"Applied Science, Faculty of"@en . "Mechanical Engineering, Department of"@en . "DSpace"@en . "UBCV"@en . "Anastasiou, Roger"@en . "2010-05-17T00:58:36Z"@en . "1983"@en . "Master of Applied Science - MASc"@en . "University of British Columbia"@en . "This thesis presents the results of computer modelling of two classes of combined cycle pressurized fluidized bed, coal fired power generation systems. The steam tube and air heater cycles have been proposed for future power stations because of their cost effectiveness and low pollution. The performance of the air heater cycle and seven variations of the steam tube cycle are simulated. The emphasis in modelling is to develop a system which will compare the cycles on an equal basis.\r\nSeveral configurations of the steam tube cycle are modelled using Hat Creek coal. Intercooling is found to be beneficial to the steam tube cycle, while recuperation is detrimental. The intercooled steam tube cycle is found to be 2 percentage points more efficient than conventional coal fired power plants.\r\nThe air heater cycle has an efficiency similar to the conventional cycle. The part load simulation of a single module, air heater plant was also completed, indicating that when operating at 50% load, the gross thermal efficiency drops from 36.8% to 30.8%."@en . "https://circle.library.ubc.ca/rest/handle/2429/24804?expand=metadata"@en . "A THERMODYNAMIC A N A L Y S I S OF SEVERAL PRESSURIZED F L U I D I Z E D BED COMBINED C Y C L E POWER GENERATION SYSTEMS by ROGER ANASTASIOU B . A . S c . , U n i v e r s i t y Of B r i t i s h C o l u m b i a , 1979 A T H E S I S SUBMITTED IN P A R T I A L F U L F I L M E N T OF THE REQUIREMENTS FOR THE DEGREE OF M . A . S C . i n THE F A C U L T Y OF GRADUATE STUDIES D e p a r t m e n t Of M e c h a n i c a l E n g i n e e r i n g We a c c e p t t h i s t h e s i s a s c o n f o r m i n g t o th&^required s t a n d a r d THE U N I V E R S I T Y OF B R I T I S H COLUMBIA O c t o b e r 1983 \u00C2\u00A9 R o g e r A n a s t a s i o u , 1983 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e H e a d o f my D e p a r t m e n t o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f M e c h a n i c a l E n g i n e e r i n g The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 W e s b r o o k P l a c e V a n c o u v e r , C a n a d a V 6 T 1W5 D a t e : S e p t e m b e r 20 1983 i i A b s t r a c t T h i s t h e s i s p r e s e n t s t h e r e s u l t s o f c o m p u t e r m o d e l l i n g o f two c l a s s e s o f c o m b i n e d c y c l e p r e s s u r i z e d f l u i d i z e d b e d , c o a l f i r e d power g e n e r a t i o n s y s t e m s . The s t e a m t u b e a n d a i r h e a t e r c y c l e s h a v e been p r o p o s e d f o r f u t u r e power s t a t i o n s b e c a u s e o f t h e i r c o s t e f f e c t i v e n e s s a n d low p o l l u t i o n . The p e r f o r m a n c e o f t h e a i r h e a t e r c y c l e a n d s e v e n v a r i a t i o n s o f t h e s t e a m t u b e c y c l e a r e s i m u l a t e d . The e m p h a s i s i n m o d e l l i n g i s t o d e v e l o p a s y s t e m w h i c h w i l l c o m p a r e t h e c y c l e s on an e q u a l b a s i s . S e v e r a l c o n f i g u r a t i o n s o f t h e s t eam t u b e c y c l e a r e m o d e l l e d u s i n g H a t C r e e k c o a l . I n t e r c o o l i n g i s f o u n d t o be b e n e f i c i a l t o t h e s t e a m t u b e c y c l e , w h i l e r e c u p e r a t i o n i s d e t r i m e n t a l . The i n t e r c o o l e d s t e a m t u b e c y c l e i s f o u n d t o be 2 p e r c e n t a g e p o i n t s more e f f i c i e n t t h a n c o n v e n t i o n a l c o a l f i r e d power p l a n t s . The a i r h e a t e r c y c l e h a s an e f f i c i e n c y s i m i l a r t o t h e c o n v e n t i o n a l c y c l e . The p a r t l o a d s i m u l a t i o n o f a s i n g l e m o d u l e , a i r h e a t e r p l a n t was a l s o c o m p l e t e d , i n d i c a t i n g t h a t when o p e r a t i n g a t 50% l o a d , t h e g r o s s t h e r m a l e f f i c i e n c y d r o p s f r o m 36.8% t o 30 .8%. T a b l e o f C o n t e n t s A b s t r a c t i i L i s t o f T a b l e s i v L i s t o f F i g u r e s v A c k n o w l e d g e m e n t s v i i N o m e n c l a t u r e v i i i I . INTRODUCTION 1 1.1 P r e s s u r i z e d F l u i d i z e d Bed Power G e n e r a t i o n 1 1.2 D e s c r i p t i o n Of PFB C o m b i n e d C y c l e s 5 I I . REVIEW OF PREVIOUS WORK AND STUDY O B J E C T I V E S 7 2.1 S t a t u s Of I n d u s t r i a l R e s e a r c h 7 2 . 2 R e v i e w Of P u b l i s h e d M o d e l s A n d A n a l y s e s 13 2 . 3 O b j e c t i v e s A n d S c o p e Of S t u d y 14 I I I . DESIGN LOAD C Y C L E SIMULATION MODELS 16 3.1 M o d e l l i n g S t r a t e g i e s 16 3 .2 D e v e l o p m e n t Of The S u b - m o d e l s 21 3 . 2 . 1 T h e r m o d y n a m i c P r o p e r t y C a l c u l a t i o n s 21 3 . 2 . 2 C o m b u s t i o n Of C o a l I n A F l u i d i z e d Bed 24 3 . 2 . 3 H e a t E x c h a n g e r s And E f f e c t i v e n e s s 31 3 . 2 . 4 T u r b o m a c h i n e r y 34 3 . 2 . 5 Ne t E f f i c i e n c y And A u x i l i a r y Power L o s s e s . . . . 3 6 I V . DESIGN LOAD C Y C L E A N A L Y S I S R E S U L T S 37 4.1 S team Tube PFB C y c l e R e s u l t s 37 4 . 1 . 1 S team Tube C y c l e V a r i a t i o n s 38 4 . 1 . 2 I n t e r c o o l e d S team Tube C y c l e R e s u l t s 41 4 . 2 A i r H e a t e r C y c l e A n a l y s i s R e s u l t s 43 4 . 3 E f f e c t Of F u e l C o m p o s i t i o n On C y c l e P e r f o r m a n c e . . . 4 5 4 . 4 C o m p a r i s o n Of C y c l e R e s u l t s 46 V . PART LOAD MODELLING OF THE A I R HEATER C Y C L E 47 5.1 M o d e l l i n g S t r a t e g i e s A n d C o n s i d e r a t i o n s 47 5 . 1 . 1 T r a n s p o r t P r o p e r t i e s A n d H e a t T r a n s f e r C o e f f i c i e n t s 53 5 . 2 P a r t L o a d R e s u l t s 56 V I . CONCLUSIONS 58 6.1 A r e a s F o r F u r t h e r Work 59 BIBLIOGRAPHY 61 APPENDIX A - COMPUTER SUBROUTINES 108 APPENDIX B - THERMODYNAMIC AND TRANSPORT PROPERTIES 112 APPENDIX C - COMBUSTION C A L C U L A T I O N S 118 APPENDIX D - COMPONENT PERFORMANCE FORMULATIONS AND DATA 129 APPENDIX E - STEAM TUBE C Y C L E RESULTS 134 APPENDIX F - AIR HEATER C Y C L E RESULTS 138 APPENDIX G - P U L V E R I Z E D COAL BOILER A N A L Y S I S R E S U L T S . . . . 1 4 4 APPENDIX H - GAS TURBOMACHINE C H A R A C T E R I S T I C EQUATIONS . . 1 4 6 APPENDIX I - COMPUTER PROGRAMS 147 i v L i s t o f T a b l e s 1. P u b l i s h e d C y c l e A n a l y s i s R e s u l t s 64 2 . E q u i l i b r i u m D i s s o c i a t i o n P r o d u c t C o n c e n t r a t i o n s 65 3 . A n d e r s o n C r e e k L i m e s t o n e S u l p h u r R e t e n t i o n (13) 65 4 . S team T u b e C y c l e P e r f o r m a n c e C r i t e r i a 66 5 . E f f e c t o f C o a l T y p e on PFB C o m b i n e d C y c l e P e r f o r m a n c e 67 6 . C o m p a r i s o n o f Power G e n e r a t i o n E f f i c i e n c i e s 67 V L i s t o f F i g u r e s 1. R a n k i n e C y c l e 68 2. B r a y t o n C y c l e 69 3. T e m p e r a t u r e / E n t r o p y D i a g r a m s f o r t h e B r a y t o n a n d .Rankine C y c l e s 70 4. O i l F i r e d Combined C y c l e P l a n t S c h e m a t i c 71 5. P r e s s u r i z e d F l u i d i z e d Bed C o a l C o m b u s t o r 72 6. A i r H e a t e r PFB Combined C y c l e 73 7. Steam Tube PFB Combined C y c l e 74 8. Steam Tube C y c l e w i t h I n t e r c o o l i n g 75 9. Steam Tube C y c l e A n a l y s i s F l o w C h a r t 76 10. A i r H e a t e r C y c l e A n a l y s i s F l o w C h a r t 78 11. B o i l i n g P i n c h P o i n t i n a Heat R e c o v e r y Steam G e n e r a t o r 80 12.. Steam Tube C y c l e w i t h D o u b l e I n t e r c o o l i n g 81 13. Steam Tube C y c l e w i t h R e c u p e r a t i o n .....82 14. Steam Tube C y c l e w i t h One F e e d W a t e r H e a t e r 83 15. E f f i c i e n c y o f t h e B a s i c Steam Tube C y c l e 84 16. E f f e c t o f I n t e r c o o l i n g on Steam Tube C y c l e P e r f o r m a n c e 85 17. E f f e c t o f R e c u p e r a t i o n on Steam Tube C y c l e P e r f o r m a n c e 86 18. E f f e c t o f F e e d W a t e r H e a t i n g on Steam Tube C y c l e P e r f o r m a n c e 87 19. I n t e r c o o l e d Steam Tube C y c l e P e r f o r m a n c e 88 20. E f f e c t o f T u r b o m a c h i n e E f f i c i e n c y on t h e I n t e r c o o l e d Steam Tube C y c l e 89 21 . E f f e c t o f I n t e r c o o l e r E f f i c i e n c y on t h e I n t e r c o o l e d Steam Tube C y c l e ...89 22. E f f e c t o f B o i l e r P r e s s u r e on t h e I n t e r c o o l e d Steam Tube C y c l e 90 23. E f f e c t o f Steam S u p e r h e a t on t h e I n t e r c o o l e d Steam Tube C y c l e 90 24. E f f e c t o f Steam R e h e a t on t h e I n t e r c o o l e d Steam Tube C y c l e 91 25. E f f e c t o f A m b i e n t T e m p e r a t u r e on t h e I n t e r c o o l e d Steam Tube C y c l e 91 26. E f f e c t o f A m b i e n t P r e s s u r e on t h e I n t e r c o o l e d Steam Tube C y c l e 92 27. E f f e c t o f C o n d e n s e r T e m p e r a t u r e on t h e I n t e r c o o l e d Steam Tube C y c l e 92 28. E f f e c t o f E x c e s s A i r on t h e I n t e r c o o l e d Steam Tube C y c l e 93 29. A i r H e a t e r C y c l e P e r f o r m a n c e 94 30. E f f e c t o f Gas T u r b o m a c h i n e E f f i c i e n c y on A i r H e a t e r C y c l e P e r f o r m a n c e 95 31. E f f e c t o f Steam T u r b i n e E f f i c i e n c y on t h e A i r H e a t e r C y c l e 96 32. E f f e c t o f C o n d e n s e r T e m p e r a t u r e on t h e A i r H e a t e r C y c l e 96 33. C o m p a r i s o n o f C y c l e P e r f o r m a n c e w i t h T h r e e D i f f e r e n t v i F u e l s 97 3 4 . E f f e c t o f M o i s t u r e C o n t e n t In C o a l On C y c l e E f f i c i e n c y 98 3 5 . E f f e c t o f A s h C o n t e n t on C y c l e E f f i c i e n c y 98 3 6 . A x i a l C o m p r e s s o r P e r f o r m a n c e Map 1 99 3 7 . A x i a l C o m p r e s s o r P e r f o r m a n c e Map 2 100 3 8 . T u r b i n e P e r f o r m a n c e Map 1 101 3 9 . T u r b i n e P e r f o r m a n c e Map 2 102 4 0 . A i r H e a t e r C y c l e P a r t L o a d C y c l e A n a l y s i s F l o w C h a r t 103 4 1 . P a r t L o a d P e r f o r m a n c e o f A i r H e a t e r C y c l e 106 4 2 . V a r i a t i o n o f S t a c k Gas T e m p e r a t u r e a n d Dew P o i n t W i t h L o a d 107 v i i A c k n o w l e d g e m e n t The a u t h o r w i s h e s t o e x p r e s s h i s s i n c e r e g r a t i t u d e t o P r o f e s s o r R . L . E v a n s f o r h i s e n c o u r a g e m e n t a n d v a l u a b l e d i r e c t i o n t h r o u g h o u t t h i s s t u d y . T h a n k s a r e a l s o due t o P r o f e s s o r s P . G . H i l l , J . R . G r a c e , a n d E . G . Hauptmann a n d t o M r . R . W . W o o d l e y a n d D r . M . P a p i c a t B . C . H y d r o f o r t h e i r h e l p f u l a d v i c e . S u p p o r t f o r t h i s r e s e a r c h f rom B r i t i s h C o l u m b i a H y d r o a n d Power A u t h o r i t y i s g r a t e f u l l y a c k n o w l e d g e d . V I 1 1 N o m e n c l a t u r e G e n e r a l S y m b o l s Cp S p e c i f i c H e a t H E n t h a l p y h E n t h a l p y (mole b a s i s ) h F l u i d H e a t T r a n s f e r C o e f f i c i e n t H f o H e a t o f F o r m a t i o n Hf S a t u r a t e d L i q u i d E n t h a l p y Hg S a t u r a t e d V a p o u r E n t h a l p y k T h e r m a l C o n d u c t i v i t y M Mass F l o w M M o l e c u l a r W e i g h t m Mass M * R e d u c e d Mass F l o w N S h a f t S p e e d N * R e d u c e d S p e e d Nu N u s s e l t Number P P r e s s u r e P P r e s s u r e R a t i o Pr P r a n d t l Number Re R e y n o l d s Number R Gas C o n s t a n t Sf S a t u r a t e d L i q u i d E n t r o p y Sg S a t u r a t e d V a p o u r E n t r o p y S E n t r o p y s E n t r o p y (mole b a s i s ) T T e m p e r a t u r e U O v e r a l l H e a t T r a n s f e r C o e f f . Wp Pumping Power X Steam Q u a l i t y u V i s c o s i t y 77 I s e n t r o p i c E f f i c i e n c y p D e n s i t y Z A i r F u e l r a t i o k J / k g \u00C2\u00B0 C k J / k g k J / k m o l e k J / ( s - m 2 K ) k J / k m o l e k J / k g k J / k g k w / ( m . \u00C2\u00B0 C ) k g / s MPa k J / ( k m o l e \u00E2\u0080\u00A2 k J / k g \u00C2\u00B0 C k J / k g \u00C2\u00B0 C k J / k g \u00C2\u00B0 C k J / k m o l e \u00C2\u00B0 C \u00C2\u00B0 C o r K k J / ( s - m 2 K ) k J / s k g / ( m - s ) k g / m 3 S u b s c r i p t s : d D e s i g n V a l u e o I n l e t C o n d i t i o n s 0 S t a n d a r d C o n d i t i o n s 1 F l u i d 1 2 F l u i d 2 m M i x t u r e 1 I . INTRODUCTION 1.1 P r e s s u r i z e d F l u i d i z e d Bed Power G e n e r a t i o n P r e s s u r i z e d f l u i d i z e d b e d (PFB) power g e n e r a t i o n w i t h c o m b i n e d c y c l e s a f f o r d s a u n i q u e o p p o r t u n i t y o f c o m b i n i n g h i g h g e n e r a t i o n e f f i c i e n c y w i t h low p o l l u t a n t e m i s s i o n s . In t h e p a s t d e c a d e , e x p e n s i v e a n d u n r e l i a b l e f o r e i g n o i l s u p p l i e s c a u s e d a s h i f t i n t h e power g e n e r a t i o n p r i o r i t i e s o f most w e s t e r n n a t i o n s . R e c e n t r e s e a r c h h a s c o n c e n t r a t e d , where p o s s i b l e , on t h e d e v e l o p m e n t o f d o m e s t i c r e s o u r c e s . T h i s ha s l e d t o d e v e l o p m e n t s i n n a t u r a l ga s a n d a l c o h o l f o r t r a n s p o r t a t i o n f u e l s , a n d t o r e n e w e d i n t e r e s t i n c o a l f i r e d power g e n e r a t i o n . C o n s t r a i n e d by t h e economy a n d g o v e r n m e n t r e g u l a t i o n s , new power g e n e r a t i o n f a c i l i t i e s must be b o t h c o s t c o m p e t i t i v e and a b l e t o m a i n t a i n a c c e p t a b l e p o l l u t a n t e m i s s i o n l e v e l s . In c o n v e n t i o n a l c o a l f i r e d power g e n e r a t i o n f a c i l i t i e s , t h e c o a l i s f i n e l y g r o u n d a n d b u r n e d i n p u l v e r i z e d c o a l b o i l e r s , g e n e r a t i n g power t h r o u g h a R a n k i n e o r s t e a m t u r b i n e c y c l e ( F i