Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A thermodynamic analysis of several pressurized fluidized bed combined cycle power generation systems Anastasiou, Roger 1983

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1984_A7 A53.pdf [ 8.45MB ]
Metadata
JSON: 831-1.0096182.json
JSON-LD: 831-1.0096182-ld.json
RDF/XML (Pretty): 831-1.0096182-rdf.xml
RDF/JSON: 831-1.0096182-rdf.json
Turtle: 831-1.0096182-turtle.txt
N-Triples: 831-1.0096182-rdf-ntriples.txt
Original Record: 831-1.0096182-source.json
Full Text
831-1.0096182-fulltext.txt
Citation
831-1.0096182.ris

Full Text

A THERMODYNAMIC A N A L Y S I S OF SEVERAL PRESSURIZED F L U I D I Z E D BED COMBINED C Y C L E POWER GENERATION SYSTEMS by ROGER ANASTASIOU B . A . S c . , U n i v e r s i t y Of B r i t i s h C o l u m b i a , 1979 A T H E S I S SUBMITTED IN P A R T I A L F U L F I L M E N T OF THE REQUIREMENTS FOR THE DEGREE OF M . A . S C . i n THE F A C U L T Y OF GRADUATE STUDIES D e p a r t m e n t Of M e c h a n i c a l E n g i n e e r i n g We a c c e p t t h i s t h e s i s a s c o n f o r m i n g t o th&^required s t a n d a r d THE U N I V E R S I T Y OF B R I T I S H COLUMBIA O c t o b e r 1983 © R o g e r A n a s t a s i o u , 1983 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e H e a d o f my D e p a r t m e n t o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f M e c h a n i c a l E n g i n e e r i n g The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 W e s b r o o k P l a c e V a n c o u v e r , C a n a d a V 6 T 1W5 D a t e : S e p t e m b e r 20 1983 i i A b s t r a c t T h i s t h e s i s p r e s e n t s t h e r e s u l t s o f c o m p u t e r m o d e l l i n g o f two c l a s s e s o f c o m b i n e d c y c l e p r e s s u r i z e d f l u i d i z e d b e d , c o a l f i r e d power g e n e r a t i o n s y s t e m s . The s t e a m t u b e a n d a i r h e a t e r c y c l e s h a v e been p r o p o s e d f o r f u t u r e power s t a t i o n s b e c a u s e o f t h e i r c o s t e f f e c t i v e n e s s a n d low p o l l u t i o n . The p e r f o r m a n c e o f t h e a i r h e a t e r c y c l e a n d s e v e n v a r i a t i o n s o f t h e s t e a m t u b e c y c l e a r e s i m u l a t e d . The e m p h a s i s i n m o d e l l i n g i s t o d e v e l o p a s y s t e m w h i c h w i l l c o m p a r e t h e c y c l e s on an e q u a l b a s i s . S e v e r a l c o n f i g u r a t i o n s o f t h e s t eam t u b e c y c l e a r e m o d e l l e d u s i n g H a t C r e e k c o a l . I n t e r c o o l i n g i s f o u n d t o be b e n e f i c i a l t o t h e s t e a m t u b e c y c l e , w h i l e r e c u p e r a t i o n i s d e t r i m e n t a l . The i n t e r c o o l e d s t e a m t u b e c y c l e i s f o u n d t o be 2 p e r c e n t a g e p o i n t s more e f f i c i e n t t h a n c o n v e n t i o n a l c o a l f i r e d power p l a n t s . The a i r h e a t e r c y c l e h a s an e f f i c i e n c y s i m i l a r t o t h e c o n v e n t i o n a l c y c l e . The p a r t l o a d s i m u l a t i o n o f a s i n g l e m o d u l e , a i r h e a t e r p l a n t was a l s o c o m p l e t e d , i n d i c a t i n g t h a t when o p e r a t i n g a t 50% l o a d , t h e g r o s s t h e r m a l e f f i c i e n c y d r o p s f r o m 36.8% t o 30 .8%. T a b l e o f C o n t e n t s A b s t r a c t i i L i s t o f T a b l e s i v L i s t o f F i g u r e s v A c k n o w l e d g e m e n t s v i i N o m e n c l a t u r e v i i i I . INTRODUCTION 1 1.1 P r e s s u r i z e d F l u i d i z e d Bed Power G e n e r a t i o n 1 1.2 D e s c r i p t i o n Of PFB C o m b i n e d C y c l e s 5 I I . REVIEW OF PREVIOUS WORK AND STUDY O B J E C T I V E S 7 2.1 S t a t u s Of I n d u s t r i a l R e s e a r c h 7 2 . 2 R e v i e w Of P u b l i s h e d M o d e l s A n d A n a l y s e s 13 2 . 3 O b j e c t i v e s A n d S c o p e Of S t u d y 14 I I I . DESIGN LOAD C Y C L E SIMULATION MODELS 16 3.1 M o d e l l i n g S t r a t e g i e s 16 3 .2 D e v e l o p m e n t Of The S u b - m o d e l s 21 3 . 2 . 1 T h e r m o d y n a m i c P r o p e r t y C a l c u l a t i o n s 21 3 . 2 . 2 C o m b u s t i o n Of C o a l I n A F l u i d i z e d Bed 24 3 . 2 . 3 H e a t E x c h a n g e r s And E f f e c t i v e n e s s 31 3 . 2 . 4 T u r b o m a c h i n e r y 34 3 . 2 . 5 Ne t E f f i c i e n c y And A u x i l i a r y Power L o s s e s . . . . 3 6 I V . DESIGN LOAD C Y C L E A N A L Y S I S R E S U L T S 37 4.1 S team Tube PFB C y c l e R e s u l t s 37 4 . 1 . 1 S team Tube C y c l e V a r i a t i o n s 38 4 . 1 . 2 I n t e r c o o l e d S team Tube C y c l e R e s u l t s 41 4 . 2 A i r H e a t e r C y c l e A n a l y s i s R e s u l t s 43 4 . 3 E f f e c t Of F u e l C o m p o s i t i o n On C y c l e P e r f o r m a n c e . . . 4 5 4 . 4 C o m p a r i s o n Of C y c l e R e s u l t s 46 V . PART LOAD MODELLING OF THE A I R HEATER C Y C L E 47 5.1 M o d e l l i n g S t r a t e g i e s A n d C o n s i d e r a t i o n s 47 5 . 1 . 1 T r a n s p o r t P r o p e r t i e s A n d H e a t T r a n s f e r C o e f f i c i e n t s 53 5 . 2 P a r t L o a d R e s u l t s 56 V I . CONCLUSIONS 58 6.1 A r e a s F o r F u r t h e r Work 59 BIBLIOGRAPHY 61 APPENDIX A - COMPUTER SUBROUTINES 108 APPENDIX B - THERMODYNAMIC AND TRANSPORT PROPERTIES 112 APPENDIX C - COMBUSTION C A L C U L A T I O N S 118 APPENDIX D - COMPONENT PERFORMANCE FORMULATIONS AND DATA 129 APPENDIX E - STEAM TUBE C Y C L E RESULTS 134 APPENDIX F - AIR HEATER C Y C L E RESULTS 138 APPENDIX G - P U L V E R I Z E D COAL BOILER A N A L Y S I S R E S U L T S . . . . 1 4 4 APPENDIX H - GAS TURBOMACHINE C H A R A C T E R I S T I C EQUATIONS . . 1 4 6 APPENDIX I - COMPUTER PROGRAMS 147 i v L i s t o f T a b l e s 1. P u b l i s h e d C y c l e A n a l y s i s R e s u l t s 64 2 . E q u i l i b r i u m D i s s o c i a t i o n P r o d u c t C o n c e n t r a t i o n s 65 3 . A n d e r s o n C r e e k L i m e s t o n e S u l p h u r R e t e n t i o n (13) 65 4 . S team T u b e C y c l e P e r f o r m a n c e C r i t e r i a 66 5 . E f f e c t o f C o a l T y p e on PFB C o m b i n e d C y c l e P e r f o r m a n c e 67 6 . C o m p a r i s o n o f Power G e n e r a t i o n E f f i c i e n c i e s 67 V L i s t o f F i g u r e s 1. R a n k i n e C y c l e 68 2. B r a y t o n C y c l e 69 3. T e m p e r a t u r e / E n t r o p y D i a g r a m s f o r t h e B r a y t o n a n d .Rankine C y c l e s 70 4. O i l F i r e d Combined C y c l e P l a n t S c h e m a t i c 71 5. P r e s s u r i z e d F l u i d i z e d Bed C o a l C o m b u s t o r 72 6. A i r H e a t e r PFB Combined C y c l e 73 7. Steam Tube PFB Combined C y c l e 74 8. Steam Tube C y c l e w i t h I n t e r c o o l i n g 75 9. Steam Tube C y c l e A n a l y s i s F l o w C h a r t 76 10. A i r H e a t e r C y c l e A n a l y s i s F l o w C h a r t 78 11. B o i l i n g P i n c h P o i n t i n a Heat R e c o v e r y Steam G e n e r a t o r 80 12.. Steam Tube C y c l e w i t h D o u b l e I n t e r c o o l i n g 81 13. Steam Tube C y c l e w i t h R e c u p e r a t i o n .....82 14. Steam Tube C y c l e w i t h One F e e d W a t e r H e a t e r 83 15. E f f i c i e n c y o f t h e B a s i c Steam Tube C y c l e 84 16. E f f e c t o f I n t e r c o o l i n g on Steam Tube C y c l e P e r f o r m a n c e 85 17. E f f e c t o f R e c u p e r a t i o n on Steam Tube C y c l e P e r f o r m a n c e 86 18. E f f e c t o f F e e d W a t e r H e a t i n g on Steam Tube C y c l e P e r f o r m a n c e 87 19. I n t e r c o o l e d Steam Tube C y c l e P e r f o r m a n c e 88 20. E f f e c t o f T u r b o m a c h i n e E f f i c i e n c y on t h e I n t e r c o o l e d Steam Tube C y c l e 89 21 . E f f e c t o f I n t e r c o o l e r E f f i c i e n c y on t h e I n t e r c o o l e d Steam Tube C y c l e ...89 22. E f f e c t o f B o i l e r P r e s s u r e on t h e I n t e r c o o l e d Steam Tube C y c l e 90 23. E f f e c t o f Steam S u p e r h e a t on t h e I n t e r c o o l e d Steam Tube C y c l e 90 24. E f f e c t o f Steam R e h e a t on t h e I n t e r c o o l e d Steam Tube C y c l e 91 25. E f f e c t o f A m b i e n t T e m p e r a t u r e on t h e I n t e r c o o l e d Steam Tube C y c l e 91 26. E f f e c t o f A m b i e n t P r e s s u r e on t h e I n t e r c o o l e d Steam Tube C y c l e 92 27. E f f e c t o f C o n d e n s e r T e m p e r a t u r e on t h e I n t e r c o o l e d Steam Tube C y c l e 92 28. E f f e c t o f E x c e s s A i r on t h e I n t e r c o o l e d Steam Tube C y c l e 93 29. A i r H e a t e r C y c l e P e r f o r m a n c e 94 30. E f f e c t o f Gas T u r b o m a c h i n e E f f i c i e n c y on A i r H e a t e r C y c l e P e r f o r m a n c e 95 31. E f f e c t o f Steam T u r b i n e E f f i c i e n c y on t h e A i r H e a t e r C y c l e 96 32. E f f e c t o f C o n d e n s e r T e m p e r a t u r e on t h e A i r H e a t e r C y c l e 96 33. C o m p a r i s o n o f C y c l e P e r f o r m a n c e w i t h T h r e e D i f f e r e n t v i F u e l s 97 3 4 . E f f e c t o f M o i s t u r e C o n t e n t In C o a l On C y c l e E f f i c i e n c y 98 3 5 . E f f e c t o f A s h C o n t e n t on C y c l e E f f i c i e n c y 98 3 6 . A x i a l C o m p r e s s o r P e r f o r m a n c e Map 1 99 3 7 . A x i a l C o m p r e s s o r P e r f o r m a n c e Map 2 100 3 8 . T u r b i n e P e r f o r m a n c e Map 1 101 3 9 . T u r b i n e P e r f o r m a n c e Map 2 102 4 0 . A i r H e a t e r C y c l e P a r t L o a d C y c l e A n a l y s i s F l o w C h a r t 103 4 1 . P a r t L o a d P e r f o r m a n c e o f A i r H e a t e r C y c l e 106 4 2 . V a r i a t i o n o f S t a c k Gas T e m p e r a t u r e a n d Dew P o i n t W i t h L o a d 107 v i i A c k n o w l e d g e m e n t The a u t h o r w i s h e s t o e x p r e s s h i s s i n c e r e g r a t i t u d e t o P r o f e s s o r R . L . E v a n s f o r h i s e n c o u r a g e m e n t a n d v a l u a b l e d i r e c t i o n t h r o u g h o u t t h i s s t u d y . T h a n k s a r e a l s o due t o P r o f e s s o r s P . G . H i l l , J . R . G r a c e , a n d E . G . Hauptmann a n d t o M r . R . W . W o o d l e y a n d D r . M . P a p i c a t B . C . H y d r o f o r t h e i r h e l p f u l a d v i c e . S u p p o r t f o r t h i s r e s e a r c h f rom B r i t i s h C o l u m b i a H y d r o a n d Power A u t h o r i t y i s g r a t e f u l l y a c k n o w l e d g e d . V I 1 1 N o m e n c l a t u r e G e n e r a l S y m b o l s Cp S p e c i f i c H e a t H E n t h a l p y h E n t h a l p y (mole b a s i s ) h F l u i d H e a t T r a n s f e r C o e f f i c i e n t H f o H e a t o f F o r m a t i o n Hf S a t u r a t e d L i q u i d E n t h a l p y Hg S a t u r a t e d V a p o u r E n t h a l p y k T h e r m a l C o n d u c t i v i t y M Mass F l o w M M o l e c u l a r W e i g h t m Mass M * R e d u c e d Mass F l o w N S h a f t S p e e d N * R e d u c e d S p e e d Nu N u s s e l t Number P P r e s s u r e P P r e s s u r e R a t i o Pr P r a n d t l Number Re R e y n o l d s Number R Gas C o n s t a n t Sf S a t u r a t e d L i q u i d E n t r o p y Sg S a t u r a t e d V a p o u r E n t r o p y S E n t r o p y s E n t r o p y (mole b a s i s ) T T e m p e r a t u r e U O v e r a l l H e a t T r a n s f e r C o e f f . Wp Pumping Power X Steam Q u a l i t y u V i s c o s i t y 77 I s e n t r o p i c E f f i c i e n c y p D e n s i t y Z A i r F u e l r a t i o k J / k g ° C k J / k g k J / k m o l e k J / ( s - m 2 K ) k J / k m o l e k J / k g k J / k g k w / ( m . ° C ) k g / s MPa k J / ( k m o l e • k J / k g ° C k J / k g ° C k J / k g ° C k J / k m o l e ° C ° C o r K k J / ( s - m 2 K ) k J / s k g / ( m - s ) k g / m 3 S u b s c r i p t s : d D e s i g n V a l u e o I n l e t C o n d i t i o n s 0 S t a n d a r d C o n d i t i o n s 1 F l u i d 1 2 F l u i d 2 m M i x t u r e 1 I . INTRODUCTION 1.1 P r e s s u r i z e d F l u i d i z e d Bed Power G e n e r a t i o n P r e s s u r i z e d f l u i d i z e d b e d (PFB) power g e n e r a t i o n w i t h c o m b i n e d c y c l e s a f f o r d s a u n i q u e o p p o r t u n i t y o f c o m b i n i n g h i g h g e n e r a t i o n e f f i c i e n c y w i t h low p o l l u t a n t e m i s s i o n s . In t h e p a s t d e c a d e , e x p e n s i v e a n d u n r e l i a b l e f o r e i g n o i l s u p p l i e s c a u s e d a s h i f t i n t h e power g e n e r a t i o n p r i o r i t i e s o f most w e s t e r n n a t i o n s . R e c e n t r e s e a r c h h a s c o n c e n t r a t e d , where p o s s i b l e , on t h e d e v e l o p m e n t o f d o m e s t i c r e s o u r c e s . T h i s ha s l e d t o d e v e l o p m e n t s i n n a t u r a l ga s a n d a l c o h o l f o r t r a n s p o r t a t i o n f u e l s , a n d t o r e n e w e d i n t e r e s t i n c o a l f i r e d power g e n e r a t i o n . C o n s t r a i n e d by t h e economy a n d g o v e r n m e n t r e g u l a t i o n s , new power g e n e r a t i o n f a c i l i t i e s must be b o t h c o s t c o m p e t i t i v e and a b l e t o m a i n t a i n a c c e p t a b l e p o l l u t a n t e m i s s i o n l e v e l s . In c o n v e n t i o n a l c o a l f i r e d power g e n e r a t i o n f a c i l i t i e s , t h e c o a l i s f i n e l y g r o u n d a n d b u r n e d i n p u l v e r i z e d c o a l b o i l e r s , g e n e r a t i n g power t h r o u g h a R a n k i n e o r s t e a m t u r b i n e c y c l e ( F i g u r e 1 ) . S team t u r b i n e s a r e u s e d t o g e n e r a t e power f r o m h i g h p r e s s u r e s t e a m . To e n h a n c e t h e p e r f o r m a n c e o f t h e c y c l e , r e h e a t and r e g e n e r a t i v e f e e d w a t e r h e a t i n g a r e commonly e m p l o y e d . T h e s e i n c r e a s e t h e e f f i c i e n c y a n d s p e c i f i c work o f t h e c y c l e , and t h u s d e c r e a s e t h e o v e r a l l c o s t o f e l e c t r i c i t y . C o n v e n t i o n a l c o a l c o m b u s t i o n s y s t e m s a r e a m a j o r s o u r c e o f t h r e e p o l l u t a n t s : SOx, NOx, a n d f l y a s h p a r t i c u l a t e s . S y s t e m s a r e c o m m e r c i a l l y a v a i l a b l e w h i c h r e d u c e t h e e m i s s i o n s o f e a c h p o l l u t a n t , bu t r e q u i r e power t o o p e r a t e a n d t h u s r e d u c e t h e o v e r a l l p l a n t 2 e f f i c i e n c y . P u l v e r i z e d c o a l power p l a n t s w i t h a d e q u a t e p o l l u t i o n c o n t r o l s t y p i c a l l y h a v e t h e r m a l e f f i c i e n c i e s a r o u n d 36%. A n o t h e r s y s t e m u s e d i n power g e n e r a t i o n i s t h e gas t u r b i n e , o r B r a y t o n c y c l e ( F i g u r e 2 ) . I n t h i s s y s t e m , a i r i s u s e d as t h e w o r k i n g f l u i d i n s t e a d o f s t eam a s i n t h e R a n k i n e c y c l e . F r e s h a i r i s c o m p r e s s e d t o a h i g h p r e s s u r e , u s u a l l y b e t w e e n 4 and 15 a t m o s p h e r e s , where t h e f u e l ( u s u a l l y n a t u r a l ga s o r o i l ) i s a d d e d a n d b u r n e d . " The h o t c o m b u s t i o n g a s e s a r e t h e n e x p a n d e d t h r o u g h a gas t u r b i n e t o g e n e r a t e p o w e r . By u s i n g b o t h t h e R a n k i n e a n d B r a y t o n c y c l e s t o g e t h e r i n a " c o m b i n e d c y c l e " , i t i s p o s s i b l e t o a c h i e v e h i g h e r e f f i c i e n c i e s t h a n w i t h e i t h e r c y c l e by i t s e l f . To p r o v i d e t h e h i g h e s t e f f i c i e n c y i n any power g e n e r a t i o n c y c l e , t h e a v e r a g e t e m p e r a t u r e o f h e a t a d d i t i o n must be m a x i m i z e d w h i l e m i n i m i z i n g t h e a v e r a g e t e m p e r a t u r e o f h e a t r e j e c t i o n . I n c o m b i n e d c y c l e s t h i s i s a c h i e v e d by c o m b i n i n g t h e h i g h c o m b u s t i o n t e m p e r a t u r e o f t h e gas t u r b i n e c y c l e , w i t h t h e low c o n d e n s e r t e m p e r a t u r e o f s t e a m t u r b i n e c y c l e s ( F i g u r e 3 ) . T h e i m p o r t a n t i n t e r a c t i o n b e t w e e n t h e s y s t e m s i s t h e t r a n s f e r o f w a s t e h e a t f r o m t h e B r a y t o n c y c l e t u r b i n e e x h a u s t t o t h e R a n k i n e c y c l e b o i l e r o r f e e d w a t e r . T h i s r e d u c e s t h e h e a t r e j e c t i o n t e m p e r a t u r e o f t h e ga s s y s t e m . T h e r e a r e some c o m b i n e d c y c l e power p l a n t s i n o p e r a t i o n i n E u r o p e , a c h i e v i n g t h e r m a l e f f i c i e n c i e s up t o 41%. T h e s e b u r n r e l a t i v e l y c l e a n f u e l s s u c h as o i l a n d n a t u r a l g a s , a v o i d i n g t h e t e c h n i c a l d i f f i c u l t i e s a s s o c i a t e d w i t h c o a l c o m b u s t i o n i n gas 3 t u r b i n e s . T h e most common s y s t e m i n u se i s t h e gas t u r b i n e c y c l e w i t h a h e a t r e c o v e r y s t eam g e n e r a t o r ( F i g u r e 4 ) . The ga s t u r b i n e o p e r a t e s a s i n t h e s i m p l e B r a y t o n c y c l e a n d a d d i t i o n a l power i s g e n e r a t e d by t h e s t e a m t u r b i n e . The most e f f i c i e n t m e t h o d o f d e r i v i n g h e a t f r o m c o a l i s by d i r e c t c o m b u s t i o n . O f t e n h o w e v e r , t h i s r e s u l t s i n an u n d e s i r a b l e amount o f p o l l u t i o n . V a r i o u s i n d i r e c t m e t h o d s a r e t h e r e f o r e b e i n g p u r s u e d . G a s i f y i n g c o a l t o low a n d medium BTU g a s e s , m o s t l y h y d r o g e n a n d c a r b o n m o n o x i d e , i s b e i n g c o n s i d e r e d f o r u se i n power g e n e r a t i o n . The s u l p h u r i n t h e g a s e s i s r e m o v e d p r i o r t o c o m b u s t i o n e l i m i n a t i n g t h e n e e d f o r f l u e ga s s c r u b b i n g . H o w e v e r , t h e t e c h n o l o g y r e q u i r e d t o remove t h e s u l p h u r w i t h o u t e x c e s s i v e c o o l i n g o f t h e g a s e s ha s n o t b e e n a d e q u a t e l y d e m o n s t r a t e d , a n d t h i s r e p r e s e n t s a s e r i o u s b a r r i e r t o t h e d e v e l o p m e n t o f g a s i f i e d c o a l power g e n e r a t i o n . C o n v e r s i o n o f c o a l t o s y n t h e t i c n a t u r a l g a s , l i q u i d f u e l s , a n d m e t h a n o l a r e a l s o b e i n g d e v e l o p e d , b u t t h e s e a r e u n l i k e l y power g e n e r a t i o n f u e l a l t e r n a t i v e s due t o t h e i r h i g h c o s t s . A l t e r n a t i v e l y , d i r e c t c o m b u s t i o n o f c o a l c a n be u s e d i f s t e p s a r e t a k e n t o r e d u c e p o l l u t i o n . I n f l u i d i z e d b e d s y s t e m s , t h e b u r n i n g c o a l p a r t i c l e s a r e s u s p e n d e d , o r " f l u i d i z e d " , by a i r f l o w i n g u p w a r d s . A s o r b e n t , u s u a l l y d o l o m i t e o r l i m e s t o n e , a n d made up m a i n l y o f c a l c i u m c a r b o n a t e , i s a d d e d t o t h e b e d t o r e d u c e s u l p h u r e m i s s i o n s . A s t h e c o a l i s b u r n e d , t h e s u l p h u r r e a c t s w i t h t h e s o r b e n t t o f o r m a s o l i d r e s i d u e ( c a l c i u m s u l p h a t e ) w h i c h c a n be d i s c a r d e d e a s i l y . D e p e n d i n g on t h e b e d t e m p e r a t u r e a n d p r e s s u r e a n d t h e s o r b e n t c h a r a c t e r i s t i c s , up t o 4 95% o f t h e c o a l bound s u l p h u r c a n be removed w i t h t h i s t e c h n i q u e (1). Heat i s removed from t h e bed by c o o l i n g t u b e s submerged i n the bed ( F i g u r e 5). NOx e m i s s i o n s a r e a l s o v e r y low b e c a u s e of the bed c o o l i n g and r e s u l t i n g low c o m b u s t i o n t e m p e r a t u r e s . F l u i d i z e d bed b o i l e r s have been u s e d i n t h e p a s t t o g e n e r a t e steam f o r c o n v e n t i o n a l R a n k i n e c y c l e s . T h e s e systems a r e known as a t m o s p h e r i c p r e s s u r e f l u i d i z e d beds b e c a u s e t h e beds a r e not p r e s s u r i z e d . The p e r f o r m a n c e o f t h e s e systems i s s i m i l a r t o t h a t of c o n v e n t i o n a l p u l v e r i z e d c o a l f a c i l i t i e s . S e v e r a l g r o u p s however, have been i n v e s t i g a t i n g t h e h i g h e r e f f i c i e n c y , combined c y c l e f l u i d i z e d bed s y s t e m s . In combined c y c l e s t h e f l u i d i z e d bed i s p r e s s u r i z e d and t a k e s t h e p l a c e of the c o m b u s t o r , and t h e gas t u r b i n e i s d r i v e n by t h e h o t c o m b u s t i o n g a s e s as i n t h e s t a n d a r d B r a y t o n c y c l e . Two d i f f e r e n t a p p r o a c h e s t o t h e steam s y s t e m have been p r o p o s e d . In the steam t u b e c y c l e , much of t h e c o m b u s t i o n h e a t i s t r a n s f e r r e d d i r e c t l y t o t h e steam s y s t e m w i t h i n t h e p r e s s u r i z e d f l u i d i z e d bed. A d d i t i o n a l h e a t i s t a k e n from t h e gas t u r b i n e e x h a u s t g a s e s . The r e s u l t i n g steam s u p e r h e a t c o n d i t i o n s a r e v e r y s i m i l a r t o t h o s e i n c o n v e n t i o n a l steam i n s t a l l a t i o n s . In t h e a i r h e a t e r c y c l e , t h e steam s y s t e m r e c e i v e s a l l of i t s h e a t from t h e t u r b i n e e x h a u s t g a s e s and i s t h u s a waste h e a t r e c o v e r y s y s t e m . Development o f PFB f a c i l i t i e s has been slow due t o t e c h n i c a l d i f f i c u l t i e s . The main p r o b l e m has been t h e e r o s i o n and c o r r o s i o n o f gas t u r b i n e b l a d e s by hot c o m b u s t i o n g a s e s and much e x p e r i m e n t a l work has been done t o d e v e l o p s y s t e m s w h i c h 5 p r o v i d e a r e a s o n a b l e t u r b i n e b l a d e l i f e . The c o m b i n e d a p p r o a c h o f u p g r a d i n g t h e b l a d e m a t e r i a l s , f i l t e r i n g t h e g a s e s a n d r e d u c i n g t h e t u r b i n e i n l e t t e m p e r a t u r e h a v e s u b s t a n t i a l l y r e d u c e d t h e p r o b l e m , a l t h o u g h much r e s e a r c h i s s t i l l b e i n g d o n e . A l o n g w i t h t h e i n c r e a s e d e f f i c i e n c y o f c o m b i n e d c y c l e s a m a j o r b e n e f i t f r o m p r e s s u r i z a t i o n o f t h e c o m b u s t o r i s a d r a m a t i c d e c r e a s e i n t h e s i z e o f t h e p l a n t . T h i s r e s u l t s i n a s i g n i f i c a n t c o s t s a v i n g w h i c h h e l p s t o o f f s e t t h e c o s t o f t h e new t e c h n o l o g y . 1.2 D e s c r i p t i o n Of PFB C o m b i n e d C y c l e s Two c l a s s e s o f c o m b i n e d c y c l e PFB s y s t e m s a r e i n v e s t i g a t e d i n t h i s s t u d y . The f i r s t , t h e A i r H e a t e r C o m b i n e d C y c l e ( F i g u r e 6) i s b a s e d on t h e C u r t i s s W r i g h t d e s i g n ( 2 ) . In t h i s c y c l e , a i r i s p r e s s u r i z e d t o a b o u t 7 a t m . One t h i r d o f t h e c o m p r e s s e d a i r i s t h e n u s e d a s c o m b u s t i o n a i r i n t h e P F B . The r e m a i n d e r i s u s e d t o c o o l t h e b e d . The two s t r e a m s o f ga s a r e r e c o m b i n e d a n d e n t e r a t u r b i n e . R e s i d u a l h e a t i n t h e t u r b i n e e x h a u s t g a s e s i s u s e d t o p r o d u c e s t e a m i n a h e a t r e c o v e r y s t e a m g e n e r a t o r a n d d r i v e a low p r e s s u r e s t e a m t u r b i n e . A p p r o x i m a t e l y 60% o f t h e power i s g e n e r a t e d i n t h e ga s t u r b i n e / c o m p r e s s o r , w i t h t h e r e m a i n d e r c o m i n g f r o m t h e s t e a m t u r b i n e . An a p p e a l i n g a s p e c t o f t h i s d e s i g n i s t h e r e d u c e d p a r t i c u l a t e l o a d i n g a c h i e v e d i n t h e gas t u r b i n e . B e c a u s e much o f t h e gas e n t e r i n g t h e t u r b i n e i s c l e a n a i r , t h e g a s e s do n o t 6 h a v e t o be f i l t e r e d t o t h e f i n e d e g r e e r e q u i r e d i n o t h e r PFB s y s t e m s . The s e c o n d c y c l e i s t h e S team T u b e PFB s y s t e m ( F i g u r e 7 ) . A m e r i c a n E l e c t r i c P o w e r , S t a l L a v a l , G e n e r a l E l e c t r i c , and t h e N a t i o n a l C o a l B o a r d o f G r e a t B r i t a i n h a v e been d e v e l o p i n g v a r i a t i o n s o f t h i s d e s i g n w h i c h c o o l s t h e b e d w i t h b o i l i n g w a t e r ( 1 , 5 ) . The c o m b u s t i o n a i r i s p r e s s u r i z e d a n d d i s t r i b u t e d among t h r e e P F B s , one e a c h f o r b o i l i n g , s u p e r h e a t i n g a n d r e h e a t i n g t h e s t e a m . A f t e r c o m b u s t i o n , t h e h o t g a s e s -are f i l t e r e d t o meet t h e t u r b i n e i n l e t s p e c i f i c a t i o n s . The t u r b i n e e x h a u s t g a s e s a r e p a s s e d t h r o u g h an e c o n o m i s e r , p r e h e a t i n g t h e s t e a m s y s t e m f e e d w a t e r . The s t e a m s y s t e m i s s i m i l a r t o c o n v e n t i o n a l p l a n t s , w i t h t h e e x c e p t i o n o f t h e e c o n o m i s e r h e a t f r o m t h e gas t u r b i n e a n d t h e l a c k o f f e e d w a t e r h e a t e r s . B o t h t h e a i r h e a t e r and s t e a m t u b e c y c l e s c a n be m o d i f i e d by i n c l u d i n g f e e d w a t e r h e a t e r s , r e c u p e r a t o r s , a n d i n t e r c o o l i n g . 7 I I . REVIEW OF PREVIOUS WORK AND STUDY O B J E C T I V E S 2.1 S t a t u s Of I n d u s t r i a l R e s e a r c h I n t h e p a s t d e c a d e , a number o f c o m p a n i e s a n d g o v e r n m e n t a g e n c i e s i n E u r o p e a n d t h e U n i t e d S t a t e s h a v e been d e v e l o p i n g t h e new t e c h n o l o g y n e c e s s a r y f o r PFB power g e n e r a t i o n . The m a i n a r e a s o f r e s e a r c h a r e i n h e a t t r a n s f e r , m a t e r i a l d u r a b i l i t y , a n d h o t gas c l e a n u p e q u i p m e n t . V a r i o u s c y c l e a r r a n g e m e n t s h a v e a l s o been m o d e l l e d by t h e i n d i v i d u a l g r o u p s . B r i e f d e s c r i p t i o n s o f t h e d e v e l o p m e n t s w i t h i n i m p o r t a n t r e s e a r c h g r o u p s f o l l o w . C u r t i s s W r i g h t C o r p o r a t i o n The C u r t i s s W r i g h t C o r p o r a t i o n (C-W) h a s been s p o n s o r e d by t h e U . S . D e p a r t m e n t o f E n e r g y t o d e s i g n , c o n s t r u c t , a n d o p e r a t e a c o m b i n e d c y c l e PFB p i l o t p l a n t (2). The p l a n t was t o d e m o n s t r a t e t h e a b i l i t y o f s u c h a s y s t e m t o p r o d u c e e l e c t r i c i t y e c o n o m i c a l l y and i n an e n v i r o n m e n t a l l y a c c e p t a b l e m a n n e r . The a i r h e a t e r c y c l e was c h o s e n f o r s e v e r a l r e a s o n s . F i r s t l y , most o f t h e c o m p o n e n t s r e q u i r e d f o r t h e a i r h e a t e r s y s t e m h a v e a l r e a d y b e e n t e c h n o l o g i c a l l y p r o v e n i n i n d u s t r i a l f a c i l i t i e s . A l s o , t h e h o t gas c l e a n u p i s much e a s i e r i n t h e a i r h e a t e r c y c l e t h a n t h e s t e a m t u b e c y c l e . T h e s e f a c t o r s w i l l r e s u l t i n l o w e r d e v e l o p m e n t c o s t s . S e c o n d l y , t h e a i r h e a t e r s y s t e m e f f i c i e n c y c l a i m e d by C-W i s h i g h e r t h a n t h e i r e s t i m a t e s f o r t h e s t e a m t u b e c y c l e s . F i n a l l y , b e c a u s e t h e s i z e o f t h e i n d i v i d u a l ga s t u r b i n e u n i t s i s l i m i t e d , s e v e r a l i n d e p e n d e n t u n i t s w i l l be r e q u i r e d t o 8 make up a u t i l i t y s i z e power g e n e r a t i n g s t a t i o n . T h i s m o d u l a r a p p r o a c h r e s u l t s i n e f f i c i e n t p a r t l o a d p e r f o r m a n c e . A 15 MW p i l o t p l a n t i s u n d e r c o n s t r u c t i o n a n d w i l l be i n o p e r a t i o n by t h e end o f 1983 (2) a n d C-W i s f o r e c a s t i n g t h e r m a l e f f i c i e n c y o f a p p r o x i m a t e l y 40%. The p r e d i c t e d g a s e o u s e m i s s i o n s f r o m t h e p l a n t a r e w e l l b e l o w EPA r e q u i r e m e n t s . B u r n i n g 3.1% s u l p h u r c o a l , t h e SOx and NOx e f f l u x w i l l be 1/4 a n d 1/3 o f t h e i r r e s p e c t i v e r e g u l a t o r y l i m i t s . C-W has i n v e s t i g a t e d t h e bed t u b e d e s i g n , h ot gas c l e a n u p e q u i p m e n t , and t u r b i n e b l a d e w e a r . E x p e r i m e n t s were p e r f o r m e d t o d e t e r m i n e t h e bed t u b e f i n c o n f i g u r a t i o n f o r maximum h e a t t r a n s f e r . Hot c o r r o s i o n and e r o s i o n t e s t s were a l s o d o n e , r e s u l t i n g i n t h e s e l e c t i o n o f an e c o n o m i c a l a l l o y w h i c h w i l l p r o v i d e an a c c e p t a b l e t u b e l i f e . A c c e p t a b l e t u r b i n e i n l e t 4 p a r t i c u l a t e c o n c e n t r a t i o n s have been a c h i e v e d u s i n g a s m a l l s c a l e h o t gas c l e a n u p a s s e m b l y . some f u r t h e r gas c l e a n u p w i l l be r e q u i r e d . T e s t s were a l s o p e r f o r m e d on t h e d u r a b i l i t y o f t u r b i n e b l a d e s . S e v e r a l m a t e r i a l s h a v e p r o v e n t o be s u i t a b l e and b l a d e l i v e s o f g r e a t e r t h a n 2 5 , 0 0 0 h o u r s a r e e x p e c t e d . G e n e r a l E l e c t r i c G e n e r a l E l e c t r i c C o r p o r a t i o n (GE) h a s been i n v e s t i g a t i n g a h i g h bed t e m p e r a t u r e (be tween 925 a n d 9 6 5 ° C ) , medium bed p r e s s u r e (10 B a r ) s t e a m t u b e c y c l e ( 1 ) . T h e s e t e m p e r a t u r e s r e p r e s e n t t h e l i m i t f o r n o r m a l f l u i d i z e d bed o p e r a t i o n . A t h i g h e r t e m p e r a t u r e s many c o a l s b e g i n t o s o f t e n a n d t h e p a r t i c l e s 9 a d h e r e t o e a c h o t h e r , p r e v e n t i n g f l u i d i z a t i o n . I t i s q u e s t i o n a b l e w h e t h e r t h e h i g h t e m p e r a t u r e s and t h e r e s u l t i n g e r o s i o n and c o r r o s i o n c a n be t o l e r a t e d by t h e t u r b i n e b l a d e s . GE has been c o n c e n t r a t i n g on t h e d e v e l o p m e n t o f t u r b i n e b l a d e m a t e r i a l s and h o t gas c l e a n u p s y s t e m s f o r t h e s t eam t u b e s y s t e m s . T h e y f o u n d t h a t t h e a l k a l i c o n c e n t r a t i o n s i n t h e PFB e x h a u s t g a s e s were h i g h e n o u g h t o p r e v e n t t h e s u c c e s s f u l use o f s t a n d a r d t u r b i n e b l a d e m a t e r i a l s ( 3 ) . GE has t h u s t e s t e d s e v e r a l new a l l o y s and i s w o r k i n g t o w a r d a t u r b i n e l i f e o f 2 5 , 0 0 0 h o u r s . T h e y h a v e a l s o s p o n s o r e d t e s t s a t t h e NCB L e a t h e r h e a d f a c i l i t y i n E n g l a n d t o d e t e r m i n e b e d - s i d e h e a t t r a n s f e r c o e f f i c i e n t s . S t a l - L a v a l , A m e r i c a n E l e c t r i c P o w e r , D e u t s c h e B a b c o c k  A n l a g e n S t a l - L a v a l T u r b i n AB ( S - L ) o f S w e d e n , t h e A m e r i c a n E l e c t r i c Power S e r v i c e C o r p o r a t i o n ( A E P ) , and B a b c o c k and W i l c o x o f G r e a t B r i t a i n c o m b i n e d t h e i r e x p e r t i s e i n 1976 t o d e s i g n and b u i l d t h e f i r s t c o m m e r c i a l s i z e PFB power g e n e r a t i o n p l a n t . S i n c e t h e n , B a b c o c k and W i l c o x ha s l e f t t h e g r o u p a n d ha s been r e p l a c e d by t h e West German c o m p a n y , D e u t c h e B a b c o c k A n l a g e n ( D B A ) . The o b j e c t i v e o f t h e p r o j e c t i s t o m o d i f y a power p l a n t i n B r i l l i a n t , O h i o ( t h e T i d d p l a n t ) t o i n c l u d e c o m b i n e d c y c l e PFB c o m b u s t i o n ( 4 ) . The r e s p o n s i b i l i t i e s o f t h e p r o j e c t have been d i v i d e d up b e t w e e n t h e t h r e e p a r t i e s . S - L w i l l s u p p l y t h e gas t u r b o m a c h i n e r y and h o t gas c l e a n u p e q u i p m e n t . DBA w i l l d e s i g n 1 0 a n d c o n s t r u c t t h e f l u i d i z e d bed b o i l e r . The p l a n t w i l l be e r e c t e d a n d o p e r a t e d by t h e A E P , who h a v e t h e c o n t r o l l i n g i n t e r e s t i n t h e e x i s t i n g f a c i l i t y . When c o m p l e t e d , t h i s w i l l be t h e l a r g e s t c o m b i n e d c y c l e PFB p l a n t b u i l t . An i n t e r c o o l e d s t e a m t u b e c y c l e i s p r o p o s e d f o r t h e T i d d p l a n t ( F i g u r e 8 ) . The S - L GT120 gas t u r b i n e w i l l be u s e d b e c a u s e o f i t s h i g h p r e s s u r e r a t i o (16 B a r ) a n d i t s low t u r b i n e i n l e t t e m p e r a t u r e o f 8 0 0 ° C . The low t e m p e r a t u r e r e s u l t s i n a l o w e r c y c l e e f f i c i e n c y b u t a l s o r e d u c e s t h e h o t gas c l e a n u p r e q u i r e m e n t s . The c o m b i n e d c y c l e T i d d . p l a n t e f f i c i e n c y w i l l be 33%, an i n c r e a s e o f 2% o v e r t h e o l d p l a n t o p e r a t i o n . The e f f i c i e n c y i s r e l a t i v e l y p o o r b e c a u s e o f t h e low s t e a m c o n d i t i o n s o f t h e 40 y e a r o l d t u r b i n e . W i t h a modern s t e a m t u r b i n e a n d an i m p r o v e d c y c l e a r r a n g e m e n t , t h e e f f i c i e n c y i s p r o j e c t e d t o be 39.4% a n d r e s u l t i n an 8% r e d u c t i o n i n t h e o v e r a l l c o s t o f e l e c t r i c i t y when c o m p a r e d t o new c o n v e n t i o n a l p l a n t s ( 5 ) . The p o l l u t a n t e m i s s i o n s a r e e x p e c t e d t o be w e l l b e l o w EPA r e s t r i c t i v e l i m i t s . An e x t e n s i v e r e s e a r c h and d e v e l o p m e n t p r o g r a m has been u n d e r t a k e n by t h e c o n s o r t i u m t o p r o v i d e d e s i g n d a t a and t o d e m o n s t r a t e t h e f e a s i b i l i t y o f t h e s u b s y s t e m s p r i o r t o c o n s t r u c t i o n o f t h e p l a n t . P r o t o t y p e h o t gas c l e a n u p and s o l i d s f e e d s y s t e m s have been c o n s t r u c t e d and t e s t e d w i t h s a t i s f a c t o r y r e s u l t s . T e s t s h a v e a l s o been c o m p l e t e d on t u r b i n e b l a d e and b e d h e a t e x c h a n g e r e r o s i o n a n d c o r r o s i o n . A l l o y s were s e l e c t e d t o p r o v i d e s a t i s f a c t o r y o p e r a t i n g l i v e s . A component t e s t f a c i l i t y , i n c l u d i n g a P F B , ha s been c o n s t r u c t e d a t Malmo S w e d e n . 11 T h i s f a c i l i t y i s u s e d t o t e s t t h e o p e r a t i o n o f t h e c o m p o n e n t s t o g e t h e r on a s m a l l s c a l e . A d e c i s i o n w i l l be made i n 1984 w h e t h e r t o p r o c e e d w i t h t h e m o d i f i c a t i o n o f t h e T i d d p l a n t . N a t i o n a l C o a l B o a r d ( U . K . ) Two i m p o r t a n t PFB r e s e a r c h f a c i l i t i e s h a v e been b u i l t i n E n g l a n d . The f i r s t , a t L e a t h e r h e a d , i s r u n by t h e C o a l U t i l i s a t i o n R e s e a r c h L a b o r a t o r y (CURL) ( 4 0 ) . I t i s l i m i t e d by i t s s m a l l s i z e , 0 . 