4 .20a 4 .52a  0 .17b 0 .24a 0 .26a  2 .03a 2 .05a 1 .93a  1 .80a 2 . 03a 1 .92a  0 .52a 0 .54a 0 .58a  21/13/18  0 44 176  4 • 68b 4 • 90b 5 . 33a  0 .18c 0 ,28b 0 .37a  2 .74a 2 .75a 3 .03a  2 .19a 2 .42a 2 . 28a  0 .59a 0 .59a 0 . 65a  30/21/10  0 44 176  5 .12a 5 .04a 5 . 33a  0 .21b 0 .3 3a 0 . 39a  2 .51a 2 .16a 2 .16a  2 ,19a 2 .25a 2 .24a  0 .63a 0 .62a 0 . 6 5a  30/21/18  0 44 176  5 .18a 5 . 32a 5 .67a  0 .24b 0.3 lab 0 .39a  2 .43a 2 .67a 3 .01a  2 .59a 2 .2 5a 2 .12a  0 .66a 0 .68a 0 .75a  21/13/10  0 44 176  3 .97b 3 .88b 4 . 6 3a  0 .12c 0 .23b 0 . 34a  1 .96a 2 .30a 2 .73a  2 .97a 3 .02a 2 . 69a  0 .67a 0 • 70a 0 .71a  21/13/18  0 44 176  4 .02b 5.• 12a 5 .12a  0 .10c 0 . 29b 0 . 50a  2 .72b 2 . 9 2ab 3 . 27a  3 . 24a 2 .75ab 2 . 52b  0 .75a 0 .76a 0 .78a  30/21/10  0 44 176  4 . 59a 4 .48a 4 .9 3a  0 .10c 0 .24b 0 .39a  2 .19a 2 .32a 2 • 48a  3 .15a 3 .13a 3 .0 8a  0 .73a 0 .73a ,0 . 81a  30/21/18  0 44 17 6  4 .41b 5 • 01a 4 . 99a  0 .10c 0 . 31b 0 .45a  2.lib 2 .7 3ab 3 .00a  3 .18a 2 . 7 2ab 2 .42b  0 .81a 0 • 82a 0 .78a  21/13/10  0 44 176  3 .22a 3 .09a 3 .11a  0 .0 8b 0 . 22a 0 .28a  1 .97a 1 .87a 1 . 88a  3 .74a 2 .86b 2 .18b  0 .71a 0 .65a 0 .64a  21/13/18  0 44 176  2 . 99a .2 .56b 2 . 53b  0 . 16a 0 .17a 0 . 21a  1 .39a 1 .75a 1 .77a  1 .05a 1 .03a 1 .22a  0 .35a 0 . 66a 0 • 66a  30/21/10  0 44 176  3 .77a 3 .11a 3 .44a  0 .10c 0 .22b 0 . 30a  2 .20a 2 .03a 2 .21a  3 .74a 2 .62b 2 .05c  0 .69a 0 .57a 0 .57a  30/21/18  0 .44 176  3 .54a 3 .72a •3 .78a  0 .12c 0 .27b 0 .33a  2 .07b 2 .27ab 2 .47a  3 .24a 2 .20b 2.lib  0 .74a 0 .62a 0 .70a  >  Full bloom  Lbs . P per acre  •  0  E a c h f i g u r e i s t h e mean o f 4 r e p l i c a t e s . F i g u r e s f o l l o w e d by t h e same l e t t e r w i t h i n a p a r t i c u l a r g r o w t h s t a g - i , t e m p e r a t u r e r e g i m e and n u t r i e n t a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t P = 0.0 5 a c c o r d i n g t o Duncan's m u l t i p l e r a n g e t e s t .  72  Total Mineral Contents. 176  A t t h e 6 t h node s t a g e , a p p l i e d P a t t h e  l b . / A r a t e i n c r e a s e d t h e t o t a l u p t a k e o f N and  soil  t e m p e r a t u r e o f 18°, b u t n o t a t t h e l o w s o i l  10°  (Table  the  t o t a l u p t a k e o f N, K, Ca and Mg.  to  t h e 176  8).  The  K at the  temperature of  44 l b . / A r a t e had no s i g n i f i c a n t  l b . / A a p p l i e d P was  Increase  effect  i n P uptake  t o t a l u p t a k e o f N and K.  resulted  A t 21/13/18° t h e 176  where Ca and Mg  increase  lb./A rate  e x c e p t a t 21/13/18°  i n c r e a s e d w i t h a p p l i e d P, b u t o n l y a t t h e 44 l b . / A  A t t h e low s o i l  both r a t e s of a p p l i e d At f u l l content  due  i n d e c r e a s e s i n N and K, c o m p a r e d t o t h e 44 l b . / A r a t e .  P had no s i g n i f i c a n t e f f e c t on Ca and Mg  rate.  on  g r e a t e s t a t 21/13/18°.  A t t h e 1 0 t h node s t a g e , a p p l i e d P t e n d e d t o the  high  t e m p e r a t u r e o f 10°  P uptake increased  P.  bloom the a p p l i c a t i o n o f P i n c r e a s e d the  o f each of the 5 m i n e r a l s  The m a g n i t u d e o f i n c r e a s e s  i n t h e u p t a k e o f t h e m i n e r a l s , due  was  g e n e r a l l y greater at the high  the  low s o i l  temperature.  soil  The  temperature than at  The m a g n i t u d e o f s u c h an  to P at the high  magnitude  soil  increase  temperature  r e d u c e d by t h e warm a i r t e m p e r a t u r e o f 30/21° c o m p a r e d t h a t o f 21/13°.  total  at a l l temperature regimes.  a p p l i e d P, d e p e n d e d on t h e t e m p e r a t u r e r e g i m e .  i n m i n e r a l u p t a k e due  at  was with  to  73 T a b l e 8.  E f f e c t s o f A i r and S o i l T e m p e r a t u r e s a n d P h o s p h o r u s n u t r i t i o n on t h e t o t a l c o n t e n t s o f 5 m i n e r a l s i n t h e pea v i n e a t 3 p r e - f r u i t i n g g r o w t h s t a g e s . ___ P per acre  Milligrams per plant  Growth Stage  Day/Night/Soil °C  6th node  21/13/10  •0 44 176  Saga 10a  21/13/18  0 44 176  15b 16b 23a  30/21/10  0 44 176  9a 9a 8a  0 .4b 0 . 6ab 0 .7a  30/21/18  0 44 176  lib 13ab 16a  0.5b 0 . 8ab 1.1a  21/13/10  0 44 176  12b 15ab 18a  21/13/18  0 44 176  30/21/10  10th node  Full bloom  *  N  P  K  Ca  Mg  0.3b 0 . 5a 0 . 6a  4a 4a 4a  4a 5a 4a  la la la  0 .6b 0 . 9b 1.7a  8b 9b 12a  7a 8a 10a  2a 2a 3a  5a 4ab 3b  4a 4a 4a  la la la  5b 6b 8a  6a 6a 6a  2a 2a 2a  0 .4c 0.9b 1.4a  6b 9a 11a  9a 11a 11a  2a 3a 3a  17b 39a 19b  0.3b 2.0a 2 .0a  7c 21a 14b  13b 21a 9b  3b 6a 3b  0 44 176  14b 20a 21a  0 .2c 1.0b 2. 0a  7b 10a 10a  10a 14a 13a  2a 3a 3a  30/21/18  0 44 176  15b 26a 25a  0 . 3b 1.6a 2.3a  7b 14a 14a  11a 14a 13a  3a 4a 4a  21/13/10  0 44 176  21c 37b 53a  0 . 5c 2 . 9b 4. 8a  13b 26ab 33a  25b 38a 40a  5c 8b 11a  21/13/18  0 44 176  28b 86a 100a  19b 69a 70a  35b 80a 67a  7b 18a 19a  30/21/10  0 44 176  18b 38a 41a  0 . 5b 2 .7a 3 .6a  lib 25a 26a  19b 32a 25a  3b 7a 7a  30/21/18  0 44 176  18b 53a 55a  0 .6b 3 .8a 4.7a  lib 32a 36a  17b 31a 30a  4b 9a 10a  1.0b 8. 0a 11.0a  E a c h f i g u r e i s t h e mean i o f 4 r e p l i c a t e s . F i g u r e s f o l l o w e d by t h e same l e t t e r w i t h i n a p a r t i c u l a r g r o w t h s t a g e , t e m p e r a t u r e r e g i m e and n u t r i e n t a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05 a c c o r d i n g t o Duncan's m u l t i p l e r a n g e t e s t .  3.3  E f f e c t s o f Phosphorus  N u t r i t i o n on Y i e l d F a c t o r s a t  E s t i m a t e d M a r k e t a b l e M a t u r i t y o f Peas a s I n f l u e n c e d by A i r and S o i l  Temperatures  GROWTH AND Y I E L D FACTORS Applied P increased plant height  a t a l l temperature  r e g i m e s e x c e p t 30/21/18° ( F i g . 7 and T a b l e 9 ) . the dry weights o f a l l 4 t i s s u e s ( r o o t  3  P also  increased  v i n e , pod and pea seed)  a t a l l temperature r e g i m e s , b u t t h e magnitude  o f such  d e p e n d e d on t h e t i s s u e a n d t e m p e r a t u r e r e g i m e  (Table 9 ) .  The  greater increases  P particularly temperature.  increases  i n r o o t w e i g h t due t o a p p l i e d  a t t h e 44 l b . / A r a t e w e r e a t t h e h i g h There were l a r g e i n c r e a s e s  soil  i n v i n e w e i g h t due t o  P a p p l i c a t i o n b u t t h e e f f e c t o f 176 l b . / A were g e n e r a l l y n o t different  f r o m t h o s e o f 44 l b . / A ( F i g . 8 a n d T a b l e 9 ) .  s m a l l e s t i n c r e a s e i n v i n e w e i g h t due t o a p p l i e d P was  The accompanied  by t h e l a r g e s t i n c r e a s e i n p e a w e i g h t a t t h e 30/21/10° r e g i m e . Increases  i n p e a y i e l d due t o a p p l i e d P r e s u l t e d l a r g e l y  increases  i n p e a number a n d t o a l e s s e r e x t e n t  from  on p e a s i z e a n d  pod number ( F i g . 9 a n d T a b l e 9 ) . MINERAL UPTAKE Mineral Distribution i n Plant Tissues. concentrations  were h i g h e s t  Mg i n t h e r o o t  (Table  i n t h e p e a s e e d , Ca i n t h e v i n e , and  1 0 ) . The t o t a l c o n t e n t s o f K, Ca a n d Mg  were however g r e a t e s t i n t h e v i n e w h i l e pea seed  (Table  r o o t o r pod.  G e n e r a l l y , N and P  1 1 ) . N was h i g h e r  P was g r e a t e s t i n t h e  i n v i n e and p e a s e e d t h a n i n  Table 9.  Growth c h a r a c t e r i s t i c s and y i e l d f a c t o r s  i n peas as i n f l u e n c e d by A i r and S o i l temperatures and phosphorus.  Pods Lbs. P per acre  Plant height cm  Root dry weight g  21/13/10  0 44 176  49b* 66a 65a  0.24b 0.35ab 0.42a  0.71b 1.91a 2.21a  21/13/18  0 44 176  55b 74a 71a  0.14b 0.32a 0.28a  30/21/10  0 .44 176  35b 45a 50a  30/21/18  0 44 176  38a 47a 48a  Temp. Regime Day/Night/Soil °C  *  Vine dry weight g  Peas  weight g  Mean No.  Fresh weight g  Dry weight g  Tota] dry mattei  1.3b 2.5a 2.8a  0.24b 0.91a 1.12a  2.8b 10.0a 10.8a  0.96b 4.38a 5.54a  0.18b 0.93a 1.31a  1.37c 3.87b 5.12a  0.75b 2.78a 2.94a  1.3b 3. 8a 4.8a  0.31b 1.28a 1.46a  4.0b 16.5a 16.0a  1.73b 8 .84a 7.60a  0.34b 1.74a 1.55a  1.54b 6.12a 6.23a  0.22b 0.33a 0.38a  0.40b 0.90a 1.07a  1.0b 2.0a 1.8a  0.12b 0.45a 0.47a  1.8b 7.0a 7.8a  0 .43b 3.14a 3.49a  0.08b 0.7 8a 0.76a  0.82b 2.46a 2.68a  0.14c 0.33a 0.25b  0.43b 1.17a 1.26a  1.0b 2.0a 2.0a  0.12b 0 .41a 0 .47a  2.3b 7.8a 7.0a  0.80b 3.68a 3.49a  0.19b 0.99a 1.03a  0.88b 2.90a 3.01a  Mean No.  Each f i g u r e i s the mean of 4 r e p l i c a t e s . Figures followed by the same l e t t e r w i t h i n a p a r t i c u l a r temperature regime and measurement are not s i g n i f i c a n t l y d i f f e r e n t a t P = 0.0 5 according t o Duncan's m u l t i p l e range t e s t .  cn  77  Fig.  8.  E f f e c t of phosphorus f e r t i l i z a t i o n on the growth of the p l a n t at the nearest-optimum a i r and s o i l temperature combination.  TEMP. "C  DAY/NIGHT/SOIL  21 13 IB  * »• t• • • • »•  Fig.  9.  E f f e c t o f a i r and s o i l t e m p e r a t u r e s a n d p h o s p h o r u s on number a n d s i z e o f peas p e r p o t (4 p l a n t s ) .  Table 10.  Mineral uptake and d i s t r i b u t i o n i n the r o o t , v i n e , pod and pea seed as i n f l u e n c e d by A i r and S o i l temperatures and phosphorus. Mineral concentrations, percent of dry matter.  Temp. Regime uay/wignx/aon °C  Lbs. P per acre  Vine  Root N  K  P  Ca  Mg  N  P  K  Ca  Mg  4 • 19a 3 .7 3a 2 .29b 3 • 57a 3 .14a 2 .44b  0. 80a 0.63b . 0. 52c 0.88a 0.66a 0.67a  2.,40a 1.,71b 1.. 54b  0.06b 0.08b 0.13a  1 .39a 1 .75a 1 .77a  0,,69b 1,,77a ,56a 0 ., 90ab . 1, 1,,29a 1.,26a 0,. 35b 1., 05a 0,,66a 1., 03a 0,.66a 1,,22a  2,,67a 2,,47a 1,,92b  0.10c 0.13b 0.18a  1 .95a .1.88a 1 ,73a 2 .00a 1 .83a 1 .9 3a  0,,10b 0,,12b 0,.29a  2 .98a 2 .75a 2. 53a  0,,86a 1,,14a 1,,19a  1,.73a 1,.61a 1,,61a  2,,9 6a 2,,40b 2 ,21b ,  0.06b 0.17a 0.19a  2 .21a 2 . 31a 2 .23a  4 .13a 3 .44a 2 .33b  1.00a 0. 83a 0.75a  0 .14b . 0 .16b , 0..23a  1 .05b 1 .65a 2 .00a  1,.07a 1..29a 1,.37a  0 ,, 36c . 0,.68a 0..56b  2 ,66a , 2 ,57a , 2,,54a  0.08b 0.11b 0.23a  2 .44a 2 .20a 2 .48a  3 .58a 3 .35a 2 .49b  0.99a 0.98a 0.8 9a  21/13/10  0 44 176  2 .7 2a* 2 .28ab 2 .10b  0,,07c 0,.13b 0 ,21a ,  2 .74a 2 .25b 1 .84b  21/13/18  0 44 176  2 .99a 2 .56b 2 .,53b  0,,16a 0,,16a 0,.21a  30/21/10  0 44 176  2 • 82a 2 . 34b 2 • 33b  30/21/18  0 44 176  2 .87a 2 . 54b 2 .56b  Pea  Pod 21/13/10  0 44 176  1 .99a 1 . 34b 1 .28b  0 .06b , 0,.15a 0..18a  1 .25a 1 . 39a 1 .31a  1,,65a 1,,57a 1.,40a  0,,48a 0 .44a . 0-, ,47a  4.,46a 4,,12a 4,,01a  0.30b 0.46a 0.51a  1 .43a 1 .66a 1 .64a  14c 12a • 11a  0.28a 0. 28a 0.30a  21/13/18  0 44 176  1 .90a 1 . 56a 1 .90a  0,,08c 0 .12b , 0 ,21a ,  1 .22a 1 .41a 1 .57a  1,,51a 1,,49a 1.,34a  0,,49a 0,,47a 0 ,47a .  4,,39a 4,,14a 4,,37a  0.34b 0. 39b 0.49a  1 .55a 1 .59a 1 .59a  13a 15a • 15a  0. 30a 0.31a 0.31a  30/21/10  0 44 176  2 • 54a 1 .33b 1 • 43b  0,,12b 0. .1.0 b 0 ,19a ,  1 .73a 1 .59a 1 .68a  1.,76a 1,, 99a 1.,68a  0 ,57a , 0,,60a 0,, 59a  4,,68a 4.,33a 4.,21a  0.26c 0. 36b 0.44a  1 .67a 1 .66a 1 .68a  19a 15a 14a  0.33a 0.33a 0. 33a  30/21/18  0 44 176  2 .26a 1 ..36b 1 . 54b  0,,09b 0,,14a 0,,16a  1 .61a 1 .57a 1 .78a  1.,73a 1,. 99a 1,,87a  0,,70a 0 ,67a , 0,,66a  4 ,82a , 4 ,42a . 4,,49a  0.28b 0.37b 0.65a  1 .73a 1 .62a 1 .65a  17a 16a 18a  0.3 5a 0.32a" 0.34a  *  Each f i g u r e i s the mean of 4 r e p l i c a t e s . Figures followed by the same l e t t e r w i t h i n each temperature regime, plant t i s s u e and element are not s i g n i f i c a n t l y d i f f e r e n t at P = 0.05 according to Duncan's m u l t i p l e range t e s t .  oo  T a b l e 11.  M i n e r a l u p t a k e and . d i s t r i b u t i o n i n t h e r o o t , v i n e , pod and p e a seed as i n f l u e n c e d by A i r and S o i l and p h o s p h o r u s . Mineral contents, milligrams per plant.  Temp. Regime Dav/Night/Soil °C  Lbs. P per acre  Root  temperatures  Vine :  N  P  K  Ca  Mg  N  P  K  Ca  Mg  21/13/10  0 44 176  6.,5a* 7 .. 9a 8,,5a  0 .. 2c 0 .4b . 0 ,9a .  6 .6a . 7 .. 8a 7 ,7a ,  1.,7b 3.. l a b 5.,6a  4 ..l a 5.. 4a 5 .. 8a  16..7a 32 .8a , 34 . 5a  0 ,4c . 1.,6b 2 ,9a .  13 . l b 35 .5a 38 , 0a  29 , . 6c 68..7a 50 . , 0b  5.,6b 11..7a 11.. 5a  21/13/18  0 44 176  4 ,0b , 8 .. 3a 7 .,l a  0 .. 3b 0 ., 5a 0 ., 6a  1..9b 5 ., 8a 5 ,0a ,  1.. 5b 3 .3a . 3 ,4a .  0 .. 5b 2 .. l a 1., 9a  19 .8b , 53 . 3a 72 , .9a  0.,6c 3 ,4b . 5.,3a  14 . 9b 50 .7a 56 .0a  26 .5c , 87.. 3a 69 . ,9b  6.,4b 18 . 3a 19 . ,4a  30/21/10  0 44 176  6 .. 2b 7 .. 8ab 8,. 6a  0 .. 2b 0 .4b . 1.• l a  6 ,6b , 8 ,4ab . 10 • . la  2.,0a 3 .. 8a 4..8a  3 ,. 9b 5 ,5a . 6 ..l a  11.. 3b 20 .0a , 25 .4a ,  0 .. 2b 1.. 5a 2.. 0a  9 .0b 20 . 9a 23 .9a  16,,4b 30 . ,7a 24 . 5a  3 .9b . 7 ,3a . 7 .9a .  30/21/18  0 44 176  3 ., 9b 8 .. 3a 6 ,4a ,  0 .. 2b 0".,6a 0 .. 6a  1.,4b 5 ., 8a 5 .0a ,  1.,5b 4 . 2a 3 .4a .  0 ,5b . 2.,1a 1.,1b  11,.4b 29 . , 8a 31,.9a  0 .. 3c 1.. 3b 2 . 9a  10 .6c 25 . 8b 31 . 2a  15.. 3c 39.; 3a 31.; 0b  4 •. l b 11 . . 3a 11.. l a  Pod  Pea'  21/13/10  0 44 17 6  4 .. 6b 12 . ,8a 13 . ,1a  0 .. 2b 1.,4a 1.,9a  3 .0b . 12 .,l a 14 . 3a  3 .. 8b 13 . ,7a 16 . ,9a  1.. 2b 4 . 0a 5.. 3a  7 .9b , 37 ,3a , 52 , ,5a  0 .. 5c . 3b '• 4. 6 ,7a .  21/13/18  0 44 176  5.. 8b 19 . ,7a 28 . ,0a  0 ,4b . 1.. l b 3 .. l a  3 ,8b . 17 . ,8a 22.. 9a  4 ,6b . • 19. ,4a 19 . , 3a  30/21/10  0 44 176  3 .. 0b 5 .9a . 6.,9a  0 .. 2c 0 ,. 5b 0.. 9a  2 ..l b ' 7 ,1a . 7 ,, 8a  30/21/18  0 44 176  2. , 8b 5 .. 5a 7 ,. 6a  0 ,2c . 0 .4b . 0., 8a  2 .. 0c 6.,4b 8 ,2a .  2 .6b 15 .4a 21 .5a  1..6b 5.,9a 6 .8a .  14 , ,9b 72.,0a 67 , ,7a  1., 3b 5.,9a 7 ,6a .  5 . 3b 27 .7a 24 .6a  0 ,4b . 2 ,6a . 2.,3a  1..0b 5..4a 4 . 8a  2.,0b 8 ,8a . 7 ,. 