Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Extending the processing capabilities of a pilot scale retort Britt, Ian John 1987

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1987_A7 B75.pdf [ 8.9MB ]
Metadata
JSON: 831-1.0097095.json
JSON-LD: 831-1.0097095-ld.json
RDF/XML (Pretty): 831-1.0097095-rdf.xml
RDF/JSON: 831-1.0097095-rdf.json
Turtle: 831-1.0097095-turtle.txt
N-Triples: 831-1.0097095-rdf-ntriples.txt
Original Record: 831-1.0097095-source.json
Full Text
831-1.0097095-fulltext.txt
Citation
831-1.0097095.ris

Full Text

EXTENDING THE PROCESSING CAPABILITIES OF A PILOT SCALE RETORT BY IAN JOHN BRITT B.A.Sc, The Unive r s i t y of B r i t i s h Columbia, 1980 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Bio-Resource Engineering) We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA August, 1987 © I.J. B r i t t , 1987 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Bio-Resource Engineering The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date August 19, 1987 i i ABSTRACT The object of this research was to develop a retort for research and development of thermal processes which use common commercial thermal processing techniques. An FMC 500W laboratory s t e r i l i z e r , designed to operate with an FMC weir product racking system, was modified for conventional steam, positive flow steam/air and water immersion/air overpressure thermal processing of foods in thin profile retortable packages. The research included the modification of the retort plumbing and the fabrication of a set of product trays and a racking system. The completed system was tested for temperature distribution and stability, and heat transfer distribution for each processing mode. The latter was achieved by comparing the heat penetration parameters calculated from the centerpoint temperature histories of conduction heating teflon transducers. i i i T A B L E OF CONTENTS Page ABSTRACT i i LIST OF TABLES iv LIST OF FIGURES v ACKNOWLEDGEMENTS v i INTRODUCTION 1 THERMAL PROCESSES 2 I Steam 2 II Steam/Air 3 III Water Immersion/Air Overpressure 4 DESIGN AND FABRICATION 6 I Retort 6 II Product Racks and Car 12 SYSTEM EVALUATION 15 I Procedures 15 II Results 19 1. Temperature Distribution 19 2. Pressure Stability 23 3. Heat Transfer Distribution 24 CONCLUSIONS 29 FUTURE STUDIES 30 LITERATURE CITED 32 APPENDICES A Retort Operating Procedures 33 B Temperature Distribution and Stability Data 36 C Temperature Distribution and Stability Plots 55 D Corrected Heat Penetration Parameters 62 i v L I S T OF T A B L E S Page Table 1. Legend for figure 1 8 Table 2. List of components identified in figure 1 9 Table B.l. Steam process temperature distribution and stab i l i t y data (run 1.3) 37 Table B.2. Steam process temperature distribution and stab i l i t y data (run 1.4) 39 Table B.3. Steam process temperature distribution and stab i l i t y data (run 1.5) 41 Table B.4. Steam/air process temperature distribution and st a b i l i t y data (run 2.16) 43 Table B.5. Steam/air process temperature distribution and st a b i l i t y data (run 2.17) 45 Table B.6. Steam/air process temperature distribution and s t a b i l i t y data (run 2.18) 47 Table B.7. Water process temperature distribution and stab i l i t y data (run 3.3) 49 Table B.8. Water process temperature distribution and stability data (run 3.4) 51 Table B.9. Water process temperature distribution and stability data (run 3.5) 53 Table D.l. Corrected heating rate indices (fh) 63 Table D.2. Corrected heating lag factors (jh) 64 Table D.3. Corrected cooling rate indices (fc) 65 Table D.4. Corrected cooling lag factors (jc) 66 V L I S T OF F I G U R E S Page Figure 1. Schematic representation of the retort system 7 Figure 2. Steam distribution spreader 10 Figure 3. Venting manifold 10 Figure 4. Retort product trays 13 Figure 5. Retort car 14 Figure 6. Assembly of the teflon test bricks 17 Figure 7. Location of the test bricks in the retort 18 Figure 8. Steam process temperature distribution and stab i l i t y (run 1.3) 20 Figure 9. Steam/air process temperature distribution and s t a b i l i t y (run 2.16) 21 Figure 10. Water process temperature distribution and stab i l i t y (run 3.3) 22 Figure C.l. Steam process temperature distribution and stab i l i t y (run 1.4) 56 Figure C.2. Steam process temperature distribution and stab i l i t y (run 1.5) 57 Figure C.3. Steam/air process temperature distribution and st a b i l i t y (run 2.17) 58 Figure C.4. Steam/air process temperature distribution and st a b i l i t y (run 2.18) 59 Figure C.5. Water process temperature distribution and stability (run 3.4) 60 Figure C.6. Water process temperature distribution and stability (run 3.5) 61 ACKNOWLEDGEMENTS vi I sincerely thank Dr. Marvin Tung for his unending advice, encouragement and moral and f i n a n c i a l support through this project. I also extend my appreciation to the other members of my committee, Dr. Victor Lo and Prof. Len Staley, for their support and constructive input into this research. The help of Mr. Neil Jackson and Mr. Gerry Morello in the fabrication and testing of the equipment was invaluable. A special thank-you to my wife, Celia, and our children for their patience and understanding during this work. 1 I N T R O D U C T I O N An FMC Model 500W Laboratory St e r i l i z e r (FMC Corporation, Madera, CA) was purchased jointly by the Departments of Bio-Resource Engineering and Food Science, University of British Columbia to conduct research and development of thermal processing mechanisms and for product development of foods packed in thin profile retortable packages. The retort was designed for an FMC weir racking system where heat is transferred to the product from heated water flowing in channels between layers of product. While this is an interesting approach to thermal processing i t has limited commercial application. The object of this work was to expand the processing capabilities of the retort to include commercially used steam, water immersion/air overpressure and positive flow steam/air processing, and to demonstrate i t s performance with heat penetration experiments. No reference to this approach of developing a multi-function research vessel was found in the literature. This developmental work w i l l provide the University with a unique and versatile retort for research in thermal processing of thin profile packages. The scope of this research was to modify the retort plumbing of the FMC 500W s t e r i l i z e r to accommodate the additional processing modes, design and fabricate a suitable product racking system, and demonstrate the efficacy of the completed system. Financial constraints restricted this work to the use of existing control systems and u t i l i t i e s . 2 THERMAL PROCESSES The following sections outline the operating principles and design considerations for each of the proposed processes. I Steam The process begins with a come-up period during which the retort vents are opened and a high flow of steam, entering the unpressurized retort, purges the vessel of a i r . This procedure is intended to eliminate the p o s s i b i l i t y of cold spots resulting from the presence of a i r , which has a low heat capacity compared to steam, in the retort and provides energy for the i n i t i a l heating of the retort s h e l l . After venting, the retort is heated to the desired temperature and a constant temperature cook begins. During the cooking period, steam i s injected into the retort to replace the enthalpy released to the product and the surroundings by the steam in the vessel. The process i s controlled by a temperature controller which activates a pneumatic control valve on the steam lin e in response to temperature changes sensed in the vessel. The temperature sensing element is usually mounted in a b l i s t e r , attached to the side of the retort, with an open bleeder maintaining a constant flow of steam past the temperature sensor to obtain an accurate measurement of the temperature of the heating media. At the end of the cook the steam valve is closed and cooling water enters the retort. A sudden drop in pressure occurs as the cooling water collapses the steam atmosphere in the retort; therfore, the packaging used in this process must be able to withstand internal 3 p r e s s u r e s c r e a t e d by t h e h e a t e d c o n t e n t s o f t h e package. II Steam/Air S t e a m / a i r p r o c e s s i n g e s t a b l i s h e s a r e t o r t o v e r p r e s s u r e by a d d i n g a i r t o a steam p r o c e s s . The steam and a i r must be m a i n t a i n e d as a homogeneous m i x t u r e i n t h e r e t o r t t o p r e v e n t t h e o c c u r r e n c e o f r e g i o n s o f h i g h a i r c o n t e n t . The lower heat c a p a c i t y o f t h e a i r would r e s u l t i n d e c r e a s e d h e a t t r a n s f e r t o t h e p r o d u c t and c o u l d r e s u l t i n u n d e r p r o c e s s i n g . Homogeneity o f t h e h e a t i n g media i s m a i n t a i n e d by c o n s t a n t m i x i n g a c h i e v e d e i t h e r m e c h a n i c a l l y w i t h f a n s , o r by c r e a t i n g a c o n s t a n t p o s i t i v e p l u g f l o w o f steam and a i r t h r o u g h t h e r e t o r t . T h i s r e s e a r c h u t i l i z e s t h e p r i n c i p l e o f p o s i t i v e p l u g f l o w . A i r i s i n j e c t e d i n t o t h e steam l i n e o u t s i d e t h e r e t o r t and a s t e a m / a i r m i x t u r e f l o w s i n t o t h e r e t o r t t h r o u g h t h e d i s t r i b u t i o n s p r e a d e r and e x i t s t h r o u g h a v e n t i n g m a n i f o l d . The system i s c o n t r o l l e d by a t e m p e r a t u r e / p r e s s u r e c o n t r o l l e r . The t e m p e r a t u r e c o n t r o l l e r o p e r a t e s a p r o p o r t i o n a l c o n t r o l v a l v e on t h e steam l i n e , a d d i n g steam when the t e m p e r a t u r e i n t h e r e t o r t i s below t h e s e t p o i n t . The p r e s s u r e c o n t r o l l e r o p e r a t e s v a l v e s on t h e a i r and vent l i n e s , when the p r e s s u r e i s below th e s e t p o i n t t h e a i r v a l v e opens and t h e v e n t v a l v e c l o s e s ; t h u s , i n c r e a s i n g t h e r e t o r t p r e s s u r e , and when the p r e s s u r e exceeds th e s e t p o i n t , t h e o p p o s i t e o c c u r s . An a i r m e t e r i n g d e v i c e , mounted i n p a r a l l e l t o t h e a i r l i n e c o n t r o l v a l v e , i s used t o s u p p l y a c o n s t a n t f l o w o f a i r i n t o t h e r e t o r t . The added a i r causes t h e p r e s s u r e t o exceed th e s e t p o i n t which r e s u l t s i n t h e o p e n i n g o f t h e v e n t v a l v e . S i n c e a m i x t u r e o f steam and a i r i s v e n t e d , t h e t e m p e r a t u r e drops and causes an 4. addition of steam to the retort. This process results in a continuous flow of the desired mixture of steam and air through the retort. A positive flow steam/air processing cycle starts with an i n i t i a l venting period similar to that for a steam process. Purging the retort of air is not c r i t i c a l since a i r is subsequently added to the system, but the high flow of steam during the vent provides energy to heat the retort shell and racks to a uniform temperature. After venting, the air supply and metering device are activated and the system equilibrates with respect to pressure and temperature during the remainder of the come-up period. The addition of cooling water after the heating period causes a pressure drop as the steam in the retort collapses. The vent valve closes and the air supply valve opens to re-establish the set point pressure. Air flow through the retort may be maintained through the cooling cycle to help alleviate problems with temperature st r a t i f i c a t i o n of the cooling water. I l l Water Immersion/Air Overpressure This process uses pressurized hot water to heat the product. Although i t is possible to heat cold water to processing temperature in the retort, the long come-up period required to do so, would make the method undesirable. A preferred method, and the one used in this research, is to heat the water in an auxiliary vessel and add hot water to the retort to reduce the come-up time. A drop in temperature occurs as the hot water enters the vessel as energy is released to heat the retort shell and car. This happens quickly due to their high 5 thermal d i f f u s i v i t i e s . Steam i s then injected into the water during a come-up period to reheat the water to the processing temperature. The a i r overpressure can be maintained by adding a i r to the head space above the processing water in the retort or by injecting a constant flow of a i r into the retort through the steam di s t r i b u t i o n spreader and continuously venting to relieve excess pressure. The l a t t e r process, used in this research, also agitates the processing water. Both temperature and pressure are controlled during the process. A temperature sensor in the retort i s attached to the controller which activates a pneumatic control valve on the steam line in response to deviations from the set point. The pressure is controlled by adding a i r when the pressure i s below the set point and venting the retort when the pressure exceeds i t by activating pneumatic control valves i n s t a l l e d on the a i r and vent lines. To achieve constant a i r agitation,' an a i r metering device is i n s t a l l e d in p a r a l l e l with the pneumatic control valve on the a i r l i n e . A constant addition of a i r to the retort drives the pressure above the set point which causes the vent valve to open. When this condition i s established a constant flow of a i r moves through the retort. Following the heating period, the hot processing water may be drained or pumped back into the reservoir and replaced in the retort with cold water. 