g u r e 1 ) . S team t u r b i n e s a r e u s e d t o g e n e r a t e power f r o m h i g h p r e s s u r e s t e a m . To e n h a n c e t h e p e r f o r m a n c e o f t h e c y c l e , r e h e a t and r e g e n e r a t i v e f e e d w a t e r h e a t i n g a r e commonly e m p l o y e d . T h e s e i n c r e a s e t h e e f f i c i e n c y a n d s p e c i f i c work o f t h e c y c l e , and t h u s d e c r e a s e t h e o v e r a l l c o s t o f e l e c t r i c i t y . C o n v e n t i o n a l c o a l c o m b u s t i o n s y s t e m s a r e a m a j o r s o u r c e o f t h r e e p o l l u t a n t s : SOx, NOx, a n d f l y a s h p a r t i c u l a t e s . S y s t e m s a r e c o m m e r c i a l l y a v a i l a b l e w h i c h r e d u c e t h e e m i s s i o n s o f e a c h p o l l u t a n t , bu t r e q u i r e power t o o p e r a t e a n d t h u s r e d u c e t h e o v e r a l l p l a n t 2 e f f i c i e n c y . P u l v e r i z e d c o a l power p l a n t s w i t h a d e q u a t e p o l l u t i o n c o n t r o l s t y p i c a l l y h a v e t h e r m a l e f f i c i e n c i e s a r o u n d 36%. A n o t h e r s y s t e m u s e d i n power g e n e r a t i o n i s t h e gas t u r b i n e , o r B r a y t o n c y c l e ( F i g u r e 2 ) . I n t h i s s y s t e m , a i r i s u s e d as t h e w o r k i n g f l u i d i n s t e a d o f s t eam a s i n t h e R a n k i n e c y c l e . F r e s h a i r i s c o m p r e s s e d t o a h i g h p r e s s u r e , u s u a l l y b e t w e e n 4 and 15 a t m o s p h e r e s , where t h e f u e l ( u s u a l l y n a t u r a l ga s o r o i l ) i s a d d e d a n d b u r n e d . \" The h o t c o m b u s t i o n g a s e s a r e t h e n e x p a n d e d t h r o u g h a gas t u r b i n e t o g e n e r a t e p o w e r . By u s i n g b o t h t h e R a n k i n e a n d B r a y t o n c y c l e s t o g e t h e r i n a \" c o m b i n e d c y c l e \" , i t i s p o s s i b l e t o a c h i e v e h i g h e r e f f i c i e n c i e s t h a n w i t h e i t h e r c y c l e by i t s e l f . To p r o v i d e t h e h i g h e s t e f f i c i e n c y i n any power g e n e r a t i o n c y c l e , t h e a v e r a g e t e m p e r a t u r e o f h e a t a d d i t i o n must be m a x i m i z e d w h i l e m i n i m i z i n g t h e a v e r a g e t e m p e r a t u r e o f h e a t r e j e c t i o n . I n c o m b i n e d c y c l e s t h i s i s a c h i e v e d by c o m b i n i n g t h e h i g h c o m b u s t i o n t e m p e r a t u r e o f t h e gas t u r b i n e c y c l e , w i t h t h e low c o n d e n s e r t e m p e r a t u r e o f s t e a m t u r b i n e c y c l e s ( F i g u r e 3 ) . T h e i m p o r t a n t i n t e r a c t i o n b e t w e e n t h e s y s t e m s i s t h e t r a n s f e r o f w a s t e h e a t f r o m t h e B r a y t o n c y c l e t u r b i n e e x h a u s t t o t h e R a n k i n e c y c l e b o i l e r o r f e e d w a t e r . T h i s r e d u c e s t h e h e a t r e j e c t i o n t e m p e r a t u r e o f t h e ga s s y s t e m . T h e r e a r e some c o m b i n e d c y c l e power p l a n t s i n o p e r a t i o n i n E u r o p e , a c h i e v i n g t h e r m a l e f f i c i e n c i e s up t o 41%. T h e s e b u r n r e l a t i v e l y c l e a n f u e l s s u c h as o i l a n d n a t u r a l g a s , a v o i d i n g t h e t e c h n i c a l d i f f i c u l t i e s a s s o c i a t e d w i t h c o a l c o m b u s t i o n i n gas 3 t u r b i n e s . T h e most common s y s t e m i n u se i s t h e gas t u r b i n e c y c l e w i t h a h e a t r e c o v e r y s t eam g e n e r a t o r ( F i g u r e 4 ) . The ga s t u r b i n e o p e r a t e s a s i n t h e s i m p l e B r a y t o n c y c l e a n d a d d i t i o n a l power i s g e n e r a t e d by t h e s t e a m t u r b i n e . The most e f f i c i e n t m e t h o d o f d e r i v i n g h e a t f r o m c o a l i s by d i r e c t c o m b u s t i o n . O f t e n h o w e v e r , t h i s r e s u l t s i n an u n d e s i r a b l e amount o f p o l l u t i o n . V a r i o u s i n d i r e c t m e t h o d s a r e t h e r e f o r e b e i n g p u r s u e d . G a s i f y i n g c o a l t o low a n d medium BTU g a s e s , m o s t l y h y d r o g e n a n d c a r b o n m o n o x i d e , i s b e i n g c o n s i d e r e d f o r u se i n power g e n e r a t i o n . The s u l p h u r i n t h e g a s e s i s r e m o v e d p r i o r t o c o m b u s t i o n e l i m i n a t i n g t h e n e e d f o r f l u e ga s s c r u b b i n g . H o w e v e r , t h e t e c h n o l o g y r e q u i r e d t o remove t h e s u l p h u r w i t h o u t e x c e s s i v e c o o l i n g o f t h e g a s e s ha s n o t b e e n a d e q u a t e l y d e m o n s t r a t e d , a n d t h i s r e p r e s e n t s a s e r i o u s b a r r i e r t o t h e d e v e l o p m e n t o f g a s i f i e d c o a l power g e n e r a t i o n . C o n v e r s i o n o f c o a l t o s y n t h e t i c n a t u r a l g a s , l i q u i d f u e l s , a n d m e t h a n o l a r e a l s o b e i n g d e v e l o p e d , b u t t h e s e a r e u n l i k e l y power g e n e r a t i o n f u e l a l t e r n a t i v e s due t o t h e i r h i g h c o s t s . A l t e r n a t i v e l y , d i r e c t c o m b u s t i o n o f c o a l c a n be u s e d i f s t e p s a r e t a k e n t o r e d u c e p o l l u t i o n . I n f l u i d i z e d b e d s y s t e m s , t h e b u r n i n g c o a l p a r t i c l e s a r e s u s p e n d e d , o r \" f l u i d i z e d \" , by a i r f l o w i n g u p w a r d s . A s o r b e n t , u s u a l l y d o l o m i t e o r l i m e s t o n e , a n d made up m a i n l y o f c a l c i u m c a r b o n a t e , i s a d d e d t o t h e b e d t o r e d u c e s u l p h u r e m i s s i o n s . A s t h e c o a l i s b u r n e d , t h e s u l p h u r r e a c t s w i t h t h e s o r b e n t t o f o r m a s o l i d r e s i d u e ( c a l c i u m s u l p h a t e ) w h i c h c a n be d i s c a r d e d e a s i l y . D e p e n d i n g on t h e b e d t e m p e r a t u r e a n d p r e s s u r e a n d t h e s o r b e n t c h a r a c t e r i s t i c s , up t o 4 95% o f t h e c o a l bound s u l p h u r c a n be removed w i t h t h i s t e c h n i q u e (1). Heat i s removed from t h e bed by c o o l i n g t u b e s submerged i n the bed ( F i g u r e 5). NOx e m i s s i o n s a r e a l s o v e r y low b e c a u s e of the bed c o o l i n g and r e s u l t i n g low c o m b u s t i o n t e m p e r a t u r e s . F l u i d i z e d bed b o i l e r s have been u s e d i n t h e p a s t t o g e n e r a t e steam f o r c o n v e n t i o n a l R a n k i n e c y c l e s . T h e s e systems a r e known as a t m o s p h e r i c p r e s s u r e f l u i d i z e d beds b e c a u s e t h e beds a r e not p r e s s u r i z e d . The p e r f o r m a n c e o f t h e s e systems i s s i m i l a r t o t h a t of c o n v e n t i o n a l p u l v e r i z e d c o a l f a c i l i t i e s . S e v e r a l g r o u p s however, have been i n v e s t i g a t i n g t h e h i g h e r e f f i c i e n c y , combined c y c l e f l u i d i z e d bed s y s t e m s . In combined c y c l e s t h e f l u i d i z e d bed i s p r e s s u r i z e d and t a k e s t h e p l a c e of the c o m b u s t o r , and t h e gas t u r b i n e i s d r i v e n by t h e h o t c o m b u s t i o n g a s e s as i n t h e s t a n d a r d B r a y t o n c y c l e . Two d i f f e r e n t a p p r o a c h e s t o t h e steam s y s t e m have been p r o p o s e d . In the steam t u b e c y c l e , much of t h e c o m b u s t i o n h e a t i s t r a n s f e r r e d d i r e c t l y t o t h e steam s y s t e m w i t h i n t h e p r e s s u r i z e d f l u i d i z e d bed. A d d i t i o n a l h e a t i s t a k e n from t h e gas t u r b i n e e x h a u s t g a s e s . The r e s u l t i n g steam s u p e r h e a t c o n d i t i o n s a r e v e r y s i m i l a r t o t h o s e i n c o n v e n t i o n a l steam i n s t a l l a t i o n s . In t h e a i r h e a t e r c y c l e , t h e steam s y s t e m r e c e i v e s a l l of i t s h e a t from t h e t u r b i n e e x h a u s t g a s e s and i s t h u s a waste h e a t r e c o v e r y s y s t e m . Development o f PFB f a c i l i t i e s has been slow due t o t e c h n i c a l d i f f i c u l t i e s . The main p r o b l e m has been t h e e r o s i o n and c o r r o s i o n o f gas t u r b i n e b l a d e s by hot c o m b u s t i o n g a s e s and much e x p e r i m e n t a l work has been done t o d e v e l o p s y s t e m s w h i c h 5 p r o v i d e a r e a s o n a b l e t u r b i n e b l a d e l i f e . The c o m b i n e d a p p r o a c h o f u p g r a d i n g t h e b l a d e m a t e r i a l s , f i l t e r i n g t h e g a s e s a n d r e d u c i n g t h e t u r b i n e i n l e t t e m p e r a t u r e h a v e s u b s t a n t i a l l y r e d u c e d t h e p r o b l e m , a l t h o u g h much r e s e a r c h i s s t i l l b e i n g d o n e . A l o n g w i t h t h e i n c r e a s e d e f f i c i e n c y o f c o m b i n e d c y c l e s a m a j o r b e n e f i t f r o m p r e s s u r i z a t i o n o f t h e c o m b u s t o r i s a d r a m a t i c d e c r e a s e i n t h e s i z e o f t h e p l a n t . T h i s r e s u l t s i n a s i g n i f i c a n t c o s t s a v i n g w h i c h h e l p s t o o f f s e t t h e c o s t o f t h e new t e c h n o l o g y . 1.2 D e s c r i p t i o n Of PFB C o m b i n e d C y c l e s Two c l a s s e s o f c o m b i n e d c y c l e PFB s y s t e m s a r e i n v e s t i g a t e d i n t h i s s t u d y . The f i r s t , t h e A i r H e a t e r C o m b i n e d C y c l e ( F i g u r e 6) i s b a s e d on t h e C u r t i s s W r i g h t d e s i g n ( 2 ) . In t h i s c y c l e , a i r i s p r e s s u r i z e d t o a b o u t 7 a t m . One t h i r d o f t h e c o m p r e s s e d a i r i s t h e n u s e d a s c o m b u s t i o n a i r i n t h e P F B . The r e m a i n d e r i s u s e d t o c o o l t h e b e d . The two s t r e a m s o f ga s a r e r e c o m b i n e d a n d e n t e r a t u r b i n e . R e s i d u a l h e a t i n t h e t u r b i n e e x h a u s t g a s e s i s u s e d t o p r o d u c e s t e a m i n a h e a t r e c o v e r y s t e a m g e n e r a t o r a n d d r i v e a low p r e s s u r e s t e a m t u r b i n e . A p p r o x i m a t e l y 60% o f t h e power i s g e n e r a t e d i n t h e ga s t u r b i n e / c o m p r e s s o r , w i t h t h e r e m a i n d e r c o m i n g f r o m t h e s t e a m t u r b i n e . An a p p e a l i n g a s p e c t o f t h i s d e s i g n i s t h e r e d u c e d p a r t i c u l a t e l o a d i n g a c h i e v e d i n t h e gas t u r b i n e . B e c a u s e much o f t h e gas e n t e r i n g t h e t u r b i n e i s c l e a n a i r , t h e g a s e s do n o t 6 h a v e t o be f i l t e r e d t o t h e f i n e d e g r e e r e q u i r e d i n o t h e r PFB s y s t e m s . The s e c o n d c y c l e i s t h e S team T u b e PFB s y s t e m ( F i g u r e 7 ) . A m e r i c a n E l e c t r i c P o w e r , S t a l L a v a l , G e n e r a l E l e c t r i c , and t h e N a t i o n a l C o a l B o a r d o f G r e a t B r i t a i n h a v e been d e v e l o p i n g v a r i a t i o n s o f t h i s d e s i g n w h i c h c o o l s t h e b e d w i t h b o i l i n g w a t e r ( 1 , 5 ) . The c o m b u s t i o n a i r i s p r e s s u r i z e d a n d d i s t r i b u t e d among t h r e e P F B s , one e a c h f o r b o i l i n g , s u p e r h e a t i n g a n d r e h e a t i n g t h e s t e a m . A f t e r c o m b u s t i o n , t h e h o t g a s e s -are f i l t e r e d t o meet t h e t u r b i n e i n l e t s p e c i f i c a t i o n s . The t u r b i n e e x h a u s t g a s e s a r e p a s s e d t h r o u g h an e c o n o m i s e r , p r e h e a t i n g t h e s t e a m s y s t e m f e e d w a t e r . The s t e a m s y s t e m i s s i m i l a r t o c o n v e n t i o n a l p l a n t s , w i t h t h e e x c e p t i o n o f t h e e c o n o m i s e r h e a t f r o m t h e gas t u r b i n e a n d t h e l a c k o f f e e d w a t e r h e a t e r s . B o t h t h e a i r h e a t e r and s t e a m t u b e c y c l e s c a n be m o d i f i e d by i n c l u d i n g f e e d w a t e r h e a t e r s , r e c u p e r a t o r s , a n d i n t e r c o o l i n g . 7 I I . REVIEW OF PREVIOUS WORK AND STUDY O B J E C T I V E S 2.1 S t a t u s Of I n d u s t r i a l R e s e a r c h I n t h e p a s t d e c a d e , a number o f c o m p a n i e s a n d g o v e r n m e n t a g e n c i e s i n E u r o p e a n d t h e U n i t e d S t a t e s h a v e been d e v e l o p i n g t h e new t e c h n o l o g y n e c e s s a r y f o r PFB power g e n e r a t i o n . The m a i n a r e a s o f r e s e a r c h a r e i n h e a t t r a n s f e r , m a t e r i a l d u r a b i l i t y , a n d h o t gas c l e a n u p e q u i p m e n t . V a r i o u s c y c l e a r r a n g e m e n t s h a v e a l s o been m o d e l l e d by t h e i n d i v i d u a l g r o u p s . B r i e f d e s c r i p t i o n s o f t h e d e v e l o p m e n t s w i t h i n i m p o r t a n t r e s e a r c h g r o u p s f o l l o w . C u r t i s s W r i g h t C o r p o r a t i o n The C u r t i s s W r i g h t C o r p o r a t i o n (C-W) h a s been s p o n s o r e d by t h e U . S . D e p a r t m e n t o f E n e r g y t o d e s i g n , c o n s t r u c t , a n d o p e r a t e a c o m b i n e d c y c l e PFB p i l o t p l a n t (2). The p l a n t was t o d e m o n s t r a t e t h e a b i l i t y o f s u c h a s y s t e m t o p r o d u c e e l e c t r i c i t y e c o n o m i c a l l y and i n an e n v i r o n m e n t a l l y a c c e p t a b l e m a n n e r . The a i r h e a t e r c y c l e was c h o s e n f o r s e v e r a l r e a s o n s . F i r s t l y , most o f t h e c o m p o n e n t s r e q u i r e d f o r t h e a i r h e a t e r s y s t e m h a v e a l r e a d y b e e n t e c h n o l o g i c a l l y p r o v e n i n i n d u s t r i a l f a c i l i t i e s . A l s o , t h e h o t gas c l e a n u p i s much e a s i e r i n t h e a i r h e a t e r c y c l e t h a n t h e s t e a m t u b e c y c l e . T h e s e f a c t o r s w i l l r e s u l t i n l o w e r d e v e l o p m e n t c o s t s . S e c o n d l y , t h e a i r h e a t e r s y s t e m e f f i c i e n c y c l a i m e d by C-W i s h i g h e r t h a n t h e i r e s t i m a t e s f o r t h e s t e a m t u b e c y c l e s . F i n a l l y , b e c a u s e t h e s i z e o f t h e i n d i v i d u a l ga s