5a  0 ,7b . 2.,7a 2 ,. 7a  3 .7b . . 33.,8a 32 . ,0a  0.. 2b 2 ,8a . 3 . 3a  1 .3b 12 .9a 12 .8a  0 .. 2b 1.. 2a 1., l a .  0 .. 3b 2.,6a 2.. 5a  2 ,. l b 8, . 3a 8, . 8a  0 ,9b . 7 ,8a . 3 ,1a .  9 ..l b 43 . .6a 45 . ,6a  0., 5c 3 .7b . 6 ,7a .  3 . 3b 16 .0a 17 . 0a  0 .. 3b 1.. 6a 1..9a  0 ,7b . 3 ,. 2a 3.,5a  0 ,3b . 1.. l a ' ' 1. . 4a  0.. 5b 2 .. 6c 3.. 9a  Each f i g u r e i s t h e mean o f 4 r e p l i c a t e s . F i g u r e s f o l l o w e d by t h e same l e t t e r w i t h i n each t e m p e r a t u r e r e g i m e , p l a n t t i s s u e and. element a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05 a c c o r d i n g t o Duncan's m u l t i p l e r a n g e t e s t .  CO  80  Mineral  Concentrations.  The i n f l u e n c e o f a p p l i e d P on t i s s u e  l e v e l s o f N, P, K, Ca a n d Mg d e p e n d e d on t h e t i s s u e a n d t h e temperature regime.  In the r o o t , applied P a t both  generally decreased N concentration (Table 10).  applied P at the high air  a t a l l temperature  Root l e v e l s o f P i n c r e a s e d  o f a p p l i e d P e x c e p t a t 21/13/18°. soil  rates  with  t h e 176 l b . / A r a t e  Root K tended t o i n c r e a s e  temperature, p a r t i c u l a r l y  when t h e  at the cool a i r temperature.  was a f f e c t e d by a p p l i e d P a t a l l t e m p e r a t u r e r e g i m e s was s i g n i f i c a n t  only  by P a t t h e l o w s o i l  a t 21/13/10°.  R o o t Ca  but t h i s  R o o t Mg was n o t i n f l u e n c e d  t e m p e r a t u r e b u t was i n c r e a s e d  at the high  temperature. In t h e v i n e , a p p l i e d P decreased N c o n c e n t r a t i o n  all  with  t e m p e r a t u r e was warm, and t e n d e d t o d e c r e a s e a t t h e l o w s o i l  temperature, p a r t i c u l a r l y  soil  regimes  temperature regimes  e x c e p t 30/21/18°.  at  P at the higher  rate  increased  the P concentration  regimes.  V i n e K a n d Mg w e r e n o t s i g n i f i c a n t l y i n f l u e n c e d by P  at a l l temperature regimes Mg c o n c e n t r a t i o n  of the vine a t a l l temperature  except that both r a t e s o f P decreased  a t 21/13/10°.  r a t e o f P a t a l l temperature  Ca was d e c r e a s e d by t h e h i g h e r  regimes.  I n t h e p o d and t h e p e a s e e d , K, Ca a n d Mg w e r e n o t i n f l u e n c e d by P a t a l l t e m p e r a t u r e r e g i m e s .  concentrations N  o f t h e p o d d e c r e a s e d w i t h a p p l i e d P e x c e p t a t 21/13/18°. concentration  N  o f t h e p e a s e e d was n o t i n f l u e n c e d by P a t a l l  temperature regimes. seed i n c r e a s e d  concentration  with  P concentration applied  P.  o f t h e pod and t h e pea  81  Total Mineral  Contents.  Applied  P generally  increased  the  upake o f M i n a l l 4 t i s s u e s a t a l l 4 t e m p e r a t u r e r e g i m e s P content of a l l t i s s u e s increased regimes.  K,  Ca  and  Mg  total  (Table  with a p p l i e d P at a l l temperature  also generally  increased  with  P application  in a l l tissues. 3.4  Mineral  Translocation  Patterns  I n a d d i t i o n t o i t s e f f e c t on minerals,  P a l s o i n f l u e n c e d the  plant tissues. t o the Pea  c o n t e n t s of the  while  pea  in  the  amount o f N t r a n s l o c a t e d  amount c o n t a i n e d  i n the  The  to those of definite Increases  Ca  44  lb./A  c o n t e n t of the  o f K and pea  P.  3.5  Cycocel,  The  example,  s e e d was  high  soil  Mg  P h o s f o n and  too  low  i n t o the  at the  at  value  to  pea  soil  temperature of  18°.  P i g m e n t and  B - N i n e a t Low  permit  seed, tempera-  Mineral of  Concentrations  3 growth r e t a r d i n g chemicals  growth c h a r a c t e r i s t i c s , pigment c o n t e n t s ,  of  were s i m i l a r  Plant to F o l i a r A p p l i c a t i o n s  e f f e c t s of the  22%  the  low  Comparative Growth , P l a s t i d Responses of the  employed  temperature e f f e c t s .  t r a n s l o c a t i o n of minerals  than at the  pea  s e e d was  t o a p p l i e d P, w e r e u s u a l l y g r e a t e r o f 10°  For  rate increased  i n t e r p r e t a t i o n o f p h o s p h o r u s and i n the  the  e n t i r e plant without applied P  d i s t r i b u t i o n patterns N.  12).  i n t o the  of  seed i n r e l a t i o n  entire plant varied with applied  i n d i c a t o r of t r a n s l o c a t i o n (Table  t o 41%.  ture  t o t a l absorption  d i s t r i b u t i o n patterns  c o n t e n t s o f the  21/13/10°, a p p l i e d P a t t h e  due  the  s e e d c o n t e n t as p e r c e n t o f t o t a l p l a n t c o n t e n t was  as t h e  the  Mineral  11).  and  mineral  on  uptake  T a b l e 12.  A b s o r p t i o n and T r a n s l o c a t i o n o f N, P, K, Ca and Mg as I n f l u e n c e d byP h o s p h o r u s n u t r i t i o n a t 4 A i r and S o i l T e m p e r a t u r e R e g i m e s .  Temperature Regime Day/Night/Soil °C  T o t a l uptake mg/plant  Lbs P per acre  N  21/13/10  0 44 176  21/13/18  Pea s e e d c o n t e n t as % p l a n t c o n t e n t  P  K  Ca  Mg  N  P  . K  Ca  Mg  36 91 109  1. 3 7.7 12.4  25 71 82  35 87 74  11 24 27  22 41 48  33 55 54  10 22 26  0.9 1.3 1.9  4 11 15  0 44 176  45 153 176  2.6 10.9 16 .6  26 102 109  33 113 94  10 32 33  33 47 38  50 54 45  10 27 22  1.2 2.3 2.4  11 16 14  30/21/10  0 44 176  24 68 73  0.8 5.2 7.3  19 49 55  21 45 38  9 18 19  15 39 44  25 54 45  7 27 24  1.0 2.7 2.9  4 15 13  30/21/18  0 44 176  27 87 92  17 54 61  19 53 45  6 19 19  34 50 50  42 62 61  19 29 28  1.6 3.0 4.2  11 17 19  1.2 6.0 11.0  CO t-O  83  d e p e n d e d on t h e r e t a r d i n g c h e m i c a l 13,  and i t s c o n c e n t r a t i o n  (Tables  14, and 1 5 ) . CYCOCEL a t 1 ppm i n c r e a s e d p l a n t h e i g h t  internode  l e n g t h , t o t a l d r y m a t t e r and pea y i e l d b u t d i d n o t  a f f e c t number o f p e a s  (Table  13).  C h l o r o p h y l l a and t h e  c h l o r o p h y l l a:b r a t i o w e r e s i g n i f i c a n t l y b was n o t i n f l u e n c e d ( T a b l e higher  (Fig. 10),  14).  than i n c o n t r o l plants  caused a r e d u c t i o n i n p l a n t dry matter production  reduced while c h l o r o p h y l l  N, P a n d Mg c o n c e n t r a t i o n s  (Table  15).  Cycocel  height, internode  were  a t 100 ppm  l e n g t h and t o t a l  b u t d i d n o t a f f e c t pea y i e l d .  The  r e d u c t i o n i n t o t a l d r y w e i g h t was l a r g e l y a r e s u l t o f a d e c r e a s e i n vine weight.  P, Mg a n d c h l o r o p h y l l b c o n c e n t r a t i o n s  i n c r e a s e d a n d K d e c r e a s e d by t h i s  treatment.  PHOSFON a t 1 ppm i n c r e a s e d i n t e r n o d e  l e n g t h and t h e  concentration of P but decreased K concentration. P h o s f o n caused a marked r e d u c t i o n i n p l a n t h e i g h t ,  100 ppm internode  l e n g t h , v i n e w e i g h t , pea w e i g h t and t o t a l d r y m a t t e r , the  concentrations  yield or plastid  pigment content.  w e r e r e d u c e d a n d Mg i n c r e a s e d . internode  but increased  o f c h l o r o p h y l l s a and b, and P and Ca.  B-NINE a t 1 ppm d i d n o t s i g n i f i c a n t l y and  were  affect  N, P and K  growth  concentrations  B - N i n e a t 100 ppm i n c r e a s e d mean  l e n g t h a s w e l l a s N and P c o n t e n t s .  K was a g a i n  less  than i n c o n t r o l p l a n t s . The t o t a l number o f p e a s , c a r o t e n o i d c o n c e n t r a t i o n and c h l o r o p h y l l : c a r o t e n o i d r a t i o were n o t s i g n i f i c a n t l y any  of the treatments  magnitude o f treatment  (Tables  1 3 , 14 a n d 1 5 ) .  e f f e c t s on m i n e r a l  The  i n f l u e n c e d by relative  composition  d e p e n d e d on  Table  13.  Effects of Cycocel,  P h o s f o n and  B-Nine  on g r o w t h and y i e l d  f a c t o r s i n peas.  Plant height (cm)  Mean internode length (cm)  Vine dry weight (g)  Total number peas (no)  Pea fresh weight (g)  Pea dry weight (g)  Total dry matter (g)  69 . 3 b*  3 .63b  4 . 57ab  28 .7a  15 . 38b  3.27b  10 . 30b  75 . 5a  4 .15a  4 .86a  27 . 8a  20 • 46a  4. 45a  11 .94a  62 .8c  3 . 33c  3 .96b  24 . 8a  13 .77b  2 . 97b  9 .17c  1 ppm  73 ,6ab  3 .90a  4 .49a  27 .7a  16 .86b  3 .38b  10 .17b  P h o s f o n , 100 ppm  38 . 3d  2 . 26d  2 .94c  21 . 0a  9 .75c  1.95c  6 .66d  B-Nine,  1 ppm  69 .96b  3 .70b  4 . 16ab  26 .5a  14 . 25b  3 .15b  9 ,50b  B-Nine,  100 ppm  71 . 3ab  3 .93a  3 .97b  28 . 3a  14 .71b  3 .43b  9 .5 3b  Control Cycocel,  1 ppm  Cycocel,  100 ppm  Phosfon,  *  E a c h f i g u r e i s t h e mean o f 12 p l a n t s . Figures a p a r t i c u l a r measurement a r e n o t s i g n i f i c a n t l y Duncan's m u l t i p l e r a n g e t e s t .  f o l l o w e d by t h e same l e t t e r w i t h i n d i f f e r e n t a t P = 0.0 5 a c c o r d i n g t o  00  T a b l e 14.  E f f e c t s o f C y c o c e l , P h o s f o n a n d B-Nine o n p l a s t i d p i g m e n t c o n t e n t s o f pea p l a n t s .  Control  Chloro. a  mg/g f r e s h l e a f Chloro Total b Chloro.  Carotenoids  Ratio Chloro. a: b  1.9 0b*  0.78b  2.6 8b  0.28a  2.44a  Ratio Chloro./ carot. 9 . 6a  Cycocel,  1 ppm  1.67c  0 .73b  2.40c  0 .24a  2 .29b  10 .0a  Cycocel,  100 ppm  2.00b  0 . 90a  2.90ab  0.27a  2.22b  10 .7a  Phosfon,  1 ppm  1.79b  0.74b  2.53b  0.27a  2.42a  9 .4a  Phosfon,  100 ppm  2 .14a  0 .91a  3 .05a  0.29a  2.35a  10.5a  B-Nine,  1 ppm  1.89b  0 .78b  2 .67b  0 . 28a  2 .42a  9.5a  B-Nine,  100 ppm  1.88b  0 .78b  2.66b  0.23a  2 .42a  11.6a  E a c h f i g u r e i s t h e mean o f 12 p l a n t s . • F i g u r e s f o l l o w e d by t h e same l e t t e r w i t h i n a p a r t i c u l a r measurement a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05 a c c o r d i n g t o Duncan's m u l t i p l e r a n g e t e s t .  Table  15.  M i n e r a l c o m p o s i t i o n a n d t o t a l c o n t e n t s i n p e a p l a n t s a s i n f l u e n c e d by t w o c o n c e n t r a t i o n s o f C y c o c e l , P h o s f o n and B-Nine.  Mineral composition (percent of dry matter) N  P  K  Ca  T o t a l mineral uptake (mg/plant v i n e p o r t i o n ) Mg  N  P  K  Ca  Mg  3. 80 b*  0 .08c  4 .46a  2 . 94b  0.76b  174a  3 .7b  204a  134a  35ab  1 ppm  4 .05a  0 .10c  4 .22ab  2 .95b  0 .79a  197a  4 .Qab  205a  143a  38a  C y c o c e l , 100 ppm  4. 05a  0 .13b  2 .64c  3 . 07ab  0 .80a  160b  5.la  105c  122b  32b  Phosfon,  1 ppm  3 .86b  0 .13b  3 .59b  2 .99b  0.75b  173a  5 . 8a  161a  134a  34b  P h o s f o n , 100 ppm  3. 89b  0 .16a  4 . 3 5a  3 .23a  0 .74b  114c  4 .7ab  128b  95c  22c  B-Nine,  1 ppm  3 .56c  0 .06d  4 .07b  2 .88b  0 .80a  148b  2 . 5c  159a  120b  33b  B-Nine,  100 ppm  3. 95a  0 . 11c 3 .99b  2 .90b  0.78ab  157b  4 .4ab  158a  115b  31b  Control Cycocel,  E a c h f i g u r e i s t h e mean o f 12 p l a n t s . F i g u r e s f o l l o w e d by t h e same l e t t e r w i t h i n a p a r t i c u l a r e l e m e n t a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05 a c c o r d i n g t o D u n c a n ' s m u l t i p l e range t e s t .  00 CD  Fig.  10.  Effects p" l a n t .  o f B - N i n e , C y c o c e l a n d P h o s f o n a t 1 and 100 ppm  on g r o w t h o f t h e 00  88  whether  t h e y w e r e e x p r e s s e d on a p e r c e n t o f d r y m a t t e r  o r e x p r e s s e d on a t o t a l u p t a k e p e r p l a n t  basis  (vine portion)  basis  (Table 15). 3.6  E f f e c t s o f Temperature Hexose p h o s p h a t e s  and A p p l i e d P h o s p h o r u s  and A d e n o s i n e p h o s p h a t e s  on G l u c o s e ,  i n Pea  Tissues  G l u c o s e and h e x o s e p h o s p h a t e s a t about (Fig.  had a b s o r b a n c e  32 5 nyu, and a d e n o s i n e p h o s p h a t e s  11).  ADP  and ATP  g l u c o s e and h e x o s e  d i d n o t g i v e peaks  a t about  maxima  26 0 mjd  as s h a r p as t h o s e o f  phosphates.  I n 5-day o l d p e a r a d i c l e s , an i n c r e a s e i n t e m p e r a t u r e f r o m 20 t o 25°  l e d t o a marked i n c r e a s e i n the l e v e l o f g l u c o s e ,  h a d no e f f e c t on G - l - P and G-6-P", b u t d e c r e a s e d F-6-P, F-D-P, ADP  and ATP  levels  (Table 16).  W i t h an i n c r e a s e t o  g l u c o s e remained h i g h w h i l e the l e v e l s o f hexose i n c r e a s e d , and t h o s e o f ADP  and ATP  R a d i c l e w e i g h t i n c r e a s e d a t 25°  phosphates  were v i r t u a l l y  b u t t h e r e was  d i f f e r e n c e b e t w e e n r a d i c l e s a t 20 and  no  30°,  unchanged.  significant  30°.  I n l e a v e s and r o o t s o f 30-day o l d p l a n t s , t h e r e were significant  i n t e r a c t i o n s b e t w e e n t e m p e r a t u r e and P f o r t h e  p h o s p h o r y l a t e d compounds e x c e p t G-6-P the r o o t .  The  were t h e r e f o r e  i n t h e l e a f and ATP  s i m p l e e f f e c t s o f P a t each temperature  in  regime  determined.  A p p l i e d P a t 44 l b . / A i n c r e a s e d l e a f w e i g h t a t a l l t e m p e r a t u r e r e g i m e s , and  increased root weight only at the  cool  89  F i g . I I . T y p i c a l a b s o r p t i o n s p e c t r a of glucose ( g l u ) , hexose phosphates (HP) and adenosine phosphates (AP) of 5-day o l d pea r a d i c l e s grown a t 25°. 1 g o f f r e s h t i s s u e was used.  90  Table  Temp.  °c  16.  E f f e c t o f t e m p e r a t u r e on G l u c o s e , H e x o s e p h o s p h a t e s , ADP a n d ATP l e v e l s o f 65-day o l d p e a r a d i c l e s . Fresh w e i g h t (F.W.) i n g; compounds i n uM/g. F.W.  F.W.  Glu.  G-l-P  76b  G-6-P  F-6-P  F-D-P  ADP  ATP  .54b  .19b  .15b  .23b  . 