9 X 0 . 6 m, a n d by i t s maximum p r e s s u r e o f o n l y . 6 B a r . Much e x p e r i m e n t a l work h a s b e e n d o n e a t t h i s f a c i l i t y , i n c l u d i n g s u l p h u r r e t e n t i o n , b e d t u b e d u r a b i l i t y , h o t g a s c l e a n u p e q u i p m e n t p e r f o r m a n c e , - a n d t u r b i n e b l a d e wear t e s t s . A l a r g e r f a c i l i t y was r e c e n t l y c o m m i s s i o n e d a t G r i m e t h o r p e . I t i s f u n d e d by t h e I n t e r n a t i o n a l E n e r g y A g e n c y ( I E A ) a n d i s o p e r a t e d by t h e N a t i o n a l C o a l B o a r d o f E n g l a n d (NCB) ( 4 1 ) . T h e G r i m e t h o r p e PFB i s 2 . 0 X 2 . 0 m a n d c a n o p e r a t e a t p r e s s u r e s f r o m 6 t o 12 b a r , b u t i t s t h e r m a l power r a t i n g (80 MWt) i s s t i l l w e l l s h o r t o f t h e 510 MWt c a p a c i t y o f t h e p r o p o s e d T i d d p l a n t . T h e s e f a c i l i t i e s a r e u s e d f o r r e s e a r c h a n d n e i t h e r h a s been c o u p l e d w i t h gas t u r b i n e s f o r power g e n e r a t i o n . B r i t i s h C o l u m b i a H y d r o a n d Power A u t h o r i t y B r i t i s h C o l u m b i a H y d r o a n d Power A u t h o r i t y (BCH) h a s b e e n 12 c o n s i d e r i n g a PFB f a c i l i t y t o b u r n H a t C r e e k c o a l f r o m t h e i r d e p o s i t s i n c e n t r a l B r i t i s h C o l u m b i a ( 1 3 ) . W o r k i n g w i t h C U R L , t h e y h a v e been g a t h e r i n g e x p e r i m e n t a l d a t a f o r an i n t e r c o o l e d s t e a m t u b e c y c l e s i m i l a r to . t h a t p r o p o s e d f o r t h e T i d d p l a n t . R e c e n t l y , b e c a u s e o f r e d u c e d demand f o r p o w e r , BCH has r e d u c e d t h e s p e e d o f d e v e l o p m e n t o f t h e H a t C r e e k PFB p r o j e c t . 13 2.2 Review Of P u b l i s h e d M o d e l s And A n a l y s e s S e v e r a l a n a l y s e s have been c o m p l e t e d , m o d e l l i n g t h e p e r f o r m a n c e of PFB combined c y c l e s . Most of t h e s e a n a l y s e s a r e made by o r g a n i s a t i o n s w h i c h have an i n t e r e s t i n s u p p o r t i n g one p a r t i c u l a r c y c l e a r r a n g e m e n t . I t i s d i f f i c u l t t o compare r e s u l t s however, b e c a u s e e a c h a n a l y s i s u s e s d i f f e r e n t o p e r a t i n g c o n d i t i o n s , assumes d i f f e r e n t component p e r f o r m a n c e s , and o f t e n b u r n s d i f f e r e n t o r u n i d e n t i f i e d c o a l s . Two r e c e n t p u b l i c a t i o n s have d e a l t w i t h t h e c o m p a r a t i v e p e r f o r m a n c e s o f t h e two main PFB c y c l e s . Brown, B o v e r i & Company, L t d (1) and G i l b e r t / C o m m o n w e a l t h (6) have b o t h r e l e a s e d r e p o r t s c o m p a r i n g t h e p e r f o r m a n c e o f t h e a i r h e a t e r and steam t u b e c y c l e s A summary of t h e i r r e s u l t s and o t h e r s a r e i n c l u d e d i n T a b l e 1. I t a p p e a r s t h a t t h e a i r h e a t e r c y c l e i s l e s s e f f i c i e n t t h a n t h e steam t u b e c y c l e , a l t h o u g h t h e a c t u a l d i f f e r e n c e i s u n c l e a r b e c a u s e of t h e l a r g e v a r i a t i o n between s t u d i e s . T h i s v a r i a t i o n o c c u r s i n s p i t e of t h e f a c t t h a t t h e c y c l e a r r a n g e m e n t s and o p e r a t i n g c o n d i t i o n s a p p e a r t o be i d e n t i c a l . T h e r e i s a l s o some v a r i a t i o n between t h e steam t u b e r e s u l t s . A major f a c t o r h e r e , may be t h e d i f f e r e n c e s i n c y c l e a r r a n g e m e n t and o p e r a t i n g c o n d i t i o n s . S e v e r a l a s p e c t s o f PFB combined c y c l e s y s t e m p e r f o r m a n c e r e m a i n u n c e r t a i n . The a i r h e a t e r and steam t u b e c y c l e e f f i c i e n c i e s a r e i n c o n s i s t e n t l y r e p o r t e d , w i t h e f f e c t s of d e s i g n a s s u m p t i o n s u n d e f i n e d . Even i n t h e c o m p a r a t i v e s t u d i e s , t h e d i f f e r e n c e i n p e r f o r m a n c e between t h e two c y c l e s v a r i e s g r e a t l y . 1 4 I t i s a l s o u n c l e a r w h e t h e r t h e a i r h e a t e r c y c l e h a s an a d v a n t a g e i n e f f i c i e n c y o v e r c o n v e n t i o n a l p u l v e r i z e d c o a l f a c i l i t i e s . A v a r i e t y o f s t eam t u b e c y c l e a r r a n g e m e n t s h a v e b e e n a n a l y s e d , b u t due t o d i f f e r i n g a s s u m p t i o n s a n d o p e r a t i n g c o n d i t i o n s , i t i s u n c l e a r w h i c h a r r a n g e m e n t i s t h e most e f f i c i e n t . 2 . 3 O b j e c t i v e s And S c o p e Of S t u d y The p r i m a r y o b j e c t i v e o f t h i s s t u d y i s t o e s t i m a t e a n d c o m p a r e t h e p e r f o r m a n c e o f two m a j o r c l a s s i f i c a t i o n s o f c o m b i n e d c y c l e p r e s s u r i z e d f l u i d i z e d b e d power g e n e r a t i o n f a c i l i t i e s . T h e s t u d y c o n c e n t r a t e s on a r e a s l e f t u n c l e a r by p r e v i o u s w o r k . In p a r t i c u l a r , f o u r s u b - o b j e c t i v e s were s e l e c t e d f o r t h i s p r o j e c t . • The p e r f o r m a n c e o f t h e a i r h e a t e r a n d s t e a m t u b e c y c l e s a r e o b j e c t i v e l y c o m p a r e d , u s i n g s i m i l a r o p e r a t i n g c o n d i t i o n s and c o n s t r a i n t s . P r e v i o u s work i n d i c a t e d t h a t t h e s t e a m t u b e c y c l e was more e f f i c i e n t , b u t t h e r e p o r t e d m a g n i t u d e o f t h e d i f f e r e n c e was n o t c o n s i s t e n t . B o t h c y c l e s a r e a l s o c o m p a r e d t o t h e e f f i c i e n c y o f a c o n v e n t i o n a l p u l v e r i z e d c o a l p l a n t . The e f f e c t o f d e s i g n p a r a m e t e r v a r i a t i o n i s a l s o e x a m i n e d , d e f i n i n g t h e s e n s i t i v i t y o f t h e s y s t e m p e r f o r m a n c e . • The p e r f o r m a n c e o f t h e s t e a m t u b e c y c l e s w i t h c o m p r e s s o r i n t e r c o o l i n g , r e c u p e r a t i o n , and r e g e n e r a t i v e f e e d w a t e r h e a t i n g ha s n o t b e e n s y s t e m a t i c a l l y s t u d i e d i n t h e p a s t . The d e s i g n c o n c e p t s i n p a s t work h a v e i n c l u d e d v a r i o u s c o m b i n a t i o n s o f t h e s e c o m p o n e n t s w i t h no o b j e c t i v e d e t e r m i n a t i o n o f t h e i r v a l u e o r o p t i m u m p l a c e m e n t . The 15 e f f e c t on e f f i c i e n c y o f e a c h component i s d e t e r m i n e d . S e v e r a l component c o m b i n a t i o n s were m o d e l l e d , t o d e t e r m i n e t h e op t imum c o n f i g u r a t i o n . • A n o t h e r o b j e c t i v e o f t h i s p r o j e c t i s t o d e t e r m i n e t h e p e r f o r m a n c e o f c o m b i n e d c y c l e PFB s y s t e m s when b u r n i n g Hat C r e e k c o a l . M o s t o f t h e c o a l s s i m u l a t e d f o r c o m b u s t i o n i n p u b l i s h e d m o d e l s a r e h i g h i n s u l p h u r (2-4%) , r e l a t i v e l y d r y , a n d low i n a s h . H a t C r e e k c o a l i s h i g h i n m o i s t u r e a n d a s h a n d ha s l e s s t h a n 1% s u l p h u r . The e f f e c t o f f u e l s e l e c t i o n a n d t r e a t m e n t on s y s t e m e f f i c i e n c y i s d e t e r m i n e d . The p e r f o r m a n c e o f Hat C r e e k c o a l a t s e v e r a l s t a g e s o f w a s h i n g and d r y i n g i s m o d e l l e d a l o n g w i t h a d r y , low a s h c o a l , I l l i n o i s #6. • The p a r t l o a d o p e r a t i o n i s a l s o o f i n t e r e s t when c o m p a r i n g t h e p e r f o r m a n c e o f t h e two c y c l e s . The p e r f o r m a n c e o f t h e a i r h e a t e r c y c l e i s m o d e l l e d o v e r a w ide r a n g e o f l o a d c o n d i t i o n s . 16 I I I . DESIGN LOAD C Y C L E SIMULATION MODELS 3.1 M o d e l l i n g S t r a t e g i e s C o m p u t e r p r o g r a m s were w r i t t e n t o s i m u l a t e t h e c o m b u s t i o n , t h e r m o d y n a m i c s , a n d h e a t t r a n s f e r f o r e a c h o f t h e PFB c y c l e s . S i n c e no u t i l i t y s i z e PFB c o m b i n e d c y c l e power g e n e r a t i o n f a c i l i t y i s i n o p e r a t i o n , t h e c o m p o n e n t s i m u l a t i o n s a r e b a s e d on p e r f o r m a n c e d a t a d e v e l o p e d f r o m t h e o r e t i c a l a n d e x p e r i m e n t a l w o r k . The c y c l e a n a l y s i s p r o g r a m s f o l l o w t h e f l o w o f t h e w o r k i n g f l u i d s ( a i r , c o m b u s t i o n g a s e s a n d s team) and c a l c u l a t e t h e t h e r m o d y n a m i c p r o p e r t i e s and t h e mass f l o w a t t h e e n t r a n c e a n d e x i t o f e a c h c o m p o n e n t . S team C y c l e A n a l y s i s A f l o w c h a r t f o r t h e s t e a m t u b e c y c l e a n a l y s i s i s shown i n F i g u r e 9 . The s t e a m t u b e c y c l e a n a l y s i s s t a r t s a t t h e c o m p r e s s o r i n l e t w i t h an a i r mass f l o w o f 1 k g / s . The p r o p e r t i e s o f t h e i n l e t a i r a r e c a l c u l a t e d f r o m t h e known a m b i e n t c o n d i t i o n s a n d an a s sumed 5% p r e s s u r e l o s s due t o s i l e n c i n g e q u i p m e n t . The a i r i s t h e n c o m p r e s s e d t o t h e c o m b u s t o r p r e s s u r e , u s i n g two gas c o m p r e s s o r s i n s e r i e s . The i s e n t r o p i c c o m p r e s s o r e f f i c i e n c i e s a r e u s e d t o d e t e r m i n e t h e o u t l e t t e m p e r a t u r e . The a i r i s t h e n p i p e d i n t o t h e PFB c o m b u s t o r s . I n o r d e r t o r e d u c e h e a t l o s s f r o m t h e s y s t e m , t h e h o t g a s e s l e a v i n g t h e c o m b u s t o r a r e t r a n s f e r r e d back t o t h e t u r b i n e s i n a c o - a x i a l p i p e i n s i d e t h e a i r d u c t i n g . The h e a t l o s t by t h e h o t g a s e s 1 7 l e a v i n g t h e c o m b u s t o r i s t h u s p i c k e d up by t h e a i r e n t e r i n g t h e c o m b u s t o r , m i n i m i s i n g t h e s y s t e m h e a t l o s s e s . The m a g n i t u d e o f t h e c o - a x i a l h e a t e x c h a n g e i s d e t e r m i n e d by t h e d i f f e r e n c e b e t w e e n t h e bed a n d t u r b i n e i n l e t t e m p e r a t u r e s , b o t h of w h i c h a r e s e t i n t h e d a t a i n p u t . The a i r i s m i x e d w i t h c o a l a n d s o r b e n t i n t h e f l u i d i z e d b e d , m a i n t a i n i n g 30% e x c e s s a i r . The p r o d u c t gas c o m p o s i t i o n and t h e r m o d y n a m i c p r o p e r t i e s a r e t h e n c a l c u l a t e d . The t e m p e r a t u r e o f t h e gas l e a v i n g t h e PFB i s s e t i n t h e i n p u t d a t a , a l l o w i n g t h e c o m b u s t i o n e x c e s s h e a t t o be c a l c u l a t e d . T h i s e x c e s s h e a t i s r e m o v e d by t h e b o i l i n g w a t e r i n t h e bed c o o l a n t t u b e s . The g a s e s t h e n e n t e r t h e H . P . t u r b i n e , w h i c h r u n s t h e H . P . c o m p r e s s o r . The e n t h a l p y d r o p a c r o s s t h e t u r b i n e i s t h u s s e t t o make t h e H . P . c o m p r e s s o r and t u r b i n e work e q u a l . The r e s u l t i n g p r e s s u r e d r o p t o t h e H . P . t u r b i n e o u t l e t i s d e t e r m i n e d w i t h t h e use of t h e i s e n t r o p i c e f f i c i e n c y . S i m i l a r l y , t h e L . P . t u r b i n e p o w e r s t h e L . P . c o m p r e s s o r , a n d t h e same c a l c u l a t i o n method i s u s e d t o d e t e r m i n e t h e o u t l e t c o n d i t i o n s . The power t u r b i n e r u n s an a l t e r n a t o r and g e n e r a t e s t h e gas s y s t e m power c o n t r i b u t i o n . The t u r b i n e o u t l e t p r e s s u r e i s d e t e r m i n e d f r o m t h e a m b i e n t p r e s s u r e and t h e p r e s s u r e d r o p a c r o s s t h e e c o n o m i s e r . The e c o n o m i s e r t r a n f e r s h e a t f r o m t h e t u r b i n e e x h a u s t g a s e s t o t h e s t e a m s y s t e m f e e d w a t e r . The e c o n o m i s e r o u t l e t gas t e m p e r a t u r e i s s e t t o 1 0 ° C a b o v e t h e a c i d dew p o i n t t o l i m i t t h e c o r r o s i o n i n t h e s t a c k . B e c a u s e o f t h e i n t e r d e p e n d e n c e o f t h e 18 power t u r b i n e and e c o n o m i s e r p e r f o r m a n c e , t h e a c i d dew p o i n t , and t h e p r e s s u r e d r o p a c r o s s t h e e c o n o m i s e r , t h e c o r r e c t s o l u t i o n i s r e a c h e d o n l y a f t e r s e v e r a l i t e r a t i o n s . The s t e a m s y s t e m i s c a l c u l a t e d n e x t . The ma in s y s t e m p r e s s u r e s ( H . P . t u r b i n e i n l e t , r e h e a t , and c o n d e n s e r ) a r e d e t e r m i n e d , a l o n g w i t h t h e maximum s t e a m t e m p e r a t u r e , i n t h e d a t a i n p u t . The s team mass f l o w , e c o n o m i s e r t e m p e r a t u r e r i s e , and component p r e s s u r e d r o p s a r e d e t e r m i n e d i t e r a t i v e l y . F i r s t , t h e H . P . s t e a m t u r b i n e i n l e t c o n d i t i o n s a r e c a l c u l a t e d , u s i n g t h e known s u p e r h e a t t e m p e r a t u r e ( 5 4 0 ° C ) and p r e s s u r e (160 B a r ) . The s t eam i s t h e n e x p a n d e d t o t h e r e h e a t p r e s s u r e and t h e o u t l e t c o n d i t i o n s a r e c a l c u l a t e d u s i n g t h e s team t u r b i n e i s e n t r o p i c e f f i c i e n c y . In t h e r e h e a t P F B , t h e s team i s h e a t e d back t o t h e maximum t e m p e r a t u r e . The r e h e a t e d s team i s t h e n u s e d t o r u n t h e L . P . t u r b i n e , w i t h t h e o u t l e t c o n d i t i o n s a l s o d e t e r m i n e d by t h e i s e n t r o p i c e f f i c i e n c y . The t u r b i n e e x h a u s t and c o n d e n s e r p r e s s u r e was s e t t o 6 . 7 5 KPa (2 i n Hg) f o r b o t h t h e s t eam t u b e and a i r h e a t e r c y c l e s . The s a t u r a t e d l i q u i d i s t h e n pumped up t o t h e b o i l e r p r e s s u r e by t h e f e e d w a t e r pump. The pump o u t l e t c o n d i t i o n s a r e c a l c u l a t e d , u s i n g an i s e n t r o p i c e f f i c i e n c y o f 81%. The w a t e r i s h e a t e d i n t h e e c o n o m i s e r , w i t h t h e h e a t g a i n e d m a t c h i n g t h a t l o s t by t h e c o m b u s t i o n g a s e s . The h e a t r e q u i r e d t o b o i l a n d s u p e r h e a t t h e e c o n o m i s e r e x h a u s t i s t h e n c a l c u l a t e d . The s t e a m mass f l o w i s c a l c u l a t e d f rom t h e PFB h e a t t r a n s f e r a v a i l a b l e f r o m t h e gas s y s t e m and t h e h e a t r e q u i r e d t o b o i l , s u p e r h e a t , and r e h e a t t h e s t e a m . The p u m p i n g power l o s s e s 19 t h r o u g h t h e e c o n o m i s e r , s u p e r h e a t e r , a n d r e h e a t e r , a r e c a l c u l a t e d as f r a c t i o n s o f t h e h e a t t r a n s f e r . A p u m p i n g power l o s s i s t h e amount o f power r e q u i r e d t o o v e r c o m e t h e f l u i d f r i c t i o n l o s s e s i n a g i v e n c o m p o n e n t . The c o r r e l a t i o n s u s e d t o e s t i m a t e t h e p u m p i n g power l o s s e s were d e v e l o p e d f r o m u t i l i t y s i z e d component d a t a o p e r a t i n g i n s i m i l a r c o n d i t i o n s . The power l o s s e s a r e t h e n c o n v e r t e d t o p r e s s u r e d r o p s . T h e p r e s s u r e d r o p a c r o s s t h e b o i l i n g s e c t i o n i s a s s u m e d t o be n e g l i g i b l e b e c a u s e o f t h e n a t u r a l c i r c u l a t i o n e f f e c t o f t h e b o i l i n g w a t e r . A f t e r t h e s t e a m f l o w a n d p r e s s u r e d r o p s a r e d e t e r m i n e d , t h e e n t i r e s t e a m s y s t e m i s r e c a l c u l a t e d i n t h e n e x t i t e r a t i o n . A i r H e a t e r C y c l e A n a l y s i s The a n a l y s i s o f . the a i r h e a t e r c y c l e gas s y s t e m ( F i g u r e 10) i s s i m i l a r t o t h e s t e a m t u b e c y c l e b u t h a s t h e f o l l o w i n g d i f f e r e n c e s . The c o m p r e s s o r a i r f l o w i s much h i g h e r t h a n i n t h e s t eam t u b e c y c l e w i t h 1 k g / s o f a i r u s e d f o r t h e c o m b u s t i o n a i r , a n d a p p r o x i m a t e l y 2 k g / s u s e d f o r b e d c o o l a n t . A f t e r a n a l y s i n g t h e a i r c o m p r e s s i o n a n d c o a l c o m b u s t i o n p r o c e s s e s , t h e r e q u i r e d mass f l o w o f c o o l i n g a i r i s e s t i m a t e d . T h e t u r b i n e i n l e t t e m p e r a t u r e i s d e t e r m i n e d by m i x i n g t h e c o o l i n g a i r w i t h t h e c o m b u s t i o n g a s e s . The t u r b i n e i n l e t t e m p e r a t u r e i s h o w e v e r , s e t i n t h e d a t a i n p u t a n d a N e w t o n - R a p h s o n i t e r a t i o n m e t h o d i s u s e d t o c o n v e r g e t o t h e f l o w r a t e r e s u l t i n g i n t h e p r e s c r i b e d t u r b i n e i n l e t t e m p e r a t u r e . The mass f l o w s t h r o u g h t h e a i r c o m p r e s s o r a r e t h e n c o r r e c t e d . T h e r e a r e two o t h e r d i f f e r e n c e s w i t h t h e a i r h e a t e r gas 20 s y s t e m . B e c a u s e t h e r e i s no c o n s i d e r a t i o n f o r i n t e r c o o l i n g , o n l y one gas c o m p r e s s o r a n d two gas t u r b i n e s a r e u s e d . T h e r e i s a l s o no c o - a x i a l h e a t e x c h a n g e c o n s i d e r e d . N e i t h e r o f t h e s e d i f f e r e n c e s h o w e v e r , a f f e c t t h e c y c l e p e r f o r m a n c e . The h e a t r e c o v e r y s t e a m g e n e r a t o r (HRSG) u s e d i n t h e a i r h e a t e r c y c l e ' i s q u i t e d i f f e r e n t f r o m t h e s t e a m t u b e s t eam s y s t e m . A l l o f t h e h e a t f o r t h e HRSG comes f rom t h e ga s t u r b i n e e x h a u s t g a s e s , w h e r e a s i n t h e s t e a m t u b e c y c l e , most o f t h e s t e a m h e a t i n g was done i n t h e P F B ' s . T h e r e i s o n l y one s t e a m t u r b i n e and no r e h e a t , a n d t h e o p e r a t i n g p r e s s u r e s and t e m p e r a t u r e s a r e much l o w e r t h a n i n t h e s t e a m t u b e s y s t e m . The HRSG c o n t a i n s a p r e b o i l e r w a t e r h e a t i n g s e c t i o n , a s t e a m drum a n d b o i l i n g l o o p , a n d a s u p e r h e a t e r t u b e b a n k . The p e r f o r m a n c e o f t h e h e a t r e c o v e r y s t e a m g e n e r a t o r d e p e n d s on t h e h e a t a v a i l a b l e i n t h e gas t u r b i n e e x h a u s t g a s e s , a n d t h e t e m p e r a t u r e a n d p r e s s u r e o f t h e s t e a m e n t e r i n g t h e s t e a m t u r b i n e . The c y c l e e f f i c i e n c y i m p r o v e s w i t h h i g h e r s u p e r h e a t t e m p e r a t u r e s and b o i l e r p r e s s u r e s . The o v e r a l l HRSG e f f e c t i v e n e s s i s s e t a t 80%, l i m i t i n g t h e s u p e r h e a t t e m p e r a t u r e . T h i s i s t o p r o v i d e a c c e p t a b l e h e a t t r a n s f e r s u r f a c e a r e a s and p r e s s u r e d r o p s . The b o i l e r p r e s s u r e i s a l s o c o n s t r a i n e d . A t h i g h p r e s s u r e s , t h e s t eam t u r b i n e e x h a u s t q u a l i t y w o u l d become t o o l o w , d a m a g i n g t h e t u r b i n e b l a d e s . The b o i l e r p r e s s u r e i s t h e r e f o r e s e t t o r e s u l t i n a s a f e e x h a u s t q u a l i t y o f 88%. A s e c o n d p r o b l e m may a l s o o c c u r w i t h t h e b o i l e r p r e s s u r e . The t e m p e r a t u r e o f t h e s a t u r a t e d l i q u i d e n t e r i n g t h e b o i l i n g z o n e may be v e r y c l o s e t o t h e t e m p e r a t u r e o f t h e g a s e s h e a t i n g t h a t 21 o f t h e HRSG ( F i g u r e 1 1 ) . T h i s i s c a l l e d t h e b o i l i n g p i n c h p o i n t . I f t h e t e m p e r a t u r e d i f f e r e n t i a l a t t h e p i n c h p o i n t becomes t o o s m a l l , t h e h e a t t r a n s f e r a r e a r e q u i r e m e n t s become t o o l a r g e . The e f f e c t i v e n e s s o f t h e f e e d w a t e r h e a t i n g s e c t i o n o f t h e HRSG i s t h e r e f o r e a l s o l i m i t e d t o 80%, i n o r d e r t o m a i n t a i n an a d e q u a t e t e m p e r a t u r e d i f f e r e n t i a l t h r o u g h o u t t h e HRSG. The method u s e d t o r e d u c e t h e f e e d w a t e r s e c t i o n e f f e c t i v e n e s s was t o l o w e r t h e b o i l e r p r e s s u r e . T h i s l o w e r s t h e b o i l i n g t e m p e r a t u r e a n d t h u s i n c r e a s e s t h e gap i n t h e p i n c h p o i n t . The r e s u l t i n g o p e r a t i n g c o n d i t i o n s p r o v i d e d t h e op t imum HRSG p e r f o r m a n c e . 3 .2 D e v e l o p m e n t Of The S u b - m o d e l s 3 . 2 . 1 T h e r m o d y n a m i c P r o p e r t y C a l c u l a t i o n s The t h e r m o d y n a m i c p r o p e r t i e s o f i n t e r e s t i n t h i s s t u d y i n c l u d e p r e s s u r e , t e m p e r a t u r e , e n t h a l p y , e n t r o p y , s p e c i f i c h e a t and d e n s i t y . T h e s e p r o p e r t i e s a r e d e t e r m i n e d a t t h e e n t r a n c e a n d e x i t o f e a c h c o m p o n e n t i n t h e c y c l e a n d a r e u s e d p r i m a r i l y i n h e a t b a l a n c e c a l c u l a t i o n s . A l l o f t h e p r o p e r t i e s a r e f o r m u l a t e d i n t e r m s o f two i n d e p e n d e n t p r o p e r t i e s . The s t e a m c a l c u l a t i o n s a r e b a s e d on an e x i s t i n g p r o g r a m w h i c h u s e s t e m p e r a t u r e a n d d e n s i t y a s t h e i n d e p e n d e n t p r o p e r t i e s . The a i r a n d g a s f o r m u l a t i o n s were d e v e l o p e d f o r t h i s s t u d y a n d p r e s s u r e a n d t e m p e r a t u r e a r e t h e i n d e p e n d e n t p r o p e r t i e s . In many s i t u a t i o n s one o f t h e i n d e p e n d e n t p r o p e r t i e s may n o t be known, a n d a n o t h e r p r o p e r t y s u c h as e n t h a l p y o r e n t r o p y may be g i v e n . F o r t h e s e s i t u a t i o n s 22 a s e t o f i t e r a t i n g r o u t i n e s was c r e a t e d . The c a l c u l a t i o n o f t h e r m o d y n a m i c f l u i d p r o p e r t i e s i s p e r f o r m e d i n t h e s u b r o u t i n e l i b r a r y . Some st e a m r o u t i n e s a r e v a l i d i n o n l y one z o n e , l i q u i d o r v a p o r , and t h u s a r e o n l y t o be u s e d i n s i t u a t i o n s where t h e c o n d i t i o n s a r e known. O t h e r r o u t i n e s a r e v a l i d t h r o u g h o u t ( w i t h t h e e x c e p t i o n o f t h e c r i t i c a l p o i n t r e g i o n ) . The p r o p e r t i e s c a l c u l a t e d a r e P,T,H,S,CP, and p. C a l c u l a t i o n s i n t h e gas r o u t i n e s d epend on t h e gas c o m p o s i t i o n b e i n g p r e v i o u s l y d e t e r m i n e d i n t h e c o m b u s t i o n c a l c u l a t i o n s . The c o m p o s i t i o n i s u p d a t e d e a c h t i m e a gas p r o p e r t y r o u t i n e i s u s e d , m a i n t a i n i n g e q u i l i b r i u m i n t h e SOx c o n c e n t r a t i o n s . The g a s c o m p o s i t i o n i s a l s o m o d i f i e d i n t h e r o u t i n e "MIX", where c o m b u s t i o n g a s e s a r e m i x e d w i t h a i r . A p p e n d i x A l i s t s t h e c o m p u t e r r o u t i n e s f o r t h e d i f f e r e n t f l u i d s and t h e i r p r o p e r t i e s . Thermodynamic P r o p e r t i e s o f Steam The t h e r m o d y n a m i c p r o p e r t y c a l c u l a t i o n s a r e b a s e d on an e q u a t i o n o f s t a t e d e v e l o p e d f o r s t e a m a nd a c c e p t e d by t h e I n t e r n a t i o n a l C o n f e r e n c e f o r t h e P r o p e r t i e s o f Steam ( I C P S ) i n 1968. The e q u a t i o n r e p r e s e n t s t h e H e l m h o l t z f r e e e n e r g y a s a f u n c t i o n o f t e m p e r a t u r e a nd d e n s i t y . The r e m a i n i n g p r o p e r t i e s a r e c a l c u l a t e d u s i n g t h e d e r i v a t i v e s o f t h e H e l m h o l t z f r e e e n e r g y and a p p r o p r i a t e t h e r m o d y n a m i c i d e n t i t i e s . T h e s e c a l c u l a t i o n s were c o n t a i n e d i n an e x i s t i n g c o m p u t e r r o u t i n e d e v e l o p e d by K e e n a n , K e y e s , H i l l , & Moore (7) and t h i s r o u t i n e 23 was u s e d as t h e c o r e f o r a l l o f t h e s t e a m t h e r m o d y n a m i c c o m p u t i n g . The r o u t i n e i t e r a t e s t o f i n d t h e d e n s i t y f rom t h e p r e s s u r e and t e m p e r a t u r e a n d t h e n c a l c u l a t e s t h e e n t h a l p y , e n t r o p y , d e n s i t y , s p e c i f i c h e a t s , and j o u l e - t h o m p s o n c o e f f i c i e n t . T h i s r o u t i n e must a l s o be g i v e n t h e s t a t e , l i q u i d o r v a p o r , i n w h i c h t h e s team e x i s t s a n d i s n o t v a l i d i n s i d e t h e two p h a s e r e g i o n . In o r d e r t o d e t e r m i n e t h e s a t u r a t i o n b o u n d a r i e s , t h e ICPS a p p r o v e d r e l a t i o n s h i p b e t w e e n s a t u r a t i o n t e m p e r a t u r e a n d p r e s s u r e (8) was i n c l u d e d i n t h e s u b r o u t i n e l i b r a r y a l o n g w i t h an i t e r a t i v e r e v e r s e s o l u t i o n . A n o t h e r r o u t i n e c a l c u l a t e s t h e s a t u r a t i o n p r o p e r t i e s o f e n t r o p y a n d e n t h a l p y when g i v e n p r e s s u r e a n d t e m p e r a t u r e . T h e s e t h r e e r o u t i n e s p e r m i t t h e t e s t i n g o f s t eam c o n d i t i o n and t h e c a l c u l a t i o n o f p r o p e r t i e s i n t h e s a t u r a t i o n z o n e . In a d d i t i o n , n i n e o t h e r r o u t i n e s ( A p p e n d i x A) were c r e a t e d t o c a l c u l a t e t h e r m o d y n a m i c p r o p e r t i e s when d i f f e r e n t p r o p e r t i e s were known. T h e r m o d y n a m i c P r o p e r t i e s o f A i r a n d G a s e s A i r a n d c o m b u s t i o n g a s e s a r e h a n d l e d s e p a r a t e l y i n t h e p r o g r a m m i n g . T h i s was t o a l l o w t h e c o n s i d e r a t i o n o f two p a r a l l e l f l o w s a n d t h e i r m i x i n g , a s i n t h e c a s e o f t h e A i r H e a t e r C y c l e . The m e t h o d o f p r o p e r t y c a l c u l a t i o n i n b o t h s e t s o f r o u t i n e s i s h o w e v e r , s i m i l a r . A i r i s d e f i n e d as d r y a n d an i d e a l m i x t u r e o f 76.71% n i t r o g e n a n d 23.29% o x y g e n (by mass ) ( 9 ) . The c o m b u s t i o n g a s e s 24 a r e t r e a t e d as i d e a l m i x t u r e s o f n i t r o g e n , c a r b o n d i o x i d e , w a t e r v a p o r , o x y g e n , s u l p h u r d i o x i d e , and s u l p h u r t r i o x i d e . C a r b o n m o n o x i d e and NOx a r e n o t i n c l u d e d b e c a u s e t h e i r c o n c e n t r a t i o n s a r e n o t l a r g e enough t o s i g n i f i c a n t l y a f f e c t t h e t h e r m o d y n a m i c c a l c u l a t i o n s . The c o n c e n t r a t i o n o f e a c h c o n s t i t u e n t i s d e t e r m i n e d i n t h e c o m b u s t i o n and gas m i x t u r e c a l c u l a t i o n r o u t i n e s . In t h e r a n g e of p r e s s u r e s a n d t e m p e r a t u r e s e n c o u n t e r e d i n t h i s s t u d y , i t was f o u n d t h a t t h e c o m p r e s s i b i l i t y f a c t o r was v e r y c l o s e t o u n i t y . T h i s p e r m i t s t h e use o f i d e a l gas m i x t u r e c a l c u l a t i o n s . S i n c e t h e m i x t u r e i s t r e a t e d as an i d e a l g a s , t h e e n t h a l p y a n d s p e c i f i c h e a t (Cp) f o r m u l a t i o n s a r e s o l e l y f u n c t i o n s o f t e m p e r a t u r e ( A p p e n d i x B ) . E n t r o p y i s g i v e n i n t e r m s o f b o t h t e m p e r a t u r e and p r e s s u r e . The m i x t u r e p r o p e r t i e s were b a s e d on t h e p u r e component p a r t i a l m o l a l p r o p e r t i e s . F o u r t h e r m o d y n a m i c p r o p e r t i e s ( H , S, C p , a n d p) a r e c a l c u l a t e d u s i n g p r e s s u r e and t e m p e r a t u r e a s t h e known p r o p e r t i e s . 3 . 2 . 2 C o m b u s t i o n Of C o a l In A F l u i d i z e d Bed The c o m b u s t i o n o f c o a l i n a P u l v e r i z e d C o a l B o i l e r ( " P C B " ) has b e e n e x t e n s i v e l y s t u d i e d . T h e r e a r e h o w e v e r , s e v e r a l s i g n i f i c a n t d i f f e r e n c e s b e t w e e n PCB and PFB c o m b u s t i o n . F i r s t , t h e c o m b u s t i o n t a k e s p l a c e a t a much l o w e r t e m p e r a t u r e , t y p i c a l l y 800 t o 9 0 0 ° C c o m p a r e d t o a p p r o x i m a t e l y 1 6 5 0 ° C f o r a p u l v e r i z e d c o a l b o i l e r . A l s o , due t o t h o r o u g h b e d m i x i n g , PFB 25 c o m b u s t i o n i s a l m o s t i s o t h e r m a l . In a PCB h o w e v e r , t h e gas t e m p e r a t u r e s r i s e and f a l l r a p i d l y a s t h e g a s e s p a s s t h r o u g h t h e b o i l e r . T h i s r e s u l t s i n i n c r e a s e d NOx e m i s s i o n s . S e c o n d l y , t h e mean p a r t i c l e d i a m e t e r i s much l a r g e r i n a P F B , t y p i c a l l y 600 urn a s c o m p a r e d t o 75 ^m f o r t h e c o n v e n t i o n a l s y s t e m s . T h i s r e s u l t s i n a l o n g e r c o m b u s t i o n t i m e f o r e a c h p a r t i c l e , and a f f e c t s t h e c o m b u s t i o n b o u n d a r y l a y e r t h i c k n e s s and gas c o m p o s i t i o n . T h i r d l y , t h e c o a l a s h i n a PCB l e a v e s t h e c o m b u s t i o n z o n e a s i t i s fo rmed and much o f t h e a s h (50-80%) r e m a i n s w i t h t h e f l u e g a s e s (10) a s i t p a s s e s t h r o u g h t h e b o i l e r . In a f l u i d i z e d bed h o w e v e r , t h e b u l k o f t h e a s h a n d s o r b e n t r e m a i n i n t h e c o m b u s t i o n zone a t t h e b e d t e m p e r a t u r e . The h o t a s h i s d r a i n e d f rom t h e P F B , r e s u l t i n g i n a h e a t l o s s . To m a i n t a i n a h i g h t h e r m a l e f f i c i e n c y , t h e h e a t c o n t a i n e d i n t h e s o l i d s i s t r a n s f e r r e d t o t h e b o i l e r f e e d w a t e r . F i n a l l y , a l o n g w i t h t h e s t a n d a r d c o m b u s t i o n r e a c t i o n s f o r c o a l , t h e r e i s t h e a d d i t i o n a l r e a c t i o n o f t h e c o a l bound s u l p h u r w i t h s o r b e n t . PFB c o m b u s t i o n c a l c u l a t i o n s must t h e r e f o r e d i f f e r s i g n i f i c a n t l y f rom PCB m e t h o d s . The c o a l p a r t i c l e s i n a PFB a r e s u p p o r t e d by t h e f l o w o f c o m b u s t i o n g a s e s m o v i n g u p w a r d s . A l t h o u g h a f l u i d i z e d bed c a n o p e r a t e i n s e v e r a l d i f f e r e n t m o d e s , t h e b u b b l i n g r e g i m e i s u s u a l l y f o u n d i n f l u i d i z e d c o a l c o m b u s t i o n . T h i s r e g i m e i s c h a r a c t e r i z e d by b u b b l e s o f r e l a t i v e l y p a r t i c l e f r e e a i r r i s i n g t h r o u g h d e n s e z o n e s o f c o a l p a r t i c l e s . The m i x i n g e f f e c t o f t h e b u b b l e s r e s u l t s i n a c o m b u s t i o n e f f i c i e n c y o f b e t w e e n 99 and 26 99 .9%, and a g r e a t e r h e a t t r a n s f e r c o e f f i c i e n t t h a n e q u i v a l e n t gas f l o w s ( 1 1 , 1 2 ) . The c o m b u s t i o n e f f i c i e n c y o f t h e f l u i d i z e d beds i n t h e p r o g r a m m i n g was s e t t o 99 .5%. C o m b u s t i o n c a l c u l a t i o n s a r e c a r r i e d o u t i n t h e l i b r a r y s u b r o u t i n e " B E D " . I n t h i s r o u t i n e , t h e mass o f c o a l r e q u i r e d f o r a p r e s e t a i r f u e l r a t i o i s a d d e d t o t h e s y s t e m . The amount of c a l c i u m c a r b o n a t e r e q u i r e d i s d e t e r m i n e d by t h e C a / S r a t i o . The ma in c o m b u s t i o n p r o d u c t s a r e c a l c u l a t e d u s i n g t h e p r e s e t c o m b u s t i o n e f f i c i e n c y and s u l p h u r r e t e n t i o n f a c t o r . The c o n c e n t r a t i o n s o f S 0 2 a n d S 0 3 a r e d e t e r m i n e d u s i n g t h e c r i t e r i o n o f t h e r m o d y n a m i c e q u i l i b r i u m . The h e a t r e l e a s e d t o t h e c o o l i n g t u b e s i s c a l c u l a t e d by s u b t r a c t i n g t h e h e a t o f t h e c o m b u s t i o n g a s e s , a s h , and s p e n t s o r b e n t f rom t h e e n e r g y c o n t a i n e d i n t h e raw c o a l , c o m b u s t i o n a i r , and f r e s h s o r b e n t . The h e a t a v a i l a b l e f o r t r a n s f e r t o t h e s team f e e d w a t e r i n t h e s o l i d s c o o l e r i s c a l c u l a t e d by t a k i n g t h e d i f f e r e n c e i n s o l i d e f f l u x h e a t c o n t e n t be tween t h e b e d t e m p e r a t u r e and t h e c o o l e r o u t l e t t e m p e r a t u r e . The c o o l e r o u t l e t t e m p e r a t u r e was s e t t o 2 0 0 ° C i n t h i s s t u d y . C o a l C o m b u s t i o n R e a c t a n t s a n d P r o d u c t s C o a l i s made up o f c o m p l e x m o l e c u l e s w h i c h c o n t a i n c a r b o n , h y d r o g e n , o x y g e n , w a t e r , a s h , s u l p h u r , a n d n i t r o g e n . A l s o i n c l u d e d i n some a n a l y s e s a r e s m a l l c o n c e n t r a t i o n s o f c h l o r i n e and c a r b o n d i o x i d e . The c h l o r i n e may be i m p o r t a n t a s a c o r r o s i v e a g e n t , b u t i s n o t t h e r m o d y n a m i c a l l y s i g n i f i c a n t and i s n o t i n c l u d e d i n t h e p r o g r a m m i n g . The c a r b o n d i o x i d e c a n be 27 d i v i d e d up b e t w e e n o x y g e n and c a r b o n , e l i m i n a t i n g t h e n e e d f o r a s e p a r a t e c o n s t i t u e n t c a t e g o r y . A s h i s made up o f a number o f c l a y s and m e t a l l i c o x i d e s . In o r d e r t o c a l c u l a t e t h e h e a t c o n t a i n e d i n a s h , t h e e n t h a l p y o f H a t C r e e k a s h was d e t e r m i n e d i n a r a n g e o f t e m p e r a t u r e s . I t was f o u n d t h a t , w i t h a 4% c o r r e c t i o n , a s h c o u l d be m o d e l l e d by p u r e s i l i c o n d i o x i d e ( A p p e n d i x B ) . The c h o i c e o f f u e l i s o f p r i m a r y i m p o r t a n c e t o t h e c o m b u s t i o n c a l c u l a t i o n s . F o u r v a r i a t i o n s o f H a t C r e e k c o a l were c o n s i d e r e d : As R e c e i v e d , w i t h no p r e p a r a t i o n ; W a s h e d , w i t h some a s h a n d m o i s t u r e r e m o v e d ; D r y ; a n d D r y a n d A s h F r e e . A s t a n d a r d e a s t e r n U . S . c o a l , I l l i