6 DESIGN AND FABRICATION I Retort The FMC Model 500W Convenience Food S t e r i l i z e r is a 1525 mm (60 in) long by 610 mm (24 in) diameter retort with a quick opening door and a pressure rating of 310 kPa (45 psig). Modifications involved redesigning the plumbing of the steam, a i r and vent lines, replacing the steam d i s t r i b u t i o n spreader, adding an internal c o l l e c t i o n manifold to the vent l i n e , i n s t a l l i n g an a i r metering device, and relocating the controller temperature sensor. Figure 1 i l l u s t r a t e s the modified retort system. A legend and details of specialized components, i d e n t i f i e d by number, are l i s t e d in Tables 1 and 2. Figure 2 indicates details of the steam d i s t r i b u t i o n spreader. The t o t a l cross sectional area of the o r i f i c e s in the spreader i s two times that of the steam i n l e t following the recommendations of Lopez (1981). An "H" configuration for the spreader was chosen based on the symmetry of the racking system design described below. I n i t i a l l y the o r i f i c e s in the spreader were orientated at approximately 30 degrees above the horizontal and directed toward the center of the retort. This produced unacceptable temperature distributions for steam/air processes and as a result they were changed to a v e r t i c a l position. The main steam and manual by-pass piping was 25 mm (1 in) and reduced to 19 mm (3/4 in) before reaching the control valve and entering the retort. Manual valves were i n s t a l l e d so steam could flow to the retort or be diverted to heat the water in the 7 Figure 1. Schematic representation of the r e t o r t system. Table 1. Legend f o r f i g u r e 1 Component Symbol pump f i l t e r _ r j _ r e g u l a t o r -5— check v a l v e c o n t r o l v a l v e —le-gate v a l v e —c£j— b a l l v a l v e --fcJ<-Table 2. List of components identified in figure 1 Item Description Taylor Indicating Recorder S/N 440 RV1123-BX794A Taylor Instruments Company Rochester, NY Taylor Fulscope Controller S/N 121 RB223-BX1991A Taylor Instruments Company Rochester, NY Taylor Lin-E-Aire Control Valve 3/4 inch, 3 to 9 psi, Air to Open S/N 2001VA12220-Z-97099 Taylor Instruments Company Rochester, NY Taylor Lin-E-Aire Control Valve 1/2 inch, 9 to 15 psi, Air to Open S/N 2000VN12230-B22046 Taylor Instruments Company Rochester, NY Taylor Lin-E-Aire Control Valve 3/4 inch, 3 to 15 psi, Air to Open S/N 2001VS12230-B22047 Taylor Instruments Company Rochester, NY Fischer & Porter Rotameter Model: 10A3555A Fischer & Porter Company Warminster, PA 10 PZ&O mm Figure 2. Steam d i s t r i b u t i o n spreader. CP 14GO rvm L 3> Figure 3 . . Venting manifold. 11 upper reservoir. The steam supply to the retort was restricted by UBC Physical Plant to a maximum static pressure of 380 kPa. This pressure is much lower than the the pressure of 690 kPa recommended by the manufacturer (FMC Corporation, 1980) and by Lopez (1981) and may have affected the length of the come-up time, capacity and temperature sta b i l i t y . The "H" configuration of the vent manifold (Figure 3) was necessitated by the central location of the water inlet for the FMC weir process. The cross sectional area of the orifices in the manifold was 1.5 times the area of the vent line and were in a downward vertical position. The vent piping from the retort was 25 mm (1 in) diameter and a manual valve was plumbed in parallel with the pneumatic control valve. The 12 mm (1/2 in) control valve supplied by FMC was replaced with a 19 mm (3/4 in) valve after i n i t i a l testing confirmed that i t could not adequately vent the retort. Air was supplied to the retort through 12 mm (1/2 in) pipes. A calibrated rotameter was installed in parallel with the pneumatic control valve. The air was mixed with the steam at a 45 degree lateral f i t t i n g before entering the retort. The supply pressure was increased from 275 to 690 kPa. This was done for two reasons, f i r s t , the rotameter was calibrated at 414 kPa (60 psig) and second, the lower pressure could not supply enough air to effectively replace steam collapsed at the onset of cooling. The temperature sensing element was moved from a location in the water circulation plumbing to a position in the side of the retort. A bleeder was also installed to maintain a constant 12 flow of heating media past the sensor during steam and steam/air processes. II Product Racks and Car The product trays (Figure 4) when assembled provide a 19 mm deep cavity for the containers and an 11 mm space between each layer of containers. The void space in the expanded aluminum used in the tray design allows heating media to flow vertically through the load. The system constrains the package thickness and provides circulation channels between the trays so that the heating media contacts the surfaces of each container. These are significant considerations when processing thin profile packages. If a package exceeds the c r i t i c a l thickness upon which a thermal process was based underprocessing may result, and i f the packages are not separated the c r i t i c a l dimension for heat transfer w i l l be greater than the desired value of half the package thickness resulting in extended cook times and overprocessing. A retort car to hold the racks was designed as shown in Figure 5. The car was fabricated from aluminum and is compatible with an existing FMC transfer car and the support r a i l s on the inside of the retort shell. The car holds ten trays and spacers. 13 Figure 4. Retort product trays. Figure 5 . Retort car. 15 SYSTEM EVALUATION I Procedures The retort system was evaluated on the basis of temperature distribution and sta b i l i t y , pressure stability, heating and cooling rate indices, and heating and cooling lag factors. Three replicates of each processing mode were completed with the sequence of the experiments generated by random numbers. The process controller was set at 122<>C (252<>F) and 172 kPa (25 psig) for a l l experiments. These settings created nominal conditions of a 75/25% steam/air mixture for the steam/air process, a 69 kPa (10 psig) overpressure for the water immersion process, and assured that the vent valve would remain closed during the steam process. The last consideration resulted from the vent valve remaining closed when the pressure is below the controller set point. This is the case since the saturated steam pressure is 212 kPa at this temperature. A summary of the retort operating procedures used in the heat penetration experiments is provided in Appendix A. Temperature distributions were determined by recording the temperature histories of selected locations within the retort. Copper/constantan thermocouples (Type TT-T-24, Omega Engineering Inc., Stamford, CT) with fused sensing junctions were calibrated in a circulating o i l bath against an ASTM cert i f i e d thermometer. The thermocouples were then located in the circulation space between product trays near the top center of each test brick. Thermocouple number 19 was located above brick number 1 and 1 6 numbers increased sequentially through the 18 positions. An additional thermocouple, number 41 was located adjacent to the temperature controller sensing bulb. An electronic pressure transducer (Model A-5/1148, Sensotec, Columbus, OH) was mounted in the retort s h e l l to record the retort pressure. The transducer was calibrated using a deadweight pressure calibrator (Chandler Engineering Co., Tulsa, OK) and an excitation voltage was supplied by an HP 6214A power supply (Hewlett Packard, Palo Alto, CA). Teflon bricks, constructed by sandwiching a thermocouple between two slabs (Figure 6), were used as transducers to c o l l e c t heat penetration data necessary to identify the heating rates and lag factors at different locations through the retort. The bricks were approximately 110 x 150 mm with thicknesses of between 20.6 and 23.0 ram. Teflon (polytetrafluoroethylene) has a thermal d i f f u s i v i t y of 1.1 (10-?) mVs (Perry and Chilton, 1973) which i s within the range of d i f f u s i v i t i e s associated with food products (Tung, et a l . , 1984). The data generated is therefore comparable to that expected for conduction heating foods. Eighteen test bricks were located in the load, six on each of the bottom, sixth and top trays as indicated in Figure 7. The locations were chosen to encompass the v e r t i c a l and horizontal v a r i a b l i t y within the retort car. Two 100 g cans of sardines were placed at each of the other product locations in the retort car to complete the test load. This ballast increased the thermal load in the system and caused flow r e s t r i c t i o n s on the heating media. Thin p r o f i l e cans were chosen for their a b i l i t y to withstand the effects of internal pressures during the cooling 17 Figure 6. Assembly of the teflon test bricks. 18 1 13 14 15 16 17 18 Tray 10 (top) 7 8 9 10 11 12 Tray 6 1 2 3 4 5 6 Trayl(bottom) Figure 7. Location of the test bricks i n the r e t o r t . 19 cycle of the steam process. Temperature and pressure measurements were recorded at one minute intervals with a Kaye Ramp II Scanner/processor data logger (Kaye Instruments Inc., Bedford, MA) and stored on d i g i t a l tape (Model 300D data cartridge recorder, Columbia Data Products, San Diego, CA) for subsequent computer analyses. II Results 1. Temperature D i s t r i b u t i o n The temperature distribution analyses were completed on the Amdahl 5850 computer at the University of British Columbia using software based on a program originally reported by Tung (1974) and modified by Ramaswamy (1983). The mean and standard deviation of the corrected temperature readings at each increment of time were calculated. The mean and standard deviation for each location after the come-up time to the end of the heating phase of the process were then calculated. Finally, the overall mean and standard deviation for a l l channels through this period were calculated. The data compare the temperature distribution and s t a b i l i t y of each processing mode. The come-up time was determined as the time required for the retort to stabilize at the processing temperature. To aid in comparing the data, graphs were generated for each treatment. Figures 8, 9 and 10 are plots of typical results of the temperature distribution, s t a b i l i t y with time, and s t a b i l i t y at thermocouple locations for each process. The average overall means and standard deviations for the three replications of each process were 121.9, 120.1 and 121.4<>C, and 0.29, 0.43 and 0.34 C<> Z3 0 T I M E I M I N ) -r-?3 0 T I M E I M I N ) <->«= S.K2. do SR. Q--leas Teiperatare ud Standard Derlatioi for Diffemt CiaiKlt 1» « M 22 23 24 25 2$ 27 21 2S 30 31 32 JJ 34 « 16 41 t * ill B * * g * » » * 1" « g g 1" « * * Figure 8. Steam process temperature d i s t r i b u t i o n and s t a b i l i t y (run 1.3). 9.0 -T 12.0 ISO IB 0 21.0 24.0 27 0 T I M E ( M I N ) 36.0 39 0 21.0 2<0 T I M E ( M I N ) BR. leaa TeiDerature aid Standard Deriatioi for Differeit Cnaaieli IS 20 21 22 23 21 25 26 2T 28 29 30 31 32 33 34 35 36 41 Figure 9. Steam/air process temperature distribution and s t a b i l i t y (run 2.16). i i i r 19.0 22.0 25.0 28 0 TIME (MIN) leai Teiperature and Standard Defiatloi for Dlffereit Ciiueli •JS. » n 21 22 2J 24 25 2S 27 28 2» ii 31 32 33 34 35 38 41 pro | s B „ = • - — • „ a a a 2 B B _ B a • B m Figure 1 0 . Water process temperature d i s t r i b u t i o n and s t a b i l i t y (run 3 . 3 ) . 