21a  .17a  20  1.86b*  25  2 .21a  150a  .46b  .20b  .10c  .12c  .17b  .13b  30  1.79b  149a  1.64a  .39a  .18a  .40a  • 15c  .13b  E a c h f i g u r e i s t h e mean o f 3 r e p l i c a t e s . Figures followed by t h e same l e t t e r w i t h i n e a c h compound a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t P = 0.0 5 a c c o r d i n g t o D u n c a n ' s m u l t i p l e range test.  91  d a y / n i g h t a i r t e m p e r a t u r e o f 21/13°  (Table 17).  d e c r e a s e d l e a f g l u c o s e o n l y a t 30/21/18°.  P significantly  Leaf G-l-P decreased  w i t h a p p l i e d P a t t h e c o o l a i r t e m p e r a t u r e b u t n o t a t t h e warm a i r temperature.  P d e c r e a s e d G-6-P  temperature regimes. regimes  i n the leaf at a l l  F-6-P was i n c r e a s e d by P a t a l l t e m p e r a t u r e  e x c e p t 21/13/18°.  a p p l i e d P a t 21/13/18°.  F-D-P  i n the l e a f decreased  A t 21/13/10°  t h e r e was a d e c r e a s e i n '  l e a f ADP and an i n c r e a s e i n A T P , due t o a p p l i e d P. h o w e v e r , P h a d no s i g n i f i c a n t e f f e c t  with 1  A t 21/13/18°,  on ADP b u t d e c r e a s e d ATP.  In t h e r o o t , a p p l i e d P s i g n i f i c a n t l y decreased t h e l e v e l s o f G - l - P , G-6-P, F-6-P a n d ATP a t 21/13/18°.  At  30/21/18°, P i n c r e a s e d g l u c o s e , G - l - P , G-6-P, F-D-P a n d ADP b u t d e c r e a s e d F-6-P. 3.7  E f f e c t s o f C y c o c e l and P h o s f o n on G l u c o s e , H e x o s e p h o s p h a t e s and A d e n o s i n e p h o s p h a t e s i n 5-day o l d P e a Radicles  C y c o c e l a t 1 ppm i n c r e a s e d t h e l e v e l s o f G - l - P a n d G-6-P  (Table 18).  F-6-P t e n d e d t o i n c r e a s e w i t h  concentration of Cycocel.  increasing  F-D-P d e c r e a s e d a t 1 ppm, was n o t  i n f l u e n c e d a t 10 a n d 100 ppm, a n d i n c r e a s e d a t 1000 ppm. a t a l l c o n c e n t r a t i o n s d e c r e a s e d ADP.  Cycocel  ATP d e c r e a s e d a t 1 a n d  10 ppm, was n o t s i g n i f i c a n t l y a f f e c t e d a t 100 ppm, b u t i n c r e a s e d at  1000 ppm.  O n l y 1000 ppm C y c o c e l d e c r e a s e d r a d i c l e  P h o s f o n a t up t o 100 ppm i n c r e a s e d g l u c o s e .  weight. A t 1 and  10 ppm, P h o s f o n d e c r e a s e d G-6-P, F-D-P, ADP a n d A T P , b u t i n c r e a s e d F-6-P.  A t 1000 ppm, P h o s f o n m a r k e d l y  decreased glucose  T a b l e 17.  T i s s u e l e v e l s o f G l u c o s e , H e x o s e p h o s p h a t e s , ADP a n d ATP' as i n f l u e n c e d by a i r a n d s o i l t e m p e r a t u r e s a n d a p p l i e d p h o s p h o r u s . Levels of compounds i n ;uM/g f r e s h w e i g h t .  Temperature Regime Day/Night/Soil °C  Lbs. P per acre  Fresh wt. g  Glu.  G-l-P  G-6-P  F-6-P  F-D-P '  ADP  ATP  21/13/10  0 44  5.lb* 11,. 5a  47a 52a  1.70a .53b  .51a .33b  .26b .46a  . 82a .70a .  .31a .2 4b  .lib .14a  21/13/18  0 44  5..5b 17,. 5a  58a 53a  .71a .56b  .43a . 32b  .26a .28a  . 66a ,47b  .27a . 30a  .14a .10b  30/21/10  0 44  4 ,.9b 9 .4a ,  51a 54a  .76a .65a  , 55a .33b  . 38b .48a  .40b . 5 3a  .33a .32a  .13a .14a  30/21/18  0 44  4,,4b 9 ., 3a  120a 45b  .71a .60a  .52a .33b  . 32b .51a  .44b . 55a  . 31a .26a  .14a .14a  21/13/10  0 44  11.,9b 16 ,.8a  36a 21b  . 53a .46a  .33a .26b  .32a . 32a  .38b .43a  .25a .22a  .10a .10a  21/13/18  0 44  13.,5b 17 ., 6a  17a 14a  .47a .30b  . 43a . 25b  .42a . 30b  .50a .4 8a  .20a .17a  .08a .06b  30/21/10  0 44  11 .4a 12 ., 5a  13a 11a  .19b . 32a  .28a . 31a  .48a . 32b  .40a .37a  .16a .17a  .08a .09a  30/21/18  0 44  10 ., 5a 10 ., 6a  lib 16a  .47b .60a  . 37b . 50a  .50a .40b  .43b .57a  .15b .22a  .09a .10a  LEAF  ROOT  *  E a c h f i g u r e i s t h e mean o f 3 r e p l i c a t e s . Means f o l l o w e d by t h e same l e t t e r w i t h i n a t i s s u e , t e m p e r a t u r e r e g i m e a n d compound a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05.  T a b l e 18.  Retardant Cycocel  E f f e c t s o f C y c o c e l and P h o s f o n on t h e l e v e l s o f G l u c o s e , H e x o s e p h o s p h a t e s , ADP and ATP i n 5-day o l d p e a r a d i c l e s . Fresh weight (F.W.) i n g.\ compounds i n AiM/g F.W.  ppm  Glu.  G--1-P  G-6-P  F-6-P  F-D-P  AD?  ATP  0  1.,9 3a*  60d  .53b  . 21b  .09c  ,09b  .19a  .12b  1  2 ,04a ,  70d  .93a  .49a  .09c  .07c  .15b  .10c  1.. 98a  97c  .65b  . 24b  • 12b  .09b  .12b  .10c  1,, 86a  123a  . 55b  .23b  . 31a  .10b  .13b  .13b  1,,19b  110b  .45c  .23b  . 29a  .15a  .13b  .18a  71b  . 51b  .22b  ,11c  .12a  . 21a  .13c  10 100 loob  Phosfon  F.W.  0  1., 74a  l  1,,61a  122a  ,50b  .16c  . 19a  .09b  .15b  .lib  10  1.,62a  118a  .43b  .14c  .14b •  .05c  .12c  .10b  1., 22b  119a  . 35c  .15c  .15b  ,05c  .13c  .lib  47c  1 . 31a  . 35a  .15b  .05c  .16b  .20a  100 1000  0 ,48c .  E a c h f i g u r e i s t h e mean o f 3 r e p l i c a t e s . F i g u r e s f o l l o w e d by t h e same l e t t e r w i t h i n a g r o w t h r e t a r d a n t and v a r i a b l e a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t P = 0. a c c o r d i n g t o Duncan's m u l t i p l e r a n g e t e s t .  94  but i n c r e a s e d  t h e h e x o s e m o n o p h o s p h a t e s and ATP.  d e c r e a s e d a t 100  and  1000  ppm  Phosfon.  Radicle  weight  95  4. 4.1  Growth  DISCUSSION  Responses  t o Phosphorus  I n c r e a s e d p e a y i e l d s due  Nutrition  t o a p p l i e d P were  accompanied  by r e l a t i v e d e c r e a s e s i n v i n e w e i g h t s , w i t h no r e l a t i v e in  pod w e i g h t s .  Increases i n y i e l d  thus appeared  changes  t o have  o c c u r r e d t h r o u g h t h e use o f p h o t o s y n t h a t e t h a t would o t h e r w i s e have r e m a i n e d deficient  i n l e a v e s and/or  soil.  T h i s may  s t e m when P was  n o t added t o a  be i n t e r p r e t e d as an e n h a n c e d  P-  trans-  l o c a t i o n o f p h o t o s y n t h a t e f r o m t h e l e a v e s , t h r o u g h t h e pod t o t h e pea s e e d , s i n c e t h e p h o s p h o r y l a t i o n o f s u g a r s has been in  translocation  (Canny,  T h e r e was  implicated  1962).  a d e l e t e r i o u s e f f e c t o f warm a i r t e m p e r a t u r e  on g r o w t h , w h i c h i n c r e a s e d w i t h age o f p l a n t s .  Beyond t h e 1 0 t h  node s t a g e t h e o p t i m u m a i r t e m p e r a t u r e f o r p e a p l a n t g r o w t h i n d i c a t e d t o be l o w e r t h a n f o r p r e c e d i n g s t a g e ( s ) o f T h i s i s c o n s i s t e n t w i t h t h e r e s u l t s o f Wang and  was  growth.  Bryson  (1956),  Went ( 1 9 5 7 ) and S t a n f i e l d e t a l . ( 1 9 6 6 ) . An i n c r e a s e i n s o i l generally stages. of  18°  increased p l a n t weight at the 3 p r e - f r u i t i n g  M e d e r s k i and J o n e s  (1953) f o r p o l e beans, K e t c h e s o n  those  (1957)  and  ( 1 9 6 3 ) f o r c o r n , L i n g l e and D a v i s ( 1 9 5 9 ) f o r  S i n g h and Mack (1966 ) f o r b e a n s , and Mack e t aJL.  for  peas.  the  p r e s e n t s t u d i e s t o a l s o d e p e n d on a i r t e m p e r a t u r e .  example,  growth  These o b s e r v a t i o n s a r e i n g e n e r a l agreement w i t h  A p p l e and B u t t s  tomato,  t e m p e r a t u r e f r o m 10 t o  However, t h e r e s p o n s e t o s o i l  although the h i g h s o i l  t e m p e r a t u r e was  t e m p e r a t u r e o f 18°  (1964) found i n For  increased  96  growth  compared w i t h  were g r e a t e r  t h e low s o i l  temperature  a t t h e c o o l d a y / n i g h t a i r t e m p e r a t u r e o f 21/13° t h a n  a t t h e warm a i r t e m p e r a t u r e Applied  o f 30/21°.  P d i d not o f f s e t the growth-limiting  o f warm a i r t e m p e r a t u r e o r l o w s o i l days  after planting  applied  o f 10°, t h e i n c r e a s e s  (full  t e m p e r a t u r e up t i l l  bloom s t a g e ) .  P was a l w a y s g r e a t e r  effects about  40  G r o w t h p r o m o t i o n by  at the high  soil  temperature,  p a r t i c u l a r l y when t h e a i r t e m p e r a t u r e was warm.  This  differs  f r o m t h e r e s u l t s o f Mack e t a l . ( 1 9 6 4 ) f o r p e a s , a n d A p p l e and  Butts  (1953) f o r p o l e  the  d r y w e i g h t r e s p o n s e o f pea- p l a n t s t o P f e r t i l i z e r  was s i m i l a r a t t h e s o i l to detect  beans.  Mack e t a l . ( 1 9 6 4 )  temperatures tested  d i f f e r e n c e s i n t h e magnitude  P at different soil  soil.  o f growth  They u s e d a s o i l  soil  their results.  the s o i l  4 ppm P.  The  f a c t o r s not  The b a s i s o f d i f f e r e n c e s i n t h e s e r e s u l t s a n d therefore  be due t o s e v e r a l  The b e a n p l a n t may be more s e n s i t i v e t o l o w s o i l  temperature  s o t h a t P w o u l d o f f s e t some o f t h e d e l e t e r i o u s  effects of cold s o i l .  Increased  d r y m a t t e r due t o P i s c o n s i s t e n t  the r o l e of P i n protein synthesis  extension  experimental  i n t e n s i t y might have a f f e c t e d  those o f the p r e s e n t s t u d i e s might  with  only  (1953), however, s t a t e d t h a t other  t h e i r c o n t r o l such as l i g h t  factors.  by  P might have l e d t o decreased response t o P f e r t i l i z e r .  A p p l e and B u t t s under  Failure  by Mack e t a l . ( 1 9 6 4 )  15 t o 25 ppm P w h i l e  used i n t h e p r e s e n t experiments contained high  increases  P content of the  containing  that  a t 70 l b . / A  (13 t o 2 5 ° ) .  t e m p e r a t u r e s as r e p o r t e d  may h a v e r e s u l t e d f r o m t h e n a t i v e  found  (Marre,  1961).  a n d g r o w t h by c e l l  wall  97  A t c r o p m a t u r i t y t h e e f f e c t s o f a i r and s o i l and a p p l i e d P on p l a n t g r o w t h v i n e , pod and pea s e e d ) .  air  varied with the four tissues  a t a l l temperature regimes.  and s o i l  temperatures.  The g r e a t e s t i n c r e a s e due t o P a t t h e  30/21/10°.  Increases i n y i e l d  temperature  o f t h e same m a g n i t u d e .  30/21/10° t h e g r e a t i n c r e a s e m i g h t  air  adequate  u t i l i z a t i o n o f growth  and s o i l  At  t h u s h a v e b e e n due t o a l a c k f a c t o r s a t other than optimal  temperature combination.  Such d e l e t e r i o u s  m i g h t t h u s be e x p e c t e d t o be m i n i m i z e d by P b e c a u s e in  The  t e m p e r a t u r e o f 30/21° was s u p r a - o p t i m a l a n d t h e s o i l  t e m p e r a t u r e o f 10° was s u b - o p t i m a l f o r p e a p l a n t g r o w t h .  of  regime  due t o P a t t h e o t h e r t h r e e  t e m p e r a t u r e r e g i m e s were p r a c t i c a l l y air  The  o f such i n c r e a s e s i n pea y i e l d however depended on b o t h  M-U l b . / A r a t e was a t t h e warm a i r a n d l o w s o i l of  (root,  Applied P contributed mainly to the  promotion o f pea seed y i e l d magnitude  temperatures  effects  of i t s role  growth p r o c e s s e s . The  g r e a t e s t v i n e and pod w e i g h t i n c r e a s e s  were a t t h e c o o l a i r a n d h i g h s o i l which appeared tested.  temperature regime  t o have been t h e n e a r e s t o p t i m a l regime  due t o P o f 21/13/18° of those  T h i s suggests t h a t under o p t i m a l o r c l o s e t o o p t i m a l  conditions applied P contributed t h a n t o pea seed because  more t o t h e v i n e and t h e p o d  t r a n s l o c a t i o n of photosynthate t o the  s e e d was n o t l i m i t i n g . The  g r e a t e s t i n c r e a s e i n any t i s s u e w e i g h t due t o  a p p l i e d P was i n p e a s e e d a t the  30/21/10°.  smallest increase i n root weight.  T h i s was a c c o m p a n i e d  by  This indicates that there  p r o b a b l y was a r e d u c e d t r a n s l o c a t i o n o f p h o t o s y n t h a t e t o t h e r o o t due  t o a d i v e r s i o n t o t h e pea seed a t t h i s  temperature  regime.  98  4. 2  M i n e r a l Uptake Responses t o Phosphorus  Nutrition  In greenhouse-grown p l a n t s , a p p l i e d P l e d t o increases  i n N and  P i n the  v i n e and  t h e pod.  absolute  T h e r e was  thus  a s y n e r g i s t i c e f f e c t o f P on N,  s i m i l a r to that reported  for  Japanese mint  1968).  a  (Singh  and  Singh,  The  v i n e , and  l e s s e r degree the pod,  r e f l e c t e d the  b e t t e r t h a n d i d t h e pea  seed, i n accordance w i t h  made by U l r i c h and  Berry  plant w i l l reflect  the  degrees.  e f f e c t on  P had  no  was  described  by  concentrations  P s t a t u s of the p l a n t t o  plant  observations  K,  Ca  and  The  Mg  Ca and  Reuther Mg  a  different  concentrations  (1951).  apparently  such  as  R e l a t i v e l y constant were due  to  a  d i l u t i o n e f f e c t r e s u l t i n g from l a r g e r p l a n t s s i n c e the of dry weight d i l u t e s the m i n e r a l s C o n s i d e r a t i o n o f age b e t w e e n s e e d l i n g and pea Vine  (Smith,  accumulation  1962).  e f f e c t s are best  bloom, s t a g e s  but  a p p l i c a t i o n of P thus l e d  the o t h e r p l a n t m i n e r a l s ,  S m i t h and  o f K,  P s t a t u s of the  (1961) t h a t d i f f e r e n t p a r t s of  increased t h e i r t o t a l contents. t o a m u l t i p l e e f f e c t on  to  confined  b e c a u s e s u b s e q u e n t pod  to and  development would cause major r e d i s t r i b u t i o n of n u t r i e n t s . contents  at crop m a t u r i t y  comparable to v i n e contents stages  or a t the N,  are thus not  at the p u r e l y v e g e t a t i v e  i n c e p t i o n of reproductive  P and  K concentrations  d e c r e a s e d w i t h p h y s i o l o g i c a l age, node s t a g e .  Ca and  Mg  meaningfully growth  development.  