t u r b i n e u n i t s i s l i m i t e d , s e v e r a l i n d e p e n d e n t u n i t s w i l l be r e q u i r e d t o 8 make up a u t i l i t y s i z e power g e n e r a t i n g s t a t i o n . T h i s m o d u l a r a p p r o a c h r e s u l t s i n e f f i c i e n t p a r t l o a d p e r f o r m a n c e . A 15 MW p i l o t p l a n t i s u n d e r c o n s t r u c t i o n a n d w i l l be i n o p e r a t i o n by t h e end o f 1983 (2) a n d C-W i s f o r e c a s t i n g t h e r m a l e f f i c i e n c y o f a p p r o x i m a t e l y 40%. The p r e d i c t e d g a s e o u s e m i s s i o n s f r o m t h e p l a n t a r e w e l l b e l o w EPA r e q u i r e m e n t s . B u r n i n g 3.1% s u l p h u r c o a l , t h e SOx and NOx e f f l u x w i l l be 1/4 a n d 1/3 o f t h e i r r e s p e c t i v e r e g u l a t o r y l i m i t s . C-W has i n v e s t i g a t e d t h e bed t u b e d e s i g n , h ot gas c l e a n u p e q u i p m e n t , and t u r b i n e b l a d e w e a r . E x p e r i m e n t s were p e r f o r m e d t o d e t e r m i n e t h e bed t u b e f i n c o n f i g u r a t i o n f o r maximum h e a t t r a n s f e r . Hot c o r r o s i o n and e r o s i o n t e s t s were a l s o d o n e , r e s u l t i n g i n t h e s e l e c t i o n o f an e c o n o m i c a l a l l o y w h i c h w i l l p r o v i d e an a c c e p t a b l e t u b e l i f e . A c c e p t a b l e t u r b i n e i n l e t 4 p a r t i c u l a t e c o n c e n t r a t i o n s have been a c h i e v e d u s i n g a s m a l l s c a l e h o t gas c l e a n u p a s s e m b l y . some f u r t h e r gas c l e a n u p w i l l be r e q u i r e d . T e s t s were a l s o p e r f o r m e d on t h e d u r a b i l i t y o f t u r b i n e b l a d e s . S e v e r a l m a t e r i a l s h a v e p r o v e n t o be s u i t a b l e and b l a d e l i v e s o f g r e a t e r t h a n 2 5 , 0 0 0 h o u r s a r e e x p e c t e d . G e n e r a l E l e c t r i c G e n e r a l E l e c t r i c C o r p o r a t i o n (GE) h a s been i n v e s t i g a t i n g a h i g h bed t e m p e r a t u r e (be tween 925 a n d 9 6 5 \u00C2\u00B0 C ) , medium bed p r e s s u r e (10 B a r ) s t e a m t u b e c y c l e ( 1 ) . T h e s e t e m p e r a t u r e s r e p r e s e n t t h e l i m i t f o r n o r m a l f l u i d i z e d bed o p e r a t i o n . A t h i g h e r t e m p e r a t u r e s many c o a l s b e g i n t o s o f t e n a n d t h e p a r t i c l e s 9 a d h e r e t o e a c h o t h e r , p r e v e n t i n g f l u i d i z a t i o n . I t i s q u e s t i o n a b l e w h e t h e r t h e h i g h t e m p e r a t u r e s and t h e r e s u l t i n g e r o s i o n and c o r r o s i o n c a n be t o l e r a t e d by t h e t u r b i n e b l a d e s . GE has been c o n c e n t r a t i n g on t h e d e v e l o p m e n t o f t u r b i n e b l a d e m a t e r i a l s and h o t gas c l e a n u p s y s t e m s f o r t h e s t eam t u b e s y s t e m s . T h e y f o u n d t h a t t h e a l k a l i c o n c e n t r a t i o n s i n t h e PFB e x h a u s t g a s e s were h i g h e n o u g h t o p r e v e n t t h e s u c c e s s f u l use o f s t a n d a r d t u r b i n e b l a d e m a t e r i a l s ( 3 ) . GE has t h u s t e s t e d s e v e r a l new a l l o y s and i s w o r k i n g t o w a r d a t u r b i n e l i f e o f 2 5 , 0 0 0 h o u r s . T h e y h a v e a l s o s p o n s o r e d t e s t s a t t h e NCB L e a t h e r h e a d f a c i l i t y i n E n g l a n d t o d e t e r m i n e b e d - s i d e h e a t t r a n s f e r c o e f f i c i e n t s . S t a l - L a v a l , A m e r i c a n E l e c t r i c P o w e r , D e u t s c h e B a b c o c k A n l a g e n S t a l - L a v a l T u r b i n AB ( S - L ) o f S w e d e n , t h e A m e r i c a n E l e c t r i c Power S e r v i c e C o r p o r a t i o n ( A E P ) , and B a b c o c k and W i l c o x o f G r e a t B r i t a i n c o m b i n e d t h e i r e x p e r t i s e i n 1976 t o d e s i g n and b u i l d t h e f i r s t c o m m e r c i a l s i z e PFB power g e n e r a t i o n p l a n t . S i n c e t h e n , B a b c o c k and W i l c o x ha s l e f t t h e g r o u p a n d ha s been r e p l a c e d by t h e West German c o m p a n y , D e u t c h e B a b c o c k A n l a g e n ( D B A ) . The o b j e c t i v e o f t h e p r o j e c t i s t o m o d i f y a power p l a n t i n B r i l l i a n t , O h i o ( t h e T i d d p l a n t ) t o i n c l u d e c o m b i n e d c y c l e PFB c o m b u s t i o n ( 4 ) . The r e s p o n s i b i l i t i e s o f t h e p r o j e c t have been d i v i d e d up b e t w e e n t h e t h r e e p a r t i e s . S - L w i l l s u p p l y t h e gas t u r b o m a c h i n e r y and h o t gas c l e a n u p e q u i p m e n t . DBA w i l l d e s i g n 1 0 a n d c o n s t r u c t t h e f l u i d i z e d bed b o i l e r . The p l a n t w i l l be e r e c t e d a n d o p e r a t e d by t h e A E P , who h a v e t h e c o n t r o l l i n g i n t e r e s t i n t h e e x i s t i n g f a c i l i t y . When c o m p l e t e d , t h i s w i l l be t h e l a r g e s t c o m b i n e d c y c l e PFB p l a n t b u i l t . An i n t e r c o o l e d s t e a m t u b e c y c l e i s p r o p o s e d f o r t h e T i d d p l a n t ( F i g u r e 8 ) . The S - L GT120 gas t u r b i n e w i l l be u s e d b e c a u s e o f i t s h i g h p r e s s u r e r a t i o (16 B a r ) a n d i t s low t u r b i n e i n l e t t e m p e r a t u r e o f 8 0 0 \u00C2\u00B0 C . The low t e m p e r a t u r e r e s u l t s i n a l o w e r c y c l e e f f i c i e n c y b u t a l s o r e d u c e s t h e h o t gas c l e a n u p r e q u i r e m e n t s . The c o m b i n e d c y c l e T i d d . p l a n t e f f i c i e n c y w i l l be 33%, an i n c r e a s e o f 2% o v e r t h e o l d p l a n t o p e r a t i o n . The e f f i c i e n c y i s r e l a t i v e l y p o o r b e c a u s e o f t h e low s t e a m c o n d i t i o n s o f t h e 40 y e a r o l d t u r b i n e . W i t h a modern s t e a m t u r b i n e a n d an i m p r o v e d c y c l e a r r a n g e m e n t , t h e e f f i c i e n c y i s p r o j e c t e d t o be 39.4% a n d r e s u l t i n an 8% r e d u c t i o n i n t h e o v e r a l l c o s t o f e l e c t r i c i t y when c o m p a r e d t o new c o n v e n t i o n a l p l a n t s ( 5 ) . The p o l l u t a n t e m i s s i o n s a r e e x p e c t e d t o be w e l l b e l o w EPA r e s t r i c t i v e l i m i t s . An e x t e n s i v e r e s e a r c h and d e v e l o p m e n t p r o g r a m has been u n d e r t a k e n by t h e c o n s o r t i u m t o p r o v i d e d e s i g n d a t a and t o d e m o n s t r a t e t h e f e a s i b i l i t y o f t h e s u b s y s t e m s p r i o r t o c o n s t r u c t i o n o f t h e p l a n t . P r o t o t y p e h o t gas c l e a n u p and s o l i d s f e e d s y s t e m s have been c o n s t r u c t e d and t e s t e d w i t h s a t i s f a c t o r y r e s u l t s . T e s t s h a v e a l s o been c o m p l e t e d on t u r b i n e b l a d e and b e d h e a t e x c h a n g e r e r o s i o n a n d c o r r o s i o n . A l l o y s were s e l e c t e d t o p r o v i d e s a t i s f a c t o r y o p e r a t i n g l i v e s . A component t e s t f a c i l i t y , i n c l u d i n g a P F B , ha s been c o n s t r u c t e d a t Malmo S w e d e n . 11 T h i s f a c i l i t y i s u s e d t o t e s t t h e o p e r a t i o n o f t h e c o m p o n e n t s t o g e t h e r on a s m a l l s c a l e . A d e c i s i o n w i l l be made i n 1984 w h e t h e r t o p r o c e e d w i t h t h e m o d i f i c a t i o n o f t h e T i d d p l a n t . N a t i o n a l C o a l B o a r d ( U . K . ) Two i m p o r t a n t PFB r e s e a r c h f a c i l i t i e s h a v e been b u i l t i n E n g l a n d . The f i r s t , a t L e a t h e r h e a d , i s r u n by t h e C o a l U t i l i s a t i o n R e s e a r c h L a b o r a t o r y (CURL) ( 4 0 ) . I t i s l i m i t e d by i t s s m a l l s i z e , 0 . 9 X 0 . 6 m, a n d by i t s maximum p r e s s u r e o f o n l y . 6 B a r . Much e x p e r i m e n t a l work h a s b e e n d o n e a t t h i s f a c i l i t y , i n c l u d i n g s u l p h u r r e t e n t i o n , b e d t u b e d u r a b i l i t y , h o t g a s c l e a n u p e q u i p m e n t p e r f o r m a n c e , - a n d t u r b i n e b l a d e wear t e s t s . A l a r g e r f a c i l i t y was r e c e n t l y c o m m i s s i o n e d a t G r i m e t h o r p e . I t i s f u n d e d by t h e I n t e r n a t i o n a l E n e r g y A g e n c y ( I E A ) a n d i s o p e r a t e d by t h e N a t i o n a l C o a l B o a r d o f E n g l a n d (NCB) ( 4 1 ) . T h e G r i m e t h o r p e PFB i s 2 . 0 X 2 . 0 m a n d c a n o p e r a t e a t p r e s s u r e s f r o m 6 t o 12 b a r , b u t i t s t h e r m a l power r a t i n g (80 MWt) i s s t i l l w e l l s h o r t o f t h e 510 MWt c a p a c i t y o f t h e p r o p o s e d T i d d p l a n t . T h e s e f a c i l i t i e s a r e u s e d f o r r e s e a r c h a n d n e i t h e r h a s been c o u p l e d w i t h gas t u r b i n e s f o r power g e n e r a t i o n . B r i t i s h C o l u m b i a H y d r o a n d Power A u t h o r i t y B r i t i s h C o l u m b i a H y d r o a n d Power A u t h o r i t y (BCH) h a s b e e n 12 c o n s i d e r i n g a PFB f a c i l i t y t o b u r n H a t C r e e k c o a l f r o m t h e i r d e p o s i t s i n c e n t r a l B r i t i s h C o l u m b i a ( 1 3 ) . W o r k i n g w i t h C U R L , t h e y h a v e been g a t h e r i n g e x p e r i m e n t a l d a t a f o r an i n t e r c o o l e d s t e a m t u b e c y c l e s i m i l a r to . t h a t p r o p o s e d f o r t h e T i d d p l a n t . R e c e n t l y , b e c a u s e o f r e d u c e d demand f o r p o w e r , BCH has r e d u c e d t h e s p e e d o f d e v e l o p m e n t o f t h e H a t C r e e k PFB p r o j e c t . 13 2.2 Review Of P u b l i s h e d M o d e l s And A n a l y s e s S e v e r a l a n a l y s e s have been c o m p l e t e d , m o d e l l i n g t h e p e r f o r m a n c e of PFB combined c y c l e s . Most of t h e s e a n a l y s e s a r e made by o r g a n i s a t i o n s w h i c h have an i n t e r e s t i n s u p p o r t i n g one p a r t i c u l a r c y c l e a r r a n g e m e n t . I t i s d i f f i c u l t t o compare r e s u l t s however, b e c a u s e e a c h a n a l y s i s u s e s d i f f e r e n t o p e r a t i n g c o n d i t i o n s , assumes d i f f e r e n t component p e r f o r m a n c e s , and o f t e n b u r n s d i f f e r e n t o r u n i d e n t i f i e d c o a l s . Two r e c e n t p u b l i c a t i o n s have d e a l t w i t h t h e c o m p a r a t i v e p e r f o r m a n c e s o f t h e two main PFB c y c l e s . Brown, B o v e r i & Company, L t d (1) and G i l b e r t / C o m m o n w e a l t h (6) have b o t h r e l e a s e d r e p o r t s c o m p a r i n g t h e p e r f o r m a n c e o f t h e a i r h e a t e r and steam t u b e c y c l e s A summary of t h e i r r e s u l t s and o t h e r s a r e i n c l u d e d i n T a b l e 1. I t a p p e a r s t h a t t h e a i r h e a t e r c y c l e i s l e s s e f f i c i e n t t h a n t h e steam t u b e c y c l e , a l t h o u g h t h e a c t u a l d i f f e r e n c e i s u n c l e a r b e c a u s e of t h e l a r g e v a r i a t i o n between s t u d i e s . T h i s v a r i a t i o n o c c u r s i n s p i t e of t h e f a c t t h a t t h e c y c l e a r r a n g e m e n t s and o p e r a t i n g c o n d i t i o n s a p p e a r t o be i d e n t i c a l . T h e r e i s a l s o some v a r i a t i o n between t h e steam t u b e r e s u l t s . A major f a c t o r h e r e , may be t h e d i f f e r e n c e s i n c y c l e a r r a n g e m e n t and o p e r a t i n g c o n d i t i o n s . S e v e r a l a s p e c t s o f PFB combined c y c l e s y s t e m p e r f o r m a n c e r e m a i n u n c e r t a i n . The a i r h e a t e r and steam t u b e c y c l e e f f i c i e n c i e s a r e i n c o n s i s t e n t l y r e p o r t e d , w i t h e f f e c t s of d e s i g n a s s u m p t i o n s u n d e f i n e d . Even i n t h e c o m p a r a t i v e s t u d i e s , t h e d i f f e r e n c e i n p e r f o r m a n c e between t h e two c y c l e s v a r i e s g r e a t l y . 1 4 I t i s a l s o u n c l e a r w h e t h e r t h e a i r h e a t e r c y c l e h a s an a d v a n t a g e i n e f f i c i e n c y o v e r c o n v e n t i o n a l p u l v e r i z e d c o a l f a c i l i t i e s . A v a r i e t y o f s t eam t u b e c y c l e a r r a n g e m e n t s h a v e b e e n a n a l y s e d , b u t due t o d i f f e r i n g a s s u m p t i o n s a n d o p e r a t i n g c o n d i t i o n s , i t i s u n c l e a r w h i c h a r r a n g e m e n t i s t h e most e f f i c i e n t . 2 . 3 O b j e c t i v e s And S c o p e Of S t u d y The p r i m a r y o b j e c t i v e o f t h i s s t u d y i s t o e s t i m a t e a n d c o m p a r e t h e p e r f o r m a n c e o f two m a j o r c l a s s i f i c a t i o n s o f c o m b i n e d c y c l e p r e s s u r i z e d f l u i d i z e d b e d power g e n e r a t i o n f a c i l i t i e s . T h e s t u d y c o n c e n t r a t e s on a r e a s l e f t u n c l e a r by p r e v i o u s w o r k . In p a r t i c u l a r , f o u r s u b - o b j e c t i v e s were s e l e c t e d f o r t h i s p r o j e c t . \u00E2\u0080\u00A2 The p e r f o r m a n c e o f t h e a i r h e a t e r a n d s t e a m t u b e c y c l e s a r e o b j e c t i v e l y c o m p a r e d , u s i n g s i m i l a r o p e r a t i n g c o n d i t i o n s and c o n s t r a i n t s . P r e v i o u s work i n d i c a t e d t h a t t h e s t e a m t u b e c y c l e was more e f f i c i e n t , b u t t h e r e p o r t e d m a g n i t u d e o f t h e d i f f e r e n c e was n o t c o n s i s t e n t . B o t h c y c l e s a r e a l s o c o m p a r e d t o t h e e f f i c i e n c y o f a c o n v e n t i o n a l p u l v e r i z e d c o a l p l a n t . The e f f e c t o f d e s i g n p a r a m e t e r v a r i a t i o n i s a l s o e x a m i n e d , d e f i n i n g t h e s e n s i t i v i t y o f t h e s y s t e m p e r f o r m a n c e . \u00E2\u0080\u00A2 The p e r f o r m a n c e o f t h e s t e a m t u b e c y c l e s w i t h c o m p r e s s o r i n t e r c o o l i n g , r e c u p e r a t i o n , and r e g e n e r a t i v e f e e d w a t e r h e a t i n g ha s n o t b e e n s y s t e m a t i c a l l y s t u d i e d i n t h e p a s t . The d e s i g n c o n c e p t s i n p a s t work h a v e i n c l u d e d v a r i o u s c o m b i n a t i o n s o f t h e s e c o m p o n e n t s w i t h no o b j e c t i v e d e t e r m i n a t i o n o f t h e i r v a l u e o r o p t i m u m p l a c e m e n t . The 15 e f f e c t on e f f i c i e n c y o f e a c h component i s d e t e r m i n e d . S e v e r a l component c o m b i n a t i o n s were m o d e l l e d , t o d e t e r m i n e t h e op t imum c o n f i g u r a t i o n . \u00E2\u0080\u00A2 A n o t h e r o b j e c t i v e o f t h i s p r o j e c t i s t o d e t e r m i n e t h e p e r f o r m a n c e o f c o m b i n e d c y c l e PFB s y s t e m s when b u r n i n g Hat C r e e k c o a l . M o s t o f t h e c o a l s s i m u l a t e d f o r c o m b u s t i o n i n p u b l i s h e d m o d e l s a r e h i g h i n s u l p h u r (2-4%) , r e l a t i v e l y d r y , a n d low i n a s h . H a t C r e e k c o a l i s h i g h i n m o i s t u r e a n d a s h a n d ha s l e s s t h a n 1% s u l p h u r . The e f f e c t o f f u e l s e l e c t i o n a n d t r e a t m e n t on s y s t e m e f f i c i e n c y i s d e t e r m i n e d . The p e r f o r m a n c e o f Hat C r e e k c o a l a t s e v e r a l s t a g e s o f w a s h i n g and d r y i n g i s m o d e l l e d a l o n g w i t h a d r y , low a s h c o a l , I l l i n o i s #6. \u00E2\u0080\u00A2 The p a r t l o a d o p e r a t i o n i s a l s o o f i n t e r e s t when c o m p a r i n g t h e p e r f o r m a n c e o f t h e two c y c l e s . The p e r f o r m a n c e o f t h e a i r h e a t e r c y c l e i s m o d e l l e d o v e r a w ide r a n g e o f l o a d c o n d i t i o n s . 