23 for steam, steam/air and water, respectively. Deviations of the mean retort temperature from the set point in the steam/air experiments is a result of the principle of this process method. Steam must be continually added to the system which requires that the indicated temperature remains below the set point of the controller. The indicator on the controller may be adjusted to compensate for this offset but would read incorrectly in other processing modes. The deviation observed in the water process is considered to be a result of stagnation around the sensing element. The release of enthalpy from the plug of steam/air flowing through the retort is a less stable process than replenishing the energy lost to the product in a steam or water process. This is reflected in the greater variability observed in the temperature distribution. The reason for an increase in the mean retort temperature during the steam process is uncertain, but may result from a failure of the steam valve to f u l l y seat when closed. Plots and detailed tabulations of the other temperature distribution and st a b i l i t y data are presented in Appendices B and C. 2. Pressure S t a b i l i t y The mean retort pressures for the steam, steam/air and water processes were 111.1, 180.5 and 177.2 kPa, respectively. The steam processes showed an increase in pressure with time corresponding to the previously mentioned rise in the recorded temperature. The maximum coefficient of variation for the steam processes was 1.4% while the pressure during the heating phase of the steam/air and water processes was nearly constant after the come-up period, with a maximum coefficient of variation of 0.6%. The pressure during the steam/air and water processes was above the set point value of 172 kPa due to the continuous addition of air to the system. This creates a condition where the controller is continually correcting for an overpressure condition and venting occurs. In a l l cases, a pressure drop was observed at the beginning of the cooling cycle due to the collapse of steam in the retort. The controller must sense a change in the operating conditions before i t reacts, thereby resulting in a pressure drop before the air make-up valve is activated to re-establish the set-point conditions. 3. Heat Transfer D i s t r i b u t i o n The heat penetration data generated from the teflon test bricks were analyzed to determine the heating and cooling rate indices (fh and fc) and the lag factors (jh and jc) using microcomputer thermal processing software (Pro Calc Associates, Surrey, BC). These parameters represent the basic input required to perform process lethality and process time calculations using formula methods (Stumbo, 1973). Jackson and Olson (1940) reported that f and j values were independent of the retort temperature and the i n i t i a l product temperature; however, both were dependent on the container size and f values were additionally dependent upon the thermal diffu s i v i t y of the product. Based on this information the heat penetration data were corrected before the processes were compared. 25 The heating and cooling rate indices were corrected for differences in brick thickness using the relationship proposed by Olson and Jackson (1942): 0.933 a = (a - 2+b - 2 + c - 2 ) f where: Oi = thermal diffusivity, m2/s f = heating (or cooling) rate index, s a = half thickness of the brick, m b = half width of the brick, m c = half length of the brick, m. Since the thermal di f f u s i v i t y of the bricks is constant the f values may be easily converted to different product thicknesses. The data were corrected to a commonly used thickness of 19 mm (3/4 in) for these comparisons. The location of the thermocouples in the bricks was offset from the center plane by one half the depth of the insertion channel (see Figure 6). The lag factors were corrected for this offset using the relationship proposed by Olson and Jackson (1942) : j = j c cos(7Tx/2a) where: j = observed lag factor jc= lag faqtor at the geometric center x = distance from the center plane, mm a = half thickness of the brick, mm. The lag factor at the geometric center of the product, j c , is of interest when calculating thermal processes for conduction heating foods where the behavior of the centerpoint temperature is c r i t i c a l in obtaining a safe thermal process. But, when evaluating the performance of a retort, with test bricks of varying thickness, a better value is the lag at some specific distance from the product surface. This approach removes the 26 v a r i a b i l i t y in the transducer geometry from the comparison. A point 9.5 mm from the surface (the raidplane of a 19 mm brick) was chosen and the corrected j values were calculated. The corrected f and j values are tabulated in Appendix D. An analysis of variance was performed for each corrected heat penetration parameter to identify differences among treatments and sensing locations in the retort. The heating rate index ( f h ) was found to be s i g n i f i c a n t l y (p<0.05) greater for the steam/air processes, with a mean of 15.3 min, than for steam or water processes which both had means of 14.9 min. The heating lag factor ( j h ) varied s i g n i f i c a n t l y between each process with means of 0.95, 0.89 and 0.82 for steam, steam/air and water, respectively. The mean cooling rate indices ( f c ) and lag factors ( j c ) varied s i g n i f i c a n t l y (p<0.05) between each process. Mean values of f c were 18.43, 17.32 and 16.78 min, and of j c were 1.16, 1.30, and 1.90 for steam, steam/air and water process, respectively. There was a si g n i f i c a n t (p<0.05) difference between fh and f c values observed at the bottom, center and top of the retort load. Values for both parameters increased from bottom to top. The j h value was s i g n i f i c a n t l y (p<0.05) less for the top tray compared to the bottom or center ones, while j c was not s i g n i f i c a n t l y (p>0.05) affected by the level of the tray. The v a r i a b i l i t i e s in f c and j c are not unexpected since the cooling cycles were different for each process. The steam and steam/air processes involved flooding the retort after the the cook with cooling water, whereas the water process required the removal of the hot processing water simultaneously with the addition of cooling water. Also, the steam/air and water processes were agitated with air during cooling. In a l l cases i f the temperature of the cooling water exceeded 30°C the drain valve was opened slightly and cold water was added to the retort. As stated, fh and j h were s t a t i s t i c a l l y different for different processes but, the maximum coefficients of variation were 7 and 12 %, respectively, which are small compared to 21 and 28 % reported by Tung and Garland (1978) for a food product processed in thin profile retort pouches. While a direct comparison is distorted by the variab i l i t y of the food product, i t does appear that the retort is operating within the range of va r i a b i l i t y acceptable in a commercial retort. To gain a perspective on the practical implications of these variations, Ball's thermal process time (Stumbo, 1973) was calculated for each process. Since Ball's formula method assumes j c = 1.41 the effects of the different cooling cycles is removed from the comparison. A target center-point lethality, -a retort temperature and an i n i t i a l product temperature of 6.0 min, 120°C and 20°C were chosen arbitrarily. The process times were determined using a s t a t i s t i c a l approach where the process time is calculated as three standard deviations above the mean of the individual samples in the population (Tung and Garland, 1978). The results were 39.3, 39.4 and 38.6 min for the steam, steam/air and water processes, respectively. The variab i l i t y between the processes had l i t t l e effect on Ball's thermal process time. The thermal process time calculations show that despite s t a t i s t i c a l l y significant differences (p<0.05) in the heat penetration parameters the re t o r t performs adequately i n a l l processing modes. 29 C O N C L U S I O N S This work resulted in the development of a unique and versatile research and development retort for thermal processing of retortable thin profile packages. The retort can be used for steam, positive flow steam/air and water immersion/air overpressure thermal processing in addition to the FMC weir process for which i t was originally designed. Temperature distribution data indicated greater variab i l i t y for the steam/air process than for the steam or water immersion processes. This is inherent in the theory of the process where a plug flow of heating media is maintained through the retort. The air overpressure processes, steam/air and water, exhibited good pressure s t a b i l i t y through the heating phase of the processes. A l l processes indicated a pressure drop at the end of the heating phase as the steam in the retort collapses when contacted by the cooling water. The efficacy of the retort was evaluated by comparing the corrected heat penetration parameters calculated from the centerpoint temperature histories of conduction heating teflon transducers. The results indicated s t a t i s t i c a l l y significant differences (p<0.05) for the heat penetration parameters calculated for the different processes, but these differences had l i t t l e effect on Ball's process time calculations. The retort appears to operate, in a l l processing modes, within a range of variabil i t y acceptable in a commercial retort. 30 FUTURE S T U D I E S The retort developed in this project may be used for such varied research as comparing and optimizing the functions of individual retort components, for example, the steam spreader, the vent manifold or the racking system, or studying the effects of different processing techniques on product quality and package integrity. Future studies which would u t i l i z e the retort could include: - A study of the effects of the product rack design and the product orientation. This work could examine the effects of the void space in the surfaces of the racks, the size of the circulation gap separating the packages and the product orientation, vertical or horizontal, on circulation of the heating media and on the heat penetration parameters. - A study of the steam spreader to optimize the configuration and orientation for each process. This work could involve changing the diameter of the spreader pipe and the diameter, spacing and orientation of the orifices in the spreader. - An investigation into the effects of steam pressure on the product loading density, the come-up time and the heating rate for each process. This work would require access to a more flexible steam supply than is currently s u p p l i e d by UBC P h y s i c a l P l a n t which i s r e s t r i c t e d to 380 kPa. - A study of the e f f e c t s of the a i r flow r a t e on the e f f i c a c y of p o s t i v e flow steam/air processes or of a i r a g i t a t e d c o o l i n g c y c l e s . - The development of u l t r a high temperature (UHT) processes where an overpressure c o n d i t i o n i s e s t a b l i s h e d by using steam with a saturated pressure higher than that of the pressure a n t i c i p a t e d to develop wi t h i n the package. A co m p l i c a t i o n i n UHT processing, which could be s t u d i e d , i s r e p l a c i n g the pressure of the steam as i t c o l l a p s e s at the end of the heating p e r i o d to maintain package i n t e g r i t y during the c o o l i n g c y c l e . While t h i s l i s t i s i n no way exhaustive, i t demonstrates that the r e t o r t system provides a v e r s a t i l e v e h i c l e f o r f u t u r e research i n thermal processing. 32 L I T E R A T U R E C I T E D FMC Corporation, 1980. Operating Procedures, Model 500W Retort. Santa Clara, CA. Jackson, J.M. and Olson, F.C.W. 1940. Thermal processing of canned foods in t i n containers. IV. Studies of the mechanisms of heat transfer within the container. Food Research 5(4). Lopez, A. 1981. A Complete Course in Canning, Book I, Basic Information on Canning, 11th Ed. The Canning Trade Inc., Baltimore, MD. Olson, F.C.W. and Jackson, J.M. 1942. Heating curves, theory and practical application. Ind. Eng. Chem. 34:337. Perry, R.H. and Chilton, C.H. (Eds.) 1973. Chemical Engineers' Handbook, 5th Ed. McGraw-Hill Book Company, New York, NY. Stumbo, C.R. 1973. Thermobacteriology in Food Processing, 2nd Ed. Academic Press, New York, NY. Ramaswamy, H.S. 1983. Heat Transfer Studies of Steam/air Mixtures for Food Processing in Retort Pouches. Ph.D. Thesis, University of British Columbia, Vancouver, BC. Tung, M.A. and Garland, T.D. 1978. Computer calculation of thermal processes. J. Food Sci. 43(2)."365. Tung, M.A. 1974. Temperature distribution in a steam/air retort for thermally processed foods in flexible pouches. University of British Columbia, Vancouver, BC, 9pp. Tung, M.A., Ramaswamy, H.S. and Papke, A.M. 1984. Thermophysical Studies for Improved Food Processes. Final Report. DSS File No. 35SZ.01804-9-0001, prepared for the Agriculture Canada PDR Program, Ottawa, ON. Appendix A: Retort Operating Procedures 34 Steam Process 1. Set the controller with the pressure above the steam pressure associated with the processing temperature. 2. Open the vent. 3. Steam on, after 4 minutes has elapsed and a temperature of 104°C (220°F) has been achieved, close the vent. 4. At the end of the cook, flood the retort with cold water and open the vent. 5. If the cooling water becomes too warm, add cold water while opening the drain to maintain the water level. 6. Drain the retort. Steam/Air Process 1. Set the temperature and pressure on the controller. 2. Open the vent. 3. Steam on, after 4 minutes has elapsed and a temperature of 104°c (220°F) has been achieved, close the vent. 4. Open the air supply valve and adjust the rotameter to 0.6 m3/min (20 scfm). 5. At the end of the cook, flood the retort with cold water and adjust the rotameter to.0.3 m3/min (10 scfm). 6. If the cooling water becomes too warm, add cold water while opening the drain to maintain the water level. 7. Drain the retort, turn off the air supply. Water Immersion/Air Overpressure Process 1. F i l l the upper tank and heat the processing water as 35 described in the FMC 500W operating manual. 2. Set the temperature and pressure on the controller. 