i n t h e pea  plant generally  p a r t i c u l a r l y a f t e r the  t e n d e d t o i n c r e a s e w i t h p l a n t age.  r e s u l t s g e n e r a l l y agree w i t h those  of Bradley  and  Fleming  10th These (1960)  99  for vegetables  (cucumbers,  t o m a t o e s and w a t e r m e l o n s ) .  The  r e s u l t s a r e i n p a r t i a l agreement w i t h t h o s e o f MacLean Byers  ( 1 9 6 8 ) who  of peas,  s t u d i e d the m i n e r a l composition of 3 c u l t i v a r s  i n c l u d i n g Dark S k i n P e r f e c t i o n , i n f i e l d  They f o u n d t h a t P, Ca and Mg aging.  remained  T h i s m i g h t h a v e b e e n due  done a t 2-node i n t e r v a l s Their results  for this  and  relatively  stopped  constant with  1 0 t h node  studies.  i n c r e a s e s i n the t o t a l  contents  o f a l l f i v e m i n e r a l s as a r e s u l t o f P f e r t i l i z a t i o n regimes.  Increased m i n e r a l uptake  due  at a l l to  P i s consistent with suggestions that phosphorylated may  be  i n v o l v e d i n the processes of i o n uptake  ( M a r r e , 1961; The  Sutcliffe,  applied compounds  and t r a n s p o r t  1962).  e f f e c t of a p p l i e d P i n i n c r e a s i n g the  o f P i n t h e p l a n t was  was  a t t h e 1 2 t h node s t a g e .  c u l t i v a r a t t h e 6 t h and  There were marked  experiments.  to the f a c t t h a t sampling  stages agree w i t h the r e s u l t s of the present  temperature  and  g r e a t e r at the h i g h s o i l  percent  temperature,  i n c o n t r a s t t o t h e r e p o r t s f o r p o l e b e a n s ( A p p l e and B u t t s , 195 3 ) , t o m a t o 1957),  ( L o c a s c i o and W a r r e n , 1 9 6 0 ) ,  t h a t p e r c e n t P was  and  corn  (Ketcheson,  i n c r e a s e d more a t t h e l o w e r  soil  temperatures. A t c r o p m a t u r i t y M and i n t h e pea  s e e d , Ca  P c o n c e n t r a t i o n s were h i g h e s t  i n t h e v i n e , and  K and Mg  i n the  root.  T h i s i n d i c a t e s t h a t N and  P a r e m o b i l e , a l t h o u g h P has  found  down i n t h e p e a p l a n t ( B i d d u l p h , 1 9 5 8 ) .  t o c i r c u l a t e up and  T h a t K and Mg  are immobile  was  i n d i c a t e d by t h e f i n d i n g  been  that  t h e y were more c o n c e n t r a t e d i n t h e r o o t t h a n i n any o t h e r  tissue.  100  H i g h r o o t c o n c e n t r a t i o n s w e r e a l s o f o u n d by B o w l i n g Weatherley apple  (196 4) f o r K i n R i c i n u s communis, and f o r Mg i n  (Rogers e t a l . ,  1953).  Ca a p p e a r s t o be m a r g i n a l b u t  c o u l d be r e g a r d e d as b e i n g m o b i l e i n t h e p e a The  high s o i l  temperature  t i o n s i n a l l t i s s u e s e x c e p t t h e pea the  r o o t b u t was  soil  not i n f l u e n c e d  the  seed.  K was  decreased i n  i n other tissues.  The  high  contents of other  T h i s shows t h a t a t t h e h i g h  t e m p e r a t u r e more o f e a c h m i n e r a l was r o o t i n t o shoot t i s s u e s .  plant.  i n c r e a s e d N and P c o n c e n t r a -  temperature a l s o decreased the t o t a l  minerals except P i n the r o o t . soil  and  t r a n s p o r t e d out of  S h t r a u s b e r g (19 55)  similarly  f o u n d t h a t c o l d r o o t s d i m i n i s h e d t h e movement o f m i n e r a l s t o cucumber s h o o t s .  The  warm a i r t e m p e r a t u r e , c o m p a r e d w i t h  the  c o o l a i r t e m p e r a t u r e , reduced t h e magnitude o f enhanced m i n e r a l t r a n s p o r t by t h e h i g h s o i l  temperature.  A p p l i e d P i n c r e a s e d the t o t a l contents the  five minerals, particularly  i n the v i n e .  of each o f  Increases i n the  m i n e r a l c o n t e n t o f t h e s h o o t t i s s u e s w e r e a c c o m p a n i e d by decreases i n the r o o t . p e a s e e d was  For example N t r a n s l o c a t e d i n t o  the  22% o f t h a t i n t h e e n t i r e p l a n t a t 21/13/10°.  T h i s v a l u e was  i n c r e a s e d t o 41% w i t h the a p p l i c a t i o n o f P a t  44 l b . / A , w h i c h r e p r e s e n t s a l m o s t a 100%  increase.  Analyses of p l a n t s at crop m a t u r i t y i n d i c a t e d the  their  that  e f f e c t s o f t e m p e r a t u r e on t h e a b s o r p t i o n o f P w e r e g r e a t e r  t h a n t h o s e on i t s t r a n s l o c a t i o n .  In c o n t r o l p l a n t s i n c r e a s e s i n  P a b s o r p t i o n due  t e m p e r a t u r e w e r e 50 and 15 0%  at  to the h i g h s o i l  t h e c o o l and warm a i r t e m p e r a t u r e s r e s p e c t i v e l y w h i l e  101  i n c r e a s e s i n t r a n s l o c a t i o n were s m a l l and n o t s i g n i f i c a n t . the  n e a r e s t o p t i m a l P r a t e o f 44 l b . / A h i g h s o i l  At  temperature  i n c r e a s e d P a b s o r p t i o n more a t t h e c o o l t h a n a t t h e warm a i r temperature. at  T h e r e was no s o i l  t e m p e r a t u r e e f f e c t on t r a n s l o c a t i o n  t h e n e a r e s t o p t i m a l P l e v e l because  P i s normally mobile,  and t r a n s l o c a t i o n i s m a i n l y i n c r e a s e d u n d e r  stress of deficiency.  Increased m i n e r a l uptake a t the h i g h s o i l in  temperature  t h e p r e s e n t e x p e r i m e n t s was n o t due t o a l a r g e r r o o t  A p p l e a n d B u t t s ( 1 9 5 3 ) and Power e t a l _ .  system.  (1964) a t t r i b u t e d t h e  i n c r e a s e o f P i n p o l e beans and b a r l e y r e s p e c t i v e l y as a r e s u l t of  high s o i l  temperature, to greater root weights.  present experiments, the high s o i l to  decrease r o o t weight.  In the  temperature tended, i n f a c t ,  Increased m i n e r a l uptake  would  t h e r e f o r e be due t o i n c r e a s e d m i n e r a l - a b s o r b i n g c a p a c i t y o f t h e r o o t , w h i c h may be a f u n c t i o n o f m e t a b o l i s m o r a n a t o m i c a l features or both.  I t was shown t o be r e l a t e d t o i n c r e a s e d  u t i l i z a t i o n o f ATP.  This increased capacity of the root f o r  m i n e r a l a b s o r p t i o n was a l s o a c c o m p a n i e d  by an e f f i c i e n t  utiliza-  t i o n o f P f o r growth and y i e l d . Efficiency of f e r t i l i z e r  P i n promoting a c t u a l pea  y i e l d was g r e a t e s t a t t h e c o o l a i r t e m p e r a t u r e b u t a t h i g h soil of  temperature  (21/13/18°) where p e a y i e l d p e r u n i t ( l b . )  a p p l i e d P was 40 m g / p l a n t  soil  temperature  a t t h e 44 l b . / A r a t e .  A t t h e low  (21/13/10°) i t was o n l y 21 m g / p l a n t .  Also i f  e f f i c i e n c y i s e x p r e s s e d a s l b . P r e q u i r e d t o g i v e 50% o f maximum y i e l d , t h e c o n c l u s i o n i s t h e same s i n c e 18 l b . / A w o u l d required at the high s o i l r e q u i r e d a t t h e low s o i l  be  t e m p e r a t u r e w h i l e 29 l b . / A w o u l d temperature.  be  102  Increased  uptake of minerals  t i o n i s c o n s i s t e n t w i t h the solutes the  ( L a t i e s , 1959).  following c r i t i c a l  p l a n t s at the P, are  0.25;  K,  10th  2.8:.  i n general  by M a c L e a n and p l a n t s at the 4-. 3  l e v e l s of minerals  Ca,  2.8:.  Byers  Mg, with  which agrees w i t h not  a t 1 ppm  P and  data obtained  P and  p l a n t as  i t was  Concentrations  concentrations  g r o w t h p a t t e r n o f pea  decreased  K,  p l a n t s by  o f B-Nine have  trees  a b o u t 40%  (Batjer the  (Sprent,  show t h a t t h e  low  were i n e f f e c t i v e i n a l t e r i n g  plants.  Concentrations  was  tomato.  ( B a t j e r e t a l . , 1 9 6 4 ) , and  i n the present s t u d i e s ppm  and  concentration  I s e n b e r g , 1965 ) , t o i n c r e a s e  o f pea  100  growth  Furthermore,  but  i n the  growth of f r u i t  following spring  t r a t i o n s o f 1 and  Mg  of  (196 8) r e s u l t s , e x c e p t t h a t Ca  to r e t a r d the  reduce shoot l e n g t h  of  Mineral  i t decreased c h l o r o p h y l l  e t a l . , 1964? J a f f e and of bloom the  leaves  found t o s t i m u l a t e  While r e l a t i v e l y high been r e p o r t e d  P i g m e n t and  B - N i n e a t Low  l e v e l s o f N,  pea  These  stages.  was  Knavel's  a f f e c t e d i n the  K i n pea  by A d e d i p e e t a l . ( 1 9 6 8 ) .  the  of  4.0;  Plant to F o l i a r A p p l i c a t i o n s  P h o s f o n and  e a r l i e r reported  yield,  leaves N,  of  those t e n t a t i v e l y e s t a b l i s h e d  (196 8) f o r N,  y i e l d , while  increased  i n the  pea  percent of dry matter.  Comparative Growth, P l a s t i d  to increase  Cycocel  0.8  5 t h t o 8 t h node  Cycocel  a c t i v e uptake  node s t a g e w e r e e s t a b l i s h e d :  Responses of the  as  r o l e of P i n the  For p r e d i c t i o n of u l t i m a t e  agreement  Cycocel,  r e s u l t i n g from P a p p l i c a -  o f N and  amount to 1967),  concenthe P were  103  f o u n d t o be i n c r e a s e d  a n d K d e c r e a s e d by 100 ppm o f B - N i n e i n  agreement w i t h Knavel's  (196 8) r e s u l t s  f o r tomatoes but i n  c o n t r a s t t o t h e r e s u l t s o f S o u t h w i c k e_t a l . ( 1 9 6 8 ) f o r a p p l e s . The  i n f l u e n c e o f t h e r e t a r d a n t s on m i n e r a l  depended on t h e u n i t o f e x p r e s s i o n e x a m p l e , a t 10 0 ppm C y c o c e l  content  o f n u t r i e n t amounts.  i n c r e a s e d t h e c o n c e n t r a t i o n o f N by  a b o u t 6% when t h e l e v e l was e x p r e s s e d  as p e r c e n t  H o w e v e r , when t h e l e v e l was e x p r e s s e d  as t o t a l m i n e r a l  v i n e t h e r e was a d e c r e a s e o f a b o u t 8%.  it  e f f e c t on t o t a l of expression  as p e r c e n t P content  o f dry matter,  of the vine.  smaller  P by 1 0 0 % when  b u t h a d much l e s s  thus gives a b e t t e r i n d i c a t i o n o f net uptake  content  differences i n  o f t r e a t e d p l a n t s as compared t o u n t r e a t e d  On t h e b a s e s o f p r o n o u n c e d r e d u c t i o n i n p l a n t and  marked i n c r e a s e i n c h l o r o p h y l l c o n c e n t r a t i o n ,  a p p e a r s t o be t h e most e f f e c t i v e  Moore  (1967).  increased y i e l d  ( 1 9 6 1 ) , Majumder  A t 1 ppm h o w e v e r , C y c o c e l  plants.  height  Phosfon  growth r e t a r d a n t , thus  w i t h t h e r e p o r t s o f Cathey and S t u a r t and  i n the  The u s e o f b o t h u n i t s  i talso explains, i fonly p a r t i a l l y ,  mineral  from  S i m i l a r l y , P h o s f o n a t 100 ppm i n c r e a s e d  was e x p r e s s e d  while  o f dry matter.  The 6% i n c r e a s e was  t h u s due t o a " c o n c e n t r a t i o n e f f e c t " r e s u l t i n g plants.  For  stimulated  and t h e l e v e l s o f N, P and Mg w h i l e  agreeing (1968) growth,  Phosfon  a t t h e same c o n c e n t r a t i o n d i d n o t h a v e a s i g n i f i c a n t e f f e c t o n y i e l d and i n c r e a s e d t h e l e v e l o f P o n l y .  Since  was p e r h a p s t o o d r a s t i c , a n d 1 ppm h a d l i t t l e w e l l be t h a t g r o w t h s t i m u l a t i o n may o c c u r o r b e t w e e n 1 a n d 10 0 ppm.  100 ppm P h o s f o n  e f f e c t , i t may  a t l e s s t h a n 1 ppm  104  I t i s c o n c l u d e d t h a t B-Nine to  100 ppm  i s ineffective  C y c o c e l a t 1 ppm yield  a t a c o n c e n t r a t i o n o f up  i n s t i m u l a t i n g pea p l a n t  i s t h e most e f f e c t i v e  stimulation.  P h o s f o n a t 100 ppm  growth.  i n terms o f growth i s t h e most  effective  i n terms o f growth r e t a r d a t i o n but decreases y i e l d . at  c o n c e n t r a t i o n s l o w e r t h a n 10 0 ppm,  and  Phosfon  perhaps l e s s than 1  may  s t i m u l a t e p e a g r o w t h and may  for  use i n i n c r e a s i n g pea y i e l d w i t h o u t d e f o r m a t i v e e f f e c t s .  This p o s s i b i l i t y 4.4  s h o u l d be  be, l i k e C y c o c e l ,  ppm,  promising  investigated.  P h o s p h o r u s M e t a b o l i s m a s I n f l u e n c e d by  Temperature,  P h o s p h o r u s and G r o w t h R e t a r d i n g C h e m i c a l s  The ATP  l e v e l s o f g l u c o s e , h e x o s e p h o s p h a t e s , ADP  i n p e a t i s s u e s v a r i e d w i t h t e m p e r a t u r e , a p p l i e d P and t h e  2 g r o w t h r e t a r d i n g c h e m i c a l s ( C y c o c e l and P h o s f o n ) . and g l u c o s e p h o s p h a t e s as w e l l as ADP  and ATP w e r e  h i g h e r i n t h e l e a f t h a n i n t h e r o o t o f 30-day F r u c t o s e p h o s p h a t e s w e r e o f t h e same m a g n i t u d e leaf  and t h e r o o t .  Glucose usually  old plants. i n both the  F o r e x a m p l e , . a t t h e a i r and s o i l  t u r e r e g i m e t h a t i s n e a r e s t - o p t i m u m (21/13/18°), t h e c o n t e n t s , i n AiM/g f r e s h w e i g h t w e r e ; . 56/.30ADP,  and  and ATP,  r a n g e s g i v e n by M a r r e Hexose  .10/.06.  leaf/root  g l u c o s e , 53/14;  G--6-P, . 32/. 35 ; F-6-P, .28/.30 ; F-D-P,  .27/.17;  tempera-  These  G-l-P,  .47/.48;  l e v e l s are w i t h i n  the  (1961) f o r h i g h e r p l a n t s i n g e n e r a l .  p h o s p h a t e s i n 5-day o l d r a d i c l e s w e r e  l o w e r t h a n i n t h e l e a f o r r o o t o f 30-day on t e m p e r a t u r e and a p p l i e d P l e v e l .  