n o i s #6 was a l s o s i m u l a t e d f o r c o m p a r a t i v e p u r p o s e s . A l t h o u g h t h e p e r f o r m a n c e o f e a c h c o a l was d e t e r m i n e d , t h e washed v e r s i o n was u s e d f o r t h e ma in a n a l y s e s a t t h e s u g g e s t i o n o f B . C . H y d r o . When b u r n e d , c o a l r e a c t s t o f o r m a l a r g e v a r i e t y o f p r o d u c t s , i n c l u d i n g d i f f e r e n t f o r m s o f NOx a n d S O x . I t was t h e r e f o r e n e c e s s a r y t o d e t e r m i n e w h i c h p r o d u c t s f o r m e d i n s i g n i f i c a n t c o n c e n t r a t i o n s . The p r o d u c t s w h i c h f o r m e d i n s m a l l q u a n t i t i e s a n d w h i c h a r e n o t o t h e r w i s e s i g n i f i c a n t were t h e n e l i m i n a t e d f r o m t h e c a l c u l a t i o n . A p r o g r a m was d e v e l o p e d t o d e t e r m i n e t h e e q u i l i b r i u m c o n c e n t r a t i o n s o f 10 c o m b u s t i o n p r o d u c t s a n d i n c l u d e d t h e e f f e c t s o f d i s s o c i a t i o n ( A p p e n d i x B ) . U s i n g a s h f r e e H a t C r e e k c o a l a s t h e f u e l a n d t y p i c a l PFB c o n d i t i o n s a s e t o f c o m p o n e n t c o n c e n t r a t i o n s were c a l c u l a t e d ( T a b l e 2 ) . The o n l y t h e r m o d y n a m i c a l l y s i g n i f i c a n t c o n s t i t u e n t s a r e c a r b o n d i o x i d e , 28 w a t e r , o x y g e n , and n i t r o g e n . T h e s e r e s u l t s do n o t a g r e e w i t h a v a i l a b l e e x p e r i m e n t a l d a t a w h i c h i n d i c a t e s n i t r i c o x i d e c o n c e n t r a t i o n s be tween 90 a n d 220 ppm a n d c a r b o n m o n o x i d e l e v e l s b e t w e e n 6 and 50 ppm ( 1 1 , 1 3 ) . I t i s t h e r e f o r e c o n c l u d e d t h a t t h e c o m b u s t i o n p r o c e s s i n a f l u i d i z e d b e d d i f f e r s s i g n i f i c a n t l y f r o m e q u i l i b r i u m . P a r t o f t h e r e a s o n f o r t h e d e p a r t u r e f r o m e q u i l i b r i u m i s due t o t h e b o u n d a r y l a y e r o f t h e p a r t i c l e where much o f t h e c o m b u s t i o n t a k e s p l a c e . T h i s z o n e i s h o t t e r and ha s l e s s o x y g e n and more c a r b o n d i o x i d e t h a n t h e b u l k f l o w . A c c o r d i n g l y , e q u i l i b r i u m i n t h i s z o n e d i f f e r s s i g n i f i c a n t l y f r o m t h e b u l k c a l c u l a t i o n . In p a r t i c u l a r , t h e c o n c e n t r a t i o n s o f c a r b o n m o n o x i d e and NOx w i l l be h i g h e r . A n o t h e r e f f e c t l e a d i n g t o n o n - e q u i l i b r i u m i s t h e s p e e d o f r e a c t i o n . Many o f t h e d i s s o c i a t i o n r e a c t i o n s a r e t o o s low a t t h e b e d t e m p e r a t u r e t o s i g n i f i c a n t l y a l t e r t h e gas c o m p o s i t i o n a f t e r l e a v i n g t h e c o m b u s t i o n z o n e . NOx f o r e x a m p l e , w i l l f o r m as a r e s u l t o f c o m b u s t i o n o f t h e n i t r o g e n i m p u r i t i e s i n t h e c o a l . Upon l e a v i n g t h e p a r t i c l e , t h e y w i l l n o t d i s s o c i a t e t o f o r m o x y g e n a n d n i t r o g e n e v e n t h o u g h t h e e q u i l i b r i u m c o n c e n t r a t i o n may be much l o w e r . I t was f o u n d t h a t a l t h o u g h t h e c o n c e n t r a t i o n s o f CO and NO d i f f e r e d f r o m e q u i l i b r i u m , t h e t o t a l e r r o r i n h e a t r e l e a s e c a u s e d by n e g l e c t i n g them i s 0.12% ( A p p e n d i x C ) . T h e s e c a l c u l a t i o n s assume t h e 50 ppm o f C O , and 250 ppm o f N O . S i n c e t h e s e two c o n s t i t u e n t s do n o t o t h e r w i s e a f f e c t t h e c y c l e p e r f o r m a n c e , t h e y were o m i t t e d f r o m t h e c a l c u l a t i o n s . S 0 2 a n d 29 S0 3 were i n c l u d e d b e c a u s e o f t h e i r h e a t g e n e r a t i o n a n d e f f e c t on t h e a c i d dew p o i n t . The t h e r m o d y n a m i c a l l y s i g n i f i c a n t c o m b u s t i o n p r o d u c t s a r e t h e r e f o r e : C0 2, H 20, N 2 , 0 2, S0 2, S0 3, A s h , CaC0 3 , C a S O q , and U n b u r n e d C o a l . S u l p h u r E m i s s i o n s SOx e m i s s i o n e s t i m a t e s a r e n o r m a l l y made t o p r e d i c t t h e p o l l u t i o n damage expected f r o m a p l a n t . Since SOx i s the most i m p o r t a n t c a u s e o f a c i d r a i n , much w o r k , i n c l u d i n g t h e d e v e l o p m e n t o f PFB power g e n e r a t i o n s y s t e m s , ha s been done t o r e d u c e e m i s s i o n s . S i n c e i t i s known t h a t SOx i s r e d u c e d i n PFB s y s t e m s , a n d s i n c e t h i s s t u d y h a s b e e n u n d e r t a k e n t o s t u d y c y c l e p e r f o r m a n c e , s u l p h u r e m i s s i o n s a r e c o n s i d e r e d o n l y b e c a u s e o f t h e i r e f f e c t on s y s t e m p e r f o r m a n c e . The c a l c u l a t i o n o f SOx gas c o n c e n t r a t i o n s a r e a l s o i m p o r t a n t b e c a u s e t h e y d e t e r m i n e t h e a c i d dew p o i n t o f t h e s t a c k g a s e s . I f t h e s t a c k gas t e m p e r a t u r e were t o d r o p b e l o w t h e a c i d dew p o i n t , t h e s u l p h u r i c a c i d w o u l d s t a r t t o c o n d e n s e o n t o t h e s t a c k s u r f a c e , c a u s i n g c o r r o s i o n . A l t h o u g h some a c i d c o n d e n s a t i o n may be t o l e r a t e d , t h e dew p o i n t i s an i m p o r t a n t c r i t e r i o n on w h i c h t h e minimum s t a c k gas t e m p e r a t u r e may be b a s e d . A l s o , t h e r e a c t i o n s o f s u l p h u r t o s u l p h u r d i o x i d e , s u l p h u r t r i o x i d e a n d c a l c i u m s u l p h a t e a d d t o t h e h e a t o f c o m b u s t i o n a n d t h e i r e f f e c t s h o u l d be c o n s i d e r e d i n t h e h e a t c a l c u l a t i o n s . When c o a l i s b u r n e d , t h e s u l p h u r i s c o n v e r t e d t o e i t h e r 30 s u l p h u r d i o x i d e ( S 0 2 ) o r s u l p h u r t r i o x i d e ( S 0 3 ) . The e q u i l i b r i u m c o n c e n t r a t i o n o f S 0 3 i s e n h a n c e d by b o t h low t e m p e r a t u r e s and h i g h p r e s s u r e s , and a c c o u n t s f o r a b o u t 5% o f t h e t o t a l SOx a t t y p i c a l bed c o n d i t i o n s . A f t e r c o m b u s t i o n , t h e s u l p h u r g a s e s come i n t o c o n t a c t w i t h t h e s o r b e n t p a r t i c l e s and some o f t h e s u l p h u r i s a b s o r b e d . The s u l p h u r r e t e n t i o n v a r i e s f r o m 50% t o 95% d e p e n d i n g on t h e c o a l , f l u i d i z i n g c o n d i t i o n s , a n d s o r b e n t t y p e and q u a n t i t y . S o r b e n t p e r f o r m a n c e was d e t e r m i n e d e x p e r i m e n t a l l y a t t h e CURL f a c i l i t i e s i n E n g l a n d u s i n g Hat C r e e k c o a l a n d A n d e r s o n C r e e k l i m e s t o n e ( T a b l e 3 ) . The mass of s o r b e n t a d d e d i s g i v e n i n t e r m s of t h e r a t i o of t h e number o f m o l e s o f s o r b e n t c a l c i u m t o c o a l s u l p h u r ( C a / S ) i n t h e b e d . The r e s u l t s i n d i c a t e a low r e a c t i v i t y c o m p a r e d t o d o l o m i t e w h i c h t y p i c a l l y r e a c h e s 95% s u l p h u r r e t e n t i o n a t 2:1 C a / S ( 1 4 ) . A n d e r s o n C r e e k l i m e s t o n e i s t h e b e s t s o r b e n t n e a r t h e p r o p o s e d s i t e , and i t i s l i k e l y t h a t t h i s l i m e s t o n e ( A p p e n d i x C) w o u l d be u s e d . A C a / S r a t i o o f 4:1 was u s e d i n t h e c y c l e a n a l y s e s , r e s u l t i n g i n a s u l p h u r r e t e n t i o n o f 8 1 . 5 % . The s u l p h u r g a s e s n o t a b s o r b e d by t h e s o r b e n t l e a v e t h e bed and c o o l as t h e y p a s s t h r o u g h t h e t u r b i n e s a n d h e a t e x c h a n g e r s . A t t h e l o w e r t e m p e r a t u r e s , SOx e q u i l i b r i u m s h i f t s t o w a r d S 0 3 a n d t h e e q u i l i b r i u m i n t h e s t a c k r e s u l t s i n a p p r o x i m a t e l y 95% S 0 3 . I t was f o u n d t h a t t h e a c i d dew p o i n t was d e p e n d e n t o n l y on t h e c o n c e n t r a t i o n o f S 0 3 i n t h e gas ( 1 5 ) . A c u r v e was f i t t e d t o t h e a v a i l a b l e d a t a , r e s u l t i n g i n a c o r r e l a t i o n b e t w e e n S 0 3 c o n t e n t and a c i d dew p o i n t ( A p p e n d i x C ) . 31 T h e r e a r e s e v e r a l r e a c t i o n s w h i c h c o n t r o l t h e c o n v e r s i o n o f S 0 2 t o S 0 3 , some o f w h i c h a r e a s s i s t e d by c a t a l y s t s p r e s e n t i n t h e a s h ( 1 6 ) . The a c t u a l c o n c e n t r a t i o n s of t h e s u l p u r g a s e s c a n n o t be r e l i a b l y e s t i m a t e d due t o t h e a c t i o n o f t h e s e c a t a l y s t s and t h e i m p r e c i s e t i m e a n d t e m p e r a t u r e h i s t o r i e s . The n o n - e q u i l i b r i u m p r o c e s s e s r e s u l t i n l o w e r a c i d dew p o i n t s . The e q u i l i b r i u m c o n c e n t r a t i o n s were t h e r e f o r e u s e d i n t h i s s t u d y , r e s u l t i n g i n c o n s e r v a t i v e e s t i m a t e s o f t h e a c i d dew p o i n t . T h i s method r e s u l t s i n a c l o s e a g r e e m e n t w i t h t h e minimum s t a c k gas t e m p e r a t u r e g i v e n t o BC H y d r o by C U R L . 3 . 2 . 3 H e a t E x c h a n g e r s And E f f e c t i v e n e s s The h e a t e x c h a n g e r e f f e c t i v e n e s s i s t h e f r a c t i o n o f t h e maximum p o s s i b l e h e a t w h i c h i s a c t u a l l y t r a n s f e r r e d . U s u a l l y , t h e c y c l e e f f i c i e n c y i s e n h a n c e d by i n c r e a s i n g t h e e f f e c t i v e n e s s . A t h i g h e f f e c t i v e n e s s e s h o w e v e r , t h e t e m p e r a t u r e d i f f e r e n t i a l be tween t h e h o t and c o l d f l u i d s d r o p s , r e q u i r i n g l o n g e r t u b e l e n g t h s and more h e a t t r a n s f e r a r e a . The o v e r a l l c o s t o f e l e c t r i c i t y r i s e s b e c a u s e o f t h e i n c r e a s e d c a p i t a l c o s t o f t h e h e a t e x c h a n g e r , and t h e l a r g e p r e s s u r e d r o p due t o f l u i d f r i c t i o n . The opt imum h e a t e x c h a n g e r e f f e c t i v e n e s s i s o f t e n a r o u n d 80%. In t h i s s t u d y , t h e p r e s s u r e d r o p a c r o s s h e a t e x c h a n g e r s i s a s sumed t o be l i n e a r l y r e l a t e d t o t h e h e a t t r a n s f e r l o a d . T h u s as t h e h e a t t r a n s f e r i n c r e a s e s , t h e a l l o w e d p r e s s u r e d r o p 32 i n c r e a s e s . T h i s m e t h o d w i l l p r o v i d e a r e a s o n a b l e c o m p a r i s o n o f c y c l e p e r f o r m a n c e u s i n g d i f f e r e n t h e a t e x c h a n g e r s i n s i m i l a r c y c l e s . The c o r r e l a t i o n s b e t w e e n p r e s s u r e d r o p a n d h e a t t r a n s f e r a r e i n c l u d e d i n A p p e n d i x C . T h e s e c o r r e l a t i o n s a r e n o t v a l i d a t h i g h ( g r e a t e r t h a n 85%) e f f e c t i v e n e s s e s . S team Tube C y c l e O p t i o n a l H e a t E x c h a n g e r s I n t e r c o o l e r s a n d R e c u p e r a t o r s The i n t e r c o o l e r c o o l s t h e a i r a f t e r i t l e a v e s t h e low p r e s s u r e c o m p r e s s o r , i n c r e a s i n g t h e a i r d e n s i t y . T h i s d e c r e a s e s t h e h i g h p r e s s u r e c o m p r e s s o r work and t h e r e f o r e t e n d s t o i n c r e a s e t h e c y c l e e f f i c i e n c y . A n e g a t i v e e f f e c t o f t h e i n t e r c o o l e r i s t o r e d u c e t h e c o m p r e s s o r e x h a u s t t e m p e r a t u r e , r e s u l t i n g i n h i g h e r f u e l c o n s u m p t i o n . In t h e B r a y t o n c y c l e , t h i s may l e a d t o a d e c r e a s e i n e f f i c i e n c y . In c o m b i n e d c y c l e s , i n t e r c o o l i n g c a n be done i n one o r two s t a g e s ( F i g u r e s 8 , 1 2 ) . The f i r s t i n t e r c o o l e r t r a n s f e r s h e a t f r o m t h e L . P . c o m p r e s s o r e x h a u s t a i r t o t h e s t e a m c y c l e f e e d w a t e r . C o o l i n g w a t e r may be u s e d i n t h e o p t i o n a l s e c o n d s t a g e t o f u r t h e r l o w e r t h e a i r t e m p e r a t u r e . R e c u p e r a t o r s t r a n s f e r h e a t f r o m t h e t u r b i n e e x h a u s t g a s e s t o t h e a i r e n t e r i n g t h e c o m b u s t o r ( F i g u r e 1 3 ) . T h e y a r e p a r t i c u l a r l y u s e f u l i n B r a y t o n c y c l e s b e c a u s e t h e y u t i l i s e t h e o t h e r w i s e w a s t e d t u r b i n e e x h a u s t h e a t t o r e d u c e f u e l c o n s u m p t i o n . I n c o m b i n e d c y c l e a p p l i c a t i o n s , t h e i r u s e f u l n e s s i s l e s s c e r t a i n b e c a u s e t h e r e c u p e r a t o r h e a t c a n be a l t e r n a t e l y u s e d t o g e n e r a t e s t e a m . 33 The e f f e c t s of s i n g l e and double i n t e r c o o l i n g and r e c u p e r a t i o n were determined by modelling the i n d i v i d u a l components i n the steam c y c l e . The heat exchanger e f f e c t i v e n e s s of a l l recuperators and i n t e r c o o l e r s i n c l u d e d i n the programming was 80%. Regenerative Feed Water Heaters Regenerative feed water heaters i n c o n v e n t i o n a l p l a n t s are used to r a i s e the temperature of the feed water p r i o r to e n t e r i n g the b o i l e r . The average temperature of heat a d d i t i o n f o r the c y c l e i s thus i n c r e a s e d , r e s u l t i n g in a higher e f f i c i e n c y . The h e a t i n g i s ' accomplished by mixing the feed water with a small amount of steam bled from the t u r b i n e s (Figure 14). Since some of the steam i s used to heat water i n s t e a d of produce power, the s p e c i f i c work i s lowered. T h i s means that a l a r g e r b o i l e r i s r e q u i r e d f o r the same power output. In c o n v e n t i o n a l p l a n t s , s e v e r a l heaters are commonly used i n s e r i e s . To provide maximum e f f i c i e n c y , the t u r b i n e bleed pressures are set to e q u a l l y space the heater o u t l e t temperatures between the b o i l e r s a t u r a t i o n temperature and the economiser o u t l e t (17). The l o c a t i o n of feed water heaters i n PFB c y c l e designs i s o f t e n l e s s than optimum. S e v e r a l c y c l e p r o p o s a l s have been p u b l i s h e d which place the feed water heaters upstream of the economiser. T h i s r e s u l t s i n a lower mean temperature d i f f e r e n t i a l across the economiser and e i t h e r a higher stack gas temperature, a l a r g e r economiser pressure drop, or a more 34 e x p e n s i v e h e a t e x c h a n g e r . F e e d w a t e r h e a t e r s i n PFB c y c l e s s h o u l d h e a t t h e w a t e r e x i t i n g f r o m t h e e c o n o m i s e r . I n t h e PFB s y s t e m s most o f t h e w a t e r h e a t i n g i s done by t h e e c o n o m i s e r and few f e e d w a t e r h e a t e r s a r e r e q u i r e d . A maximum o f one f e e d w a t e r h e a t e r i s m o d e l l e d i n t h e s t e a m t u b e c y c l e s . F o r s i m p l i c i t y , open f e e d w a t e r h e a t e r s a r e u s e d . Due t o t h e d a n g e r o f f e e d w a t e r s u r g i n g i n t o t h e s t e a m t u r b i n e i t i s r e c o g n i s e d t h a t c l o s e d f e e d w a t e r h e a t e r s w o u l d be n e c e s s a r y i n a c o m m e r c i a l p l a n t . T h i s w o u l d r e s u l t i n s l i g h t l y l o w e r e f f i c i e n c i e s t h a n t h o s e p r e d i c t e d by t h i s s t u d y . T h e f e e d w a t e r h e a t e r p r e s s u r e d r o p s a r e e x p e c t e d t o be s m a l l i n c o m p a r i s o n t o t h e o t h e r b o i l e r l o s s e s . 3 . 2 . 4 T u r b o m a c h i n e r y The t u r b o m a c h i n e s i n c l u d e d i n t h i s s t u d y a r e ga s a n d s t e a m t u r b i n e s , gas c o m p r e s s o r s , a n d pumps . In e a c h c a s e i t i s i m p o r t a n t t o d e t e r m i n e t h e d e s i g n i n l e t c o n d i t i o n s , p r e s s u r e r a t i o , and m a c h i n e e f f i c i e n c y . S p e c i f i c d a t a f r o m t h e l i t e r a t u r e was u s e d t o e s t i m a t e d e s i g n p a r a m e t e r s . The c o m p r e s s o r e f f i c i e n c y i s d e p e n d e n t on p r e s s u r e r a t i o a n d m a c h i n e s i z e . I t h a s been a r g u e d (18) f o r t h e s t e a m t u b e c y c l e s , t h a t t h e c o m p r e s s o r e f f i c i e n c y w i l l n o t c h a n g e w i t h d e s i g n p r e s s u r e r a t i o . A l t h o u g h l o w e r i n g t h e p r e s s u r e r a t i o w o u l d i n h e r e n t l y i m p r o v e t h e e f f i c i e n c y , t h e power and s i z e o f t h e m a c h i n e w i l l a l s o d e c r e a s e r e s u l t i n g i n o f f s e t t i n g l o s s e s . 35 A t y p i c a l e f f i c i e n c y o f 86% (19) was u s e d i n t h e s t eam t u b e c y c l e s . E s t i m a t e s f o r t h e s t e a m t u b e c y c l e gas t u r b i n e e f f i c i e n c y were c o m p i l e d f r o m p u b l i s h e d d a t a ( 1 8 , 2 0 ) , and an e q u a t i o n was f i t t e d t o t h e d a t a ( A p p e n d i x D ) . F o r t h e a i r h e a t e r c y c l e , t h e c o m p r e s s o r power d o e s n o t d e c r e a s e w i t h p r e s s u r e i n t h e same manner a s i n t h e s t e a m t u b e s y s t e m . S i n c e t h e ga s t u r b i n e power i s a l i m i t i n g f a c t o r i n t h e c y c l e c a p a c i t y , t h e s i z e o f t h e ga s t u r b i n e s and c o m p r e s s o r a r e u s u a l l y m a x i m i z e d . The r e s u l t i n g f o r m u l a t i o n was b a s e d on t h e b e s t c o m p r e s s o r e f f i c i e n c y a t g i v e n p r e s s u r e r a t i o s . U n f o r t u n a t e l y , l i t t l e d a t a was a v a i l a b l e , a n d t h e r e i s some u n c e r t a i n t y i n t h e f o r m u l a t i o n . T h e a i r h e a t e r gas t u r b i n e e f f i c i e n c y was s e t a t 88% f o r a l l p r e s s u r e r a t i o s . The s team t u r b i n e u s e d i n a l l o f t h e s t e a m t u b e c y c l e s o p e r a t e d a t t h e same c o n d i t i o n s . The e f f i c i e n c y was s e t a t 89.5% ( 1 3 ) . The h e a t r e c o v e r y s t e a m t u r b i n e u s e d i n t h e a i r h e a t e r c y c l e c a n o p e r a t e u n d e r v a r i o u s p r e s s u r e r a t i o s w i t h d i f f e r e n t e f f i c i e n c i e s . The o p e r a t i n g e f f i c i e n c i e s o f two t u r b i n e s were p r o v i d e d by G . E . (21) a n d a l i n e a r c o r r e l a t i o n w i t h s u p e r h e a t t e m p e r a t u r e was d e v e l o p e d . The t u r b o m a c h i n e t e f f i c i e n c y c o r r e l a t i o n s a r e i n c l u d e d i n A p p e n d i x D . Due t o t h e u n c e r t a i n t y , s e n s i t i v i t y s t u d i e s were c o m p l e t e d f o r t h e t u r b i n e a n d c o m p r e s s o r e f f i c i e n c i e s . The gas t u r b i n e i n l e t t e m p e r a t u r e i s an i m p o r t a n t c y c l e p a r a m e t e r , h a v i n g a l a r g e i m p a c t on t h e p l a n t t h e r m a l e f f i c i e n c y . The t e m p e r a t u r e i s l i m i t e d by t h e i n c r e a s i n g c o r r o s i o n and e r o s i o n o f t u r b i n e b l a d e s a t h i g h e r t e m p e r a t u r e s . 36 For the f i l t e r i n g equipment now available for the PFB systems, i t i s estimated that the maximum turbine i n l e t temperatures are 871°C for the ai r tube cycles (22), and 800°C for the steam tube cycles (13). These temperatures w i l l r i s e with the development of improved equipment, the ultimate l i m i t a t i o n being the point where the bed p a r t i c l e s fuse together (the sintering point). The turbine inlet temperatures of future systems w i l l therefore approach 900°C. The cycle e f f i c i e n c i e s are presented at several turbine i n l e t temperatures, but when comparisons are made between cycles, the steam tube and a i r heater turbine i n l e t temperatures are 800 and 871°C, respectively. 3.2.5 Net Ef f i c i e n c y And Auxiliary Power Losses In the cycle analysis programs, the gross thermal e f f i c i e n c y (based on the higher heating value) is calculated. There are several operations which are basic to the function of the plant and which are not included in the gross e f f i c i e n c y . Coal and sorbent grinding, solids transport power, and alternator and turbomachine a u x i l i a r y equipment losses (Appendix D) are included when the "Net" e f f i c i e n c y is calculated. The net e f f i c i e n c y calculations are performed manually, using the computer analysis r e s u l t s . 37 I V . DESIGN LOAD C Y C L E A N A L Y S I S RESULTS 4.1 S team Tube PFB C y c l e R e s u l t s The g r o s s e f f i c i e n c y o f t h e b a s i c s t eam t u b e c y c l e a t v a r i o u s c o m b u s t o r p r e s s u r e s and t u r b i n e i n l e t t e m p e r a t u r e s i s shown i n F i g u r e 15. The e f f i c i e n c y f i r s t r i s e s w i t h c o m b u s t o r p r e s s u r e , r e a c h i n g a maximum b e t w e e n 1 and 1.5 M P a , and t h e n d e c l i n e s . T h i s b e h a v i o u r i s a l s o t y p i c a l o f B r a y t o n c y c l e s . A t low p r e s s u r e s , t h e c o m b u s t o r i n l e t t e m p e r a t u r e and t h e r e f o r e t h e a v e r a g e t e m p e r a t u r e o f h e a t a d d i t i o n i s l o w , r e s u l t i n g i n a low e f f i c i e n c y . At h i g h e r p r e s s u r e s , t h e a v e r a g e t e m p e r a t u r e o f h e a t a d d i t i o n i s i n c r e a s e d , b u t t h e gas c o m p r e s s o r and H . P . t u r b i n e work i s i n c r e a s e d , r e s u l t i n g i n g r e a t e r l o s s e s a n d a d e c l i n e i n c y c l e p e r f o r m a n c e . The e f f i c i e n c y i n c r e a s e s w i t h t u r b i n e i n l e t t e m p e r a t u r e b e c a u s e o f t h e h i g h e r a v e r a g e t e m p e r a t u r e o f h e a t a d d i t i o n . The g r o s s e f f i c i e n c y w i t h a t u r b i n e i n l e t t e m p e r a t u r e o f 8 0 0 ° C i s m a x i m i z e d a r o u n d 1.2 MPa a t 38 .9%. The e f f i c i e n c y r i s e s w i t h t h e t u r b i n e i n l e t t e m p e r a t u r e a t a r a t e o f 0 . 0 1 0 p e r c e n t a g e p o i n t s p e r d e g r e e C e l c i u s and w o u l d be 39.9% a t 9 0 0 ° C . Washed H a t C r e e k c o a l was t h e f u e l u s e d i n t h i s and t h e f o l l o w i n g a n a l y s e s . A c o m p l e t e c y c l e a n a l y s i s i s i n c l u d e d i n A p p e n d i x E . 38 4 . 1 . 1 Steam Tube C y c l e V a r i a t i o n s The s team t u b e c y c l e , i n i t s most b a s i c f o r m , ( F i g u r e 7) i n c l u d e s t u r b o m a c h i n e r y , f l u i d i z e d b e d s , a n d an e c o n o m i s e r . W i t h t h e e x c e p t i o n o f r e h e a t , w h i c h i s r e q u i r e d t o p r o v i d e a s a f e s t eam t u r b i n e o u t l e t q u a l i t y , t h i s c y c l e d o e s n o t have t h e e f f i c i e n c y e n h a n c i n g e q u i p m e n t n o r m a l l y a s s o c i a t e d w i t h modern u t i l i t y power g e n e r a t i o n s y s t e m s . A c o m p r e s s o r i n t e r c o o l e r , gas t u r b i n e r e c u p e r a t o r , and a s t eam f e e d w a t e r h e a t e r were a d d e d , t o d e t e r m i n e t h e i r e f f e c t on t h e s t e a m c y c l e p e r f o r m a n c e . The two i n t e r c o o l i n g s y s t e m s ( s i n g l e and d o u b l e ) were e x a m i n e d , and t h e r e s u l t s a r e p r e s e n t e d i n F i g u r e 16. A s i n g l e i n t e r c o o l e r , t r a n s f e r r i n g h e a t t o t h e s t e a m s y s t e m f e e d w a t e r , i n c r e a s e s t h e e f f i c i e n c y 1.4 p e r c e n t a g e p o i n t s a t a c o m b u s t o r p r e s s u r e o f 1.6 M P a . The r e a s o n f o r t h e i n c r e a s e i s t h a t t h e c o m p r e s s o r work i s r e d u c e d r e s u l t i n g i n more g e n e r a t i o n f r o m t h e power t u r b i n e . I n t e r c o o l i n g w i t h c o o l i n g w a t e r h o w e v e r , r e d u c e s t h e e f f i c i e n c y by 0 . 2 5 p e r c e n t a g e p o i n t s . The e f f i c i e n c y d r o p s b e c a u s e t h e h e a t c o n t a i n e d i n t h e g a s e s i s l o s t f rom t h e s y s t e m . C o m p r e s s o r i n t e r c o o l i n g i s t h e r e f o r e b e n e f i c i a l t o t h e c y c l e p e r f o r m a n c e i f t h e h e a t c o n t a i n e d i n t h e a i r i s t r a n s f e r r e d t o t h e f e e d w a t e r . R e c u p e r a t i o n o f t h e b a s i c s t eam t u b e c y c l e i s n o t p o s s i b l e above a c o m b u s t o r p r e s s u r e o f 1.3 M P a . A t h i g h e r p r e s s u r e s , t h e gas t u r b i n e o u t l e t t e m p e r a t u r e becomes l o w e r t h a n t h e c o m p r e s s o r o u t l e t , p r e v e n t i n g r e c u p e r a t i n g h e a t t r a n s f e r . I t was f o u n d t h a t r e c u p e r a t i o n d e c r e a s e s t h e e f f i c i e n c y o f b o t h t h e b a s i c and i n t e r c o o l e d s team c y c l e s ( F i g u r e 1 7 ) . The m a i n e f f e c t s o f 39 r e c u p e r a t i o n a r e t h e a i r a n d gas p r e s s u r e l o s s e s t h r o u g h t h e r e c u p e r a t o r . T h i s l o w e r e d t h e t u r b i n e p r e s s u r e r a t i o , and t h u s d e c r e a s e d t h e gas t u r b i n e p o w e r . I n s t a n d a r d B r a y t o n c y c l e s , r e c u p e r a t i o n r e d u c e s t h e a v e r a g e t e m p e r a t u r e o f h e a t r e j e c t i o n and i n c r e a s e s t h e a v e r a g e t e m p e r a t u r e o f h e a t a d d i t i o n . In t h e s t eam t u b e c o m b i n e d c y c l e , n e i t h e r o f t h e a v e r a g e t e m p e r a t u r e s a r e s i g n i f i c a n t l y a l t e r e d , and r e c u p e r a t i o n has t h u s no b e n e f i c i a l e f f e c t on c y c l e e f f i c i e n c y . The a d d i t i o n o f a f e e d w a t e r h e a t e r i n c r e a s e s t h e e f f i c i e n c y o f t h e s i m p l e and i n t e r c o o l e d c y c l e s ( F i g u r e 1 8 ) , a l t h o u g h t h e e f f e c t v a r i e s s i g n i f i c a n t y w i t h c o m b u s t o r p r e s s u r e and i n t e r c o o l i n g . A s i g n i f i c a n t g a i n , up t o 0 .7 p e r c e n t a g e p o i n t s , i s s e e n i n t h e s i m p l e c y c l e . The e f f i c i e n c y g a i n i n c r e a s e s w i t h c o m b u s t o r p r e s s u r e . T h i s i s b e c a u s e t h e t e m p e r a t u r e o f t h e gas t u r b i n e e x h a u s t i s r e d u c e d w i t h r i s i n g c o m b u s t o r p r e s s u r e . T h i s r e s u l t s i n l e s s h e a t a v a i l a b l e i n t h e i n t h e e c o n o m i s e r , and t h e r e f o r e a l o w e r t e m p e r a t u r e a t t h e e c o n o m i s e r f e e d w a t e r o u t l e t . W i t h a l o w e r f e e d w a t e r t e m p e r a t u r e , t h e t e m p e r a t u r e r i s e c a u s e d by t h e a d d i t i o n o f a f e e d w a t e r h e a t e r i n c r e a s e s , l e a d i n g t o t h e g r e a t e r e f f i c i e n c y g a i n s a t h i g h e r c o m b u s t o r p r e s s u r e s . The e f f e c t o f i n t e r c o o l i n g i s t o add h e a t t o t h e f e e d w a t e r , r a i s i n g t h e w a t e r t e m p e r a t u r e a t t h e e c o n o m i s e r o u t l e t , a n d t h u s d e c r e a s i n g t h e e f f e c t o f a f e e d w a t e r h e a t e r . The s i m p l e c y c l e e f f i c i e n c y i s i m p r o v e d by as much as 0 . 7 p e r c e n t a g e p o i n t s w i t h 1 f e e d w a t e r h e a t e r , wherea s t h e i n t e r c o o l e d c y c l e e f f i c i e n c y i n c r e a s e s by o n l y 0 . 2 5 p e r c e n t a g e p o i n t s . 40 A l o n g w i t h e f f i c i e n c y , two i m p o r t a n t p e r f o r m a n c e c r i t e r i a a r e s p e c i f i c work and gas t u r b i n e power f r a c t i o n . The s p e c i f i c work i s t h e t o t a l o u t p u t power p e r u n i t f l u i d f l o w . T h e r e a r e two F i g u r e s g i v e n , one f o r t h e a i r f l o w , a n d one f o r t h e s team f l o w . T h e y a r e r o u g h i n d i c a t o r s o f t h e p h y s i c a l s i z e and t h e r e f o r e c o s t o f t h e b o i l e r s a n d t u r b o m a c h i n e r y . The gas t u r b i n e power f r a c t i o n i s t h e p o r t i o n o f t o t a l p l a n t power p r o v i d e d by t h e gas t u r b i n e . Summar ie s o f e f f i c i e n c y , s p e c i f i c w o r k , a n d gas t u b i n e power f r a c t i o n f o r s e v e r a l s t eam c y c l e c o n f i g u r a t i o n s a r e i n c l u d e d i n T a b l e 4 . The s p e c i f i c work o f t h e gas s y s t e m i s i m p r o v e d by i n t e r c o o l i n g and f e e d w a t e r h e a t i n g , w h i c h i s c o n s i s t e n t w i t h e f f i c i e n c y g a i n s . The b o i l e r s t e a m s p e c i f i c work a l s o i n c r e a s e s when i n t e r c o o l e d , bu t d r o p s s i g n i f i c a n t l y when a f e e d w a t e r h e a t e r i s • a d d e d , a s h a p p e n s i n a c o n v e n t i o n a l R a n k i n e c y c l e . T h i s means a l a r g e r b o i l e r i s r e q u i r e d f o r a s y s t e m w i t h a f e e d w a t e r h e a t e r . In t h i s c a s e an 11% i n c r e a s e i n b o i l e r h e a t t r a n s f e r s u r f a c e i s i n d i c a t e d . The ( s i n g l e ) i n t e r c o o l e d s t e a m t u b e c y c l e w i t h f e e d w a t e r h e a t i n g i s t h e most e f f i c i e n t c y c l e . I t i s q u e s t i o n a b l e , however w h e t h e r t h e modes t i n c r e a s e i n e f f i c i e n c y ( 0 . 2 5 p e r c e n t a g e p o i n t s ) c a u s e d by t h e a d d i t i o n o f t h e f e e d w a t e r h e a t e r i s l a r g e e n o u g h t o o f f s e t t h e c o s t o f t h e f e e d w a t e r h e a t e r a n d an a d d i t i o n a l 11% o f b o i l e r s u r f a c e . The c y c l e c h o s e n f o r f u r t h e r a n a l y s i s was t h e r e f o r e t h e s i m p l e i n t e r c o o l e d c y c l e . 41 4 . 1 . 2 I n t e r c o o l e d S team Tube C y c l e R e s u l t s The p e r f o r m a n c e o f t h e i n t e r c o o l e d s t e a m t u b e c y c l e i s shown i n F i g u r e 19 f o r t h r e e v a l u e s o f t u r b i n e i n l e t t e m p e r a t u r e . The e f f i c i e n c y r i s e s w i t h c o m b u s t o r p r e s s u r e as i n t h e b a s i c c y c l e , bu t d o e s n o t f a l l o f f u n t i l much h i g h e r p r e s s u r e s . W i t h an 8 0 0 ° C t u r b i n e i n l e t t e m p e r a t u r e , t h e op t imum p r e s s u r e i s a b o u t 2 M P a , a s o p p o s e d t o 1.2 MPa f o r t h e b a s i c c y c l e . The d i f f e r e n c e i s due t o r e d u c e d c o m p r e s s o r w o r k , and t h e r e f o r e more e f f i c i e n t o p e r a t i o n a t h i g h c o m b u s t o r p r e s s u r e . The c y c l e e f f i c i e n c y i n c r e a s e s more r a p i d l y w i t h t u r b i n e i n l e t t e m p e r a t u r e t h a n t h e b a s i c c y c l e , 0 . 0 1 4 p e r c e n t a g e p o i n t s p e r d e g r e e C e l c i u s , and t h e d i f f e r e n c e i s due t o t h e h i g h e r PFB o p e r a t i n g p r e s s u r e . The c y c l e e f f i c i e n c y r i s e s f rom 40.1% a t 8 0 0 ° C , t o 41.5% a t 9 0 0 ° C . A c o m p l e t e a n a l y s i s i s i n c l u d e d i n A p p e n d i x E . To be c o n s i s t e n t w i t h t h e B . C . H y d r o a n d CURL r e s e a r c h , t h e s e n s i t i v i t y o f t h e c y c l e e f f i c i e n c y t o t h e s e c o n d a r y d e s i g n p a r a m e t e r s was d e t e r m i n e d w i t h t h e t u r b i n e i n l e t t e m p e r a t u r e a t 8 0 0 ° C and t h e c o m b u s t o r p r e s s u r e a t 1.6 M P a . The t u r b o m a c h i n e e f f i c i e n c i e s were f o u n d t o be i m p o r t a n t f a c t o r s i n t h e c y c l e e f f i c i e n c y ( F i g u r e 2 0 ) . The s t eam t u r b i n e had t h e s t r o n g e s t e f f e c t , due t o i t s l a r g e g e n e r a t i o n c a p a c i t y (75% o f t h e t o t a l p o w e r ) . The gas t u r b i n e and c o m p r e s s o r e f f i c i e n c i e s had s m a l l e r i m p a c t s on e f f i c i e n c y b e c a u s e o f t h e i r s m a l l e r c a p a c i t y . The i n t e r c o o l e r e f f e c t i v e n e s s i s a n o t h e r i m p o r t a n t f a c t o r i n t h e c y c l e p e r f o r m a n c e ( F i g u r e 2 1 ) . I n c r e a s i n g t h e i n t e r c o o l i n g r e d u c e s t h e c o m p r e s s o r w o r k , and 42 t h e r e f o r e i n c r e a s e s t h e c y c l e e f f i c i e n c y . I n c r e a s i n g t h e b o i l e r p r e s s u r e o r s u p e r h e a t t e m p e r a t u r e a l s o r e s u l t s i n a r i s e i n e f f i c i e n c y due t o h i g h e r a v e r a g e h e a t a d d i t i o n t e m p e r a t u r e s ( F i g u r e s 22 and 2 3 ) . The e f f e c t o f s t eam r e h e a t p r e s s u r e i s shown i n F i g u r e 24 , i n d i c a t i n g an o p t i m u m p r e s s u r e o f 3 . 5 M P a . T h i s r e h e a t p r e s s u r e c o i n c i d e s w i t h t h e maximum a v e r a g e t e m p e r a t u r e of h e a t a d d i t i o n f o r t h e s t e a m s y s t e m . The a m b i e n t c o n d i t i o n s have l i t t l e e f f e c t on t h e o v e r a l l e f f i c i e n c y , a l t h o u g h i n t h e c a s e o f a m b i e n t t e m p e r a t u r e , t h e o p e r a t i n g c o n d i t i o n s c h a n g e s i g n i f i c a n t l y . A t low a m b i e n t t e m p e r a t u r e s t h e c o m p r e s s o r work i s r e d u c e d , t h e r e b y i n c r e a s i n g t h e n e t gas t u r b i n e w o r k . The h e a t t r a n s f e r r e d t o t h e s t eam s y s t e m t h r o u g h t h e i n t e r c o o l e r a n d f l u i d i z e d beds i s r e d u c e d h o w e v e r , r e s u l t i n g i n l e s s s t eam t u r b i n e w o r k . The g a i n i n gas t u r b i n e power i s a l m o s t e x a c t l y o f f s e t by t h a t l o s t by t h e s t eam t u r b i n e , and no s i g n i f i c a n t c h a n g e i n e f f i c i e n c y i s f o u n d ( F i g u r e 2 5 ) . The a m b i e n t p r e s s u r e was a l s o v a r i e d , h o l d i n g t h e p r e s s u r e r a t i o c o n s t a n t . S i n c e t h e o p e r a t i n g t e m p e r a t u r e s were n o t a f f e c t e d , t h e c y c l e e f f i c i e n c y r e m a i n e d v i r t u a l l y u n c h a n g e d ( F i g u r e 2 6 ) . The s t eam c o n d e n s e r t e m p e r a t u r e i s r e l a t e d t o t h e a m b i e n t t e m p e r a t u r e . B e c a u s e t h e c o n d e n s e r r e j e c t s a p p r o x i m a t e l y 85% o f t h e c y c l e w a s t e h e a t , t h e c o n d e n s e r t e m p e r a t u r e s t r o n g l y a f f e c t s t h e a v e r a g e t e m p e r a t u r e o f h e a t r e j e c t i o n and t h u s a l s o t h e c y c l e e f f i c i e n c y ( F i g u r e 2 7 ) . The c y c l e e f f i c i e n c y r i s e s w i t h e x c e s s a i r when a l l o t h e r p a r a m e t e r s a r e h e l d c o n s t a n t ( F i g u r e 2 8 ) . T h i s i s due t o a d e c r e a s e i n t h e s p e c i f i c h e a t o f t h e c o m b u s t i o n g a s e s . As t h e 43 e x c e s s a i r i s i n c r e a s e d h o w e v e r , t h e e c o n o m i s e r e f f e c t i v e n e s s i s r a i s e d , r e a c h i n g t h e l i m i t i n g e f f e c t i v e n e s s o f 100% a t 70% e x c e s s a i r . The p r e s s u r e l o s s e s i n t h e e c o n o m i s e r w i l l t h e r e f o r e be much h i g h e r t h a n t h o s e p r e d i c t e d by t h e p r o g r a m . The d e t e r m i n a t i o n o f op t imum e f f i c i e n c y a t v a r y i n g e x c e s s a i r w o u l d r e q u i r e m o d e l l i n g o f h i g h e f f e c t i v e n e s s h e a t e x c h a n g e r s , n o t c o v e r e d i n t h i s s t u d y . 