16 I I I . DESIGN LOAD C Y C L E SIMULATION MODELS 3.1 M o d e l l i n g S t r a t e g i e s C o m p u t e r p r o g r a m s were w r i t t e n t o s i m u l a t e t h e c o m b u s t i o n , t h e r m o d y n a m i c s , a n d h e a t t r a n s f e r f o r e a c h o f t h e PFB c y c l e s . S i n c e no u t i l i t y s i z e PFB c o m b i n e d c y c l e power g e n e r a t i o n f a c i l i t y i s i n o p e r a t i o n , t h e c o m p o n e n t s i m u l a t i o n s a r e b a s e d on p e r f o r m a n c e d a t a d e v e l o p e d f r o m t h e o r e t i c a l a n d e x p e r i m e n t a l w o r k . The c y c l e a n a l y s i s p r o g r a m s f o l l o w t h e f l o w o f t h e w o r k i n g f l u i d s ( a i r , c o m b u s t i o n g a s e s a n d s team) and c a l c u l a t e t h e t h e r m o d y n a m i c p r o p e r t i e s and t h e mass f l o w a t t h e e n t r a n c e a n d e x i t o f e a c h c o m p o n e n t . S team C y c l e A n a l y s i s A f l o w c h a r t f o r t h e s t e a m t u b e c y c l e a n a l y s i s i s shown i n F i g u r e 9 . The s t e a m t u b e c y c l e a n a l y s i s s t a r t s a t t h e c o m p r e s s o r i n l e t w i t h an a i r mass f l o w o f 1 k g / s . The p r o p e r t i e s o f t h e i n l e t a i r a r e c a l c u l a t e d f r o m t h e known a m b i e n t c o n d i t i o n s a n d an a s sumed 5% p r e s s u r e l o s s due t o s i l e n c i n g e q u i p m e n t . The a i r i s t h e n c o m p r e s s e d t o t h e c o m b u s t o r p r e s s u r e , u s i n g two gas c o m p r e s s o r s i n s e r i e s . The i s e n t r o p i c c o m p r e s s o r e f f i c i e n c i e s a r e u s e d t o d e t e r m i n e t h e o u t l e t t e m p e r a t u r e . The a i r i s t h e n p i p e d i n t o t h e PFB c o m b u s t o r s . I n o r d e r t o r e d u c e h e a t l o s s f r o m t h e s y s t e m , t h e h o t g a s e s l e a v i n g t h e c o m b u s t o r a r e t r a n s f e r r e d back t o t h e t u r b i n e s i n a c o - a x i a l p i p e i n s i d e t h e a i r d u c t i n g . The h e a t l o s t by t h e h o t g a s e s 1 7 l e a v i n g t h e c o m b u s t o r i s t h u s p i c k e d up by t h e a i r e n t e r i n g t h e c o m b u s t o r , m i n i m i s i n g t h e s y s t e m h e a t l o s s e s . The m a g n i t u d e o f t h e c o - a x i a l h e a t e x c h a n g e i s d e t e r m i n e d by t h e d i f f e r e n c e b e t w e e n t h e bed a n d t u r b i n e i n l e t t e m p e r a t u r e s , b o t h of w h i c h a r e s e t i n t h e d a t a i n p u t . The a i r i s m i x e d w i t h c o a l a n d s o r b e n t i n t h e f l u i d i z e d b e d , m a i n t a i n i n g 30% e x c e s s a i r . The p r o d u c t gas c o m p o s i t i o n and t h e r m o d y n a m i c p r o p e r t i e s a r e t h e n c a l c u l a t e d . The t e m p e r a t u r e o f t h e gas l e a v i n g t h e PFB i s s e t i n t h e i n p u t d a t a , a l l o w i n g t h e c o m b u s t i o n e x c e s s h e a t t o be c a l c u l a t e d . T h i s e x c e s s h e a t i s r e m o v e d by t h e b o i l i n g w a t e r i n t h e bed c o o l a n t t u b e s . The g a s e s t h e n e n t e r t h e H . P . t u r b i n e , w h i c h r u n s t h e H . P . c o m p r e s s o r . The e n t h a l p y d r o p a c r o s s t h e t u r b i n e i s t h u s s e t t o make t h e H . P . c o m p r e s s o r and t u r b i n e work e q u a l . The r e s u l t i n g p r e s s u r e d r o p t o t h e H . P . t u r b i n e o u t l e t i s d e t e r m i n e d w i t h t h e use of t h e i s e n t r o p i c e f f i c i e n c y . S i m i l a r l y , t h e L . P . t u r b i n e p o w e r s t h e L . P . c o m p r e s s o r , a n d t h e same c a l c u l a t i o n method i s u s e d t o d e t e r m i n e t h e o u t l e t c o n d i t i o n s . The power t u r b i n e r u n s an a l t e r n a t o r and g e n e r a t e s t h e gas s y s t e m power c o n t r i b u t i o n . The t u r b i n e o u t l e t p r e s s u r e i s d e t e r m i n e d f r o m t h e a m b i e n t p r e s s u r e and t h e p r e s s u r e d r o p a c r o s s t h e e c o n o m i s e r . The e c o n o m i s e r t r a n f e r s h e a t f r o m t h e t u r b i n e e x h a u s t g a s e s t o t h e s t e a m s y s t e m f e e d w a t e r . The e c o n o m i s e r o u t l e t gas t e m p e r a t u r e i s s e t t o 1 0 \u00C2\u00B0 C a b o v e t h e a c i d dew p o i n t t o l i m i t t h e c o r r o s i o n i n t h e s t a c k . B e c a u s e o f t h e i n t e r d e p e n d e n c e o f t h e 18 power t u r b i n e and e c o n o m i s e r p e r f o r m a n c e , t h e a c i d dew p o i n t , and t h e p r e s s u r e d r o p a c r o s s t h e e c o n o m i s e r , t h e c o r r e c t s o l u t i o n i s r e a c h e d o n l y a f t e r s e v e r a l i t e r a t i o n s . The s t e a m s y s t e m i s c a l c u l a t e d n e x t . The ma in s y s t e m p r e s s u r e s ( H . P . t u r b i n e i n l e t , r e h e a t , and c o n d e n s e r ) a r e d e t e r m i n e d , a l o n g w i t h t h e maximum s t e a m t e m p e r a t u r e , i n t h e d a t a i n p u t . The s team mass f l o w , e c o n o m i s e r t e m p e r a t u r e r i s e , and component p r e s s u r e d r o p s a r e d e t e r m i n e d i t e r a t i v e l y . F i r s t , t h e H . P . s t e a m t u r b i n e i n l e t c o n d i t i o n s a r e c a l c u l a t e d , u s i n g t h e known s u p e r h e a t t e m p e r a t u r e ( 5 4 0 \u00C2\u00B0 C ) and p r e s s u r e (160 B a r ) . The s t eam i s t h e n e x p a n d e d t o t h e r e h e a t p r e s s u r e and t h e o u t l e t c o n d i t i o n s a r e c a l c u l a t e d u s i n g t h e s team t u r b i n e i s e n t r o p i c e f f i c i e n c y . In t h e r e h e a t P F B , t h e s team i s h e a t e d back t o t h e maximum t e m p e r a t u r e . The r e h e a t e d s team i s t h e n u s e d t o r u n t h e L . P . t u r b i n e , w i t h t h e o u t l e t c o n d i t i o n s a l s o d e t e r m i n e d by t h e i s e n t r o p i c e f f i c i e n c y . The t u r b i n e e x h a u s t and c o n d e n s e r p r e s s u r e was s e t t o 6 . 7 5 KPa (2 i n Hg) f o r b o t h t h e s t eam t u b e and a i r h e a t e r c y c l e s . The s a t u r a t e d l i q u i d i s t h e n pumped up t o t h e b o i l e r p r e s s u r e by t h e f e e d w a t e r pump. The pump o u t l e t c o n d i t i o n s a r e c a l c u l a t e d , u s i n g an i s e n t r o p i c e f f i c i e n c y o f 81%. The w a t e r i s h e a t e d i n t h e e c o n o m i s e r , w i t h t h e h e a t g a i n e d m a t c h i n g t h a t l o s t by t h e c o m b u s t i o n g a s e s . The h e a t r e q u i r e d t o b o i l a n d s u p e r h e a t t h e e c o n o m i s e r e x h a u s t i s t h e n c a l c u l a t e d . The s t e a m mass f l o w i s c a l c u l a t e d f rom t h e PFB h e a t t r a n s f e r a v a i l a b l e f r o m t h e gas s y s t e m and t h e h e a t r e q u i r e d t o b o i l , s u p e r h e a t , and r e h e a t t h e s t e a m . The p u m p i n g power l o s s e s 19 t h r o u g h t h e e c o n o m i s e r , s u p e r h e a t e r , a n d r e h e a t e r , a r e c a l c u l a t e d as f r a c t i o n s o f t h e h e a t t r a n s f e r . A p u m p i n g power l o s s i s t h e amount o f power r e q u i r e d t o o v e r c o m e t h e f l u i d f r i c t i o n l o s s e s i n a g i v e n c o m p o n e n t . The c o r r e l a t i o n s u s e d t o e s t i m a t e t h e p u m p i n g power l o s s e s were d e v e l o p e d f r o m u t i l i t y s i z e d component d a t a o p e r a t i n g i n s i m i l a r c o n d i t i o n s . The power l o s s e s a r e t h e n c o n v e r t e d t o p r e s s u r e d r o p s . T h e p r e s s u r e d r o p a c r o s s t h e b o i l i n g s e c t i o n i s a s s u m e d t o be n e g l i g i b l e b e c a u s e o f t h e n a t u r a l c i r c u l a t i o n e f f e c t o f t h e b o i l i n g w a t e r . A f t e r t h e s t e a m f l o w a n d p r e s s u r e d r o p s a r e d e t e r m i n e d , t h e e n t i r e s t e a m s y s t e m i s r e c a l c u l a t e d i n t h e n e x t i t e r a t i o n . A i r H e a t e r C y c l e A n a l y s i s The a n a l y s i s o f . the a i r h e a t e r c y c l e gas s y s t e m ( F i g u r e 10) i s s i m i l a r t o t h e s t e a m t u b e c y c l e b u t h a s t h e f o l l o w i n g d i f f e r e n c e s . The c o m p r e s s o r a i r f l o w i s much h i g h e r t h a n i n t h e s t eam t u b e c y c l e w i t h 1 k g / s o f a i r u s e d f o r t h e c o m b u s t i o n a i r , a n d a p p r o x i m a t e l y 2 k g / s u s e d f o r b e d c o o l a n t . A f t e r a n a l y s i n g t h e a i r c o m p r e s s i o n a n d c o a l c o m b u s t i o n p r o c e s s e s , t h e r e q u i r e d mass f l o w o f c o o l i n g a i r i s e s t i m a t e d . T h e t u r b i n e i n l e t t e m p e r a t u r e i s d e t e r m i n e d by m i x i n g t h e c o o l i n g a i r w i t h t h e c o m b u s t i o n g a s e s . The t u r b i n e i n l e t t e m p e r a t u r e i s h o w e v e r , s e t i n t h e d a t a i n p u t a n d a N e w t o n - R a p h s o n i t e r a t i o n m e t h o d i s u s e d t o c o n v e r g e t o t h e f l o w r a t e r e s u l t i n g i n t h e p r e s c r i b e d t u r b i n e i n l e t t e m p e r a t u r e . The mass f l o w s t h r o u g h t h e a i r c o m p r e s s o r a r e t h e n c o r r e c t e d . T h e r e a r e two o t h e r d i f f e r e n c e s w i t h t h e a i r h e a t e r gas 20 s y s t e m . B e c a u s e t h e r e i s no c o n s i d e r a t i o n f o r i n t e r c o o l i n g , o n l y one gas c o m p r e s s o r a n d two gas t u r b i n e s a r e u s e d . T h e r e i s a l s o no c o - a x i a l h e a t e x c h a n g e c o n s i d e r e d . N e i t h e r o f t h e s e d i f f e r e n c e s h o w e v e r , a f f e c t t h e c y c l e p e r f o r m a n c e . The h e a t r e c o v e r y s t e a m g e n e r a t o r (HRSG) u s e d i n t h e a i r h e a t e r c y c l e ' i s q u i t e d i f f e r e n t f r o m t h e s t e a m t u b e s t eam s y s t e m . A l l o f t h e h e a t f o r t h e HRSG comes f rom t h e ga s t u r b i n e e x h a u s t g a s e s , w h e r e a s i n t h e s t e a m t u b e c y c l e , most o f t h e s t e a m h e a t i n g was done i n t h e P F B ' s . T h e r e i s o n l y one s t e a m t u r b i n e and no r e h e a t , a n d t h e o p e r a t i n g p r e s s u r e s and t e m p e r a t u r e s a r e much l o w e r t h a n i n t h e s t e a m t u b e s y s t e m . The HRSG c o n t a i n s a p r e b o i l e r w a t e r h e a t i n g s e c t i o n , a s t e a m drum a n d b o i l i n g l o o p , a n d a s u p e r h e a t e r t u b e b a n k . The p e r f o r m a n c e o f t h e h e a t r e c o v e r y s t e a m g e n e r a t o r d e p e n d s on t h e h e a t a v a i l a b l e i n t h e gas t u r b i n e e x h a u s t g a s e s , a n d t h e t e m p e r a t u r e a n d p r e s s u r e o f t h e s t e a m e n t e r i n g t h e s t e a m t u r b i n e . The c y c l e e f f i c i e n c y i m p r o v e s w i t h h i g h e r s u p e r h e a t t e m p e r a t u r e s and b o i l e r p r e s s u r e s . The o v e r a l l HRSG e f f e c t i v e n e s s i s s e t a t 80%, l i m i t i n g t h e s u p e r h e a t t e m p e r a t u r e . T h i s i s t o p r o v i d e a c c e p t a b l e h e a t t r a n s f e r s u r f a c e a r e a s and p r e s s u r e d r o p s . The b o i l e r p r e s s u r e i s a l s o c o n s t r a i n e d . A t h i g h p r e s s u r e s , t h e s t eam t u r b i n e e x h a u s t q u a l i t y w o u l d become t o o l o w , d a m a g i n g t h e t u r b i n e b l a d e s . The b o i l e r p r e s s u r e i s t h e r e f o r e s e t t o r e s u l t i n a s a f e e x h a u s t q u a l i t y o f 88%. A s e c o n d p r o b l e m may a l s o o c c u r w i t h t h e b o i l e r p r e s s u r e . The t e m p e r a t u r e o f t h e s a t u r a t e d l i q u i d e n t e r i n g t h e b o i l i n g z o n e may be v e r y c l o s e t o t h e t e m p e r a t u r e o f t h e g a s e s h e a t i n g t h a t 21 o f t h e HRSG ( F i g u r e 1 1 ) . T h i s i s c a l l e d t h e b o i l i n g p i n c h p o i n t . I f t h e t e m p e r a t u r e d i f f e r e n t i a l a t t h e p i n c h p o i n t becomes t o o s m a l l , t h e h e a t t r a n s f e r a r e a r e q u i r e m e n t s become t o o l a r g e . The e f f e c t i v e n e s s o f t h e f e e d w a t e r h e a t i n g s e c t i o n o f t h e HRSG i s t h e r e f o r e a l s o l i m i t e d t o 80%, i n o r d e r t o m a i n t a i n an a d e q u a t e t e m p e r a t u r e d i f f e r e n t i a l t h r o u g h o u t t h e HRSG. The method u s e d t o r e d u c e t h e f e e d w a t e r s e c t i o n e f f e c t i v e n e s s was t o l o w e r t h e b o i l e r p r e s s u r e . T h i s l o w e r s t h e b o i l i n g t e m p e r a t u r e a n d t h u s i n c r e a s e s t h e gap i n t h e p i n c h p o i n t . The r e s u l t i n g o p e r a t i n g c o n d i t i o n s p r o v i d e d t h e op t imum HRSG p e r f o r m a n c e . 