old plants,  usually  depending  G l u c o s e c o n t e n t was  higher  10 5  i n the r a d i c l e  t h a n i n t h e l e a f o r r o o t , w h i l e ADP  w e r e a b o u t t h e same. i n t h e r a d i c l e s may  Low  c o n c e n t r a t i o n s of hexose  be due  which  by t h e work o f Loughman and  phosphates  was  of  This i n t e r p r e t a t i o n i s Russell  (1957)  showed t h a t t h e i n c o r p o r a t i o n o f a b s o r b e d  s e e d l i n g s i n t o hexose phosphates The  ATP  to a slower rate of i n c o r p o r a t i o n  p h y t i n p r o d u c t s i n t o t h e s e compounds. supported  and  P i n barley  slower than i n t o n u c l e o t i d e s .  h i g h e r l e v e l s o f p h o s p h o r y l a t e d compounds i n t h e l e a f i s  understandably resulting Losada,  a t t r i b u t a b l e to the a d d i t i o n a l  contribution  from p h o t o s y n t h e t i c p h o s p h o r y l a t i o n (Whatley  and  1964). A t 25 and  g l u c o s e as a t 20°. of phosphorylase  30°,  pea r a d i c l e s  T h i s c o u l d be due  c o n t a i n e d t w i c e as much to increased a c t i v i t y  i n the breakdown o f seed  however, the l e v e l s o f hexose phosphates c o m p a r e d w i t h t h o s e a t 20 and compounds a t 30°  30°.  On  decreased  At  accumulation of  s u b s t r a t e s due  the o t h e r hand, decreases  a t 2 5° i m p l i e s e i t h e r a g e n e r a l d e c r e a s e  ATP  decreased  to  i n these  these  activity  reduced compounds  in respiratory  or a r a p i d u t i l i z a t i o n of these g l y c o l y t i c products along the c y c l e .  25°,  sharply  implies either increased respiratory  o r an a c c u m u l a t i o n o f g l y c o l y t i c utilization.  The  starch.  activity  s u b s t r a t e s and  by  22% a t 25 and  30°  c o m p a r e d t o 20°, p r o b a b l y s h o w i n g an i n c r e a s e d u t i l i z a t i o n o f f o r other aspects of c e l l metabolism l e v e l s o f hexose phosphates  and ATP  i n c r e a s e i n r a d i c l e f r e s h weight  and  growth.  Decreased  were a c c o m p a n i e d by a  a t 2 5°.  19%  T h i s shows t h a t  g l y c o l y t i c a c t i v i t y m i g h t have been h i g h , t h u s l e a d i n g t o a  ATP  106  rapid turnover  o f s u b s t r a t e s and p r o d u c t s  i n the g l y c o l y t i c  sequence.  This i s c o n s i s t e n t w i t h the observations o f Hatch  and  (1959) and M o s s b e r r y e t a l . (1964) t h a t i n h i g h e r  Turner  p l a n t s , ATP c o n t r o l s g l y c o l y t i c and o x i d a t i v e In  t h e r a d i c l e s , t h e g r e a t e s t c h a n g e was i n F-D-P,  w i t h the temperature  o f 30° l e a d i n g t o a 74% i n c r e a s e , w h i l e  25° l e d t o a 4 8 % d e c r e a s e . control of glycolysis  I t w o u l d t h e r e f o r e seem t h a t t h e  i s dependent on t h e l e v e l o f t h i s  s u b s t r a t e a s w e l l a s t h a t o f ATP. a s s u g g e s t e d In  metabolism.  by M a r r e  (1961).  30-day o l d p l a n t s , t h e c h a n g e s i n p h o s p h o r y l a t e d  compounds b r o u g h t a b o u t by a i r a n d s o i l interdependent.  T h e r e was a d e c r e a s e d  temperatures  were  u t i l i z a t i o n o f ATP i n  t h e p h o s p h o r y l a t i o n o f g l u c o s e , due t o t h e warm a i r o f 30/21° c o m p a r e d w i t h 21/13°. was n o t t h e l i m i t i n g  The a v a i l a b i l i t y  temperature  of glucose  f a c t o r b e c a u s e i t was t w i c e as h i g h .  On  t h e o t h e r h a n d t h e r e was an i n c r e a s e d u t i l i z a t i o n o f ATP a t t h e high s o i l  temperature  o f 10°, p a r t i c u l a r l y  o f 18° t h a n a t t h e l o w s o i l a t the c o o l a i r temperature.  o f c h a n g e s was a l s o t h e c a s e suggests  temperature  i n the root.  t h a t i n c r e a s e d m i n e r a l uptake  (as e a r l i e r  sugars.  The h i g h s o i l  because sugars  temperature  reported)  contents  ( H u m p h r i e s . 1 9 5 6 ) b u t t o o t h e r compounds i n v o l v i n g u t i l i z a t i o n o r i n t e r c o n v e r s i o n s , such  This pattern  This therefore  may n o t be d i r e c t l y r e l a t e d t o c a r b o h y d r a t e  p e r se  their  as t h e p h o s p h o r y l a t e d  i n c r e a s e d growth  w e r e r a p i d l y and c o n t i n u o u s l y  i n k i n a s e r e a c t i o n s , and ATP was a l s o u t i l i z e d  o  probably  phosphorylated i n other plant  10?  growth p r o c e s s e s (Marre, 1961).  The  r e v e r s e was  c a s e w i t h the warm a i r t e m p e r a t u r e w h i c h was decrease t o t a l  t h e r e f o r e have r e s u l t e d  tissues.  temperature  may as  suggested  (1962).  e x c e p t F-6-P.  The  a i r and h i g h s o i l  l e d t o decreases i n hexose  temperature  At t h i s  d e c r e a s e i n ATP.  phosphates  g r e a t e s t o f s u c h d e c r e a s e s were a t t h e  ATP  cool  (21/13/18°) w h i c h h a s b e e n shown  be t h e n e a r e s t o p t i m a l r e g i m e f o r p l a n t g r o w t h , l e a f  and p e a y i e l d .  growth  temperature regime, a p p l i e d P l e d to a  was  thus being u t i l i z e d  more a t  t e m p e r a t u r e r e g i m e t h a n a t any o t h e r .  T h i s may  l a r g e i n c r e a s e i n p l a n t growth at t h i s  temperature  may  shown t o  f r o m e n e r g y d e r i v e d f r o m ATP  Applied P generally  to  earlier  c o n t e n t s o f m i n e r a l s i n t h e pea p l a n t  Increased m i n e r a l uptake at the h i g h s o i l  by S u t c l i f f e  probably the  this  explain  regime,^and  be r e l a t e d t o t h e s u g g e s t i o n by Power e t a l . (19 6 4)  it  i s p o s s i b l e f o r low s o i l  of  certain metabolites.  temperature to l i m i t  This limitation  the  the  that  utilization  i s g r e a t e r a t t h e warm  a i r t e m p e r a t u r e o f 30/21° t h a n a t 21/13°. The temperature  s t i m u l a t i o n o f p e a s t e m g r o w t h by a d e n i n e a t h i g h  ( G a l s t o n and Hand, 1949) may  a lack of u t i l i z a t i o n i n v o l v i n g ATP  resulted  of adenine f o r p h o s p h o r o c l a s t i c  The  positive  ( K e t e l l a p e r and  growth r e s p o n s e o f peas t o B o n n e r , 1961) m i g h t  have  from i n c r e a s e d t r a n s l o c a t i o n of sugars to the  w h i c h i n t h e p r e s e n t e x p e r i m e n t s was at  reactions  r a t h e r t h a n an a b s o l u t e d e f i c i e n c y o f a d e n i n e a t  high temperature. s u c r o s e a t 2 3°  therefore represent  high temperature.  root,  shown t o be l o w i n g l u c o s e  108  P o t t s and of organic, l i p i d  Ormrod  and  (1969) found  changes i n the  t o 35/25° d a y / n i g h  temperatures  h e l d f o r up t o 6 d a y s a t t h e h i g h e r t e m p e r a t u r e .  suggested  t h a t t h e i r r e s u l t s d i d not preclude the  They  possibility  t h a t t h e c o n c e n t r a t i o n o f compounds w i t h i n t h e o r g a n i c f r a c t i o n did vary. experiments.  T h i s was  i n f a c t the case  Changes i n p h o s p h o r y l a t e d  l a r g e enough i n t h e P o t t s and  i n the  compounds  phosphorus  present  were  not  Ormrod s t u d y t o be d e t e c t e d  gross f r a c t i o n a t i o n techniques.  A l s o , the pretreatment  p l a n t s a t 25/15° i n t h e i r work may  h a v e r e s u l t e d i n an  by  of  the  equilibra-  t i o n o f t h e f r a c t i o n s , o r t h a t more t h a n  6 days were r e q u i r e d  t o cause changes a f t e r such  favourable  The  e f f e c t of temperature  a p p e a r s t o be x  levels  t o t a l p h o s p h a t e s when pea p l a n t s w e r e  a b r u p t l y t r a n s f e r r e d f r o m 25/15 and  no  glucoisomerase age  of  a relatively  pretreatment.  i n i n f l u e n c i n g phosphorus  c o n t r o l l e d by  g l y c o l y t i c kinases or  or a l d o l a s e or a l l ,  metabolism  phospho-  d e p e n d i n g on t h e t y p e  and  tissue. In i n t e r p r e t i n g the r e s u l t s of s t u d i e s of the  o f C y c o c e l and  Phosfon  on g l u c o s e  and  phosphorylated  t h e c r o s s - o v e r t h e o r e m o f Chance e t a l . ( 1 9 5 8 ) may l o c a t i n g the c o n t r o l s i t e ( s ) .  In t h i s technique  effects  compounds  be u s e d f o r  i t is  necessary  t o compare t h e compounds t h a t show r e c i p r o c a l t r e n d s , t h a t i s , the compound(s) w h i c h d e c r e a s e d 1 ppm  C y c o c e l , G-6-P  (Fig. 12).  as t h e o t h e r ( s ) i n c r e a s e d .  i n c r e a s e d w h i l e F-D-P  and ATP  decreased  This i n d i c a t e s t h a t at t h i s c o n c e n t r a t i o n of  t h e r e was  an i n c r e a s e d u t i l i z a t i o n o f ATP  of sugars  (hexoses).  f o r the  At  Cycocel,  phosphorylation  H e x o k i n a s e a c t i v i t y might t h u s have been  Fig.  12.  Comparative Rate E f f e c t s o f C y c o c e l and Phosfon on P u t i l i z a t i o n of 5-day o l d pea r a d i c l e s grown a t 25°.  patterns *-» o CO  110  stimulated. due  A lack of accumulation  o f F-D-P m i g h t h a v e b e e n  t o a p o s s i b l e r a p i d u t i l i z a t i o n o f F-D-P by a l d o l a s e t o  form triosephosphates,  b u t t h i s p o s s i b i l i t y was n o t i n v e s t i g a t e d .  Phosfon at concentrations  o f up t o 100 ppm, on t h e  o t h e r h a n d , d e c r e a s e d G-6-P and F-D-P, w h i l e i n c r e a s e d ATP. probably The  d e c r e a s e s i n h e x o s e p h o s p h a t e s was  due t o a l a c k o f p h o s p h o r y l a t i o n  supply  Cycocel  The g e n e r a l  o f glucose  a t 1000 ppm i t  o f s u g a r s by ATP.  was h o w e v e r n o t t h e l i m i t i n g  a t 1 ppm may h a v e s t i m u l a t e d h e x o k i n a s e ,  same c o n c e n t r a t i o n may h a v e i n h i b i t e d  it,  There i s thus a d i f f e r e n t i a l  e f f e c t o f these  two g r o w t h r e t a r d i n g c h e m i c a l s .  s i m i l a r t o growth response e a r l i e r r e p o r t e d  studies  i n which Cycocel  While  Phosfon a t the  a s r e f l e c t e d by t h e  l e v e l o f G-6-P.  is  factor.  concentration This  response  i n the present  a t 1 ppm was f o u n d t o s t i m u l a t e g r o w t h  w h i l e P h o s f o n a t t h e same c o n c e n t r a t i o n h a d no  significant  e f f e c t on g r o w t h . These r e s p o n s e s s u p p o r t the  inhibitory  necessarily  (196 5) v i e w  e f f e c t s o f growth r e t a r d i n g chemicals  limited  t o the hormonal l e v e l .  (1966) found t h a t C y c o c e l i n spinach  Cleland's  are not  Tanaka and T o l b e r t  stimualted choline kinase  activity  a n d p e a l e a v e s , b u t i t i s n o t known i f o t h e r  retarding chemicals, influence this  that  growth  f o r e x a m p l e P h o s f o n and B - N i n e , w i l l  also  kinase. g  T u l i e t a l _ . ( 1 9 6 4 ) showed N - b e n z y l a d e n i n e an  i n h i b i t o r of respiratory kinases.  t o be  Ormrod and W i l l i a m s  f o u n d t h a t 2,4-D a n d g i b b e r e l l i c a c i d c a u s e d a s t r i k i n g  (196 0)  increase  i n a c i d - s o l u b l e o r g a n i c phosphorus as q u i c k l y as 1 m i n u t e  Ill  a f t e r the treatment  of T r i f o l i u m hirtum.  growth r e t a r d i n g chemicals of auxins  may i n f l u e n c e t h e e n d o g e n o u s  ( K u r a i s h i and M u i r , 1963; H a l e v y ,  1965), o r g i b b e r e l l i n s 1965;  I t i s clear that  (Hinneman e t a l . ,  levels  1 9 6 3 ; Reed et_ a l . ,  1964; Badlev  et a l . ,  T a n a k a a n d T o l b e r t , 1 9 6 6 ) , b u t t h e y may a l s o i n f l u e n c e  neither  ( C l e l a n d , .1965 ).  h a n d d e p e n d on p r o d u c t s synthesis.  Auxins  and g i b b e r e l l i n s on t h e o t h e r  of primary  metabolites f o r thier  B r o o k e t aJL. (1967 ) s u g g e s t e d  n u c l e i c a c i d metabolism  by P h o s f o n  v a r i e t y of metabolic processes  that alterations i n  c o u l d i n t u r n a l t e r a wide  resulting  A l t e r a t i o n i n g l y c o l y t i c metabolism experiments  bio-  i n r e t a r d e d growth.  reported i n the present  may be one o f s u c h p r o c e s s e s .  e f f e c t o f growth r e t a r d i n g chemicals  The more  may i n f a c t  changes i n t h e l e v e l s o f b a s i c m e t a b o l i t e s , such  primary  l i ei n as g l y c o l y t i c  i n t e r m e d i a t e s b r o u g h t a b o u t by e f f e c t s on g l y c o l y t i c  kinases,  or indeed  o f o t h e r enzymes.  T h i s means t h a t g r o w t h r e t a r d i n g  chemicals  s h o u l d be c o n s i d e r e d more a s a n t i m e t a b o l i t e s  ( L o c k h a r t , 1962) r a t h e r t h a n as a n t i g i b b e r e l l i n s . A l t e r a t i o n i n t h e l e v e l s o f b a s i c m e t a b o l i t e s may i n turn influence the biosynthesis which could i n t u r n modify  o f growth r e g u l a t o r y  growth.  Ultimate  morphological  e x p r e s s i o n may i n f a c t be c o n t r o l l e d by d i f f e r e n t p l a n t metabolism  i n different  substances,  aspects of  s p e c i e s , and w i t h v a r y i n g c o n c e n -  t r a t i o n s o f d i f f e r e n t growth r e t a r i d n g chemicals. The  dwarfing e f f e c t s o f high a i r temperature  p l a n t g r o w t h were s i m i l a r t o t h o s e  of r e l a t i v e l y high  of growth r e t a r d i n g c h e m i c a l s , p a r t i c u l a r l y  Phosfon.  on p e a concentrations Also,  112  t h e h i g h t e m p e r a t u r e o f 30° l e d t o s i m i l a r e f f e c t s on  phosphory-  l a t e d compounds, as t h o s e b r o u g h t a b o u t by 1000 ppm C y c o c e l and P h o s f o n .  I t t h u s a p p e a r s t h a t one o f t h e ways by w h i c h  h i g h a i r t e m p e r a t u r e a s w e l l as h i g h c o n c e n t r a t i o n s o f g r o w t h r e t a r d i n g chemicals l i m i t p l a n t growth, i s the decreased u t i l i z a t i o n o f ATP i n k i n a s e r e a c t i o n s and i n g r o w t h p r o c e s s e s s u c h as p r o t e i n s y n t h e s i s and c e l l w a l l  extension.  