4 . 2 A i r H e a t e r C y c l e A n a l y s i s R e s u l t s The p e r f o r m a n c e o f t h e a i r h e a t e r c y c l e was m o d e l l e d a t s e v e r a l t u r b i n e i n l e t t e m p e r a t u r e s and c o m b u s t o r p r e s s u r e s ( F i g u r e 2 9 ) . The e f f i c i e n c y a t h i g h c o m b u s t o r p r e s s u r e d r o p s o f f more q u i c k l y t h a n w i t h t h e s t e a m t u b e c y c l e s . A t h i g h p r e s s u r e s , t h e power t u r b i n e o u t l e t t e m p e r a t u r e becomes l o w e r , r e d u c i n g t h e s t eam t u r b i n e i n l e t t e m p e r a t u r e . T h i s a l s o r e s u l t s i n a l o w e r b o i l e r p r e s s u r e and s t eam t u r b i n e e f f i c i e n c y . The l o w e r e f f i c i e n c i e s a t h i g h p r e s s u r e a r e t h u s due t o r e d u c e d HRSG and s t eam t u r b i n e p e r f o r m a n c e as w e l l a s h i g h e r gas t u r b o m a c h i n e l o s s e s . The i n d i c a t e d opt imum e f f i c i e n c y i s a r o u n d 1.1 M P a . The e f f i c i e n c y i n c r e a s e s w i t h t e m p e r a t u r e more r a p i d l y t h a n i n t h e s team t u b e c y c l e s ( 0 . 0 2 7 p e r c e n t a g e p o i n t s p e r d e g r e e C e l c i u s ) . T h i s i s b e c a u s e t h e o p e r a t i o n o f b o t h t h e s t e a m and gas s y s t e m s a r e i m p r o v e d by h i g h e r t u r b i n e i n l e t t e m p e r a t u r e s . In t h e s team t u b e c y c l e s , t h e s t eam s y s t e m p e r f o r m a n c e was n o t a f f e c t e d by t h e gas t u r b i n e i n l e t t e m p e r a t u r e . 44 The s p e c i f i c work b a s e d on a i r f l o w i s 0 .31 M J / k g , r o u g h l y one t h i r d o f t h e s t eam t u b e c y c l e w o r k . T h i s r e s u l t s i n much h i g h e r gas t u r b o m a c h i n e c a p i t a l c o s t s p e r u n i t g e n e r a t i n g c a p a c i t y . The s p e c i f i c work b a s e d on s t e a m f l o w was 2 . 3 0 M J / k g , b u t s i n c e t h e b o i l e r c o n s t r u c t i o n a n d o p e r a t i n g c o n d i t i o n s a r e c o m p l e t e l y d i f f e r e n t , a c o m p a r i s o n t o t h e s team t u b e c y c l e c a n n o t be made. The c y c l e a n a l y s i s i s i n c l u d e d i n A p p e n d i x F . The gas t u r b i n e a n d c o m p r e s s o r e f f i c i e n c i e s s t r o n g l y a f f e c t t h e c y c l e p e r f o r m a n c e . The c y c l e p e r f o r m a n c e a t a t u r b i n e i n l e t t e m p e r a t u r e of 8 7 0 ° C was s i m u l a t e d , v a r y i n g t h e c o m p r e s s o r a n d gas t u r b i n e e f f i c i e n c i e s ± 2 p e r c e n t a g e p o i n t s ( F i g u r e 3 0 ) . A r e l a t i v e l y s m a l l c h a n g e i n t u r b o m a c h i n e e f f i c i e n c y c a u s e s a s i g n i f i c a n t c h a n g e i n t h e c y c l e p e r f o r m a n c e and moves t h e op t imum o p e r a t i n g p r e s s u r e . Due t o t h e u n c e r t a i n t y o f t u r b o m a c h i n e e f f i c i e n c y , and t h e r e f o r e a l s o t h e op t imum d e s i g n p o i n t , t h e C u r t i s s W r i g h t d e s i g n p o i n t ( 8 7 0 ° C , 0 . 7 MPa) was u s e d f o r i n - d e p t h a n a l y s i s . The s team t u r b i n e e f f i c i e n c y and t h e c o n d e n s e r t e m p e r a t u r e s t r o n g l y a f f e c t t h e c y c l e e f f i c i e n c y ( F i g u r e s 31 a n d 32) f o r t h e same r e a s o n s g i v e n f o r t h e i n t e r c o o l e d s t eam c y c l e . The a m b i e n t t e m p e r a t u r e and p r e s s u r e do n o t s t r o n g l y a f f e c t t h e c y c l e e f f i c i e n c y , as was t h e c a s e f o r t h e i n t e r c o o l e d s t e a m c y c l e . The e x c e s s a i r a l s o d o e s n o t a f f e c t t h e e f f i c i e n c y , b e c a u s e , f o r a g i v e n t u r b i n e i n l e t t e m p e r a t u r e a n d f u e l f l o w , t h e r e i s o n l y one t o t a l a i r f l o w p o s s i b l e . I n c r e a s i n g t h e e x c e s s a i r i n c r e a s e s t h e a i r f l o w i n t o t h e c o m b u s t o r , and r e d u c e s t h e c o o l i n g a i r by an i d e n t i c a l a m o u n t . The c y c l e 45 p e r f o r m a n c e i s t h u s n o t a f f e c t e d . The d i f f e r e n c e b e t w e e n bed t e m p e r a t u r e and t u r b i n e i n l e t t e m p e r a t u r e was a l s o e x a m i n e d . By v a r y i n g t h e bed h e a t t r a n s f e r , t h e b e d c a n be o p e r a t e d a t any d e s i r e d t e m p e r a t u r e , w h i l e k e e p i n g t h e t u r b i n e i n l e t t e m p e r a t u r e c o n s t a n t . B e c a u s e t h e r e i s no h e a t l o s s f rom t h e s y s t e m , t h e e f f i c i e n c y r e m a i n s u n a f f e c t e d . 4 . 3 E f f e c t Of F u e l C o m p o s i t i o n On C y c l e P e r f o r m a n c e F i v e c o a l s were s i m u l a t e d f o r c o m b u s t i o n i n t h e PFB c y c l e s , and t h e r e s u l t s a r e p r e s e n t e d i n T a b l e 5 . T h r e e o f t h e c o a l s were m o d e l l e d a t a r a n g e o f c o m b u s t o r p r e s s u r e s , and t h e r e s u l t s a r e p r e s e n t e d i n F i g u r e 3 3 . Of t h e f u e l c o n s t i t u e n t s , w a t e r ha s t h e s t r o n g e s t e f f e c t on e f f i c i e n c y . T h i s i s b e c a u s e t h e e f f i c i e n c y i s b a s e d on t h e h i g h e r h e a t i n g v a l u e , and t h e h e a t o f c o m b u s t i o n i s c a l c u l a t e d a s s u m i n g a l i q u i d w a t e r p r o d u c t . S i n c e t h e w a t e r a c t u a l l y i s r e l e a s e d as v a p o r , t h e h e a t o f v a p o r i z a t i o n i s l o s t , r e s u l t i n g i n a l o s s i n e f f i c i e n c y ( F i g u r e 3 4 ) . L i t t l e g a i n w o u l d be made by d r y i n g t h e c o a l p r i o r t o c o m b u s t i o n i f t h e h e a t s o u r c e was f rom c o a l e n e r g y . S i m i l a r amounts o f e n e r g y w o u l d be l o s t w h e t h e r t h e e v a p o r a t i o n t o o k p l a c e b e f o r e o r d u r i n g c o m b u s t i o n . L a r g e a s h and s o r b e n t e f f l u x e s a l s o d e c r e a s e t h e e f f i c i e n c y ( F i g u r e 35) b e c a u s e o f t h e h e a t l o s t w i t h t h e s o l i d w a s t e . T h i s e f f e c t i s s m a l l h o w e v e r , due t o t h e s o l i d w a s t e c o o l e r w h i c h r e c o v e r s much o f t h e h e a t and t r a n s f e r s i t t o t h e s t eam s y s t e m 46 f e e d w a t e r . 4 . 4 C o m p a r i s o n Of C y c l e R e s u l t s The p e r f o r m a n c e o f t h e i n t e r c o o l e d s t e a m c y c l e and t h e a i r h e a t e r c y c l e were c o m p a r e d t o e a c h o t h e r a n d t o a c o n v e n t i o n a l p u l v e r i z e d c o a l b o i l e r p l a n t . The PCB R a n k i n e c y c l e was s i m u l a t e d u s i n g t h e o p e r a t i n g c o n d i t i o n s a n d p r e s s u r e d r o p s f rom a t y p i c a l d e s i g n f o r a u t i l i t y power s t a t i o n ( A p p e n d i x G ) . The PCB p l a n t i n c l u d e d an a i r p r e h e a t e r , one s t e a m r e h e a t , a n d two f e e d w a t e r h e a t e r s . A p p r o x i m a t e l o s s e s due t o f l u e gas d e s u l p h u r i z a t i o n a r e i n c l u d e d i n t h e n e t e f f i c i e n c y c a l c u l a t i o n . The g r o s s a n d n e t e f f i c i e n c i e s a r e p r e s e n t e d i n T a b l e 6. The PFB c y c l e s were c a l c u l a t e d a t low and h i g h t u r b i n e i n l e t t e m p e r a t u r e s , t o d e m o n s t r a t e t h e r a n g e o f i m p r o v e m e n t p o s s i b l e . W i t h t e c h n o l o g y a v a i l a b l e t o d a y , t h e i n t e r c o o l e d s t eam t u b e PFB c y c l e o f f e r s a n e t o p e r a t i n g e f f i c i e n c y w h i c h i s 2 p e r c e n t a g e p o i n t s h i g h e r t h a n c o n v e n t i o n a l PCB p l a n t s . T h i s a d v a n t a g e c a n be i n c r e a s e d t o 3 .2 p e r c e n t a g e p o i n t s w i t h t h e d e v e l o p m e n t o f t u r b i n e s c a p a b l e o f w i t h s t a n d i n g h o t t e r gas f l o w s . The r e s u l t s i n d i c a t e t h a t t h e e f f i c i e n c y o f t h e a i r h e a t e r c y c l e i s n o t s i g n i f i c a n t l y b e t t e r t h a n t h e PCB s y s t e m . E v e n w i t h a 9 0 0 ° C t u r b i n e i n l e t t e m p e r a t u r e , t h e a i r h e a t e r c y c l e i s o n l y 0 . 4 p e r c e n t a g e p o i n t s h i g h e r i n n e t e f f i c i e n c y t h a n t h e PCB p l a n t . 47 V . PART LOAD MODELLING OF THE AIR HEATER C Y C L E 5.1 M o d e l l i n g S t r a t e g i e s And C o n s i d e r a t i o n s The p a r t l o a d p e r f o r m a n c e of t h e a i r h e a t e r c y c l e i s a c h i e v e d i n two s t e p s . F i r s t t h e d e s i g n l o a d c h a r a c t e r i s t i c s a r e d e t e r i m i n e d , and t h e h e a t e x c h a n g e r s and t u r b o m a c h i n e s a r e s i z e d . T h i s i n f o r m a t i o n i s t h e n u s e d t o p r e d i c t t h e s y s t e m p e r f o r m a n c e a t p a r t l o a d . T h e s e s t e p s c o r r e s p o n d t o two new p r o g r a m s and a r e d e s c r i b e d b e l o w . The d e s i g n o p e r a t i n g p o i n t was c h o s e n t o m a t c h t h e C u r t i s s W r i g h t d e s i g n p o i n t . The t u r b i n e i n l e t t e m p e r a t u r e was s e t t o 8 7 1 ° C and t h e c o m b u s t o r p r e s s u r e was s e t t o 7 B a r . The d e s i g n o p e r a t i o n was a n a l y s e d f i r s t i n t h e a i r h e a t e r c y c l e d e s i g n l o a d p r o g r a m d i s c u s s e d i n p r e v i o u s c h a p t e r s . The r e s u l t i n g o p e r a t i n g t e m p e r a t u r e s , p r e s s u r e s , and mass f l o w s were u s e d f o r t h e b a s i s o f a new p r o g r a m f o r d e s i g n l o a d o p e r a t i o n . T h i s p r o g r a m s e l e c t s t h e f l u i d v e l o c i t i e s and c a l c u l a t e s t h e f l o w a r e a s a n d h e a t t r a n s f e r a r e a s f o r e a c h h e a t e x c h a n g e r . The d e s i g n e f f i c i e n c y and o p e r a t i n g c o n d i t i o n s o f e a c h t u r b o m a c h i n e was a l s o d e t e r m i n e d . W i t h t h i s d a t a , t h e p a r t l o a d p e r f o r m a n c e o f t h e t u r b o m a c h i n e r y a n d h e a t e x c h a n g e r c a n be s i m u l a t e d . A new s u b r o u t i n e l i b r a r y was c r e a t e d , w h i c h i n c l u d e s t h e c a l c u l a t i o n o f t r a n s p o r t p r o p e r t i e s a n d h e a t t r a n s f e r c o e f f i c i e n t s and a l s o i n c l u d e s p r o g r a m s t o s i m u l a t e t h e p a r t l o a d o p e r a t i o n o f h e a t e x c h a n g e r s a n d gas t u r b o m a c h i n e s . The c a l c u l a t i o n o f h e a t t r a n s f e r c o e f f i c i e n t s r e q u i r e s t h e p r i o r k n o w l e d g e of t h e t u b e d i a m e t e r and f l u i d v e l o c i t y . The 48 v e l o c i t i e s u s e d i n t h e d e s i g n l o a d p r o g r a m a r e t y p i c a l f o r e a c h g i v e n a p p l i c a t i o n ( 1 0 ) . The o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t (U) o f e a c h h e a t e x c h a n g e r i s t h e n c a l c u l a t e d . The i n l e t a n d o u t l e t t e m p e r a t u r e s o f e a c h f l u i d i n e a c h h e a t e x c h a n g e r a r e t h e n d e t e r m i n e d , a l l o w i n g t h e h e a t t r a n s f e r a r e a s t o be c a l c u l a t e d u s i n g t h e E f f e c t i v e n e s s - NTU m e t h o d ( 2 3 ) . The d a t a c a l c u l a t e d i n t h e f u l l l o a d p r o g r a m i s t r a n s f e r r e d t o a h o l d i n g f i l e f o r u se i n t h e p a r t l o a d p r o g r a m . T h i s f i l e c o n t a i n s t h e f l o w a n d h e a t t r a n s f e r a r e a s f o r e a c h h e a t e x c h a n g e r a n d a l l o f t h e f u l l l o a d p r e s s u r e d r o p s . The f i l e a l s o c o n t a i n s t h e t h e r m o d y n a m i c a n d t r a n s p o r t d a t a f o r e a c h p o i n t i n t h e c y c l e . The s e c o n d p r o g r a m s t a r t s w i t h t h e d e s i g n l o a d , a n d t h e n r e d u c e s t h e f u e l c o n s u m p t i o n r a t e . T h i s u p s e t s t h e e q u i l i b r i u m o f t h e t u r b o m a c h i n e s a n d h e a t e x c h a n g e r s , r e s u l t i n g i n c h a n g e s t h r o u g h o u t t h e s y s t e m . The ga s t u r b o m a c h i n e s o p e r a t e on c h a r a c t e r i s t i c c u r v e s o r maps ( F i g u r e s 36-39) w h i c h a r e s p e c i f i c t o a g i v e n m a c h i n e , b u t a r e u s u a l l y s i m i l a r i n f o r m . T h e c u r v e s u s e d i n t h i s s t u d y a r e d e r i v e d f r o m c u r v e s p r e s e n t e d a s t y p i c a l (24) f o r t u r b i n e s a n d a x i a l c o m p r e s s o r s . T h e c u r v e s were p u t i n t o e q u a t i o n f o r m f o r use i n t h e p r o g r a m s , a n d a r e i n c l u d e d i n A p p e n d i x H . The maps h a v e f o u r i n t e r r e l a t e d p a r a m e t e r s : p r e s s u r e r a t i o , r e d u c e d mass f l o w , r e d u c e d s p e e d , a n d i s e n t r o p i c e f f i c i e n c y . T h e r e d u c e d v a r i a b l e s a r e d e f i n e d a s f o l l o w s . R e d u c e d Mass f l o w M * = M*/T / P o o R e d u c e d S p e e d N* = N/ /T 49 The c h a r a c t e r i s t i c c u r v e s are based on e x p r e s s i o n s w i t h two independent v a r i a b l e s . For example, [ the compressor p r e s s u r e r a t i o f o r m u l a t i o n i s based on the s i m p l e e x p r e s s i o n : P = 1 + a-fM*}*5 - b-{M*}C T h i s f o r m u l a t i o n can be made t o f i t the performance c u r v e at any g i v e n N* by v a r y i n g a, b, arid c. By d e t e r m i n i n g the maxima of the c o n s t a n t N* c u r v e s , a r e l a t i o n s h i p between a, b, and c i s d e r i v e d , e l i m i n a t i n g the need f o r the independent f o r m u l a t i o n of b. Power f u n c t i o n s i n - N * were used t o f i t a and c and the p r o c e d u r e r e s u l t e d i n a smooth, c o n t i n u o u s f u n c t i o n over the e n t i r e o p e r a t i n g range. The f o r m u l a t i o n s a l s o change l i n e a r l y i n response t o d i f f e r e n t d e s i g n p r e s s u r e r a t i o s , mass f l o w s , s h a f t speeds, and e f f i c i e n c y . 1 The o t h e r t h r e e c h a r a c t e r i s t i c f o r m u l a t i o n s are based on the f o l l o w i n g e x p r e s s i o n s : Compressor E f f i c i e n c y n = d-M* - e-{M*}f T u r b i n e Mass Flow M* = g - e x p { h ( N + ) • k ( p )} T u r b i n e E f f i c i e n c y n = 1 " q(N*) " k ( P ) S " M l - e x p ( k ( p ) / 2 } 50 P a r t L o a d S i m u l a t i o n o f t h e A i r H e a t e r C y c l e A f l o w c h a r t o f t h e p a r t l o a d s i m u l a t i o n i s p r e s e n t e d i n F i g u r e 4 0 . The c o m p r e s s o r i n l e t a i r p r o p e r t i e s a r e u s u a l l y i d e n t i c a l t o t h e d e s i g n l o a d v a l u e s , a n d a r e d e t e r m i n e d f i r s t . The p r e s s u r e r a t i o a n d e f f i c i e n c y o f t h e c o m p r e s s o r a r e a f u n c t i o n o f mass f l o w a n d s h a f t s p e e d , a n d t h e y a r e i n i t i a l l y a s s u m e d t o be a t t h e i r d e s i g n v a l u e s . The c o m p r e s s o r o u t l e t p r o p e r t i e s c a n t h e n be c a l c u l a t e d u s i n g t h e t u r b o m a c h i n e p e r f o r m a n c e e q u a t i o n s p r e v i o u s l y o b t a i n e d . T h e l o a d i s c o n t r o l l e d by b y p a s s i n g some a i r p a s t t h e PFB a n d r e d u c i n g t h e a i r a n d f u e l f l o w s t o t h e c o m b u s t o r . The e x c e s s a i r l e v e l i n t h e PFB i s k e p t c o n s t a n t a t a l l t i m e s . T h e c o m p r e s s o r o u t l e t a i r i s t h u s s p l i t b e t w e e n t h e c o m b u s t o r a i r , c o o l a n t a i r , a n d b y p a s s a i r . The r a t i o o f c o o l a n t a i r t o c o m b u s t i o n a i r i s a l s o k e p t c o n s t a n t . U s i n g p r e l i m i n a r y e s t i m a t e s f o r t h e t e m p e r a t u r e s o f t h e c o o l a n t a i r a n d f l u i d i z e d bed t e m p e r a t u r e s , t h e o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t f o r t h e PFB h e a t e x c h a n g e r i s d e t e r m i n e d . The a c t u a l h e a t t r a n f e r t o t h e c o o l a n t i s t h e n d e t e r m i n e d u s i n g t h e h e a t e x c h a n g e r d a t a g e n e r a t e d i n t h e d e s i g n l o a d p r o g r a m , a l l o w i n g t h e c o o l i n g a i r o u t l e t t e m p e r a t u r e t o d e t e r m i n e d . The b e d h e a t t r a n s f e r i s t h e n b a l a n c e d i t e i r a t i v e l y by m o d i f y i n g t h e b e d t e m p e r a t u r e . T h e c o o l i n g a i r , b y p a s s a i r , a n d c o m b u s t i o n g a s e s a r e t h e n m i x e d p r i o r t o e n t e r i n g t h e H . P . t u r b i n e . T h e t u r b i n e work a n d e x h a u s t p r e s s u r e a r e d e t e r m i n e d i n t h e same way a s i n t h e f u l l l o a d p r o g r a m . The t u r b i n e p r e s s u r e r a t i o a n d r e d u c e d s p e e d a r e 51 t h e n c a l c u l a t e d a n d t h e r e d u c e d mass f l o w a n d e f f i c i e n c y a r e d e t e r m i n e d f r o m t h e t u r b i n e c h a r a c t e r i s t i c c u r v e s . The r e s u l t i n g c h a r a c t e r i s t i c mass f l o w r e p r e s e n t s t h e o n l y f l o w r a t e p o s s i b l e f o r t h a t m a c h i n e a t t h e g i v e n s h a f t s p e e d a n d p r e s s u r e r a t i o . In o r d e r t o m a t c h t h e a c t u a l mass f l o w t o t h a t a l l o w e d by t h e t u r b i n e , t h e c o m p r e s s o r i n l e t mass f l o w i s m o d i f i e d . The c o m p r e s s o r a n d f l u i d i z e d b e d c o n d i t i o n s a r e t h e n r e c a l c u l a t e d u s i n g t h e new e s t i m a t e t o t h e mass f l o w . T h e g a s e s a r e t h e n e x p a n d e d t o t h e HRSG i n l e t p r e s s u r e i n t h e power t u r b i n e . T h i s i s a s y n c h r o n o u s m a c h i n e , a n d t h e s h a f t s p e e d i s t h e r e f o r e a l w a y s c o n s t a n t . The c h a r a c t e r i s t i c mass f l o w i s t h e n d e t e r m i n e d a s f o r t h e H . P . t u r b i n e a n d t h i s must m a t c h t h e a c t u a l power t u r b i n e mass f l o w . To a c h i e v e a b a l a n c e b e t w e e n i n c o m i n g mass f l o w a n d t h e c h a r a c t e r i s t i c mass f l o w , t h e c o m p r e s s o r s h a f t s p e e d i s m o d i f i e d i n t h e n e x t i t e r a t i o n . T h e r e a r e t h e r e f o r e t h r e e l e v e l s o f i t e r a t i o n s w h i c h must b a l a n c e t h e h e a t t r a n s f e r i n t h e f l u i d i z e d b e d a n d t h e mass f l o w s o f t h e two t u r b i n e s . By v a r y i n g t h e b e d t e m p e r a t u r e , c o m p r e s s o r mass f l o w , a n d c o m p r e s s o r s h a f t s p e e d , t h e e q u i l i b r i u m o p e r a t i n g c o n d i t i o n o f t h e ga s s y s t e m i s d e t e r m i n e d . T h e ga s i n l e t t e m p e r a t u r e o f t h e h e a t r e c o v e r y s t e a m g e n e r a t o r (HRSG) i s now d e t e r m i n e d , p e r m i t t i n g t h e s t e a m t u r b i n e a n d HRSG t o be m o d e l l e d . The c o n d e n s e r c o n d i t i o n s a r e c a l c u l a t e d f i r s t , a n d a r e u n c h a n g e d f r o m t h e d e s i g n v a l u e s . The r e m a i n i n g c o n d i t i o n s a r e d e t e r m i n e d i n an i t e r a t i v e p r o c e d u r e . F i r s t , t h e d e s i g n v a l u e s f o r t h e s t e a m mass f l o w and s u p e r h e a t t e m p e r a t u r e a r e a s s u m e d . T h e s t e a m t u r b i n e i n l e t 52 p r e s s u r e ( b o i l e r p r e s s u r e ) i s t h e n d e t e r m i n e d u s i n g t h e steam t u r b i n e c h a r a c t e r i s t i c s . In g e n e r a l t h e p a r t l o a d ( c o n s t a n t s p e e d ) o p e r a t i o n of steam t u r b i n e s can be m o d e l l e d by t h e f o l l o w i n g r e l a t i o n s h i p ( 2 5 ) : P„ « M • A o o Knowing t h e b o i l e r p r e s s u r e , t h e s u p e r h e a t e r i n l e t t e m p e r a t u r e ( a t s a t u r a t i o n ) i s c a l c u l a t e d . The t e m p e r a t u r e s and mass f l o w s of t h e steam and g a s e s e n t e r i n g t h e s u p e r h e a t e r s e c t i o n of t h e HRSG have t h u s been d e t e r m i n e d . The a c t u a l h e a t t r a n s f e r a c r o s s t h e s u p e r h e a t e r c a n now be d e t e r m i n e d , a l l o w i n g t h e s u p e r h e a t e r o u t l e t steam t e m p e r a t u r e t o be c a l c u l a t e d . The b o i l e r p r e s s u r e i s t h e n r e c a l c u l a t e d u s i n g t h e t u r b i n e c h a r a c t e r i s t i c , and t h e e q u i l i b r i u m o f t h e t u r b i n e and s u p e r h e a t e r i s t h u s d e t e r m i n e d i t e r a t i v e l y . The f e e d water pump o u t l e t c o n d i t i o n s and t h e p o i n t o f s a t u r a t e d l i q u i d i n t h e b o i l e r a r e t h e n d e t e r m i n e d . The gas t e m p e r a t u r e s a t t h e c o r r e s p o n d i n g p o s i t i o n s i n t h e HRSG a r e a l s o d e t e r m i n e d from t h e a c t u a l h e a t t r a n s f e r t h r o u g h t h e tub e b a n k s . The steam mass f l o w i s m o d i f i e d t o b a l a n c e t h e h e a t l o s t by t h e g a s e s and g a i n e d by t h e steam. The p o i n t i n t h e b o i l i n g l o o p a t w h i c h l i q u i d s a t u r a t i o n o c c u r s a l s o c h a n g e s , r e s u l t i n g i n a s h i f t between t h e l i q u i d p r e h e a t e r and b o i l e r h e a t t r a n s f e r a r e a s . B e c a u s e t h e steam mass f l o w h a s been r e - e s t i m a t e d , t h e t u r b i n e c h a r a c t e r i s t i c i s r e c a l c u l a t e d i n t h e n e x t i t e r a t i o n . When a l l o f t h e h e a t e x c h a n g e r s a r e b a l a n c e d , t h e c y c l e h e a t , work, and e f f i c i e n c y a r e c a l c u l a t e d . 53 5 . 1 . 1 T r a n s p o r t P r o p e r t i e s And H e a t T r a n s f e r C o e f f i c i e n t s The t r a n s p o r t p r o p e r t i e s , v i s c o s i t y a n d t h e r m a l c o n d u c t i v i t y , a r e u s e d i n h e a t t r a n s f e r c a l c u l a t i o n s . The p r o p e r t i e s a r e f o r m u l a t e d i n t e r m s o f t h e same i n d e p e n d e n t p a r a m e t e r s a s w i t h t h e t h e r m o d y n a m i c p r o p e r t i e s : T and p f o r s t e a m , a n d T f o r a i r and g a s e s . T h i s a l l o w s t h e e a s y c a l c u l a t i o n o f t r a n s p o r t p r o p e r t i e s w i t h i n t h e e x i s t i n g t h e r m o d y n a m i c c o m p u t e r r o u t i n e s . T r a n s p o r t P r o p e r t i e s o f S team The c a l c u l a t i o n o f two t r a n s p o r t p r o p e r t i e s , t h e r m a l c o n d u c t i v i t y and v i s c o s i t y , were a d d e d t o t h e t h e r m o d y n a m i c r o u t i n e s . F r o m t h e s e v a l u e s , a l o n g w i t h t h e f l u i d v e l o c i t i e s , s p e c i f i c h e a t and t u b e d i a m e t e r , t h e P r a n d t l a n d R e y n o l d s number s a r e c a l c u l a t e d . , The t h e r m a l c o n d u c t i v i t y i s c a l c u l a t e d u s i n g t h e e q u a t i o n d e v e l o p e d by K e s t i n e t a l a n d recommended f o r i n d u s t r i a l u se by t h e ICPS ( 2 6 ) . An a l t e r n a t i v e e q u a t i o n recommended f o r s c i e n t i f i c u se was a l s o a v a i l a b l e f r o m t h e same r e f e r e n c e . A l t h o u g h t h e a l t e r n a t i v e f o r m u l a t i o n i s more a c c u r a t e n e a r t h e c r i t i c a l p o i n t , no c a l c u l a t i o n s were r e q u i r e d i n t h a t a r e a a n d t h e s i m p l e r i n d u s t r i a l f o r m u l a t i o n was u s e d . T h e v i s c o s i t y c o r r e l a t i o n was d e v e l o p e d by A l e x a n d r o y , I v a n o v , a n d M a l t e e v a n d a d o p t e d by t h e ICPS i n 1975 ( 2 7 ) . T h i s e q u a t i o n i s i n a c c u r a t e n e a r t h e c r i t i c a l p o i n t , b u t no c a l c u l a t i o n s n e a r t h e c r i t i c a l p o i n t were r e q u i r e d i n t h i s s t u d y . 54 T r a n s p o r t P r o p e r t i e s o f A i r and G a s e s A s i n t h e c a s e o f t h e t h e r m o d y n a m i c f o r m u l a t i o n s , t h e t r a n s p o r t p r o p e r t i e s ( v i s c o s i t y a n d t h e r m a l c o n d u c t i v i t y ) a r e c a l c u l a t e d i n two s t e p s . The p u r e component p r o p e r t i e s a r e d e t e r m i n e d f i r s t a n d t h e r e s u l t s a r e u s e d t o c a l c u l a t e t h e m i x t u r e p r o p e r t i e s . The P r a n d t l and R e y n o l d s numbers were t h e n c a l c u l a t e d . The m i x t u r e p r o p e r t i e s were c a l c u l a t e d on t h e b a s i s o f t h e f o u r m a j o r c o n s t i t u e n t s (H20 , C 0 2 , N 2 , , a n d 0 2 ) . Due t o t h e s m a l l c o n c e n t r a t i o n o f t h e r e m a i n i n g c o n s t i t u e n t s , t h e r e s u l t i n g e r r o r i s n e g l i g i b l e . The c o n s t i t u e n t v i s c o s i t y c o r r e l a t i o n s , f u n c t i o n s o f ' t e m p e r a t u r e o n l y , were f i t t e d t o t h e S u t h e r l a n d e q u a t i o n (28) w i t h t h e p o i n t s c h o s e n t o m i n i m i z e t h e e r r o r i n t h e t e m p e r a t u r e r a n g e 0 ° C t o 9 0 0 ° C ( A p p e n d i x B ) . The recommended f o r m u l a t i o n f o r a t h e r m a l c o n d u c t i v i t y c o r r e l a t i o n i s a s i m p l e p o l y n o m i a l i n t e m p e r a t u r e ( 2 8 ) . D a t a f o r t h e v i s c o s i t y and t h e r m a l c o n d u c t i v i t y o f a i r were r e a d i l y a v a i l a b l e and t h e m i x t u r e c a l c u l a t i o n s were n o t r e q u i r e d . The a i r m i x t u r e was t h u s t r e a t e d i n t h e same manner as a p u r e c o m p o n e n t . The r e s u l t i n g c o r r e l a t i o n s a r e p r e s e n t e d i n A p p e n d i x B . The m i x t u r e v i s c o s i t i e s a n d t h e r m a l c o n d u c t i v i t i e s a r e n o t u s u a l l y l i n e a r f u n c t i o n s o f c o m p o s i t i o n . F o r t h i s r e a s o n a s i m p l e p a r t i a l m o l a l sum w o u l d n o t be a c c u r a t e . More c o m p l e x m e t h o d s t a k i n g i n t o a c c o u n t k i n e t i c c o l l i s i o n t h e o r y p r o v i d e i m p r o v e d r e s u l t s . The W i l k e e s t i m a t i o n m e t h o d f o r m i x t u r e v i s c o s i t i e s was 55 u s e d i n t h i s s t u d y . T h i s f o r m u l a t i o n has been shown t o be a c c u r a t e and i s recommended f o r low p r e s s u r e gas m i x t u r e s ( 2 8 ) . The Mason and Saxena f o r m u l a t i o n (28) of t h e W a s s i l j e w a e q u a t i o n was u s e d t o c a l c u l a t e t h e t h e r m a l c o n d u c t i v i t y of t h e m i x t u r e ( A p p e n d i x B ) . H e a t T r a n s f e r C o e f f i c i e n t s The h e a t t r a n s f e r c o e f f i c i e n t s a r e r e q u i r e d i n t h e d e s i g n l o a d c a l c u l a t i o n s t o s i z e t h e h e a t e x c h a n g e r s , and i n t h e p a r t l o a d s i m u l a t i o n , t o d e t e r m i n e t h e i r p e r f o r m a n c e . F o u r h e a t t r a n s f e r c o n d i t i o n s were c o n s i d e r e d : T u r b u l e n t f l o w o u t s i d e t u b e s T u r b u l e n t f l o w i n s i d e t u b e s B o i l i n g h e a t t r a n s f e r PFB h e a t t r a n s f e r o u t s i d e t u b e s The c o e f f i c i e n t f o r m u l a t i o n s a r e i n c l u d e d i n A p p e n d i x B . The o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t (U) o f e a c h h e a t e x c h a n g e r i s c a l c u l a t e d u s i n g t h e a v e r a g e o f t h e c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t (h) a t t h e i n l e t and o u t l e t f o r e a c h f l u i d . 1/U = 2/{h1(i)+h1(o)} + 2/{h2(i)+h2(o)} hj ( i ) = Heat Transfer Coefficient of Fluid 1 at the Heat Exchanger Inlet hp(o) = Heat Transfer Coefficient of Fluid 2 at the Heat Exchanger Outlet In some c a s e s , t h e d e t e r m i n a t i o n o f t h e h e a t t r a n s f e r c o e f f i c i e n t r e q u i r e s t h e c a l c u l a t i o n o f t h e f i l m p r o p e r t i e s . T h e s e w o u l d be d e t e r m i n e d a t a t e m p e r a t u r e midway be tween t h e 56 t u b e w a l l t e m p e r a t u r e a n d t h e b u l k ^ t e m p e r a t u r e . In o r d e r t o c a l c u l a t e t h e f i l m p r o p e r t i e s , a s i g n i f i c a n t i n c r e a s e i n p r o g r a m s o p h i s t i c a t i o n w o u l d h a v e been r e q u i r e d . T h e e f f e c t o f s u b s t i t u t i n g b u l k p r o p e r t i e s f o r t h e f i l m p r o p e r t i e s i s n o t e x p e c t e d t o be l a r g e , s i n c e o n l y t h e c h a n g e s i n h e a t t r a n s f e r c o e f f i c i e n t a r e i m p o r t a n t i n t h e p r o g r a m . An e r r o r i n t h e a b s o l u t e v a l u e o f t h e c o e f f i c i e n t w o u l d r e s u l t i n a d i f f e r e n t s u r f a c e a r e a r e q u i r e m e n t a n d w o u l d n o t a f f e c t t h e p e r f o r m a n c e o f t h e c y c l e . The b u l k p r o p e r t i e s were t h e r e f o r e u s e d t h r o u g h o u t . 5 . 2 P a r t L o a d R e s u l t s The p a r t l o a d a n a l y s i s i s b a s e d on t h e f u l l l o a d d e s i g n s i m u l a t i o n o f a 90 MW m o d u l e w i t h one gas t u r b i n e a n d one s t eam t u r b i n e ( A p p e n d i x F ) . The f u l l l o a d c a l c u l a t i o n s a r e b a s e d on a c o m p r e s s o r i n l e t a i r f l o w o f 1 k g / s . The p a r t l o a d o p e r a t i o n o f t h e s i n g l e m o d u l e a i r h e a t e r c y c l e i s s i m u l a t e d down t o 25% l o a d ( F i g u r e 4 1 ) . A t 50% l o a d t h e e f f i c i e n c y i s r e d u c e d by 6 p e r c e n t a g e p o i n t s t o 3 0 . 8 % . A t 27% l o a d , t h e e f f i c i e n c y d r o p s t o 24 .5%, a t o t a l l o s s o f 12 .3 p e r c e n t a g e p o i n t s . The d e t a i l e d r e s u l t s o f t h e a n a l y s i s a r e i n c l u d e d i n A p p e n d i x F . The s t a c k gas t e m p e r a t u r e a n d a c i d dew p o i n t were a l s o d e t e r m i n e d as t h e l o a d was r e d u c e d ( F i g u r e 4 2 ) . The r e s u l t s i n d i c a t e t h a t t h e s t a c k gas t e m p e r a t u r e d r o p s f a s t e r t h a n t h e a c i d dew p o i n t , a n d i n c r e a s e d s t a c k c o r r o s i o n a t p a r t l o a d c a n t h e r e f o r e be e x p e c t e d . A p o s s i b l e remedy w o u l d be t o b y p a s s some gas p a s t 57 t h e s t e a m g e n e r a t o r a n d t h u s m a i n t a i n t h e d e s i g n s t a c k gas t e m p e r a t u r e . A s m a l l p e n a l t y i n e f f i c i e n c y w o u l d a l s o be i n c u r r e d . T h e r e a r e s e v e r a l a l t e r n a t i v e s t o t h e c o n t r o l o f t h e f l u i d i z e d b e d a t p a r t ' l o a d . The e x c e s s a i r , b e d h e i g h t , a n d b y p a s s a i r c a n be v a r i e d i n d e p e n d e n t l y . I t was f o u n d h o w e v e r t h a t t h e c y c l e e f f i c i e n c y was i n s e n s i t i v e t o v a r i a t i o n s i n t h e e x c e s s a i r a n d b y p a s s a i r f l o w . T h i s i s b e c a u s e t h e t u r b i n e i n l e t t e m p e r a t u r e i s n o t a f f e c t e d by v a r i a t i o n s i n t h e s e p a r a m e t e r s . The b e d h e i g h t a f f e c t e d t h e p r e s s u r e d r o p a c r o s s t h e P F B , b u t d i d n o t s i g n i f i c a n t l y a l t e r t h e c y c l e e f f i c i e n c y . i 58 V I . CONCLUSIONS The o b j e c t i v e o f t h i s p r o j e c t was t o s t u d y t h e p e r f o r m a n c e o f p r e s s u r i z e d f l u i d i z e d b e d , c o m b i n e d c y c l e power g e n e r a t i o n s y s t e m s . Two c y c l e s , t h e s t e a m t u b e , a n d a i r h e a t e r h a v e b e e n s t u d i e d when b u r n i n g H a t C r e e k c o a l . The f o l l o w i n g c o n c l u s i o n s were d r a w n : • The s t e a m t u b e c y c l e s a r e , i n g e n e r a l more e f f i c i e n t t h a n t h e a i r h e a t e r c y c l e s . S i g n i f i c a n t i n c r e a s e s i n e f f i c i e n c y o v e r t h e c o n v e n t i o n a l s y s t e m a r e f o u n d w i t h t h e s t e a m t u b e c y c l e , w h e r e a s t h e p e r f o r m a n c e o f t h e a i r h e a t e r c y c l e i s s i m i l a r t o t h e c o n v e n t i o n a l p l a n t . T h e n e t e f f i c i e n c y o f t h e i n t e r c o o l e d s t e a m t u b e c y c l e i s e s t i m a t e d a t 38%, 2 p e r c e n t a g e p o i n t s a b o v e t h e c o n v e n t i o n a l p u l v e r i z e d c o a l c y c l e . . T h e a i r h e a t e r c y c l e n e t e f f i c i e n c y was 35 .7%, s l i g h t l y b e l o w t h e c o n v e n t i o n a l p l a n t . • I n t e r c o o l i n g i s b e n e f i c i a l t o t h e e f f i c i e n c y a n d s p e c i f i c work o f t h e s t e a m t u b e c y c l e . The i n c r e a s e i s s i g n i f i c a n t a n d i n t e r c o o l i n g s h o u l d be i n c l u d e d i n s t e a m t u b e c y c l e s . • R e c u p e r a t i o n c a u s e s a s i g n i f i c a n t l o s s i n e f f i c i e n c y t o t h e s t e a m t u b e c y c l e s . • R e g e n e r a t i v e f e e d w a t e r h e a t i n g i n c r e a s e s t h e e f f i c i e n c y o f s t e a m t u b e c y c l e s , b u t d e c r e a s e s t h e s p e c i f i c w o r k . The d r o p i n s p e c i f i c work r e s u l t s i n a l a r g e r b o i l e r s u r f a c e r e q u i r e m e n t a n d t h u s h i g h e r c a p i t a l c o s t s . • T h e i n t e r c o o l e d s t e a m t u b e c y c l e w i t h one f e e d w a t e r 59 h e a t e r i s t h e most e f f i c i e n t o f a l l t h e c y c l e s s t u d i e d . The g r o s s e f f i c i e n c y i s 40 .33%, 2 . 2 p e r c e n t a g e p o i n t s h i g h e r t h a n c o n v e n t i o n a l s y s t e m s . The s i m p l e i n t e r c o o l e d c y c l e i s a l m o s t a s e f f i c i e n t , w i t h a g r o s s e f f i c i e n c y o f 4 0 . 