3. Open the retort vent and pump the hot water from the reservoir into the retort. 4. Steam on, open the air supply valve and adjust the rotameter to 0.3 m3/min (10 scfm). 5. At the end of the cook, flood the retort with cold water while pumping the hot water from the retort back into the upper reservoir. 6. Add cold water to the retort while opening the drain to maintain the water level until a suitable cooling temperature is achieved. 7. Drain the retort, turn off the air supply. 36 Appendix B: Temperature Distribution and Stability Tables 37 n a <o c o T - i •p 3 J3 •H u -p u — -P • <a r-i u ft 3 a -P <d O +3 « T3 O O >» 5* -P ft-H a -H •P -P CO <Q E-« ? 5 Di •# • • O O O O 9 f fl N — n • O O o r * r « o o 6 o o o 6 b o o b o o o o o o o o o ^ r » « « o n n » n f * n — f » o ^ < n » n o > n ( D ' - ( N t o f ^ f l i w — v r - o o ) - • » « a w r» r*> r« o> OB o> o> o> 0) OP • « ? ( D r » » n c i O O O * - ~ - * — — — — — < » r > c i i n * - o o o O " • * • — — — i O i ^ t B c v c D c v « ' w a > ^ c « c « » « i n » < 0 i 0 • 4 T * - - » U 7 - * O O C i O — ' •»- — — — — — — — — — • » w « « » « 0 0 ^ " » * " — - * ^ ^ * * ^ , ^ w w * , < * * ' " " M i ^ 0 j O » « « « w « M « p i p i r i o i M o i c i n i r i P i « rt a ) a > o u > A ( D O i * a i n < 0 < 0 a . a > 8 ) O O O O O * * O O O • v » « » i n « d d - * — — - - - - - - • ^ f - r t r t r t r t r t r t r t r t rt r t r ^ O i O — r i r t r t r t r i r t r t c t r t r t r t c i r t r t r ^ r t r t r t r t a i ^ « a n f * o c i * ( P i * » 0 > O O ' " , - ' * , - * « « * ' - ' o • i T C D - v i n M O ^ * - ' — * • • - • ~* M • ci ci « ct ci M ci ci r i ci c» r- 0 ) O ^ « « « c i r * c i c « c i r » c i c t c * c i c » c » c i , W M W ^ ^ i n i o « d d - i * - ' ' * - > * , - ' - ' ' " ^ - > - * * * « - ' ^ •* n t ^ - 0 i O ^ N C « < « c i P i n r i c i n e « c ( c « r 4 r t n c ( n c i c i B « « ) I ^ O * « O ^ « V « > l ^ t 9 a 9 C D 0 O > O > O O A q > A r » r » o i - 0 - ^ « « w w c i « c i « « c i c i c i c i c i O i « « c i c i o » O t f i o ^ t o « O n i a i a ( o > ^ « a o ) O O O m ^ ^ O O * - ' 0 > » o P i d d ^ - * - ' - > , - - * - > , - ' ' " « w « * * « , , * « « * " n a a o ~ * N r « M N N N N t t N c v c i M t t n c * M m n c i • r » r * v D O c i i n r » C B c » c i p > ^ ^ » » M W ( - » f * « » « » * t f > <» « i o u » « o i o o o o « - - T , - - * , - - — w » > ^ , ^ r ' * * - ' ' - r * C l u O < D O ^ C I C ^ C l C I C i l M C < C I C I C I C I C » W C « C I < N P i r « C I n + * a ) r t i D w > o c * * * > < i > i D r - r » t * - & Q > C B Q i O t J i a i t * -• » ( « ^ D n « o o - ' " " - * " - ' - ' - ' w ^ ' " ^ - ' " * w * ' " * ^ n i ^ a a o ^ M ^ n c i n c i n r i N n c i n c i c i n N c i c i c i ci ^ o on •* r« at — r» * » * » a > r - r » « a > a j 0 0 O B O 0 « ^ * p f » » « O 0 O » * ^ - " - * ^ , " w — W 0 C S O ^ W W W W « W W H W d W W W C I C t C I C I C I O I O * t f > * t t a i * « O ~ c v v t 0 « i * a * d > * » ~ < v r i t t ••/ • O — i f t m n n O O O O O O O - — — • — f^^^^ct-^^^^^ « M a i * 0 ^ 0 0 ~ ~ « * » M « M « « M c i c i « o i « « r t O O f f l * * » ^ • O n n ^ » O • « 0 » f « ^ « ^ t ^ » • l n O » O l P O « * ^ * ^ • • ' ^ 0 " • * « O l ^ ^ r i n ^ « i n M i n t n c « M o d o — d ~ d — ^ • • ^ ^ • ^ ^ ^ M ^ W e t t t i ^ ^ o w o i n n o v v t ^ f ^ o i o i ^ ^ v v v v i a n t f w i ^ a r ^ ? t h - , h « i f l « « N O o o o o o * - ^ * " * » , ' * » w " p - " " * * " ' " , * * N w ' , " " r c v N a f » a i a o o ~ ~ M c t c t c i r « c i M C i n r * c * M r ^ d ^ w n ^ i n i p ^ « i » o ^ M r t ^ w » ^ « a > 0 ' ^ « 5 — • - • • f ' C I C I C . C I Table B . l . Continued 133 . 1 131 8 122 .0 121 .9 ( 121 77. 0 18) 24. 121 132 a . 1 131 131 .8 8 121 122 .7 .0 121 121 .6 .9 121. .9 131 .9 121 .6 122 0 121 8 121 .9 122 . 1 122 0 121 .8 121 .6 121 .7 (121 85. 0. 16) 25. 121 133 9 . 1 131 131 .9 .9 121 122 .8 .0 121 122 .7 .0 121 .9 132 .0 121 .7 122. . 1 122 .0 121 .9 122 .2 122 . 1 121 .9 121 .7 121 .7 ( 121 92, 0. 15) 26. 122 132 0 .2 132 131 .0 .9 121 132 .9 . 1 131 122 .7 .0 122 O 132 .0 121 .8 122 . 1 122 . 1 122 .0 122 .3 122 .2 122 .0 121 .8 121 a ( 121 .99. 0 15) 27. 122 122 . 1 .4 122 133 2 .0 122 122 .0 .2 131 122 . 9 . 1 123 . 1 122 .2 121 .9 122 3 122 .3 122 .2 122 .4 122 .3 122 .3 121 9 121 .9 ( 122 13. 0. 16) 28. 122 123 . 1 9 122 122 .2 0 122 122 . 1 .3 131 133 . 9 2 122. . 1 122 .3 122 .0 122 .3 122 .2 122 .3 122 . 9 122 .3 122 .3 122 0 122 .0 ( 122 . 18. 0 17) 29. 122 122 .2 .5 132 122 .2 .0 122 122 0 .3 131 122 .9 .3 123. 2 122. .2 122 .0 122. .4 122 2 133 .3 122 5 122 .4 122 3 122 .0 122 .0 C 122 20. 0. 18) 30. 122 122 2 .4 123 122 2 . 1 122 122 . 1 . 4 132 122 .0 3 122 .2 122. .3 122 . 1 122 .4 122 .3 122 .3 122 .9 122 .4 122 .2 122 .0 122 . 1 ( 122 24. 0. 15) 31. 122. 122 2 .4 122 122 .2 . 1 122 122 . 1 .4 122 122 .0 .4 122 .3 122 .2 122 .0 122 .4 122 .3 133 3 122. .5 122 .4 122 .3 122 .0 122 . 1 (122 24. 0. 16) 32. 122 122 a .'3 122 122 2 . 1 122 122 .0 .5 121 122 . 9 .3 122 .2 122 .2 122 .0 122 .9 122 .3 122 .3 122 .9 122 .4 122 .3 122 .0 122 .0 ( 122 22. 0. IB) 33. 122 122 . 1 .2 122 122 . 1 .0 122 122 .0 .4 121 122 . 9 .3 122 . 1 122 .2 122 .0 122. 3 122 2 122 .3 122 .4 122 .3 122 3 121 .9 122 .0 (122 16. 0. 16) 34. 122 122 . 1 3 122 122 .2 . 1 123 122 . 1 .4 121 122 9 .3 132. .2 122. .2 122 .0 122. 3 122 .3 122 .3 122 . 9 122 .4 122 .2 121 .9 122 .0 (122 . 19. 0. 17) 39. 123 122 2 4 122 122 .2 .2 132 122 . 1 .5 123 122 0 4 122. 2 122 .3 122 .0 122 .4 122. 2 122 3 122 .9 122 .4 122 .3 122 . 1 122 .0 (122 25. 0. 16) 36. 133. 132 2 .4 122 122, 2 .2 122 122 . 1 9 131 122 . 9 .4 122. 3 122 .3 122 .0 122. .4 122 .3 122 .3 122 .9 122 .3 122 .4 122 .0 122 .0 ( 122 25. 0. IB) 37. 133 133 . 3 4 122. 122 3 .3 133. 122 .2 .9 131 122 . 9 .4 122. ,3 122. .3 122 . 1 122. 5 122 .4 122 .3 122 .9 122 .4 122 .3 122 0 123 0 ( 122 27. 0. 18) 38. 123. 132. 1 .4 122 122 3 . 1 122 133. 0 . 4 131 122 . 9 .4 122 2 122. .2 122 0 122. ,4 122 .3 122. 3 123 9 122 .4 122 .3 122 0 121 a ( 122 21. 0. 19) 39. 133. 122. . 1 3 122. 122. 2 .0 122 133 .0 .9 121 122 .9 .4 122. 3 122. 2 122 .0 122. 3 122 3 122 2 122 .4 122 .4 122 .2 121 .9 132 0 (122 18. 0. 18) 4ean 131 122. a » 121 121 .9 .9 121 122 a . i 121 122 .7 .0 121. .9 121. 9 121 .7 122. . 1 122 0 122 .0 133. .2 122. . 1 123 O 121 . 7 121 .7 S . D . 0 .29 0 .30 0.32 0.28 0.30 0.28 0.31 0.32 0.32 0.31 0.30 0.30 0.32 0.31 0 28 0.28 0.26 0.28 0.33 Grand m a n temperature • 121.93 C Standard d e v i a t i o n » 0.33 C S t e b l I i z e t l o n or Retort come - up t i n e • 8 n l n CO CO Table B.2. Steam process temperature d i s t r i b u t i o n and s t a b i l i t y data (run 1.4) Thernocoup1• number and c o r r e c t i o n 1 rector MEAN S O . 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 39 36 41 Mm* - 0 .3 -O .2 - 0 .4 - 0 .4 - 0 .3 - 0 2 - 0 .4 - 0 . 1 - 0 .4 - 0 .4 -0 2 - 0 .3 - 0 .4 - 0 5 - 0 . 4 ( Mean. S 0. ) - o .2 - 0 .3 - 0 .2 - 0 .3 0. 16 .9 17 .9 16 .8 17 .0 17 .4 17 . 1 • 7 .3 17 .7 17 .0 17 4 17, .7 17 .3 21 3 21 3 20. 3 21 .9 20 .4 19 .8 18 . 1 I IB .43. 1 . 75) 1. 79 .3 87 .9 84 .7 90 .6 97 .7 79 .2 85. . 1 96 .0 62 .4 SO. 9 76 ,7 76. .8 72 .4 69 8 ' 2 .7 66 .4 70 .9 66 . 0 69. .9 ( 75 40. 9. 261 a. 92 .6 86 9 99 . 1 97 2 86 .9 93 .2 94. .6 88 . 1 89 .0 96. .5 99 . 1 93 .5 82 .0 90. .6 92. . 1 91 .3 92 . 1 92 .4 91 . 1 C 93 13. 2. 591 3. 103 .2 109 .9 105 2 •05. 3 •OS .9 109. .3 •OS .2 105 . 1 109 .3 105 .7 105 .7 105 .4 109 .4 104. .8 105 2 105 .6 105 .4 105 .6 •05 . I ( 105 35. 0. 22) 4. 111 .9 112 .0 111 8 • 11 .6 112 .0 112 0 i n .8 112 . 1 112 .0 112, .3 112 .3 112 .3 112 . 1 441 6 111 8 • 12 .3 111 .9 • •3 . • 112 . 1 (112 01. 0. 19) B. 120 .4 • 20 .9 130 3 120 .2 • 20 .5 120 .5 • 20 .2 120 .7 120 .6 120. .6 120 .8 120 .6 120 .6 120. • 120. .3 120 .7 120 .4 120 .7 120 .6 ( 120 49. 0. 20) 6. 120 .7 120 .8 120 6 120 .6 120 .8 120 .8 120. 6 121 . 1 120 .9 120 .9 121 I • 31 0 120 9 120 4 120. 6 121 .0 120 .8 121 0 120 9 (120 82. 0. 19) 7. 121 .0 124 .0 120 9 120. .8 121 .0 121 .0 • 20. 8 121 2 121 .2 121. 2 • 21 3 121 .3 121 • 120 .7 120 8 131 .3 • 21 .0 121 .3 (31 .2 ( 121 oe. 0. ao) a. 131 . 1 • 21 .1 121 0 tat .0 • 21 .2 131 2 131 0 121 .4 • 2( .3 121 .3 • 21. 8 131 .4 121 3 120 9 120 .8 121 .4 121 . 1 121 .4 121 .3 (121 .21. 0. 18) s. 121 .3 121 .4 • 21 2 121 2 121 .4 121 .4 121 2 121 .8 131 .4 121. .4 131 .6 121 .9 121 3 121 . • 121 . 1 121 .5 121 .3 • 21 5 121 .5 ( 121 36. 0. 15) to. 121 .4 131 .9 • 21 .3 121 3 121 .9 121 .4 • 2«. 3 121 .7 121 .9 121 s 131 ,7 121 6 121 9 121. 2 121. 3 121 .7 121 .4 121 .7 121. .6 ( 121 .48, 0. 16) 11. 121 .5 121 .5 121 .4 121 .3 121 .5 121 .9 • 21 .3 121 .7 121 .6 121 5 121. 8 421 .7 131 5 121 2 121 .3 121 .7 121 .8 121 .7 • 21 .7 (121. 52, 0. 17) 12. 121 .6 121 .6 121 5 • 21. .5 • 21 .6 121 6 121 8 121 .8 121 .8 121 7 121 9 121 6 121 .7 131 .4 121 .5 121 .9 121 .6 121 .9 121 .8 (121 67. 0. 16) 13. 121 .6 121 .7 121 .9 121 .9 121 .6 121 .6 121. 6 121 .8 121 .8 121 .8 122. 0 121 .8 131 .7 121. .4 121 .4 121 .9 121 .6 • 21 .9 121 .8 ( 121 69, o. • 8) 14. 121 .7 121 .7 121 8 • 21 .9 121 .6 121 .7' I2« .6 121 .8 • 21 .8 121 .8 • 22 0 121 .8 121 .7 • 21. 4 121 5 122 O 121 .7 131 9 12 t .9 ( 121. 72. 0. 18) 19. 121 .9 121 .9 121 .7 121 .6 • 21 .8 121 .8 121 .6 122 .2 122 O 121. .8 • 22. 0 121 .8 122 .0 121. 6 121. .7 122 . 1 121 .8 • 22 . ( 122 .0 1 121. 87. 0. • 7) 16. 121 .8 121 .9 • 21 .7 121 .7 121 .8 • 21 .8 121. .8 122 .0 122 .0 121 8 122 . I 122 0 121 8 121 6 121 .7 122 . 1 121 .8 122 . 1 122 .0 (121 88, 0 15) 17. 121 .6 121 .8 121 .7 121 .7 121 .8 121 .9 121. .7 122 .0 122 .0 121 .9 122 . 1 122 .0 121 .9 131 .6 121 .6 122 . 1 121 .8 122 . • 122 0 1121 87. 0 16) IB. 121 .8 121 .9 121 .8 121 .7 121 .9 121 .8 121 .8 • 22 . 1 • 22 0 121 9 122 1 122 .0 121 9 121 .7 121 .8 122 .2 121 .9 • 22 .2 122 .0 ( 121 93. 0. 15) 19. 121 .9 121 .9 • 21 .6 • 21. 8 121 .8 121 9 121. .8 • 22 . 1 122 .0 121 .9 122 .2 122 . 1 121 .9 121. 6 121 .7 122 .2 121 .9 • 22 . • 122 . 1 ( 121. 93. 0. 17) 20. 121 .9 • 21 .9 121 .8 121 .8 121 .9 121 .9 121 .9 • 22 . 1 122 .0 121. 9 122. . 1 122 . 1 121 .9 121 .6 121 .7 122 . 1 121 .9 122 . • • 22 . 1 ( 121. 93. 0. 15) 21. 121 .9 121 .9 121 8 • 21 .7 121 .8 121 .9 121 .9 • 22 .0 122 .0 122. 0 122. . 1 122 .0 121 .9 121 .6 • 21 .7 122 . 2 121 .9 122 ( 122 .0 ( 121 92. 0 15) 22. 121 9 121 .9 I2t 8 131 .7 121 .9 121 .9 121 .8 122 . 1 122 .0 122 0 122 1 122 .0 121 .9 121 7 121 .8 122 . 1 121 .9 122 .2 122 . 1 ( 121. 94. 0. 14) 33 121 9 • 22 .0 121 .8 121 .8 122 .0 (22 .0 121. .9 • 22 . 1 122 0 122. 0 122 2 122 1 122 .0 121 .7 131 .8 ID Table B.2. Continued 122 .2 132 .0 122 .2 122 . 1 (121 .99. 0. 14) 24. 121 122 .9 .2 133 122 0 0 121 122 .8 .2 121 122 .7 .1 132 .0 122 .0 121 .9 122 2 122 0 122 .0 122. .2 122 . 1 122 .0 121 .7 121 B (121 99. 0. 16) 25. 121 122 .9 .2 122 122 .0 0 121 122 .8 .2 121 122 .7 . 1 122 .0 122 .0 121 .9 122. . 1 122 .0 122 .0 122 2 122 .0 122 .2 121 .7 121 .8 ( 121. .99. o. 16) 26. 121 122 .9 .2 122 122 .0 0 121 122 9 .2 121 122 .8 . I 122 .0 122 .0 121 .9 122. . 1 122 .0 122 .0 122 .2 122 . 1 122 0 121 .7 121 .8 (121 .99. 0. 14) 27. 121 122 .9 .2 122 122 .0 .0 121 122 .8 .2 121 122 .7 . 1 122 .0 122 .0 121 .9 122. . 1 122 .0 122 .0 122. .2 122 0 122 .0 121 .7 121 .8 (121 98. 0. IS) 28. 122 .0 123 0 121 .8 121 .7 122 0 122 .0 121 .9 122. 1 122 . 1 122 .0 122 .2 122. . t 122 .0 121 .7 121 .9 122 .2 122 0 122 .2 122 . 1 (122.00. 0. 15) 28. 121 122 .9 .2 122 122 0 0 121 123 8 .2 121 122 .7 .2 122 .0 122 .0 121 .9 122. 2 122 0 122 .0 122 .2 122. . 1 122 0 121 .8 121 .8 ( 122 .00. 0. 16) 30. 122 122 .0 .2 122 122 0 0 121 132 .8 2 121 122 .7 .3 122 .0 122 .0 121 .9 122 3 122 0 122 .0 122 2 122 .0 122 .2 121 .7 121 .8 ( 122 01. 0 18) 31. 122 122 .0 .2 122 122 0 .0 121 122 .9 .3 121 122 .8 .3 122 0 122 . 1 122 .0 122. .2 122 .0 122 . 1 122 .3 123 .2 122 .0 121 .8 121 .8 ( 122 05. 0. 16) 32. 122 .0 122 0 121 .9 121 .8 123 0 122 o 121 .9 122 2 122 .0 122 . 1 122 .3 122. 2 122 .0 121 .8 121 .9 122 3 122 .0 132. 3 122 .3 (122.09. 0. 17) 33. 122 122 .0 .2 122 123 . 1 .0 131 122 .9 .3 121 122 .8 . 1 122. .0 122 . 1 122 .0 122. 2 122 .0 122 . 1 122. 2 133. 2 122 .0 121 .7 121 .8 ( 122 04. 0. 16) 34. 122 122 O .2 122 133 0 .0 121 122 .9 2 121 122 .8 .0 132 0 122 . 1 122 .0 122. 2 122 . 1 122. . 1 122 3 122. .3 122 0 121 .8 121 .8 ( 122 04. 0. 15) 39. 122 122 .0 .3 122 132 . 1 0 121. 122. 9 2 121 122 8 . 1 122 0 122 o 121. .9 122 2 122 . 1 122 . 1 122. 2 133. . 1 122 .0 121 .8 121 .8 ( 122 03. 0. 15) 36. 122 122 .0 .2 123 122 . 1 0 121 122. 9 3 121 122 .7 2 122 0 122 .0 121 .9 122. 2 122 . 1 122 . 1 122. 2 122 .2 122 . 1 121 .8 121 .8 ( 122 04, 0. 16) 37. 122 122 0 .3 122 122 . 1 0 121 122. .9 2 121 122 .8 . 1 122 .0 122 . 1 122 .0 122. 2 123 . 1 122 .1 122. .2 133 .2 122 0 121 .8 131 .9 ( 122 05, 0. 14) 38. 122 122 .0 .3 122 122 1 1 122. 122. 0 4 121 122 .8 3 122. .0 122 . 1 122 .0 122 2 122 2 122 .2 122 .3 122 3 122 . 1 121 .8 121 .9 ( 122 11. 0. 17) 39. 122 122 .0 .3 122 122 1 0 121 122 9 .3 121 122 .8 .2 122 0 122 . 1 121 .9 122 2 133 . 1 122 . 1 122. 3 122. . 1 122 . 1 121 .8 131 .9 ( 122 OS, 0. 16) N u n 121 132 .8 . 1 121 121 .9 .8 121 122 7 . 1 121 122 .7 0 121 .8 121 .9 121 .8 122. 0 121 9 121 9 122 . 1 122. 