3 .2 D e v e l o p m e n t Of The S u b - m o d e l s 3 . 2 . 1 T h e r m o d y n a m i c P r o p e r t y C a l c u l a t i o n s The t h e r m o d y n a m i c p r o p e r t i e s o f i n t e r e s t i n t h i s s t u d y i n c l u d e p r e s s u r e , t e m p e r a t u r e , e n t h a l p y , e n t r o p y , s p e c i f i c h e a t and d e n s i t y . T h e s e p r o p e r t i e s a r e d e t e r m i n e d a t t h e e n t r a n c e a n d e x i t o f e a c h c o m p o n e n t i n t h e c y c l e a n d a r e u s e d p r i m a r i l y i n h e a t b a l a n c e c a l c u l a t i o n s . A l l o f t h e p r o p e r t i e s a r e f o r m u l a t e d i n t e r m s o f two i n d e p e n d e n t p r o p e r t i e s . The s t e a m c a l c u l a t i o n s a r e b a s e d on an e x i s t i n g p r o g r a m w h i c h u s e s t e m p e r a t u r e a n d d e n s i t y a s t h e i n d e p e n d e n t p r o p e r t i e s . The a i r a n d g a s f o r m u l a t i o n s were d e v e l o p e d f o r t h i s s t u d y a n d p r e s s u r e a n d t e m p e r a t u r e a r e t h e i n d e p e n d e n t p r o p e r t i e s . In many s i t u a t i o n s one o f t h e i n d e p e n d e n t p r o p e r t i e s may n o t be known, a n d a n o t h e r p r o p e r t y s u c h as e n t h a l p y o r e n t r o p y may be g i v e n . F o r t h e s e s i t u a t i o n s 22 a s e t o f i t e r a t i n g r o u t i n e s was c r e a t e d . The c a l c u l a t i o n o f t h e r m o d y n a m i c f l u i d p r o p e r t i e s i s p e r f o r m e d i n t h e s u b r o u t i n e l i b r a r y . Some st e a m r o u t i n e s a r e v a l i d i n o n l y one z o n e , l i q u i d o r v a p o r , and t h u s a r e o n l y t o be u s e d i n s i t u a t i o n s where t h e c o n d i t i o n s a r e known. O t h e r r o u t i n e s a r e v a l i d t h r o u g h o u t ( w i t h t h e e x c e p t i o n o f t h e c r i t i c a l p o i n t r e g i o n ) . The p r o p e r t i e s c a l c u l a t e d a r e P,T,H,S,CP, and p. C a l c u l a t i o n s i n t h e gas r o u t i n e s d epend on t h e gas c o m p o s i t i o n b e i n g p r e v i o u s l y d e t e r m i n e d i n t h e c o m b u s t i o n c a l c u l a t i o n s . The c o m p o s i t i o n i s u p d a t e d e a c h t i m e a gas p r o p e r t y r o u t i n e i s u s e d , m a i n t a i n i n g e q u i l i b r i u m i n t h e SOx c o n c e n t r a t i o n s . The g a s c o m p o s i t i o n i s a l s o m o d i f i e d i n t h e r o u t i n e \"MIX\", where c o m b u s t i o n g a s e s a r e m i x e d w i t h a i r . A p p e n d i x A l i s t s t h e c o m p u t e r r o u t i n e s f o r t h e d i f f e r e n t f l u i d s and t h e i r p r o p e r t i e s . Thermodynamic P r o p e r t i e s o f Steam The t h e r m o d y n a m i c p r o p e r t y c a l c u l a t i o n s a r e b a s e d on an e q u a t i o n o f s t a t e d e v e l o p e d f o r s t e a m a nd a c c e p t e d by t h e I n t e r n a t i o n a l C o n f e r e n c e f o r t h e P r o p e r t i e s o f Steam ( I C P S ) i n 1968. The e q u a t i o n r e p r e s e n t s t h e H e l m h o l t z f r e e e n e r g y a s a f u n c t i o n o f t e m p e r a t u r e a nd d e n s i t y . The r e m a i n i n g p r o p e r t i e s a r e c a l c u l a t e d u s i n g t h e d e r i v a t i v e s o f t h e H e l m h o l t z f r e e e n e r g y and a p p r o p r i a t e t h e r m o d y n a m i c i d e n t i t i e s . T h e s e c a l c u l a t i o n s were c o n t a i n e d i n an e x i s t i n g c o m p u t e r r o u t i n e d e v e l o p e d by K e e n a n , K e y e s , H i l l , & Moore (7) and t h i s r o u t i n e 23 was u s e d as t h e c o r e f o r a l l o f t h e s t e a m t h e r m o d y n a m i c c o m p u t i n g . The r o u t i n e i t e r a t e s t o f i n d t h e d e n s i t y f rom t h e p r e s s u r e and t e m p e r a t u r e a n d t h e n c a l c u l a t e s t h e e n t h a l p y , e n t r o p y , d e n s i t y , s p e c i f i c h e a t s , and j o u l e - t h o m p s o n c o e f f i c i e n t . T h i s r o u t i n e must a l s o be g i v e n t h e s t a t e , l i q u i d o r v a p o r , i n w h i c h t h e s team e x i s t s a n d i s n o t v a l i d i n s i d e t h e two p h a s e r e g i o n . In o r d e r t o d e t e r m i n e t h e s a t u r a t i o n b o u n d a r i e s , t h e ICPS a p p r o v e d r e l a t i o n s h i p b e t w e e n s a t u r a t i o n t e m p e r a t u r e a n d p r e s s u r e (8) was i n c l u d e d i n t h e s u b r o u t i n e l i b r a r y a l o n g w i t h an i t e r a t i v e r e v e r s e s o l u t i o n . A n o t h e r r o u t i n e c a l c u l a t e s t h e s a t u r a t i o n p r o p e r t i e s o f e n t r o p y a n d e n t h a l p y when g i v e n p r e s s u r e a n d t e m p e r a t u r e . T h e s e t h r e e r o u t i n e s p e r m i t t h e t e s t i n g o f s t eam c o n d i t i o n and t h e c a l c u l a t i o n o f p r o p e r t i e s i n t h e s a t u r a t i o n z o n e . In a d d i t i o n , n i n e o t h e r r o u t i n e s ( A p p e n d i x A) were c r e a t e d t o c a l c u l a t e t h e r m o d y n a m i c p r o p e r t i e s when d i f f e r e n t p r o p e r t i e s were known. T h e r m o d y n a m i c P r o p e r t i e s o f A i r a n d G a s e s A i r a n d c o m b u s t i o n g a s e s a r e h a n d l e d s e p a r a t e l y i n t h e p r o g r a m m i n g . T h i s was t o a l l o w t h e c o n s i d e r a t i o n o f two p a r a l l e l f l o w s a n d t h e i r m i x i n g , a s i n t h e c a s e o f t h e A i r H e a t e r C y c l e . The m e t h o d o f p r o p e r t y c a l c u l a t i o n i n b o t h s e t s o f r o u t i n e s i s h o w e v e r , s i m i l a r . A i r i s d e f i n e d as d r y a n d an i d e a l m i x t u r e o f 76.71% n i t r o g e n a n d 23.29% o x y g e n (by mass ) ( 9 ) . The c o m b u s t i o n g a s e s 24 a r e t r e a t e d as i d e a l m i x t u r e s o f n i t r o g e n , c a r b o n d i o x i d e , w a t e r v a p o r , o x y g e n , s u l p h u r d i o x i d e , and s u l p h u r t r i o x i d e . C a r b o n m o n o x i d e and NOx a r e n o t i n c l u d e d b e c a u s e t h e i r c o n c e n t r a t i o n s a r e n o t l a r g e enough t o s i g n i f i c a n t l y a f f e c t t h e t h e r m o d y n a m i c c a l c u l a t i o n s . The c o n c e n t r a t i o n o f e a c h c o n s t i t u e n t i s d e t e r m i n e d i n t h e c o m b u s t i o n and gas m i x t u r e c a l c u l a t i o n r o u t i n e s . In t h e r a n g e of p r e s s u r e s a n d t e m p e r a t u r e s e n c o u n t e r e d i n t h i s s t u d y , i t was f o u n d t h a t t h e c o m p r e s s i b i l i t y f a c t o r was v e r y c l o s e t o u n i t y . T h i s p e r m i t s t h e use o f i d e a l gas m i x t u r e c a l c u l a t i o n s . S i n c e t h e m i x t u r e i s t r e a t e d as an i d e a l g a s , t h e e n t h a l p y a n d s p e c i f i c h e a t (Cp) f o r m u l a t i o n s a r e s o l e l y f u n c t i o n s o f t e m p e r a t u r e ( A p p e n d i x B ) . E n t r o p y i s g i v e n i n t e r m s o f b o t h t e m p e r a t u r e and p r e s s u r e . The m i x t u r e p r o p e r t i e s were b a s e d on t h e p u r e component p a r t i a l m o l a l p r o p e r t i e s . F o u r t h e r m o d y n a m i c p r o p e r t i e s ( H , S, C p , a n d p) a r e c a l c u l a t e d u s i n g p r e s s u r e and t e m p e r a t u r e a s t h e known p r o p e r t i e s . 3 . 2 . 2 C o m b u s t i o n Of C o a l In A F l u i d i z e d Bed The c o m b u s t i o n o f c o a l i n a P u l v e r i z e d C o a l B o i l e r ( \" P C B \" ) has b e e n e x t e n s i v e l y s t u d i e d . T h e r e a r e h o w e v e r , s e v e r a l s i g n i f i c a n t d i f f e r e n c e s b e t w e e n PCB and PFB c o m b u s t i o n . F i r s t , t h e c o m b u s t i o n t a k e s p l a c e a t a much l o w e r t e m p e r a t u r e , t y p i c a l l y 800 t o 9 0 0 \u00C2\u00B0 C c o m p a r e d t o a p p r o x i m a t e l y 1 6 5 0 \u00C2\u00B0 C f o r a p u l v e r i z e d c o a l b o i l e r . A l s o , due t o t h o r o u g h b e d m i x i n g , PFB 25 c o m b u s t i o n i s a l m o s t i s o t h e r m a l . In a PCB h o w e v e r , t h e gas t e m p e r a t u r e s r i s e and f a l l r a p i d l y a s t h e g a s e s p a s s t h r o u g h t h e b o i l e r . T h i s r e s u l t s i n i n c r e a s e d NOx e m i s s i o n s . S e c o n d l y , t h e mean p a r t i c l e d i a m e t e r i s much l a r g e r i n a P F B , t y p i c a l l y 600 urn a s c o m p a r e d t o 75 ^m f o r t h e c o n v e n t i o n a l s y s t e m s . T h i s r e s u l t s i n a l o n g e r c o m b u s t i o n t i m e f o r e a c h p a r t i c l e , and a f f e c t s t h e c o m b u s t i o n b o u n d a r y l a y e r t h i c k n e s s and gas c o m p o s i t i o n . T h i r d l y , t h e c o a l a s h i n a PCB l e a v e s t h e c o m b u s t i o n z o n e a s i t i s fo rmed and much o f t h e a s h (50-80%) r e m a i n s w i t h t h e f l u e g a s e s (10) a s i t p a s s e s t h r o u g h t h e b o i l e r . In a f l u i d i z e d bed h o w e v e r , t h e b u l k o f t h e a s h a n d s o r b e n t r e m a i n i n t h e c o m b u s t i o n zone a t t h e b e d t e m p e r a t u r e . The h o t a s h i s d r a i n e d f rom t h e P F B , r e s u l t i n g i n a h e a t l o s s . To m a i n t a i n a h i g h t h e r m a l e f f i c i e n c y , t h e h e a t c o n t a i n e d i n t h e s o l i d s i s t r a n s f e r r e d t o t h e b o i l e r f e e d w a t e r . F i n a l l y , a l o n g w i t h t h e s t a n d a r d c o m b u s t i o n r e a c t i o n s f o r c o a l , t h e r e i s t h e a d d i t i o n a l r e a c t i o n o f t h e c o a l bound s u l p h u r w i t h s o r b e n t . PFB c o m b u s t i o n c a l c u l a t i o n s must t h e r e f o r e d i f f e r s i g n i f i c a n t l y f rom PCB m e t h o d s . The c o a l p a r t i c l e s i n a PFB a r e s u p p o r t e d by t h e f l o w o f c o m b u s t i o n g a s e s m o v i n g u p w a r d s . A l t h o u g h a f l u i d i z e d bed c a n o p e r a t e i n s e v e r a l d i f f e r e n t m o d e s , t h e b u b b l i n g r e g i m e i s u s u a l l y f o u n d i n f l u i d i z e d c o a l c o m b u s t i o n . T h i s r e g i m e i s c h a r a c t e r i z e d by b u b b l e s o f r e l a t i v e l y p a r t i c l e f r e e a i r r i s i n g t h r o u g h d e n s e z o n e s o f c o a l p a r t i c l e s . The m i x i n g e f f e c t o f t h e b u b b l e s r e s u l t s i n a c o m b u s t i o n e f f i c i e n c y o f b e t w e e n 99 and 26 99 .9%, and a g r e a t e r h e a t t r a n s f e r c o e f f i c i e n t t h a n e q u i v a l e n t gas f l o w s ( 1 1 , 1 2 ) . The c o m b u s t i o n e f f i c i e n c y o f t h e f l u i d i z e d beds i n t h e p r o g r a m m i n g was s e t t o 99 .5%. C o m b u s t i o n c a l c u l a t i o n s a r e c a r r i e d o u t i n t h e l i b r a r y s u b r o u t i n e \" B E D \" . I n t h i s r o u t i n e , t h e mass o f c o a l r e q u i r e d f o r a p r e s e t a i r f u e l r a t i o i s a d d e d t o t h e s y s t e m . The amount of c a l c i u m c a r b o n a t e r e q u i r e d i s d e t e r m i n e d by t h e C a / S r a t i o . The ma in c o m b u s t i o n p r o d u c t s a r e c a l c u l a t e d u s i n g t h e p r e s e t c o m b u s t i o n e f f i c i e n c y and s u l p h u r r e t e n t i o n f a c t o r . The c o n c e n t r a t i o n s o f S 0 2 a n d S 0 3 a r e d e t e r m i n e d u s i n g t h e c r i t e r i o n o f t h e r m o d y n a m i c e q u i l i b r i u m . The h e a t r e l e a s e d t o t h e c o o l i n g t u b e s i s c a l c u l a t e d by s u b t r a c t i n g t h e h e a t o f t h e c o m b u s t i o n g a s e s , a s h , and s p e n t s o r b e n t f rom t h e e n e r g y c o n t a i n e d i n t h e raw c o a l , c o m b u s t i o n a i r , and f r e s h s o r b e n t . The h e a t a v a i l a b l e f o r t r a n s f e r t o t h e s team f e e d w a t e r i n t h e s o l i d s c o o l e r i s c a l c u l a t e d by t a k i n g t h e d i f f e r e n c e i n s o l i d e f f l u x h e a t c o n t e n t be tween t h e b e d t e m p e r a t u r e and t h e c o o l e r o u t l e t t e m p e r a t u r e . The c o o l e r o u t l e t t e m p e r a t u r e was s e t t o 2 0 0 \u00C2\u00B0 C i n t h i s s t u d y . C o a l C o m b u s t i o n R e a c t a n t s a n d P r o d u c t s C o a l i s made up o f c o m p l e x m o l e c u l e s w h i c h c o n t a i n c a r b o n , h y d r o g e n , o x y g e n , w a t e r , a s h , s u l p h u r , a n d n i t r o g e n . A l s o i n c l u d e d i n some a n a l y s e s a r e s m a l l c o n c e n t r a t i o n s o f c h l o r i n e and c a r b o n d i o x i d e . The c h l o r i n e may be i m p o r t a n t a s a c o r r o s i v e a g e n t , b u t i s n o t t h e r m o d y n a m i c a l l y s i g n i f i c a n t and i s n o t i n c l u d e d i n t h e p r o g r a m m i n g . The c a r b o n d i o x i d e c a n be 27 d i v i d e d up b e t w e e n o x y g e n and c a r b o n , e l i m i n a t i n g t h e n e e d f o r a s e p a r a t e c o n s t i t u e n t c a t e g o r y . A s h i s made up o f a number o f c l a y s and m e t a l l i c o x i d e s . In o r d e r t o c a l c u l a t e t h e h e a t c o n t a i n e d i n a s h , t h e e n t h a l p y o f H a t C r e e k a s h was d e t e r m i n e d i n a r a n g e o f t e m p e r a t u r e s . I t was f o u n d t h a t , w i t h a 4% c o r r e c t i o n , a s h c o u l d be m o d e l l e d by p u r e s i l i c o n d i o x i d e ( A p p e n d i x B ) . The c h o i c e o f f u e l i s o f p r i m a r y i m p o r t a n c e t o t h e c o m b u s t i o n c a l c u l a t i o n s . F o