The e f f e c t s o f g r o w t h r e t a r d i n g c h e m i c a l s on r e s p i r a t o r y and o t h e r k i n a s e s , a u x i n s a n d g i b b e r e l l i n s n e e d t o be studied i n the  same s e t o f e x p e r i m e n t s t o t h r o w l i g h t  w h i c h a s p e c t o f m e t a b o l i s m i s t h e most p r i m a r i l y  on  influenced.  For u n i f o r m i t y i n the nomenclature o f p l a n t  growth  r e g u l a t o r s i t i s s u g g e s t e d t h a t g r o w t h r e t a r d i n g c h e m i c a l s be called  "RETARDINS"  i n l i n e w i t h o t h e r groups  g i b b e r e l l i n s , k i n i n s and m o r p h a c t i n s .  s u c h as a u x i n s ,  113  5. In the  SUMMARY AND CONCLUSIONS  greenhouse and c o n t r o l l e d environment  i n f l u e n c e s o f temperature, phosphorus  experiments ,  n u t r i t i o n and growth  r e t a r d i n g c h e m i c a l s on g r o w t h and m i n e r a l c o m p o s i t i o n o f t h e pea p l a n t were i n v e s t i g a t e d . air  and s o i l  The u t i l i z a t i o n o f P u n d e r 4  temperature regimes w i t h i n the p h y s i o l o g i c a l  was a l s o s t u d i e d .  range  The d w a r f i n g e f f e c t o f h i g h t e m p e r a t u r e was  r e l a t e d t o t h a t due t o r e l a t i v e l y h i g h c o n c e n t r a t i o n s o f g r o w t h retarding chemicals.  From t h e r e s u l t s o f t h e e x p e r i m e n t s t h e  f o l l o w i n g c o n c l u s i o n s c a n be d r a w n . (i)  P fertilizer  i n c r e a s e d p l a n t growth  a p p l i e d a t r a t e s o f up t o 352 l b . / A  and y i e l d  o f peas.  Yield increases  r e s u l t e d from decreases i n v i n e r e l a t i v e t o t o t a l d r y matter, w i t h no r e l a t i v e e f f e c t s o n p o d w e i g h t . * E f f i c i e n c y o f P i n p r o m o t i n g p e a y i e l d was h i g h e s t a t t h e 44 l b . / A r a t e . (ii)  N and P c o n c e n t r a t i o n s w e r e h i g h e s t i n t h e p e a  s e e d , w h i l e K, Ca a n d Mg c o n c e n t r a t i o n s w e r e h i g h e s t i n t h e vine.  The t o t a l  c o n t e n t o f P, i n m i l l i g r a m s p e r p l a n t , was  h i g h e s t i n t h e p e a s e e d , w h i l e t h o s e o f N, K, Ca a n d Mg were highest i n the vine. of  P tended t o i n c r e a s e t h e t o t a l  a l l 5 minerals i n a l l 3 tissues (iii)  contents  ( v i n e , pod a n d p e a s e e d ) .  Between 5 t h node and f u l l  bloom stages  (about  20 a n d 40 d a y s o f g r o w t h ) , t h e warm a i r t e m p e r a t u r e o f 30/21° ( d a y / n i g h t ) d e p r e s s e d v i n e g r o w t h and m i n e r a l u p t a k e , c o m p a r e d w i t h t h e c o o l a i r t e m p e r a t u r e o f 21/13°. growth  Depressions of  a n d m i n e r a l u p t a k e by t h e warm a i r t e m p e r a t u r e  greater at the high s o i l  were  t e m p e r a t u r e o f 18° t h a n a t 10°.  114  (iv) and m i n e r a l Increases  The h i g h  soil  temperature  increased vine  u p t a k e as compared t o t h e l o w s o i l  i n growth and m i n e r a l  weight  temperature.  u p t a k e were g r e a t e r a t t h e c o o l  t h a n a t t h e warm a i r t e m p e r a t u r e . (v) air  i n mineral  concentrations  from s m a l l e r p l a n t s .  t e m p e r a t u r e were a b s o l u t e  of p l a n t  Increases  effects"  due t o t h e h i g h  because they o c c u r r e d  regardless  size. (vi)  The g r e a t e s t i n c r e a s e i n g r o w t h r e s u l t i n g  added P was a t t h e c o o l a i r and h i g h o f 21/13/18°.  Increase  decrease growth (vii)  soil  temperature  from  regime  i n P r a t e b e y o n d t h e 44 l b . / A t e n d e d t o  c o m p a r e d w i t h t h a t a t t h e 44 l b . / A r a t e . Applied P d i d not offset the growth-limiting  e f f e c t s o f e i t h e r warm a i r o r l o w s o i l and  a t t h e warm  t e m p e r a t u r e w e r e l a r g e l y due t o " c o n c e n t r a t i o n  resulting soil  Increases  1 0 t h node s t a g e s .  crop m a t u r i t y h o w e v e r ,  At f u l l  temperature a t the 6th  bloom and a t e s t i m a t e d  marketable  P became more l i m i t i n g , a n d i t s a p p l i -  c a t i o n o f f s e t t h e d e l e t e r i o u s e f f e c t s o f warm a i r a n d c o l d (viii)  Increase  i n mineral  uptake a t t h e h i g h  soil.  soil  t e m p e r a t u r e was n o t due t o i n c r e a s e d r o o t g r o w t h , b u t was a r e s u l t of increased metabolic increased capacity f o rmineral  a c t i v i t y of the root leading to absorption.  The e f f e c t o f s o i l  t e m p e r a t u r e o n t o t a l a b s o r p t i o n o f P was g r e a t e r t h a n o n t r a n s l o c a t i o n i n t o t h e pea seed.  115  (ix)  Of t h e 3 g r o w t h r e t a r d i n g c h e m i c a l s i n v e s t i g a t e d ,  C y c o c e l a t 1 ppm was t h e most e f f e c t i v e yield in  stimulation.  i n t e r m s o f g r o w t h and  P h o s f o n a t 100 ppm was t h e most  effective  terms o f growth r e t a r d a t i o n , but markedly d e c r e a s e d y i e l d .  B - N i n e a t c o n c e n t r a t i o n s o f up t o 10 0 ppm was i n e f f e c t i v e i n a l t e r i n g p l a n t growth p a t t e r n .  C y c o c e l and P h o s f o n a p p l i e d a t  l o w c o n c e n t r a t i o n s a p p e a r t o be p r o m i s i n g pea y i e l d w i t h o u t  deformative  effects.  f o r use i n i n c r e a s i n g  E f f e c t s o f the growth  r e t a r d a n t s on m i n e r a l u p t a k e l a r g e l y r e f l e c t e d p l a n t  size  d i f f e r e n c e s , and w e r e n o t a b s o l u t e i n c r e a s e s o r d e c r e a s e s . (x)  The e f f e c t s o f r e l a t i v e l y h i g h  concentrations  o f C y c o c e l and P h o s f o n were s i m i l a r t o t h o s e o f h i g h a i r t e m p e r a t u r e w i t h r e s p e c t t o d w a r f i n g o f p l a n t s and c h a n g e s i n t h e l e v e l s o f g l u c o s e , hexose  p h o s p h a t e s , ADP and ATP.  I t appears t h a t  one o f t h e ways by w h i c h h i g h c o n c e n t r a t i o n s o f g r o w t h r e t a r d i n g chemicals  as w e l l a s h i g h t e m p e r a t u r e d e p r e s s p l a n t g r o w t h i s  t h e d e c r e a s e d u t i l i z a t i o n o f ATP i n k i n a s e r e a c t i o n s and g r o w t h processes. (xi) at  the high s o i l  The g r e a t e r m i n e r a l u p t a k e and t r a n s l o c a t i o n t e m p e r a t u r e was due n o t t o i n c r e a s e i n g l u c o s e  p e r s e , b u t t o d e c r e a s e i n i t s p h o s p h o r y l a t i o n by ATP, and i t s i n t e r c o n v e r s i o n s t o o t h e r hexose (xii) and s o i l  phosphates.  The most s a t i s f a c t o r y o r n e a r e s t - o p t i m u m a i r  t e m p e r a t u r e r e g i m e f o r p l a n t g r o w t h and m i n e r a l  was t h e 21/13/18° d a y / n i g h t / s o i l t e m p e r a t u r e s .  uptake  116  (xiii)  In s o i l s that are cold i n early spring, P  may be u s e d t o g i v e t h e s e e d l i n g s compensate f o r l o s s i n y i e l d  a vigorous  "start''' a n d t o  t h a t might have r e s u l t e d i f t h e  summer became warm. (xiv)  F o r p r e d i c t i o n o f u l t i m a t e pea y i e l d , the  following c r i t i c a l  l e v e l s of minerals  i n the leaves  a t t h e 1 0 t h node s t a g e w e r e e s t a b l i s h e d :  of plants  N, 4.0; P, 0.25;  K, 2.8; C a , 2.8; Mg, 0.8 p e r c e n t o f d r y m a t t e r . (xv)  For uniformity  growth r e g u l a t o r s  i n the nomenclature of plant  i t i s suggested t h a t growth r e t a r d i n g  c h e m i c a l s be c a l l e d "RETARDINS" i n l i n e w i t h o t h e r as  auxins,  g i b b e r e l l i n s , k i n i n s and m o r p h a c t i n s .  groups  such  117  BIBLIOGRAPHY  1.  ADEDIPE, N.O., D.P. ORMROD a n d A.R. MAURER. 1 9 6 8 . R e s p o n s e of p e a p l a n t s t o s o i l and f o l i a r a p p l i c a t i o n s o f C y c o c e l ( ( 2 - c h l o r o e t h y l ) trimethylammonium c h l o r i d e ) . Can. J . P l a n t S c i . 48: 323-325:  2.  ALBAUM, E.G. 1 9 5 2 . The m e t a b o l i s m o f p h o s p h o r y l a t e d compounds i n p l a n t s . A n n . R e v . P l a n t P h y s i o l . 3: 35-38.  3.  ANDERSON, D.T. a n d G.C. RUSSELL. 1 9 6 4 . E f f e c t s o f v a r i o u s q u a n t i t i e s o f s t r a w mulch on the growth and y i e l d o f s p r i n g and w i n t e r w h e a t . C a n . J . S o i l S c i . 44: 1 0 9 - 1 1 8 .  4.  A.O.A.C. (ASSOCIATION OF O F F I C I A L AGRICULTURAL CHEMISTS). 1965. A t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y : methods o f analysis. 1 0 t h e d . , 1 3 , 1 6 , 23-24.  ' 5.  A P P L E , S.B. a n d J . S . BUTTS. 195 3. S o i l temperature studies. 1. The e f f e c t o f s o i l t e m p e r a t u r e a n d p h o s p h o r u s on g r o w t h a n d p h o s p h o r u s u p t a k e b y p o l e b e a n s . P r o c . Amer. S o c . H o r t . S c i . 6 1 : 325-332.  6.  ARAMBARRI, P. a n d 0. TALIBUDEEN. 19 59. Factors influencing the i s o t o p i c a l l y exchangeable phosphate i n s o i l s . I I I . The e f f e c t o f t e m p e r a t u r e i n some c a l c a r e o u s s o i l s . P l a n t and S o i l 11: 364-376.  7.  ARNON, D . I . , M.B. ALLEN a n d F.R. WHATLEY. 19 54. s y n t h e s i s by i s o l a t e d c h l o r o p l a s t s . N a t u r e 174:  8.  BADLEV, B., A. LANG a n d A.O. AGATEP. 196 5. Gibberellin p r o d u c t i o n i n pea seeds d e v e l o p e d i n e x c i s e d pods. Effect o f g r o w t h r e t a r d a n t AMO-1618. S c i . 147: 1 5 5 - 1 5 7 .  9.  BATJER, L.P., M.W. WILLIAMS a n d G.C. MARTIN. 1 9 6 4 . E f f e c t s o f N - d i m e t h y l a m i n o s u c c i n a m i c a c i d ( B - N i n e ) on v e g e t a t i v e and f r u i t c h a r a c t e r i s t i c s o f a p p l e s , p e a r s , and sweet c h e r r i e s . P r o c . Amer. Soc. H o r t . S c i . 85: 11-16.  Photo394-396.  10.  B E A T T I E , W.R., L . L . HARTER a n d B.L. WADE. 19 42. peas f o r c a n n i n g a n d f r e e z i n g . U.S.D.A. F a r m e r s ' 1 9 2 0 , Wash., D.C.  Growing Bulletin  11.  BEEVERS, H. 1 9 6 1 R e s p i r a t o r y m e t a b o l i s m i n p l a n t s . and Row, New Y o r k .  12.  BEEVERS, L. a n d J . B . HANSON. 1 9 6 4 . O x i d a t i v e p h o s p h o r y l a t i o n by r o o t a n d s h o o t m i t o c h o n d r i a f r o m c o r n s e e d l i n g s a s a f f e c t e d by t e m p e r a t u r e . C r o p S c i . 4: 549-550.  Harper  118 13.  BIDDULPH, 0., S. BIDDULPH, R. CORY a n d H. KOONTZ. 19 58. C i r c u l a t i o n p a t t e r n s f o r phosphorus, s u l f u r and c a l c i u m i n t h e bean p l a n t . P l a n t P h y s i o l . 33: 293-300.  14.  B I E L E S K I , R.L. 1 9 6 4 . The p r o b l e m o f h a l t i n g enzyme a c t i o n when e x t r a c t i n g p l a n t t i s s u e s . A n a l . B i o c h e m . 9: 4 3 1 - 4 4 2 .  15.  BONNER, J . t o Cosmos.  16.  BONNER, J . 1 9 5 7 . The c h e m i c a l c u r e o f c l i m a t i c Engng. S c i . Mag. 20: 28-30.  17.  BOWLING, D.J.F. a n d P.E. WEATHERLEY. 1 9 6 4 . P o t a s s i u m u p t a k e a n d t r a n s p o r t i n r o o t s o f R i c i n u s communis. J . E x p t l . B o t . 15: 4 1 3 - 4 2 1 .  18.  BRADLEY, G.A. a n d J.W. FLEMING. 1 9 6 0 . The e f f e c t s o f p o s i t i o n o f l e a f and t i m e o f s a m p l i n g on t h e r e l a t i o n s h i p o f l e a f phosphorus and p o t a s s i u m t o y i e l d o f cucumbers, tomatoes and watermelons. P r o c . Amer. S o c . H o r t S c i . 7 5 : 617-624.  19.  BRENCHLEY, W.E. 1 9 2 0 . On t h e r e l a t i o n between growth and t h e e n v i r o n m e n t a l c o n d i t i o n s o f t e m p e r a t u r e a n d b r i g h t sunshine. A n n . A p p l . B i o l . 6: 211-244.  20.  BROOK, J . , S.H. WEST a n d D.S. ANTHONY. 1967. E f f e c t s o f Phosfon on n u c l e i c a c i d m e t a b o l i s m i n P i s u m s a t i v u m Alaska. P l a n t P h y s i o l . 4 2 : 785-790.  21.  BROUWER, R. 195 6. Investigations into the occurrence o f a c t i v e and p a s s i v e components i n t h e i o n u p t a k e o f V i c i a f a b a . A c t a . B o t . N e e r l . 5: 287-314.  22.  BROUWER, R. 1 9 5 9 . The i n f l u e n c e o f t h e r o o t t e m p e r a t u r e on t h e g r o w t h o f p e a s . J a a r b IBS. 1 9 5 9 : 27-36. I n N i e l s e n and Humphries, 1965.  23.  BROUWER, R. 1 9 6 5 . I o n a b s o r p t i o n a n d t r a n s p o r t i n p l a n t s . Ann. R e v . P l a n t P h y s i o l . 16: 241-266.  24.  BUCKMAN, H.O. a n d N.C. BRADY. 1 9 6 0 . The n a t u r e and p r o p e r t y of s o i l s . 6 t h e d . , M a c M i l l a n , New Y o r k .  25.  BURSTONE, M.S. 1 9 6 2 . Enzyme h i s t o c h e m i s t r y a n d i t s a p p l i c a t i o n i n t h e study o f neoplasms. A c a d . P r e s s , New Y o r k .  26.  BUTLER, G.W. 19 53. I o n u p t a k e by young wheat p l a n t s . I . Time c o u r s e o f t h e a b s o r p t i o n o f p o t a s s i u m a h d c h l o r i d e i o n s . P h y s i o l . P l a n t 6: 594-616.  27.  CAMPBELL, W.A. a n d J . T . PRESLEY. 1945. D e s i g n f o r c o n s t a n t t e m p e r a t u r e t a n k s . P h y t o p a t h o l o g y 35: 213-216.  1943. E f f e c t s o f a p p l i c a t i o n o f t h i a m i n e B o t . G a z . 104: 475-479. lesions.  119  28.  CANNON, W.A. 1925. P h y s i o l o g i c a l f e a t u r e s o f r o o t s w i t h s p e c i a l reference t o the r e l a t i o n of roots t o the aeration of s o i l . C a r n e g i e I n s t . Wash. Pub. 368: 1-168.  29.  CANNY, M.J. 1 9 6 2 . The m e c h a n i s m o f t r a n s l o c a t i o n . (M.S.) 26: 603-617.  Ann. B o t .  30.  