0 121 .9 121 .6 121 .7 S.D. 0 .33 0.23 0.23 0.20 0.22 0.24 0.25 0.22 0.21 0.22 0.20 0.21 0.23 0.23 0.24 0.33 0.24 0.23 0.23 Grand M a n temperature • 121.89 C Standard d e v i a t i o n • 0.27 C Stab!1Izat Ion o r ' Retort cone - up t i n e • 8 min Table B.3. Steam process temperature d i s t r i b u t i o n and s t a b i l i t y data (run 1.5) Thermocouple number and c o r r e c t i o n factor MEAN S O . 19 30 31 22 23 24 29 26 27 28 29 30 31 32 33 34 35 36 41 Time -0 3 -0 2 -0 4 -0 4 -0 3 -0 2 -0 4 -0.1 -0 4 -0 4 -0 2 -0 3 -0 4 -0 5 -0 4 ( Mean, S D. ) -0 2 -0 .3 -0 2 -0 3 0. 25 5 25 .6 25 4 25 5 25 6 29. 7 29 9 26 .3 26 3 26 3 26 4 26 4 27 .3 27 3 27 2 27 4 27 .4 27 2 26 4 ( 26 V- 0 73) 1. 81 0 88 .8 84 9 91 7 89 1 76 8 86 0 60 .0 77 0 74 4 76 4 80 1 74 .9 73 2 76 4 72 0 74 .4 70 2 71 5 ( 77 83. 7 75) 2. 84 8 97 .6 86 3 98 I 97 6 99.2 96 3 91 .5 93 9 87 3 95 9 95 8 94 .2 93 2 94 7 93 7 94 .5 94 2 94 8 1 95 31. 1 73) 3. 106 s 106 .7 106 4 106 5 106 6 106 5 106 3 106 .6 106 6 106 9 106 8 106 7 106 .5 106 3 106 4 106 8 106 .6 106 8 106 8 (106 61. 0 18) 4. 112 5 112 .5 112 4 112 3 112 9 112. 4 112 3 112 .7 1t2 7 112 7 112 8 112 8 112 .5 112 2 112 4 112 7 112 5 112 7 112 7 (112 54, 0 20) 9. 120 5 120 5 120 3 120 3 120 4 120 9 120 3 120 .7 120 7 120 6 120 7 120 7 120 .5 120 2 120 3 120 7 120 5 120 6 120 6 (120 51. 0 16) 6. 120 8 120 8 120 S 120 5 120 8 120 7 120 9 121 .0 121 0 120 9 121 0 121 0 120 .8 120 5 120 6 121 I 120 .8 120 9 121 0 (120 80. 0 20) 7. 120 9 121 .0 120 8 120 8 • 20 9 120 9 120 7 121 .1 121 1 121 0 121 2 121 2 121 .0 120 7 120 7 121 a 120 9 121 1 121 1 ( 120 96, 0 17) a. 121 . i 121 . 1 120 9 120 9 • 2« 0 121 1 120 9 121 .3 121 2 121 2 121 4 121 4 121 .2 120 8 120 9 121 4 121 . 1 121 2 • 21 3 ( 121 13. o 19) 9. 121 .2 121 .3 121 1 121 0 121 2 121 a 121 1 121 .8 121 4 121 3 121 9 121 8 121 .4 121 1 121 0 121 5 121 .3 121 4 121 5 ( 121 29. 0 IB) 10. 121 3 121 .4 121 2 121 1 • 21 3 • 21 4 121 2 121 .9 121 4 121 4 121 6 121 6 121 .4 121 1 121 1 121 6 121 .3 121 5 121 9 (121 36. 0 17) 11. 121 .3 121 .4 121 2 121 2 131 4 131 3 121 2 121 .6 121 9 121 4 121 6 121 6 121 .4 121 I 121 2 121 6 121 .3 121 6 121 9 ( 121 39. 0 17) 12. 121 .4 121 .5 121 3 121 2 121 4 • 21 4 • 21 3 121 .6 121 9 121 5 121 7 121 7 121 .5 121 2 121 2 121 .7 121 .4 121 6 121 6 (121 46, 0 17) 13. 121 .5 121 .5 121 3 121 3 121 8 121 5 121 4 121 .7 121 7 121 6 121 7 121 9 121.6 121 2 121 3 121 .8 121 .5 121 7 121 9 ( 121 55. 0 20) 14. 121 .5 121 .6 121 4 121 3 121 S 121 9 121 9 121 .7 121 7 121 6 121 7 121 8 121 .6 121 3 121 3 121 .8 121 .5 121 7 121 8 ( 121 57. 0 17) IS. 121 .6 121 .6 121 4 121 3 121 6 121 6 121 9 121 .8 121 8 121 7 121 8 121 8 121 .7 121 4 121 4 121 .9 121 .6 121 7 121 9 ( 121 64, 0 18) 16. 121 .6 121 .7 121 5 121 4 121 6 124 6 121 5 121 .8 121 8 121 7 121 8 121 8 121 .7 121 4 121 4 121 .9 121 .6 121 8 121 9 ( 121 66. 0 17) 17. 121 .6 121 .7 121 5 121 4 131 7 121 7 121 9 121 .8 121 8 121 7 121 9 121 8 121 .7 121 4 121 5 121 .9 121 .6 121 8 121 9 (121 68. 0 17) 18. 121 .6 121 .7 121 5 121 4 121 7 121 7 121 6 121 .9 121 9 121 8 121 9 122 0 121 .7 121 4 121 5 122 .0 121 .6 121 9 121 9 I 121 72. 0 19) 19. 121 7 121 .7 121 5 121 5 121 .7 121 7 121 6 121 .9 121 9 121 8 122 0 121 a 121 .7 121 4 121 5 122 .0 121 .6 121 9 121 9 (12t 73. 0 IB) 20. 121 .7 121 .7 121 5 121 5 121 .7 121 7 121 6 121 .9 121 9 121 8 122 0 122 0 121 8 121 4 121 5 122 .0 121 .7 121 9 122 0 (121 75. 0 19) 21. 121 .6 121 .8 121 6 121 5 121 7 121 7 121 7 121 .9 121 9 121 8 122 0 122 0 121 .8 121 5 121 5 122 . 1 121 .7 122 O 122 0 ( 121 78. 0 19) 22. 121 .7 121 .7 121 7 121 5 121 .8 121 7 121 7 122 .0 121 9 121 9 122 0 122 0 121 .8 121 5 121 5 122 . 1 121 .8 122 0 122 . 1 ( 121 81 . 0 19) 23. 121 .7 121 .7 121 6 121 .5 121 .8 121 7 121 7 122 .0 121 9 121 8 122 0 122 1 121 .8 121 6 121 5 Table B.3. Continued 122 1 121 8 122 O 122 .0 ( 121 81. 0 191 24. 121 122 a 2 121 121 9 8 121 122 7 1 121 122 .6 . 1 121 9 121 8 121 8 122 1 122 0 121 9 122 1 122 0 131 8 121 6 121 7 ( 121 89. 0 18) 29. 121 122 8 2 121 121 9 9 121 122 7 1 121 122 .7 .3 121 9 121 9 121 8 122 1 122 1 122 0 122 1 122 1 121 9 121 7 121 7 ( 121 94. 0 18) 26. 121 122 9 2 122 121 0 .9 121 122 8 2 121 122 .7 .2 122 0 121 9 121 9 122 1 122 1 122 0 122 1 122 2 122 0 121 7 121 7 I 121 98, 0 17) 27. 122 122 O 4 122 122 1 0 121 122 9 2 121 122 .8 .4 122 0 122 • 121 9 122 2 122 2 122 1 122 2 122 3 122 0 121 8 121 9 (122 08. 0 18) 28. 121 122 9 2 122 121 0 9 121 122 9 1 121 122 .7 .2 121 9 122 0 121 9 122 1 122 0 122 0 122 2 122 1 121 9 121 7 121 8 (121 87. 0 15) 29. 121 122 9 2 122 121 0 9 121 122 a i 121 122 .7 .2 122 0 121 9 121 8 122 1 122 1 122 0 122 2 122 2 122 0 121 7 121 7 (121 97. 0 IB) 30. 12 1 122 9 2 122 121 0 9 121 122 a i 121 122 .7 .3 122 0 121 9 121 8 132 1 122 1 122 0 122 1 122 2 121 9 121 7 121 7 ( 121 87. 0 18) 31. 121 122 9 2 122 121 0 9 121 122 9 1 121 122 .7 .3 122 0 121 9 121 8 122 1 122 1 122 0 122 1 122 2 121 9 121 7 121 8 ( 121 98. 0 17) 32. 121 122 9 2 121 121 9 9 121 122 a i 121 122 .6 .2 121 9 121 9 121 8 122 • 122 0 122 0 122 1 • 22 3 121 9 121 6 121 7 I 121 84. 0 20) 33. 121 122 8 1 121 121 9 9 121' 122 8 I 121 122 .6 .0 121 8 121 9 121 6 122 0 122 0 121 9 122 1 122 1 121 9 121 7 121 7 ( 121 90. 0 15) 34. 121 122 8 1 121 121 9 8 121 122 7 0 121 122 .6 . 1 121 8 121 8 121 8 122 0 122 0 121 9 122 1 422 1 121 9 121 7 121 7 ( 121 89. O 16) 39. 121 122 7 1 121 121 8 8 121 122 7 0 121 122 .9 .0 121 8 121 a 121 8 122 0 122 0 121 9 122 1 122 0 121 8 121 6 121 6 ( 121 84. 0 17) 36. 121 122 8 1 121 121 9 8 121 122 7 0 121 122 .9 . 1 121 8 121 8 121 8 122 0 122 0 121 9 122 1 122 0 121 8 121 6 121 6 ( 121 86, 0 18) 37. 121 122 7 1 121 121 8 7 121 122 6 0 121 122 .9 . 1 121 7 121 7 121 7 122 0 121 9 121 a 122 0 121 9 121 8 121 8 121 S ( 121 79. 0 19) 38. 121 122 8 1 121 121 8 8 121 122 7 0 121 122 .9 . 1 131 8 121 8 121 7 122 0 122 0 121 9 122 1 122 0 121 8 121 6 121 6 ( 121 88, 0 IB) 39. 121 122 7 0 121 121 8 7 121 121 7 9 121 122 .9 . 1 121 8 121 7 • 21 7 122 0 122 0 131 8 122 0 122 0 121 8 121 8 121 5 ( 121 80. 0 19) Main 121 122 7 0 121 121 7 7 121 121 6 9 121 122 .9 0 121 7 121 .7 121 6 121 9 121 9 121 8 121 9 122 0 121 7 121 9 121 9 S .D. 0.22 0.23 0.25 0.21 0.25 0.23 0.25 0.22 0.24 0.22 0.21 0.22 0.19 0.23 0.24 0.23 0.22 0.24 0.26 Grand mean temperature • 121.79 C Standard d e v i a t i o n • 0.28 C Stabl I n a t i o n or Retort come - up time • 8 min Table B .4. Steam/air process temperature distribution and s t a b i l i t y data (run 2.16) Thermocouple number and c o r r e c t i o n fac tor S O . 19 20 21 22 23 24 25 26 27 28 28 30 31 32 33 34 as 36 41 Time -O 3 -0 2 -0 4 -0 4 -0 3 -0 2 -0 4 -0 1 -0 4 -0 4 -0 2 -0 3 -0 4 -0 5 -0 4 ( Mean, s 0. ) -0 2 -o 3 -0 2 -0 3 0. 24 0 24 0 23 9 23 9 23 8 24 1 24 .4 24 7 24 6 24 7 24 9 24 8 24 8 24 7 24 6 24 9 24 8 24 9 24 3 ( 24 46, 0 39) 1. a i 5 88 2 83 9 90 2 88 0 78 8 86 8 66 0 82 8 70 4 74 9 78 8 71 4 72 7 74 0 71 1 70 8 72 0 67 0 ( 77 33. 7 63) a . 93 9 96 6 94 9 96 9 96 1 93 7 95 5 90 9 95 0 93 8 92 2 93 S 92 5 91 9 82 2 91 6 92 0 91 9 91 4 ( 93 50. 1 87) 105 1 105 2 105 0 105 1 108 2 104 6 104 7 104 6 105 0 105 1 105 1 •04 9 104 9 104 6 104 7 105 0 104 7 105 1 tos 1 ( 104 93. 0 2<> 4. 112 5 112 6 1 12 4 111 5 111 6 111 8 111 5 111 6 l i t 8 l i t 8 112 0 • 11 9 III 7 111 4 111 5 111 9 111 8 112 1 112 a ( l i t 86. 0 36) 8. 119 5 120 9 120 2 121 4 121 1 • 19 a 120 3 117 8 120 4 119 9 120 4 120 3 119 0 118 7 119 6 119 3 1 <9 3 119 5 119 6 (119 81, 0 88) 6 . 119 4 120 9 120 1 121 a 120 9 119 a 120 0 118 8 120 4 119 8 120 6 120 3 119 4 118 9 119 7 119 4 119 4 120 0 119 8 (119 89, 0 71) 7. 119 6 120 9 120 3 121 a 121 0 119 s 120 3 1*8 a 120 6 120 2 120 7 120 5 119 5 119 3 119 9 119 8 119 7 120 1 120 0 (120 10. 0 631 a. 119 7 120 9 120 3 121 a 120 9 119 6 120 a 118 3 120 6 120 3 120 9 120 5 119 7 118 3 1 19 9 119 6 1 19 6 120 1 120 0 ( 120 08, 0 69) 8 . 119 a 120 9 120 3 121 a 121 0 119 7 120 3 118 8 120 7 120 4 121 0 120 8 119 9 119 4 1 19 9 120 0 119 8 120 2 120 a ( 120 20, 0 65) 10. 119 6 120 6 120 2 120 8 120 8 119 6 120 0 119 3 120 8 120 4 120 6 120 4 119 5 119 2 119 8 119 9 119 6 120 2 120 0 ( 120 05. 0 50) **• 119 9 120 7 120 3 121 0 120 9 119 8 120 a 119 3 120 7 120 8 120 9 120 5 119 9 119 5 120 0 119 9 119 8 120 3 120 1 ( 120 22, 0 491 12. 119 8 120 7 120 4 120 9 120 9 119 9 120 a 119 4 120 7 120 7 121 0 120 6 120 0 119 6 120 0 120 0 119 8 120 4 120 4 ( 120 28, 0 47) 13. 119 8 120 7 120 4 120 9 120 7 119 9 120 a 119 7 120 7 120 7 121 3 120 4 120 0 119 6 1 19 8 120 0 119 9 120 2 120 4 ( 120 27, o 45) 14. 119 9 120 8 120 4 120 9 120 8 120 0 120 2 119 a 120 8 120 8 121 0 120 5 120 0 119 5 120 0 120 0 120 0 120 4 120 5 ( 120 33. 0 44) 15. 119 8 120 6 120 4 120 8 120 8 120 1 120 a 119 7 120 7 120 8 120 9 120 5 120 0 119 7 120 0 120 1 119 9 120 4 120 4 ( 120 31. o 40) 16. 119 9 120 7 120 4 120 8 120 8 120 « 120 2 119 9 120 8 120 7 121 0 120 5 120 0 119 7 120 0 120 1 120 0 120 4 120 4 ( 120 34. 0 38) 17. 119 9 120 7 120 4 120 8 120 8 120 • 120 2 119 8 120 7 120 a 121 0 120 5 120 0 119 6 120 0 120 1 120 0 120 4 120 3 ( 120 32. 0 40) IB. 120 0 120 7 120 5 120 9 120 9 120 a 120 a 120 1 120 8 120 9 121 • 120 6 120 2 119 8 120 0 120 2 120 0 120 5 120 5 ( 120 43. 0 38) 19. 120 1 120 8 120 5 120 9 120 9 120 2 120 3 120 1 120 8 120 9 121 • 120 6 120 2 1 19 8 120 0 120 1 120 0 120 5 120 5 ( 120 44, 0 38) 20. 120 0 120 7 120 5 120 a 120 9 120 3 120 3 120 1 120 8 120 8 121 • 120 6 120 2 1 19 7 120 0 120 1 120 1 120 4 120 3 ( 120 41. 0 37) 21. 120 0 120 7 120 5 120 a 120 9 120 4 120 3 120 1 120 8 120 9 121 2 120 6 120 2 119 8 120 0 120 1 120 1 120 S 120 4 ( 120 44, 0 38) 22. 120 O 120 8 120 7 121 0 120 9 120 4 120 2 120 2 120 9 121 0 121 2 120 6 120 2 1 19 8 120 1 120 1 120 1 120 5 120 4 ( 120 48. 0 40) 23. 120 .0 120 8 120 6 120 9 120 9 120 4 120 3 120 1 120 9 120 9 121 2 120 6 120 2 119 8 120 1 CO Table B .4 . Continued 120. .4 120. .3 120 .5 120. 6 ( 120. 50, 0. 37) 24. 120. 120. 0 2 120. 120 .8 .2 120 120 .5 .5 120. 120. .8 3 120. .6 120. 5 120. 3 120. 2 120. .9 120. 9 121 .2 120. 6 120. .2 119 8 120. 0 ( 120. 45. O. 36) 29. 119 120 9 1 120. 120. 6 1 120 120 .4 .4 120. 120. 7 4 120. 5 120. 4 120. 1 120. 1 120. ,7 120. 8 121 .0 120 6 120. 2 119. 7 120. 0 1 120. 35. 0. 34) 26. (19. 120 9 0 120. 120 6 0 120 120 .4 .4 120. 120 7 3 120. .4 120. ,4 120. . 1 120. 1 120. .7 120. 8 121 .0 120. .5 120. 0 119 7 119. 9 ( 120. 31. 0. 35) 27. 119 120 .9 1 120. 120. 6 0 120. 120 .4 3 120. 120. .7 3 120. .6 120. .4 120. . 1 120. 1 120. 7 120. .8 121 .0 120 .5 120. . 1 119 6 119. 8 ( 120. 32. 0 37) 28. 119. 120 .9 . 1 120 120, 6 0 120. 120. .4 .3 120. 120. 7 3 120. .6 120. 3 120. 120. 1. 120. .7 120. 8 121 .0 120 5 120. 0 119 6 119 9 ( 120. 31. 0. 36) 29. 1 19. 120. 9 0 120. 120 5 0 120 120 .4 3 120 120. 6 1 120. 6 120. 3 120 . 1 120. 1 120. .6 120. 7 121 .0 120. 5 120. 0 119 6 119. 9 ( 120. 27. 0. 35) 30. 1 19. 120. 9 1 120. 120. 6 . 1 120. 120. 4 6 120. 120. 7 3 120. 6 120. .4 120. 2 120. 2 120. .7 120. 9 121 .0 120. .6 120. 2 119 7 120 0 ( 120. 38. 0. 35) 31. 1 19. 120. 9 1 120. 120. .6 0 120 120 .4 4 120. 120. .6 3 120. .7 120. .4 120 .2 120. . 1 120. .7 120. 9 121 .0 120 .6 120. 2 119 .8 119 .9 ( 120 36. 0. .35) 32. 1 19. 120. 8 0 120. 120. 8 0 120. 120. 3 .3 120. 120. 6 3 120. 6 120. 4 120 0 120. 1 120. 6 120. 7 121 .0 120. .5 120. . 1 119 7 119 9 ( 120. 28. 0. 34) 33. 119. 120. 9 1 120. 120. 6 0 120. 120. .4 3 120. 120. 7 3 120. .7 120. .4 120. 1 120. 2 120. .7 120. 8 121 .0 120 .5 120 0 119 .7 119. .9 ( 120. 33, 0. 36) 34. 119. 120. 9 1 120. 120. 6 . 1 120 120. 4 5 120. 120. 7 8 120. .8 120. .4 120. 1 120. t 120. 6 120 8 121 .0 120 .6 120 0 119. .7 119 9 ( 120. 36. 0 36) 35. 119. 120. 9 1 120. 120. 5 1 120. 120 4 .4 120. 120. 7 3 120. .7 120. .4 120. .2 120. 1 120. ,7 120. a 121 0 120 .6 120. . 1 119 .7 119 9 ( 120. 35. 0 .351 36. 119. 120 .8 120. 120. 6 1 120 120. .4 4 120. 120. 6 3 120. 7 120. .4 120. . 1 120. 2 120 .6 120. 8 121 .2 120 .5 120. .0 119 7 119 .8 1 120 33. 0 38) 37. 119 120. .9 . 1 120. 120. 5 0 120. 120 4 .4 120. 120. 6 3 120 ,7 120. 4 120. 2 120. 1 120. 7 120. 8 121 .0 120 6 120. 2 119 8 119 .9 ( 120. 35. 0. 34) 38. 1 19. 120 8 0 120. 120. 6 0 120 120. .4 .4 120. 120. .7 3 I20. ,7 120. .4 120. . 1 120. . 1 120. .7 120. 7 121 .0 120 .5 120 .0 119 .7 119. .9 1 120 31. 0 36) 39. 119 120. 9 . 1 120. 120. 6 1 120. 120. 4 3 120. 120. 7 4 120. 4 120 5 120. .2 120. 1 120 7 120. 8 121 .0 120. .6 120. . 1 119 7 119 .9 ( 120. 34. 0 34) Kean 119. 9 120. 7 120. 4 120. .8 120 ,7 120. 2 120. 2 119. 9 120.7 120. 8 121 .0 120. .5 120. 1 119 .7 119 8 120. 1 120. 0 120. .4 120. 3 S . O . 0.09 0.11 0.09 0.14 0.15 0.24 0.09 0.37 0.09 0.14 0.12 0.O6 0.15 0.13 0.08 0.09 0. 13 0. lO O. 13 Orand maan temperature • 120.34 C Standard d e v i a t i o n • 0.40 C S t a b l I I z a t I o n or Retort cone - up t ine • 9 n l n Table B.5. Steam/air process temperature distribution and s t a b i l i t y data (run 2.17) Thermocouple number and c o r r e c t i o n factor MEAN S O . 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 41 rime -0 .3 -0 .2 -0 .4 -0 .4 -o. 3 -0 .2 -0. .4 -0 . 1 -0 .4 -0 .4 -O 2 -0 3 -0 .4 -0 .5 -0 .4 ( Mean, s 0 . ) -0 .2 -0 3 -0 2 -0 3 0. 13. 17 . 9 .7 13 17. .6 . 1 13. 16 3 9 13. 16. 2 . 1 13. 1 13. 6 14. , 1 14. .9 13. .8 14. l . 9 14 .6 14 0 17. a 18. 4 17. 1 ( 19 11. 1 .83) 1. 79. 66 .7 2 86 67. . 1 .8 ei. 62 8 .4 89 67. 9 0 86. 6 72 .4 85. 9 51 0 77. .6 72 3 74 . 1 76 3 71 .0 68 .4 70 .8 ( 74 03. a. 63) 3. 