0 7 % . • The i n d i c a t e d n e t e f f i c i e n c y o f t h e a i r h e a t e r c y c l e i s low (37.53%) i n c o m p a r i s o n t o t h e s t e a m t u b e c y c l e . The a i r h e a t e r c y c l e i s h o w e v e r , v e r y s e n s i t i v e t o t u r b o m a c h i n e e f f i c i e n c i e s and t o t h e t u r b i n e i n l e t t e m p e r a t u r e . By i m p r o v i n g t h e s e two p a r a m e t e r s a s i g n i f i c a n t i n c r e a s e i n p e r f o r m a n c e c o u l d be made, r e s u l t i n g i n a more c o s t c o m p e t i t i v e s y s t e m . • T h e p a r t l o a d o p e r a t i o n o f a s i n g l e m o d u l e , a i r h e a t e r c y c l e was s i m u l a t e d . The p a r t l o a d p e r f o r m a n c e was f o u n d t o be l a r g e l y i n d e p e n d e n t o f t h e m e t h o d o f l o a d c o n t r o l . The c y c l e e f f i c i e n c y d r o p p e d w i t h l o a d , l o s i n g 6 . 0 p e r c e n t a g e p o i n t s a t 50% l o a d . 6.1 A r e a s F o r F u r t h e r Work • T h e s t u d y o f c o m b i n e d c y c l e , PFB s y s t e m s c o u l d be e x p a n d e d t o i n c l u d e c y c l e s o u t s i d e t h e two c l a s s e s m o d e l l e d h e r e . A t m o s p h e r i c f , l u i d i z e d b e d c o m b i n e d c y c l e s c o u l d a l s o be i n c l u d e d . • T h e e f f e c t o f ga s r e h e a t i n b o t h t h e a i r h e a t e r a n d s t e a m t u b e c y c l e s may be b e n e f i c i a l t o c y c l e p e r f o r m a n c e , b u t was n o t c o n s i d e r e d i n t h i s s t u d y . • T h e p a r t l o a d p e r f o r m a n c e o f t h e i n t e r c o o l e d s t e a m t u b e 60 c y c l e c o u l d be s t u d i e d . The d e s i g n l o a d m o d e l l i n g o f t h e a i r h e a t e r c y c l e c o u l d be made more p r e c i s e w i t h b e t t e r e s t i m a t e s o f t h e t u r b i n e e f f i c i e n c y . V a r i a t i o n s o f t h e a i r h e a t e r c y c l e c a n be s t u d i e d . T h e p a r t l o a d m o d e l l i n g t e c h n i q u e c o u l d be i m p r o v e d by i n c l u d i n g t h e f i l m p r o p e r t y c a l c u l a t i o n s a n d i m p r o v i n g t h e t u r b o m a c h i n e maps . 61 BIBLIOGRAPHY 1. M u k h e r j e e , D . K . , " P r e s s u r i z e d F l u i d i z e d Bed C o m b u s t o r C y c l e A s s e s s m e n t " , The P r o c e e d i n g s o f t h e 7 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , O c t o b e r , 1982 . 2 . M o s k o w i t z , S . , W a l k e r , W . , " S t a t u s R e p o r t o f t h e W o o d - R i d g e PFB P i l o t P l a n t " , The P r o c e e d i n g s o f t h e 7 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , O c t o b e r , 1982 . 3 . G r e y , D . A . , B e l t r a n , A . M . , B r o b s t , R . P . , M c C a r r o n , R . L . , " H i g h T e m p e r a t u r e C o r r o s i o n / E r o s i o n i n t h e E f f l u e n t f r o m P r e s s u r i z e d F l u i d i z e d Bed C o m b u s t o r s " , The P r o c e e d i n g s o f t h e 6 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , A p r i l , 1980 . 4 . S t a l - L a v a l T u r b i n e A B , " P F B C S t a t u s R e p o r t " , O c t o b e r 1978 . 5 . O ' C o n n e l l , L . P . , W i c k s t r o m , B . , U r b a n , U . , " S t a t u s o f t h e A E P , S t a l - L a v a l , a n d D e u t s c h e B a b c o c k A n l a g e n PFBC D e v e l o p m e n t P r o g r a m " , The P r o c e e d i n g s o f t h e 7 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , O c t o b e r , 1982 . 6 . R u b o w , L . N . , B o r d e n , M . , B u c h a n a n , T . L . , " C o s t A n d P e r f o r m a n c e o f A i r a n d S team C o o l e d PFBC Power P l a n t s " , The P r o c e e d i n g s o f t h e 7 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , O c t o b e r , 1982 . 7 . K e e n a n , J . H . , K e y e s , F . G . , H I L L , P . G . , M o o r e , J . G . , " T h e r m o d y n a m i c P r o p e r t i e s o f W a t e r I n c l u d i n g V a p o r , L i q u i d , a n d S o l i d P h a s e s " , J o h n W i l e y & S o n s , 1978 . 8 . H i l l , P . G . , M a c M i l l a n , R . D . C . , " A S a t u r a t i o n V a p o r P r e s s u r e E q u a t i o n f o r H e a v y W a t e r " , I&EC F u n d a m e n t a l s , VOL 18 p . 4 1 2 , N o v e m b e r , 1 9 7 9 . 9 . V a n W y l e n , G . J . , S o n n t a g , R . E . , " F u n d a m e n t a l s o f C l a s s i c a l T h e r m o d y n a m i c s " , 2nd E D . , J o h n W i l e y & S o n s , 1976 . 10. B a b c o c k a n d W i l c o x , " S t e a m , I t s G e n e r a t i o n a n d U s e " , 1972 . 11 . M o s k o w i t z , S . , " P r e s s u r i z e d F l u i d i z e d Bed C o a l F i r e d C o m b i n e d C y c l e Power P l a n t " , I n t e r n a t i o n a l Power G e n e r a t i o n , V o l . 3 N o . 3 , A p r i l 1980 . 12 . B a b u , S . P . , S h a h , B . , T a l k w a l k e r , A . , " F l u i d i z a t i o n C o r r e l a t i o n s f o r C o a l G a s i f i c a t i o n M a t e r i a l s - Min imum F l u i d i z a t i o n V e l o c i t y a n d F l u i d i z e d Bed E x p a n s i o n R a t i o " , A I C H E Sympos ium S e r i e s , N o . 1 7 6 V o l . 7 4 , 1978 . 13 . P a p i c , M . , B r i t i s h C o l u m b i a H y d r o a n d Power A u t h o r i t y , P r i v a t e C o m m u n i c a t i o n , 1983 . 62 14. M a k a n s i , J . , " C o a l F i r e d C o m b i n e d C y c l e P l a n t s A r e On t h e H o r i z o n " , P o w e r , J u n e 1982. 15 . L i s l e , E . S . , S e n s e n b a u g h , J . D . , " T h e D e t e r m i n a t i o n o f S u l p h u r T r i o x i d e a n d A c i d Dew P o i n t i n F l u e G a s e s " , C o m b u s t i o n , J a n u a r y 1965 . 16 . S m o o t , L . D . , P r a t t , D . T . , " P u l v e r i z e d C o a l C o m b u s t i o n a n d G a s i f i c a t i o n " , P l e n u m P r e s s , 1979 . 17 . H a y w o o d , R . W . , " A n a l y s i s o f E n g i n e e r i n g C y c l e s " , Pergamon P r e s s L t d . , 1967 . 18. G r a v e s , R . L . , " E f f e c t o f P r e s s u r e and T u r b i n e I n l e t T e m p e r a t u r e on t h e E f f i c i e n c y o f PFB Power P l a n t s " , ASME P a p e r N o . 8 0 - G T - 1 0 2 , 1980 . 19 . B o r d e n , M . , R u b o w , L . N . , G e f f k e n , J . , " A F i r s t G e n e r a t i o n PFBC Power P l a n t u s i n g T u r b o e x p a n d e r s " , The P r o c e e d i n g s o f t h e 7 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , O c t o b e r , 1982 . 2 0 . W i c k s t r o m , B . , S t a l - L a v a l T u r b i n A B , P r i v a t e C o m m u n i c a t i o n . 2 1 . S m i t h , R . W . , G e n e r a l E l e c t r i c Company , P r i v a t e C o m m u n i c a t i o n . 2 2 . M o s k o w i t z , S . , " D e s i g n a n d C o n s t r u c t i o n o f a P r e s s u r i z e d F l u i d i z e d Bed P i l o t E l e c t r i c P l a n t " , P r o c e e d i n g s o f t h e 1 7 t h I n t e r s o c i e t y E n e r g y C o n v e r s i o n E n g i n e e r i n g C o n f e r e n c e , A u g u s t 1982. 2 3 . H o l m a n , J . P . , " H e a t T r a n s f e r " , 5 t h E d . , M c G r a w - H i l l , 1981 . 2 4 . C o h e n , H . , R o g e r s , G . F . C . , S a r a v a n a m u t t o , H . I . H . , "Gas T u r b i n e T h e o r y " , 1974 2 5 . S h e p h e r d , D . G . , " P r i n c i p l e s o f T u r b o m a c h i n e r y " 2 6 . K e s t i n , J . , " T h e r m a l C o n d u c t i v i t y o f W a t e r and S t e a m " , M e c h a n i c a l E n g i n e e r i n g , A u g u s t 1978. 2 7 . N a g a s h i m a , A . , " V i s c o s i t y o f W a t e r S u b s t a n c e - New I n t e r n a t i o n a l F o r m u l a t i o n a n d I t s B a c k g r o u n d " , J . P h y s i c a l a n d C h e m i c a l R e f e r e n c e D a t a , V o l . 6 N o . 4 , 1977 . 2 8 . R e i d , R . C . S h e r w o o d , T . K . , " T h e P r o p e r t i e s o f G a s e s a n d L i q u i d s " , 2nd E d . , M c G r a w - H i l l , '1966. 2 9 . R o b e r t s o n , A . S . , S t a r r , J . , " P r e s s u r i z e d F l u i d i z e d Bed C o m b u s t o r / S team G e n e r a t o r D e s i g n E v a l u a t i o n " , P r o c e e d i n g s o f t h e I n t e r s o c . o f E n e r g y C o n v e r s i o n , 14 th C o n f e r e n c e , A u g u s t 1979 . 63 3 0 . B e n s o n , R . S . , " A d v a n c e d E n g i n e e r i n g T h e r m o d y n a m i c s " , 2nd E d . , Pergamon P r e s s , 1977 . 3 1 . S t u l l , D . R . , P r o p h e t , H . , " J A N A F T h e r m o c h e m i c a l T a b l e s " , 2nd E d . , N a t i o n a l B u r e a u o f S t a n d a r d s , 1971 . 3 2 . P e r r y , J . H . , " C h e m i c a l E n g i n e e r s H a n d b o o k " , 4 t h E d . , M c G r a w - H i l l , 1963 . 3 3 . W e a s t , R . C , " H a n d b o o k o f C h e m i s t r y a n d P h y s i c s " 52nd E d . , C h e m i c a l R u b b e r C o . , 1 9 7 1 . 3 4 . F o r s y t h e , W . E . , " S m i t h s o n i a n P h y s i c a l T a b l e s " , T h e S m i t h s o n i a n I n s t i t u t e , 1964 . 3 5 . K r e i t h , F . , " H e a t T r a n s f e r " , 5 t h E d . , M c G r a w - H i l l , 1976 . 3 6 . Z a k k a y , V . , M i l l e r , G . , R o s e n , S . , S h a h , S . , K o l a r , A . K . , " B e d E x p a n s i o n a n d H e a t T r a n s f e r M e a s u r e m e n t s i n a P r e s s u r i z e d F l u i d i z e d B e d " , M u l t i - p h a s e and H e a t T r a n s f e r Sympos ium W o r k s h o p , V . 4 , 1979 . 3 7 . S t o n e & W e b s t e r C a n a d a L t d . , " B r i t i s h C o l u m b i a H y d r o a n d Power A u t h o r i t y - H a t C r e e k C o a l U t i l i s a t i o n S t u d y " , O c t o b e r 1977 . 3 8 . C o n s i d i n e , D . M . , " E n e r g y T e c h n o l o g y H a n d b o o k " , McGraw H i l l , 1977 . 3 9 . F r . a a s , A . P . , O s i s i k , M . N . , " H e a t E x c h a n g e r D e s i g n " , W i l e y & S o n s , 1965. . 4 0 . H o y , H . R . , R o b e r t s , A , G . , " I n v e s t i g a t i o n s on t h e L e a t h e r h e a d P r e s s u r i z e d F a c i l i t y " , T h e P r o c e e d i n g s o f t h e 6 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , A p r i l , 1980 . 4 1 . C a r l s , E . L . , K a d e n , M . , S m i t h , D . , W r i g h t , S . J . , J a c k , A . R . , " T h e IEA G r i m e t h o r p e P r e s s u r i z e d F l u i d i z e d Bed C o m b u s t i o n E x p e r i m a n t a l F a c i l i t y " , The P r o c e e d i n g s o f t h e 6 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , A p r i l , 1980 . 64 T a b l e 1 - P u b l i s h e d C y c l e A n a l y s i s R e s u l t s R e s e a r c h G r o u p C y c l e D e s c r i p t i o n E f f i c Ne t i e n c y G r o s s PFB P r e s s u r e T u r b i n e Temp C u r t i s s -W r i g h t (22) A i r H e a t e r C y c l e 4 0 . 0% 7 Bar 871 ° C S - L , AEP & DBA (5) I n t e r c o o l e d Steam Tube 1 FW H e a t e r 39.7% 40.7% 16 Bar 8 3 2 ° C Oak R i d g e Nat i o n a l L a b . P r e h e a t e d S team Tube 2 FW H e a t e r s 39.2% 41.2% 1 0 b a r 8 0 0 ° C F o s t e r W h e e l e r (29) S u p e r c r i t c a l S team Tube 40.5% 1 0 Bar 9 2 7 ° C B r o w n / B o v e r i ( 1 ) Steam Tube C y c l e A i r H e a t e r C y c l e 4 1.4% 37.5% 1 0 Bar 7 B a r 8 4 8 ° C 871 ° C G i l b e r t / Common-w e a l t h (6) ' S team Tube C y c l e A i r H e a t e r C y c l e 40 . 5% 38.2% 41.2% 39.0% 65 T a b l e 2 - E q u i l i b r i u m D i s s o c i a t i o n P r o d u c t C o n c e n t r a t i o n s Combust i o n P r o d u c t C o n c e n t r a t i o n N i t r o g e n 7 3 . 3 % C a r b o n D i o x i d e 1 3 . 0 % Oxygen 7 . 7 % W a t e r 5 . 9 % N i t r i c O x i d e 52 ppm H y d r o x y l R a d i c a l 0 . 2 ppm A t o m i c O x y g e n < 1 ppb Carbon M o n o x i d e < 1 ppb H y d r o g e n < 1 ppb A t o m i c H y d r o g e n << 1 ppb T a b l e 3 - A n d e r s o n C r e e k L i m e s t o n e S u l p h u r R e t e n t i o n (13) C a / S M o l e R a t i o S u l p h u r R e t e n t i o n 2 : 1 66 % 4 : 1 8 1 . 5 % 6:1 86 % 8:1 89 % 10:1 90 % 66 T a b l e 4 - S team Tube C y c l e P e r f o r m a n c e C r i t e r i a C y c l e D e s c r i p t i o n E f f i c i e n c y ( G r o s s ) % S p e c . Work A i r Ba se M J / k g , S p e c . Work Steam Base M J / k g GT Power F r a c t i o n % B a s i c C y c l e 3 8 . 7 0 . 928 1 . 839 17 .8 P r e h e a t 3 8 . 8 0 . 9 2 7 1 .832 2 3 . 0 I n t e r -c o o l i n g ( s i n g l e ) 4 0 . 1 0 .961 1 .962 2 4 . 4 I n t e r -c o o l i n g ( d o u b l e ) 3 9 . 8 0 . 9 5 5 1.998 18 .4 F e e d W a t e r H e a t i n g 3 9 . 2 0 . 9 4 0 1 .553 17 .5 I n t e r -c o o l i n g & FWH 4 0 . 3 0 . 9 5 9 1.710 2 2 . 4 67 T a b l e 5 - E f f e c t o f C o a l T y p e on PFB C o m b i n e d C y c l e P e r f o r m a n c e I l l i n o i s #6 C o a l Hat C r e e k (As R e c e i v e d ) H a t C r e e k (Washed) Hat C r e e k ( D r y ) Hat C r e e k ( D r y , A s h F r e e ) U l t i m a t e A n a l y s i s C H 0 S N H 2 0 ASH 66.4% 4.5% 7.5% 2.7% 1 . 3% 5.8% 11.7% 30.8% 2.4% 10.6% 0.4% 0.8% 22.5% 32.5% 37.6% 3.1% 13.5% 0.6% 0.8% 10.0% 34.3% 39.7% 3.1% 13.7% 0.5% 1 .0% 41.9% 68.4% 5.3% 23.6% 0.9% 1 .8% G r o s s E f f i c ' c j I n t e r -c o o l e d S team 40.62% 39.36% 40.07% 40.56% 40.72% A i r H e a t e r C y c l e 38.44% 36.39% 37.53% 37.95% 38.17% T a b l e 6 - C o m p a r i s o n o f Power G e n e r a t i o n E f f i c i e n c i e s I n t e r c Ste Cyc : o o l e d ?am : l e A J He£ Cyc . r i t e r : l e P u l v e r . C o a l B o i l e r T u r b i ne I n l e t Temp. 8 0 0 ° C 9 0 0 ° C 8 7 0 ° C 9 0 0 ° C G r o s s E f f ' c y 4 0 . 0 7 % 4 1 . 2 9 % 3 7 . 5 3 % 3 8 . 2 9 % 3 8 . 1 8 % Net E f f ' c y 3 8 . 0 % 3 9 . 2 % 3 5 . 7 % 3 6 . 4 % 3 6 . 0 % F u e l . H a t C r e e k C o a l (Washed) 6 8 Steam Turbtnes Pump F i g u r e 1 - R a n k i n e C y c l e 69 F i g u r e 2 - B r a y t o n C y c l e F i g u r e 3 - T e m p e r a t u r e / E n t r o p y D i a g r a m s f o r t h e B r a y t o n a n d R a n k i n e C y c l e s Combustor F i g u r e 4 - O i l F i r e d C o m b i n e d C y c l e P l a n t S c h e m a t i c F i g u r e P r e s s u r i z e d F l u i d i z e d Bed C o a l C o m b u s t o r F i g u r e 6 - A i r H e a t e r PFB C o m b i n e d C y c l e 03 C ro rt fD DJ 3 -3 C rj-fD ^ W O O 3 t r 3 fD a o *~< o t — • fD Coaxial Heat Exchange H.P. Turbine/ Compressor 5 L.P. Turbine/ Compressor Power Turbine/ Generator A i r Inlet Hot Gas VF11trat ion Steam Drum PFB Combus Economiser ^ 1 ISuper-V J Heater V J istors I T ) 1 1 Steam Turbines Generator Condenser Ash Cooler P«™P 76 Read Steam D a t a ( F u n d a m e n t a l Steam E q u a t i o n P a r a m e t e r s ) Read Des i gn P a r a m e t e r s ( T u r b 1 n e I n l e t Temp, Combustor P r e s s u r e . Ambient, and Steam C o n d i t i o n s ) Gas S y s t e m C a l c u l a t e C o m p r e s s o r I n l e t a n d O u t l e t A i r P r o p e r t i e s E s t i m a t e C o - a x i a l Heat E x c h ange In t h e PFB D u c t i n g C a 1 c u l a t e Combust i o n R e a c t 1ons, PFB Heat E x c h a n g e , and Gas P r o p e r t i e s C a l c u l a t e H.P. T u r b i n e I n l e t Gas P r o p e r t i e s C a l c u 1 a t e t h e H.P. T u r b 1 n e work and O u t l e t Gas P r o p e r t i e s E s t i m a t e t h e L.P. T u r b i n e and E c o n o m i s e r O u t l e t Gas P r o p e r t i e s Ca1cu1 a t e t h e S t a c k Gas Dew P o i n t , Econom i s e r Out 1et T e m p e r a t u r e . and P r e s s u r e Drop a c r o s s t h e Econom1ser NO I F i g u r e 9 - S team T u b e C y c l e A n a l y s i s F l o w C h a r t 77 Steam S y s t e m C a l c u l a t e H.P. Steam T u r b i n e I n l e t , R e h e a t e r I n l e t , L.P. Steam T u r b i n e I n l e t . C o n d e n s e r I n l e t and O u t l e t , E c o n o m i s e r I n l e t , B o i l e r I n l e t , and S u p e r h e a t e r I n l e t Steam P r o p e r t i e s C a 1 c u l a t e Steam M a s s f l o w and P r e s s u r e D r o p s C a 1 c u l a t e T o t a l H e a t , work and E f f i c i e n c y Wr i t e Thermodynamic P r o p e r t l e s . Component Work, and E f f i c i e n c y 78 S t a r t Read Steam D a t a (Fundamenta 1 Steam E q u a t i o n P a r a m e t e r s ) Read D e s i g n P a r a m e t e r s ( T u r b i ne I n l e t Temp, Combustor P r e s s u r e , Ambient C o n d i t i o n s , a n d Steam C o n d i t i o n s ) Gas S y s t e m C a l c u l a t e C o m p r e s s o r I n l e t and O u t l e t A i r P r o p e r t i e s C a l c u l a t e C o m b u s t i o n R e a c t i o n s . PFB Heat Exchange, and Gas P r o p e r t i e s E s t i m a t e t h e C o o l i n g A i r Flow C a l c u l a t e C o o l i n g A i r T e m p e r a t u r e a t t h e PFB O u t l e t and A i r / G a s M i x t u r e P r o p e r t i e s a t t h e H.P. T u r b i n e I n l e t R e - E s t i m a t e t h e C o o l i n g A i r Mass Flow yes C a l c u l a t e H.P. T u r b i n e work a n d O u t l e t Gas P r o p e r t i e s E s t i m a t e L.P. T u r b i n e a n d HRSG O u t l e t Gas P r o p e r t i e s C a l c u l a t e S t a c k Gas Dew P o i n t . E c o n o m i s e r O u t l e t T e m p e r a t u r e , and P r e s s u r e Drop a c r o s s t h e Econom1ser F i g u r e 10 - A i r H e a t e r C y c l e A n a l y s i s F l o w C h a r t 79 Steam S y s t e m C a l c u l a t e Max ifflum S u p e r h e a t T e m p e r a t u r e w i t h an HPSG E f f e c t i v e n e s s of 8 0 % C a l c u l a t e B o i l e r P r e s s u r e w h i c h r e s u l t s 1n a n 8 8 % Steam T u r b i n e E x h a u s t O u a l i t y C a 1 c u l a t e Bo i 1 e r , C o n d e n s e r , a n d Pump I n l e t and O u t l e t C o n d i t i o n s C a l c u l a t e t h e Gas P r o p e r t i e s t h r o u g h t h e HRSG Reduce t h e B o i l e r P r e s s u r e R e - E s t i m a t e t h e 5team Mass Flow YES C a l c u l a t e T o t a l H e a t , Work, and E f f i c i e n c y Wr 1 t e Thermodynamic P r o p e r t i e s , Component Work, a n d E f f i c i e n c y S t o p 6 0 0 PERCENT OF TOTAL HEAT TRANSFER F i g u r e 11 - B o i l i n g P i n c h P o i n t i n a H e a t R e c o v e r y S team G e n e r a t o r Coaxial Heat Exchange H.P . Turbine/ Compressor 3 L . P . Turbine/ Compressor Power Turb i ne/ Generator A i r Inlet Hot Gas F i 1 t r a t i o n Steam Drum Super-Heater PFB Combustors V Stack Recuperator Economiser Steam Turbines Generator Condenser -E3-Pump iQ C w r t fD OJ 3 -3 C cr ro o *< o ro r r £T O D ro fD fD a CU r t fD X fD CU rr fD i-l Coaxial Heat Exchange H.P. Turbine/ Compressor 5 L.P. Turbine/ Compressor Power Turbine/ Generator Air Inlet Hot Gas Fi1trat ton Steam (S14) Drum Ol <S1 PFB Combustors Super-Heater Feed Water Heater Stack Economi ser Steam Turbines Generator Condenser _ j Ash Cooler ~o Pump CO 40 . 5 F i g u r e 15 - E f f i c i e n c y o f t h e B a s i c S team Tube C y c l e 4 0 . 5 F i g u r e 16 - E f f e c t o f I n t e r c o o l i n g on Steam Tube C y c l e P e r f o r m a n c e 1 1.2 1.4 C O M B U S T O R P R E S S U R E M P a i 1.8 Legend Basic Cycle Recuperated X Cycle Intercooled Cyc 1 e Intercooled and Recuperated Cycle CD F i g u r e 17 - E f f e c t of R e c u p e r a t i o n on Steam Tube C y c l e P e r f o r m a n c e F i g u r e 18 - E f f e c t o f F e e d W a t e r H e a t i n g C y c l e P e r f o r m a n c e on S team T u b e F i g u r e 19 - I n t e r c o o l e d S team Tube C y c l e P e r f o r m a n c e 89 10 . ©- - © Gas T u r b i n e + - — h Gas C o m p r e s s o r S t e a m T u r b i n e s 85.0 90.0 86.0 87.0 88.0 89.0 TURBINE EFFICIENCY % F i g u r e 2 0 - E f f e c t of Turbomachine E f f i c i e n c y on the I n t e r c o o l e d Steam Tube Cycle ••20.0 40.0 60.0 80.0 INTERCOOLER EFFECTIVENESS % 100.0 F i g u r e 21 - E f f e c t of I n t e r c o o l e r E f f e c t i v e n e s s on the I n t e r c o o l e d Steam Tube Cy c l e 90 12.0 14.0 16.0 1B.Q BOILER PRESSURE (MPA) 20.0 F i g u r e 22 - E f f e c t of B o i l e r P r e s s u r e on t h e I n t e r c o o l e d Steam Tube C y c l e i r 525.0 530.0 535.0 540.0 545.0 550.0 STEAM SUPERHEAT TEMPERATURE ( • F i g u r e 23 - E f f e c t of Steam S u p e r h e a t on t h e I n t e r c o o l e d Steam Tube C y c l e 91 o.o T 2.0 4.0 6.0 REHEAT PRESSURE (MPA) 10.0 F i g u r e 24 - E f f e c t o f S t e a m R e h e a t on t h e I n t e r c o o l e d S team Tube C y c l e i 1 1 i r -5.0 5.0 15.0 AMBIENT' TEMPERATURE ( • 25.0 F i g u r e 25 - E f f e c t o f A m b i e n t T e m p e r a t u r e on t h e I n t e r c o o l e d S team T u b e C y c l e 92 I I I I L .1 I L Q.B Q.B5 0.9 0.95 1.0 1.05 AMBIENT PRESSURE (MPA) IX10 - 1 ) g u r e 26 - E f f e c t o f A m b i e n t P r e s s u r e on t h e I n t e r c o o l e d S team T u b e C y c l e i i i i i i i n 1 1 1 1 1 1 1 1 1 r 25.0 30.0 35.0 40.0 45.0 50.0 CONDENSER. TEMPERATURE (C) F i g u r e 27 - E f f e c t o f C o n d e n s e r T e m p e r a t u r e on t h e I n t e r c o o l e d S team Tube C y c l e 93 i 1 1 r 0.0 20.0 40.0 60.0 E X C E S S A I R . % 80.0 • 100.0 F i g u r e 28 - E f f e c t of E x c e s s A i r on t h e I n t e r c o o l e d Steam Tube C y c l e / * \ \ X 0.8 1 1.2 1.4 1.6 COMBUSTOR PRESSURE MPa F i g u r e 29 - A i r H e a t e r C y c l e P e r f o r m a n c e Legend X 800 C 850 C 0 900 C F i g u r e 30 - E f f e c t o f Gas T u r b o m a c h i n e E f f i c i e n c y on A i r H e a t e r C y c l e P e r f o r m a n c e 96 in _ 5^ °" U J _J LO T T T 80.0 81.0 B2.0 B3.0 84.0 STEAM TURBINE EFFICIENCY % 85.0 F i g u r e 31 - E f f e c t o f S team T u r b i n e E f f i c i e n c y on t h e A i r H e a t e r C y c l e 25.0 30.0 35.0 40.0 45.0 CONDENSER TEMPERATURE (C) 50.0 F i g u r e 32 - E f f e c t o f C o n d e n s e r T e m p e r a t u r e on t h e A i r H e a t e r C y c l e 41 >-O L J y 39 L J UJ I O o 3 8 00 o cr o 37-^ 36 In tercooled Steam Tube Cycle 1 1.5 2 2.5 C O M B U S T O R P R E S S U R E M P a COAL O I l l i n o i s #6 Hat Creek (Washed) Hat Creek (As Received) F i g u r e 33 - C o m p a r i s o n o f C y c l e P e r f o r m a n c e w i t h T h r e e D i f f e r e n t F u e l s 98 5 ZD m m L d cr: Q_ 4.5 4 -r - 3.5H <. Cr: 3-2.5-2-1.5-\ 1 + -0.3 \ —1 1 1 0.4 0.5 0.6 0.7 0.8 REDUCED MASSFLOW 0.9 1.1 Legend A N*=1.0 X N*=0.9 Q N*=0.8 g| N*«=0.7 S N*=0.6 ^ N*=0.5 N*=Reduced Speed F i g u r e 36 - A x i a l C o m p r e s s o r P e r f o r m a n c e Map 1 F i g u r e 37 - A x i a l C o m p r e s s o r P e r f o r m a n c e Map 2 Legend $ N*=1.0 © N*=0.9 O N*=0.8 + N*=0.7 O N*=0.6 ffl N*=0.5 Reduced Speed F i g u r e 38 - T u r b i n e P e r f o r m a n c e Map 1 1 0.60 H 1 1.5 2 2.5 3 PRESSURE RATIO 3.5 Legend V N*=1.0 (Sa N*=0.8 0 N*=0.6 A N*=0.4 N* = Reduced Speed F i g u r e 39 - T u r b i n e P e r f o r m a n c e Map 2 103 F i g u r e 40 - A i r H e a t e r C y c l e P a r t L o a d C y c l e A n a l y s i s F l o w C h a r t ^ Start Read Design Data (Design operat ing Condi t ions , Heat Exchanger s i ze s ) Read Bypass A i r Percentage Gas System C a l c u l a t e Compressor Inlet P . T . H . S Estimate A1r Massflow, Compressor Shaft Speed, and Bed Temperature Ca l cu la te Compressor C h a r a c t e r i s t i c s : E f f i c i e n c y and Pressure Rat io Ca1cula te Compressor Outlet P . T . H . S S p l i t of f Bypass and Cool 1ng A i r C a l c u l a t e PFB Combustion and Required Heat Removal by Cool 1ng A i r Ca l cu l a te Heat Transfer to Cool ing A i r 1 04 Mix t h e C o m b u s t i o n Gases w i t h t h e C o o l i n g A i r a n d B y p a s s A i r a n d C a l c u l a t e T u r b i n e I n l e t C o n d i t i o n s Ca1culate T e m p e r a t u r e a n d P r e s s u r e o f H.P. T u r b i n e E x h a u s t Ca1cu1 a t e H.P. T u r b i n e C h a r a c t e r i s t i c s E f f i c i e n c y and Mass Flow C a l c u l a t e t h e HRSG Gas I n l e t T.P.H.S.Cp 1 05 Steam S y s t e m C a l c u l a t e t h e C o n d e n s e r O u t l e t C o n d i t i o n s E s t i m a t e Steam M a s s f l o w and S u p e r h e a t T e m p e r a t u r e C a l c u l a t e t h e Bo i 1 e r P r e s s u r e f r o m t h e Steam T u r b i n e C h a r a c t e r i s t i c s C a l c u l a t e S u p e r h e a t e r Heat T r a n s f e r and S u p e r h e a t e d Steam T e m p e r a t u r e y Has Xtn«a r p < s r n » s i t \ y r f T e m p e r a t u r e \ Changed / NO \ C a l c u l a t e F e e d Water Pump C o n d i t i o n s a n d t h e C o n d i t i o n s a t t h e O n s e t of B o i 1 i n g Ca1cu1 a t e t h e Heat T r a n s f e r f r o m t h e C o m b u s t i o n G a s e s C a l c u l a t e t h e Gas T e m p e r a t u r e s C o r r e s p o n d i n g t o t h e B o i l i n g S a t u r a t i o n p o i n t s and t h e S t a c k Ent r a n e e R e d i s t r i b u t e t h e Heat T r a n s f e r A r e a s and R e - E s t i m a t e t h e Steam Mass Flow VES J_ C a l c u l a t e The C y c l e P e r f o r m a n c e Wri t e T h e r m o d y n a m i c P r o p e r t i e s . Component Work, a n d E f f l d e n c y - i r 1 1 1 1 i i I i 10 20 30 40 50 60 70 80 90 100 SYSTEM LOAD (PERCENT OF DESIGN LOAD) F i g u r e 41 - P a r t L o a d P e r f o r m a n c e o f A i r H e a t e r C y c l e 160 1 5 5 UJ 1 5 0 o r Z> % UJ CL 1 4 5 -UJ 140-135 -r 0 D / P / • JOT 10 20 30 40 50 60 70 80 90 100 SYSTEM LOAD (PERCENT OF DESIGN LOAD) Legend Stack Gas LJ Temperature Dew Point O F i g u r e 42 - V a r i a t i o n o f S t a c k Gas T e m p e r a t u r e a n d Dew P o i n t W i t h L o a d 108 APPENDIX A - COMPUTER SUBROUTINES L i s t Of R o u t i n e s A i r T h e r m o d y n a m i c s S u b r o u t i n e I n p u t P a r a m e t e r s O u t p u t P a r a m e t e r s AIR P , T , M H , S , C p , p AI RH P , H , M T , S , C p , p AIRS P , S , M H , T , C p , p Gas T h e r m o d y n a m i c s and C o m b u s t i o n S u b r o u t i n e I n p u t P a r a m e t e r s O u t p u t P a r a m e t e r s GAS P , T , M H , S , C p , p , Dew P o i n t GASH P , H , M T , S , C p , p , Dew P o i n t GASS P , S , M H , T , C p , p , Dew P o i n t GAHS H , S , M P , T , C p , p , Dew P o i n t 109 Gas T h e r m o d y n a m i c s and C o m b u s t i o n c o n t . BED (Combust i o n ) I n l e t H , M O u t l e t T , P E x c e s s A i r C o a l A n a l y s i s % C o a l B u r n e d C a / S M o l e R a t O u t l e t M , S , H , C p , p , D e w P o i n t C o o l a n t H e a t T r a n s f e r S o l i d s C o o l e r H e a t T r a n s f e r MIX Gas P , H , M A i r P , H , M T , H , M , C p , p 1 10 W a t e r and S team T h e r m o d y n a m i c s S u b r o u t i n e V a l i d R e g i o n s I n p u t P a r a m e t e r s O u t p u t P a r a m e t e r s S T A T E T E v e r y w h e r e e x c e p t t h e 2 P h a s e R e g . P , T H , S , C p , X , p STEAM (L=2) V a p o r P , T H , S , C p , X , p STEAM (L=3) L i q u i d P , T H , S , C p , X , p STATEH E v e r y w h e r e P , H T , S , C p , X , p INTEH V a p o r P , H T , S , C p , X , p LIQH L i q u i d P , H T , S , C p , X , p STATES E v e r y w h e r e P , S T , H , C p , X , p INTES V a p o r P , S T , H , C p , X , p LIQS L i q u i d P , S T , H , C p , X , p VATS V a p o r T , S P , H , C p , X , p VATH V a p o r T , H P , S , C p , X , p 111 W a t e r and S team T h e r m o d y n a m i c s c o n t . PSAT T < 6 4 7 . 2 5 K S a t u r a t i o n T e m p e r a t u r e S a t u r a t i o n P r e s s u r e T S A T P < 2 2.1 MPa S a t u r a t i o n P r e s s u r e S a t u r a t i on P r e s s u r e SATCON T < 6 4 7 . 2 5 K P < 22 .1 MPa P , T ( S a t u r a t i o n ) H f , H g , S f , S g T h e s e i n p u t and o u t p u t p a r a m e t e r s a r e f o r t h e s h o r t t h e r m o d y n a m i c s l i b r a r y . In t h e h e a t t r a n s f e r l i b r a r y ( f o r p a r t l o a d a n a l y s i s ) , t h e f o l l o w i n g p a r a m e t e r s a r e a d d e d : I N P U T : F l u i d V e l o c i t y , Tube D i a m e t e r , and H e a t T r a n s f e r M o d e . O U T P U T : V i s c o s i t y , T h e r m a l C o n d u c t i v i t y , P r a n d t l n u m b e r , R e y n o l d s n u m b e r , and H e a t T r a n s f e r C o e f f i c i e n t . ) 1 1 2 APPENDIX B - THERMODYNAMIC AND TRANSPORT PROPERTIES  P u r e Component P r o p e r t y F o r m u l a t i o n s E n t h a l p y ( k j / k m o l ) Gene T i r ; r a l E q u a t ] 1 K e l v i n , o n : h=8.31 4 ( a + b T + c T : S o u r c e : I + d T 3 + e T " ) <.S. Bensor 1 (30) a b c d e o 2 CO 2 H 2 0 NO - 1 0 2 9 . 7 -1 030 .7 - 1 1 5 3 . 9 - 1 1 7 5 . 0 - 1 0 7 7 . 4 3 . 3 4 4 3 . 253 3 . 0 9 6 3 . 7 4 3 3 . 5 0 2 2 . 9 4 3 E - 4 6 . 5 2 4 E - 4 2 . 7 3 0 E - 3 5 . 6 5 6 E - 4 2 . 9 9 4 E - 4 1 . 9 5 3 E - 9 - 1 . 4 9 5 E - 7 - 7 . 8 8 5 E - 7 4 . 9 5 2 E - 8 - 9 . 5 9 0 E - 9 - 6 . 5 7 5 E - 1 2 1 .539E-11 8 . 6 6 0 E - 1 1 - 1 . 8 1 8 E - 1 1 - 4 . 9 0 4 E - 1 2 Genera T=T/ i l E q u a t i o r ' 1 0 0 0 . 0 I : h = 4 l 8 6 . c Raw d a t a 3 (a + b r + c r 2 -s o u r c e : Je r d r 3 + e r q ) i n a f T a b l e s 5 ( 3 1 ) a b c d e S 0 2 S 0 3 - 2 . 2 9 5 6 - 2 . 7 3 5 . 6 0 0 5 . 5 1 9 8 . 2 1 6 2 1 4 . 2 1 0 7 - 4 . 1 5 3 1 - 7 . 2 2 6 9 0 . 8 6 1 5 1 .4769 Genera T i n ? i l E q u a t i o n : e^ l v i n h = 4 . 1 8 4 ( a+bTH S o u r c e : C - c T 2 + d / T ) I.E. Handboor 1 (32) a b c d C a C 0 3 C a S O „ S i 0 2 A 1 2 0 3 F e 2 0 3 CaO MgO - 7 4 6 3 . 8 - 7 0 6 6 . 9 - 8 1 3 8 . 1 - 8 7 2 2 . 5 - 9 4 9 9 . 6 - 3 5 5 7 . 3 - 3 9 8 9 . 8 19 .68 18 .52 1 7 . 0 9 2 2 . 0 8 2 4 . 7 2 10 .0 1 0 . 8 6 0 . 005945 0 . 0 1 0 9 8 5 0 . 0 0 0 2 2 7 0 . 0 0 4 4 8 5 0 . 0 0 8 0 2 0 . 0 0 0 5 5 9 0 . 0 0 0 5 9 9 307600 156800 897200 522500 423400 108000 208700 C o a l h = 1 4 1 . 5 ( T - 2 9 8 . 0 ) T i n K e l v i n H e a t o f F o r m a t i o n ( k j / k m o l ) Hf 0 S o u r c e CO 2 -393522 (9) H 2 0 -241827 (9) NO 90417 (32) S 0 2 - 2 9 7 0 4 0 (32) S 0 3 -396030 (32) C a C 0 3 - 1 2 1 1 2 6 8 (32) C a S O „ - 1 4 0 3 8 1 6 (32) 1 1 3 S p e c i f i c Heat Cp ( k j / k m o l K) G e n e r a l E 0=T/1 00 Equation: C c :p=a + b£ Source: ?k.+cc?m+dt?n) Van Wyler l & Sc >nntag (9) i a b k c m d r lN 2 o 2 CO 2 H 20 NO 39.060 37.432 -3.7357 143.05 59.283 -512.79 0.02010 30.529 -183.54 -1.7096 -1.5 1 .5 0.5 -0.25 0.5 1072.7 -178.57 -4 . 1034 82.751 -70.613 -2.0 -1.5 1 .0 0.5 -0.5 -820.4 236.88 0.02420 -3.6989 74.889 -3.0 -2.0 2.0 1 . 0 -1.5 Genera T=T/1( i l E q u a t i o n : )00.0 Rav Cp=4.1868(a+h * d a t a source 5 r + c r 2 + d r 3 ) Janaf Table is (31 ) a b c d S 0 2 S 0 3 5.8257 -2.73 15.509 5.519 1 1 . 2842 14.2107 2.9751 -7.2269 Ent r o p y ( k j / k m o l K) Gene T = T/ ; r a l Equate '1 000. 0 .on: s=a+b-Raw d a t a • + C T 2 + d r 3 + e s o u r c e : J c inaf Tables 5 (31) a b c d e o 2 C0 2 H 20 NO S0 2 S 0 3 152.692 166.61 9 167.043 144.602 171.329 197.977 195.207 178.36 173.96 199.38 200.38 179.93 215.22 253.37 -192.85 -180.07 -168.11 -209.50 -192.14 -185.76 -181.85 1 19.242 110. 388 92.482 128.447 1 18.696 101.649 85.576 -29.3123 -27.3588 -21.4962 -31 . 2672 -29.3130 -23.4504 -17.5878 V i s c o s i t y Suther T i n } 'land E q u a t i c t e l v i n >n: M=a/(T+b) ( T / c ) 1 ' 5 a b c Source AIR H 20 N 2 o 2 C0 2 0.00669 0.00843 0.01911 0.02319 0.02149 117.9 659.0 109.17 129.68 246.88 273. 15 273. 1 5 573. 15 573. 1 5 573 . 1 5 (34) (34) (33,34) (33,34) (33,34) 1 1 4 T h e r m a l C o n d u c t i v i t y Genera r = T / 1 ( i l E q u a t i o n : ) 0 0 . 0 k =(a + br+c T 2 ) / ' 1 0 0 . 0 a b c S o u r c e AIR H 2 0 N 2 o 2 CO 2 0 . 3 3 0 1 7 - 0 . 3 2 2 6 0 . 6 4 9 6 2 0 . 1 2 9 0 2 - 0 . 9 8 5 6 8 . 2 6 5 6 . 7 4 6 9 6 . 4 9 5 0 8 . 6 9 4 3 9 . 3 5 1 1 - 1 . 8 1 3 2 . 3 7 5 - 0 . 3 4 3 8 - 1 . 2 9 1 9 - 1 . 6 3 3 3 . A V . . G . . G . . G . . G . H e a t T r a n s f e r C o e f f i c i e n t s 1) F o r c e d T u r b u l e n t C o n v e c t i o n i n T u b e s Nu= 0 . 0 2 3 - R e ° ' 8 - P r ° ' 3 3 S o u r c e : K r e i t h (35) 2) F o r c e d C o n v e c t i o n o v e r Tube B u n d l e s Nu= 0 . 3 3 - R e ° ' 6 - P r ° ' 6 7 S o u r c e : K r e i t h (35) 3) C o n v e c t i o n o v e r Tube B u n d l e s i n a B u b b l y PFB Nu= 5 + 0 . 0 5 - R e ° ' 9 2 - P r S o u r c e : Z a k k a y (36) 4) B o i l i n g H e a t T r a n s f e r i n s i d e T u b e s Nu= 0 . 0 6 - ( p £ / p v ) ° ' 2 8 - R e 0 ' 8 7 - P r ° ' 4 ( E v a l u a t e d w i t h t h e l i q u i d p r o p e r t i e s ) S o u r c e : K r e i t h (35) 1 15 M i x t u r e C a l c u l a t i o n s Enthalpy hm= {Zryh^/m Specific Heat Cp = Iy.-Cp. Entropy sm = { ( Z n i * s i ^ " R ' U r y l n y i ) } / m ' R , l n ( p / p 0 ) Viscosity Thermal Conductivity km = i k./a * 1 J ( ic)-(y 1 /yj)> - { l+Ca . / a^^CMj/M.)^} 2 /" { / M l+^/Mj)) 1*} Notation: Cp Specific Heat h Enthalpy k Thermal Conductivity s Entropy m Mass R Gas Constant M Molecular Weight y Viscosity Subscripts i Component i m Mixture 0 Standard Conditions 1 16 H a t C r e e k A s h A n a l y s i s and E n t h a l p y C o r r e l a t i o n H a t C r e e k A s h A n a l y s i s : Component C o n c e n t r a t i o n S i 0 2 58.6% A 1 2 0 3 30.7% F e 2 0 3 6.4% CaO 1 .6% MgO 1 . 3% S 0 3 1 .4% E n t h a l p y o f A s h and S i 0 2 a t V a r i o u s T e m p e r a t u r e s : E n t h a l p y E n t h a l p y E n t h a l p y TEMP o f S i 0 2 ( k J / k g ) o f A s h o f S i 0 2 +4% ( k J / k g ) E r r o r ( k J / k g ) ( k J / k g ) 300 K - 0 . 0 0 . 5 0 . 0 - 0 . 5 400 K 6 3 . 9 7 2 . 1 6 6 . 5 - 5 . 6 500 K 147 .6 159 .4 1 5 3 . 5 - 5 . 9 600 K 241 .3 2 5 5 . 5 251 .0 - 4 . 5 700 K 341 .0 357 . 1 3 5 4 . 6 - 2 . 5 800 K 4 4 4 . 4 4 6 3 . 0 4 6 2 . 2 - 0 . 8 900 K 550 .4 572 . 1 572 .4 0 . 3 1000 K 6 5 8 . 4 684 . 1 6 8 4 . 7 0 . 6 1100 K 7 6 7 . 9 798 . 5 7 9 8 . 6 0 . 1 1 200 K 878 .5 9 1 5 . 2 9 1 3 . 6 - 1 . 6 1 300 K 9 9 0 . 2 1 034 . 0 1029 .8 - 4 . 2 The E n t h a l p y o f H a t C r e e k a s h was t h u s m o d e l l e d by S i 0 2 w i t h a 4% c o r r e c t i o n . 1 1 7 A c i d Dew P o i n t F o r m u l a t i o n _—— ( The f o l l o w i n g f o r m u l a t i o n f o r t h e a c i d dew p o i n t a s a f u n c t i o n o f s u l p h u r t r i o x i d e c o n c e n t r a t i o n was d e v e l o p e d f rom L i s l e and S e n s e n b a u g h d a t a ( 1 5 ) , u s i n g a l e a s t s q u a r e f i t . T = 1 1 4 . 9 + 6 . 5 l 3 - L o g [ S 0 3 ] + 0 . 4 0 5 2 • ( L o g [ S 0 3 ] ) 2 T i n K e l v i n [ S 0 3 ] - C o n c e n t r a t i o n of S 0 3 i n p a r t s p e r m i l l i o n s o 3 (ppm) Dew P o i n t T e m p e r a t u r e (K) D a t a E q u a t i o n E r r o r 0 . 7 0 373 .2 3 7 3 . 6 0 . 4 0 . 4 0 383 .2 3 8 2 . 4 - 0 . 8 2 . 0 3 9 3 . 2 392 .4 - 0 . 8 3 . 0 394 . 3 3 9 5 . 7 1 . 4 4 . 0 3 9 9 . 3 397 .8 - 1 . 5 11 .0 4 0 5 . 4 4 0 6 . 1 0 . 7 2 6 . 0 4 1 3 . 2 4 1 3 . 6 0 . 4 6 0 . 4 2 2 . 1 4 2 1 . 5 - 0 . 6 200 . 4 3 3 . 2 433 . 9 0 . 7 400 . 442 . 2 441 . 6 - 0 . 6 1 18 APPENDIX C - COMBUSTION CALCULATIONS C o a l and S o r b e n t A n a l y s e s and M o l a r C o m p o s i t i o n s H a t C r e e k C o a l : As R e c e i v e d (37) U l t i m a t e A n a l y s i s # M o l e s P e r 100 kg o f C o a l C a r b o n 30.8% 2 . 5 6 4 3 H y d r o g e n 2.4% 2.381 O x y g e n 10.6% 0 . 6 6 2 5 S u l p h u r 0.4% 0 . 0 1 2 4 6 N i t r o g e n 0.8% 0 .05711 M o i s t u r e 22.5% 1 . 2489 A s h 32.5% 0 . 5 4 0 9 H e a t of. C o m b u s t i o n H e a t o f F o r m a t i o n 1 1 5 5 5 . 0 k J / k g - 5 5 4 5 9 0 . 7 k J / k m o l H a t C r e e k C o a l : P a r t i a l l y Washed (As p e r CURL s p e c i f i c a t i o n s 13) U l t i m a t e # M o l e s A n a l y s i s P e r 100 kg o f C o a l C a r b o n 37 . 6% 3 . 2 9 6 8 2 H y d r o g e n 3.1% 3 . 0 7 4 4 8 O x y g e n 13.5% 0 . 8 4 5 3 9 S u l p h u r 0.64% 0 . 0 1 9 9 5 N i t r o g e n 0.8% 0 . 0 5 7 0 9 M o i s t u r e 10.0% 0 .55491 A s h 34.3% 0 . 