u r v a r i a t i o n s o f H a t C r e e k c o a l were c o n s i d e r e d : As R e c e i v e d , w i t h no p r e p a r a t i o n ; W a s h e d , w i t h some a s h a n d m o i s t u r e r e m o v e d ; D r y ; a n d D r y a n d A s h F r e e . A s t a n d a r d e a s t e r n U . S . c o a l , I l l i n o i s #6 was a l s o s i m u l a t e d f o r c o m p a r a t i v e p u r p o s e s . A l t h o u g h t h e p e r f o r m a n c e o f e a c h c o a l was d e t e r m i n e d , t h e washed v e r s i o n was u s e d f o r t h e ma in a n a l y s e s a t t h e s u g g e s t i o n o f B . C . H y d r o . When b u r n e d , c o a l r e a c t s t o f o r m a l a r g e v a r i e t y o f p r o d u c t s , i n c l u d i n g d i f f e r e n t f o r m s o f NOx a n d S O x . I t was t h e r e f o r e n e c e s s a r y t o d e t e r m i n e w h i c h p r o d u c t s f o r m e d i n s i g n i f i c a n t c o n c e n t r a t i o n s . The p r o d u c t s w h i c h f o r m e d i n s m a l l q u a n t i t i e s a n d w h i c h a r e n o t o t h e r w i s e s i g n i f i c a n t were t h e n e l i m i n a t e d f r o m t h e c a l c u l a t i o n . A p r o g r a m was d e v e l o p e d t o d e t e r m i n e t h e e q u i l i b r i u m c o n c e n t r a t i o n s o f 10 c o m b u s t i o n p r o d u c t s a n d i n c l u d e d t h e e f f e c t s o f d i s s o c i a t i o n ( A p p e n d i x B ) . U s i n g a s h f r e e H a t C r e e k c o a l a s t h e f u e l a n d t y p i c a l PFB c o n d i t i o n s a s e t o f c o m p o n e n t c o n c e n t r a t i o n s were c a l c u l a t e d ( T a b l e 2 ) . The o n l y t h e r m o d y n a m i c a l l y s i g n i f i c a n t c o n s t i t u e n t s a r e c a r b o n d i o x i d e , 28 w a t e r , o x y g e n , and n i t r o g e n . T h e s e r e s u l t s do n o t a g r e e w i t h a v a i l a b l e e x p e r i m e n t a l d a t a w h i c h i n d i c a t e s n i t r i c o x i d e c o n c e n t r a t i o n s be tween 90 a n d 220 ppm a n d c a r b o n m o n o x i d e l e v e l s b e t w e e n 6 and 50 ppm ( 1 1 , 1 3 ) . I t i s t h e r e f o r e c o n c l u d e d t h a t t h e c o m b u s t i o n p r o c e s s i n a f l u i d i z e d b e d d i f f e r s s i g n i f i c a n t l y f r o m e q u i l i b r i u m . P a r t o f t h e r e a s o n f o r t h e d e p a r t u r e f r o m e q u i l i b r i u m i s due t o t h e b o u n d a r y l a y e r o f t h e p a r t i c l e where much o f t h e c o m b u s t i o n t a k e s p l a c e . T h i s z o n e i s h o t t e r and ha s l e s s o x y g e n and more c a r b o n d i o x i d e t h a n t h e b u l k f l o w . A c c o r d i n g l y , e q u i l i b r i u m i n t h i s z o n e d i f f e r s s i g n i f i c a n t l y f r o m t h e b u l k c a l c u l a t i o n . In p a r t i c u l a r , t h e c o n c e n t r a t i o n s o f c a r b o n m o n o x i d e and NOx w i l l be h i g h e r . A n o t h e r e f f e c t l e a d i n g t o n o n - e q u i l i b r i u m i s t h e s p e e d o f r e a c t i o n . Many o f t h e d i s s o c i a t i o n r e a c t i o n s a r e t o o s low a t t h e b e d t e m p e r a t u r e t o s i g n i f i c a n t l y a l t e r t h e gas c o m p o s i t i o n a f t e r l e a v i n g t h e c o m b u s t i o n z o n e . NOx f o r e x a m p l e , w i l l f o r m as a r e s u l t o f c o m b u s t i o n o f t h e n i t r o g e n i m p u r i t i e s i n t h e c o a l . Upon l e a v i n g t h e p a r t i c l e , t h e y w i l l n o t d i s s o c i a t e t o f o r m o x y g e n a n d n i t r o g e n e v e n t h o u g h t h e e q u i l i b r i u m c o n c e n t r a t i o n may be much l o w e r . I t was f o u n d t h a t a l t h o u g h t h e c o n c e n t r a t i o n s o f CO and NO d i f f e r e d f r o m e q u i l i b r i u m , t h e t o t a l e r r o r i n h e a t r e l e a s e c a u s e d by n e g l e c t i n g them i s 0.12% ( A p p e n d i x C ) . T h e s e c a l c u l a t i o n s assume t h e 50 ppm o f C O , and 250 ppm o f N O . S i n c e t h e s e two c o n s t i t u e n t s do n o t o t h e r w i s e a f f e c t t h e c y c l e p e r f o r m a n c e , t h e y were o m i t t e d f r o m t h e c a l c u l a t i o n s . S 0 2 a n d 29 S0 3 were i n c l u d e d b e c a u s e o f t h e i r h e a t g e n e r a t i o n a n d e f f e c t on t h e a c i d dew p o i n t . The t h e r m o d y n a m i c a l l y s i g n i f i c a n t c o m b u s t i o n p r o d u c t s a r e t h e r e f o r e : C0 2, H 20, N 2 , 0 2, S0 2, S0 3, A s h , CaC0 3 , C a S O q , and U n b u r n e d C o a l . S u l p h u r E m i s s i o n s SOx e m i s s i o n e s t i m a t e s a r e n o r m a l l y made t o p r e d i c t t h e p o l l u t i o n damage expected f r o m a p l a n t . Since SOx i s the most i m p o r t a n t c a u s e o f a c i d r a i n , much w o r k , i n c l u d i n g t h e d e v e l o p m e n t o f PFB power g e n e r a t i o n s y s t e m s , ha s been done t o r e d u c e e m i s s i o n s . S i n c e i t i s known t h a t SOx i s r e d u c e d i n PFB s y s t e m s , a n d s i n c e t h i s s t u d y h a s b e e n u n d e r t a k e n t o s t u d y c y c l e p e r f o r m a n c e , s u l p h u r e m i s s i o n s a r e c o n s i d e r e d o n l y b e c a u s e o f t h e i r e f f e c t on s y s t e m p e r f o r m a n c e . The c a l c u l a t i o n o f SOx gas c o n c e n t r a t i o n s a r e a l s o i m p o r t a n t b e c a u s e t h e y d e t e r m i n e t h e a c i d dew p o i n t o f t h e s t a c k g a s e s . I f t h e s t a c k gas t e m p e r a t u r e were t o d r o p b e l o w t h e a c i d dew p o i n t , t h e s u l p h u r i c a c i d w o u l d s t a r t t o c o n d e n s e o n t o t h e s t a c k s u r f a c e , c a u s i n g c o r r o s i o n . A l t h o u g h some a c i d c o n d e n s a t i o n may be t o l e r a t e d , t h e dew p o i n t i s an i m p o r t a n t c r i t e r i o n on w h i c h t h e minimum s t a c k gas t e m p e r a t u r e may be b a s e d . A l s o , t h e r e a c t i o n s o f s u l p h u r t o s u l p h u r d i o x i d e , s u l p h u r t r i o x i d e a n d c a l c i u m s u l p h a t e a d d t o t h e h e a t o f c o m b u s t i o n a n d t h e i r e f f e c t s h o u l d be c o n s i d e r e d i n t h e h e a t c a l c u l a t i o n s . When c o a l i s b u r n e d , t h e s u l p h u r i s c o n v e r t e d t o e i t h e r 30 s u l p h u r d i o x i d e ( S 0 2 ) o r s u l p h u r t r i o x i d e ( S 0 3 ) . The e q u i l i b r i u m c o n c e n t r a t i o n o f S 0 3 i s e n h a n c e d by b o t h low t e m p e r a t u r e s and h i g h p r e s s u r e s , and a c c o u n t s f o r a b o u t 5% o f t h e t o t a l SOx a t t y p i c a l bed c o n d i t i o n s . A f t e r c o m b u s t i o n , t h e s u l p h u r g a s e s come i n t o c o n t a c t w i t h t h e s o r b e n t p a r t i c l e s and some o f t h e s u l p h u r i s a b s o r b e d . The s u l p h u r r e t e n t i o n v a r i e s f r o m 50% t o 95% d e p e n d i n g on t h e c o a l , f l u i d i z i n g c o n d i t i o n s , a n d s o r b e n t t y p e and q u a n t i t y . S o r b e n t p e r f o r m a n c e was d e t e r m i n e d e x p e r i m e n t a l l y a t t h e CURL f a c i l i t i e s i n E n g l a n d u s i n g Hat C r e e k c o a l a n d A n d e r s o n C r e e k l i m e s t o n e ( T a b l e 3 ) . The mass of s o r b e n t a d d e d i s g i v e n i n t e r m s of t h e r a t i o of t h e number o f m o l e s o f s o r b e n t c a l c i u m t o c o a l s u l p h u r ( C a / S ) i n t h e b e d . The r e s u l t s i n d i c a t e a low r e a c t i v i t y c o m p a r e d t o d o l o m i t e w h i c h t y p i c a l l y r e a c h e s 95% s u l p h u r r e t e n t i o n a t 2:1 C a / S ( 1 4 ) . A n d e r s o n C r e e k l i m e s t o n e i s t h e b e s t s o r b e n t n e a r t h e p r o p o s e d s i t e , and i t i s l i k e l y t h a t t h i s l i m e s t o n e ( A p p e n d i x C) w o u l d be u s e d . A C a / S r a t i o o f 4:1 was u s e d i n t h e c y c l e a n a l y s e s , r e s u l t i n g i n a s u l p h u r r e t e n t i o n o f 8 1 . 5 % . The s u l p h u r g a s e s n o t a b s o r b e d by t h e s o r b e n t l e a v e t h e bed and c o o l as t h e y p a s s t h r o u g h t h e t u r b i n e s a n d h e a t e x c h a n g e r s . A t t h e l o w e r t e m p e r a t u r e s , SOx e q u i l i b r i u m s h i f t s t o w a r d S 0 3 a n d t h e e q u i l i b r i u m i n t h e s t a c k r e s u l t s i n a p p r o x i m a t e l y 95% S 0 3 . I t was f o u n d t h a t t h e a c i d dew p o i n t was d e p e n d e n t o n l y on t h e c o n c e n t r a t i o n o f S 0 3 i n t h e gas ( 1 5 ) . A c u r v e was f i t t e d t o t h e a v a i l a b l e d a t a , r e s u l t i n g i n a c o r r e l a t i o n b e t w e e n S 0 3 c o n t e n t and a c i d dew p o i n t ( A p p e n d i x C ) . 31 T h e r e a r e s e v e r a l r e a c t i o n s w h i c h c o n t r o l t h e c o n v e r s i o n o f S 0 2 t o S 0 3 , some o f w h i c h a r e a s s i s t e d by c a t a l y s t s p r e s e n t i n t h e a s h ( 1 6 ) . The a c t u a l c o n c e n t r a t i o n s of t h e s u l p u r g a s e s c a n n o t be r e l i a b l y e s t i m a t e d due t o t h e a c t i o n o f t h e s e c a t a l y s t s and t h e i m p r e c i s e t i m e a n d t e m p e r a t u r e h i s t o r i e s . The n o n - e q u i l i b r i u m p r o c e s s e s r e s u l t i n l o w e r a c i d dew p o i n t s . The e q u i l i b r i u m c o n c e n t r a t i o n s were t h e r e f o r e u s e d i n t h i s s t u d y , r e s u l t i n g i n c o n s e r v a t i v e e s t i m a t e s o f t h e a c i d dew p o i n t . T h i s method r e s u l t s i n a c l o s e a g r e e m e n t w i t h t h e minimum s t a c k gas t e m p e r a t u r e g i v e n t o BC H y d r o by C U R L . 3 . 2 . 3 H e a t E x c h a n g e r s And E f f e c t i v e n e s s The h e a t e x c h a n g e r e f f e c t i v e n e s s i s t h e f r a c t i o n o f t h e maximum p o s s i b l e h e a t w h i c h i s a c t u a l l y t r a n s f e r r e d . U s u a l l y , t h e c y c l e e f f i c i e n c y i s e n h a n c e d by i n c r e a s i n g t h e e f f e c t i v e n e s s . A t h i g h e f f e c t i v e n e s s e s h o w e v e r , t h e t e m p e r a t u r e d i f f e r e n t i a l be tween t h e h o t and c o l d f l u i d s d r o p s , r e q u i r i n g l o n g e r t u b e l e n g t h s and more h e a t t r a n s f e r a r e a . The o v e r a l l c o s t o f e l e c t r i c i t y r i s e s b e c a u s e o f t h e i n c r e a s e d c a p i t a l c o s t o f t h e h e a t e x c h a n g e r , and t h e l a r g e p r e s s u r e d r o p due t o f l u i d f r i c t i o n . The opt imum h e a t e x c h a n g e r e f f e c t i v e n e s s i s o f t e n a r o u n d 80%. In t h i s s t u d y , t h e p r e s s u r e d r o p a c r o s s h e a t e x c h a n g e r s i s a s sumed t o be l i n e a r l y r e l a t e d t o t h e h e a t t r a n s f e r l o a d . T h u s as t h e h e a t t r a n s f e r i n c r e a s e s , t h e a l l o w e d p r e s s u r e d r o p 32 i n c r e a s e s . T h i s m e t h o d w i l l p r o v i d e a r e a s o n a b l e c o m p a r i s o n o f c y c l e p e r f o r m a n c e u s i n g d i f f e r e n t h e a t e x c h a n g e r s i n s i m i l a r c y c l e s . The c o r r e l a t i o n s b e t w e e n p r e s s u r e d r o p a n d h e a t t r a n s f e r a r e i n c l u d e d i n A p p e n d i x C . T h e s e c o r r e l a t i o n s a r e n o t v a l i d a t h i g h ( g r e a t e r t h a n 85%) e f f e c t i v e n e s s e s . S team Tube C y c l e O p t i o n a l H e a t E x c h a n g e r s I n t e r c o o l e r s a n d R e c u p e r a t o r s The i n t e r c o o l e r c o o l s t h e a i r a f t e r i t l e a v e s t h e low p r e s s u r e c o m p r e s s o r , i n c r e a s i n g t h e a i r d e n s i t y . T h i s d e c r e a s e s t h e h i g h p r e s s u r e c o m p r e s s o r work and t h e r e f o r e t e n d s t o i n c r e a s e t h e c y c l e e f f i c i e n c y . A n e g a t i v e e f f e c t o f t h e i n t e r c o o l e r i s t o r e d u c e t h e c o m p r e s s o r e x h a u s t t e m p e r a t u r e , r e s u l t i n g i n h i g h e r f u e l c o n s u m p t i o n . In t h e B r a y t o n c y c l e , t h i s may l e a d t o a d e c r e a s e i n e f f i c i e n c y . In c o m b i n e d c y c l e s , i n t e r c o o l i n g c a n be done i n one o r two s t a g e s ( F i g u r e s 8 , 1 2 ) . The f i r s t i n t e r c o o l e r t r a n s f e r s h e a t f r o m t h e L . P . c o m p r e s s o r e x h a u s t a i r t o t h e s t e a m c y c l e f e e d w a t e r . C o o l i n g w a t e r may be u s e d i n t h e o p t i o n a l s e c o n d s t a g e t o f u r t h e r l o w e r t h e a i r t e m p e r a t u r e . R e c u p e r a t o r s t r a n s f e r h e a t f r o m t h e t u r b i n e e x h a u s t g a s e s t o t h e a i r e n t e r i n g t h e c o m b u s t o r ( F i g u r e 1 3 ) . T h e y a r e p a r t i c u l a r l y u s e f u l i n B r a y t o n c y c l e s b e c a u s e t h e y u t i l i s e t h e o t h e r w i s e w a s t e d t u r b i n e e x h a u s t h e a t t o r e d u c e f u e l c o n s u m p t i o n . I n c o m b i n e d c y c l e a p p l i c a t i o n s , t h e i r u s e f u l n e s s i s l e s s c e r t a i n b e c a u s e t h e r e c u p e r a t o r h e a t c a n be a l t e r n a t e l y u s e d t o g e n e r a t e s t e a m . 