82 88. 0 9 96 89. 9 3 94. 88 2 9 97 88. .4 .4 86. 4 81 6 84 9 82 .8 93 .8 86 .3 83. .4 92. .4 90 .3 88. 8 89 7 ( 91 89. 3 71) 3. 107 106. . 1 6 107 105 9 8 107. 105. 2 7 107 105 .a 9 107. 8 106. .9 107 .5 109 . 1 107 .4 107 .9 107 .7 107 1 106 .8 106. . 1 106. 9 ( 106 89. 0. 86) 4. l i t 111 5 .6 111 111 6 .4 111 111 3 6 111 112 3 1 111. 5 I l l 5 111. .4 111 .7 111. .8 111 .a 111 .9 111. .9 111 .6 111 . 1 I l l .3 (111 57. 0 25) 9 . 119 119 6 .3 121. 119. .4 . 1 120 119 .4 .4 121 . 120. 7 3 121. 4 119. 1 120. .7 117 .0 120. 2 120 3 120. .9 120 .4 118 .4 118 9 119. 8 (119 .99. i . .11) 6. 119. 119 5 .4 120. 119. 9 . 1 1 19. 119 9 .7 121 . 120 2 .4 121. O 119. . 1 120. 3 116 .8 119. .3 118 .6 • 20. .6 120 2 118 .7 118 7 119 . 9 (119 76. 0 .99) 7. 119 119 6 . 9 120. 1 18. . 8 .9 120 119 0 7 121 120. 2 3 121. 0 119 .3 120 3 118 . 1 120 0 119 2 120 6 120 .3 118 .4 118 .9 119 . 9 (119 82. 0 81) 8 . 1 19 119 .6 .9 120 119 8 1 120 120. 1 2 121. 120. 0 4 121. 0 119. .4 120. 3 118 .3 120. .4 120. .4 120 8 120 .3 11B .8 118. .2 1 19 .9 ( 120 01. 0 72) a. 1 19 1 IB. 6 6 120. 119 7 3 120. 120. 0 1 120. 120 .9 4 120. 9 119 ,4 120. a 119. . 1 120. .4 120 .4 120. .8 120. 3 118 .8 118. 1 119. .9 ( 120 05. 0. .59) 10. 1 19 119 .8 .6 120. 119. a .4 120. 120. t . 1 120. 120 a 5 121. 0 119 .6 130. 2 119. .9 120. 5 120. .4' 120 7 120. .4 119 .9 119 3 1 19. 7 ( 120 12. 0 52) 11. 1 19 119 .8 6 120 119. 7 5 120. 120 0 2 120 120 8 .9 120. 9 118. 6 120. 2 119 .9 120. .9 120. .4 120 7 120. 4 119 .8 118 .4 119. 7 ( 120 12. o. 50) 12. 1 19 119 . 6 .9 120. 119. 6 .5 120. 120. 2 2 120. 120. 7 7 120. 9 119 .7 130. 3 119. . 9 120. . 9 120. .5 120 9 120. 4 120 .0 119. .3 1 19. .7 ( 120 19. 0 47) 13. 119 119 .7 6 120 119. .6 5 120. 120. . 1 .2 120 120. . 5 .7 120. a 119. 7 120. 2 120 . 1 120. .4 120. .4 120. 7 120 3 118 .8 119 3 1 19. .6 ( 120. 12. 0. 45) 14. 119 119 .8 9 120. 119. 6 .9 120 120. . 1 1 120 120. 6 6 120. 9 119. .8 120. 3 120 .0 120. . 9 120 .5 120. .8 120 .4 119 8 119. 4 119. 6 ( 120 17. 0. 45) IS. 119 1 19 .8 9 120. 1 19. .6 . 9 120. 120 2 .2 120 120 6 a 120. 9 120 0 120. 3 119 .8 120. .7 120 6 120. 9 120. .8 120 .0 119 6 119 .7 ( 120. .24. 0. 45) 16. 119 119 9 .9 120. 119. 5 . 9 120 120 0 2 120 120 .9 .8 120. 8 119. . 9 120. 2 120. . 1 120. .9 120. 9 120. 7 120. .4 119 .8 119 6 1 19. .7 ( 120 19, 0. 40) 17. 119 1 19 .8 9 120. 119. 9 6 120. 120. 0 1 120. 120. .4 8 120. 7 119 .8 120. 2 120. . 1 120. .9 120. a 120. 7 120. 4 120 .0 119. 4 119 7 ( 120. 17, 0. 41) 18. 1 19 1 19 8 9 120. 119. 4 6 120. 120. 1 3 120 120. .4 a 120. 7 120 0 120. 1 120 . 1 120. 5 120 5 120. .7 120 4 119 .9 119. 9 1 19 .7 ( 120 18, 0 39) 19. 119 119 a .9 120. 1 19 5 6 120 120 .0 0 120. 121 .4 0 120. 7 120 0 120. 0 120 . 1 120. 5 120. 9 120. 7 120 .9 119 .9 119 5 1 19. 6 ( 120. 17. 0 42) 20. 1 19 120 .9 0 120. 119 5 6 120 120 .2 2 120. 121 6 0 120. 8 120 . 1 120. 2 120 .0 120 9 120. .7 120. 8 120. .5 120 0 119. 6 1 19. 7 ( 120 26, 0 42) 21. 119 120 .7 0 120 119 6 8 120 120 2 . 2 120 120 6 8 120. 8 120. . 1 120. 2 120 . 1 120. .6 120 7 120 9 120. .9 120 2 1 19 6 1 19. 7 ( 130 2B. 0 41) 22. 119 120 .8 .0 120 119 .5 .7 120 120 2 .2 120 120 7 .9 120. B 120. .2 120. 120 2 120 5 120. 6 120. 8 120 a 119 9 1 19 7 119 a ( 120 27. 0 39) 23. t 19 8 120 5 120 . 2 120 .7 120. 6 120 1 120. 0 120 e 120 .5 120 5 120 B 120 .9 1 19 .9 1 19 B 119 8 -pa Table B.5. Continued 119 9 119 7 120 2 120 8 ( 120 23. 0 37) 24. 119 6 120 6 120 0 120 7 120 6 120 0 120 0 119 9 120 4 120 4 120 7 120 4 119 8 119 5 1 19 7 119 9 119 5 120 1 120 8 ( 120 14. 0 43) 25. 119 7 120 4 120 1 120 8 120 6 120 1 120 0 120 0 120 9 120 5 120 7 120 4 119 9 119 7 119 7 119 8 119 6 120 1 120 6 ( 120 17. 0 38) 26. 119 7 120 5 120 2 120 9 120 7 120 • 120 0 120 0 120 9 120 5 120 8 120 4 120 O 119 6 119 7 119 9 119 6 120 1 120 7 1 120 21. 0 42) 27. 119 6 120 4 120 1 120 8 120 6 120 1 119 9 120 1 120 4 120 9 120 7 120 3 120 0 119 7 119 7 120 0 119 7 120 1 120 8 ( 120 18. 0 38) 28. 119 6 120 4 120 2 120 8 120 6 120 1 119 9 120 0 120 4 120 6 120 8 120 4 120 0 119 7 119 7 120 O 119 7 120 2 121 0 ( 120 22. O 42) 29. 1 19 6 120 4 120 3 120 9 120 7 120 2 120 0 120 1 120 4 120 7 120 8 120 5 120 2 119 7 119 8 119 9 119 6 120 2 120 7 ( 120 25. 0 41) 30. 1 19 6 120 4 120 3 120 a 120 7 120 2 120 0 120 1 120 4 120 5 120 8 120 4 119 9 119 7 119 7 1 19 9 119 8 120 1 120 8 I 120 22. O 40) 31. 119 6 120 4 120 3 120 9 120 8 120 3 120 0 120 3 120 9 120 5 120 8 120 4 119 9 119 8 119 7 119 9 119 6 120 2 120 8 I 120 24, 0 42) 32. 119 6 120.5 120 4 120 9 120 8 120 2 120 0 120 0 120 9 120 5 120 8 120 4 120 0 119 a 1 19 7 119 9 119 6 120 1 120 6 ( 120 23. 0 41) 33. 119 6 120.9 120 4 121 0 120 7 120 a 120 0 120 1 120 9 120 6 120 8 120 4 120 0 119 8 1 19 7 119 9 119 7 120 1 120 7 ( 120 25. 0 41) 34. 119 9 120 4 120 4 120 8 120 6 120 2 119 9 120 0 120 4 120 5 120 7 120 3 120 0 119 8 119 6 119 9 119 6 120 O 120 7 ( 120 17. O 40) 35. 119 9 120 4 120 4 121 0 120 6 120 2 119 9 120 1 120 4 120 5 120 7 120 3 119 9 119 6 119 7 119 9 119 6 120 0 120 8 ( 120 18. 0 43) 36. 119 9 120 4 120 4 120 9 120 7 120 1 119 9 120 0 120 4 120 5 120 7 120 4 119 9 119 6 119 6 119 7 119 6 120 0 120 6 ( 120 15. 0 44) 37. 119 6 120 4 120 4 121 0 120 8 120 2 120 0 120 1 120 9 120 6 120 8 120 5 120 2 119 7 119 6 119 7 119 6 120 2 120 6 ( 120 24. 0 44) 38. 119 8 120 4 120 4 121 0 120 7 120 2 119 9 120 0 120 4 120 5 120 7 120 4 119 9 119 8 119 6 119 8 119 6 12C 0 120 6 I 120 IB. 0 43) 39. 119 4 120 3 120 4 121 0 120 6 120 1 119 8 120 0 120 4 120 5 120 7 120 3 120 0 119 9 119 7 119 8 119 6 120 1 120 8 (120 16. 0 41) teen 119 7 120 S 120 2 120 8 120 7 120 0 120. 1 120 0 120 5 120 5 120 8 120 4 120 0 119 6 119 7 119 9 119 6 120 1 120 7 S .D. 0 .13 0.11 0.19 0.19 0.11 0.22 0.14 0.23 O.07 0.08 0.07 0.07 0.10 0.19 0.07 0.12 0.10 0.08 0.16 Grand m a n temperature • 120. 19 C Standard d e v i a t i o n • 0.42 C Stabl I n a t i o n or Retort come - up time • 9 min -C=> cn Table B.6. Steam/air process temperature d i s t r i b u t i o n and s t a b i l i t y data (run 2.18) Thermocouple number end c o r r e c t i o n factor MEAN S O . 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 41 rime -0 3 -0 2 -0 4 -0 4 -0 3 -0 2 -0 4 -0 • -0 4 -0 4 -0 2 -0 3 -0 4 -0 5 -0 4 ( Mean. s 0 . ) -0 2 -0 3 -0 2 -0 3 0. 16 30 1 5 19 18 9 5 19 IB 7 0 19 17 8 1 IS 9 16 4 16 4 16 7 • 6 3 17 0 46 9 16 5 21 5 19 4 18 1 ( 17 26. 1 69) 1. 78 67 6 4 85 67 1 3 82 58 3 4 89 64 1 3 86 9 73 0 83 9 83 3 87 0 63 8 74 7 79 6 70 4 68 2 70 3 ( 72 06. 10 37) a. 90 88 6 9 85 89 3 3 93 87 7 7 96 87 3 8 99 3 81 5 93 7 89 3 89 4 94 9 93 B 92 0 89 9 8B 2 89 6 ( 91 22. 3 13) 3. 103 103 4 6 104 t03 0 5 103 103 4 6 103 103 7 8 104 0 103 8 103 8 103 a •03 7 104 4 404 2 103 a 103 6 103 2 103 3 ( 103 65. 0 29) 4. 111 t i l 1 4 t i t 111 2 3 1 to 111 9 4 1 IO 111 9 5 H I 3 t i l 3 t i t 0 • •• 9 III 4 III 8 • II 6 III 5 • It 4 110 9 110 9 (111 26. 0 24) a. 121 120 t 9 122 120 2 5 121 120 6 2 122 121 8 4 122 9 120 8 121 8 118 3 • 20 9 121 8 422 4 121 7 121 0 120 7 120 8 ( 121 19. 1 00) 6. 119 119 5 6 120 119 9 2 120 119 1 9 120 1 19 8 9 • 20 9 • 19 1 120 3 118 0 118 7 118 7 120 5 120 2 119 5 119 0 119 2 (119 72. 0 70) 7. 119 119 6 6 120 1 19 9 0 120 1 19 2 8 • 20 1(9 9 a 12 • 0 • •8 • • 20 3 • 18 0 • •9 I 119 9 • 20 8 120 3 • •9 6 119 2 119 0 (119 74. 0 78) a. 119 119 6 6 • 20 119 5 1 120 119 2 6 120 119 7 9 120 8 • 18 4 120 2 119 a • •9 4 119 9 • 20 7 • 20 3 119 6 119 2 119 3 (119 85. 0 57) 9. 119 1 19 6 5 420 119 9 2 120 120 2 0 120 • 19 7 a • 20 9 (•9 S 120 2 • (8 6 • •9 7 120 4 • 20 5 120 3 119 7 119 1 119 3 (119 86. 0 60) to. 1 19 1 19 5 6 420 119 4 0 120 120 3 1 120 1 19 9 9 120 8 118 9 120 0 • IS a • 20 0 120 a • 20 7 • 20 3 • •9 a 119 2 119 3 ( 119 91, o S3) 11. 119 119 7 6 420 149 9 3 120 120 1 O 120 120 4 o • 20 8 119 6 120 0 i t s 3 • 20 0 120 a 120 6 120 4 119 6 118 9 119 4 ( 119 92. 0 51) 12. 1 19 • 19 6 6 420 4 49 4 3 120 • 20 • 2 120 120 4 0 120 7 • 19 6 • •9 9 • 19 3 • 20 0 120 3 • 20 7 120 3 119 7 119 2 119 4 (119 93. 0 47) < 3 119 119 5 7 420 119 2 4 120 • 20 0 1 120 120 3 1 • 20 6 • 19 7 119 9 • •8 4 120 2 120 3 120 7 120 2 1 19 7 119 1 119 4 ( 119 92. 0 43) 14. 1 19 119 6 7 120 119 4 5 • 20 • 20 0 1 120 120 3 1 • 20 7 119 T • •9 9 • 19 9 • 20 a 120 3 (20 9 • 20 3 119 7 119 1 119 5 (119 95. 0 42) 15. 119 119 6 5 120 119 3 4 • 20 120 1 0 120 120 2 3 • 20 7 • •9 7 119 9 • •8 9 120 2 420 3 120 6 • 20 3 119 7 119 1 119 4 (119 94, 0 45) 16. 119 1 19 6 3 120 119 3 4 • 20 120 1 2 120 120 2 3 120 6 • •9 8 119 9 119 8 120 3 • 20 4 120 7 120 3 1 19 7 119 2 • 19 3 ( 1 19 99. 0 47) 17. 119 119 6 6 120 119 4 6 • 20 120 1 I 120 120 2 1 • 20 6 • •9 9 119 9 1)9 7 120 3 420 4 120 7 • 20 3 119 7 119 1 119 4 ( 1 19 98, 0 43) 18. 119 119 6 7 120 119 3 9 120 120 1 O 120 120 2 5 420 6 IIS 9 119 9 119 7 120 4 • 20 4 121 0 • 20 3 119 7 119 2 • 19 3 ( 120 02. 0 47) 19. 119 119 5 7 120 119 2 4 120 120 0 2 120 120 0 1 420 5 • •9 9 119 8 119 7 120 3 420 4 120 7 • 20 3 119 7 1 19 2 119 3 ( 1 19 94, 0 42) 20. 119 1 19 4 6 • 20 I 19 1 5 • 20 120 0 0 119 120 9 1 420 5 119 9 119 7 119 6 120 3 120 3 120 a 120 1 119 6 IIS 2 119 3 ( 1 19 89. 0 42) 21. 1 19 119 4 6 120 119 1 5 420 120 0 0 119 120 9 1 • 20 6 119 9 119 7 • 19 5 120 3 420 2 120 7 • 20 1 19 7 119 2 119 3 ( 1 19 SB. 0 42) 22. 119 1 19 1 7 120 1 19 2 5 120 1 19 0 9 1 19 120 9 0 120 9 • 20 0 119 7 119 a 120 3 120 a 120 a • 20 2 1 19 6 119 0 119 3 ( 1 19 86, 0 501 23. 119 4 120 1 1 19 9 1 19 9 120 9 120 1 119 8 • 19 4 120 3 420 0 120 a 120 3 119 7 1 19 1 119 4 -p=> Table B.6. Continued 119 7 119 6 120 1 120 0 ( 119 90, 0 42) 24. 119 119 4 9 120 119 1 6 120 120 O 4 119 120 9 1 120 6 120 1 1 19 8 119.9 120 3 • 20 0 120 a (20 3 119 7 119 1 119 9 (119 98, 0 43) 2B. 119 119 4 6 120 119 1 6 130 120 0 2 119 120 8 1 120 5 120 O 119 7 120.0 120 3 • 20 0 120 6 120 • 119 9 119 1 119 4 (119 89. 0 39) 26. 118 119 8 9 119 1 19 6 3 1 19 119 9 6 119 119 3 a 120 0 119 7 1 19 2 119.8 120 0 • •a 7 • 20 3 • 19 9 118 2 1 18 e 119 1 ( 119 53, 0 41) 27. 118 119 8 4 119 119 9 1 119 1 19 5 7 119 119 9 6 120 2 119 6 119 2 118 .5 119 8 118 6 120 2 • •9 8 118 9 118 5 119 0 ( 119 44, 0 44) 28. 119 119 3 6 120 1 19 0 6 120 120 0 3 120 120 0 0 120 7 120 1 119 7 120.0 120 2 • 20 1 • 20 a • 20 3 118 4 118 8 119 4 ( 119 91. 0 49) 29. 119 119 3 7 130 119 0 6 119 120 9 4 120 119 0 9 120 5 120 1 119 7 120. t • 20 2 • 20 2 120 7 120 1 119 4 119 0 119 4 (119 91. 0 44) 30. 119 119 3 7 130 • 19 0 7 119 120 9 2 119 120 9 0 120 6 120 1 119 7 120. 1 120 2 • 20 2 • 20 7 (20 1 119 4 118 9 1 19 3 ( 119 89. 0 45) 31. 119 119 3 6 130 119 0 6 1 19 120 8 2 120 120 0 2 130 9 120 0 119 6 120.2 • 20 0 120 2 • 20 7 120 0 119 9 118 9 119 3 (119 87, 0 44) 33. 119 119 2 6 120 119 0 6 1 19 120 a 0 119 120 9 3 120 9 120 0 119 6 120.2 120 0 • 20 2 • 20 7 (20 O 119 7 118 8 119 2 ( 119 86, 0 46) 33. 119 119 1 9 130 1 19 0 9 119 120 a 1 119 120 9 3 120 5 119 9 119 a 120. 4 • 19 8 120 2 • 20 6 • •9 a 119 6 118 8 119 2 (119 81, 0 47) 34. 119 119 2 9 120 119 0 6 119 120 a i 1 19 120 9 0 120 9 120 0 119 9 120.2 120 0 • 20 2 • 20 6 (20 0 119 7 118 8 119 2 ( 119 83. 0 45) 38. 119 119 1 6 119 119 9 9 119 120 7 0 119 120 8 0 120 4 120 0 119 8 120. 1 • 20 0 • 20 • • 20 6 • 20 0 119 3 118 a 119 2 ( 119 77, 0 44) 36. 119 119 2 T 119 119 9 9 119 120 7 1 119 120 9 0 120 9 120 0 • 19 6 120. 1 • 19 a • 20 2 • 20 6 (•9 a 119 3 118 8 119 2 (119 79. 0 45) 37. 119 2 120.0 119 7 119 9 120 6 120 0 • 19 7 120.2 • 19 a 120 2 120 6 1 19 a 118 4 118 a 1 19 2 119 9 119 9 120 1 120 0 ( 119 83. 0 46) 38. 119 119 2 6 120 119 0 5 119 120 8 2 120 • 20 0 1 120 6 120 1 119 8 120.2 • 20 0 • 20 2 120 7 • 20 o 119 4 118 a 1 19 3 (119 87. 0 48) 39. 119 119 2 7 120 119 0 9 119 120 8 1 119 1(9 9 8 120 6 120 0 119 7 120.2 • 19 a • 20 2 120 6 • 20 0 119 4 tie a 119 3 ( 119 83, 0 44) <ean 119 4 120 1 119 9 120 0 120 6 119 a 119 7 119 7 • 20 • 120.2 120 7 • 20 i 119 6 119 0 119 3 119 6 119 9 120 • 120 0 S.D. 0.23 0.24 0.19 0.30 0.17 0.21 0.23 0.41 0.22 0.18 0.15 0.17 0.20 0.18 0.11 0.12 0.17 O.16 0.18 Grand naan temperatura • 119.87 C Standard d e v i a t i o n • 0.46 C S t a b l I i z a t I o n or Retort coma - up time - 8 min oo Table B .7. Water process temperature distribution and st a b i l i t y data (run 3 .3) Thermocouple number and c o r r e c t i o n fac tor MEAN S.D. 19 ' 20 21 22 23 24 23 26 27 28 29 30 31 32 33 34 33 36 41 rime -0 .3 -0 .2 - 0 .4 - 0 . .4 - 0 . 3 - 0 .2 - 0 . .4 - 0 . 1 -0 .4 -0 . .4 - 0 . 2 - 0 , 3 - 0 . .4 - 0 5 -0 4 ( Mean. S D. I - 0 .2 - 0 .3 - 0 .2 - 0 3 0. 17. 21 .9 .3 17 20 .4 .3 16 19 .8 .7 17. 19 5 8 17. 0 17 . 1 18 .3 18. 3 17, 0 18 ,7 18. . 1 17 ,4 21 .7 21. ,9 20 . 1 I 18 75. 1 . .68) 1. 94 105 6 .7 105. 114 6 .0 112 1 14 .5 .4 98. 113. 3 .4 107. 2 112 .7 21 .4 27. 2 114 2 21. .3 113 .0 114. .4 102 .3 100 6 114 : i ( 95. 11. 32 S3) 2. 96 113 .8 a 97 115 0 0 94 116 .4 . 1 98 115 .5 6 96. 9 91 . 1 too .9 113. 3 119 .8 110 .4 114 .6 114. .8 108 .8 115 .0 115 .3 ( 107. 55, 9 05) 3. 94. 113 .8 .9 95. I l l .6 0 95 1 13 .2 .9 94 . 113 2 .4 93. 7 93 .9 105 6 109. 7 111 .4 108 .0 110 .7 I l l .4 112 .7 113 .7 112 . 1 I 106 10. 8. 07) 4. 104 104. .5 .4 102 102 .8 .6 103 105. .8 .7 105. 104 .4 , 1 104. 8 109 .7 103 .8 103. 6 104 9 103 .4 103 . 1 105 .4 105 .8 103 .7 104 .2 ( 1p« 30. 1, .00) 9. 106 106 .3 .7 105. 106 .9 .6 107 107 .4 . 1 108. 106. 2 6 108. 4 107 . 1 105 .4 106. 0 107 .9 106 0 106 .9 107 .0 106 .2 105 .7 106 .8 ( 106 71, 0 .80) 6. 