CATHEY, H.M. 1964. P h y s i o l o g y o f g r o w t h r e t a r d i n g A n n . R e v . P l a n t P h y s i o l . 15:: 271-302.  chemicals.  31.  CATHEY, H.M. and N.W. STUART. 1961. Comparative p l a n t g r o w t h - r e t a r d i n g a c t i v i t y o f AMO-1618, P h o s f o n and CCC. B o t . G a z . 1 2 3 : 51-57.  32.  CHANCE, B., W. HOLMES a n d J . HIGGINS. 1 9 5 8 . L o c a l i z a t i o n of i n t e r a c t i o n s i t e s i n multi-component t r a n s f e r systems: Theorems d e r i v e d f r o m a n a l o g u e s . N a t u r e 182: 1 1 9 0 - 1 1 9 3 .  33.  CHERRY, J . H . a n d R.H. HAGEMAN. 1 9 6 0 . S e p a r a t i o n a n d i d e n t i f i c a t i o n o f s o l u b l e n u c l e o t i d e s from e t i o l a t e d corn s e e d l i n g s as a f u n c t i o n o f g r o w t h . P l a n t P h y s i o l . 35: 34-3-352.  34a. CLARKSON, D.T. 19 66. E f f e c t o f a l u m i n u m on t h e u p t a k e and metabolism o f phosphorus i n b a r l e y s e e d l i n g s . Plant P h y s i o l . 41: 165-172. 34b. CLARKSON, V.A. 1 9 6 0 . E f f e c t o f b l a c k p o l y e t h y l e n e m u l c h o n s o i l a n d m i c r o c l i m a t e t e m p e r a t u r e and n i t r a t e l e v e l . Agron. J . 52: 307-309. 35.  CLELAND, R. retardants.  1 9 6 5 . E v i d e n c e on t h e s i t e o f a c t i o n o f g r o w t h P l a n t C e l l P h y s i o l . 6: 7-15.  36.  CLEMENTS, H.F. 1964. I n t e r a c t i o n o f f a c t o r s a f f e c t i n g yield. A n n . R e v . P l a n t P h y s i o l . 15: 4 0 9 - 4 4 2 .  37.  CONWAY, E . J . 195 3. A r e d o x pump f o r t h e b i o l o g i c a l p e r formance o f o s m o t i c work, and i t s r e l a t i o n t o t h e k i n e t i c s o f f r e e i o n d i f f u s i o n a c r o s s membranes. I n t n l . Rev. C y t o l . 2: 419-445.  38.  COOPER, D . J . , K.F. N I E L S E N , J.W. WHITE a n d W. K A L B F L E I S C H . 196 0. A p p a r a t u s f o r c o n t r o l l i n g s o i l t e m p e r a t u r e s . C a n . J . S o i l S c i . 40: 105-107.  39.  DAHLGREN, G. a n d N.L. SIMMERMAN. 196 3. Intramolecular c a t a l y s i s o f t h e h y d r o l y s i s o f N-dimethylamino maleamic acid (Co^). S c i . 140: 485-486.  40.  DORMAAR, J . F . a n d n i t r o g e n form and phosphorus uptake J . S o i l S c i . 45:  J.W. KETCHESON. 1 9 6 0 . The e f f e c t o f s o i l t e m p e r a t u r e on t h e g r o w t h and o f c o r n grown i n t h e g r e e n h o u s e . Can. 177-184.  120  41.  DOWNTON, W.J.S. a n d E.B. TREGUNNA. 196 8. C a r b o n d i o x i d e c o m p e n s a t i o n -- i t s r e l a t i o n t o p h o t o s y n t h e t i c c a r b o x y l a t i o n r e a c t i o n s , s y s t e m a t i c s o f t h e G r a m i n e a e a n d l e a f anatomy. Can. J . B o t . 4 6 : 2 0 7 - 2 1 5 .  42.  DUNCAN, D.B. 1 9 5 5 . M u l t i p l e r a n g e a n d m u l t i p l e F t e s t s . B i o m e t r i c s 1 1 : 1-42.  43:  EL-SHARKAWY, M.A. a n d J.D. HESKETH. 19 64. Effects of t e m p e r a t u r e a n d w a t e r d e f i c i t on l e a f p h o t o s y n t h e t i c r a t e s of d i f f e r e n t s p e c i e s . C r o p S c i . 4: 514-518.  44.  EMBLETON, T.W., M . J . GARBER, W.W. JONES a n d S . J . RICHARDS. 1958. E f f e c t s o f i r r i g a t i o n t r e a t m e n t s and r a t e s o f n i t r o g e n f e r t i l i z a t i o n o n y o u n g Hass A v o c a d o t r e e s . IV. M i c r o n u t r i e n t content o f leaves. P r o c . Amer. S o c . H o r t . S c i . 7 1 : 310-314.  45.  E P S T E I N , E. 1 9 6 0 . S p a c e s , b a r r i e r s , a n d i o n c a r r i e r s : i o n a b s o r p t i o n by p l a n t s . Amer. J . B o t . 47: 393-399.  46.  E P S T E I N , E. a n d E.C. HAGEN. 1 9 5 2 . A k i n e t i c s t u d y o f t h e a b s o r p t i o n o f a l k a l i c a t i o n s by b a r l e y r o o t s . Plant Physiol. 27: 457-474.  47.  FLETCHER, H.F., D.P. ORMROD, A.R. MAURER a n d B. STANFIELD. 1966. R e s p o n s e o f p e a s t o e n v i r o n m e n t . I . P l a n t i n g d a t e and l o c a t i o n . C a n . J . P l a n t S c i . 46: 7 7 - 8 5 .  48.  F R I E D , M., C.E. HAGEN, J . F . SAIZ DEL RIO a n d E. LEGGETT. 19 57. K i n e t i c s o f phosphate uptake i n t h e s o i l - p l a n t system. S o i l S c i . 84: 427-437.  49.  F R I E D , M. a n d R.E. SHAPIRO. 19 61. Soil-plant relationships i n i o n u p t a k e . A n n . R e v . P l a n t P h y s i o l . 1 2 : 91-112.  50.  GALSTON, A.V7. B i o c h e m i s t r y . In Experimental c o n t r o l o f p l a n t g r o w t h , F.W. Went, e d . , C h r o n i c a B o t a n i c a , Waltham, M a s s a c h u s e t t s . 1957.  51.  GALSTON, A.W. a n d M.E. HAND. 1 9 4 9 . A d e n i n e a s a g r o w t h f a c t o r f o r e t i o l a t e d peas and i t s r e l a t i o n t o t h e r m a l i n a c t i v a t i o n o f g r o w t h . A r c h . B i o c h e m . 22: 4 3 4 - 4 4 3 .  52.  GAUCH, H.G. 1 9 5 6 . M i n e r a l n u t r i t i o n o f p l a n t s . P l a n t P h y s i o l . 31: 155-161.  53.  GHOSH, A. a n d B. CHANCE. 1964. O s c i l l a t i o n s i n g l y c o l y t i c intermediates i n yeast c e l l s . Biochem. B i o p h y s . R e s . Commun. 16: 1 7 4 - 1 8 1 .  Ann. Rev.  121  54.  GOODMAN, M., A.A. BENSON a n d M. CALVIN. 1955. F r a c t i o n a t i o n o f p h o s p h a t e s f r o m Scenedesmus b y a n i o n e x c h a n g e . J . Amer. Chem. S o c . 77: 4 2 5 7 - 4 2 6 1 .  55.  HALEVY, A.H. 1 9 6 3 . I n t e r a c t i o n o f g r o w t h r e t a r d i n g compounds and g i b b e r e l l i n on i n d o l e a c e t i c a c i d o x i d a s e p e r o x i d a s e o f cucumber s e e d l i n g s . P l a n t P h y s i o l . 38: 737 .  56.  HALEVY, A.H. a n d H.M. CATHEY. 19 60. Effect of structure and c o n c e n t r a t i o n o f some q u a t e r n a r y ammonium compounds o n growth o f cucumber s e e d l i n g s . B o t . G a z . 1 1 2 : 151-154.  57.  HATCH, M.D. a n d J . F . TURNER. 1 9 5 8 . G l y c o l y s i s by an e x t r a c t from pea seeds. B i o c h e m . J . 69: 4 9 5 - 5 0 1 .  58.  HESS, B. 1 9 6 3 . C o n t r o l o f m e t a b o l i c r a t e s . In Control m e c h a n i s m s i n r e s p i r a t i o n and f e r m e n t a t i o n . B. W r i g h t , ' e d . R o n a l d P r e s s , New Y o r k ;  59.  HIGHKIN, H.R. 1 9 6 0 . The e f f e c t o f c o n s t a n t t e m p e r a t u r e e n v i r o n m e n t s and o f c o n t i n u o u s l i g h t on t h e g r o w t h and d e v e l o p m e n t o f p e a p l a n t s . C o l d S p r i n g H a r b o u r S y m p o s i a on Q u a n t i t a t i v e B i o l o g y , v o l . XXV: 231-238. New Y o r k .  60.  HINMAN, W.C., J.D. BEATON and D.W.L. READ. 1 9 6 2 . Some e f f e c t s o f m o i s t u r e a n d t e m p e r a t u r e on t r a n s f o r m a t i o n o f monocalcium phosphate i n s o i l . Can. J . S o i l S c i . 42: 229-239.  61.  HINNEMANN, H., J.A.D. ZEEVART, H. KENDE a n d A. LANG. 1964. The p l a n t g r o w t h r e t a r d a n t CCC a s i n h i b i t o r o f g i b b e r e l l i n b i o s y n t h e s i s i n Fusarium moniliforme. P l a n t a 6 1 : 229-235.  62.  HONERT, T.V. v a n d e n , J . J . M . HOOYMANS a n d W.S. VOLKERS. 1955. E x p e r i m e n t s on t h e r e l a t i o n b e t w e e n w a t e r a b s o r p t i o n and m i n e r a l u p t a k e by p l a n t r o o t s . A c t a B o t . N e e r l . 4: 139-155.  63.  HUMPHRIES, E.C. 1 9 5 6 . The r e l a t i o n b e t w e e n t h e r a t e o f n u t r i e n t u p t a k e by e x c i s e d b a r l e y r o o t s and t h e i r c o n t e n t o f sucrose and r e d u c i n g sugars. A n n . B o t . (N.S.) 20: 411-417.  64.  HYLMO, B. 19 58. P a s s i v e components i n t h e i o n a b s o r p t i o n of t h e p l a n t . I I . The z o n a l w a t e r f l o w , i o n p a s s a g e a n d pore s i z e i n the r o o t s o f V i c i a faba. P h y s i o l . P l a n t 11: 382-400.  65.  JACOBSON, L., R. OVERSTREET, R.M. CARLSON a n d J.A. CHASTAIN. 1957. The e f f e c t o f pH a n d t e m p e r a t u r e o n t h e a b s o r p t i o n o f p o t a s s i u m and b r o m i d e by b a r l e y r o o t s . Plant Physiol. 32: 658-662.  and 731-  122 66.  J A F F E , M.J. a n d F.M. ISENBERG. 1 9 6 5 . Some e f f e c t s o f Nd i m e t h y l a m i n o s u c c i n a m i c a c i d ( B - n i n e ) on t h e d e v e l o p m e n t of v a r i o u s p l a n t s w i t h s p e c i a l r e f e r e n c e t o t h e cucumber, C u c u m i s s a t i v u s L. P r o c . Amer. S o c . H o r t S c i . 87: 4 2 0 - 4 2 8 .  67.  JUO, P. a n d G. STOTZKY. 1 9 6 7 . I n t e r f e r e n c e b y n i t r a t e and n i t r i t e i n t h e d e t e r m i n a t i o n o f c a r b o h y d r a t e s b y anthrone. A n a l . Biochem. 21: 149-151.  68.  KAMIYA, N. , 1960 . P h y s i c s a n d c h e m i s t r y o f p r o t o p l a s m i c streaming. A n n . R e v . P l a n t P h y s i o l . 1 1 : 323-340.  69. - KAUFMANN, S. and S.G.A. A L I V I S A T O S . 1955. P u r i f i c a t i o n and p r o p e r t i e s o f t h e p h o s p h o r y l a t i n g enzyme f r o m s p i n a c h . J . B i o l . Chem. 216: 1 4 1 - 1 5 2 . 70.  KETCHESON, J.W. 1 9 5 7 . Some e f f e c t s o f s o i l temperature on p h o s p h o r u s r e q u i r e m e n t s o f y o u n g c o r n p l a n t s i n t h e greenhouse. C a n . J . . S o i l S c i . 37: 4 1 - 4 7 .  71.  KETELLAPER, H . J . a n d J . BONNER. 1 9 6 1 . The c h e m i c a l b a s i s of temperature response i n p l a n t s . P l a n t P h y s i o l . 36:(suppl.) xxi.  72.  KHYM, J . X . a n d W.E. COHN. 1 9 5 3 . The s e p a r a t i o n o f s u g a r p h o s p h a t e s by i o n - e x c h a n g e w i t h t h e u s e o f t h e b o r a t e complex. J . Amer. Chem. S o c . 75: 1 1 5 3 - 1 1 5 6 .  73.  KNAVEL, D.E. 1 9 6 8 . I n f l u e n c e o f g r o w t h r e t a r d a n t s o n g r o w t h , n u t r i e n t c o n t e n t a n d y i e l d s o f t o m a t o p l a n t s grown with various f e r t i l i t y levels. H o r t . S c i . 3: 1 0 1 .  74.  KNOLL, H.A., N.C. BRADY a n d D . J . LATHWELL. 1964. E f f e c t o f s o i l t e m p e r a t u r e a n d p h o s p h o r u s f e r t i l i z a t i o n on t h e g r o w t h a n d p h o s p h o r u s c o n t e n t o f c o r n . A g r o n . J . 56: 145-147.  75.  KRAMER, P . J . 1 9 4 9 . P l a n t a n d s o i l w a t e r 1st ed. M c G r a w - H i l l , Toronto.  76.  KRAMER, P . J . 1 9 5 6 . P h y s i c a l a n d p h y s i o l o g i c a l a s p e c t s o f w a t e r a b s o r p t i o n . E n c y c l . P l a n t P h y s i o l . 3: 124-159. Springer-Verlag, Berlin.  77.  K U R A I S H I , S. a n d R.M. MUIR. growth r e t a r d i n g chemicals.  78.  LANGRIDGE, J . 196 3. Biochemical aspects o f temperature response. A n n . Rev. P l a n t P h y s i o l . 14: 4 4 1 - 4 6 2 .  79.  LANGRIDGE, J . a n d B. G R I F F I N G . 1959. A s t u d y o f h i g h temperature l e s i o n s i n A r a b i d o p s i s t h a l i a n a . Australian J . B i o l . S c i . 12: 1 1 7 - 1 3 5 .  relationships.  196 3. Mode o f a c t i o n o f P l a n t P h y s i o l . 38: 19-24.  123  80.  LARSON, W.E. and W.O. W I L L I S . 1957. L i g h t , s o i l temperature, s o i l m o i s t u r e and a l f a l f a - r e d c l o v e r d i s t r i b u t i o n between c o r n r o w s o f v a r y i n g s p a c i n g and row d i r e c t i o n s . A g r o n . J . 49: 422-426.  81  L A T I E S , G.G. 1959. A c t i v e t r a n s p o r t o f s a l t i n t o tissues. A n n . Rev. P l a n t P h y s i o l . 10: 87-112.  82.  LETEY, J . , L.H. STOLZY, G.B. BLANK and O.R. LUNT. 1961-. E f f e c t o f t e m p e r a t u r e on o x y g e n d i f f u s i o n r a t e s and s u b s e q u e n t s h o o t g r o w t h , r o o t g r o w t h , and m i n e r a l c o n t e n t o f two p l a n t s p e c i e s . S o i l S c i . 92: 314-321.  83.  LETEY, J . , L.H. STOLZY, N. VALORAS and T.E. SZUSZKIEWICZ. 1962. I n f l u e n c e o f o x y g e n d i f f u s i o n r a t e on s u n f l o w e r . A g r o n . J . 54: 316-319.  84.  L I N G L E , J . C . and R.M. DAVIS. 1959. The i n f l u e n c e o f s o i l t e m p e r a t u r e and p h o s p h o r u s f e r t i l i z a t i o n on t h e g r o w t h and m i n e r a l a b s o r p t i o n of tomato s e e d l i n g s . P r o c . Amer. S o c . H o r t . S c i . 73: 312-322.  plant  8-5,,. LOCASCIO, S . J . and G.F. WARREN. 1960 . I n t e r a c t i o n o f s o i l t e m p e r a t u r e and p h o s p h o r u s on g r o w t h o f t o m a t o e s . Proc. Amer. S o c . H o r t . S c i . 75: 601-610. 86. 87.  LOCKHART, J.A. 1962. K i n e t i c studies of c e r t a i n a n t i gibberellins. P l a n t P h y s i o l . 37: 759-764. • LOUGHMAN, B.C. and R.S. RUSSELL. 1957. The a b s o r p t i o n and u t i l i z a t i o n o f p h o s p h a t e by y o u n g b a r l e y p l a n t s . IV. The i n i t i a l s t a g e s o f p h o s p h a t e m e t a b o l i s m i n r o o t s . J . E x p t l . B o t . 8: 280-293.  88.  LUNDEGARDH, H. 1947. M i n e r a l Rev. B i o c h e m . 16: 503-528.  n u t r i t i o n of plants.  Ann.  89.  LUNDEGARDH. H. 19 55. Mechanisms o f a b s o r p t i o n , t r a n s p o r t , a c c u m u l a t i o n , and s e c r e t i o n o f i o n s . Ann. Rev. P l a n t P h y s i p l . 6: 1-24.  90.  MACK, A.R. 196 5. E f f e c t o f s o i l t e m p e r a t u r e and m o i s t u r e on y i e l d and n u t r i e n t u p t a k e by b a r l e y . Can. J . S o i l S c i . 45: 337-346.  91.  MACK, A.R. and W.A. EVANS. 1 9 6 5 . S o i l temperature c o n t r o l s y s t e m f o r f i e l d p l o t s . Can. J . S o i l S c i . 45: 105-107.  92.  MACK, H . J . , S.C. FANG and S.B. A P P L E , J r . 1964. Effects o f s o i l t e m p e r a t u r e and p h o s p h o r u s f e r t i l i z a t i o n on snapb e a n s and p e a s . P r o c . Amer. S o c . H o r t . S c i . 84: 332-338.  124  93.  MACKINNEY, G. preparations.  1940. Criteria for purity i n chlorophyll J . B i o l . Chem. 132: 91-109.  