33 The e f f e c t s of s i n g l e and double i n t e r c o o l i n g and r e c u p e r a t i o n were determined by modelling the i n d i v i d u a l components i n the steam c y c l e . The heat exchanger e f f e c t i v e n e s s of a l l recuperators and i n t e r c o o l e r s i n c l u d e d i n the programming was 80%. Regenerative Feed Water Heaters Regenerative feed water heaters i n c o n v e n t i o n a l p l a n t s are used to r a i s e the temperature of the feed water p r i o r to e n t e r i n g the b o i l e r . The average temperature of heat a d d i t i o n f o r the c y c l e i s thus i n c r e a s e d , r e s u l t i n g in a higher e f f i c i e n c y . The h e a t i n g i s ' accomplished by mixing the feed water with a small amount of steam bled from the t u r b i n e s (Figure 14). Since some of the steam i s used to heat water i n s t e a d of produce power, the s p e c i f i c work i s lowered. T h i s means that a l a r g e r b o i l e r i s r e q u i r e d f o r the same power output. In c o n v e n t i o n a l p l a n t s , s e v e r a l heaters are commonly used i n s e r i e s . To provide maximum e f f i c i e n c y , the t u r b i n e bleed pressures are set to e q u a l l y space the heater o u t l e t temperatures between the b o i l e r s a t u r a t i o n temperature and the economiser o u t l e t (17). The l o c a t i o n of feed water heaters i n PFB c y c l e designs i s o f t e n l e s s than optimum. S e v e r a l c y c l e p r o p o s a l s have been p u b l i s h e d which place the feed water heaters upstream of the economiser. T h i s r e s u l t s i n a lower mean temperature d i f f e r e n t i a l across the economiser and e i t h e r a higher stack gas temperature, a l a r g e r economiser pressure drop, or a more 34 e x p e n s i v e h e a t e x c h a n g e r . F e e d w a t e r h e a t e r s i n PFB c y c l e s s h o u l d h e a t t h e w a t e r e x i t i n g f r o m t h e e c o n o m i s e r . I n t h e PFB s y s t e m s most o f t h e w a t e r h e a t i n g i s done by t h e e c o n o m i s e r and few f e e d w a t e r h e a t e r s a r e r e q u i r e d . A maximum o f one f e e d w a t e r h e a t e r i s m o d e l l e d i n t h e s t e a m t u b e c y c l e s . F o r s i m p l i c i t y , open f e e d w a t e r h e a t e r s a r e u s e d . Due t o t h e d a n g e r o f f e e d w a t e r s u r g i n g i n t o t h e s t e a m t u r b i n e i t i s r e c o g n i s e d t h a t c l o s e d f e e d w a t e r h e a t e r s w o u l d be n e c e s s a r y i n a c o m m e r c i a l p l a n t . T h i s w o u l d r e s u l t i n s l i g h t l y l o w e r e f f i c i e n c i e s t h a n t h o s e p r e d i c t e d by t h i s s t u d y . T h e f e e d w a t e r h e a t e r p r e s s u r e d r o p s a r e e x p e c t e d t o be s m a l l i n c o m p a r i s o n t o t h e o t h e r b o i l e r l o s s e s . 3 . 2 . 4 T u r b o m a c h i n e r y The t u r b o m a c h i n e s i n c l u d e d i n t h i s s t u d y a r e ga s a n d s t e a m t u r b i n e s , gas c o m p r e s s o r s , a n d pumps . In e a c h c a s e i t i s i m p o r t a n t t o d e t e r m i n e t h e d e s i g n i n l e t c o n d i t i o n s , p r e s s u r e r a t i o , and m a c h i n e e f f i c i e n c y . S p e c i f i c d a t a f r o m t h e l i t e r a t u r e was u s e d t o e s t i m a t e d e s i g n p a r a m e t e r s . The c o m p r e s s o r e f f i c i e n c y i s d e p e n d e n t on p r e s s u r e r a t i o a n d m a c h i n e s i z e . I t h a s been a r g u e d (18) f o r t h e s t e a m t u b e c y c l e s , t h a t t h e c o m p r e s s o r e f f i c i e n c y w i l l n o t c h a n g e w i t h d e s i g n p r e s s u r e r a t i o . A l t h o u g h l o w e r i n g t h e p r e s s u r e r a t i o w o u l d i n h e r e n t l y i m p r o v e t h e e f f i c i e n c y , t h e power and s i z e o f t h e m a c h i n e w i l l a l s o d e c r e a s e r e s u l t i n g i n o f f s e t t i n g l o s s e s . 35 A t y p i c a l e f f i c i e n c y o f 86% (19) was u s e d i n t h e s t eam t u b e c y c l e s . E s t i m a t e s f o r t h e s t e a m t u b e c y c l e gas t u r b i n e e f f i c i e n c y were c o m p i l e d f r o m p u b l i s h e d d a t a ( 1 8 , 2 0 ) , and an e q u a t i o n was f i t t e d t o t h e d a t a ( A p p e n d i x D ) . F o r t h e a i r h e a t e r c y c l e , t h e c o m p r e s s o r power d o e s n o t d e c r e a s e w i t h p r e s s u r e i n t h e same manner a s i n t h e s t e a m t u b e s y s t e m . S i n c e t h e ga s t u r b i n e power i s a l i m i t i n g f a c t o r i n t h e c y c l e c a p a c i t y , t h e s i z e o f t h e ga s t u r b i n e s and c o m p r e s s o r a r e u s u a l l y m a x i m i z e d . The r e s u l t i n g f o r m u l a t i o n was b a s e d on t h e b e s t c o m p r e s s o r e f f i c i e n c y a t g i v e n p r e s s u r e r a t i o s . U n f o r t u n a t e l y , l i t t l e d a t a was a v a i l a b l e , a n d t h e r e i s some u n c e r t a i n t y i n t h e f o r m u l a t i o n . T h e a i r h e a t e r gas t u r b i n e e f f i c i e n c y was s e t a t 88% f o r a l l p r e s s u r e r a t i o s . The s team t u r b i n e u s e d i n a l l o f t h e s t e a m t u b e c y c l e s o p e r a t e d a t t h e same c o n d i t i o n s . The e f f i c i e n c y was s e t a t 89.5% ( 1 3 ) . The h e a t r e c o v e r y s t e a m t u r b i n e u s e d i n t h e a i r h e a t e r c y c l e c a n o p e r a t e u n d e r v a r i o u s p r e s s u r e r a t i o s w i t h d i f f e r e n t e f f i c i e n c i e s . The o p e r a t i n g e f f i c i e n c i e s o f two t u r b i n e s were p r o v i d e d by G . E . (21) a n d a l i n e a r c o r r e l a t i o n w i t h s u p e r h e a t t e m p e r a t u r e was d e v e l o p e d . The t u r b o m a c h i n e t e f f i c i e n c y c o r r e l a t i o n s a r e i n c l u d e d i n A p p e n d i x D . Due t o t h e u n c e r t a i n t y , s e n s i t i v i t y s t u d i e s were c o m p l e t e d f o r t h e t u r b i n e a n d c o m p r e s s o r e f f i c i e n c i e s . The gas t u r b i n e i n l e t t e m p e r a t u r e i s an i m p o r t a n t c y c l e p a r a m e t e r , h a v i n g a l a r g e i m p a c t on t h e p l a n t t h e r m a l e f f i c i e n c y . The t e m p e r a t u r e i s l i m i t e d by t h e i n c r e a s i n g c o r r o s i o n and e r o s i o n o f t u r b i n e b l a d e s a t h i g h e r t e m p e r a t u r e s . 36 For the f i l t e r i n g equipment now available for the PFB systems, i t i s estimated that the maximum turbine i n l e t temperatures are 871\u00C2\u00B0C for the ai r tube cycles (22), and 800\u00C2\u00B0C for the steam tube cycles (13). These temperatures w i l l r i s e with the development of improved equipment, the ultimate l i m i t a t i o n being the point where the bed p a r t i c l e s fuse together (the sintering point). The turbine inlet temperatures of future systems w i l l therefore approach 900\u00C2\u00B0C. The cycle e f f i c i e n c i e s are presented at several turbine i n l e t temperatures, but when comparisons are made between cycles, the steam tube and a i r heater turbine i n l e t temperatures are 800 and 871\u00C2\u00B0C, respectively. 3.2.5 Net Ef f i c i e n c y And Auxiliary Power Losses In the cycle analysis programs, the gross thermal e f f i c i e n c y (based on the higher heating value) is calculated. There are several operations which are basic to the function of the plant and which are not included in the gross e f f i c i e n c y . Coal and sorbent grinding, solids transport power, and alternator and turbomachine a u x i l i a r y equipment losses (Appendix D) are included when the \"Net\" e f f i c i e n c y is calculated. The net e f f i c i e n c y calculations are performed manually, using the computer analysis r e s u l t s . 37 I V . DESIGN LOAD C Y C L E A N A L Y S I S RESULTS 4.1 S team Tube PFB C y c l e R e s u l t s The g r o s s e f f i c i e n c y o f t h e b a s i c s t eam t u b e c y c l e a t v a r i o u s c o m b u s t o r p r e s s u r e s and t u r b i n e i n l e t t e m p e r a t u r e s i s shown i n F i g u r e 15. The e f f i c i e n c y f i r s t r i s e s w i t h c o m b u s t o r p r e s s u r e , r e a c h i n g a maximum b e t w e e n 1 and 1.5 M P a , and t h e n d e c l i n e s . T h i s b e h a v i o u r i s a l s o t y p i c a l o f B r a y t o n c y c l e s . A t low p r e s s u r e s , t h e c o m b u s t o r i n l e t t e m p e r a t u r e and t h e r e f o r e t h e a v e r a g e t e m p e r a t u r e o f h e a t a d d i t i o n i s l o w , r e s u l t i n g i n a low e f f i c i e n c y . At h i g h e r p r e s s u r e s , t h e a v e r a g e t e m p e r a t u r e o f h e a t a d d i t i o n i s i n c r e a s e d , b u t t h e gas c o m p r e s s o r and H . P . t u r b i n e work i s i n c r e a s e d , r e s u l t i n g i n g r e a t e r l o s s e s a n d a d e c l i n e i n c y c l e p e r f o r m a n c e . The e f f i c i e n c y i n c r e a s e s w i t h t u r b i n e i n l e t t e m p e r a t u r e b e c a u s e o f t h e h i g h e r a v e r a g e t e m p e r a t u r e o f h e a t a d d i t i o n . The g r o s s e f f i c i e n c y w i t h a t u r b i n e i n l e t t e m p e r a t u r e o f 8 0 0 \u00C2\u00B0 C i s m a x i m i z e d a r o u n d 1.2 MPa a t 38 .9%. The e f f i c i e n c y r i s e s w i t h t h e t u r b i n e i n l e t t e m p e r a t u r e a t a r a t e o f 0 . 0 1 0 p e r c e n t a g e p o i n t s p e r d e g r e e C e l c i u s and w o u l d be 39.9% a t 9 0 0 \u00C2\u00B0 C . Washed H a t C r e e k c o a l was t h e f u e l u s e d i n t h i s and t h e f o l l o w i n g a n a l y s e s . A c o m p l e t e c y c l e a n a l y s i s i s i n c l u d e d i n A p p e n d i x E . 38 4 . 1 . 1 Steam Tube C y c l e V a r i a t i o n s The s team t u b e c y c l e , i n i t s most b a s i c f o r m , ( F i g u r e 7) i n c l u d e s t u r b o m a c h i n e r y , f l u i d i z e d b e d s , a n d an e c o n o m i s e r . W i t h t h e e x c e p t i o n o f r e h e a t , w h i c h i s r e q u i r e d t o p r o v i d e a s a f e s t eam t u r b i n e o u t l e t q u a l i t y , t h i s c y c l e d o e s n o t have t h e e f f i c i e n c y e n h a n c i n g e q u i p m e n t n o r m a l l y a s s o c i a t e d w i t h modern u t i l i t y power g e n e r a t i o n s y s t e m s . A c o m p r e s s o r i n t e r c o o l e r , gas t u r b i n e r e c u p e r a t o r , and a s t eam f e e d w a t e r h e a t e r were a d d e d , t o d e t e r m i n e t h e i r e f f e c t on t h e s t e a m c y c l e p e r f o r m a n c e . The two i n t e r c o o l i n g s y s t e m s ( s i n g l e and d o u b l e ) were e x a m i n e d , and t h e r e s u l t s a r e p r e s e n t e d i n F i g u r e 16. A s i n g l e i n t e r c o o l e r , t r a n s f e r r i n g h e a t t o t h e s t e a m s y s t e m f e e d w a t e r , i n c r e a s e s t h e e f f i c i e n c y 1.4 p e r c e n t a g e p o i n t s a t a c o m b u s t o r p r e s s u r e o f 1.6 M P a . The r e a s o n f o r t h e i n c r e a s e i s t h a t t h e c o m p r e s s o r work i s r e d u c e d r e s u l t i n g i n more g e n e r a t i o n f r o m t h e power t u r b i n e . I n t e r c o o l i n g w i t h c o o l i n g w a t e r h o w e v e r , r e d u c e s t h e e f f i c i e n c y by 0 . 2 5 p e r c e n t a g e p o i n t s . The e f f i c i e n c y d r o p s b e c a u s e t h e h e a t c o n t a i n e d i n t h e g a s e s i s l o s t f rom t h e s y s t e m . C o m p r e s s o r i n t e r c o o l i n g i s t h e r e f o r e b e n e f i c i a l t o t h e c y c l e p e r f o r m a n c e i f t h e h e a t c o n t a i n e d i n t h e a i r i s t r a n s f e r r e d t o t h e f e e d w a t e r . R e c u p e r a t i o n o f t h e b a s i c s t eam t u b e c y c l e i s n o t p o s s i b l e above a c o m b u s t o r p r e s s u r e o f 1.3 M P a . A t h i g h e r p r e s s u r e s , t h e gas t u r b i n e o u t l e t t e m p e r a t u r e becomes l o w e r t h a n t h e c o m p r e s s o r o u t l e t , p r e v e n t i n g r e c u p e r a t i n g h e a t t r a n s f e r . I t was f o u n d t h a t r e c u p e r a t i o n d e c r e a s e s t h e e f f i c i e n c y o f b o t h t h e b a s i c and i n t e r c o o l e d s team c y c l e s ( F i g u r e 1 7 ) . The m a i n e f f e c t s o f 39 r e c u p e r a t i o n a r e t h e a i r a n d gas p r e s s u r e l o s s e s t h r o u g h t h e r e c u p e r a t o r . T h i s l o w e r e d t h e t u r b i n e p r e s s u r e r a t i o , and t h u s d e c r e a s e d t h e gas t u r b i n e p o w e r . I n s t a n d a r d B r a y t o n c y c l e s , r e c u p e r a t i o n r e d u c e s t h e a v e r a g e t e m p e r a t u r e o f h e a t r e j e c t i o n and i n c r e a s e s t h e a v e r a g e t e m p e r a t u r e o f h e a t a d d i t i o n . In t h e s t eam t u b e c o m b i n e d c y c l e , n e i t h e r o f t h e a v e r a g e t e m p e r a t u r e s a r e s i g n i f i c a n t l y a l t e r e d , and r e c u p e r a t i o n has t h u s no b e n e f i c i a l e f f e c t on c y c l e e f f i c i e n c y . The a d d i t i o n o f a f e e d w a t e r h e a t e r i n c r e a s e s t h e e f f i c i e n c y o f t h e s i m p l e and i n t e r c o o l e d c y c l e s ( F i g u r e 1 8 ) , a l t h o u g h t h e e f f e c t v a r i e s s i g n i f i c a n t y w i t h c o m b u s t o r p r e s s u r e and i n t e r c o o l i n g . A s i g n i f i c a n t g a i n , up t o 0 .7 p e r c e n t a g e p o i n t s , i s s e e n i n t h e s i m p l e c y c l e . The e f f i c i e n c y g a i n i n c r e a s e s w i t h c o m b u s t o r p r e s s u r e . T h i s i s b e c a u s e t h e t e m p e r a t u r e o f t h e gas t u r b i n e e x h a u s t i s r e d u c e d w i t h r i s i n g c o m b u s t o r p r e s s u r e . T h i s r e s u l t s i n l e s s h e a t a v a i l a b l e i n t h e i n t h e e c o n o m i s e r , and t h e r e f o r e a l o w e r t e m p e r a t u r e a t t h e e c o n o m i s e r f e e d w a t e r o u t l e t . W i t h a l o w e r f e e d w a t e r t e m p e r a t u r e , t h e t e m p e r a t u r e r i s e c a u s e d by t h e a d d i t i o n o f a f e e d w a t e r h e a t e r i n c r e a s e s , l e a d i n g t o t h e g r e a t e r e f f i c i e n c y g a i n s a t h i g h e r c o m b u s t o r p r e s s u r e s . The e f f e c t o f i n t e r c o o l i n g i s t o add h e a t t o t h e f e e d w a t e r , r a i s i n g t h e w a t e r t e m p e r a t u r e a t t h e e c o n o m i s e r o u t l e t , a n d t h u s d e c r e a s i n g t h e e f f e c t o f a f e e d w a t e r h e a t e r . The s i m p l e c y c l e e f f i c i e n c y i s i m p r o v e d by as much as 0 . 7 p e r c e n t a g e p o i n t s w i t h 1 f e e d w a t e r h e a t e r , wherea s t h e i n t e r c o o l e d c y c l e e f f i c i e n c y i n c r e a s e s by o n l y 0 . 2 5 p e r c e n t a g e p o i n t s . 