109, 109 . 1 .3 108 109 .9 .6 110 109 0 9 110. 109. 7 .3 t i l . 0 109 .8 107 .8 109. 1 110 2 •08. .7 •09. .4 109 .7 108 .7 108 .3 109 .5 ( 109 43. 0 78) 7. 111 113 .6 .2 111 112 9 0 112 112 .9 .4 113 113. .4 0 113. 9 112 9 110 ,7 111. 8 112. 7 t i l . .5 112 112. .4 111 3 110 .9 112 .0 (112 14, 0. .80) a. 114 114 .4 .9 114 114 .4 .9 118 115 .4 0 115. 114. 7 5 116. 0 114. .4 113. .9 113. 8 1 19 .4 114 0 114 7 i t s . . 1 114. 0 113 .7 114 .7 (114 66. 0 .68) 9. 117 117. 0 .3 116 117 .8 5 117 117 .9 7 1 18. 117. 3 3 118. 4 117 .9 116 .5 117. 2 118 .0 116 .8 117 .4 117 .6 116. .7 1t6 .3 117 .3 (117. 35, 0. 581 10. 119 1 19 .8 .7 119 119 .2 .8 120 120 . 1 .2 130. 119. .5 .5 120. 7 119 .7 119. .2 119. 7 120. . 1 118, .4 120. 0 120 0 119 2 118 8 119 a (119. ,74, O. 48) 11. 130. 121 , 9 .4 120 121 9 .4 121 121 .4 .6 121. 121 . .2 4 121. 6 121 .4 130 .8 121. 9 121 ,7 120 9 121. 6 121 .7 120. .9 120 .6 121 3 (121 27, 0. 34) 13. 121 . 121 . 1 .7 121 121. .6 .6 121 121 .4 .9 121. 121. 2 7 121. 7 121 .8 131. .0 131. 8 121. .8 121. 3 121. .9 122. .0 121 .3 121 . 1 121 .9 ( 121. .54. 0 31) 13. 121 . 121 2 .7 121 121 6 .7 121 122 .5 .0 121. 121. .2 6 121. 6 121 .6 121. . 1 131. 9 121. .8 121 .4 122 0 122 0 121 .4 121. .2 121 .7 ( 121. .59. 0 .29) 14. 121 121 . 1 6 121 121 .5 .6 121 121 .3 .9 121 121. . 1 .7 121. 6 121 .6 121 2 121. a 121 .8 121 .4 121. .9 121 .9 121. .4 121. .2 121 .9 (121 .53. 0 27) 18. 121 121 . 1 .6 121 121 .4 .8 121 121 .3 .8 121 121 . 1 .6 121. 6 121 .4 121 .1 121. 7 121 .7 121 3 121 .9 121 .8 121 3 121 . 1 121 .4 (121 .46, 0 .26) 18. 121 . 121 . 1 .6 121 121 .4 .5 121 121 2 .7 121 121 .0 .6 121. 9 121 .4 121 .0 121. 7 121 6 121 .4 121 .8 121 8 121 .3 121 . 1 121 .4 ( 121 .43. 0 26) 17. 121 121 .0 .3 121 121 .4 .5 121 121 .2 .7 121 121 . 0 5 121. 3 121 .4 121 0 121. 7 121 .6 121 .4 121 .7 121 .8 121 .3 121 . 1 121 .3 ( 121 . 39. 0 25) IB. 120 121 .9 .6 121 121 .4 .4 121 121 . 1 .6 120. 121 .9 .5 121. 4 121 .4 121 0 121. 7 121 .5 121 .3 121 .7 121 .7 121 .2 121 .0 121 .3 (121 .35. 0 271 19. 121 121 0 .3 121 121 .4 .4 121 121 2 .6 121 121 0 .6 121. 4 121 .4 121 .0 121. 7 121 .6 121 .3 121 7 121 6 121 .2 121 . 1 121 .3 (121 .37. 0 24) 20. 121 121 .0 .6 III 121 .4 .4 121 121 . 1 .6 120. 121 .9 .5 121 . 3 121 .4 121 0 121 . 6 121 .6 121. .4 121. .7 121. .6 121 .3 121 121 .3 ( 121 36. 0 24) 21. 121 121 O .5 121 121 .4 .4 131 121 .2 .6 120. 121 .9 .5 121 . 3 121 .3 121 .0 121 . 6 121 .6 121 .4 121 7 121 6 121 2 121 131 3 (121 .35. 0 23) 22. 121 131 .0 .5 121 121 .4 .4 121 121 . 1 .6 120 121 .9 .5 121. .3 121 .4 121 0 121 6 121 .5 121 3 121 7 121 .6 121 .2 121 .o 121 3 ( 121 .33. 0 24) 23. 121 .0 121 .4 121 .2 121 .0 121 . 4 121 .4 121 . 1 121 . 6 121 .6 121 .4 121 .8 121 .7 121 .3 121 . 1 121 3 Table B.7. Continued 121 .6 121 .5 121 .6 121 .6 (121 40. 0.24) 24. 121 121 .0 .6 121 121 .4 .4 121 121 .2 .7 121 121 .0 .5 121 .3 121 .4 121 . 1 121 .7 121 .7 121 .4 121 .7 121 .7 121 .3 121 . 1 121 .3 (121 39. 0.24) 25. 121 121 O .6 121 121 .4 .5 121 121 .2 6 121 121 .0 6 121 .4 121 .4 121 . 1 121 .6 121 .7 121 .4 121 . 7 121 .7 121 .3 121 . 1 121 .3 (121 40. 0.24) 26. 121 121 O .6 121 121 .4 .5 121 121 . 1 .6 121 121 .0 .6 121 .4 121 .4 121 . 1 121 .6 121 .6 121 .3 121 .7 121 .7 121 .3 121 0 121 .3 (121 .38. 0.24) 27. 121 121 . 1 .6 121 121 .4 .5 121 121 .2 .7 121 121 . 1 .6 121 .4 121 .4 121 .2 121 .7 121 .7 121 .4 U l .8 121 .7 121 .3 121 O 121 .3 ( 121 43. 0 24) 28. 121 121 . 1 .7 121 121 .5 .5 121 121 .2 .7 121 121 .0 .6 121 .4 121 .6 121 .2 121 .7 121 .7 121 .4 121 .9 121 .7 121 .4 121 0 121 .4 (121 45. 0.26) 28. 121 121 . 1 .7 121 121 .4 .6 121 121 .2 .7 121 121 .0 .5 121 .4 121 .4 121 .2 121 .7 121 .6 121 .4 121 .7 121 .8 121 .4 121 0 121 .4 ( 121 .43, 0.25) 30. 121 121 .0 .7 121 121 .4 .5 121 121 .2 .7 120 121 .9 .6 121 .4 121 .4 121 .2 121 .7 121 .5 121 .5 121 .8 121 .7 121 .3 121 0 121 .4 ( 121 42. 0.26) 31. 121 121 . 1 6 121 121 .4 .5 121 121 .2 .7 121 121 O .4 121 .4 121 .4 121 .2 121 .7 121 .6 121 .4 121 .8 121 .7 121 .3 120 .8 121 .3 (121 40. 0.25) 32. 121 121 . 1 6 121 121 .5 .5 121. 121 .2 .7 121 121 . 1 .6 121 .5 121 .4 121 .2 121 .7 121 .7 121 .4 121 .9 121 .7 121 .3 120 .8 121 .4 (121 44, 0.27) 33. 121 121 . 1 6 121 121 .5 .5 121 121 2 .7 121 121 0 .6 121 .4 121 .4 121 .2 121 .7 121 .7 121 P 121 .8 121 .7 121 .4 120 .9 121 .3 (121 .44. 0.27) 34. 121 121 . 1 .7 121 121 .4 .5 121 121. .2 7 121 121 .0 .6 12t .5 121 .5 121 .2 121 .7 121 .7 121 .5 121 .8 121 .7 121 .4 120 .8 121 .4 ( 121 45, 0.28) 35. 121 121 , . 1 6 121 121 .4 .5 121 121. 2 .7 121 121 0 .5 121 .4 121 .4 121 .2 121 6 121 6 121 .4 121 .8 121 .7 121 .3 120 9 121 .3 ( 121 40. 0.24) 36. 121 121 0 .6 121. 121 .4 .5 121 121 . 1 6 121 121 On 121 .4 121 .4 121 .2 121 .7 121 .7 121 .4 121 .7 121 .7 121 .3 120. .8 121 .3 ( 121 38. 0.27) 37. 121 121 1 .7 121 121 .5 6 121. 121. 2 7 121. 121 .0 5 121. .5 121. .4 121 .2 121 .8 121 .7 121 .5 121 .9 121 .8 121 .4 120 .8 121 .4 (121 46. 0.29) 38. 121. 121. , 1 ,7 121 121 .4 .5 121. 121. 2 7 121. 121 0 .4 121 a 121. .5 121. .2 121 .7 121 .7 121 3 121 .9 121 .8 121 .4 120 9 121 .4 ( 121 45. 0.27) 39. 121. 121 1 .7 121 121 .4 5 121. 121. 2 7 121. 121 0 .5 121. a 121. .4 121. 2 121. ,7 121. .7 121. .6 121. .8 121 .7 121 .4 120. 9 121 .3 (121 43, 0.26) lean 121. 121 . 1 6 121 121 .4 5 121 121 . 2 7 121 121 .0 .5 121. .4 121 .4 121 . 1 121 .7 121 .7 121 .4 121 .8 121 .7 121 .3 121 0 121 :4 S .O. 0.06 0.05 O 08 0.07 0.08 0.06 0.09 0.07 0.09 0.06 0.09 0.09 0.07 0.12 0.09 0.07 0.07 O.09 0.07 Grand Man temperature • 121.42 C Standard d e v i a t i o n • 0.26 C S t a b l I I z a t I o n or Retort come - up time • 13 min Table B.8. Water process temperature distribution and sta b i l i t y data (run 3.4) Thermocouple number end c o r r e c t i o n fac tor MEAN S.D. 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 41 rta* -O. 3 -0 2 -0. 4 -0. .4 -0. .3 -0, .2 - O . 4 -0. . 1 -0. .4 -0. .4 -0, .2 -0 .3 -0 .4 -0. 5 -0 .4 ( Mean. S 0. ) -0 2 -0 3 -0 3 -o 3 0. 15. 18. 0 9 15 18 .8 .4 14. 17. 2 ,7 14 18 7 3 14 .5 14. .7 IS. 2 16. .2 15. .2 16. .0 16. .0 16 .4 19 . 1 18. 2 IB a ( 16 45. 1. 75) 1. 18. 21. 0 4 31 . 20. . 1 .4 30. 21. . 1 . 1 62 22 a 3 48 .3 17. 0 17. 2 • 7. 0 20. a 20. a 18 4 19 .3 21 ,4 24 1 20 2 ( 24 83, 11. 73) 2. 93. 107 8 7 100. 110 .4 .8 109. 111. .7 2 87 110 .4 .6 103. .9 109 .4 18. 2 30. 0 111. 2 23. .5 107. .5 111 .7 99 .8 103. 3 110 .6 ( 83 .21. 31 IB) 3. 95. 108. 3 0 96 113. .7 .a 93. 114. 3 .4 87 114. 9 .3 85. .8 92. .5 101. a 108. 8 113 0 10B. . 1 112 0 • 14 . 1 106 .7 105 .4 114 .0 (109 64. a. 06) 4. 95 111 O 1 84 112 .8 .3 93 111 .7 .9 84. 111. a 4 95. . 1 83. 1 IOS. • toe. .7 110 .8 107, 3 111 . t H I .5 109 .8 140 4 110. .8 (105 22. 7. 76) a. 94. toe. 9 .9 84 109. .2 6 93. 109. 9 9 95. 109. . i .9 93 .8 92 .6 107. 2 • 07. .3 108. 4 106. .4 108. 9 409 .6 109 .5 409. 1 109. .4 ( 104 . 18, 7. 131 6. 103 103 9 .5 101 103 .a . • 104. 104. .7 5 105 103. 1 6 104. .8 103. .6 102. a •02. 3 104. 8 102. 9 102 ,7 104 .5 103 .8 402. 7 104 .2 (103 64, 0 92) 7. 106 106 0 .4 106 107 . i o 107 107. .2 .0 107 106. 7 .4 107 .9 106. .7 104. a •05. .8 •07 2 105. .4 106. 6 406 8 105 .6 405 .4 106 6 ( 106 46, 0. 81) a. 109. 109 O .4 108 109 a .8 110. 109. . 1 .8 110 109. 7 3 110 9 109. . 1 107. 7 •oa. .4 •09. a 108. 8 109. .9 •09. .6 108 .4 toe. 3 109 2 ( 109 .29. 0 81) a. 111. 112 ,7 1 111 112 .a .6 112 112 .6 .6 113 112 3 . 1 113 .a • 12 0 111. 0 I l l .3 112 6 114. .4 112 2 443 .4 111 .3 441. . 1 112 3 (112 . II. 0. 73) 10. 114, 1 15. 6 0 114 115. .4 3 1 15. 1 15. .7 3 116. 1(4 5 8 116 .2 115. .3 • 13. 7 • •4. 6 115 .6 114. .3 115 0 115 .2 114 .0 113 a 115. .0 (114 .96. 0 75) it. 117 117. 3 .7 117 118 4 O 1 18. 1 18 0 0 lie 117 8 B 118. .6 (17. .7 116. 7 • 17. . 1 418. . 1 117. . 1 117. 6 447 a 116. .8 116. 6 117 ,8 (117 .81. 0 88) 13. 119 .a 118 .a 120 .8 120. 9 121 , 1 120. .» 118. 4 (20. . 1 • 20 .a 118 .8 120.4 420 4 118 .8 lie 2 120. . 1 120. 1 120 . B 120. .5 • 20 1 ( 120 . 16. 0. 49) 13. 121. 121. ,4 ,7 • 21 122 .6 0 121. 122. 9 . 1 121 121 . .7 .9 122 2 121. 9 121. 2 • 21. .7 122. 0 131. 5 122 0 432 .1 121 .2 121 0 121 .7 (121. 73, 0. 34) 14. 121 121 3 .7 121 122 .7 .0 121 122 .8 .2 121 122. .3 0 122 .0 121 .8 121. • 121 .8 • 22. 0 121 .6 122 • 433 2 121. .4 121. 3 121. 7 (121 .74. 0 .33) IB. 121, 121 2 ,7 121 121 .7 .a 121. 122. .5 0 121 121. .3 9 121 .a 121 .7 121. 0 121 .a 121 a 121 .3 122. 0 422 0 121 .3 121 2 121 6 (121 .62. 0. 31) 16. 121. 121. . 1 6 121 121 .6 .7 121. 121 .5 .9 121 121 .2 .a 121 .6 121 5 121. 0 121, .7 • 21. .a 121. .3 121. 8 431. 8 121 .2 121. 1 121 9 (121 52. 0. 29) 17. 121. 121 0 5 121 121 .8 6 121 121 .3 .7 121 121 0 6 121 .5 121. .4 120. 9 121. .6 121 .7 121. .2 121 .7 131 .7 121 . 1 120 9 121 .4 ( 121 38, 0. 29) IB. 121. 121 0 4 121 121 3 .5 121. 121. .2 6 121 121 0 .5 • 21 .4 121 .3 120. 8 121 .B • 21 5 121 1 131 6 • 21 6 121 0 120 9 121 .3 ( 121 29. 0 26) 19 120 121 . 9 . 3 121 121 .3 .4 121, 121 .2 .6 121 121 0 .8 121 .4 121 .3 120. 8 121 .4 121 .4 121 1 121 6 121 .6 121 0 120 a 121 .2 ( 121 .25, 0 26) 20. 120 121. 8 .2 121 121 .3 .3 121 121 .0 .4 120 • 21 .8 .3 121 .3 121 . 1 120. 7 121 .3 • 21 .4 121 0 121 5 121 4 120 8 120 7 121 I 1 121 . 13. 0. 26) 21. 120. 121 8 .2 121 121 .2 .3 121 121 .0 .4 120 121 .8 .3 121 .3 121 .2 120. 7 121 .3 121 .3 120. .9 121, 5 121 .4 120 .a 120. 7 121 . 1 I 121 12. 0. 26) 22. 120 121 .7 .2 121 121 .2 .3 121 121 .0 .4 120 121 .8 .3 121 . 1 121 . 1 120. 7 121 .3 121 .3 121. 0 121. 5 121 .4 120 .8 120 .7 121 . 1 (121 . 10. 0. 26) 23. 120 . 7 121 .0 120 .9 120 .8 121 . 1 121 .0 • 20. 6 121 .2 121 2 120. 9 121. ,4 121 .3 120 .8 120 .6 121 0 Table B.8. Continued 121 1 121 t 121 3 121 3 24. 120 7 121 1 tai 0 120 8 121 2 121 121 1 121 2 121 4 121 3 23. 120 7 121 1 121 0 120 8 121 1 121 121 2 121 3 121 4 121 3 26. 120 7 121 1 121 0 120 8 121 2 121 121 a 121 3 121 4 121 3 22. 120 8 121 1 121 O 120 8 121 2 121 121 2 121 2 121 3 121 2 28. 120 8 121 1 121 0 120 8 121 2 121 121 1 121 2 121 3 121 2 29. 120 8 121 2 121 1 120 8 121 a tai 121 2 121 3 121 4 121 3 SO. 120 8 121 2 121 0 120 8 121 3 121 121 3 121 3 121 4 121 3 3 ) . 120 8 121 2 121 0 120 8 121 3 121 121 3 121 3 121 4 121 4 32. 120 8 121 1 121 0 120 8 121 a 121 121 3 121 2 121 4 121 3 33. 120 8 121 1 121 0 120 a 121 a 121 121 2 121 2 121 4 121 3 34. 120 8 121 2 121 0 120 9 121 a 121 121 3 121 2 121 4 121 4 35. 120 a 121 1 121 0 120 a 121 a 121 12 1 3 121 2 121 4 121 3 36. 120 8 121 1 121 0 120 a 121 t 121 121 2 121 1 121 3 121 3 37. 120 8 121 1 121 0 120 a 121 a 121 121 2 121 a 121 4 121 3 38. 120 9 121 2 121 1 120 8 121 a 121 121 2 121 a 121 4 121 4 39. 120 8 121 i 121 0 120 a 121 a 131 121 2 121 a 121 4 121 3 1 120 7 121 2 121 2 120 9 121 4 121 3 1 120 7 121 2 121 2 120 9 121 3 121 3 t 120 7 121 2 121 3 120 9 121 4 121 4 1 120 7 121 3 121 3 120 9 121 4 121 3 0 120 7 121 2 121 3 120 9 121 4 121 3 2 120 7 121 3 121 3 120 9 121 8 121 4 a 120 8 121 3 121 4 121 0 121 6 121 4 1 120 8 121 3 121 3 121 0 121 5 121 4 a 120 7 121 3 121 3 121 0 121 4 121 4 i 120 7 121 a 121 3 120 9 121 S 121 4 a 120 8 121 3 121 4 121 0 121 3 121 4 i 120 8 131 3 121 3 121 0 121 9 121 4 i 120 8 121 3 121 3 121 1 121 9 121 4 2 120 8 121 3 121 3 121 0 121 5 121 4 a 120 8 121 3 121 4 121 1 121 9 121 4 a 120 8 121 3 121 4 121 0 121 9 121 4 ( 121 02. 0 24) 120 8 120 7 121 0 (121 06. 0 23) 120 7 120 7 121 0 ( 121 06. 0 25) 120 8 120 7 121 0 { 121 08. 0 25) 120 8 120 7 121 0 ( 121 07. 0 23) 120 8 120 6 121 0 (121 09. 0 23) 120 8 120 7 121 1 ( 121 12. 0 25) 120 9 120 7 121 2 I 121 15. 0 26) 120 9 130 7 121 1 ( 121 13. 0 25) 120 9 120 7 121 0 ( 121 10. 0 24) 120 9 120 7 121 0 ( 121 09. 0 24) 120 9 120 7 121 1 ( 121 14. 0 24) 120 9 120 8 121 1 ( 121 12. 0 22) 120 8 120 7 121 0 ( 121 08. 0 23) 120 9 120 8 121 1 ( 121 12. 0 23) 120 8 120 7 121 1 (121 IS. 0 23) 120 9 120 7 121 1 ( 121 12. 0 24) Mean 120.9 121.2 121.1 120.9 121.3 121.2 120.8 121.4 121.4 121.1 121.6 121.5 120.8 120.8 121.2 121.3 121.4 121.S 121.4 S .O. O.I8 0.20 0.26 0.22 0.27 0.23 0.14 O.20 0.24 0.18 0.20 0.25 O. 17 O. 17 0.22 O.18 0.25 0.25 0.22 Grand n a n temperature • 121.20 C Stendard d e v i a t i o n • 0.33 C Stab l I n a t i o n or Retort come - up time • 13 min Table B . 9 . Water process temperature d i s t r i b u t i o n and s t a b i l i t y data (run 3 . 5 ) Thermocouple number and c o r r e c t i o n factor MEAN SO. 19 30 31 22 33 34 25 26 27 28 29 30 31 32 33 34 39 36 41 Tina -0.3 -0.3 -0.4 -0.4 -0.3 -0.2 -0.4 -0.1 -0.4 -0.4 -0.2 -0.3 -0.4 -0.5 0.4 ( Mean, S O -0.2 -0.3 -0.3 -0.3 0. 24. 26 3 2 40. 27. 2 0 34 28 .0 .4 60. 31 .8 1 96, .3 24. .7 24. .8 39 . 1 32. .3 26 .5 25 .6 27 .9 35. 5 28 .4 27 0 ( 31 37. 10 37) 1. 26 30. .9 .6 BO. 31 . . 1 a 43. 33 .7 .0 66. 36 .3 1 64 . 1 26 .7 26 .8 36 .3 39. .9 31 .7 27 . 1 33 0 39. .3 35 .2 32 .3 ( 36 36. 11 .90) 3. 97. 104. 2 .4 106. 1 12. 4 .8 111 112 3 9 IOO • 12 . 1 .8 107 .9 111 .4 31 .7 30 .8 112 .8 33 O 112 .7 112 .9 98 .4 98 .5 112 8 ( 95 84, 29 02) 3. 100. 1 10. .8 O98. 114. .4 1 95 114. 2 .7 • 00 1 13. .0 8 97 .6 93. .7 101 .4 113 .5 114 .6 109 5 113 .0 114 . 1 105 .6 112 .6 114 .7 ( 107. 17, 7. .59) 4. 98 106 6 6 94 103. 1 9 95 107. 9 .7 92. 106 .4 5 95 .6 100 9 104. 3 too. 0 101. 2 104 7 106 .4 106 .5 108 4 105 .3 106 .4 ( 102. 37. 4. 98) 5. 103. 102 .4 3 101. 101. 7 9 102 104 .7 .2 tot. 102. 9 .8 •02. .0 104. 3 102 .8 103 .9 103. 