5 7 0 6 3 H e a t o f C o m b u s t i o n 1 5 1 0 0 . 0 k J / k g H e a t o f F o r m a t i o n - 3 2 5 5 3 7 . 0 k J / k m o l 1 1 9 H a t C r e e k C o a l : D r y U l t i m a t e # M o l e s A n a l y s i s P e r 100 kg o f C o a l C a r b o n 39.7% 3 . 3 0 8 8 H y d r o g e n 3.1% 3 . 0 7 2 3 O x y g e n 13.7% 0 . 8 5 4 8 S u l p h u r 0.5% 0 . 0 1 6 0 8 N i t r o g e n 1 .0% 0 . 0 7 3 6 9 A s h 41 .9% 0 . 6 9 7 9 4 H e a t o f C o m b u s t i o n 1 4 9 0 9 . 7 k J / k g H e a t of F o r m a t i o n - 2 5 4 9 7 8 . 4 k J / k m o l Hat C r e e k C o a l : D r y and A s h F r e e (DAF) U l t i m a t e A n a l y s i s # M o l e s P e r 100 kg o f C o a l C a r b o n 68.4% 5 . 6 9 8 4 H y d r o g e n 5 • 3 *6 5.2911 O x y g e n 23.6% 1.4722 S u l p h u r 0.9% 0 . 0 2 7 6 9 N i t r o g e n 1 .8% 0 .12691 H e a t o f C o m b u s t i o n H e a t o f F o r m a t i o n 2 5 6 7 7 . 8 k J / k g - 4 3 9 0 8 5 . 7 k J / k m o l 1 20 I l l i n o i s #6 C o a l (38) U l t i m a t e A n a l y s i s # M o l e s P e r 100 kg o f C o a l C a r b o n 66 . 4% 5 . 5 2 8 2 H y d r o g e n 4.5% 4 . 5 0 4 O x y g e n 7.5% 0 . 4 7 1 2 7 S u l p h u r 2.7% 0 .08421 N i t r o g e n 1 . 3% 0 . 0 9 4 2 4 M o i s t u r e 5.8% 0 . 3 2 1 9 5 A s h 11.7% 0 . 1 9 4 7 2 H e a t o f C o m b u s t i o n H e a t of F o r m a t i o n 2 7 7 0 3 . 0 k J / k g - 1 6 5 9 1 5 . 0 k J / k m o l A n d e r s o n C r e e k L i m e s t o n e (13) Component C o n c e n t r a t i o n M o i s t u r e 0.2% CO 2 42.2% CaO 53.0% MgO 0.4% S i 0 2 2.7% A 1 2 0 3 0.8% F e 2 0 3 0.2% N a 2 0 0.07% K 2 0 0.03% S 0 3 0.06% CI 0.01% 121 C o m b u s t i o n C a l c u l a t i o n s N o m e n c l a t u r e : C o m b u s t i o n R e a c t a n t s A i r M F C o m b u s t i o n a i r mass f l o w ( N 2 ) i # mol o f n i t r o g e n i n a i r f l o w ( 0 2 ) i # M o l e s o f Oxygen i n c o m b u s t i o n a i r f l o w ( C o a l ) # M o l e s o f C o a l r e q u i r e d f o r a g i v e n a i r f u e l r a t i o (1 m o l = 100 kg) ( C a C 0 3 ) i # mol o f S o r b e n t r e q u i r e d f o r a g i v e n C a / S mol r a t i o C o a l C o m p o s i t i o n Cf # M o l e s o f C a r b o n i n 100 kg o f c o a l Hf # M o l e s o f H y d r o g e n a toms i n 100 kg of c o a l Of # M o l e s o f Oxygen a toms i n 100 kg o f c o a l S f # M o l e s o f S u l p h u r i n 100 kg o f c o a l Nf # M o l e s o f N i t r o g e n a toms i n 100 kg o f c o a l K 2 O f # mol o f W a t e r i n 100 kg o f c o a l ASH f # M o l e s o f A s h i n 100 kg of C o a l C o m b u s t i o n P a r a m e t e r s 7 A i r F u e l R a t i o C a / S C a l c i u m t o S u l p h u r a t o m i c mol r a t i o BU F r a c t i o n o f c o a l b u r n e d i n c o m b u s t i o n ( C o m b u s t i o n E f f i c i e n c y ) SRF S u l p h u r R e t e n t i o n F a c t o r : f r a c t i o n o f s u l p h u r c a p t u r e d by s o r b e n t C o m b u s t i o n P r o d u c t s ( N 2 ) # mol o f n i t r o g e n i n c o m b u s t i o n g a s e s ( C 0 2 ) # mol o f C a r b o n D i o x i d e i n c o m b u s t i o n g a s e s ( H 2 0 ) # mol o f w a t e r v a p o r i n c o m b u s t i o n g a s e s (SOx) # o f m o l o f SOx i n c o m b u s t i o n g a s e s ( S 0 2 ) # o f mol o f S u l p h u r D i o x i d e i n c o m b u s t i o n g a s e s ( S 0 3 ) # o f mol o f S u l p h u r T r i o x i d e i n c o m b u s t i o n g a s e s ( C a C 0 3 ) # o f m o l o f u n s p e n t S o r b e n t i n s o l i d s d i s p o s a l ( C a S O « ) # o f mol o f s p e n t S o r b e n t i n s o l i d s d i s p o s a l ( A s h ) # o f mol o f C o a l A s h i n s o l i d s d i s p o s a l ( U B c o a l ) # o f mol o f u n b u r n e d c o a l i n s o l i d s d i s p o s a l 1 22 C o m b u s t i o n R e a c t a n t s Oxygen ( 0 2 ) i = A irMF-0.007279 N i t r o g e n ( N 2 ) i = AirMF-0.027383 F u e l C o n s u m p t i o n (Coal) = (0 2 )1/Y • {Cf + Hf/4 - Of/2 + Sf + Nf/2) S o r b e n t ( C a C 0 3 ) C o n s u m p t i o n ( C a C 0 3 ) = ( C o a l ) - S f - C a / S Gaseous P r o d u c t s Of C o m b u s t i o n N i t r o g e n P r o d u c t s ( N 2 ) = ( N 2 ) i + ( C o a l ) - N f - B U / 2 C a r b o n D i o x i d e E m i s s i o n s ( C 0 2 ) = ( C o a l ) • [Cf.BU+Sf-SRF] Water V a p o u r ( H 2 0 ) = ( C o a l ) « B U « [ H f / 2 + H 2 0 f ] 123 S u l p h u r G a s e s (SOx) = ( C o a l ) - S f • [ B U - S R F ] ( S 0 3 ) = (SOx) • S K / M + S K ] ( S 0 2 ) = (SOx) - ( S 0 3 ) SK = K S 0 2 • /{(02)/ZProducts> KS0 2 = e x P { 9 - 8 4 7 - 16.339'T + 4.727-r2} x = T/1000 T in Degrees K O x y g e n ( 0 2 ) = ( 0 2 ) i + ( C o a l ) - B U - [ O f / 2 - H f ] - ( C 0 2 ) - ( C a S O , ) / 2 - ( S 0 2 ) - 1 . 5 - ( S O 3 ) S o l i d P r o d u c t s C a l c i u m C a r b o n a t e ( U n s p e n t S o r b e n t ) ( C a C 0 3 ) = ( C o a l ) - S f • [ C a / S - S R F ] C a l c i u m S u l p h a t e ( C a S O „ ) = ( C o a l ) - S f - S R F A s h (From b u r n e d c o a l o n l y , a n d i n c l u d e s f l y a s h ) ( A s h ) = ( C o a l ) - B U - A S H f U n b u r n e d C o a l ( U B c o a l ) = ( C o a l ) • ( 1 - B U ) 124 E q u i l i b r i u m C o m b u s t i o n C a l c u l a t i o n s The f o l l o w i n g c o m p u t e r p r o g r a m c a l c u l a t e s t h e e q u i l i b r i u m c o n c e n t r a t i o n s o f 10 c o m b u s t i o n p r o d u c t s . Due t o t h e low c o m b u s t i o n t e m p e r a t u r e , i t was a s sumed t h a t t h e c o n c e n t r a t i o n o f t h e m a i n f o u r c o n s t i t u e n t s d i d n o t c h a n g e s i g n i f i c a n t l y . T h i s a s s u m p t i o n was s u p p o r t e d by t h e r e s u l t s and g r e a t l y s i m p l i f i e d t h e c a l c u l a t i o n s . " C o m b u s t i o n " F u e l : D r y A s h F r e e H a t C r e e k C o a l n e g l e c t i n g N i t r o g e n a n d S u l p h u r . E x c e s s A i r : 40% T e m p e r a t u r e : 8 2 5 ° C P r e s s u r e : 1.6 MPa 1 I M P L I C I T R E A L * 8 ( A - H , 0 " Z ) 2 R E A L * 8 K , L , M , N , K A , K B , K C , K D , K E , K F , , X ( 1 0) , C C ( 1 0) ,N2I ,LAMBDA 3 T = 8 2 5 . + 2 7 3 . 1 5 4 P=1 .6 5 CN=5.523 6 HM=5.038 7 0 0 = 1 . 7 7 0 8 LAMBDA=1.4 D i s s o c i a t i o n R e a c t i o n s : A C 0 2 = CO + 1 /20 Z B H 2 0 = OH + 1 / 2 H 2 C H 2 0 = H 2 + l / 2 0 2 D NO = 1 / 2 N 2 + l / 2 0 2 E H 2 = 2H F 0 2 = 20 S e t t h e ga s c o n s t a n t a n d t h e f u e l a n d a i r mass f l o w s : 9 RM0L=8.314 10 N 2 I = 0 . 0 2 7 3 8 3 2 11 021=0 .007278884 12 F U E L = 0 2 I / L A M B D A / ( C N + H M / 4 - 0 0 / 2 ) C a l c u l a t e t h e p r i m a r y r e a c t i o n p r o d u c t s : CO 2 13 K = C N * F U E L H 2 0 14 L = H M / 2 * F U E L 0 2 15 M = 0 2 I + F U E L * 0 0 - K - L / 2 N 2 125 15 N=N2I C a l c u l a t e t h e e q u i l i b r i u m c o n s t a n t s f o r e a c h d i s s o c i a t i o n r e a c t i o n 16 15 K A = D E X P ( D L O G ( T ) * * ( - 5 . 9 4 3 2 4 ) * ( - 3 7 9 4 l 0 0 ) + 1 5 . 4 4 0 8 ) 17 1 * D S Q R T ( 0 . 1 0 1 3 / P ) 18 K B = D E X P ( D L O G ( T ) * * ( - 5 . 7 5 2 2 ) * ( - 2 7 5 3 0 8 2 ) + 1 4 . 8 7 1 ) 19 1 * D S Q R T ( 0 . 1 0 1 3 / P ) 20 K C = D E X P ( D L O G ( T ) * * ( - 5 . 6 8 8 8 ) * ( - 2 1 3 1 2 4 5 ) + 1 2 . 6 3 1 3 ) 21 1 * D S Q R T ( 0 . 1 0 1 3 / P ) 2 2 K D = D E X P ( D L O G ( T ) * * ( - 5 . 8 5 0 3 ) * ( - l 0 3 6 1 3 7 ) + 3 . 3 4 8 3 ) 23 K E = D E X P ( - 1 1 5 . 5 4 + 0 . 1 0 2 2 1 * T ~ 0 . 0 0 0 0 2 6 4 4 * T * T ) * ( 0 . 1 0 1 3 / P ) 2 4 K F = D E X P ( - 1 3 1 . 3 4 + 0 . 1 1 6 4 1 * T - 0 . 0 0 0 0 3 0 1 8 * T * T ) * ( 0 . 1 0 1 3 / P ) C a l c u l a t e t h e t o t a l number o f p r i m a r y p r o d u c t s 25 S=K+L+N+M C a l c u l a t e t h e d e g r e e o f r e a c t i o n c o m p l e t i o n 26 A = K * K A * D S Q R T ( S / M ) 2 7 B = D S Q R T ( L / K C * ( K B * * 2 ) * D S Q R T ( M * S ) ) 28 C = K C * D S Q R T ( S / M ) * L - B / 2 29 D=KD*DSQRT(N*M) 30 E = D S Q R T ( S * K E * ( C + B / 2 ) ) / 2 . 0 31 F = D S Q R T ( S * K F * ( M - D / 2 ) ) / 2 . 0 D i s s o c i a t i o n P r o d u c t s : 1 CO 2 2 CO 3 H 2 0 4 H 2 5 0 2 6 N 2 7 NO 8 OH 9 H 1 0 O C a l c u l a t e t h e number o f m o l e s o f e a c h c o n s t i t u e n t 32 X ( 1 ) = K - A 33 X ( 2 ) = A 34 X ( 3 ) = L - B - C 35 X ( 6 ) = N - D / 2 36 X ( 7 ) = D 37 X ( 4 ) = C + B / 2 38 X ( 5 ) = M + ( A + C - D ) / 2 39 X ( 8 ) = B 126 40 X ( 9 ) = 2 * E 41 X ( 1 0 ) = 2 * F C a l c u l a t e t o t a l number o f p r o d u c t s 4 2 S U M X = X ( 1 ) + X ( 2 ) + X ( 3)+x ( 4 ) + X ( 5 ) + X ( 6 ) + X ( 7 ) + X ( 8 ) + X ( 9 ) + X ( 1 C a l c u l a t e t h e p r o d u c t c o n c e n t r a t i o n s 43 DO 231 1=1 ,10 44 C C ( I ) = X ( I ) / S U M X 4 5 231 CONTINUE 46 STOP 47 END E q u i l i b r i u m C a l c u l a t i o n R e s u l t s C o m b u s t i o n a i r : 1 kg N i t r o g e n i n a i r f l o w : 0 . 02738 kmol O x y g e n i n a i r f o l w : 0 . 00728 kmol F u e l c o n s u m e d : 0 . 00088 kmol o r 0 . 0 8 8 kg R e a c t i o n E q u i l i b r i u m C o n s t a n t s : Ka 0 . 3 0 4 E - 0 9 Kb 0 .261 E-1 0 Kc 0 . 3 0 7 E - 0 9 Kd 0 . 2 1 9 E - 0 3 Ke 0 . 3 3 2 E - 1 6 Kf 0 . 2 9 7 E - 1 8 D e g r e e o f r e a c t i o n c o m p l e t i o n A 0 . 535 E-1 1 mol B 0 . 7 1 5 E - 0 8 mol C - 0 . 3 5 7 E - 0 8 m o l D 0 . 1 94 E - 0 5 mol E 0 . 8 7 4 E-1 5 mol F 0 .281 E - 1 1 m o l 1 27 D i s s o c i a t i o n P r o d u c t s kmol o f P r o d u c t P r o d u c t C o n c e n t r a t i o n c o 2 0 . 4 8 7 E-02 0 . 1 30 CO 0 . 5 3 6 E - 1 1 0 . 1 4 3 E - 0 9 H 2 0 0 . 2 2 2 E - 0 2 0 . 0 5 9 5 H 2 0 . 2 4 6 E-1 1 0 . 6 6 0 E - 1 0 o 2 0 . 2 8 6 E - 0 2 0 . 0 7 6 6 N 2 0 . 2 7 4 E-01 0 . 733 NO 0 . 194 E - 0 5 0 .0000521 OH 0 . 7 1 5 E - 0 8 0 . 1 9 2 E - 0 6 H 0 . 1 7 5 E - 1 4 0 . 4 6 8 E - 1 3 0 0 . 5 6 3 E-11 0 .151 E - 0 9 1 28 H e a t L o s s i n P r o d u c t i o n o f CO a n d NO T y p i c a l r e a c t a n t s N 2 0 . 7 3 3 5 moi 0 2 0 . 1 9 5 0 moi C o a l 0 . 0 3 0 2 moi o r 3 .02 kg T y p i c a l p r i m a r y r e a c t i o n p r o d u c t s C 0 2 0 . 1 3 0 4 moi H 2 0 0 . 0 5 9 5 moi 0 2 0 . 0 7 6 6 moi N 2 0 . 7 3 3 5 moi H e a t o f C o m b u s t i o n 9990 k J / k g T o t a l H e a t A v a i l a b l e i n c o m b u s t i o n = 9990 k J / k g • 3 . 0 2 k g = 3 0 . 2 MJ H e a t l o s t t o p r o d u c t i o n o f CO H e a t o f F o r m a t i o n o f C O : - 1 1 0 . 5 M J / k m o l H e a t o f F o r m a t i o n o f C 0 2 : - 3 9 3 . 5 M J / k m o l H e a t l o s t by t h e f o r m a t i o n o f CO i n l i e u o f C 0 2 : 2 8 3 . 0 M J / k m o l Q u a n t i t y o f CO p r o d u c e d @ 50 ppm : 5 0 • 1 0 6 kmol H e a t L o s t = ( 50 - 1 0 6 k m o l ) - ( 2 8 3 . 0 M J / k m o l ) = 14 k J P e r c e n t o f t o t a l h e a t p r o d u c t i o n = 0.05% H e a t l o s t t o p r o d u c t i o n o f NO H e a t o f F o r m a t i o n o f NO: 9 0 . 4 M J / k m o l Q u a n t i t y o f NO p r o d u c e d Ci 250 ppm : 250 - 10 6 kmol H e a t L o s t = ( 2 5 0 - 1 0 s k m o l ) - ( 9 0 . 4 M J / k m o l ) = 20 k J P e r c e n t o f t o t a l h e a t p r o d u c t i o n = 0.07% 1 29 APPENDIX D - COMPONENT PERFORMANCE FORMULATIONS AND DATA  P r e s s u r e L o s s e s t h r o u g h E q u i p m e n t H e a t E x c h a n g e r s PFB C o m b u s t o r Bed s i d e p r e s s u r e d r o p : B o i l e r p u m p i n g p o w e r : 4 5 KPa (5,18) N e g l i g i b l e S u p e r h e a t e r p u m p i n g p o w e r : R e h e a t e r p u m p i n g power : Wp=1.0% o f ( 1 3 , 3 9 ) Wp=2.8% o f ( 1 3 , 2 9 ) H e a t T r a n s f e r H e a t T r a n s f e r H e a t R e c o v e r y S team G e n e r a t o r S team s i d e p u m p i n g p o w e r : Gas s i d e p r e s s u r e d r o p : Wp=0.15% o f (13) P=0.4% p e r (2) T u r b i n e Power 100 k J / k g E c o n o m i s e r W a t e r s i d e p u m p i n g p o w e r : Gas s i d e p r e s s u r e d r o p : Wp=0.10% of (13) P=3.3% p e r H e a t T r a n s f e r 100 k J / k g I n t e r c o o l e r s W a t e r s i d e p u m p i n g p o w e r : N e g l i g i b l e (13) A i r s i d e p r e s s u r e d r o p : P=3.0% p e r ( 1 3 , 2 0 ) 100 k J / k g R e c u p e r a t o r s A i r s i d e p r e s s u r e d r o p : Gas s i d e p r e s s u r e d r o p : P=2.4% p e r 100 k J / k g (18) P=7% p e r 100 k J / k g (39) F e e d W a t e r H e a t e r s A l l p r e s s u r e d r o p s n e g l i g i b l e 1 30 A u x i l i a r y E q u i p m e n t Hot Gas C l e a n Up E q u i p m e n t P r e s s u r e d r o p : P=2.5% of C o m b u s t o r P r e s s u r e (18) • D u c t i n g Gas C o m p r e s s o r t o T u r b i n e : P=2% o f C o m b u s t o r P r e s s u r e ( 1 , 1 8 ) 131 P e r f o r m a n c e o f T u r b o m a c h i n e r y  Gas C o m p r e s s o r S team Tube C y c l e : n = 86% (19) A i r H e a t e r C y c l e : 7? = 9 2 . 6 ~ 4 . 6 - P c (%) ( 2 0 , 2 9 ) Gas T u r b i n e A i r H e a t e r C y c l e : i? = 88% ( 1 8 , 2 0 ) The f o l l o w i n g t u r b i n e e f f i c i e n c y d a t a was c o m p i l e d f o r t h e s t eam t u b e c y c l e s . P r e s s u r e E f f i c i e n c y S o u r c e Ra t i o 3 80% 4 81% Oak R i d g e N a t i o n a l 5 83% L a b o r a t o r y 7 85% (18) 1 0 88% >1 0 88% 1 4 . 6 88.3% S t a l - L a v a l GT120 T u r b i n e 20 T h i s d a t a was f i t t e d t o t h e f o l l o w i n g f o r m u l a t i o n s : S team Tube C y c l e Gas T u r b i n e E f f i c i e n c y : P < 1 0 7? = 0 .75 + 0 . 0 1 8 - P - 0 . 0 0 0 5 - P 2 P > 1 0 T? = 0 .88 1 32 S team T u r b i n e The f o l l o w i n g s t e a m t u r b i n e e f f i c i e n c i e s were c o m p i l e d . ( 13,21 ) P r e s s u r e MPa T e m p e r a t u r e Deg C Power MW E f f i c i e n c y P a r a s i t i c L o s s e s S team Tut je C y c l e ( 1, 5) 1 4 . 0 0 540 500 .0 8 9 . 5 A i r Heate >r C y c l e (21 ) 2 . 6 2 0 . 38 385 245 3 2 . 1 1 7 . 9 8 4 . 2 8 2 . 8 0.46% 0.47% S team Tube C y c l e : v = 89.5% A i r H e a t e r C y c l e : 7? = 80 . 35 + 0 . 000 1 •( S u p e r h e a t Temp) F e e d W a t e r Pumps F e e d W a t e r Pump: V = (18) 1 33 A u x i l i a r y Power L o s s e s f o r Ne t E f f i c i e n c y C a l c u l a t i o n s T u r b o m a c h i n e L o s s e s Gas T u r b i n e : S team T u r b i n e S team t u b e c y c l e : A i r h e a t e r c y c l e : 0.25% o f gas s y s t e m power 2% o f s t e a m t u r b i n e power 3% o f s t eam t u r b i n e power M a t e r i a l s H a n d l i n g L o s s e s C o a l C r u s h i n g 2 3 . 4 k J / k g c o a l S o r b e n t C r u s h i n g 4 6 . 0 k J / k g s o r b e n t C o a l & S o r b e n t 5 2 . 4 k J / k g s o l i d s h a n d l i n g A s h D i s p o s a l 61 .1 k J / k g a s h A l t e r n a t o r E f f i c i e n c y 98.5% M i s c e l l a n e o u s L o s s e s 0.2% o f t o t a l power 1 34 APPENDIX E - STEAM TUBE C Y C L E RESULTS S e l e c t e d S team C y c l e R e s u l t s B a s i c Steam Tube C y c l e Gas S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y Cp E n t r o p y G1 0 . 1 0 0 8 1 5 . 00 - 1 2 . 0 7 1.0127 6 . 8 5 8 9 G2 0 . 4 8 8 4 2 0 6 . 5 4 1 8 6 . 3 5 1.031 3 6 . 9 1 8 4 G5 1.6000 4 1 8 . 6 4 4 1 4 . 0 3 1 . 0835 6 . 9 6 4 6 G7 1.6000 5 4 4 . 3 5 552 .71 1 .1133 7 . 1450 G8 1 . 5550 9 0 0 . 0 0 - 1 4 8 2 . 4 4 1.2742 7 . 6 4 4 8 G1 0 1.481 6 8 0 0 . 0 0 - 1 6 0 8 . 1 7 1.2542 7 . 5 4 4 0 G l 5 0 . 6 2 6 2 632 . 1 7 - 1 8 1 4 . 5 9 1.2148 7 .5754 G l 6 0 .2611 4 8 1 . 5 7 - 1 9 9 4 . 5 0 1 .1727 7 . 6 0 7 7 G l 7 0 . 1087 3 5 2 . 2 5 - 2 1 4 4 . 5 8 1.1317 7 . 6 4 0 6 G21 0 . 1 0 1 3 1 6 6 . 8 5 - 2 3 5 1 . 8 8 1 . 0726 7 . 2 6 9 0 S team S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y 3 4 0 9 . 9 5 E n t r o p y D e n s i t y Cp SI 16. 0000 540 .00 6 . 446 4 7 . 7 5 3 2 .802 S3 3. 5001 3 1 7 .32 3 0 2 2 . 7 7 6 . 524 14 .004 2 . 561 S4 3. 2959 540 .00 3 5 4 3 . 6 9 7 . 301 8 . 9 6 9 2 . 265 S5 0 . 0067 38 . 32 2 3 9 8 . 0 0 7 . 733 0 . 0 0 .0 S6 0 . 0067 38 .32 1 6 0 . 5 5 0 . 550 9 9 2 . 8 6 4 4 . 1 76 S7 1 7 . 5964 39 .83 182 .34 0 . 563 9 9 9 . 8 6 8 4 . 1 34 S8 1 7 . 4868 66 .26 2 9 1 . 6 9 0 . 899 9 8 7 . 2 9 9 4 . 1 50 S9 1 7 . 0395 173 .77 744 .61 2 . 058 9 0 3 . 7 2 0 4 . 324 SI 4 17. 0394 352 .52 2 5 4 5 . 0 8 5 . 1 74 1 2 0 . 1 7 7 1 8 .337 A i r F l o w = 1 .0000 k g / s Gas F l o w = 1 .1030 k g / s F u e l F l o w = 0 . 1 5 8 9 k g / s A s h F l o w = 0 . 0 6 8 6 k g / s L i m e F l o w = 0 . 0 1 2 7 k g / s B o i l e r F low= 0 . 5 0 4 8 k g / s C y c l e E f f i c i e n c y = 3 8 . 7 0 T o t a l H e a t = 2399 .11 T o t a l Work = 928 Power T u r b i n e Work= 165 .54 S team T u r b i n e Work= 773 Pump Work = 11 1 k J / s 38 k J / s k J / s k J / s k J / s 84 00 Bed H e a t = 1608 .54 k J / s A s h H e a t = 55 .21 k J / s E c o n o m i s e r H e a t = 2 2 8 . 6 5 k J / s Power T u r b i n e C o n t r i b u t i o n •= 1 7 . 8 3 % 135 Steam Tube C y c l e w i t h I n t e r c o o l i n g ( s i n g l e ) Gas S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y Cp E n t r o p y G1 0 . 1 0 0 8 15 .00 - 1 2 . 0 7 1 .0127 6 . 8 5 8 9 G2 0 . 4 8 8 4 2 0 6 . 5 4 186 .35 1 . 0313 6 . 9 1 8 4 G3 0 . 4 6 7 8 71 . 9 6 4 6 . 2 0 1 .0146 6 . 5 9 1 7 G4 0 . 4 6 7 8 71 . 9 6 4 6 . 2 0 1 .0146 6 . 5 9 1 7 G5 1 .6000 2 3 6 . 2 9 2 1 7 . 7 8 1.0378 6 . 6 3 9 8 G7 1 . 6000 3 6 5 . 7 2 3 5 6 . 4 7 1.0701 6 . 8 7 9 8 G8 1 . 5550 9 0 0 . 0 0 - 1 4 8 2 . 4 4 ' 1 . 2 7 4 2 7 . 6 4 4 8 Gl 0 1 . 4816 8 0 0 . 0 0 - 1 6 0 8 . 1 7 1.2542 7 . 5 4 4 0 G1 5 0 . 7 8 4 7 6 7 3 . 9 8 - 1 7 6 3 . 7 4 1.2254 7 . 5 6 6 7 G1 6 0 . 3 4 0 2 5 2 4 . 6 0 - 1 9 4 3 . 6 3 1.1854 7 . 5 9 7 3 G1 7 0 . 1 0 8 7 3 5 2 . 6 9 - 2 1 4 4 . 0 9 1.1318 7 . 6 4 1 4 G21 0 . 1 0 1 3 1 6 6 . 8 5 - 2 3 5 1 . 8 8 1 .0726 7 . 2 6 9 0 Steam S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y E n t r o p y D e n s i t y Cp SI 1 6 . 0000 5 4 0 . 00 3 4 0 9 . 95 6 . 4 4 6 4 7 . 753 2 .802 S3 • 3 . 5001 3 1 7 . 32 3 0 2 2 . 77 6 . 524 14. 004 2 .561 S4 3 . 2959 5 4 0 . 00 3 5 4 3 . 69 7 .301 8 . 969 2 .265 S5 0 . 0067 38 . 32 2 3 9 8 . 00 7 . 7 3 3 0 . 0 0 .0 S6 0 . 0067 38 . 32 1 6 0 . 55 0 . 5 5 0 992 . 864 4 . 1 76 S7 1 7 . 8775 39 . 85 1 8 2 . 68 0 . 5 6 4 9 9 9 . 977 4 . 133 S8 1 7 . 4785 1 3 5 . 51 581 . 34 1 . 675 9 3 9 . 057 4 .230 S9 1 7 .0394 2 4 2 . 08 1 0 4 9 . 05 2 . 6 9 2 8 2 4 . 597 4 . 636 SI 4 1 7 .0394 352 . 52 2 5 4 5 . 09 5 . 1 7 4 1 2 0 . 1 76 1 8 .337 A i r F l o w = 1 . 0000 Gas F l o w = 1.1 030 F u e l F l o w = 0 . 1 5 8 9 A s h F l o w = 0 . 0 6 8 6 L i m e F l o w = 0 . 0 1 2 7 B o i l e r F l o w - 0 . 4 9 0 0 Bed H e a t = 1412 .30 A s h H e a t = 55 .21 I n t e r c o o l e r H e a t = 1 4 0 . 1 5 E c o n o m i s e r H e a t = 2 2 9 . 2 0 k g / s k g / s k g / s k g / s k g / s k g / s k J / s k J / s k J / s k J / s C y c l e E f f i c i e n c y = 4 0 . 0 7 T o t a l H e a t = 2399 .11 T o t a l Work = 9 6 1 . 4 2 Power T u r b i n e W o r k - 2 2 1 . 1 0 S team T u r b i n e W o r k - 7 5 1 . 1 7 Pump Work = 10 .85 Power T u r b i n e C o n t r i b u t i o n = 2 3 . 0 0 k J / s k J / s k J / s k J / s k J / s 1 36 S team Tube C y c l e wi t h I n t e r c o o l i n g and J_ F e e d W a t e r H e a t e r Gas S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y Cp E n t r o p y G1 0 . 1 008 1 5 . 0 0 - 1 2 . 0 7 1 .0127 6 . 8 5 8 9 G2 0 . 4884 2 0 6 . 5 4 1 8 6 . 3 5 1 .0313 6 . 9 1 8 4 G3 0 . 4678 71 . 9 6 4 6 . 2 0 1 .0146 6 . 5 9 1 7 G4 0 . 4678 71 . 96 4 6 . 2 0 1 .0146 6 . 5 9 1 7 G5 1 . 6000 2 3 6 . 2 9 2 1 7 . 7 8 1.0378 6 . 6 3 9 8 G6 1 . 6000 2 3 6 . 2 9 2 1 7 . 7 8 1.0378 6 . 6 3 9 8 G7 6000 3 6 5 . 7 2 3 5 6 . 4 7 1.0701 6 . 8 7 9 8 G8 1 . 5550 9 0 0 . 0 0 - 1482 .44 1.2742 7 . 6 4 4 8 G l 0 1 . 4816 8 0 0 . 0 0 - 1 6 0 8 . 17 1.2542 7 . 5 4 4 0 G1 5 0 . 7847 6 7 3 . 9 8 - 1 7 6 3 . 7 4 1.2254 7 . 5 6 6 7 Gl 6 0 . 3402 5 2 4 . 6 0 - 1 9 4 3 . 6 3 1.1854 7 . 5 9 7 3 G l 7 0 . 1 087 3 5 2 . 6 9 - 2 1 4 4 . 0 9 1.1318 7 . 6 4 1 4 G1 8 0 . 1 087 3 5 2 . 6 9 - 2 1 4 4 . 0 9 1 .1318 7 . 6 4 1 4 G21 0 . 1013 166 .85 - 2 3 5 1 . 8 8 1 .0726 7 . 2 6 9 0 Steam S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y E n t r o p y Mass Dens i t y Cp S1 16. 0000 540 . 00 3 4 0 9 . 95 6 . 446 0 . 560 47 . 753 2 .802 S3 3. 5001 3 1 7 . 32 3 0 2 2 . 77 6 . 524 0 . 487 1 4 . 004 2 . 561 S4 3. 2959 5 4 0 . 00 3 5 4 3 . 69 7 . 301 0 . 487 8 . 969 • 2 . 265 S5 0 . 0067 38 . 32 2 3 9 8 . 00 7 . 733 0 . 487 0 . 0 0 .0 S6 0 . 0067 38 . 32 1 6 0 . 55 0 . 550 0 . 487 9 9 2 . 864 4 . 1 76 S7 9 . 04 1 0 3 9 . 09 171. 76 0 . 557 0 . 487 9 9 6 . 512 4 . 1 53 S8 8 . 6416 1 34 . 87 572 . 68 1 . 677 0 . 487 9 3 5 . 073 4 .252 S9 8 . 2018 24 1 . 10 1043. 06 2 . 701 0 . 487 8 1 7 . 1 65 4 .712 SIO 8 . 2039 2 9 6 . 81 1 326 . 27 3 . 223 0 . 560 7 1 8 . 962 5 .664 S1 1 8 . 2039 432 . 75 3223 . 65 6 . 477 0 . 073 2 7 . 883 2 .655 S 12 17. 0394 301 . 07 1341 . 35 3. 228 0 . 560 727 . 927 5 .431 S1 4 17 . 0393 3 5 2 . 52 2 5 4 5 . 09 5 . 1 74 0 . 560 1 2 0 . 1 76 18 .337 A i r F low= Gas F low= F u e l F l o w = A s h F low= L i m e F low= B o i l e r F low= F e e d W a t e r H e a t e r B l e e d F l o w = 0000 1 030 1 589 0686 0127 5600 k g / s k g / s k g / s k g / s k g / s k g / s C y c l e E f f i c i e n c y T o t a l H e a t T o t a l Work Power T u r b i n e S team T u r b i n e Pump Work 4 0 . 3 3 = 2399 .11 k J / s = 9 6 7 . 6 6 k J / s Work= 2 2 1 . 1 0 k j / s Work= 7 6 0 . 4 7 k J / s 1 3 . 9 0 k J / s 0 . 0 7 2 7 k g / s Power T u r b i n e C o n t r i b u t i o n 2 2 . 8 5 Bed Heat= 1 4 1 2 . 3 0 k J / s I n t e r c o o l e r Heat= 1 4 0 . 1 5 k J / s A s h H e a t = 55.21 k J / s E c o n o m i s e r H e a t = 2 2 9 . 2 0 k J / s 1 37 Net E f f i c i e n c y o f t h e I n t e r c o o l e d Steam Tube C y c l e T u r b i n e I n l e t Temp C a s e 1 8 0 0 ° C C a s e 2 8 0 0 ° C C a s e 3 9 0 0 ° C C o m b u s t o r P r e s s u r e 1.6 MPa 1.6 MPa 1.6 MPa F u e l Hat C r e e k Washed I l l i n o i s #6 H a t C r e e k Washed G r o s s Work 9 6 1 . 4 3 k j 9 6 1 . 8 8 k J 9 9 0 . 5 0 k J A l t e r n a t o r L o s s e s 14 .42 k j 1 4 . 4 3 k j 1 4 . 8 6 k J M a t e r i a l s H a n d l i n g 17 .48 k j 1 1 . 8 3 k j 17 .48 k J T u r b o -m a c h i n e L o s s e s 1 5 . 5 7 k j 1 5 . 9 6 k J 1 5 . 3 0 k J Mi sc . L o s s e s 1.92 k j 1 .89 kJ 1.98 k J T o t a l l o s s e s 4 4 . 3 9 k j 44 .11 kJ 4 9 . 6 2 k J Ne t Work ' 9 1 2 . 0 4 k j 9 1 7 . 7 7 k J 9 4 0 . 8 8 k J Net E f f i c i e n c y 3 8 . 0 % 3 8 . 8 % 3 9 . 2 % 1 38 APPENDIX F - AIR HEATER C Y C L E RESULTS A i r H e a t e r C y c l e R e s u l t s ( D e s i g n L o a d ) Gas S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y Mass Cp E n t r o p y G1 0 . 1008 15 .00 - 1 2 . 0 7 2 . 9 3 0 1 . 0 1 2 7 6 . 8 5 8 9 G5 0 . 7 0 0 0 2 5 1 . 4 5 2 3 3 . 8 7 2 . 9 3 0 1 . 041 4 6 . 9 0 9 0 G7 0 . 7 0 0 0 2 5 1 . 4 5 2 3 3 . 8 7 1 . 000 1 . 0 4 1 4 6 . 9 0 9 0 G8 0. 6550 9 0 0 . 0 0 - 1 4 8 2 . 4 4 1 . 103 1 . 2742 7 . 8 8 8 9 G9 0 .6221 9 0 0 . 0 0 - 1 4 8 2 . 4 4 1.103 1 . 2742 7 . 8 8 8 9 G1 0 0 . 7 0 0 0 2 5 1 . 4 5 2 3 3 . 8 7 1 .930 1 . 0414 6 . 9 0 9 0 G1 2 0 .6221 8 5 1 . 3 6 9 0 2 . 19 1 .930 1 . 1 709 7 . 7 8 3 7 G1 3 0 .6221 8 7 0 . 0 0 3 4 . 9 2 3 . 0 3 3 1 . 2082 7 .8581 G1 5 0 . 2 4 3 4 6 6 9 . 13 - 2 0 2 . 6 7 3 . 0 3 3 1 . 1 702 7 .8931 G1 8 0. 1 029 5 0 7 . 9 7 - 3 8 8 . 0 9 3. 033 1 . 1 325 7 . 9 2 5 4 G20 0 . 1 0 1 3 2 4 0 . 6 9 - 6 8 4 . 2 3 3 . 0 3 3 1 .0592 7 .4731 G2 1 0 . 1 0 1 3 157.1 1 - 7 7 3 . 6 7 3 . 0 3 3 1 . 0395 7 . 2 8 3 4 Steam S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y E n t r o p y Q u a l i t y Cp 51 0 . 0 0 6 7 3 8 . 3 2 .160.55 0 . 5 5 0 0 . 0 4 . 1 7 6 52 1 .5657 3 8 . 4 5 162 .48 0 .551 0 . 0 4 . 1 7 2 53 1.5657 2 0 0 . 3 7 854 .11 2 . 3 3 4 0 . 0 4 . 4 9 5 55 1.5657 4 1 4 . 0 4 3 2 8 5 . 1 8 7 . 2 9 3 1.000 2 . 1 6 9 56 0 . 0 0 6 7 3 8 . 3 2 2 4 1 9 . 7 8 7 . 8 0 3 0 . 9 3 7 0 . 0 F u e l F l o w = 0 . 1 5 8 9 k g / s A s h F l o w = 0 . 0 6 8 6 k g / s L i m e F l o w = 0 . 0 1 2 7 k g / s B o i l e r F l o w - 0 . 3 9 2 2 k g / s Bed H e a t = 1 2 8 9 . 7 0 k J / s A s h H e a t = 55 .21 k J / s HRSG H e a t = 1 2 2 4 . 5 7 k J / s C y c l e E f f i c i e n c y = T o t a l H e a t T o t a l Work Power T u r b i n e Work= S team T u r b i n e Work= Pump Work Power T u r b i n e C o n t r i b u t i o n 3 7 . 5 3 % 2399 .11 k J / 9 0 0 . 4 3 k J / 5 6 2 . 3 3 k J / 3 3 9 . 3 7 k J / 1 . 27 k J / 6 2 . 4 5 % 1 3 9 A i r H e a t e r P a r t L o a d S i m u l a t i o n 90 MV? M o d u l e : D e s i g n L o a d A n a l y s i s Gas S y s t e m D a t a : P r e s s u r e Temp E n t h ' p y Mass Cp E n t ' p y HT Cof F low A r e a G1 0 . 1008 15 .0 - 1 2 . 0 7 2 . 930 1.013 6 . 8 6 G5 0 . 7000 251 .5 2 3 3 . 8 7 2 . 930 1.041 6.91 0 . 4520 G7 0 . 7000 2 5 1 . 5 2 3 3 . 8 7 1 . 000 1 .041 6.91 0 . 1 543 G8 0 . 6550 9 0 0 . 0 - 1 4 6 6 . 3 5 1 . 1 02 1 .274 7 . 8 9 208 .11 0 . 6799 G9 0 . 6221 9 0 0 . 0 - 1 4 6 6 . 3 5 1 . 1 02 1 .274 7.91 0 . 71 59 G1 0 0 . 7000 251 .5 2 3 3 . 8 7 1 . 930 1 .041 6 . 9 1 2 6 . 5 5 0 . 2977 G1 2 0 . 6221 8 5 0 . 1 9 0 0 . 7 3 1 . 930 1.171 7 . 7 8 15 .88 0 . 7 1 73 G1 3 0 . 6221 8 6 9 . 2 40 .21 3 .032 1 .208 7 . 8 6 G1 5 0 . 2432 6 6 8 . 3 - 1 9 7 . 4 3 3 .032 1.170 7 . 8 9 G1 8 0 . 1 029 5 0 7 . 4 - 3 8 2 . 4 9 3 .032 1.132 7 . 9 3 8 9 . 2 2 G1 9 0 . 1013 4 5 3 . 7 -443 . 1 0 3 .032 1.118 7 . 8 5 8 8 . 4 9 0 . 41 50 G20 0 . 1013 2 3 6 . 8 - 6 8 2 . 0 8 3 .032 1 . 058 7 . 4 7 8 9 . 0 0 0 . 291 1 G21 0 . 1013 1 5 7 . 1 - 7 6 7 . 3 2 3 .032 1 . 0 3 9 7 . 2 9 8 9 . 2 9 0 . 2456 S team S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y E n t r o p y Cp HT C o e f F l o w A r e a SI 0 . 0 0 6 7 3 8 . 3 2 1 6 0 . 5 5 0 . 550 4 . 1 76 S2 1 .5657 3 8 . 4 5 ' 162 .48 0 .551 4 . 172 1 7 8 3 . 2 6 0 . 0 0 0 9 S3 1.5657 2 0 0 . 3 7 854 . 1 1 2 . 3 3 4 4 . 495 43935 .61 0 .0011 S4 1 . 5657 2 0 0 . 3 7 2 7 9 3 . 4 2 6 . 4 3 0 2 . 7 9 9 3 9 0 . 7 7 0 . 0 0 4 7 S5 1.5657 4 1 4 . 0 4 3 2 8 5 . 19 7 . 2 9 3 2 . 1 69 2 6 0 . 8 9 0 . 0 0 7 4 S6 0 . 0 0 6 7 3 8 . 3 2 2 4 1 9 . 7 9 7 . 8 0 3 H e a t E x c h a n g e r D a t a : PFB H e a t E x c h a n g e r HRSG S u p e r h e a t e r HRSG B o i l e r HRSG W a t e r H e a t e r HT C o e f (U) 1 9 . 2 5 5 0 k J / ( s - m 2 6 9 . 8 1 6 9 k j / ( s - m 2 8 8 . 5 6 5 4 k J / ( s - m 2 8 4 . 8 9 8 3 k J / ( s - m 2 HT S u r f a c e • K ) 0 . 2 8 6 4 m 2 • K ) 0 . 0 1 6 4 m 2 • K ) 0 . 0 7 3 2 m 2 • K ) 0 . 0 4 3 7 m 2 E f f i c i e n c y = 3 6 . 82 % T o t a l H e a t = 2399 . 1 k J / s T o t a l Work = 883 .4 k J / s Power T u r b i n e Work = 561 .2 k J / s S team T u r b i n e Work = 323 .4 k J / s Pump Work = 1 .2 k J / s A c i d Dew P o i n t = 1 4 3 . 6 ° C F u e l F l o w = 0 . 1 5 8 9 k g / s B o i l e r F l o w - 0 . 3 7 3 7 k g / s Bed H e a t = 1287 .03 k g / s 1 40 75 % LOAD Gas S y s t e m D a t a : P T H (MPa) (C) ( k J / k g ) G1 0 . 1008 15. 00 - 1 2 . 07 G5 0 . 6247 2 2 9 . 07 2 1 0 . 1 5 G7 0 . 6247 2 2 9 . 07 2 1 0 . 1 5 G8 0 . 5858 8 7 5 . 54 - 1 4 9 7 . 28 G9 0 . 5613 8 7 5 . 54 - 1 4 9 7 . 28 G1 0 0 . 6247 2 2 9 . 07 2 1 0 . 1 5 G1 2 0 . 5613 8 3 5 . 1 2 8 8 3 . 33 G1 3 0 .561 3 7 5 0 . 20 5 0 . 92 G1 5 0 .21 92 5 6 3 . 59 - 1 6 5 . 09 G1 8 0 . 1 023 4 3 3 . 28 - 3 1 2 . 1 4 G1 9 0 . 1013 3 9 5 . 07 - 3 5 4 . 64 G20 0 . 1013 2 1 3 . 1 2 - 5 5 2 . 87 G2 1 0 . 1013 1 5 3 . 71 - 6 1 6 . 05 M Cp S h (kg) ( k J / k g C ) ( k J / k g C ) ( k J / s m 2 2 .31 34 1 .0127 6 . 8 5 8 9 2 . 3 1 3 4 1 .0362 6 . 8 9 5 8 0 . 7 8 9 5 1.0362 6 . 8 9 5 8 0 . 8704 1.2692 7 . 8 9 7 4 2 3 9 . 0 . 8704 1 . 2692 7 . 9 0 9 5 1 . 5238 1.0362 6 . 8 9 5 8 2 2 . 1 . 5238 1 .1683 7 . 7 9 6 0 13. 2 . 8 9 0 6 1 .1809 7 . 7 4 8 9 2 . 8906 1 .1413 7 . 7 8 4 2 2 . 8 9 0 6 1 . 1 084 7.8150 8 9 . 2 . 8 9 0 6 1 . 0980 7 . 7 5 7 3 8 2 . 2 . 8 9 0 6 1.0488 7 . 4 1 4 5 8 4 . 2 . 8 9 0 6 1 .0359 7 .2761 8 6 . S team S y s t e m D a t a : P T H S1 0 . 0067 38 . 32 1 6 0 . 55 S2 1 . 1 758 3 8 . 42 1 6 2 . 00 S3 1 . 1 758 187. 08 794 . 59 S4 1 . 1 758 187. 08 2 7 8 4 . 1 3 S5 1 . 1 758 3 7 5 . 98 3 2 0 9 . 69 S6 0 . 0067 3 8 . 32 2 4 1 2 . 49 S X Cp h 0 . 5 5 0 0 0 . 0 4 . 1 756 0 . 5 5 0 8 0 . 0 4 . 1 726 1454 . 2 . 2 0 7 8 0 . 0 4 . 4359 3 7 5 8 5 . 6 . 5 3 0 5 1 .0 2 . 6342 302 . 7 . 3 0 9 5 1 .0 2 . 1 385 206 . 7 . 7 7 9 2 0 .9341 E f f i c i e n c y T o t a l H e a t = T o t a l Work = Power T u r b i n e Work = S team T u r b i n e Work = Pump Work = 1894 .2 k J / s 6 5 4 . 2 k J / s 425 .1 k J / s 2 2 9 . 9 k J / s 0 . 8 k J / s = 3 4 . 5 3 % A c i d Dew P o i n t = 1 4 2 . 7 ° C F u e l F l o w = 0 . 1 2 5 4 k g / s B o i l e r F low= 0 . 2 8 8 4 k g / s Bed H e a t = 1 0 2 5 . 8 0 k J / s 141 5_0 % LOAD Gas S y s t e m D a t a : P T H G1 0 . 1 008 15. 00 - 1 2 . 07 G5 0 . 5432 204 . 47 1 8 4 . 1 6 G7 0 . 5432 2 0 4 . 47 184. 1 6 G8 0 . 5091 8 4 9 . 27 - 1 5 3 0 . 36 G9 0 . 4918 8 4 9 . 27 - 1 5 3 0 . 36 G1 0 0 . 5432 204 . 47 184. 1 6 G1 2 0 . 4918 8 1 8 . 24 8 6 3 . 78 G1 3 0 . 4918 6 2 8 . 44 5 8 . 04 G1 5 0 . 1 932 4 5 9 . 00 - 1 3 3 . 81 G1 8 0 . 1 022 3 6 3 . 93 - 2 3 9 . 1 0 G1 9 0 . 1013 338 . 47 - 2 6 6 . 98 G20 0 . 1013 1 9 0 . 08 - 4 2 6 . 92 G21 0 . 1013 147 . 91 -471 . 52 M Cp S h 2 . 6381 1.0127 6 . 8 5 8 9 1 . 7240 1 .0309 6 . 8832 0 . 5884 1 .0309 6 . 8 8 3 2 0 . 6486 1.2640 7 . 9073 2 8 6 . 0 . 6486 1 .2640 7 .91 70 1. 1 356 1 .0309 6 . 8832 18. 1. 1 356 1 .1656 7 .81 58 10. 2 . 6983 1 .1510 7 . 6 3 2 6 2 . 6983 1.1108 7 . 6 6 8 3 2 . 6983 1 .0854 7 . 6 9 9 9 8 9 . 2 . 6983 1 .0785 7 . 6 5 8 5 7 5 . 2 . 6983 1. 0403 ' 7 . 3608 7 8 . 2 . 6983 1 .0320 7 .2601 8 2 . S team S y s t e m D a t a : P T H S X Cp h SI 0 . 0067 3 8 . 3 2 160. 55 0 . 5500 0 .0 4 . 1 756 S2 0 . 8345 3 8 . 3 9 161 . 58 0 . 5506 0 .0 4 . 1734 1134. S3 0 . 8345 172 .20 7 2 8 . 88 2 . 0636 0 .0 4 . 3802 30844 . S4 0 . 8345 172 .20 2770 . 92 6 . 6484 1 .0 2 .4812 224 . S5 0 . 8345 3 3 3 . 3 7 3 1 2 5 . 97 7 . 33 1 5 1 . 0 2 . 1 070 1 5 5 . S6 0 . 0067 3 8 . 3 2 2 4 0 5 . 32 7 . 7562 0 . 931 2 E f f i c i e n c y = 3 0 . 9 0 % 1 4 1 1 . 6 k J / s 4 3 6 . 2 k J / s 284 .1 k J / s 1 5 2 . 6 k J / s 0 . 5 k J / s T o t a l H e a t = T o t a l Work = Power T u r b i n e Work = S team T u r b i n e Work = Pump Work = A c i d Dew P o i n t = 1 4 0 . 6 ° C F u e l F l o w = B o i l e r F l o w = Bed H e a t = 0 . 0 9 3 5 k g / s 0 . 2 1 1 7 k g / s 7 7 1 . 7 7 k J / s 1 42 30 % LOAD Gas S y s t e m D a t a : p T H M Cp S h G l 0 . 1 008 15. 01 - 1 2 . 06 2 . 3950 1.0127 6 . 8 5 8 9 G5 0 . 4625 1 7 9 . 30 157. 70 1 . 2539 1 .0259 6 . 8727 G7 0 . 4625 1 7 9 . 30 157 . 70 0 . 4279 1 .0259 6 . 8727 G8 0 . 4309 8 2 3 . 41 - 1 5 6 2 . 79 0 . 4718 1.2588 7 . 9244 3 4 9 . G9 0 . 4 1 88 8 2 3 . 42 - 1 5 6 2 . 79 0 . 4718 1.2588 7 . 9324 G1 0 0 . 4625 1 7 9 . 30 1 5 7 . 70 0 . 8259 1 .0259 6 . 8727 1 4 . G1 2 0 . 4188 800 . 37 8 4 3 . 1 3 0 . 8259 1.1627 7 . 8424 8 . G1 3 0 . 41 88 5 2 6 . 18 5 7 . 02 2 . 4388 1.1240 7 . 5388 G1 5 0 . 1 685 3 7 6 . 22 - 1 0 9 . 69 2 . 4388 1.0857 7 . 5739 G1 8 0 . 1 020 3 1 6 . 93 - 1 7 4 . 42 2 . 4388 1.0697 7 . 61 49 8 9 . G1 9 0 . 1013 298 . 66 - 1 9 4 . 22 2 . 4388 1.0648 7 . 5832 6 7 . G20 0 . 1013 172. 22 - 3 2 9 . 44 2 . 4388 1.0342 7 .3171 72 . G21 0 . 1013 1 4 0 . 60 - 3 6 2 . 73 2 . 4388 1 . 0286 7 . 2398 7 6 . S team S y s t e m D a t a : p T H S1 0 . 0067 3 8 . 32 1 6 0 . 55 S2 0 . 6072 3 8 . 37 161 . 29 S3 0 . 6072 1 5 9 . 33 6 7 2 . 63 S4 0 . 6072 159. 33 2757.. 36 S5 0 . 6072 300 . 20 3061 . 87 S6 0 . 0067 38 . 32 2 4 0 4 . 80 S X Cp h 0 . 5500 0 .0 4 . 1 7 5 6 0 . 5504 0 .0 4 . 1740 8 9 9 . 1 . 9360 0 .0 4 . 3 3 9 0 2 5 4 2 1 . 6 . 7561 1 .0 2 . 3 7 0 2 171. 7 . 3674 1 .0 2 . 0 8 1 5 1 2 0 . 7 . 7 5 4 6 0 . 9 3 0 9 E f f i c i e n c y = 2 5 . 4 9 % 1026 .7 k J / s 2 6 1 . 7 k J / s 1 5 7 . 9 k J / s 104.1 k J / s 0 . 3 k J / s T o t a l H e a t = T o t a l Work = Power T u r b i n e Work = S team T u r b i n e Work = Pump Work = A c i d Dew P o i n t = 1 3 8 . 7 ° C F u e l F l o w = B o i l e r F l o w = Bed H e a t = 0 . 0 6 8 0 k g / s 0 . 1 5 8 5 k g / s 5 6 6 . 1 2 k J / s 143 Net E f f i c i e n c y o f t h e A i r H e a t e r c y c l e T u r b i n e I n l e t Temp C a s e 1 8 7 0 ° C C a s e 2 8 7 0 ° C C a s e 3 9 0 0 ° C C o m b u s t o r P r e s s u r e 0 . 7 MPa 0 . 7 MPa 0 . 7 MPa F u e l H a t C r e e k Washed I l l i n o i s #6 Hat C r e e k Washed G r o s s Work 9 0 0 . 4 3 kJ 9 1 0 . 4 3 k J 9 1 8 . 5 2 k j A l t e r n a t o r L o s s e s 13.51 k J 1 3 . 6 6 k J 13 .78 k J M a t e r i a l s H a n d l i n g 1 7 . 4 8 k J 1 5 . 9 6 k j 17 .48 k J T u r b o -m a c h i n e L o s s e s 1 1 . 5 9 kJ 11 .64 k J 12 .07 k j M i sc . L o s s e s 1.80 kJ 1.82 k j 1.84 k J T o t a l l o s s e s 4 4 . 3 8 k j 4 3 . 0 8 k J 4 5 . 1 7 k J Ne t Work 8 5 6 . 0 5 k J 9 6 7 . 3 5 k J 8 7 3 . 3 5 k J N e t E f f i c i e n c y 3 5 . 7 % 3 6 . 6 % 3 6 . 4 % 1 44 APPENDIX G - P U L V E R I Z E D COAL BOILER A N A L Y S I S RESULTS The o p e r a t i n g c o n d i t i o n s and p r e s s u r e d r o p s were t a k e n f r o m a P u l v e r i z e d C o a l B o i l e r d e s i g n c o m p l e t e d i n 1969 f o r a C a n a d i a n u t i l i t y . Two b o i l e r f e e d w a t e r h e a t e r s a r e i n c l u d e d , r e s u l t i n g i n t h e r e q u i r e d b o i l e r i n l e t t e m p e r a t u r e o f 2 5 0 ° C . C y c l e A n a l y s i s R e s u l t s Gas S y s t e m D a t a : A i r I n l e t A i r P r e h e a t e r O u t l e t / B o i l e r I n l e t B o i l e r O u t l e t P r e h e a t e r O u t l e t Fan O u t l e t P r e s s 0 . 1 0 1 3 1013 1013 0969 1013 Temp 1 5 . 0 0 218 328, 161 1 67, 00 00 57 84 E n t h a l p y Cp E n t r o p y - 1 2 . 0 7 1 .0127 6 . 8 5 7 5 198 .44 • 2575 .44 • 2762 .28 •2755 . 40 1 .0337 7 . 3 9 6 5 1 .1339 7 . 5 9 5 5 1 .0789 7 . 2 4 4 9 1 .0808 7 .2481 S team S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y E n t r o p y Mass D e n s i t y Cp S1 16. 8930 537 . 80 3393 . 48 6 . 403 0 . 919 51 . 000 2 . 855 S3 4 . 1 849 3 3 0 . 35 3037 . 54 6 . 473 0 . 737 1 6 .542 2 . 627 S4 4 . 0130 5 3 7 . 80 3531 . 67 7 . 1 98 0 . 737 1 1 . 005 2 . 290 S5 0 . 0067 38 . 32 2 3 6 7 . 87 7 . 636 0 . 618 0 . 0 0 . 0 S6 0 . 0067 38 . 32 160. 55 0 . 550 0 . 618 992 .864 4 . 1 76 S7 0 . 4114 38 . 35 161 . 05 0 . 550 0 . 618 993 .031 4 . 1 75 S8 0 . 4114 1 44 . 66 6 0 9 . 1 6 1 . 787 0 . 737 92 1 . 947 4 . 299 S9 4. 1 097 1 4 5 . 27 6 1 4 . 1 1 1 . 789 0 . 737 923 . 463 4 . 289 S 1 0 4. 1 097 2 5 2 . 00 1 0 9 5 . 08 2 . 81 1 0 . 919 796 .227 4. 873 SI 1 4 . 1 849 3 3 0 . 35 3037 . 54 6 . 473 0 . 182 0 .0 0 . 0 S I 2 0 . 4114 2 4 2 . 36 2 9 4 8 . 03 7 . 335 0 . 1 18 1 . 7 5 6 2 . 062 S 1 3 18. 0650 2 5 6 . 46 1116 . 58 2 . 819 0 . 919 805 . 4 9 5 4 . 743 SHI 18. 0650 3 5 7 . 33 2 5 0 5 . 71 5 . 098 0 . 919 1 34 . 645 2 3 . 1 19 A i r F l o w - 1 . 0000 k g / s C y c l e E f f i c i e n c y 38 . 24 % Gas F l o w - 1.1217 k g / s T o t a l H e a t = 2 8 3 5 . 31 k J / s F u e l F l o w - 0 . 1878 k g / s T o t a l Work = 1084 . 25 k J / s A s h F l o w - 0.081 1 k g / s S team T u r b i n e Work = = 1115 . 69 k J / s L i m e F l o w - 0 . 0 1 5 0 k g / s Pump Work 31 . 44 k J / s B o i l e r F l o w = 0 . 9 1 9 4 k g / s #1 F e e d W a t e r H e a t e r B l e e d F low= 0 . 1 8 3 k g / s #2 F e e d W a t e r H e a t e r B l e e d F low= 0 . 1 1 8 k g / s SHI = S u p e r h e a t e r I n l e t 145 Net E f f i c i e n c y o f PCB C y c l e F u e l : Hat C r e e k C o a l (Washed) G r o s s Work 1082 .64 k J G r o s s ' E f f i c i e n c y 3 8 . 2 % A l t e r n a t o r L o s s e s M a t e r i a l s H a n d l i n g F l u e Gas S c r u b b i n g S team T u r b i n e 16 .24 k J 7 . 0 7 k J 16 .24 k J 2 2 . 2 8 k J T o t a l L o s s e s 6 2 . 2 3 k J Net Work 1020.41 k J Net E f f i c i e n c y 3 6 . 