94.  MACLEAN, K.S. and D.L. BYERS. 19 68. Nutrient content f i e l d - g r o w n p e a s . Can. J . P l a n t S c i . 48: 155-160.  95.  MAJUMDER, S.K. 1968. M o r p h o g e n e t i c r e s p o n s e s o f t o m a t o p l a n t s t o c o m b i n e d and i n d i v i d u a l a p p l i c a t i o n s o f g i b b e r e l l i c a c i d , p h o s f o n a n d B - N i n e . P l a n t and S o i l 28: 291-297.  96.  MARRE, E. 1961. P h o s p h o r y l a t i o n i n h i g h e r Rev. P l a n t P h y s i o l . 12: 195-218.  97.  MAURER, A.R., D.E. JAFFRAY and H.F. FLETCHER 1966. Response, o f p e a s t o e n v i r o n m e n t . I I I . A s s e s s m e n t o f t h e m o r p h o l o g i c a l d e v e l o p m e n t o f p e a s . Can. J . P l a n t S c i . 46: 285-290.  98.  MCKELL, C M . , A.M. WILSON and M.B. JONES. 1 9 6 1 . A f l o t a t i o n method f o r e a s y s e p a r a t i o n o f r o o t s f r o m s o i l s a m p l e s . A g r o n . J . 53: 56-57.  99.  MCKELL, C M . , A.M. WILSON and W.A. WILLIAMS. 1962. E f f e c t o f t e m p e r a t u r e on p h o s p h o r u s u t i l i z a t i o n by n a t i v e and i n t r o d u c e d l e g u m e s . A g r o n . J . 54: 109-113.  plants.  of  Ann.  100.  MEDERSKI, H . J . and J . B . JONES, J r . 1963. E f f e c t o f s o i l • " = t e m p e r a t u r e on c o r n p l a n t d e v e l o p m e n t and y i e l d . I . Studieswith a corn hybrid. S o i l S c i . S o c . Amer. P r o c . 27: 186-189.  101.  MES, M.G. 19 59. I n f l u e n c e o f t e m p e r a t u r e on t h e s y m b i o t i c f i x a t i o n o f l e g u m e s . N a t u r e 184: 2032-2033.  102.  MEYER, D.R. and A . J . ANDERSON. 1959. T e m p e r a t u r e and symbiotic nitrogen fixation. N a t u r e 18 3: 61.  10 3.  MOORE, T . C 196 7. K i n e t i c s o f g r o w t h r e t a r d a n t and hormone i n t e r a c t i o n i n a f f e c t i n g c u c u m b e r h y p o c o t y l e l o n g a tion. P l a n t P h y s i o l . 42: 677-684.  104.  MOORIS, D.L. 1948. Quantitative determination of c a r b o h y d r a t e s w i t h Dreywood's a n t h r o n e r e a g e n t . S c i . 10 7: 254-255.  105.  MOSSBERRY, Y., A.M. MAYER and L.W. MAPSON. 1964. I n h i b i t i o n o f g l y c o l y s i s by a d e o n s i n e t r i p h o s p h a t e . E x p t l . B o t . 15: 29-34.  106.  NEFF, M.S., H.L. BARROWS and C.B. SHEAR. 195 8. Response o f t u n g t r e e s t o a p p l i e d n i t r o g e n , p o t a s s i u m and magnesium in d i f f e r e n t s o i l types. P r o c . Amer. S o c . H o r t . S c i . 7 1 : 237-240.  J.  125  107.  NELSON, W.L., B.A. KRANTZ, C D . WELCH a n d N.S. HALL. 1 9 4 9 . U t i l i z a t i o n o f p h o s p h o r u s a s a f f e c t e d by p l a c e m e n t . I I . Cotton and corn i n North C a r o l i n a . S o i l S c i . 68: 137-144.  108.  N I E L S E N , K.F. a n d R.K. CUNNINGHAM. 1 9 6 4 . The e f f e c t s o f s o i l t e m p e r a t u r e , f o r m a n d l e v e l o f N on g r o w t h a n d c h e m i c a l composition of I t a l i a n ryegrass. S o i l S c i . S o c . Amer. P r o c . 28: 213-218.  109.  NIELSEN', K.F., R.L. HALSTEAD, A . J . MACLEAN, S . J . BOURGET ••, and R.M. HOLMES. 1 9 6 1 . The i n f l u e n c e o f s o i l temperature on t h e g r o w t h a n d m i n e r a l c o m p o s i t i o n o f c o r n , b r o m e g r a s s and p o t a t o e s . S o i l S c i . S o c . Amer. P r o c . 25: 369-372.  110.  N I E L S E N , K . F . , R.L. HALSTEAD, A . J . MACLEAN, R.M. HOLMES a n d S . J . BOURGET. 1960. E f f e c t s o f s o i l temperature on t h e growth and c h e m i c a l c o m p o s i t i o n o f Lucerne. Proc. 8 t h I n t n l . G r a s s l a n d Congr., 287-292.  111.  N I E L S E N , K.F. a n d E.C. HUMPHRIES. 1 9 6 5 . S o i l t e m p e r a t u r e and p l a n t g r o w t h , an a n n o t a t e d b i b l i o l o g r a p h y ( 1 9 5 1 - 1 9 6 4 ) . Can. D e p t . A g r i c . S w i f t C u r r e n t Pub. 1 0 8 : 36-40.  112.  N I E L S E N , K.F. a n d E.C. HUMPHRIES. 1 9 6 6 . E f f e c t s o f r o o t temperature on p l a n t growth. S o i l s a n d F e r t i l i z e r s 2 9 : 1-7.  .113.  OHLROGGE, A . J . 1 9 6 2 . Some s o i l - r o o t - p l a n t S o i l S c i . 9 3 : 30-38.  relationships.  114.  OLSEN, S.R., F.S. WATANABLE a n d R.E. DANIELSON. 1 9 6 1 . Phosphorus a b s o r p t i o n by c o r n r o o t s as a f f e c t e d by m o i s t u r e and P c o n c e n t r a t i o n . S o i l S c i . S o c . Amer. P r o c . 25: 2 8 9 294.  115.  ORMROD, D.P. 1 9 6 2 . N o t e o n i n e x p e n s i v e m u l t i p l e p l a n t growth c a b i n e t s . Can. J . P l a n t S c i . 42: 742-745.  116.  ORMROD, D.P. a n d W.A. BUNTER, J r . 1 9 6 1 . I n f l u e n c e o f t e m p e r a t u r e on t h e r e s p i r a t i o n o f r i c e s e e d l i n g s . C r o p . S c i . 1: 353-354.  117.  ORMROD, D.P. a n d W.A. WILLIAMS. 1 9 6 0 . P h o s p h o r u s m e t a b o l i s m T r i f o l i u m h i r t u m A l l a s i n f l u e n c e d by 2 , 4 - d i c h l o r o p h e n o x y a c e t i c a c i d and g i b b e r e l l i c a c i d . P l a n t P h y s i o l . 35: 81-87. o  f  118.  POTTS, J.R.M. a n d D.P. ORMROD. 1 9 6 9 . The e f f e c t o f a b r u p t t e m p e r a t u r e i n c r e a s e on g r o w t h a n d p h o s p h o r u s f r a c t i o n s o f Pisum sativum. Can. J . B o t . 47. I n P r e s s .  119.  POWER, J . F . , D.L. GRUNES, G.A. REICHMAN a n d W.O. W I L L I S . 1964. S o i l t e m p e r a t u r e a n d p h o s p h o r u s e f f e c t s upon n u t r i e n t a b s o r p t i o n b y b a r l e y . A g r o n . J . 56: 355-359.  126  120.  POWER, J . F . , D.L. GRUNES, W.O. W I L L I S a n d G.A. REICHMAN. 1963. S o i l t e m p e r a t u r e and phosphorus e f f e c t s upon b a r l e y g r o w t h . A g r o n . J . 55: 3 8 9 - 3 9 2 .  121.  PRESTON, W.H. J r . a n d C.B. LINK. dichlorobenzyl tributylphosphonium P l a n t P h y s i o l . 33 ( s u p p l . ) x l i x .  122.  REED. D . J . , T.C. MOORE a n d J.D. ANDERSON. 1965. P l a n t g r o w t h r e t a r d a n t B-995: a p o s s i b l e mode o f a c t i o n . S c i . 148: 1469-1471.  123.  REITZ, H.J. and R.C.J. K00, J r . 1960. E f f e c t s o f n i t r o g e n and p o t a s s i u m f e r t i l i z a t i o n o n y i e l d , f r u i t - . q u a l i t y , a n d l e a f a n a l y s i s o f V a l e n c i a orange. P r o c . Amer. S o c . H o r t . S c i . 75: 2 4 4 - 2 5 2 .  124.  RICHARDS, S . J . , R.M. HAGAN a n d T.M. MCCALLA. 1 9 5 2 . S o i l temperature and p l a n t growth. In Soil physical conditions and p l a n t g r o w t h . B.T. Shaw, e d . A c a d . P r e s s , New Y o r k .  125.  R I D D E L L , J . A . , H.A. HAGEMAN, C M . JANTHONY a n d W.L. HUBBARD. R e t a r d a t i o n o f p l a n t g r o w t h b y a new g r o u p o f c h e m i c a l s . S c i . 135: 391.  126.  RINNE, R.W. a n d R.G. LANGSTON. 1960. S t u d i e s on l a t e r a l movement o f p h o s p h o r u s 32 i n p e p p e r m i n t . Plant Physiol. 35: 216-219.  127.  ROBINSON, R.R., V.G. SPRAGUE a n d C.F. CROSS. 1 9 5 9 . The r e l a t i o n o f temperature and phosphate placement t o growth of r e d c l o v e r . S o i l S c i . S o c . Amer. P r o c . 2 3 : 225-228.  12 8.  ROGERS, B.L., L . P . BATJER a n d A.H. THOMPSON. 1 9 5 3 . S e a s o n a l t r e n d o f s e v e r a l n u t r i e n t elements i n D e l i c i o u s apple l e a v e s e x p r e s s e d on a p e r c e n t and u n i t a r e a b a s i s . Proc. Amer. S o c . H o r t . S c i . 6 1 : 1-5.  129.  ROWAN, K.S. 1 9 6 6 . P h o s p h o r u s m e t a b o l i s m i n p l a n t s . Rev. C y t o l . 19: 3 0 1 - 3 9 1 .  130.  SCOTT, R.W., W.E., MOORE, M . J . EFFLAND a n d M.A. M I L L E T . 1967 . U l t r a v i o l e t i % p e c t r o p h o t o m e t r i c d e t e r m i n a t i o n o f h e x o s e s , p e n t o s e s aiid u r o n i c a c i d s a f t e r t h e i r r e a c t i o n s w i t h c o n c e n t r a t e d s u l f u r i c a c i d . A n a l . Biochem. 21: 68-80.  131.  SEKIOKA, H. 1 9 6 3 . E f f e c t o f some e n v i r o n m e n t a l f a c t o r s o n the t r a n s l o c a t i o n and storage o f c a r b o h y d r a t e s . I . Relations h i p between t h e t r a n s l o c a t i o n o f c a r b o h y d r a t e s o r r a d i o i s o t o p e s and s o i l a n d a i r t e m p e r a t u r e s i n s w e e t p o t a t o . S o i l s and F e r t i l i z e r s 26: 31-59.  13 2.  SHAW, M.  1968. P e r s o n a l  1 9 5 8 . U s e o f 2,4c h l o r i d e t o dwarf p l a n t s .  communication.  Intnl.  127  13 3.  SHTRAUSBERG, D.V. 1955. The e f f e c t o f s o i l t e m p e r a t u r e on t h e u t i l i z a t i o n o f v a r i o u s n u t r i e n t s by p l a n t s . Soils and F e r t i l i z e r s 20: 2.  134.  SIMPSON, K. 1960. E f f e c t o f s o i l t e m p e r a t u r e and m o i s t u r e on t h e u p t a k e o f p h o s p h o r u s by o a t s . J . S c i . Food A g r i c . 11: 449-456.  13 5.  SINGH, H.N. and H.J. MACK. 1966. E f f e c t s of s o i l temperat u r e s on g r o w t h , f r u i t i n g , and m i n e r a l c o m p o s i t i o n o f snapbeans. P r o c . Amer. Soc. H o r t . S c i . 88: 378-383.  136.  SINGH, H.N. and D.P. SINGH. n u t r i t i o n of Japanese mint.  137.  SMITH, P.F. 1962. Mineral a n a l y s i s of plant t i s s u e s . Ann. Rev. P l a n t P h y s i o l . 13: 81-108.  138.  SMITH, P.F. and W. REUTHER. 1951. The r e s p o n s e o f y o u n g V a l e n c i a orange t r e e s t o d i f f e r e n t boron s u p p l y i n sand culture. P l a n t P h y s i o l . 26: 110-114.  139.  SOUTHWICK, F.W., W.J. LORD and W.D. WEEKS. 1968. The i n f l u e n c e of succinamic a c i d , 2,2-dimethyl hydrazine ( A l a r ) on t h e g r o w t h , p r o d u c t i v i t y , m i n e r a l n u t r i t i o n and q u a l i t y of apples. P r o c . Amer. Soc. H o r t . S c i . 92: 71-81.  140.  SPRENT, J . I . 1967. E f f e c t s of n u t r i e n t f a c t o r s , water s u p p l y , and g r o w t h - r e g u l a t i n g s u b s t a n c e s on t h e v e g e t a t i v e g r o w t h p a t t e r n o f p e a s and t h e i r r e l a t i o n s h i p t o t h e node of f i r s t flower. Ann. B o t (N.S.) 31: 607-618.  141.  STANFIELD, B., D.P. ORMROD' and H.F. FLETCHER. 1966. Response o f peas t o e n v i r o n m e n t . I I . E f f e c t s of temperature in controlled-environment cabinets. Can. J . P l a n t S c i . 46: 195-203.  142.  STEWARD, F.C. and H.E. STREET. 1947. The nitrogenous c o n s t i t u e n t s o f p l a n t s . Ann. Rev. B i o c h e m . 16: 471-502.  143.  STUMPF, P.K. 1955. Fat metabolism i n h i g h e r p l a n t s . I I I . Enzymic o x i d a t i o n of g l y c e r o l . P l a n t P h y s i o l . 30: 55-58.  144.  SUTCLIFFE, J.F. Pergamon P r e s s .  145.  TANADA, T. 1956. E f f e c t o f r i b o n u c l e a s e on s a l t a b s o r p t i o n by e x c i s e d mung b e a n r o o t s . P l a n t P h y s i o l . 31: 251-253.  146»  TANAKA, K. and N.E. TOL^ERT. 1966. E f f e c t s of Cycocel d e r i v a t i v e s and g i b b e r e M i i n s on c h o l i n e k i n a s e and c h o l i n e metabolism. P l a n t P h y s i o l . 41: 313-318.  147.  THOMAS, C.A., J r . 1956. New scheme f o r p e r f o r m a n c e o s m o t i c w o r k by membranes.. S c i . 123: 60-61  1968. Studies P l a n t and S o i l  i n the mineral 28: 36 3-371.  1962. Mineral salts absorption Oxford.  in plants.  of  128  148.  TOLBERT, N.E. 1 9 6 0 . ( 2 - c h l o r o e t h y l ) trimethylammonium c h l o r i d e a n d r e l a t e d compounds a s p l a n t g r o w t h s u b s t a n c e s . I I . E f f e c t s on growth o f wheat. P l a n t P h y s i o l . 35: 3 8 0 - 3 8 5 .  149.  T U L I , V., D.R. D I L L E Y a n d S.H. WITTWER. benzyladenine: Inhibitor of respiratory 146: 1477-1479.  150.  U L R I C H , A. a n d W.L. BERRY. 1 9 6 1 . C r i t i c a l p h o s p h o r u s l e v e l s f o r l i m a bean growth. P l a n t P h y s i o l . 36: 6 2 6 - 6 3 2 .  151.  WANG, J.W. a n d R.A. BRYSON. 1 9 5 6 . A s t u d y o f p h y t o m e t e o r o l o g i c a l e f f e c t s on t h e growth and development o f peas. Dept. M e t e o r o l . , U n i v . o f W i s c o n s i n Pub.  152.  WEISSMAN, G.S. 1 9 6 4 . E f f e c t o f ammonium a n d n i t r a t e n u t r i t i o n on p r o t e i n l e v e l and exudate c o m p o s i t i o n . P l a n t P h y s i o l . 39: 9 4 7 - 9 5 2 .  153.  WELCH, F . L . , D.L. MULVANEY, L.V. BOONE, G.E. MCKIBBEN a n d J.W. PEMBLETON. 1 9 6 6 . R e l a t i v e e f f i c i e n c y o f b r o a d c a s t v e r s u s banded p h o s p h o r u s f o r c o r n . A g r o n . J . 58: 283-287.  154.  WENT, F.W. 1944. P l a n t growth under c o n t r o l l e d c o n d i t i o n s . I I I . C o r r e l a t i o n between v a r y i n g p h y s i o l o g i c a l p r o c e s s e s and g r o w t h i n t h e t o m a t o p l a n t . Amer. J . B o t . 3 1 : 5 9 7 618. V  155.  WENT, F.W. 1957 . The e x p e r i m e n t a l c o n t r o l o f p l a j i t ; - g r o w t h . C h r o n i c a B o t a n i c a , Waltham, M a s s a c h u s e t t s .  156.  WETTSTEIN, D. v o n . 1 9 5 7 . C h l o r o p h y l l - l e t a l e u n d d e r submikropische formueschel der plastiden. Exp.C e l l Res. 12: 427-506.  1964. N kinases. S c i . 6  157. WHATLEY, F.R. a n d M. LOSADA. 1 9 6 4 . The p h o t o c h e m i c a l reactions of photosynthesis. In Photophysiology I . A.C. G r i e s e , e d . A c a d . P r e s s , New Y o r k . 158.  WILLIAMS, R.F. 1 9 5 5 . R e d i s t r i b u t i o n o f m i n e r a l e l e m e n t s d u r i n g development. A n n . R e v . P l a n t P h y s i o l . 6: 25-42.  159.  W I L L I S , W.O., J . F . POWER, G.A. REICHMAN a n d D.L GRUNES. 196 3. Constant temperature water baths f o r p l a n t growth experiments. A g r o n . J . 55: 2 0 0 .  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0104042/manifest

Comment

Related Items