3 toi. .7 102 ,6 104 . I 104 0 102, 1 103 .7 1 102. 84, 0. 89) 6. 104 109 5 0 104. 109. 3 .4 106. 105 .2 .2 106 104. .4 .9 • 06 9 105. 0 103 3 103 .7 104 .7 103 .7 104 .9 105 3 104 2 104 . 1 105 0 ( 104. 86. 0. 93) 7. 107 107 . 1 .9 107 108. .4 2 108. 108. .5 . 1 109. 107 .4 .9 • 09. .2 108. . 1 106 .3 106 6 108. 2 106. 7 108 . 1 108 . 1 106. .8 106. .7 107 .7 ( 107. 72. 0. 86) 8. 109. 110. 9 .9 110. 110. 1 9 I l l 110 .3 8 l i t • to. .7 .4 112 . 1 110 9 109. .2 110. .0 l i t 0 109, .5 110 7 110 .9 109. ,5 109 .5 110 .4 (110. 49, 0. 78) 9. 1 12. 113. .7 .3 113. 113 0 .9 114 113 0 9 114 • 13 4 . 1 114 .6 113. .8 113 0 113. .6 113 .8 112. .9 113 .4 113 .6 113. 3 112 3 113 .3 (113. 23, 0. 71) 10. 115. 115. 5 9 119. 116. .6 1 116 116. 5 .2 • 17. • IS. 3 9 (16 .9 116. 0 114 .7 i ts. 3 116. .3 115 .4 116 . I 116 2 115 . t 114 a 116 0 (115. 86, 0. 67) 11. 118. 118. 1 9 118. 118. 4 ,7 1 19. 1 18. O6 119. 118 .9 • 119 .9 118. .9 117 .7 118. 0 118. .7 117, ,8 118. .6 118 .8 117. 7 117. .9 118. ,4 (118. 45. 0. 57) 12. 120. 120. 5 9 120. 121. 6 0 121 121 . 3 0 121 . 120. 9 .9 • 21 6 121 0 130. .3 120. .7 121 2 120, ,3 121 . t 121 .2 130. 2 119 .9 120 .8 ( 120. 82. 0. 46) 13. 121. 122. 9 .9 122. 122. 3 .9 122. 122 .7 .7 122 122. 3 ,3 122. .8 132. .4 121 .8 122. .4 122. .7 122. .2 122 .7 122 a 131. 9 121 .7 122 .4 ( 122. 37, 0. 34) 14. 121. 122. 9 4 122. 122. .4 4 122 122. .4 .7 121 122. 9 5 122 .6 122. .9 121 .8 122. .9 122. 6 122 . t 122 .9 122 a 133. 0 121 .9 122 4 ( 122. .36, o. 34) 15. 121. 122. .8 2 122. 122. 2 . 1 122. 122 . 1 .5 121. 122 .8 .3 122 .3 122. .2 121 .7 122. .3 122 3 122 .0 122 .6 122 .6 131. 8 121 .8 122 2 ( 122 . 15, 0. 37) 16. 121. 121. .6 .9 122. 121. 0 9 121 122 9 .2 121 122 6 . • 122 . 1 122. . 1 121 .4 122 . 1 122. 2 121 .8 122 .4 122 .3 131 .6 121 .6 121 9 ( 121, .93. 0 37) 17. 121. 121. .4 7 121. 121 .8 8 121 122. .7 . 1 121 121 .3 9 121 .8 121 .9 121 .3 121 .8 121 9 121 .6 122 .2 122 . 1 131 .5 121 .4 121 .8 (121 74. o 27) 18. 121. 121. 3 5 121. 121. 7 6 121 . 121 6 .9 121 121 3 6 121 .7 121 ,7 121 .2 • 21 8 121 .8 121 .9 122 .0 121 .8 131. 3 121 .2 121 .9 (121 58, 0 34) IB. 121. 121 .2 .4 121 . 121 6 6 121 121 .5 .9 121. 121 .2 .8 121 .6 121 a 121 . 1 121. .7 121 .7 121 . 4 122 0 121 9 131. .2 121 121 ,9 (121 53, 0 38) 20. 121 . 121 . , 1 4 121. 121. 6 6 121 121 .5 .8 121. 121 2 .7 121 .6 121 .6 121 .0 121 .6 121 .7 121 .4 121 .9 121 .9 131 .2 121 . t 121 .5 (121 49, 0. 37) 21. 121 . 121 2 .5 121. 121 .6 .6 121 122 .5 .0 121 121 2 .8 121 .7 121 .6 121 . 1 121 .7 121 .8 121 .9 l 122 0 121 .9 131 .3 121 . 2 121 .5 (121 56, 0 37) 22 . 121 121 .3 .6 121 121 .6 .8 121 122 .6 .0 121 121 .2 .9 121 8 121 .7 121 .3 121 .8 121 .8 121 .5 123 . 1 122 .0 131 .3 121 .2 121 6 (121 63, 0 29) 23. 121 .3 121 .6 121 .5 121 .3 121 .7 121 .7 121 2 121 .7 121 .8 121 .5 122 .0 122 .0 131 .3 121 2 121 5 Table B.9. Continued 121 7 121 .8 122 .0 121. .8 ( 121. 61. 0. 26) 24. 121 121. 3 7 121 121 .7 .8 121 122 .6 . 1 121 121 .4 .9 121 .8 121 .7 121. .3 121 8 121 .8 121 .5 122 . 1 122 0 121 3 121 3 121 .8 (121 .66. 0. 27) 29. 121. 121 3 7 121 121 .7 .8 121 122 .6 . 1 121 121. .4 9 121 .8 131 .8 121 . 2 121 .8 121 .9 121 .9 122 . 1 122 .0 121. .4 121. 3 121 .6 (121 68. 0. 27) 26. 121 121. 3 6 121 121 .6 .7 121 122 .9 .0 121. 121 2 .9 121 .7 121 8 121. 2 121 .7 121 .8 121 .8 122 .0 121 9 121 .3 121 2 121 .6 ( 121 61, 0 27) 27. 121. 121 . 1 6 121 121 .6 .9 121 121 .4 .9 121. 121 .2 .6 121 .6 121 .6 121. . 1 121 .6 121 .7 121 .4 121 .8 121 .8 121. .2 121 . 1 121 .9 ( 121 .49, 0 26) 28. 121 121. 0 .9 121 121 .3 .9 121 121 .3 .7 121 121. 0 6 121 .4 121 .4 120 .9 121 .8 121 .9 121 .2 121 .7 121 .6 121 . 1 120 .9 121 .4 ( 121 34. 0. 26) 28. 120. 121. .9 4 121 121 .3 .4 121 121 .2 .7 121 121 .0 5 121 .4 121 .4 120 .9 121 .4 121 .5 121 .2 121 .7 121 6 121 .0 120 9 121 .3 ( 121 .30, 0 26) 30. 120 121 9 4 121 121 .4 .4 121 121 .2 .7 120 121 9 .5 121 .3 121 .4 120 .8 121 .4 121 .4 121 .2 121 .7 121 .6 121 0 120. a 121 3 ( 121 .28. 0. 28) 31. 120. 121. 9 4 121 121 .3 .4 131 121 .2 .6 120 121. .9 .8 121 .3 131 .4 120. 8 121 .4 121 .4 121 .2 121 .7 121 .6 121 0 120 a 121 .2 ( 121 26, 0. 271 33. 120. 121 9 4 121 121 .2 .4 121 121 .2 .6 120. 121 9 .9 121 .3 121 .4 120. a 121 3 121 .4 121 .2 121 .6 121 .9 121. 0 120 a 121 .2 ( 121 .24. 0 26) 33. 120. 121. 9 3 121 121 .2 .3 121 121 .2 .9 120 121. 8 .4 121 .3 121 .2 120. .8 121 3 121 .3 121 . 1 121 6 121 .8 120. .8 120 a 121 . 1 ( 121 . 19. 0 24) 34. 120. 121. 9 3 121. 121 . 1 .3 121 121 . 1 6 120. 121. .8 .9 121 .3 121 .2 120. 8 121 .3 121 .4 121 2 121 6 121 .8 120 .8 120. a 121 .2' (121 .20, 0. 26) 38. 120. 121. 9 3 121 121 .3 .4 121 121 . 1 6 120. 121 . .9 9 121 .2 131 .3 120. 8 121 .3 121 .4 121 .2 121 .6 121 .8 120. 8 120 .8 121 .2 ( 121 21. 0. 27) 36. 120. 121. 8 3 121 121 .2 .4 121 121 . 1 .6 120. 121 . 8 9 121 .3 131 .3 120. .8 121 .3 121 .4 121 .2 121 .6 121 .8 120 .8 120 a 121 .2 ( 121 21, 0. 27) 37. 120. 121 9 4 121 121 2 .4 121 121 .2 6 120 121 .8 .4 121 .3 121 .3 120. .8 121 3 121 .4 121 .2 121 .6 121 .8 120 .9 120. 8 121 2 ( 121 .22, 0. 26) 38. 120. 121 . .9 3 121 121 2 .3 121. 121 . 1 6 120. 121. 8 9 121 .2 121 .3 120. .8 121 .3 131 .4 121 .2 121 .6 121 .9 120. 8 120 a 121 .2 (121 20, 0. 26) 39. 120. 121 . 9 4 121. 121 2 .3 121 121 .2 .6 120. 121 .8 .9 121 .3 121 .2 120. .8 121 .4 121 .4 121 .2 121 .8 121 .9 121. 0 120. .8 121 2 (121 23, 0. 26) lean 121. 121. 2 6 121 121 .9 .6 121 121 .9 .9 121 121 .2 7 121 .6 121 .6 121. . 1 121 .7 121 .7 121 .4 121 .8 121 .8 121 2 121. . t 121 .9 S.O. 0.32 0.36 0.40 0.37 0.41 0.37 0.31 0.39 0.37 0.38 0.37 0.40 0.31 0.34 0.36 0.32 0.32 0.33 0.30 Grand Man temperature • 121.93 C Standard d e v i a t i o n • 0.43 C S t a b l I I z a t I o n or Retort coma - up time • 13 mm cn 55 Appendix C: Temperature Distribution and Stability Plots - T -20.0 23.0 T I M E I M I N ) 11.0 - T -20 0 2 3 0 T I M E I M I N ) 26.0 29.0 leu Teiperature u o Standard Defiatioi for M f f e r e i t Cianels 19 20 21 22 23 21 25 26 2T 21 29 30 31 32 33 34 35 36 41 - • a . Figure C . l . Steam process temperature d i s t r i b u t i o n and s t a b i l i t y (run 1 .4 ) . I I 20 0 23 0 26.0 T I M E ( M I N ) l e u Teiperature and Staadard Dtfiatioa for Dlffereit Caaiaels 19 20 21 22 23 24 25 26 27 28 28 30 31 32 33 34 35 36 41 Figure C.2. Steam process temperature d i s t r i b u t i o n and s t a b i l i t y (run 1.5). 21.0 24.0 T I M E ( M I N I ie.0 21.0 24.0 T I M E ( M I N ) <-)<? do leai Teiperatore aid Staidard Deflation for Dlffereit Ciaueli W » M 0 a 21 2S 28 2T 28 28 38 31 32 33 34 38 3S 41 -O U B "0 i o 5~ Figure C.3. Steam/air process temperature distribution and s t a b i l i t y (run 2.17). l e u Teiperatnre u d Studard Deriatioi at lack Tite I i e r e t e i t CZo &jg-l 4 t | » i t » I I 4 4 4 4 • ' * 4 4 4 4 4 + 4 • * * * x UJ 1 i 1 i 1 i 1 i " i 9 0 12 0 15.0 18.0 21.0 2d.O 27.0 30.0 33.0 36.0 39.0 T I M E I M I N ) l e u Teioeratgre u d Studard Deriatioi for M f f e r e i t C i a n e l i tx\ 19 20 21 22 23 24 25 26 2T 21 29 30 31 32 33 34 35 36 41 UJ or 3 I— d o ffis. 31 UJ Figure C .4 . Steam/air process temperature d i s t r i b u t i o n and s t a b i l i t y (run 2.18). 28 0 T I M E ( M I N ) 25.0 28 0 T I M E ( M I N ) lean Teiperatore aid Staidard Deriatioi for Jiffereit Claueli (JQ 19 20 21 22 23 24 25 26 2T 21 29 30 31 32 33 34 35 36 41 go g • . , • = • * m S B „ = , • 01 B • U J 0 , Q . -3: Figure C .5 . Water process temperature d i s t r i b u t i o n and s t a b i l i t y (run 3 .4) . 23.0 28 0 T I M E ( M I N I 23.0 29.0 T I M E ( M I N ) <->=> (To UJ l e u Teiperatore and Studard Defiatioi for Diffareit Caaueli 19 20 21 22 23 24 25 26 27 21 29 30 31 32 33 34 35 36 41 -4 *- -4 B 4 i » <1 & » Figure C.6. Water process temperature d i s t r i b u t i o n and s t a b i l i t y (run 3.5). 62 Appendix D: Corrected Heat Penetration Parameters 63 Table D.l. Corrected heating rate indices (fh) Process Steam Steam/Air Water Run # 1 .3 1.4 1 .5 2.16 2. 17 2. 18 3 .3 3.4 3.4 (min) (min) (min) Brick 1 14 .8 14.4 14 .8 15. 1 15.4 15.5 14 .6 14.9 15.3 2 15 . 1 14.4 15 .2 14.5 14.8 15.1 14 .8 15.5 15.4 3 14 .4 14.0 14 .2 13.8 14.1 14.1 13 .7 13.6 14. 0 4 14 .7 14.0 14 .3 13.4 13.5 14.1 14 .5 14.0 14.2 5 14 .3 14.4 14 . 1 13.6 13.8 13.7 13 .7 13.7 14. 0 6 14 .9 14.8 14 .8 14.7 15.0 14.6 14 .2 14.2 14.3 7 15 .4 15.3 15 .2 15.2 15.2 15.2 14 .8 15. 1 15.6 8 14 .9 14.9 14 .8 15.5 15.3 15.6 14 .6 14.4 14.8 9 15 .5 14.8 14 .8 15.1 15.2 15.4 14 .2 14.7 14.9 10 15 .4 14.9 14 .9 14.9 15.2 15.5 15 .9 15.5 **** 11 15 .8 15.0 15 .3 15.3 15.3 15.3 15 .3 15.2 15.6 12 14 .8 14.2 14 .9 14.9 15.2 15.2 14 .2 14.3 14.6 13 15 .3 15.1 15 . 1 15.8 16.1 16.2 15 .9 15.9 16.4 14 15 .5 15.0 15 .0 16.2 15.9 16.5 14 .7 15.0 15.3 15 15 .7 15. 1 14 .4 15.0 15.1 15. 1 13 .7 14.0 14. 4 16 14 .3 14.8 14 .8 15.9 16.9 16.9 15 .2 15.2 15.8 17 14 .9 15.3 15 .0 16.7 17.7 16.5 15 .6 15.1 15.5 18 15 . 1 15.3 15 .2 16.1 16.7 16.4 15 .4 15.4 15.8 Mean 15 . 1 14.8 14 .8 15. 1 15.4 15.4 14 .7 14.8 15. 1 S.D. 0. 47 0.43 o.; 36 0.90 1.04 0.90 0.' 72 0.68 0.72 **** transducer malfunctioned 6 4 T a b l e D . 2 . C o r r e c t e d h e a t i n g l a g f a c t o r s ( j h ) P r o c e s s S t e a m S t e a m / A i r W a t e r R u n * 1.3 1 .4 1 .5 2 . 1 6 2 . 1 7 2 . 1 8 3 . 3 3 . 4 3 . 4 B r i c k 1 0 . 97 1. 04 1 . 0 0 0 . 8 5 0 . 89 0 . 88 0. .83 0 . 9 8 0 . 8 0 2 1. 05 1. 25 0 . 9 9 0 . 9 5 0 . 98 0 . 99 0. , 82 0 . 9 6 0 . 8 9 3 0 . 81 0 . 86 0 . 8 2 0 . 8 0 0 . 90 0 . 85 0. . 78 0 . 8 8 0 . 7 9 4 0 . 89 0 . 92 0 . 9 1 0 . 8 6 0 . 95 0 . 96 0. . 80 0 . 9 2 0 . 8 0 5 0 . 99 1. 00 1 . 0 5 0 . 9 0 0 . 92 0 . 92 0. . 83 1 . 00 0 . 8 4 6 0 . 93 0 . 92 0 . 8 8 0 . 8 2 0 . 86 0 . 88 0, . 80 0 . 9 0 0 . 8 1 7 0 . 83 0 . 86 0 . 8 6 0 . 8 5 0 . 85 0 . 87 0, . 84 1 . 0 2 0 . 9 2 8 0 . 96 0 . 91 0 . 8 7 0 . 8 6 0 . 99 0 . 92 0. . 78 0 . 9 9 0 . 9 0 9 0 . 86 0 . 96 0 . 9 4 0 . 8 4 0 . 91 0 . 86 0, . 75 0 . 8 4 0 . 8 0 10 0 . 92 0 . 99 0 . 9 9 0 . 9 0 0 . 98 0 . 92 0. , 75 0 . 9 6 #'##* 11 1. 00 1. 10 1 . 0 0 0 . 8 8 0 . 97 0 . 99 0. . 74 0 . 8 4 0 . 7 9 12 0 . 99 1. 07 0 . 9 3 0 . 8 9 0 . 92 0 . 92 0, , 7 6 0 . 8 7 0 . 8 0 13 1. 03 1. 05 1 . 0 3 0 . 9 0 0 . 90 0 . 90 0. . 75 0 . 8 3 0 . 8 0 14 0 . 76 0 . 83 0 . 7 8 0 . 7 7 0 . 83 0 . 77 0, . 66 0 . 7 6 0 . 7 4 15 0 . 71 0 . 76 0 . 8 4 0 . 8 4 0 . 91 0 . 87 0. . 74 0 . 8 5 0 . 7 8 16 1. 07 1. 04 0 . 9 7 0 . 8 7 0 . 84 0 . 86 0. . 77 0 . 8 3 0 . 7 7 17 1. 05 1. 03 1 . 0 6 0 . 8 1 0 . 79 0 . 89 0. . 6 9 0 . 8 1 0 . 7 8 18 1. 00 1. 01 1 . 0 0 0 . 8 6 0 . 90 0 . 90 0. . 7 0 0 . 8 1 0 . 7 9 Mean 0 . 93 0 . 98 0 . 9 4 0 . 8 6 0 . 90 0 . 90 0. . 77 0 . 8 9 0 . 8 1 S . D . 0 . 10 0 . 11 0 . 0 8 0 . 0 4 0 . 06 0 . 05 0. . 05 0 . 0 8 0 . 0 5 * * * * t r a n s d u c e r m a l f u n c t i o n e d Table D.3. Corrected cooling rate indices ( f c ) Process Steam Steam/Air Water Run 4* 1. 3 1.4 (min) 1. 5 2. . 16 2. 17 (min) 2. 18 3. 3 3.4 (min) 3.4 Brick 1 15. 9 14.6 15. 2 18. .8 17. 6 16. 6 16. 7 16.3 17.6 2 16. 4 15. 0 17. 2 16. .7 16. 4 15. 6 16. 3 16.0 15.6 3 15. 7 14.4 14. 6 15. , 1 15. 1 15. 2 14. 9 14.3 14.9 4 17. 1 14.5 14. 9 17. , 0 15. 7 15. 6 14. 9 14.6 15.6 5 15. 5 15.2 16. 4 14. .9 15. 2 15. 4 14. 6 13.7 14.3 6 18. 2 15.3 18. 7 15. .8 16. 1 16. 6 15. 7 15.2 15.9 7 19. 5 17.0 17. 1 20. .2 18. 5 17. 6 17. 6 19.3 19.4 8 16. 9 17.7 17. 3 19. . 0 17. 9 17. 4 17. 4 17.0 17.8 9 18. 0 15.9 16. 0 16. .9 1.6. 4 16. 3 16. 9 15.0 16.3 10 16. 6 15.3 16. 2 18. .5 17. 8 18. 0 18. 9 17.2 #*** 11 22. 4 18.7 18. 8 21. .2 19. 3 18. 6 24. 0 21.6 22. 3 12 18. 1 15.1 16. 3 15. .6 15. 8 15. 6 15. 0 15.9 15.6 13 22. 7 23.6 23. 7 19. .8 21. 5 19. 1 19. 0 18.6 18.4 14 20. 0 23.7 22. 3 17. .2 18. 5 17. 5 17. 9 16.4 17.5 15 18. 6 16.8 19. 2 17. . 1 17. 2 16. 4 15. 4 15.6 16.2 16 19. 8 25.0 23. 7 17. .9 17. 7 17. 5 16. 6 16.2 16.4 17 21. 2 22.4 22. 2 17. .0 18. 0 17. 4 16. 5 15.5 16. 0 18 25. 0 23.3 24. 2 18. . 1 18. 5 18. 6 18. 4 16.3 17.5 Mean 18.8 18.0 18.6 17.6 17.4 16.9 17.0 16.4 16.9 S.D. 2.69 3.78 3.26 1.76 1.62 1.21 2.23 1.90 1.92 **** transducer malfunctioned 66 Table D.4. Corrected cooling lag factors ( j c ) Process Steam Steam/Air Water Run # 1.3 1.4 1.5 2. 16 2. 17 2 . 18 3.3 3.4 3.4 Brick 1 1 .26 1.23 1.19 1. 31 1. 29 1 .27 1.68 1.73 1.80 2 1 . 19 1.22 1.17 1. 30 1. 33 1 .33 1.83 1.84 2.04 3 1 . 16 1.13 1.16 1. 28 1. 26 1 .20 1.67 1.71 1.84 4 1 . 13 1.25 1.25 1. 32 1. 32 1 .30 1.96 1.97 2.06 5 1 . 19 1.14 1. 17 1. 33 1. 29 1 .25 1.89 1.97 2. 06 6 1 . 10 1.16 1.13 1. 29 1. 24 1 .20 1.82 1.86 2.00 7 1 . 16 1.25 1.25 1. 35 1. 37 1 .40 1.97 1.85 2.03 8 1 .23 1.15 1.19 1. 33 1. 36 1 .34 1.87 1.93 2.03 9 1 . 10 1.15 1.19 1. 29 1. 30 1 .26 1.68 2. 00 1.98 10 1 .34 1.43 1.31 1. 33 1. 33 1 .35 1.80 2.08 **** 11 1 . 17 1.22 1.30 1. 27 1. 24 1 .25 1.56 1.69 1.86 12 1 .08 1.21 1.06 1. 32 1. 26 1 .24 1.85 1.77 2.04 13 1 .14 1.18 1.16 1. 39 1. 27 1 .37 2.05 2.07 2.29 14 1 .22 1.17 1.15 1. 41 1. 28 1 .35 1.97 2.13 2.21 15 1 .04 1.07 1.03 1. 21 1. 18 1 . 18 1.55 1.56 1.76 16 1 . 14 1.06 1.07 1. 33 1. 30 1 .30 1.99 2.00 2.26 17 • 1 . 12 1.15 1.09 1. 39 1. 26 1 .31 1.88 2.00 2.19 18 1 .04 1.02 0.98 1. 25 1. 30 1 . 19 1.49 1.70 1.80 Mean 1 . 15 1. 18 1. 16 1. 32 1. 29 1 .28 1.81 1.88 2.01 S.D. 0 .08 0.09 0.09 0. 05 0. 04 0 .07 0. 16 0. 16 0. 16 **** transducer malfunctioned 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0097095/manifest

Comment

Related Items