0 % 146 APPENDIX H - GAS TURBOMACHINE C H A R A C T E R I S T I C EQUATIONS Axial Compressor Characteristic Equations P = 1 + 2 ° _ Y • { 2p-(M*/a)" 2 - (M* /a ) p } p = 4 + 3 . 5 - ( N * 2 ' 9 8 ) 6 = 1 . 224 . (N* 2 ' 5 1 ) a = N* - 0.2 n = . { B . M * / e - (M*/e ) 6 } y = { 0.75 + 0.19-/N* - 0 . 8 7 - N * 1 0 ' 7 5 } .TLJ/0.831 6 = 3.9 + 0.011-exp{8N*} e = 1.1-N* - 0.13 Turbine Character i s t ic Equations M* = 1.002 - exp{ - a - i | j } a = 2.11 + 4.25.(1+N*) 2 K, = 3 - ( P - l ) / ( P d - l ) n : C - A*(^~ 2" 1*) - w{l-exp(-*/2)} C = n d +0.0078 X = exp{6.332«N* - 8.6} a) = exp{ -0.5 - 7 . 1 « ( N * 2 ' 3 2 ) } M* = M./r o/p Q N* = N / A Q 1 4 7 APPENDIX I - COMPUTER PROGRAMS L i s t i n g s o f t h e f o l l o w i n g m a i n p r o g r a m s and s u b r o u t i n e l i b r a r i e s a r e i n c l u d e d i n t h i s A p p e n d i x . INTERCOOLED STEAM TUBE C Y C L E ( D e s i g n L o a d ) AIR HEATER C Y C L E ( D e s i g n L o a d ) AIR HEATER C Y C L E ( D e s i g n L o a d A n a l y s i s f o r P a r t L o a d S i m u l a t i o n ) AIR HEATER C Y C L E ( P a r t L o a d S i m u l a t i o n ) P U L V E R I Z E D COAL POWER PLANT ( D e s i g n L o a d ) SUBOUTINE LIBRARY ( L o n g V e r s i o n f o r P a r t L o a d S i m u l a t i o n ) ' In tercooled Steam Tube Cycle 2 3 Design Load Analysis 4 5 6 IMPLICIT REAL*8(A - H,0 - 2) 7 C 8 REAL'S TG(21). PG(21). HG(21), SG(21). MG(21). CPG(21). LMT3, NGT, 9 1 NGC. NP. NT. NI. MF. MST1, MST. LAMBDA, MU. KT, MSOL. 10 2 MLIME, PS(15). TSI15). HS(15). SS(15). XS(15). CPS(15). 11 3 FAG(21). FAS(15). HTS(15), PCS(15). PCG(21). HTG(21). 12 4 UA(9), U(9). A(9) 13 C 14 COMMON /AREA1/ CN. HM, 00. SU. NI. ASH, H20. HFO. LAMBDA. MF, TS03 15 COMMON /AREA3/ HSOL, TSO, MSOL. MLIME 16 • 17 Set the Soli d s Cooler Outlet Temperature' 18 TSO - 200.0 19 C 20 C COMMON /AREA 1/: COMBUSTION COMMON DATA 21 C COMMON /AREA2/: HEAT TRANSFER COMMON DATA 22 C 23 LL • 1 24 CALL STEAM(MU. MU. MU, MU, MU, MU, MU, LL) 25 C 26 HG(8) • -1232.0 27 HG(10) • -1294.0 28 MG(8) • 1.0887 29 MST - 1.0 30 TG(17) - 340.0 31 TPR • 0.0 32 DO 10 IH • 1, 15 33 TS(IH) - 0.00 34 PS(IH) • 0.0 35 HS(IH) • 0.0 36 SS(IH) • 0.0 37 XS(IH) • 0.0 38 CPS(IH) - 0.0 39 HTS(IH) • 0.0 40 10 CONTINUE 41 XS(14) " 1.0 42 DO 20 IH • 1, 21 43 TG(IH) • 0.00 44 PG(IH) • 0.0 45 HG(IH) • 0.0 46 SG(IH) • 0.0 47 MG(IH) - 0.0 48 CPG(IH) - 0.0 49 20 CONTINUE 50 51 Read In the Coal Analysis 52 READ (6,30) HFO, HCO, CN, HM. 00, SU, NI , ASH, H20 53 30 FORMAT (2F12.2, 7F1S.9) 54 55 Read In the Operating Parameters 56 READ (6.40) NX. COOLEF, TCOOL, PREF 57 40 FORMAT (14, 3F12.6) 58 DO 90 IDF • 1 , NX 59 READ (6,50) TAMB. PAMB, TMIN. TBED. TSTACK, PTURB, TTUR, LAMBDA. 60 1 TMAX. PMAX, PINTER, PARAM, NGC. NGT, NT 61 50 FORMAT (15F20.10) 62 63 Set the Jsentroplc E f f i c i e n c i e s of the Compressor, Gas and Steam 64 Turbines, and the Feed Water Pump 65 NGC - 0.86D0 66 NGT - 0.75 • 0.178 • PTURB - 0.048 • PTURB * PTURB 67 IF (PTURB GE. 1.0) NGT • 0.88 68 NT > 0.895D0 69 NP • 0.8100 70 PGIC1 • 0.05 71 PGIC2 - 0.0O1 72 PGEC • 0.003 73 Calculate the L.P. Compressor I n l e t Properties 74 PG(1) " PAMB • 0.995 75 TG(1) • TAMB 1 76 MGO) - 1.0 77 CALL AIR(PG(1), TG(1), HQ(1), SG(1), MQ(1), CPG(1). HTG(1!, 78 1 PCG(1)) 79 Calculate the Intercooler I n l e t Properties 80 PG(2) - (PTURB«»0.57) • (PAMB*«0.43) 81 MG(2) • 1.0 82 SG(2) • SG(1) 83 CALL AIRS(PG(2). TG(2). HG(2). SG(2). MG(2). CPQ(2), HTG(2), 84 1 PCG(2)> 85 HG(2) - HGO) • (HG(2) - HG(D) / NGC 86 CALL AIRH(PG(2). TG(2), HG(2). SG(2). MG(2), CPG(2), HTG(2), 87 1 PCG(2)) 88 Calculate the Intercooler Outlet Properties 89 00 60 I - 1, 3 90 PG(3) - PG(2) - PGIC1 91 MGO) • 1.0 92 TG(3) • TG(2) - COOLEF • (TG(2) - TMIN) 93 CALL AIR(PGO), TG(3). HG(3), SG(3). MG(3), CPQ(3), HTG(3), 94 1 PCG(3)) 95 HINT • HG(2) - HGO) 96 PG(4) - PGO) 97 MG(4) "1.0 98 TG(4) • TG(3) 99 CALL AIR(PG(4), TG(4), HG(4), SG(4), MGO). CPG(4). HTG(4), lOO 1 PCQ(4)) lot C a l c u l a t e the H.P. Compressor Outlet Properties 102 PG(5) " PTURB 103 MGO) - 1.0 104 SGI 5) > SGI 4) 105 CALL AIRS(PGO). TG(5). HG(9), SG(5). MQ(5), CPG(5). HTG(5), 106 1 PCG(5)) 107 HG(5) - HG(4) • (HG(5) - HG(4)) / NGC 108 CALL AIRH(PG(5). TG(5). HG(5), SG(5). MG(5), CPG(5), HTG(5). 109 1 PCG(5)) 110 Calculate the Fluldltzed Bed I n l e t Properties 111 PG(7) - PG(5) 112 MG(7) • MG(5) 113 HG(7) • HG(5) + MG(8) / MG(5) • (HG(8) - HG(10)) 114 CALL AIRH(PG(7), TG(7). HG(7), SG(7). MG(7), CPG(7), HTG(7), 115 1 PCG(7)) 116 Calculate Combustion and the PFB Outlet Properties 117 TG(8) - TBED 11B PG(8) • PG(7) - 0.045 119 L2 - 0 120 CALL BED(HG(7) , MG(7), PGIB). TG(8). HG(8). SG(8). MG(8). 121 1 HPFB, CPG(B), HTG(8), PCG(8), L2) 122 Cal c u l a t e the H.P.Turbine Inlet Properties 123 TG( 10) - TTUH 124 PG(10) - PG(8) - 0.045 * PTUR8 - 0.0014 125 MG(10) • MG(8) 12fi CALL GAS(PGdO). TGI 10), HG(10). SGI 10). MGI10), CPG(IO). 127 1 HTG(10). PCG(10) ) 128 Cal c u l a t e the L,P.Tu r b ina Inlet Properties 129 WC0MP2 - MC.(5) * IHGI5) - HG(4)) 130 HGI15) * HG( 10) - WC0MP2 / MG(IO) / NGT '.31 SGf 1 5 ) - SGI 10) 132 MGI 15) " MGI 10) 1 3 3 CALL GAHSIPG(IS). TGI 15), H G ( I 5 ) . SG(15). MG(15), CPG(IS), 134 1 HTG<15). PCGl15)1 135 HGI15) * HGI10) - WC0MP2 / MGI10) 136 CALL GASH(P<-,( 15) . TGI 15). HGI15). SG(15), MG(15), CPG(15). 137 1 HTGI15), PCGl15)) 136 Cal c u l a t e the Power Turbine Inlet Properties 139 WCQMP1 • MGI1) * (HGI2) - HGIt)) 140 HGI16) - HGI15) - WC0MP1 / MGI15) / NGT 141 SG|16) - SG(15) 142 MGI16) • MGI15) 143 CALL GAHSIPGI16). TG(16), HG(16), SGI 16). MG(16), CPG(16), 144 1 HTGI16). PCGI161) 145 HG(16) • HGI15) - WCQMP1 / MG(15) 146 CALL GASH!PG(16), TG(16). HG(16). SGI 16). MG(16). CPG(16), 147 1 HTGI16). PCG(16)) 148 Cal c u l a t e the Power Turbine Outlet Properties 149 MGI17) • MGI10) 150 PG(17) " PAMB * PGEC 151 SGI 17) - SGI 16) 152 CALL GASSIPGI 17)'. TGI17), HG(17), SG(17). MG(17). CPGI17). 153 1 HTG(17), PCGl17)) 154 HG(17) - HGI16) - NGT * (HGI16) - HGI17)) 155 CALL GASH(PG(17). TGI 17). HG(17). SGI17), MGI17). CPG(17), 156 1 HTG(17). PCGI17)) 157 Calculate the Stack Inlet Properties 158 TG(21) - TSTACK 159 PGI21) - PAMB 160 MGI 21) • MGI17) 161 CALL GASIPGI21). TGI21). HG(21). SGI21), MGI21). CPGI21), 162 1 HTGI21), PCG(21)) 163 Calculate Pressure Drops and Economiser Heat Transfer 164 HTE - (HGI17) - HGI21)) * MG(17) 165 PGIC1 - 0.0003 • PGI2) « (HG(2) - HG(3)) 166 PGIC2 " 0.0003 • PG(3) * (HG(3) - HG(4)) 167 PGEC - 0.00033 • PGI17) • (HG(17) - HGI21)) 168 TSTACK - TS03 + 10.0 169 60 CONTINUE 170 171 C STEAM PORTION OF PROGRAM 172 PSOL • 0.069 173 PSEC • 0.67 174 PSSH • 1.2 175 PSRH - 0.2 176 MST - 0.5 177 Calculate the H.P. Steam Turbine Inlet Properties 178 70 PSI1) • PMAX 179 TS(1) • TMAX 180 LL » 2 181 CALL STEAM(PSO). TS(1). HSI1). SS(1). CPSO), HTS(1). PCS(1), 182 1 LL) 183 XS(1 ) • 1 .0 184 C a l c u l a t e t h e R e h e a t e r Inlet Properties 1 8 5 PS(3) • PINTER 186 S5I3) » SSI 1) 187 CALL STAT65IPS(3). TSI3). HSI3). SS(3), CPSI3), XSI3). HTSI3). i«8 1 PCSI.'))) 189 HS(3) - MSI1) - NT • (HSI1) - HSI3)) 190 CALL S T A T E H I P S O ) . TSI3). HSI3). SSI3), CPSO). XSI3), HTSI3). 19 1 1 P C S I 3 ) ) 192 C a l c u l a t e the L.P. Steam Turbine Inlet Properties 193 TS(4) - TMAX 194 P S ( 4 ) « PSI3) - PSRH 195 <S(4) - 1.0 196 LL • 2 197 CALL STEAM!PSI 4) , TSI4). HS(4), SS(4). CPS(4). HTSI4) , PCS(4). 198 1 L L ) 199 C a l c u l a t e the Condenser Inlet Properties 200 CALL PSATlPLOW, TMIN) 201 PSI5) - PLOW , 202 • SSI5) • SSI4) 203 CALL STATES!PSI5), TSI5), HS(5). SS(5), CPSO), XSI5). HTSI5), 204 1 PCSI5)) 205 HSI5) - HSI4) - NT • (HS(4) - HSI5)) 206 CALL STATEH(PSO), TS(5), HS(5). SS(5). CPSO). XS(5). HTSI 5). 207 1 PCSI 5 ) ) 208 CPS!5) - 0.0 209 Cal c u l a t e the Feed Water Pump Inlet Properties 210 PSI6) - PLOW 211 TSI6) • TMIN 212 LL • 3 213 CALL STEAM(PS(6), TS(6), HSI6), SSI6). CPS(6). HTSI6). PCSI6), 214 1 LL) 215 C a l c u l a t e the Feed Water Pump Outlet Properties 216 PS(7) • PMAX + PSOL + PSEC • PSSH 217 SS<7) - SSI6) 218 CALL LI0S(PS(7), TS(7). HS(7). SS(7), CPS(7). XS(7), HTS<7), 219 1 PCS(7)( 220 HSI7) - HSI6) + (HS(7) - HS(6)) / NP 221 CALL LI0H(PS(7). TSI7). HSI7). SSI7). CPS!7). XS(7). HTSI7). 222 1 PCS!7)) 223 C a l c u l a t e the Properties a f t e r the Intercooler and S o l i d s Cooler 224 PS(8) - PMAX • PSEC • PSSH 225 HS(B) • HSI7) + (HINT + HSOL) / MST 226 CALL LIQH(PSO). TSI8). HSI8), SS(8). CPS(B). XS(8). HTS(8). 227 1 PCS(B)) 228 Cal c u l a t e the Economiser Outlet properties 229 HS(9) « HS(8) • HTE / MST 230 PS(9) • PMAX + PSSH 231 CALL STATEH(PSO). TS(9). HS(9). SS(9), CPSO), XSO). HTSO). 232 1 PCS(9>) 233 C a l c u l a t e the Properties at the Onset of B o i l i n g 234 PSI14) - PMAX • PSSH 235 CALL TSAT(PS(14). TS(14)) 236 LL - 2 237 CALL STEAM(PS(14). TS(14), HSI14), SS(14). CPS(14). HTSI14). 238 1 PCSI14), LL) 239 Re-Estimate the Pressure Drops and Steam Mass Flow 240 HSTE - HSID - HS(9) + HS(4) - HS(3) 241 IF (DABSfHPFB - MST'HSTE) .LE. 0.1) GO TO 80 242 MST - HPFB / HSTE 243 PSOL • HTS(7) • 0.000001 • (HS(8) - HSC7)) 244 PSEC • HTS(8) » 0.000001 • (HS(9) - HS(8)) 245 PSSH - HTS(14) • 0.000010 • (HS(1) - HS(14)) 24S PSRH • HTSO) * 0.000028 • (HS(4) - HS(3)) 247 GO TO 70 24B 249 C a l c u l a t e the Cycle Performance 250 SQ HEAT • MF * HCO 251 WGT • MG(16) * (HG(16) - HG(17)) 252 WST - MST • (HS(1) - HS(3) • HS(4) - HS<5)) 253 WP • MST • (HS(7) - HS(6)) 254 WORK • WGT + WST - WP 255 EFF - WORK / HEAT • 100 256 WR • WGT / WORK • 100 257 258 90 CONTINUE 259 STOP 260 END End of f i l e O i A1r Heater Cycle 2 s Design Load Analysis 5 6 IMPLICIT REAL*8(A - H.O - Z) 7 C 8 REAL'S TG(21). PG(21), HG(21), SG<21). MG(21), CPG(2t). LMT3. NGT. 9 1 NGC, NP, NT, NI, MF, MST 1, MST, LAMBDA, MU, KT, MSOL, 10 2 MLIME, INC. PS(15), TS(15), HS(15), SS(15), XS(15). 11 3 CPSOS), FAG(21), FAS(15). HTS(15). PCS(15). PCG(21). 12 4 HTG(21), UA(9). U(9). A(9) 13 C 14 COMMON /AREA 1/ CN, HM. 00. SU, NI, ASH, H20. HFO. LAMBDA, MF, TS03 15 COMMON /AREAS/ HSOL, TSO. MSOL, MLIME 16 Set the S o l i d s CooIor Outlet Temperature 17 TSO • 200.0 18 C 19 C COMMON /AREA 1/: COMBUSTION COMMON DATA 20 C COMMON /AREA2/: HEAT TRANSFER COMMON DATA 21 C 22 LL - 1 23 CALL STEAMfMU, MU. MU. MU. MU, MU. MU, LL) 24 C 25 HG(8) • -1232.0 26 HG(10) • -1294.0 27 MG(8) - 1.0887 28 MST - 1.0 29 TG(17) » 340.0 30 TPR - 0.0 31 DO 10 IH • 1, 15 32 TS(IH) - 0.00 33 PS(IH) • 0.0 34 HS(IH) • 0.0 35 SSIIH) - 0.0 36 XS(IH) - 0.0 37 CPS(IH) • 0.0 38 HTSCIH) - 0.0 39 10 CONTINUE. 40 XS(14) - 1.0 41 DO 20 IN 1 1 , 6 42 TG(IH) - 0.00 43 PG(IH) - 0.0 44 HG(IH) • 0.0 45 SG(IH) • 0.0 46 MG(IH) - 0.0 47 CPG(IH) • 0.0 48 20 CONTINUE 49 50 Read In the Coal Analysis 51 READ (6.30) HFO, HCO, CN, HM, 00, SU. NI, ASH. H20 52 30 FORMAT (2F12.2. 7F15.9) 53 54 Read 1n the Operating Pasrameters 55 READ (6,40) NX, X6, PREF 56 40 FORMAT (14. 2F12.6) 57 DO 260 IOF - 1 , NX 58 READ (6.50) TAMB, PAMB. TMIN, TBED. TSTACK, PTURB. TTUR. LAMBDA 59 50 FORMAT (12F2O.10) 60 61 Set the Isentropic E f f i c i e n c i e s 62 NP " 0.8100 63 NGC - 0.926 - 0.0046 » PTURB / PAMB 64 NGT • 0.88 65 PGEC - 0.001 66 C a l c u l a t e the Compressor Inlet Properties 67 PG(1) • PAMB • 0.995 68 TG(1) - TAMB 69 MG(1) • 1.0 70 CALL AIR(PG(1). TG(1), HQ(1), SG(1), MG(1), CPG(1), HTG( 1). 71 1 PCG(D) 72 Ca l c u l a t e the Compressor Outlet Properties 73 PG(5) • PTURB 74 MG(5) • 1.0 75 SG(5) - SG(1) 76 CALL AIRS(PG(5>, TG(5), HG(5), SG(5). MG(5), CPG(5), HTG(5), 77 1 PCGO)) 78 HG(5) - HGO) + (HG(5) - HG(1)) / NGC 79 CALL AIRH(PG(5), TG(5). HG(5), SG(S), MG(8). CPQ(5). HTG(5), 80 . 1 PCG(5)) 81 C a l c u l a t e the Bed Inlet Properties 82 PG(7) - PG(5) 83 TG(7) • TG(5) 84 HG(7) - HG(5) 85 SG(7) • SG(5) 86 MG(7) • MG(5) 87 CPG(7) • CPG(5) 88 MGOO) "2.0 ' -* 89 IK - 0 cn 90 C a l c u l a t e Combustion and Bed Outlet Properties —• 91 60 TG(8) • TBED 92 PG(8) - PG(7) - 0.045 93 LZ • O 94 CALL BED(HG(7), MG(7). PG(8). TG(8), HG(8), SG(8). MG(8). HPFB, 95 1 CPG(B). HTG(8), PCG(8). LZ) 96 Cal c u l a t e the Properties a f t e r Hot Gas F i l t r a t i o n 97 TG(9) • TG(8) 98 PG(9) - PG(8) - 0.045 • PTURB - 0.0014 99 MGO) • MG(B) 100 HGO) " HGO) \ 101 SG(9) • SG(8) 102 CPGO) " CPG(8) 103 C a l c u l a t e the Coolant A1r Inlet Properties 104 PG(10) • PG(5) 105 TGOO) - TG(5) 106 HG(10) - HG(5) 107 SG(10) • SG(5) 108 CPG(10) - CPG(5) 109 Ca l c u l a t e the Coolant A1r Outlet Properties 110 PG<12) • PG(9) 111 HG(12) - HGOO) + HPFB / MGOO) 112 MG(12) ' MG(10) 1 13 CALL AIRH(PG(12), TG(12), HG(12). SG(12). MG(12), CPG(12). 114 1 HTG(12), PCG(12)) 115 Ca l c u l a t e Properties of the Combustion Gas and Coolant A1r Mixture 116 PG(13) - PG(9) 117 CALL MIX(PG(13), TG(13). HG(13), HG(12). HGO), SG(13), MG(13). 118 1 MG(12), MGO), CPG( 13) , HTG(13). PCG( 13)) 119 Check the Turbine Inlet Temperature, and If wrong. Change the Coolant 120 Flow. A Newton - Raphson Convergence Technique 1s used. 121 IF (DABS(TG(13) - TTUR) .LE. 0.1) GO TO 90 122 ERR « TG(13) - TTUR 123 IF (IK .GE. 1) GO TO BO 124 C 125 El • ERR 126 FI - MG(10) 127 IK • 1 128 MGI 10)"MG(10)-0.5 129 GO TO 60 130 C 131 80 E2 - ERR 132 F2 - MG(10) 133 MG(10) • (F1»E2 - F2«E1) / (E2 - El) 134 El • E2 135 . F1 • F2 1 136 GO TO 60 137 C 138 90 MGI1) • MGI10) + 1.0 139 MGI5) • MG( 1) 140 Cal c u l a t e the H.P.Turbine Outlet Properties 141 WCOMP • MG(1) • (HG(7) - HG(1)) 142 HG(15) » HG(13) - WCOMP / MG(13) / NGT 143 SGI 15) • SGI 13) 144 MGI15) • MGI13) 145 CALL GAHS(PG(15). TG(15), HG(15). SG(15). MG(15). CPG(15), 146 1 HTGI15). PCGl15)) 147 HGI15) • HGI 13) - WCOMP / MG(13) 148 CALL GASH(PG(15), TG(15). HG(1S), SGI 15). MG(15). CPG(15). 149 1 HTG(15), PCGI15)) 150 Ca l c u l a t e the Power Turbine Outlet Properties 151 100 MGI18) • MGI13) 152 PG(18) • PAMB + PGEC 153 SG(18) • SGI 15) 154 CALL GASSIPGI18), TG(18), HGI18). SG(18), MG(18), CPGI18). 155 1 HTGI18), PCGl181) 156 HG(18) - HG(15) - NGT • (HGI15) - HGI18)) 157 CALL GASH(PG(18). TG(18). HGI18). SGI 18), MG(18). CPGI18). 158 1 HTGI18), PCG(18)) 159 Calculate the Properties at the Stack Inlet 160 110 TG(21) - TSTACK 161 PG(21) • PAMB 162 MGI21) • MG(18) 163 CALL GASIPGI21), TGI21). HG(21), SGI21). MG(21), CPGI21), 164 1 HTG(21), PCGl21)) 165 PGEC - 0.00004 • PG(18) • (HG(18) - HGI21)) 166 IF (DABS(PG(18) - PAMB - PGEC) .GT. 0.0001) GO TO 100 167 TSTACK • TS03 + 10.0 168 IF (0ABSITGI21) - TSTACK) . GE . 0.5) GO TO 110 169 TS03A - TS03 170 HTE - MGI21) • (HG(18) - HGI2D) + HSOL 171 C 172 C STEAM PORTION OF PROGRAM 173 C 174 Cal c u l a t e the Condenser Outlet Properties 175 IF - O 176 CALL PSAT(PS(1), TMIN) 177 LL - 3 178 TS(1) " TMIN 179 CALL STEAM(PS(1), TS(1). HS(1), SS(1). CPS(1). HTS(1). PCS(1), 180 1 LL) 181 Estimate the Saturated Steam Temperature and Pressure 182 TS(5) - TS(1) + 0.80 • (TG(18) - T S ( D ) 183 PS(5) - DEXPK-2.9531 + ,0137682*TSO) - 0.07726* ( ( TS( 5)/100.0) * 184 1 *2))) 185 NT - 0.8035 + 0.0001 * TS(5) 186 C 187 120 CALL STATET(PS(5). TS(5). HS(5). SS(5). CPS(5), XS(5), HTS(5). 188 1 PCS(5)) 189 Ca l c u l a t e the Steam Turbine Outlet Properties 190 PS(6) • PS(1) 191 SS(6) • SS(5) 192 CPS(6) - 0.0 193 CALL STATES(PS(6), TS(6), HS(6), SS(5), CPS(6), XS(6). HTS(6), 194 1 PCSI61) 195 HS(6) - HS(5) - NT * (HS(5) - HS(6)) 196 CALL STATEH(PS(6). TS(6). HS(6). SS(6). CPS(6), XS(6), HTSI6). 197 1 PCS(6)) 198 Ca l c u l a t e the Feed Water Pump Outlet Properties 199 PS(2) • PS(5) 200 SS(2) • SS(1) 201 CALL LI0S(PS(2), T S O ) . HS(2). SS(1), CPS(2), XS(2), HTS(2), 202 1 PCSI2)) 203 HS(2) - HS(1) + (HS(2) - HS(D) / NP 204 CALL LI0HIPSI2), TSI2). HSI2), SSI2). CPSI2), XS(2). HTSI2), 205 1 PCSI2)) 206 Ca l c u l a t e the Steam Mass Flow 207 MST " HTE / (HS(5) - HS(2)) 20B C a l c u l a t e the Properties at the Onset of B o i l i n g 209 PSI3) - PS(5) 210 CALL TSAT(PSO). TS(3)) 211 LL - 3 212 CALL STEAM(PS(3), TS(3), HS(3), SSI3), CPSO), HTSO), PCSO) 213 1 LL) 214 Cal c u l a t e the Gas Properties Corresponding to the Onset of B o i l i n g 215 HGI 20) - HGI21) * (HSO) - HS(2)) • MST / MGI 18) 216 PG(20) • PAMB 217 MG(20) - MGI18) 218 CALL GASHIPGI20), TG(20). HGI20), SGI20), MG(20), CPG(20), 219 1 HTG(20), PCG(20)) 220 C a l c u l a t e the Pinch Point Separation 221 TPIN • TS(2) + 0.80 » (TG(20) - TS(2)) 222 TPIND • TPIN - T S O ) 223 IF (IF .GE. 1) GO TO 150 224 IF (TSO) .LT. TPIN) GO TO 160 225 IF - 1 226 140 TPI1 • TPIND 227 , PI « PSO) 228 PSO) - PSO) + TPIND / 10.0 229 IF (PSO) LE. 0.0) PSO) • -PSO) / 10.0 230 GO TO 120 231 150 TPI2 • TPIND 232 P2 - PSO) 233 IF (DABS(TPIND) .LE. 0.5) GO TO 160 234 PSO) - (P2»TPI1 - P1»TPI2) / ( T P I 1 - TPI2) 235 IF (PSO) .LE. O.O) PSO) - -PSO) / 10.0 236 TPI1 - TPI2 237 P1 - P2 238 GO TO 120 239 240 Ca l c u l a t e the Cycle Performance 241 242 160 HEAT * MF * HCO 243 WGT « MG(1S) • (HGC15) - HG(18)) 244 WST « MST • (HS(5) - HS(6)) 245 WP - MST • (HS(2) - HS(1)) • 0.0015 • WST 246 WORK • WGT • WST - WP 247 EFF • WORK / HEAT • 100 248 WR » WGT / WORK • 100 249 260 CONTINUE 250 STOP 251 END End of f i l e 1 2 Ai r Heater Cycle 3 4 Design Load Analysis fo r Part Load Simulat ion 5 IMPLICIT REAL*8(A - H,0 - Z) 7 REAL*8 TG(21), PG(21), HG(21). SG(21). MG(21). CPG(21). NGT. NGC. 8 I NP. NT, NI. MF. MST1, MST. LAM80A, MU. KT. IMT( 5), MRATE, 9 2 PS(6). TS(6). HS(6). SS(6). XS(6). CPS(6). FAG(2I). FAS(6). 10 3 HTS(6). PCS(6). PCG(21). HTG(21). PDS(S). P0G(5), UA(5). 1 1 4 U(5), A(5) 12 C 13 INTEGER OPT. TYPE 14 TVPE - 0 15 OPT • 0 16 C 17 c OPT: HEAT EXCHGER CALC INSTR. 1- KNOW HOT OUTLET TEMP 18 c 2- KNOW COLD OUTLET TEMP 19 c 20 c TVPE: HEAT TRANSFER CONDITIONS 1- INSIDE TUBE (TURBULENT) 21 c 2- OUTSIDE TUBE (TURBULENT) 22 c 3- OUTSIDE TUBE (BUBBLY PFB) 23 c 4- BOILING HEAT TRANSFER IN TUBES 24 c (CALCULATED AT LIQUID END) 25 c • 26 CDMMON /AREA1/ CN. HM. 00, SU. NI. ASH. H20. HFO. LAMBDA. MF, TS03 27 COMMON /AREA2/ VEL, RHO. AREA, DIAM, MU. KT. PR. REV, EPS, TVPE 28 c 29 c COMMON /AREA1/: COMBUSTION COMMON DATA 30 c COMMON /AREA2/: HEAT TRANSFER COMMON DATA 31 c 32 LL » 1 33 CALL STEAM(MU, MU, MU. MU. MU, MU. MU, LL) 34 c 35 UK • 1 36 MST - 1.0 37 PDS(1 ) - 0.0 38 PDS(2) - 0.0 39 DO IO IH • 1. 21 40 TG(IH) '0.00 41 PG(IH) • 0.0 42 HG(IH) • 0.0 43 SG(IH) - 0.0 44 MG(IH) • 0.0 45 CPG(IH) • 0.0 46 HTG(IH) - 0.0 47 PCG(IH) - 0.0 48 FAG(IH) • 0.0 49 10 CONTINUE 50 Read In the Coal Analysis 51 READ (6.20) HFO. HCO, CN. HM, 00, SU, NI, ASH, H20 52 20 FORMAT (2F12.2, 7F15.9) 53 Read m the Operating Perameters 54 READ (6,30) NX. X6, PREF 55 30 FORMAT (14, 2F20.10) 56 READ (6.40) TAMB. PAMB. TMIN. TBED. TSTACK. PTURB. TTUR. LAMBDA 57 40 FORMAT (1OF20.10) 58 OIAM - 0.10 59 Set the Isentroplc E f f i c i e n c i e s 60 NGC - 0.894200 6 1 NGT = 0.88D0 62 NT = O 8449D0 63 NP = 0.81D0 64 Set the Bed Height and Pressure Drop 65 PFBHT - 4.9 66 PDBED - 0.045 67 Cal c u l a t e the Compressor Inlet Properties 68 PG(1) - PAMB • .995 69 TG(1 ) - TAMB 70 MG(1) • 2.930 71 VEL - 15.0 72 TVPE • O 73 CALL AIR(PG(1). TG(1). HG(1). SG(1). MG(1), CPG(1). HTG(1). 74 1 PCG(1)) 75 C a l c u l a t e the Compressor Outlet Properties 76 PG(5) =• 0.70000 77 MG(5) = MG(1) 78 SG(5) • SG(1) 79 CALL AIRS(PG(5). TG(5). HG(5). SG(5). MG(5). CPG(S). HTG(5), 80 1 PCG(5)) 81 HG(5) - HGO) • (HG(5) - HGO)) / NGC 82 OIAM • O.10 83 TYPE • O 84 VEL .1.4 I 85 CALL AIRH(PG(5), TG(5), HG(5). SG(5). MG(5). CPG(5). HTG(5), 86 1 PCG(5)) 87 FAG(5) - MG(5) / RHO / VEL 88 FAGOO) • 2.167 / RHO / VEL 89 FAG(7) - 1.0 / RHO / VEL 90 Cal c u l a t e the F l u i d i z e d Bed Inlet Properties 91 PG(7) - PG(5) (j! 92 TG(7) - TG(5) 93 HG(7) • HG(5) 94 SG(7) - SG(5) 95 MG(7) • 1.0 96 CPG(7) • CPG(5) 97 HTG(7) • HTG(5) 98 PCG(7) " PCG(5) ' 99 Ca l c u l a t e Combustion and the F l u i d i z e d Bed Outlet Properties 100 TG(8) » 900.0 101 PG(8) - 0.65500 102 LZ « 0 103 TYPE " 3 104 VEL - 0.82 105 CALL BED(HG(7) , MG(7). PG(8), TG(B), HG(8), SG(B), MG(8). HPFB. 106 1 CPG(8). HTG(8), PCG(8), LZ) 107 FAG(8) - MG(8) / RHO / VEL 108 PDBED = 0.00980 * PFBHT • (1 - EPS) 109 C a l c u l a t e the Gas Properties a f t e r the Hot Gas Cleanup 110 TG(9) - TG(8) 111 PG(9) - O.6221D0 112 MGO) • MGO) 113 TYPE * O 114 CALL GAS(PGO), TGO). HGO). SGO), MGO), CPGO), HTGO), 115 1 PCGO)) 116 FAGO) • MGO) / RHO / VEL 117 C a l c u l a t e the Cooling A i r Inlet Properties 118 PG(10) " PG(5) 1 19 TG( 10) • TG(5)i 120 MG(10) . 1.93000 I 121 TYPE » 1 122 VEL " 1.4 123 CALL AIR(PGOO), TG(10), HG(10), SGI 10). MGI10). CPGI10). HTGI10), 124 1 PCGl 10)) 125 FAGI10) - MGI10) / RHO / VEL 126 Cal c u l a t e the Cooling A i r Outlet Properties 127 PG(12) • PGI9) 128 HGI12) " HGI10) + HPFB / MGI10) 129 MGI12) - MG(10) 130 TYPE • 1 131 VEL - 1.4 132 CALL AIRHIPGI12), TGI12), HGI12), SGI12), MG(12), CPGI12). 133 1 HTGI12). PCGl12)) 134 FAG(12) - MGI12) / RHO / VEL 135 Cal c u l a t e the Cooling A1r and Combustion Gas Mixture Properties 136 PG(13) • PG(9) 137 TYPE - 0 138 CALL MIXIPGI13), TGI13), HGI13). HGI12), HGI9), SGI 13), MGI13), 139 1 MG(12), MG(9), CPG(13), HTGI13), PCGl13)) 140 Calculate the H.P.Turbine Outlet Properties 141 WCOMP • MG(1) • (HGI7) - HGIt)) 142 HGI15) • HGI13) - WCOMP / MGI13) / NGT 143 SGI 15) • SG(13) 144 MGIIS) ' MGI13) 145 CALL GAHSIPGI15), TGI15), HG(15), SGI15), MGI15), CPG(15). 146 1 HTGI15). PCGl151) 147 HGI15) " HGI13) - WCOMP / MGI13) 148 CALL GASHlPGI15), TG(15). HGI15). SGI 15), MGI15), CPGI15). 149 1 HTGI15), PCGl15)) 150 Cal c u l a t e the LP.Turbine Outlet Properties 151 50 MGI18) • MGI13) 152 PG(18) - O.102900 153 SGI 18) « SGI 15) 154 CALL GASSIPGI18), TGI18). HGI18). SGI 18). MGI18). CPG(18). 155 1 HTGI18), PCGl18)) 156 HG(18) " HG(15) - NGT • (HGI15) - HG(18)) 157 TYPE - 2 158 VEL - 15.0 159 DI AM - 0.05 160 CALL GASHlPGI18), TGI 18). HGI18). SGI18). MG(18). CPGI18), 161 1 HTGI18), PCGl18)) 162 Calculate the Stack Inlet Gas Properties 163 TG(21) - 157.11 164 PGI21) • PAMB 165 MGI21) • MGI18) 166 CALL GAS(PG(21), TGI21), HGI21). SGI21). MGI21). CPGI21), HTGI21). 167 1 PCGI21)) 168 FAG(21) - MG(21) / RHO / VEL 169 Determine the Heat Transfer Area for the PFB 170 CIC - (HG(12) - HG(10)) / ITG(12) - TGI 10)) • MG(10) 171 CIH - 100000.0 172 OPT • 2 173 CALL HTXCHGt TG(8). TG(8), C1H, TGI 10), TGI12). C1C, UA(1), OPT) 174 C 175 C STEAM PORTION OF PROGRAM 176 C 177 MST • 0.3737 178 TYPE " 0 179 Calculate the Condenser Outlet Properties 180 TS(1) - TMIN 181 CALL PSATIPSID, T S ( O ) 182 LL - 3 183 CALL STEAMIPS(I), TS<1). HS<1). SSI 1 ) . CPSO). HTSI 1 ), PCSID, LL) 184 XSl 1 ) • 0.0 185 Cal c u l a t e the Feed Water Pump Outlet Properties 186 VEL - 0.4 187 TYPE • 1 188 PSI2) - 1.5657 189 SSO) - SSI 1) 190 CALL LI0S(PS(2). TS(2). HSU). SS(2). CPS(2). XS(2). HTS(2). 191 1 PCS(2)) 192 HS(2) - HS(1) + (HS(2) - HS ( O ) / NP 193 CALL LI0HIPSI2). TS(2). HSU). SS(2), CPS(2). XS(2), HTS(2), 194 1 PCS(2)) 195 FAS(2) - MST / RHO / VEL 196 Cal c u l a t e the Steam Properties at the Onset of B o i l i n g 197 PSO) •= PSO) 198 CALL TSATIPSO). T S O ) ) 199 LL • 3 200 VEL - 0.4 201 TYPE • 4 202 CALL STEAM(PSO), T S O ) . HSO). SS(3). CPSO), HTSO), PCSO), LL) 203 FASO) - MST / RHO / VEL 204 XS(3) - 0.0 205 C a l c u l a t e the Superheater Inlet Steam Properties 206 PS(4) - PSO) —* 207 TS(4) • TSO) O l 208 VEL - 10.0 CJ1 209 TYPE • 1 210 LL - 2 , 211 CALL STEAM(PS(4). TS(4). HS(4), SS(4). CPS(4), HTSI4), PCS!4), LL) 212 FASI4) - MST / RHO / VEL 213 XS(4) - 1.0 214 Cal c u l a t e the Superheater Outlet Steam Properties 215 PSO) - PSO) 216 TSO) • 414.04D0 217 LL - 2 218 CALL STEAM(PSO). T S O ) . HSO), SSO). CPSO). HTSO). PCSO). LL) 219 FASO) - MST / RHO / VEL 220 XSO) " 1.0 221 C a l c u l a t e the Steam Turbine Outlet Properties 222 PSO) - PS( 1) 223 SSO) - SSO) 224 60 CALL STATES(PSO). T S O ) . HS<6). S SO). CPSO). XSO). HTSO), 225 1 PCSO)) 226 HSO) - HSO) - NT • (HSO) - HSO)) 227 CALL STATEH(PSO), T S O ) . HSO). SSO). CPSO). XSO). HTSO), 228 1 PCSO)) 229 Cal c u l a t e the Steam Mass Flow 230 MST - (HG(18) - HG(21 ) ) / (HSO) - HS(2)) • MG(18) 231 Cal c u l a t e the Superheater Outlet Gas Properties 232 HGI 19) - HGI 18) - (HSO) - HS(4)) • MST / MG( 18) 233 PGI19) - PAMB 234 MGI19) • MGI18) 235 VEL « 15.0 236 TYPE - 2 237 CALL GASHlPGI19). TG(19), HG(19), SG(19), MGI19). CPG(19). 238 1 HTG(19). PCGl19)) 239 FAGI19) • MG(19) / RHO / VEL 240 Cal c u l a t e the Gas Properties Corresponding to the Onset of B o i l i n g 24 1 HG(20) - HG(19) - (HS14) - HS<3)> • MST / MG(18) 242 PG120) - PAMB 243 MGI20) • MGI18) 244 TYPE - 2 245 VEL = 15.0 246 CALL GASH(PG(20), TGI20), HGI20), SGI 20), MGI20). CPGI20), 247 1 HTGI20). PCGI20)) 248 FAGI20) - MGI20) / RHO / VEL 249 Ca l c u l a t e the Heat Transfer Areas for the Three Sections of the HRSG 250 CSC » (HSI5) - HSI4)) / (TSI5) - TS(4)) • MST 251 C4C « 100000.0 252 C5C • (HSO) - HS(2)) / (TSO) - TS(2)) • MST 253 C3H - (HGI18) - HG(19)) / (TG(18) - TGI 19)) • MGI18) 254 C4H » (HG(19) - HG(20)) / (TGI 19) - TG(20)) » MG(18) 255 C5H • (HGI21) - HG( 20)) / (TGOI) - TG(20)) • MGOB) 256 OPT « 2 257 CALL HTXCHG(TG( 18), TG(19), C3H, TSO), TSO), CSC, UA(3), OPT) 258 OPT - 1 259 CALL HTXCHGlTGI 19), TG(20), C4H. TSO). TSO), C4C, UA(4), OPT) 260 OPT • 1 261 CALL HTXCHG(TG(20). TG(21), C5H, TSO). TSO). C5C. UAO). OPT) 262 C 263 U(1) - 1.0 / <2.0/(HTG( 10) • HTG( 12)) + 1.0/HTGO)) 264 UO) - 1.0 / (2.0/(HTG( 18) + HTG( 19)) + 2.0/(HTS(4) + HTSO))) 265 U(4) - 1.0 / (2.0/(HTG( 19) + HTGI 20)) + 1.0/HTSO)) 266 UO) • 1.0 / (2.0/(HTG(20) + HTGOO) + 1.0/HTSO)) 267 C 268 DO 70 I • 1. 5 269 IF (I .EQ- 2) GO TO 70 270 A(I) • UAO) / UO) 271 70 CONTINUE 272 FAS(1) • 0.0 273 HTS(1) - 0.0 274 275 Ca l c u l a t e the Cycle Performance 276 277 HEAT - MF • HCO 278 WGT « MGI15) • (HG(15) - HGI18)) 279 WST • MST • (HSO) - HSO)) v 280 WP - MST • (HSO) - HSO)) + 0.0015 • WST 281 WORK " WGT + WST - WP 282 EFF • WORK / HEAT • 100 283 WR - WGT / WORK • 100 284 C 285 C DATA FOR OFF-LOAD PROGRAM 286 C 287 DO 210 I - 1. 21 288 WRITE (7.200) PG(I), TG(I), HG(I). MGO). FAG( I ) , HTG( I ) 289 200 FORMAT (6F15.7) 290 210 CONTINUE 291 C 292 FASO) • 0.0 293 HTSO) - 0.0 294 00 230 1 - 1 . 6 295 WRITE (7.220) PS(I). TSO). HSO). FASO). HTS(I) 296 220 FORMAT (5F15.7) 297 230 CONTINUE 298 c 299 AO) = 0.0 300 DO 250 I - 1, 5 301 WRITE (7,240) A l l ) 302 240 FORMAT (F15.7) 303 250 CONTINUE 304 C 305 MRATE " MG(7) / MG(1) 306 WRITE (7.260) MST, MRATE. MF, EPS, NGC, NGT. NT. NP. PDBED 307 260 FORMAT (9F15.7) 308 C 309 STOP 310 END End of f i l e i A i r Heater Cycle 2 3 Part Load Analysis 4 5 IMPLICIT REAL"8(A - H.O - Z) 6 C 7 REAL*8 TG(21), PG(21), HG(21). SG(21). MG(21), CPG(21), NGT. NGC, 8 1 NT. NI, MF. MST1, MST, LAMBDA, MU. KT. LMT(5), VG<5). 9 2 VS(5). PS(6). TS(6). HS(6). SS(6). XS(6). CPS(6). FAG(21). 10 3 FAS(S), HTS(6). PCS(6). PCG(21). HTG(21), PDS(S), PDG(5), 11 4 UA(5), U(5). A(S). MRATE. MD1. MD2. MD3. ND1. ND2. ND3. 12 5 MASS 1. MASS2. MASS3. MG13. MG15. NGT2, NGT3, MS2, MASS. NP 13 6 INC, MSS. MS4. MSS, MGB 14 C 15 INTEGER OPT, TYPE 1G TYPE • 0 17 OPT " 0 18 COMMON /AREA1/ CN, HM. 00. SU. NI. ASH. H20. HFO. LAMBDA, MF. TSO 19 COMMON /AREA2/ VEL, RHO. AREA. DIAM, MU, KT, PR, REY, EPS. TYPE 20 21 Read I n Design Load Data 22 DO 20 I - 1. 21 23 READ (7.10) PG(I), TG(I). HG(I), MG(I), FAG(I), HTG(I) 24 10 FORMAT (SF15.7) 25 20 CONTINUE 26 DO 40 I • 1, 6 27 READ (7.30) PS(I). TS(I). HS(I). FAS(I). HTS(I) 28 30 FORMAT (5F15.7) 29 40 CONTINUE 30 DO 60 I - 1, 5 31 READ (7,50) A(I) 32 50 FORMAT (F15.7) 33 60 CONTINUE 34 READ (7,70) OMST, MRATE. OMF, EPS, EDI, ED2, NT. NP, PDBED 35 70 FORMAT (9F15.7) 36 I n i t i a l i s e Steam Subroutines 37 LL - 1 38 CALL STEAM(MU, MU. MU. MU. MU. MU. MU. LL) 39 UK - 1 40 MST " OMST 41 MF - OMF 42 PAMB • PG(?1) 43 TAMB • TG(1) 44 C 45 • DO 80 IH • 1, 21 46 SG(IH) • 0.0 47 CPG(IH) - 0.0 48 PCG(IH) - 0.0 49 80 CONTINUE 50 PFBHT « 4.9 51 OEPS - EPS 52 VOL - (1.0 - EPS) * PFBHT 53 54 Read I n Coat Analysis 55 READ (6,90) HFO, HCO. CN. HM, 00. SU. NI, ASH, H20 56 90 FORMAT (2F12.2, 7F15.9) 57 58 Read I n the Operating Parameters 59 READ (6.100) NX 60 100 FORMAT ( 14 ) 61 DO 360 IOF * 1. NX 62 READ (6.110) LAMBDA. PFBHT, BYPASS, TEMP, TAMB 63 110 FORMAT (5F20.10) 64 DIAM • O.10 65 Set the Design Flow V e l o c i t i e s 66 VG(1) » 0.82 67 VG(2) - 0.82 68 VG(3) • 15.0 69 VG(4) - 15.0 70 VG(5) • 15.0 71 VS(1) " 1.4 72 VS(2) - 1.4 73 VS(3) • 10.0 74 VS(4) - 10.0 75 VS(5) - 0.4 76 C 77 MG18 - MG(18) 78 TMIN • TS(1) 79 TBED - TG(8) 80 TEMP - TG(8) 81 FO - OMST • DS0RT(TS(5) + 273.15) / PS(5) 82 Cal c u l a t e the Compressor Design Parameters 83 R0T1 « 1.0 84 MD1 • MG(1) * DSQRT(TGO) + 273.15) / PG(1) 85 ND1 • 1 / DSQRT(TGO) + 273.15) 86 PD1 - PG(7) / PG(1) 87 C a l c u l a t e the H.P.Turbine Design Parameters 88 MD2 • MG(13) * 0S0RT(TG(13) * 273.15) / PG(13) 89 ND2 - 1 / DSQRT(TG(13) + 273.15) 90 P02 " PG(13) / PG(15) 91 NGT2 - ED2 92 MASS2 - 1.0DO 93 Cal c u l a t e the Power Turbine Design Parameters 94 R0T2 » 1.0 95 MD3 • MG(15) • DSQRT(TG(15) + 273.15) / PG(15) 96 ND3 • 1 / DS0RT(TG(15) • 273.15) 97 PDS • PG(15) / PG(18) 98 EDS " ED2 99 Cal c u l a t e the Compressor Inlet Properties 100 120 VEL - 15.0 101 TG(1) - TAMB 102 TYPE - O , 103 CALL AIR(PG(1), TG(1), HG(1), SG(1), MG(1),. CPG(1), HTG(1), 104 1 PCGO)) 105 Determine the Compressor C h a r a c t e r i s t i c s 106 MASS 1 • MGO) • DSORT(TGO) + 273.15D0) / PG(1) / MD 1 107 SPEE01 - R0T1 / DS0RT(TG(1) + 273.15) / ND1 108 MS2 = MASS2 * MD2 109 00 130 I • 1. 7 110 CALL GC(SPEED1, MASS 1, NGC, PR 1. P01. ED1, PSUR) 111 MASS • MS2 / MD1 * PG(13) / PG(5) • DS0RT((TG(1) + 273.15)/( 112 1 TG( 13) + 273.15)) / MG(13) » MGO) • PR 1 113 MASS 1 « (MASS + 2.0*MASS1) / 3.0 114 IF (DABS(MASS - MASS 1) .LE. 0.00005) GO TO 140 115 130 CONTINUE 116 140 MGO) =• MASS 1 / DSORT(TGO) + 273.15) • PGO ) • MD 1 117 Cal c u l a t e the Compressor Outlet Properties 118 PG(5) • PG(1) • PR 1 1 19 MG(5) * MG(1) 120 SG(5) " SGO ) 121 TYPE • O 122 CALL AIRS(PG(5), TG(5), HG(5). SG(5), MGO), CPG(5), HTG15). 123 1 PCG(5)) 124 HG(5) - HG(1) + (HG(5) - HG(1)) / NGC 125 DIAM - 0.10 126 CALL AIRH(PG(5), TG(5), HG(5), SG(5), MG(5). CPG(5). HTG(5), 127 1 PCG(5)) 128 S p l i t o f f the Bypass A i r 129 MGB • MGI5) • BYPASS 130 MG(5) - MG(5) - MGB 131 Calculate the F l u i d i z e d Bed Inlet Properties 132 MGI7) » MGI5) • MRATE 133 TG(7) - TG(5) 134 HG(7) • HGI5) 135 PG(7) • PGI5) 136 SG(7) - SGI5) 137 CPGI7) • CPGI5) 138 HTGI 7 ) - HTGI 5 ) 139 Calculate Combustion and the F l u i d i z e d Bed Outlet Properties 140 150 TG(8) • TEMP 141 PG(8) • PGI7) - 0.0305 * ((VG(1)/0.82)*»2) - PDBED 142 LZ - 1 143 TYPE • 3 144 VEL " VGID 145 CALL BEDIHGI7), MGI7), PGI8), TGI8), HG(8). SGI8). MGI8), HPFB, 146 1 CPGI8), HTGI8), PCG(B>; LZ) 147 VGI1) • MG(8) / RHO / FAGl8) 148 PDBED - 0.0098 • (1 - EPS) • PFBHT 149 Calculate the Heat Transfer to the Coolant Air 150 C1C - (HGI12) - HGI10)) / (TG(12) - TG(10)) • MG(10) 151 C IH • 100000.0 152 U(1) • 1.0 / (2.0/(HTG(10) t HTG(12)) + 1.0/HTGI8)) 153 UAI1) - AH) * U(1) 154 OPT - 2 155 CALL EFFECT(TG(8) , TG(8), C IH, TG(10). TG(12). C1C, UAO), OPT) 156 Calculate Gas Properties a f t e r the Hot Gas Cleanup 157 TG(9) • TG(8) 158 PG(9) • PG(8) - 0.0329 • ( (VGO )/0.82 )••2 ) 159 MGO) - MGI8) 160 TYPE - 0 161 CALL GAS(PGO), TG( 9) , HGO), SG(9), MG(9). CPGO), HTGI 9), 162 1 PCG(9)) 163 Calculate the Cooling A1r Inlet Properties 164 MG(IO) • MG(5) • (1.0 - MRAfE ) 165 PG(10) " PG(7) 166 TG(10) • TG(7) 167 TYPE - 1 168 VEL - VS(1) 169 CALL AIR(PGOO), TGOO), HGOO). SGOO). MGOO), CPG(IO). 170 1 HTGOO). PCGOO)) 171 Calculate the Cooling A1r Outlet Properties 172 PG( 12) • PGO) 173 MGI12) • MGI10) 174 TYPE - 1 175 VEL • VSI1) 176 CALL AIRIPGI12). TG(12). HG(12), SG(12). MG(12), CPG(12), 177 1 HTGI12), PCG(12)) 178 VSO) - MG(12) / RHO / FAGl 12) 179 HEAT 1 • MG(10) • (HGI12) - HGI10)) 180 Check the PFB Heat Balance 181 TEMP-TEMP+IHPFB-HEAT1)/UA(1) 182 IF (0ABS(HEAT1 - HPFB) .GE. 0.05) GO TO 150 183 Cal c u l a t e the Properties of the Cooling A i r and Combustion Gas Mixture 184 PG( 13) - PGO) 185 TYPE - O 186 CALL MIX(PG( 13). TG(13). HG(13), HG(12), HGO), SG(13). MG(13), 187 1 MG(12). MGO), CPG(13), HTGI 13). PCG(13)) 188 Calculate the Properties of Bypass and Cooling A i r and Combustion Gas 189 Mixture 190 CALL MIX(PG(13). TG(13), HG13, HG(5), HG(13), SG(13), MG13, MGB, 191 1 MGI13). CPGI13), HTGI13), PCGl13)) 192 HGI 13) • HG13 193 MG(13) • MG13 194 Cal c u l a t e the'H.P.Turbine Outlet Properties 195 WCOMP - MGO) • (HGO) - HG(1)) ' 196 SG(15) - SG(13) 197 MG(15) • MG(13) 198 HGI15) • HGI13) - WCOMP / NGT2 / MG(13) 199 CALL GAHSIPGI15). TG(15). HG(15). SGI 15), MGI15), CPGI15), 200 1 HTG(15). PCG(15)) 201 HGI15) • HGI13) - WCOMP / MG(13) 202 CALL GASHlPGI 15), TGI 15). HGI 15), SG(15). MG(15), CPGOS), 203 1 HTG(15), PCGl15)) 204 Cal c u l a t e the H.P.Turbine C h a r a c t e r i s t i c s 205 SPEED2 • R0T1 / DS0RT(TG(13) + 273.1S) / N02 206 PR2 - PG(13) / PG(15) 207 CALL GTISPEED2. MASS2, NGT2, PR2. PD2, EOS) 208 MG13 - MASS2 / 0S0RT(TGO3) + 273.15) * PGO3) • M02 209 IF (DABS(MG(13) - MG13) .GE. 0.0001) GO TO 120 210 Cal c u l a t e the L.P.Turbine C h a r a c t e r i s t i c s 211 SPEEDS - R0T2 / DSQRT(TG(1S) + 273.15) / ND3 212 PR3 - PG(15) / PG(18) 213 CALL GT(SPEEDS, MASSS, NGT3, PR3, PDS. EDS) 214 MG15 • MASSS / DSQRT(TG(15) • 273.15) • PG(15) * MD3 215 Calculate the L.P.Turbine Outlet Properties 216 MGI18) - MG(13) 217 PGOB) • .1013 + 0.0011 • ( (MG(1B)/MG18)**2) 218 SG(18) - SG(15) 219 CALL GASSIPGI18). TG(18), HGI18). SG(18). MG(18), CPGI18), 220 1 HTG(18), PCG(18)) 221 HGI18) • HGI15) - NGT3 • (HG(15) - HOI 18)) 222 TYPE - 2 223 VEL - 15.0 224 DIAM • 0.05 225 CALL GASHlPGI 18), TG(18), HG(18). SG(18). MG(18). CPGOB), 226 1 HTGI18), PCGl18)) 227 C 228 R0T1 - R0T1 • ((MG15/MG(15))**0.3) 229 IF (0ABS(MG15 - MG(15)) . GT '. 0.0001) GO TO 120 230 C 231 C STEAM PORTION OF PROGRAM 232 C 233 TA1 • A(4) + A(5) 234 Cal c u l a t e the Condenser Outlet Properties 235 TYPE ' O 236 CALL PSAT(PSO). TMIN) 237 LL • 3 238 TSO) - TMIN 239 CALL STEAM(PSO). T S O ) . HSO). SSO), CPSO). HTSO). PCSO). 240 1 LL) 241 XS(1) " 0.0 242 C 243 DIF » 0.1 244 MXO • 1 245 IZ - 1 246 MST • OMST 247 INC » -MST / 10.0 248 Calculate the B o i l e r Pressure and Saturation Temperature from the 249 Steam Turbine C h a r a c t e r i s t i c s 250 160 PS(5) • MST • DSQRT(TSO) • 273.15) / FO 251 PS(4) • PS(5) 252 CALL TSAT(PS(4), TS(4)) 253 Cal c u l a t e the Superheater Heat Transfer 254 CSC - (HS(5) - HS(4)) / (TS(5) - TS(4)) • MST 255 CSH - (HG(19) - HG(18)) / (TG(19) - TG(18)) • MG(18) 256 U(3) - 1.0 / <2.0/(HTG<18) • HTG(19)) + 2.0/(HTS(4) • HTS(5))) 257 UA(3) - AO) • U(3) 258 170 FORMAT ('#3 U(3),C3C,C3H»', SF10.5) 259 OPT - 1 260 CALL EFFECT! TG( 18), TG(19), C3H. TS(4), T S O ) . CSC, UA(3), OPT) 261 Calculate the Superheater Outlet Gas Temperature 262 PG(19) • PAMB 263 MG(19) » MG(18) 264 TYPE • 2 265 VEL • VGO) 266 CALL GAS(PG(19). TG(19), HG(19). SG(19), MG(19). CPG(19), 267 1 HTG(19). PCG(19)) 268 VGO) " MG(19) / RHO / FAG(19) 269 Cal c u l a t e the Superheater Outlet Steam Temperature 270 TYPE • 1 271 TS5 • TSO) 272 HS(5) • HS(4) + MG(18) / MST • (HG(18) - HG(19)) 273 VEL - VSO) 274 LL • 2 275 CALL STATEH(PSO) . TS(5). HS(5). SS(5), CPS(5). XS(5), HTS(5). 276 1 PCSO)) 277 VSO) - MST / RHO / FASO) 278 Check to see If the Superheated Steam Temperature has Changed 279 IF (DABS'TSO) - TS5) GE. 0.01) GO TO 160 280 Calculate the B o i l i n g Saturation Properties 281 PSO) • PS(4) 282 CALL TSAT(PSO). TSO)) 283 VEL • VS(4) 284 LL • 2 285 CALL STEAM(PS(4), TS(4). HS(4). SS(4), CPS(4), HTS(4), PCS(4). 286 1 LL) 287 XS(4) - 0.0 288 VS(4) - MST l/ RHO / FAS(4) 289 TYPE - 4 290 VEL • VSO) 291 LL - 3 292 CALL STEAM(PSO). T S O ) , HSO), SSO), CPSO), HTSO), PCSO) . 293 1 LL) 294 XSO) - 0.0 295 Calculate the Feed Water Pump Outlet Properties 296 TYPE « 1 297 PSO) - PSO) 298 CALL LI0S(PS(2), T S O ) . HSO), SS(1). CPSO), XSO). HTSO). 299 1 PCSO)) 300 HSO) - HSO) • (HSO) - HSO)). / NP 301 CALL LIQH(PSO). T S O ) . HSO), S S O ) . CPSO). XSO). HTSO), 302 1 PCSO)) 303 VSO) • MST / RHO / FASO) 304 C a l c u l a t e the Heat Transfer In the B o i l i n g Section of the HRSG 305 C4C - 10CO00.0 306 C4H • (HGOO) - HG(19)) / (TGOO) - TG(19)) • MG(18) 307 U(4) • 1.0 / (2.0/IHTGO9) + HTGOO)) • 1.0/HTSO)) 308 UA(4) • U(4) * A(4) 309 180 FORMAT ('#4 U(4),C4C,C4H-', 3F10.5) 310 OPT - 1 311 CALL EFFECT(TG( 19). TGI 20). C4H. T S O ) . T S(4), C4C, UA(4). OPT) 312 Cal c u l a t e the Gas Properties Corresponding to the Onset of B o i l i n g 313 PGOO) - pAMB 314 MGOO) • MG( 18) 315 VEL - VG(4) 316 TYPE • 2 317 CALL GAS(PGOO), TGOO). HG(20). SGOO). MGOO). CPGOO). 318 1 HTGOO), PCGOO)) 319 VGO) - MGOO) / RHO / FAG(20) 320 C a l c u l a t e the Heat Transfer i n the Feed Water Section of the HRSG 321 C5C • (HSO) - HSO)) / (TSO) - T S O ) ) • MST 322 C5H - ( H G O O - HGOO)) / (TG(21) - TGOO)) * MG(18) 323 U(5) • 1.0 / (2.0/(HTG(20) + HTGOO) + 1.0/HTSO)) 324 UA(5) - U(5) * A(5) 325 190 FORMAT ('#5 U(5),C5C,C5H"'. 3F10.5) 326 OPT - 1 327 CALL EFFECT(TG(20) . T G O O . C5H, T S O ) . T S O ) , CSC, UA(5). OPT) 328 C a l c u l a t e the Stack Inlet Gas Properties —* 329 200 P G O O - PAMB (JI 330 MG(21) • MG(18) VO 331 VEL • VGO) 332 CALL GAS(PG(21), T G O O . HGOO, SG(21). MGOO. CPGOO. 333 1 HTGOO, PCGOO) 334 VGO) • MGOO / RHO / FAGOI) 335 Re-Estimate the Steam Mass Flow 336 MS4 - MG( 18) • (HG(19) - HGOO)) / (HS(4) - H S O ) ) 337 MSS • MG(18) * (HGOO) - H G O O ) / ( H S O ) - H S O ) ) 338 MST • (MS4 • MS5) / 2.0 339 C0NV1 - C0NV2 340 R e d i s t r i b u t e the Heat Transfer Areas 341 A4 • A(4) 342 A5 - A O ) 343 210 A(4) - A4 • MST / MS4 344 A(5) - A5 • MST / MS5 345 TA2 - A(4) + A(5) 346 A(4) - TA1 / TA2 • A(4) 347 AO) • TA 1 / TA2 • A(5) 348 C0NV2 - A O ) - A5 349 IF ((C0NV1«C0NV2) .GE. 0.000) GO TO 220 350 A(4) - (A(4) + A4) / 2.0 351 AO) - (A(5) + A5) / 2.0 352 220 CONTINUE 353 C 354 IF (0ABS(MST - MS4) . GE. 0.0005) GO TO 160 355 IF (DABS1MST - MS5) .GE. 0.0005) GO TO 160 356 C a l c u l a t e the Steam Turbine Outlet Properties 357 PSO) - PSO) 358 CALL STATES(PS(6). TS(6). HSO), SSO), CPSO)', XSO), HTSO), 359 1 PCSO)) 360 HSO) - HSO) - NT * (HSO) - HSO)) 361 CALL STATEH(PS(6), TS(6), HS(6). SS(6). CPS(6), XS(6), HTS(6). 362 1 PCS16)) 363 364 Ca l c u l a t e the Cycle Performance 365 366 240 HEAT * MF * HCO 367 WGT > MG(15) * (HG(15) - HG(I8)> 368 WST - MST • (HS(5) - HS(6)) 369 WP - MST * (HS(2) - HS(D) + 1.3 • MST 370 WORK • WGT • WST - WP 371 EFFO - EFF 372 EFF - WORK / HEAT * 100 373 WR • WGT / WORK * 100 374 360 CONTINUE 375 STOP 376 END End of f i l e o i Pulverized Coal Bo i le r Plant 2 a Design Load Analysis 5 e IMPLICIT REAL'S (A-H.O-Z) 7 C 8 REAL'S TGOO.PG(21),HGOO.SG(21),MGOO.CPGOO,LMT3 9 -,NGT,NGC, NP ,NT ,NI ,MF.MST1,MST,LAMBOA,MU,KT.MSOL,MLIME 10 -,PS(1S).TS(1S),HS(15),SS(I5),XS(1S),CPS(15).FAG(21).FAS(15) 1 1 -,HTS(15).PCS(15),PCG(21),HTG(21),UA(9),U(9),A(9),MS(15) 12 C 13 COMMON /AREA1/ CN.HM.00.SU.NI.ASH.H20.HFO,LAMBOA,MF.TS03 14 COMMON /AREA3/ HSOL.TSO,MSOL.MLIME IB TSO-328.0 16 C 17 LL-1 18 CALL STEAM(MU.MU,MU.MU,MU,MU,MU,LL) 15 C 20 MST-1.0 21 DO 752 IH-1,IS 22 TS(IH)-0.00 23 PS(IH)-0.0 24 HS(IH)-0.0 25 SS(IH)-0.0 26 XS(IH)'0.0 27 CPS(IH)"0.0 28 HTS(IH)-0.0 29 752 CONTINUE 30 XS(14)-1.0 31 C Read In Fuel Data 32 READ(6,600)HFO,HCO.CN.HM,00,SU.NI,ASH,H20 33 600 F0RMAT(2F12.2,7F1B.9) 34 C 35 NT"0.89500 36 NP-0.81D0 37 C Calc u l a t e Ambient A i r Properties 38 PG(1)>0.1013 39 TG(1)-15.0 40 MG(1)-1.0 41 CALL A1R(PG(1),TG(1),HG(1),SG(1).MG(1).CPG<1),HTG(1),PCG(1)) 42 C Calc u l a t e A1r Properties at A i r Preheater Exit / Burner Inlet 43 PG(2)-PG(1) 44 MG(2)-1.0 45 TG(2)»218.0 46 CALL AIR(PG(2),TG(2).HG(2),SG(2).MG(2).CPG(2).HTG(2),PCG(2)) 47 C Calc u l a t e Gas Properties at B o i l e r Outlet 48 LAMBDA-1.1 49 TG(8)-328.0 50 PG(8)-PG(2) 51 LZ-0 52 CALL BED(HG(2),MG(2),PG(B),TG(S).HG(8),SG(8),MG(8),HPFB,CPG(8) 53 -,HTG(8),PCG(S),LZ) 54 C Calc u l a t e Gas Properties at A i r Preheater Outlet 55 TG(10)•161.57 56 PG( 10)-0.09687 57 MG(10)-MG(8) 58 CALL GAS(PG(10),TG(10).HG(10),SG(10),MG(10),CPG(10),HTG(10) 59 -, PCGOO)) 60 C Calc u l a t e Gas Properties at Fan Outlet 61 PGOO-O.1013 62 SG(11)«SG(10) 63 MG(11)«MG(10) 64 CALL GASS(PGOO.TG(11).HGOO.SG(11).MGOO.CPGOO.HTGOO 65 -.PCGOO) 66 HG(11)«HG(10)+(HG(11)-HG(10))/0.80 67 CALL GASH(PGOO,TGOO.HGOO.SGOO,MGOO,CPGOO,HTGOO 68 -.PCGOO) 69 C 70 C STEAM PORTION OF PROGRAM 71 C 72 C C a l c u l a t e Steam Properties at the Superheater I n l e t 73 PS(14).18.065 74 CALL TSAT(PS(14),TS(14)) 73 LL-2 76 CALL STEAM(PS04).TS(14).HS(14),SS(14),CPS04),HTSO4).PCS04) 77 -.LL) 78 C Ca l c u l a t e Steam Properties at the Superheater Outlet 79 77 PS(1)-16 893 80 TSO)-S37.8 81 LL-2 82 CALL STEAM(PSO).TSO).HSO),SSO),CPSO).HTSO).PCSO),LL) 83 XSCO-1.0 84 C C a l c u l a t e Steam Properties at the Reheater I n l e t 85 PS(3)-4.1850 86 SS(3)-SSO) 87 CALL STATES(PS(3),TS(3).HS(3),SS(3),CPS(3),XS(3),HTS(3),PCS(3)) 88 HS(3)-HSO)-NT'(HSO)-HS(3)) 89 CALL STATEH(PS(3),TSO).HSO).SSO).CPSO),XS(3).HT'S(3),PCSO)) 90 CALL TSAT (PS(3).TS(13)) 91 C Ca l c u l a t e steam Properties at the Reheater Outlet 92 TS(4)-537.8 93 PS(4)-4.013 94 XS(4)-1.0 95 LL-2 96 CALL STEAM(PS(4).TS(4).HS(4).SS(4),CPS(4).HTS(4),PCS(4).LL) 97 C C a l c u l a t e Steam Properties at the Condenser I n l e t 98 TMIN-38.32 99 CALL PSAT(PLOW.TMIN) 100 PS(5)-PL0W 101 SS(5)-SS(4) 102 CALL STATES( PS< 5 ).TS(5), HSO). SSO).CPSO). XSO). HTSO), PCSO)) 103 HS(5)-HS(4)-NT'(HS(4)-HSO)) 104 CALL STATEH(PSO) . TSO ) , HS( 5 ) , SS( 5) ,CPS( 5 ) . XS( S) ,HTS(5 ) , PCS(5 )) 105 CPS(S)-0.0 106 C C a l c u l a t e Steam Properties at the Condenser Outlet 107 PS(6)-PL0W 108 TS(6)»TMIN 109 LL-3 110 CALL STEAM(PS(6),TS(6),HS(6).SS(6),CPS(6).HTS(6).PCS(6).LL) 111 C Ca l c u l a t e #1 Feed Hater Heater Performance 112 TS(8)-144.66 113 CALL PSAT(PSO).TSO)) 114 LL-3 115 CALL STEAM(PSO).TS(8).HS(8).SS(8).CPS(B).HTS(S).PCSO) 116 -.LL) 117 C 118 PS(12)-PS(S) 119 SS(12)-SS(4) 120 CALL STATES! PS( 12 ) , TSO 2 ) , HS(12 ) . SS( 12),CPS( 12 ). XS(12 ) . HTS02 ) 121 -,PCS(12)) 122 HS(12)-HS(1)-NT*(HS(4)-HS(12)) 123 CALL STATEH(PS(12),TS(12),HS(12).SS(12).CPS(12),XS(12),HTS(12) 124 -,PCS(12)) 125 C 126 PS(7)-PS(12) 127 SS(7)»SS(6) 128 CALL LI0S(PS(7),TS(7),HS(7).SS(7).CPS(7).XS(7).HTS(7),PCS(7)) 129 HS(7)-HS(6)+(HS(7)-HS(6))/NP 130 CALL LI0H(PS(7),TS(7),HS(7).SS(7),CPS(7),XS(7),HTS(7),PCS(7)) 131 C Calc u l a t e #2 Feed Water Heater Performance 132 TS(10)-252.0 133 CALL PSAT(PS(10).TS(10>) 134 LL«3 135 CALL STEAM(PS<10),TS(10),HS(10),SS(10),CPS(10).HTS(10),PCS(10) 136 -.LL) 137 C 138 PS(9)-PS(10) 139 SS(9)-SS(8) 140 CALL LIQS(PS(9).TS<9).HS(9),SS(9).CPS(9),XS(9),HTS(9),PCS(9)) 141 HS(9)-HS(8)+(HS(9)-HS(8))/NP 142 CALL LIQH(PS(9).TS(9),HS(9).SS(9).CPS(9).XS(9).HTS(9).PCS(9)) 143 C 144 PS(13)-PS(14) 145 SS(13)-SS(10) 146 CALL LI0S(PS(13).TS(13),HS(13).SS(13),CPS(13),XS(13),HTS(13) 147 -,PC5(13)) 148 HS(13)"HS(10)*(HS(13)-HS(10))/NP 149 CALL LI0H(PS(13),TS(13).HS(13).SS(13),CPS(13),XS(13),HTS(13) 150 -,PCS(13)) 151 C 152 T S ( t l ) - T S O ) 153 PS(11)-PS(3) 154 HS(H)-HSO) 155 SS(11)-SS(3) 156 C Calc u l a t e Mass Flows through the Feed Water Heaters and B o i l e r 157 FWH1-(HS(10)-HS(9))/(HS(11)-HS(9)) 158 FWH2-(HS(8)-HS(7))/(HS(12)-HS(7))•(1-FWH1) 159 HSTE-HS(1)-HS(13)+<HS(4)-HS(3))*(1-FWH1) 160 MST-HPFB/HSTE 161 C 162 75 DO 156 1-1. 14 163 MS(I)-MST 164 156 CONTINUE 165 DO 157 1*3.9 166 MS(I)=MST*(1-FWH1) 167 157 CONTINUE 168 DO 158 1-5,7 169 MS(I)-MST*(1-FWH1-FWH2) 170 158 CONTINUE 171 MSOO-FWH1-MST 172 MS(12)-FWH2*MST 173 C 174 C Calc u l a t e Cycle Performance Data 175 C 176 HEAT-MF -HCO 177 WST-MS(1)*(HS(1)-HS(3))*MS(4)•(HS<4)-HS(5))-MS<12)*(HS(4)-HS(12) 178 -) 179 WP-MS(7)«(HS(7)-HS(6))+MS(13)-(HS(13)-HS(10))*MS<9)* 180 -(HS(9)-HS(8))*MG(10)«(HG(11)-HG(10)) 181 182 183 184 C 185 186 End of f i l e WORK-WST-WP EFF-WORK/HEAT*IOO WR-WGT/WORK*100 STOP END 1 ciiimiimiiiiuiiiiiiiii 2 C/// THERODYNAMIC AND///// 3 C//// HEAT TRANSFER ///// 4 C///// LIBRARY ////// 5 C////////////////////////// 6 C 7 C PART 1 8 C 9 C///////////////////// 10 C////// COAL /////// 11 C/// COMBUSTION //// 12 C// AND GAS //// 13 C// THERMODYNAMICS /// 14 C///////////////////// 15 C 16 C 17 C/////////// 18 C// A I R // 19 C/////////// 20 C 21 SUBROUTINE AIR(P.THETA,H,S.MASS,CP.HTC,VSI) 22 C 23 IMPLICIT REAL»8 (A-H.O-Z) 24 REAL*8 X(2),CPG(2),DH(2).SE(2),MU,KT,MASS,CC(2) 25 C 26 T=THETA+273.15D0 27 INTEGER TYPE 28 C 29 COMMON /AREA2/ VEL,RHO.AREA.OIAM.MU.KT.PR,REY.EPS.TYPE 30 C 31 LX0=1 32 RMOL-8.314 33 GOTO 16 34 C///////////// 35 C// A I R H // 36 C///////////// 37 ENTRY AIRH(P.THETA,H,S.MASS.CP.HTC,VSI) 38 C 39 LX0=2 40 H2=H 41 T=900.0 42 GOTO 16 43 C///////////// 44 C// A I R S // 45 C///////////// 46 ENTRY AIRSIP.THETA,H,S.MASS,CP.HTC,VSI) 47 LX0=3 48 S2=S 49 T « 9 0 O 0 50 C 51 16 X(1)*MASS*0.0273832 52 X(2)=MASS*0.007278884 53 SUMX=X(1)+X(2) 54 CC(1)=X(1)/SUMX 55 CC(2 >=X(2)/SUMX 56 17 TT-T/100.0 57 TJ=T/1000.0 58 C 59 C CALCULATE CP VALUES 60 C 61 CPGI 11=39.060-512.79'(TT*»(-1.5)1+1072.7*(TT*«(-2)) 62 --B20.4*(TT»»(-3)) 63 CPGI2 I=37.432*0.020102*(TT**1.5)- 178.57*(TT*•(- 1.5)) 64 -+236.88*<TT**(-2)) 65 CP»(X(1)<CPG(1)+X(2)*CPG(2))/MASS 66 C 67 C CALCULATE ENTHALPY 68 C 69 DH(1)=(<3.344*T+2.943E-04*(T«*2)+1.9S3E-09*(T**3) 70 1-6.575E-12*(T**4))-1029.7)*RMOL 71 DH(2)=((3.253*T+6.524E-04*(T**2)-1.495E-07*(T**3) 72 1+1.539E-11«(T«*4))-1030.7)*RMOL 73 H=(X(1)*DH(1)+X(2)*DH(2))/MASS 74 IF (LX0.NE.2) GOTO 515 75 T2=T+(H2-H)/CP 76 IF(DABS(H2-H).LE.0.01) GOTO 515 77 T-T2 78 GOTO 17 79 C 80 C CALCULATE ENTROPY 81 C 82 515 SE(1)=152.692+178.359*TJ-192.848*(TJ*«2)+119.242*(TJ**3) 83 --29.3123MTJ«*4) 84 SE(2)=166.619+173.963*TJ-180.068*(TJ**2)+110.388*(TJ**3) 85 --27 3588*(TJ**4) 86 SM*X(1)»SE(1)*X(2)*SE(2)-RM0L*(X(1)*DLOG(CC(1))+X(2)*DLOG 87 -<CC<2))) 88 R = RMOL'SUMX/MASS —* 89 S=SM/MASS-R«0L0G(P/O.1013) CTi 90 IF (LX0.NE.3) GOTO 516 OJ 91 T2=T'DEXP((S2-S1/CP) 92 IF(0ABS(S2-S).LE.0.OO05) GOTO 516 93 T=T2 94 GOTO 17 95 C 96 516 MU=0.00669/(T+117 9)*((T/273.15)**1.5) 97 KT"(0.33017+8.265*(T/1000.0)-1.813*((T/1000.0)**2))•1.OE-2 98 RHO=P/(R*T)«1000.0 99 PR=MU*CP/KT*1000.0 100 REY=RHO*VEL*DIAM/MU 101 VSI=1.0 102 IF (TYPE.E0.1) HTC=KT/DIAM*0.023*(REY**0.8)*(PR**0.33) 103 IF (TYPE . EO . 2 ) HTC=KT/DI AM«0. 33* ( REY**0.6 ) • (PR**0. 3 ) 104 THETA=T-273.15 105 RETURN 106 END 107 C/////////// 108 C// B E D / / 109 C/////////// 1 10 C 111 SUBROUTINE BED(H1.M1,P,THETA,H,S,MASS,HEAT.CP.HTC,VSI,LZ) 112 C 113 IMPLICIT REAL'S (A-H.O-Z) 1 14 T = THETA+273. 15D0 I 15 C 116 REAL'8 M1,MASS.MF,DH(11).CPG(11).UUU<11),SE(7) 117 -.KS02.N1,LIMEF,NCONV,MOLRAT,N2I,NOC.MA.MG.MU,KT 118 -.X(11),CC(11),V(4),KTT(4),M<4),0(4.4).LAMBDA 1 19 C 120 INTEGER TYPE 12 1 C 122 COMMON /AREA 1/ CN.HM.00,SU.NI,ASH.H20,HFO,LAMBDA.MF.TS03 123 COMMON /AREA2/ VEL,RHO,AREA.DIAM.MU.KT,PR,REY.EPS.TYPE 124 C 125 C CALCULATE MOLES OF CONSTITUENTS BEFORE COMBUSTION 126 C N2I:N2. 021:02. FUEL. CAC03I:LIMESTONE 127 C 128 LXQ=1 129 RM0L=>8.314D0 130 N2I"M1»0.0273832D0 131 021=M1*0.00727888400 132 IF (LZ.EO.1)FUEL*MF/100.0DO 133 IF ( LZ.EQ.0)FUEL*021/LAMBDA/(CN+HM/4.ODO-00/2.ODO+SU+NI/2 134 MF=FUEL*100.0D0 135 C 136 . HFOL--1207700.000 137 TC-T-273.1500 138 C 139 BURNUP =0.99D0 140 LIMEF*0.85D0 141 NCONV-0.70D0 142 MOLRAT-2 .000 143 C 144 CAC03I*FUEL«SU*M0LRAT 145 C 146 c N2;1 02;2 C02;3 H20;4 NO;5 S02;6 S03;7 147 c 148 c CAC03;8 CAS04;9 ASH;10 COAL;11 149 c 150 X( 10)=BURNUP*FUEL*ASH 151 X(3)»FUEL*(BURNUP*CN+LIMEF*SU) 152 S02"FUEL*SU*(BURNUP-LIMEF) 153 X(1)=N21 + (FUE L *NI* <BURNUP-NCONV))/2 154 X(5)*NC0NV*FUEL*NI 155 X(4)=BURNUP*FUEL*(HM/2+H20) 156 X(9)=FUEL*SU«LIMEF 157 02=BURNUP«FUEL*(0O/2-HM/4)+02I-X(3)-X(9)/2-SO2-X(5)/2 158 X(B)-FUEL«SU*(MOLRAT-LIMEF) 159 X(11)»(1-BURNUP)*FUEL 160 c 161 HREACT=FUEL*HF0+H1*M1+CAC03I*HF0L 162 TT=T/100.0 163 TJ'T/1000.0 164 c 165 c 166 c SOLID COMPONENT THERMODYNAMIC PROPERTIES : DH-ENTH CPG-CP 167 c 168 DH(8)=4.184*(19.68*T+0.005945*T«T+307600/T-7463.8) 169 DH(9)=4.184*(18.52'T+0.0109B5*T«T*156B00/T-7066.9> 170 DH(10)"4.184«(17.09*T+0.000227*T*T+897200/T-813B.1) 171 DH(11)=•141.5*(T-298.0) 172 CPG(8)=4.184*(19.68+0.01189*T-307600/T/T) 173 CPG(9)=4.184*(18.52+0.02197«T-156800/T/T) 174 CPGI10)=4.184*117.09*O.O0O454*T-89720O/T/T) 175 CPGI11)»141.5 176 c 177 c HEAT OF FORMATION OF COMPONENTS 178 c 179 UUU(1)=0.0 180 UUU(2)=0.0 181 UUU(3)=-393522.0 182 UUUI4 ) = -241827.0 183 UUU(5)=90417.0 184 UUU(6)»-297040.0 185 UUUI 7) =--396030.0 186 UUU(8) = -121 1268.0 187 UUU(9)=-14O3816.0 188 UUU(10)=0.0 189 UUU(11)=HF0 190 HLL-X(8)*(DH(B)-121126B.O)+X(9)*(DH(9)-1403816.0)+Xl10)*DH(10) 191 -+X(11)*(0H(10)+HF0) 192 GOTO 17 193 C///////////// 194 CI I G A H S // 195 C///////////// 196 ENTRY GAHS(P,THETA,H,S.MASS,CP.HTC.VSI) 197 LX0=6 198 S2=S 199 H2*H 200 P-0.7 201 T*900.0 202 GOTO 17 203 C/////////// 204 CI I M I X / / 205 CIII///I//II 206 ENTRY MIX(P,THETA,H.HA,HG.S.MASS,MA.MG.CP,HTC.VSI) 207 C 208 MASS=MA*MG 209 H=>(HA*MA+HG*MG)/MASS 210 X(1)-X(1)+MA*0.0273832 211 02*02+MA*0.007278884 212 Cllllll/llllll 213 C/l G A S H / / 214 C///////////// 215 ENTRY GASH(P.THETA.H.S,MASS.CP,HTC.VSI) 216 C 217 LXQ=2 218 H2=H 219 T*9CO.O 220 GOTO 17 221 C///////////// 222 CII G A S S // 223 Clllllllllllll 224 ENTRY GASSiP.THETA.H.S,MASS,CP,HTC,VSI) 225 LXQ=-4 226 S2=S 227 T=900.0 228 GOTO 17 229 Cl/ll/llllll 230 C/l G A S / / 231 Clllllllllll 232 ENTRY GAS(P,THETA,H,S,MASS.CP,HTC.VSI) 233 T=THETA+273.15D0 234 C 235 LXQ=3 236 C 237 C GAS COMPONENT THERMODYNAMIC PROPERTIES; DH-ENTH CPG-CP SE-ENTHPY 238 C 239 17 TT=T/10O.O 240 Td = T/1000.0 241 C 242 C DISSOCIATION REACTION: S02 + 1/2 02 " SO3 243 C 244 KSD2=DEXP(9.8471-16.3392«Td+4.7273*(Td**2 ) ) 245 SUMX=X(1)+02+X<3)+X<4)+X(5)+S02 246 SK=KSD2*DSQRT(02/SUMX) 247 X(7)»SK/( 1+SK)*S02 248 X(6)=S02-X(7) 249 X(2)-02-X(7)/2 250 C 251 SUMX=X(1)+X(2)+X(3)+X(4)+X(S)+X(6)+X(7) 252 DO 179 IV=1.7 253 CC(IY)=X(IY)/SUMX 254 179 CONTINUE 255 C 256 CPG(11=39.060-512.79*<TT**(-1.5))•1072.7*(TT**(-2)) 257 --820.4*(TT*«(-3)) 258 CPG(2)=37.432+0.020102*(TT»«1. 5) - 178 . 57* ( TT** < - 1 . 5 ) ) 259 -+236.BB*(TT**(-2)) 260 CPG(3)--3.7357+30.529»(TT"(0.5))-4. 1034*TT+0.024198* (TT* *2 ) 261 CPG(4)=143.05-183.54*(TT**(0.25))+82.751*(TT**(0.5>) 262 --3.69BB9*TT 263 CPG(5)=59.283-1.7O96*(TT**0.5)-7O.613*(TT**(-0.5)) 264 -+74.889*(TT*«(-1.5)) 265 CPG(6)=4.1868*(5.8257+15.S095*TU-11.2842*(Td**2)+2.9751*(Td«*3) 266 CPG<7)=4.1868«(4.2157+35.6419*Td-35.5649*(Td**2)+17.065*(Td*«3) 267 --3.20*(Td**4)) 268 CP=0.0 269 DO 192 1-1.7 270 CPP=X(I)*CPG(I) 271 CP-CP+CPP 272 192 CONTINUE 273 IFd.XO.EO.1) MASS-X(3)*44.01+X(4)*18.02+X(6)*96.0 274 -+X(2)*32.0+X(1)«28.01+X(7)«112.0+X(5)*30.0 275 CP-CP/MASS 276 C 277 DH( 1)-((3.344«T+2.943E-04*(T**2)+1.953E-09«(T**3) 278 1-6.575E-12*(T*«4))-1O29.7)*RM0L 279 DH(2)-((3.253*T+6.524E-04«(T**2)-1.495E-07*(T**3) 280 1+ 1 . 539E - 1 1*',T**4 ) )- 1030. 7 )*RM0L 28 1 DH(3)-((3.096*T*O.0O273*(T**2)-7.885E-O7*(T«*3) 282 1+8 . 66E-11*(T**4))-1153.91)«RMOL 283 DH(4)-((3.743«T+5.656E-04*(T**2)+4.952E-08*(T**3) 284 1-1.818E-11«(T**4))-1175,0)*RMOL 285 DH(S)=((3.502«T+2.994E-O4*(T**2)-9.59E-09«(T**3) 286 1-4.904E-12*(T**4()-1077,4)«RM0L 287 DH(6)=4186.8«(-2.2956+5.6001«Td+8.2162*(Td**2)-4.1531*(Td**3) 288 1+0.8615*<Td**4)) 289 DH(7)=4186.8«(-2.73+5.5187«Td+14.2107*(Td**2)-7.2269*(Td**3) 290 1+1 4769*(Td*«4)l 291 H=0.0 292 00 190 1-1,7 29» H=H+(X(I)«(UUU(I)+DH(I)))/MASS 294 190 CONTINUE 295 IF (LX0.NE.2) GOTO 800 296 T2=T+(H2-H1/CP 297 IF(DABS(H2-H).LE.0.01) GOTO 800 298 T-T2 299 GOTO 17 300 C 301 800 SE( 1 )=152.692+178.359*Td-192.848*(TJ**2)+119.242*(Td* •3) 302 --29.3123*(Td**4) 303 SE(2(=166.619+173.963*Td-180.068*(Td**2)+110.388*(Td* *3) 304 --27.3588«(Td**4) 305 SE(3)=167.043+199.3B2«Td-168.107*(Td**2)+92.482* ( Td«* 3) 306 --21.4962*(Td**4) 307 SE(41=144.602+200.381*Td-209.495*(Td**2)•128.447*(Td* •3) 308 --31.2672*(TJ**4) 309 SE(5)=171.329+179.934«Td-192. 140*(Td**2)•118.696*(Td* •3) 3 10 --29.3130*(Td**4) 31 1 SE(61=197.977+215.217*Td-185.761*(Td**2)+101.649*(Td**3) 312 --23.4504»(Td**4) 313 SE(71=195.207+253.367*Td-181.854*(Td**2)+85.576*(Td** 3) 314 --17.5878*(Td**4) 315 S=0.0 316 DO 191 1=1,7 317 S=S+X(I)*(SE(I)-RMOL*OLOG(CC(I))) 318 191 CONTINUE 319 R=RMOL*SUMX/MASS 320 S-S/MASS-R*DLDG(P/0.1013) 321 C 322 IF (LX0.NE.4) GOTO 516 323 T=T*DEXP((S2-S)/CP) 324 IF(DABS(S2-S).LE.0.0005) GOTO 517 325 GOTO 17 326 C 327 516 IF (LX0.NE.6) GOTO 517 328 T=T+(H2-H)/CP 329 P=P«DEXP((S-S2)/R) 330 IF(DABS(H2-H).GE.0.01) GOTO 518 331 IF(DABS(S2-S).LE.0.0005) GOTO 517 332 518 GOTO 17 333 C 334 517 IFUXO.EQ. 1 ) HEAT-HREACT-HLL-(MASS*H) 335 C 336 C CALCULATE VICOSITY AND THERM COMD OF MIXTURE 337 C 338 142 V(4)=0.OO843/(T+659.)•((T/273.15)**1.5) 339 V(1)"0.019105/1T+109.17)*((T/573.15)«*1.5) 340 V(2)=0.02319/(T+129.68)*((T/573.15)**1.5) 341 V(3)»O.021485/(T+246.88)*((T/573.15)**1.5) 342 KTT(1)=(0.64962+6.495O2*Td-0.34385*Td*Td)«1.OE-2 343 KTT(2)=(0.12902+8.69427*Td-1.29194*Td*Td)«1.OE-2 344 KTT(3)=(-0.9856+9.36112*Td-1.63333«Td*Td)•1.OE-2 345 KTT(4)-(-0.3226+6.74690*Td+2.37502*Td*Td)* 1.OE-2 346 M(3)=44.01 347 M(1)=28.013 348 M(2)-31.999 349 M(4)=18.015 350 C 351 DO 450 1=1.4 352 00 451 d=1.4 353 0(I.d)=(1+(0S0RT(V(I)/V(d))*(M(d)/M(I))*«0.25))**2 354 •/(DS0RT(8.O*(1+(M(I)/M(d))))) 355 451 CONTINUE 356 450 CONTINUE 357 MU=0.0 358 KT=0.0 359 DO 460 1=1,4 360 A= 1 .0 361 DO 461 J-1 ,4 420 c // E F F E C T /// 362 1F(I.EQ.J) GOTO 499 42 1 C //////////////////// 363 A=A+(0(1.J)*CC(1)/CC(J)) 422 C 364 499 CONTINUE 423 C 365 461 CONTINUE 424 SUBROUTINE EFFECT(TA1.TA2.CA,TB1.TB2.CB.UA.OPT) 366 MU=MU+(V(I)/A) 425 C 367 KT=KT+(KTT(I)/A) 426 REAL'8 TA1,TA2,TB 1 .T82,CA.CB,UA.C.CMIN,EFF.N 368 460 CONTINUE 427 INTEGER OPT 369 C 428 C 370 C CALCULATE FLUID DYNAMIC AND HEAT TRANSFER DATA 429 C CALCULATE CMIN AND C 37 1 C 430 C 372 RHO-P/(R-T)«1000.0 431 IF(CA.LE.CB) GOTO 20 373 PR-MU-CP/KT-1000.0 432 CMIN-CB 374 REY-VEL*DIAM*RHO/MU 433 C-CB/CA 375 VSI-1 0 434 GOTO 30 376 IF (TYPE.EQ.1) HTC«KT/DIAM»0.023*(REY*'O.B)*!PR**0.33) 435 20 CMIN-CA 377 IF (TYPE.EQ.2) HTC»KT/DIAM»0.33*(REY»*0.6)*(PR«»0.3) 436 C-CA/CB 378 IF (TYPE.EQ.3) GOTO 211 437 C 379 GOTO 2 12 438 C CALCULATE NTU (N) AND EFFECTIVENESS (EFF) 380 211 OP-0.001 439 C 381 ARCH-10000.0*RHO*(DP* *3)/(MU**2) 440 30 N-UA/CMIN 382 EMF-O.42 44 1 1F(C.LT.0.0O1) GOTO 40 383 UMF-MU/RHO/DP*(DSQRT(637.6+0.0651 *ARCH)-25.25) 442 EFF = ( 1 .0-OEXP(NMC-1 .0) ) )/( 1 ,0-C-DEXP(N-(C- 1 .0) ) 3B4 EPS=EMF»VEL/(1,05»VEL*EMF+UMF«(1.O-EMF)) 443 GOTO 50 385 OEL-(EPS-£MFI/<1 O-EMF) 444 40 EFF- 1 0-OEXP(-N) 386 HTC1-( 1 O-DEL)«KT/DIAM«(5.0+0.05*<REY»*0.92)*PR) 445 SO 1F(0PT.EQ2) GOTO 60 387 HTCO-KT/DIAM«0.33*(REY««0.6)»(PR**0.3) 446 C 388 USD-O.18«(1-EPS) 447 c OPT-1 SOLVE FOR TA2 389 HTC-HTCO*(1.0+10 O0015/DP)«(1000.0*USD/RHO/VEL)) 448 c 390 C WRITE(3.400) ARCH,UMF,EPS,DEL,HTC1,HTCO 449 TA2-TA1-CMIN/CA-EFF-(TA1-TB1) 391 400 FORMAT(/' ARCHEMDS* UMF VOID FRACT BUBL FRACT HTC1' 450 RETURN 392 HTCO '/.E12.2'.F10.5.2F12.6,2F10.2/) 451 c 393 212 CONTINUE 452 c OPT-2 SOLVE FOR TB2 393.5 C WRITE(3,401) P,T,RHO.VEL,PR,REY,VSI,HTC 453 c 394 401 FORMAT ( ' PRESS TEMP DENS VEL PRANDL ', 4 54 60 TB2»TB1+EFF*CMIN/CB»(TA1-TB1) 395 REYNOLDS PRESS COEF H.T. COEF'/.FB.4,FB.2.2F8.3.F8.4 455 RETURN 396 -,F12.1.F12.8.F12 2///) 456 END 397 NOC-CC ( 5 ) • 10OOOOO. 0 457 c 398 S02C-CC(6)» 1000000.0 458 c //////////////////// 399 S03C-CC( 7 ) MOOOOOO. 0 459 c // H T X C H G /// 400 TS03-114.885+6.S1275*0L0G(S03C)+0.405189»(DL0G(SO3C)**2) 460 c //////////////////// 401 C WRITEO.901) N0C.S02C,SO3C.TS03,T 461 c 402 901 FORMAT(//'POLLUTANTS NOX'.FS.I,' PPM S02',F8.1,' PPM '. 462 c 403 -'S03',F8. 1 ,' PPM'/,'CONDENSATION TEMP:'.F6.0,' C GAS TEMP:'. 463 SUBROUTINE HTXCHGfTA1,TA2.CA,TB1.TB2.CB,UA,OPT) 404 -F6.0//) 464 c 405 THETA-T-273.15 465 REAL*8 TA2.TB2,CA.CB,UA,C,CMIN,EFF,N,TA1,TBI 406 RETURN 466 INTEGER OPT 407 END 467 c 408 C 468 c CALCULATE CMIN AND C 409 C 469 c 4 10 C PART 2 4 70 lF(CA.LE.CB) GOTO 20 4 1 1 C 471 CMIN-CB 4 12 c / / / / / / / / / / / / / / / / / / / / / / / / 472 C-C8/CA 4 13 C/// HEAT EXCHANGER /// 473 GOTO 30 4 14 C/// AND /// 474 20 CMIN'CA 4 15 CI1/ TURBINE ROUTINES /// 475 C-CA/CB 416 C/l11/11llllIII/Illllllll 476 30 IF(0PT.EQ.2) GOTO 40 4 17 C 477 c 4 18 c 478 c OPT-1 KNOW TA2 419 c / / / / / / / / / / / / / / / / / / / / 479 c 480 EFF=CA/CMIN«(TA1-TA2)/(TA1-TB1) 481 IF (EFF.GT.1 0D0) GOTO 80 482 GOTO 50 483 C 484 C OPT-2 KNOW TB2 485 C 486 40 EFF=CB/CMIN'(TB2-TB1)/(TA1-TB1) 487 C 488 C CALCULATE NTU AND U*A 489 C 490 50 IF(C.LE.0.001) GOTO 60 491 N-1.0/(C-1.O)*DL0G((EFF-1.0)/((C*EFF)-1.0)) 492 GOTO 70 493 60 N=~DLOG(1.O-EFF) 494 70 UA=N*CMIN 494.7 400 FORMAT!'EFFECT: C , CMIN. UA . NTU, EFF ' , 5F 10. 4 ) 495 RETURN 496 80 WRITE(3,300)TA1.TA2.T81,TB2,CA,CB.OPT 497 300 FORMAT(//'***HTXCHGR EFF GTR THAN 1***',/' TA1 TA2 498 -'TBI TB2 CA CB OPT',/4F8.2.2F 11.3,15//) 499 STOP 500 END 501 C 502 C/////////////////// 503 C//GAS COMPRESSOR/// 504 C// G C /// 505 C/////////////////// 506 C 507 SUBROUTINE GC(SPEED.MASS.EFFCY.PRATIO.POES.EDES,PSUR) 508 C 509 IMPLICIT REAL'S (A-Z.) 510 C 511 A 1-1.22385022D0'(PDES-1. O)» (SPEE0"2 . 51 )/( 7 .0'( 1. 0+SPEEO"2 .98 ) ) 512 B1=8 ODO+7 0D0*(SPE£D"2 .98) 513 C1-4.0DO+3.5DO«(SPEED«'2.98) 514 PRATIO-1.00+A1'(B1*DSORT(MASS/!SPEED-.2))-(MASS/(SPEED- 2))**Ct) 515 C 516 N0=(0.75+0.19*DS0RT(SPEED)-0.087*(SPEED**10.75))*EDES/0.83094899 517 B-3.9+0.011*DEXP(8.0*SPEED) 518 M0=1.I'SPEcD-O.13 519 EFFCY-N0/(B-1.ODO)*(B*MASS/MO-<(MASS/MO)* *B)) 520 C 521 PSUR=(1.0+3.5*((MASS)"1.532))*PDES/3.90 522 300 FORMAT (4F14.6) 523 IF (PRATIO.GE.PSUR) WRITE (4.400) 524 400 FORMAT!'"•" COMPRESSOR SURGING •••••') 525 C 526 RETURN 527 END 528 C//////////////// 529 C//GAS TURBINE/// 530 C// G T /// 531 C//////////////// 532 C 533 SUBROUTINE GT(SPEED.MASS.EFFCY.PRESS,PDES.EMAX) 534 C 535 IMPLICIT REAL*8 (A-Z) 536 C 537 PRAT-1.0+3.0*!PRESS-1.0)/(PDES-1.0) 538 C 539 B=DEXP(6.332*SPEED-8.6) 540 C=DEXP(-0.5-7.1»!SPEED**2.32)) 541 E=EMAX+0.OO780OG780O 542 EFFCY = E-B*((PRAT-1 . )* *(-2.4))-C*(1.-DEXP(-(PRAT-1.)/2.)) 543 C 544 A = 2. 1 1+4.25*! ( 1 .0-SPEEO ) • *2 ) 545 MASS-1 001782-DEXP!-A*(PRAT-1.0)) 546 RETURN 547 END 548 C 549 C 550 C PART 3 551 C 552 C///////////////////// 553 C/// STEAM //// 554 C// THERMODYNAMICS /// 555 C///////////////////// 556 C 557 C 558 C/////////// 559 C///VATS//// 560 C//T.S-VAP// 56 1 C/////////// 562 SUBROUTINE VATS(P.T,H.S.CP.X,HTC,VSI) 563 REAL'S P,T,S.H.CP.P1.S1.X.HTC,VSI 5G4 X-1.0 565 P1=DEXP((7.76622-S+2.17*DL0G((T+273.15)/773.15))/0.4581) 566 10 L = 2 567 CALL STEAM(P1.T.H.S1,CP,HTC,VSI,L) —. 568 P = P1*DEXP((S1-S)/0.4581) CTi 569 IF (DABS((P-P1)/P).LT.0.001)RETURN 570 P1-P 57 1 GOTO 10 572 END 573 C 574 C/////////// 575 C///VATH//// 576 C//T.H-VAP// 577 C/////////// 578 SUBROUTINE VATH(P , T .H, S.CP , X .HTC . VSI ) 579 REAL'S P.T.H.S,PMIN,P1,P2,CP,H1,H2,HTC,VSI,S1,S2,X 580 X-1.0 581 IF(T.GT.375) GOTO 13 582 CALL PSAT(PMIN.T) 583 9 P1-PMIN-1.1 584 10 P2=P1+1.0 585 L-2 586 CALL STEAM! P2 , T , H2 .S2.CP.HTC.VSI ,L) 587 L*2 588 CALL STEAM1P1.T.H1.S.CP.HTC.VSI.L) 589 P=(H*(P1-P2)+P2'H1-P1*H2)/IH1-H2) 590 IF(DABS((P-P1)/P).LT.0.0OO1) RETURN 591 P1=P 592 GOTO 10 593 13 PMIN=22.10 594 GOTO 9 595 END 596 C 597 C///////////// 598 C///SATCON//// 599 C///P.T-SAT/// 600 C/11/1////11/1 601 SUBROUTINE S/UC0N1 P. T . HF . HG, SF , SG) 602 REAL'S P.T.HF,HG.SF,SG,CP,HTC,VSI 603 L = 2 604 CALL STEAM(P,T,HG,SG.CP,HTC.VSl ,L) 605 L = 3 606 CALL STEAM(P,T,HF,SF,CP,HTC,VSI.L) 607 RETURN 608 END 609 C 610 C/////////// 611 C///TSAT//// 612 C///P-SAT/// 613 C////I////II 614 SUBROUTINE TSAT(P.TSA) 615 REAL'S P.T.P1.T1,DPDT,TC.TA.PC,A,B.C,TSA.TAU 616 TSA=175'(P"0.246) 617 LZT-1 618 GOTO 14 619 C/////////// 620 C///PSAT//// 621 C///T-SAT/// 622 C//////////V 623 ENTRY PSAT(P.TSA) 624 LZT-0 625 14 T-TSA+273.15 626 TC"647.25 627 PC»22.093 628 TAU-<I-I1/TC)) 629 A-(-7.863889'TAU)+<1.898527'<TAU" 1.5)) 630 B=(-2. 364891 • ( TAU" 2'. 5) ) + (-9 .9114 14'(TAU"6 . 5 ) ) 631 C-(9.982952*(TAU"7.5))+A+B 632 P1«PC*DEXP((TC/T)'C) 633 IF (LZT.EO.O)GOTO 16 634 TA-T 635 DPOT«(-P1/TA)'(DL0G(P1/PC)+(-7. 86+2 .84'< TAU"0. 5 ) 636 --5.91»(TAU"1 .5)-64 . 4*( TAU"5 .5)+74 . 87'(TAU"6 . 5 ) ) 637 T W S A 638 TSA=TSA+((P-P1)/DPDT) 639 IF (DABS(TSA-TI).LT.O.OI)RETURN 640 GOTO 14 641 16 P = P1 642 RETURN 643 END 644 C 645 C///////////// 646 C///STATES//// 647 C/////P.S///// 648 C///////////// 649 SUBROUTINE STATES(P.T.H.S.CP.X.HTC.VSI) 650 REAL'S P,T.H.S.X.TST,HF.HG.SF.SG.CP.HTC.VSI,T1,S1 651 CALL TSAT(P.TST) 652 CALL SATCON(P.TST.HF.HG.SF.SG) 653 IF(S.LE,SG)GOTO 100 654 0.111111111111 655 C///INTES//// 656 C//P.S-VAP/// 657 Z I I I U I I I I I I I 658 ENTRY INT ESIP.T.H.S.CP.X,HTC.VSI ) 659 X=1.0 660 T1=773.15'0EXP((S-7.76622+(O.4581'0L0G<P)))/2.17)-273.15 661 10 L=2 662 CALL STEAM(P,T1.H.S1,CP.HTC.VSI.L) 663 T=(T1+273.15)'OEXP((S-S1)/2.17)-273.15 664 IF (DABStT-TI).LT.0.01)RETURN 665 T1=T 666 GOTO 10 667 1O0 IF (S.LE.SF)GOTO 101 668 T-TST 669 X=(S-SF)/(SG-SF) 670 H=HF + X *(HG-HF) 67 1 CP-1000000.0 672 RETURN 673 101 CONTINUE 674. C/////////// 675 C///LIOS//// 676 C//P.S-LIO// 677 C/////////// 678 ENTRY LIOS(P,T,H.S,CP.X,HTC.VSI) 679 X=0 O 680 T1=273. 15'0EXP(S/4.18)-273. 15 681 CALL TSAT(P.T) 6B2 IF (T1.GT.T) T1=T 683 13 L=3 684 CALL STEAM(P.T1.H.S1.CP.HTC,VSI.L) 685 T=(T1+273.15)«DEXP((S-S1)/4.18)-273.15 686 IF (DABS(T-T1).LT.0.01)RETURN 687 T1-T rr\ 688 GOTO 13 r n 689 END 690 C 691 C///////////// 692 C///STATEH//// 693 C/////P.H///// 694 C/////////7/// 695 SUBROUTINE STATEH(P.T.H.S.CP,X,HTC,VSI) 696 REAL'S P.T,H.S,X.TST,HF.HG.SF,CP,SG,HTC.VSI.H1,T1 697 CALL TSAT(P.TST) 698 CALL SATCON(P.TST.HF.HG.SF.SG) 699 IF(H.L E.HG)GOTO 102 700 C//////////// 701 C///INTEH//// 702 C//P,H-VAP/// 703 C//////////// 704 ENTRY rNTEH(P,T.H.S.CP,X,rfTC.VSI) 705 X=1.0 706 T1=500+((H-3478)/2.17) 707 11 L=2 708 CALL STEAM(P.T1.H1,S.CP.HTC,VSI,L) 709 T=T1+((H-H1)/2 17) 710 IF (0A8S(T-T1).LT.0.01)RETURN 711 T1=T 7 12 GOTO 11 713 102 IF (H.LE HF(GOTO 103 714 T=TST 715 X=(H-HF)/(HG-HF) 716 S=SF+X'(5G-SF) 717 CP=100O000.0 718 RETURN 7 19 103 CONTINUE 779 TAU=1000./TEMP 7 20 Clllllll/lll 780 TA=OLOG(TEMP) 721 C///LIQH//// 78 1 C 722 C//P.H-HO// 782 5ZER0-.001«(3229.12+(-838.93)/TAU+109.9947/TAU*«2 + (-82.2064) 723 ClllIII II III 783 -/TAU««3+24 . 26165/TAU**4+(- 101 1 . 249 )*TA-1011 . 249 )+46 .O/TEMP 724 ENTRY LIQHlP.T.H.S.CP.X.HTC.VSI) 784 C 725 X-0.0 785 HZERO-1857.065*419.465/(TAU**2)-73.3298/(TAU«*3)+61.6548/ 726 T1=H/5.0 786 -(TAU**4)-19.4093/(TAU*»5)+46.0»(TA-1.0)+1.472759+TEMP 727 12 L*3 787 C 728 CALL STEAMIP,T1,H1.S.CP.HTC,VSI.L) 788 CPZER0-0.83893/TAU-0.2199894/(TAU**2)+0.2466192/<TAU**3) 729 T-T1 + UH-HD/4.18) 789 - -0. 0970466/ ( TAU* *4 )+46 . 0/TEMP+ 1 . 472759 730 IF (DABS(T-TI).LT.O.OI)RETURN 790 C 731 T 1 =T 791 GO TO ( 1 .2.3,4),L 732 GOTO 12 792 C 733 END 793 C *** • READ DATA *»*• 734 C 794 C 735 Zlllllllllll/I 795 1 E-4 . 8 736 C l I I S T A l E l l l l l 796 DO 102 J - l , 7 737 cllllP.nilill 797 READ15.103) (C(I.d),1-1.5) 738 Clllllllllllll 798 READI5.103) (C(I,J).I-6.10) 739 SUBROUTINE STATET(P.THETA,H.S,CP,X.HTC.VSI) 799 103 F0RMAT(5F13.8) 740 IMPLICIT REAL'S (A-H.O-Z) 800 102 CONTINUE 74 1 REAL*B MASS.MU,W(5,5).KT 801 RETURN 742 C 802 C 743 INTEGER TYPE 803 C L-2 744 C 804 C 745 COMMON /AREA2/ VEL,RHO.AREA,OIAM,MU,KT.PR,REY.EPS.TYPE 805 2 RHO-P/RT 746 C 806 DRHO-RHO*.1 747 IF (THETA.GE.374.3) GOTO 925 807 25 JUMP-0 748 CALL TSAT(P.TST) 808 RMAX-. 1 749 IF(THETA.LT.TST)GOTO 201 809 GOTO 19 750 C 810 18 PCALC=RHO*RT*(1.+W(1.1)+W(2.1)) 751 925 L-2 81 1 20 PC 1-PCALC 752 X- 1 .0 812 JUMP-JUMP+1 753 GOTO 202 8 13 IF (JUMP-10) 31.31.32 754 C 8 14 32 RMAX-RMAX*.5 755 201 L-3 815 31 CONTINUE 756 X-0.00 816 RH1-RH0 757 202 CONTINUE 8 17 RHO-RH1+DRHO 758 Clllllll/llll 818 19 DO 104 1-1,5 759 C///STEAM//// 8 19 DO 104 J-1,5 760 C///P.T-L//// 820 104 W(I,J)=0.0 761 Cllllllllllll 821 C 762 ENTRY STEAM (P.THETA.H.S,CP.HTC.VSI.L) 822 C * * SHORT VERSION W11.W12.W21 ONLY** 763 C 823 C 764 C L-1 INIT. L»2 VAP GIVEN PST, L-3 LIO GIVEN P&T, L-4 GIVEN VS7 824 120 RMC-RH0-O.634 765 C 825 TMC-TAU-1.544912 766 C UNITS; P-MPA THETA-DEG C IPTS68 V-CC/GM H-KJ/KG 826 T2S-TAU-2.5 767 C S.CP,CV-Kd/KG/DEG K RH0-KG/M**3 827 EXPE-DEXP(-E'RHO) 768 C VISC-KG/M/S KT-KW/M/OEG K 828 RONE-RHO-1.0 769 C 829 DO 144 J-2,7 770 REAL*8 KT1,KT2,KT3,KTA,KTB.KTC,TM(5),RM(5) 830 AB-O. 77 1 -.MUA.MU0.MU1,MU2.MU3,MU4,MU5,KTO,C(10,10) 831 AC-O. 772 C 832 DO 141 1=2,4 773 R-0.46151 833 AA=C(I.J)*RONE**(1-2) 774 GO TO (1.12.12,12,12),L 834 AB-AB + AA *RONE 775 C 835 141 AC-AC + AA* ( I - 1 ) 776 12 CONTINUE 836 AA=EXPE*(C(9.J)+RHO*C(10,J)) 777 TEMP-273.15+THETA 837 AB«AB+AA+C(1,d) 778 RT-R-TEMP 838 AC-AC*EXPE*C(10.J)- E *AA 839 AA = T25«M0-2) 899 GOTO 260 840 W( 1, 1)=w(1, 1 )+AB*AA 900 262 TM(2 1=(TAU-1544912)»EXPK(TAU-2.5,d-3)«<0 -2) 84 1 W(2,1)=W< 2. 1 1 + AC'AA 901 -+EXPKITAU-2.5,0-2) 842 144 W(1,2)=W(1,2)*AB*AA«(1.+TMC*(0-2)/T25) 902 260 CONTINUE 843 DO 142 1=5,8 903 C 9 844 AA=C(I,2)*RONE*»(I-2) 904 TM(3)-1 845 W(1,1)-W(1,1)+AA*RONE 905 IF (0-3) 209.292.291 846 W(1,2)-W(1,2)+AA«R0NE 906 209 TM(3)-0.0 847 142 W(2,1)=W(2.1)*AA»<1-1) 907 GOTO 290 848 W(1.1)=W(1, 1 )'TMC 908 291 TM(3)-(TAU-1.544912)*(0-2)•(0-3)*EXPK(TAU -2.5.0-4) 849 W(2,1)=W(2.1)»TMC 909 •*2. «(d-2)-EXPK(TAU-2.5.0-3) 850 DO 143 1=2.8 910 GOTO 290 851 AA-CU, 1)«RMC**(I-2) 91 1 292 TM(3)=2.0 852 W(1,1)=w(1,1)+AA*RMC 912 290 CONTINUE 853 143 W(2.1>»W(2.1)+AA'(1-1) 913 C 854 AA-EXPE'(C(9.1)+RHO'C(10.1)) 914 DO 111 1-1.10 855 W(1,1)=w(1,1)+C(1.1)+AA 915 c 4 856 W(2.1)=W(2,1)+EXPE«C(10.1)- E *AA 916 RM(1)-1.0 857 W( 1.1)=W(1.1)«RHO 917 LD-0 858 W(2.1)=W(2,1)»RH0*"2 918 LDA-1 859 W(1,2)-W(1,2)«RH0*TAU 919 IF (1-9) 240.241.241 860 C 920 240 IFIO.EO.1) RM(1)-EXPK(RHO-0.634,1-1-LD) B61 IF(OUMP.EQ.O) GOTO 18 921 IF(O.NE.1) RM(1)-EXPK(RHO-1.0,1-1-LD) 862 PCALC=RHO*RT«(1.+W(1.1)+W(2,1) ) 922 GOTO 249 863 DRHO-(P-PCALC)/(PCI-PCALC)*(RH1-RH0) 923 241 IA-I-8 864 IF (DABS(DRHO)-RMAX) 26.26.27 924 DRHO-RHO 865 27 DRHO-RMAX*DRHO/DABS(DRHO) 925 EXPE-DEXP(-E-RHO) 866 26 IF <0UMP-2O)22,42,42 926 RM(1)=EXPE»EXPK(DRHO.IA-1) 867 22 IF (DABS(DRHO)-.1E-6*RH0) 60.60.33 927 249 CONTINUE 868 33 IF(DABS(P-PCALC)-1 E-5*P) 60,60,20 928 c 5 869 C 929 RM(2)-1.0 870 C L-3 930 5 LD-1 871 C 931 IF (1-9) 250.251,251 872 3 V-.97+.032*(,01*THETA)--2 932 250 IF(J.EO.1) RM(2)-EXPK(RHO-0.634,1-1-LD) 873 RHO-1./V 933 IFIO.NE.1) RM(2)«EXPK(RH0-1.0,1-1-LD) 874 DRHO-1./(V+.01+.005M,01«THETA)*-2) -RHO 934 RM(2)-RM(2)*(I-1) 875 GO TO 25 935 GOTO 259 876 C 936 251 IA-I-8 877 60 V-1./RHO 937 DRHO-RHO 878 C 938 EXPE=DEXP(-E*RHO) 879 C L-4 939 RM(2)=EXPE«(IA-1)«EXPK(ORHO.IA-2) -E'EXPE •EXPMORHO. IA 880 C 940 259 CONTINUE 881 4 RHO-1 ./V 94 1 c 7 882 C 942 123 RM(3)=1.0 883 00 101 1-1.5 94 3 LD-2 884 DO 101 d-1.5 944 IF (1-9) 270.271.271 885 101 W(I.0)=0. 945 270 1F(O.EO.1) RM(3)-EXPK(RHO-0.634,I- 1-LD) 886 C 946 IF(d.NE.1) RM(3)=EXPK(RH0-1.0,1-1-LD) B87 C •• LONG VERSION USING GRST ALL W OR OS 947 RM(3)-RM(3)-(1-2) 888 c 948 RM(3)-RM(3)*(I-1) 889 121 DO 111 J-1,7 949 GOTO 279 890 TM(1)=1 950 271 IA-1-8 891 203 IF (0-2) 230.231,232 95 1 DRHO-RHO 892 232 TM( 1)=EXPK(TAU-2.5.J-2) 952 EXPE-DEXP( - E*RHO) 893 23 1 TM( 1 ) = TM( 1 )«(TAU-1.544912) 953 RM(3) = EXPE-(I A-1)*(IA-2)»EXPK(DRH0.IA-3) 894 230 CONTINUE 954 •-2.-E'EXPE'lIA-1)*EXPK(DRHO.IA-2) 895 C 6 955 •+E*»2*EXPE*EXPK(0RH0.IA-1) 896 TM(2)-1 956 279 CONTINUE 897 206 IF (0-2) 261.260.262 957 c 8 898 261 TM(2)=0.0 958 RM(4)-1.0 o 959 LD = 3 9 G 0 LDA = 4 9 6 1 IF ( 1 - 9 ) 280.281.281 962 280 IF(d.EO.1) RM(4) = EXPK(RHO-0.634,I - 1-LD) 963 IF(J.NE.1) RM<4)=EXPK(RH0-1.0.I-1-LD) 964 RM(4)=RM(4)•( 1-3) 965 RM(4)-RM(4)*(1-2) 966 RM(4)=RM(4)•(1-1) 967 GOTO 289 968 281 IA=I-8 969 DRHO=RHO 970 EXPE=DEXP(-E*Rlin) 97 1 RM(4)=EXPE«(IA-3)*<IA-2)*<IA-1)*EXPK(DRHO,IA-4) 972 --3.*E*EXPE'(IA-1)*<IA-2)*EXPK(DRHO,IA-3) 973 -+E**2*EXPE*£XPK(DRH0.IA-2) + E* *3*EXPE*EXPK(DRH0,IA-1) 974 289 CONTINUE 975 122 DO 111 K=1 .4 976 DO 119 L-1,3 977 W(K.L)=W(K.L)+C(I.d)*RM(K)*TM(L) 978 1 19 CONTINUE 979 1 1 1 CONTINUE 980 C 981 135 DO 112 KM. 4 982 DO 112 LM.3 983 112 W(K,L)"W(K.L)*RH0**K*TAU**(L-1) 984 140 CONTINUE 985 C 986 IF (RHO .LT. 0.0) WRITE(9.43) P.THETA,RHO.DRHO.L 9 8 7 IF (RHO .LT. 0.0) RETURN 988 C 989 P=RH0*RT*(1.+W(1,1)+W(2.1)) 990 H=HZERO+RT*(W(1.1)+W(2,1)+W(1,2)) 991 S--SZERO-R»(W<1.1)-W(1,2>+0L0G(RH0)> 992 C 993 C OHVT » OH/DV AT CONSTANT T, SIMILARLY FOR DPTV AND DPVT 994 C 9 9 5 DHTV=CPZER0+R*(W( 1, 1) + W(2,1)-W(1.2)-W(2,2)-W( 1 , 3)) 996 DHVT=-RHO*RT*(W(1,1)+3.*W<2,1)+W(3.1)+W<1.2)+W(2,2)) 997 DPTV=RHO*R«(1.+W(1.1)+W(2,1)-W(1,2)-W(2,2)) 998 0PVT = -RH0"2*RT*( 1.+2.*W(1,1)+4.*W(2.1)+W( 3,1)) 999 CV-DHTV-DPTV/RHO 1000 CP»DHTV-DHVT«DPTV/DPVT 1001 DENS=RHO*10O0.0 1002 RHO=RHO* 1000.0 1003 C 1004 C CALCULATE THERMAL CONDUCTIVITY KT 1005 C 1006 TAW=(THETA+273.15)/647.27 1007 RHR=DENS/317.763 1008 KT0=0ABS(TAW-1.0)+0.00308976 1009 IF(TAW.GE.1.0) KT1=KT0**(-1.0) 1010 IF(TAW.LT.1.0) KT1"10.0932*(KT0**(-0.6)) 101 1 KT2=2.0*0.0822994«KTO**(-0.6) 1012 KT3=KT2+1.0 1013 KTA=DSQRT(TAW)*(0.0102811+0.0299621*TAW+0.0156146*TAW**2 1014 -0.00422464*TAW«*3) 1 0 1 5 KTB=-0.39707+0.400302*RHR+1.06*DEXP(-0.171587*((RHR+2.39219) 1016 •*2) ) 1017 KTC=(0.0701309/TAW* * 10.0+0.011852)*RHR*«1.8*DEXP(0.642857* 1018 (1.O-RHR••2.8))«0.O0l69937*KT1'RHR*•KT2*DEXP(KT2/KT3* 1019 -( 1 0-RHR«'KT3) )-1 02*DEXP(-4.11717*TAW**1.5-6. 17937/RHR**5 1020 KT=KTA+KTB+KTC 102 1 C 1022 C CALCULATE VISCOSITY VISC 1023 c 1024 RH1=RHR-1.0 1025 TA1=1 O/TAW-1.0 1026 MUA=DSORT(TAW)/(0.0181583+0.0177624/TAW+0.0105287/TAW* *2 1027 --0.003G744/TAW*«3) 1028 MUO-O.501938+0.235622*RH1-0.274637*RH1**2+0.145831*RH1 •*3 1029 --0.0270448*RH1*»4 1030 MU1=TA1*(0.162B88+0.789393*RH1-0.743539*RH1**2 1031 -+0.263129*RHI*«3-0.0253093*RH1**4) 1032 MU2=TAl**2*(-0.130356+0.673665*RH1-0.959456*RH1**2 1033 -+0.347247*RH1*«3-O.02677S8*RH1**4) 1034 MU3-TA1**3*(0.907919+1.207552*RH1-0.687343+RH1**2 1035 -+0.2134B6*RH1**3-0.O822904*RH1**4) 1036 MU4=TA1**4*(-0.551119+0.067O665*RH1-0.497089*RH1**2 1037 -+0.100754«RH1«*3+0.0602253*RH1**4) 1038 MU5=TA1«*5*(0.146543-0.0843370*RH1+0.195286«RH1«*2 1039 --0.032932*RH1«*3-0.0202S95*RH1**4) 1040 MU=MUA"DEXP(RHR*(MUO+MU1+MU2+MU3+MU4+MU5))* 1E-6 104 1 c 1042 PR=MU*CP/KT*1000.0 1043 REY=RHO*VEL*DIAM/MU 1044 IF(TYPE.EO.I) HTC-0.023*KT/DIAM*(REY**0.8)*(PR**0.33) 1045 IF(TYPE.E0.2) HTC"0.33*KT/DIAM*(PEY**0.6)*(PR**0.3) 1046 IF (THETA.LE.374.14) THA«DSQRT((374.14-THETA)/100.0) 1047 IF(TYPE.E0.4) HTC»O.O33*KT/0lAM*(REY**O.87)*(PR**O.4)*DEXP 1048 -(1 0429*THA-0.2B24*(THA**2)-O.OO115*(THA**3)+O.1437*(THA**. 1049 VSIM .0 1050 c 1050.5 c WRITE(4.420) P,THETA,RHO.VEL,PR,REV,HTC.VSI 105 1 420 FORMAT!' PRESS TEMP DENSITY VELCTY ', 1052 -'PRANDL* REYNOLDS* VISCOSITY KT HTC VSI'/ 1053 -.F7.4.F7.1,F10.3,F8.1.FB.4,' '.E12.4,' '.F10.7, 1054 -F10.5.F8.1.F8.3///) 1055 319 FORMAT(' VISCOSITY COND-K DIAM MASS PR REYNOLDS ' 1056 -,'H.T.COEF P.COEF TYPE'/,F10.7,F7.4,F6.3,F6.2.F6.3.' ',E9 1057 -' '.E9.3.' '.F8.5.I3//) 1058 RETURN 1059 c 1060 c NONCONVE RGENCE STATEMENT 1061 c 1062 42 WRITE(9,43)P,THETA.RHO.DRHO.L 1063 NE0=1 1064 GO TO 60 1065 43 FORMAT ('NO CONVERGENCE P,T,RHO,DRHO-'/.4F20.5.15) 1066 END 1067 c 1068 c * • 4 *«EXPK FUNCTION**** 1069 c 1070 DOUBLE PRECISION FUNCTION EXPK (A.L) 107 1 REAL'S A 1072 IF (L) 1.2,3 1073 1 EXPK=0. 1074 RETURN 1075 2 E X P K = 1 - 1078 RETURN 1076 RETURN , 0 7 9 END 1077- 3 EXPK=A-«L E n d o f f ) l 8 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0096182/manifest

Comment

Related Items