40 A l o n g w i t h e f f i c i e n c y , two i m p o r t a n t p e r f o r m a n c e c r i t e r i a a r e s p e c i f i c work and gas t u r b i n e power f r a c t i o n . The s p e c i f i c work i s t h e t o t a l o u t p u t power p e r u n i t f l u i d f l o w . T h e r e a r e two F i g u r e s g i v e n , one f o r t h e a i r f l o w , a n d one f o r t h e s team f l o w . T h e y a r e r o u g h i n d i c a t o r s o f t h e p h y s i c a l s i z e and t h e r e f o r e c o s t o f t h e b o i l e r s a n d t u r b o m a c h i n e r y . The gas t u r b i n e power f r a c t i o n i s t h e p o r t i o n o f t o t a l p l a n t power p r o v i d e d by t h e gas t u r b i n e . Summar ie s o f e f f i c i e n c y , s p e c i f i c w o r k , a n d gas t u b i n e power f r a c t i o n f o r s e v e r a l s t eam c y c l e c o n f i g u r a t i o n s a r e i n c l u d e d i n T a b l e 4 . The s p e c i f i c work o f t h e gas s y s t e m i s i m p r o v e d by i n t e r c o o l i n g and f e e d w a t e r h e a t i n g , w h i c h i s c o n s i s t e n t w i t h e f f i c i e n c y g a i n s . The b o i l e r s t e a m s p e c i f i c work a l s o i n c r e a s e s when i n t e r c o o l e d , bu t d r o p s s i g n i f i c a n t l y when a f e e d w a t e r h e a t e r i s \u00E2\u0080\u00A2 a d d e d , a s h a p p e n s i n a c o n v e n t i o n a l R a n k i n e c y c l e . T h i s means a l a r g e r b o i l e r i s r e q u i r e d f o r a s y s t e m w i t h a f e e d w a t e r h e a t e r . In t h i s c a s e an 11% i n c r e a s e i n b o i l e r h e a t t r a n s f e r s u r f a c e i s i n d i c a t e d . The ( s i n g l e ) i n t e r c o o l e d s t e a m t u b e c y c l e w i t h f e e d w a t e r h e a t i n g i s t h e most e f f i c i e n t c y c l e . I t i s q u e s t i o n a b l e , however w h e t h e r t h e modes t i n c r e a s e i n e f f i c i e n c y ( 0 . 2 5 p e r c e n t a g e p o i n t s ) c a u s e d by t h e a d d i t i o n o f t h e f e e d w a t e r h e a t e r i s l a r g e e n o u g h t o o f f s e t t h e c o s t o f t h e f e e d w a t e r h e a t e r a n d an a d d i t i o n a l 11% o f b o i l e r s u r f a c e . The c y c l e c h o s e n f o r f u r t h e r a n a l y s i s was t h e r e f o r e t h e s i m p l e i n t e r c o o l e d c y c l e . 41 4 . 1 . 2 I n t e r c o o l e d S team Tube C y c l e R e s u l t s The p e r f o r m a n c e o f t h e i n t e r c o o l e d s t e a m t u b e c y c l e i s shown i n F i g u r e 19 f o r t h r e e v a l u e s o f t u r b i n e i n l e t t e m p e r a t u r e . The e f f i c i e n c y r i s e s w i t h c o m b u s t o r p r e s s u r e as i n t h e b a s i c c y c l e , bu t d o e s n o t f a l l o f f u n t i l much h i g h e r p r e s s u r e s . W i t h an 8 0 0 \u00C2\u00B0 C t u r b i n e i n l e t t e m p e r a t u r e , t h e op t imum p r e s s u r e i s a b o u t 2 M P a , a s o p p o s e d t o 1.2 MPa f o r t h e b a s i c c y c l e . The d i f f e r e n c e i s due t o r e d u c e d c o m p r e s s o r w o r k , and t h e r e f o r e more e f f i c i e n t o p e r a t i o n a t h i g h c o m b u s t o r p r e s s u r e . The c y c l e e f f i c i e n c y i n c r e a s e s more r a p i d l y w i t h t u r b i n e i n l e t t e m p e r a t u r e t h a n t h e b a s i c c y c l e , 0 . 0 1 4 p e r c e n t a g e p o i n t s p e r d e g r e e C e l c i u s , and t h e d i f f e r e n c e i s due t o t h e h i g h e r PFB o p e r a t i n g p r e s s u r e . The c y c l e e f f i c i e n c y r i s e s f rom 40.1% a t 8 0 0 \u00C2\u00B0 C , t o 41.5% a t 9 0 0 \u00C2\u00B0 C . A c o m p l e t e a n a l y s i s i s i n c l u d e d i n A p p e n d i x E . To be c o n s i s t e n t w i t h t h e B . C . H y d r o a n d CURL r e s e a r c h , t h e s e n s i t i v i t y o f t h e c y c l e e f f i c i e n c y t o t h e s e c o n d a r y d e s i g n p a r a m e t e r s was d e t e r m i n e d w i t h t h e t u r b i n e i n l e t t e m p e r a t u r e a t 8 0 0 \u00C2\u00B0 C and t h e c o m b u s t o r p r e s s u r e a t 1.6 M P a . The t u r b o m a c h i n e e f f i c i e n c i e s were f o u n d t o be i m p o r t a n t f a c t o r s i n t h e c y c l e e f f i c i e n c y ( F i g u r e 2 0 ) . The s t eam t u r b i n e had t h e s t r o n g e s t e f f e c t , due t o i t s l a r g e g e n e r a t i o n c a p a c i t y (75% o f t h e t o t a l p o w e r ) . The gas t u r b i n e and c o m p r e s s o r e f f i c i e n c i e s had s m a l l e r i m p a c t s on e f f i c i e n c y b e c a u s e o f t h e i r s m a l l e r c a p a c i t y . The i n t e r c o o l e r e f f e c t i v e n e s s i s a n o t h e r i m p o r t a n t f a c t o r i n t h e c y c l e p e r f o r m a n c e ( F i g u r e 2 1 ) . I n c r e a s i n g t h e i n t e r c o o l i n g r e d u c e s t h e c o m p r e s s o r w o r k , and 42 t h e r e f o r e i n c r e a s e s t h e c y c l e e f f i c i e n c y . I n c r e a s i n g t h e b o i l e r p r e s s u r e o r s u p e r h e a t t e m p e r a t u r e a l s o r e s u l t s i n a r i s e i n e f f i c i e n c y due t o h i g h e r a v e r a g e h e a t a d d i t i o n t e m p e r a t u r e s ( F i g u r e s 22 and 2 3 ) . The e f f e c t o f s t eam r e h e a t p r e s s u r e i s shown i n F i g u r e 24 , i n d i c a t i n g an o p t i m u m p r e s s u r e o f 3 . 5 M P a . T h i s r e h e a t p r e s s u r e c o i n c i d e s w i t h t h e maximum a v e r a g e t e m p e r a t u r e of h e a t a d d i t i o n f o r t h e s t e a m s y s t e m . The a m b i e n t c o n d i t i o n s have l i t t l e e f f e c t on t h e o v e r a l l e f f i c i e n c y , a l t h o u g h i n t h e c a s e o f a m b i e n t t e m p e r a t u r e , t h e o p e r a t i n g c o n d i t i o n s c h a n g e s i g n i f i c a n t l y . A t low a m b i e n t t e m p e r a t u r e s t h e c o m p r e s s o r work i s r e d u c e d , t h e r e b y i n c r e a s i n g t h e n e t gas t u r b i n e w o r k . The h e a t t r a n s f e r r e d t o t h e s t eam s y s t e m t h r o u g h t h e i n t e r c o o l e r a n d f l u i d i z e d beds i s r e d u c e d h o w e v e r , r e s u l t i n g i n l e s s s t eam t u r b i n e w o r k . The g a i n i n gas t u r b i n e power i s a l m o s t e x a c t l y o f f s e t by t h a t l o s t by t h e s t eam t u r b i n e , and no s i g n i f i c a n t c h a n g e i n e f f i c i e n c y i s f o u n d ( F i g u r e 2 5 ) . The a m b i e n t p r e s s u r e was a l s o v a r i e d , h o l d i n g t h e p r e s s u r e r a t i o c o n s t a n t . S i n c e t h e o p e r a t i n g t e m p e r a t u r e s were n o t a f f e c t e d , t h e c y c l e e f f i c i e n c y r e m a i n e d v i r t u a l l y u n c h a n g e d ( F i g u r e 2 6 ) . The s t eam c o n d e n s e r t e m p e r a t u r e i s r e l a t e d t o t h e a m b i e n t t e m p e r a t u r e . B e c a u s e t h e c o n d e n s e r r e j e c t s a p p r o x i m a t e l y 85% o f t h e c y c l e w a s t e h e a t , t h e c o n d e n s e r t e m p e r a t u r e s t r o n g l y a f f e c t s t h e a v e r a g e t e m p e r a t u r e o f h e a t r e j e c t i o n and t h u s a l s o t h e c y c l e e f f i c i e n c y ( F i g u r e 2 7 ) . The c y c l e e f f i c i e n c y r i s e s w i t h e x c e s s a i r when a l l o t h e r p a r a m e t e r s a r e h e l d c o n s t a n t ( F i g u r e 2 8 ) . T h i s i s due t o a d e c r e a s e i n t h e s p e c i f i c h e a t o f t h e c o m b u s t i o n g a s e s . As t h e 43 e x c e s s a i r i s i n c r e a s e d h o w e v e r , t h e e c o n o m i s e r e f f e c t i v e n e s s i s r a i s e d , r e a c h i n g t h e l i m i t i n g e f f e c t i v e n e s s o f 100% a t 70% e x c e s s a i r . The p r e s s u r e l o s s e s i n t h e e c o n o m i s e r w i l l t h e r e f o r e be much h i g h e r t h a n t h o s e p r e d i c t e d by t h e p r o g r a m . The d e t e r m i n a t i o n o f op t imum e f f i c i e n c y a t v a r y i n g e x c e s s a i r w o u l d r e q u i r e m o d e l l i n g o f h i g h e f f e c t i v e n e s s h e a t e x c h a n g e r s , n o t c o v e r e d i n t h i s s t u d y . 4 . 2 A i r H e a t e r C y c l e A n a l y s i s R e s u l t s The p e r f o r m a n c e o f t h e a i r h e a t e r c y c l e was m o d e l l e d a t s e v e r a l t u r b i n e i n l e t t e m p e r a t u r e s and c o m b u s t o r p r e s s u r e s ( F i g u r e 2 9 ) . The e f f i c i e n c y a t h i g h c o m b u s t o r p r e s s u r e d r o p s o f f more q u i c k l y t h a n w i t h t h e s t e a m t u b e c y c l e s . A t h i g h p r e s s u r e s , t h e power t u r b i n e o u t l e t t e m p e r a t u r e becomes l o w e r , r e d u c i n g t h e s t eam t u r b i n e i n l e t t e m p e r a t u r e . T h i s a l s o r e s u l t s i n a l o w e r b o i l e r p r e s s u r e and s t eam t u r b i n e e f f i c i e n c y . The l o w e r e f f i c i e n c i e s a t h i g h p r e s s u r e a r e t h u s due t o r e d u c e d HRSG and s t eam t u r b i n e p e r f o r m a n c e as w e l l a s h i g h e r gas t u r b o m a c h i n e l o s s e s . The i n d i c a t e d opt imum e f f i c i e n c y i s a r o u n d 1.1 M P a . The e f f i c i e n c y i n c r e a s e s w i t h t e m p e r a t u r e more r a p i d l y t h a n i n t h e s team t u b e c y c l e s ( 0 . 0 2 7 p e r c e n t a g e p o i n t s p e r d e g r e e C e l c i u s ) . T h i s i s b e c a u s e t h e o p e r a t i o n o f b o t h t h e s t e a m and gas s y s t e m s a r e i m p r o v e d by h i g h e r t u r b i n e i n l e t t e m p e r a t u r e s . In t h e s team t u b e c y c l e s , t h e s t eam s y s t e m p e r f o r m a n c e was n o t a f f e c t e d by t h e gas t u r b i n e i n l e t t e m p e r a t u r e . 44 The s p e c i f i c work b a s e d on a i r f l o w i s 0 .31 M J / k g , r o u g h l y one t h i r d o f t h e s t eam t u b e c y c l e w o r k . T h i s r e s u l t s i n much h i g h e r gas t u r b o m a c h i n e c a p i t a l c o s t s p e r u n i t g e n e r a t i n g c a p a c i t y . The s p e c i f i c work b a s e d on s t e a m f l o w was 2 . 3 0 M J / k g , b u t s i n c e t h e b o i l e r c o n s t r u c t i o n a n d o p e r a t i n g c o n d i t i o n s a r e c o m p l e t e l y d i f f e r e n t , a c o m p a r i s o n t o t h e s team t u b e c y c l e c a n n o t be made. The c y c l e a n a l y s i s i s i n c l u d e d i n A p p e n d i x F . The gas t u r b i n e a n d c o m p r e s s o r e f f i c i e n c i e s s t r o n g l y a f f e c t t h e c y c l e p e r f o r m a n c e . The c y c l e p e r f o r m a n c e a t a t u r b i n e i n l e t t e m p e r a t u r e of 8 7 0 \u00C2\u00B0 C was s i m u l a t e d , v a r y i n g t h e c o m p r e s s o r a n d gas t u r b i n e e f f i c i e n c i e s \u00C2\u00B1 2 p e r c e n t a g e p o i n t s ( F i g u r e 3 0 ) . A r e l a t i v e l y s m a l l c h a n g e i n t u r b o m a c h i n e e f f i c i e n c y c a u s e s a s i g n i f i c a n t c h a n g e i n t h e c y c l e p e r f o r m a n c e and moves t h e op t imum o p e r a t i n g p r e s s u r e . Due t o t h e u n c e r t a i n t y o f t u r b o m a c h i n e e f f i c i e n c y , and t h e r e f o r e a l s o t h e op t imum d e s i g n p o i n t , t h e C u r t i s s W r i g h t d e s i g n p o i n t ( 8 7 0 \u00C2\u00B0 C , 0 . 7 MPa) was u s e d f o r i n - d e p t h a n a l y s i s . The s team t u r b i n e e f f i c i e n c y and t h e c o n d e n s e r t e m p e r a t u r e s t r o n g l y a f f e c t t h e c y c l e e f f i c i e n c y ( F i g u r e s 31 a n d 32) f o r t h e same r e a s o n s g i v e n f o r t h e i n t e r c o o l e d s t eam c y c l e . The a m b i e n t t e m p e r a t u r e and p r e s s u r e do n o t s t r o n g l y a f f e c t t h e c y c l e e f f i c i e n c y , as was t h e c a s e f o r t h e i n t e r c o o l e d s t e a m c y c l e . The e x c e s s a i r a l s o d o e s n o t a f f e c t t h e e f f i c i e n c y , b e c a u s e , f o r a g i v e n t u r b i n e i n l e t t e m p e r a t u r e a n d f u e l f l o w , t h e r e i s o n l y one t o t a l a i r f l o w p o s s i b l e . I n c r e a s i n g t h e e x c e s s a i r i n c r e a s e s t h e a i r f l o w i n t o t h e c o m b u s t o r , and r e d u c e s t h e c o o l i n g a i r by an i d e n t i c a l a m o u n t . The c y c l e 45 p e r f o r m a n c e i s t h u s n o t a f f e c t e d . The d i f f e r e n c e b e t w e e n bed t e m p e r a t u r e and t u r b i n e i n l e t t e m p e r a t u r e was a l s o e x a m i n e d . By v a r y i n g t h e bed h e a t t r a n s f e r , t h e b e d c a n be o p e r a t e d a t any d e s i r e d t e m p e r a t u r e , w h i l e k e e p i n g t h e t u r b i n e i n l e t t e m p e r a t u r e c o n s t a n t . B e c a u s e t h e r e i s no h e a t l o s s f rom t h e s y s t e m , t h e e f f i c i e n c y r e m a i n s u n a f f e c t e d . 4 . 3 E f f e c t Of F u e l C o m p o s i t i o n On C y c l e P e r f o r m a n c e F i v e c o a l s were s i m u l a t e d f o r c o m b u s t i o n i n t h e PFB c y c l e s , and t h e r e s u l t s a r e p r e s e n t e d i n T a b l e 5 . T h r e e o f t h e c o a l s were m o d e l l e d a t a r a n g e o f c o m b u s t o r p r e s s u r e s , and t h e r e s u l t s a r e p r e s e n t e d i n F i g u r e 3 3 . Of t h e f u e l c o n s t i t u e n t s , w a t e r ha s t h e s t r o n g e s t e f f e c t on e f f i c i e n c y . T h i s i s b e c a u s e t h e e f f i c i e n c y i s b a s e d on t h e h i g h e r h e a t i n g v a l u e , and t h e h e a t o f c o m b u s t i o n i s c a l c u l a t e d a s s u m i n g a l i q u i d w a t e r p r o d u c t . S i n c e t h e w a t e r a c t u a l l y i s r e l e a s e d as v a p o r , t h e h e a t o f v a p o r i z a t i o n i s l o s t , r e s u l t i n g i n a l o s s i n e f f i c i e n c y ( F i g u r e 3 4 ) . L i t t l e g a i n w o u l d be made by d r y i n g t h e c o a l p r i o r t o c o m b u s t i o n i f t h e h e a t s o u r c e was f rom c o a l e n e r g y . S i m i l a r amounts o f e n e r g y w o u l d be l o s t w h e t h e r t h e e v a p o r a t i o n t o o k p l a c e b e f o r e o r d u r i n g c o m b u s t i o n . L a r g e a s h and s o r b e n t e f f l u x e s a l s o d e c r e a s e t h e e f f i c i e n c y ( F i g u r e 35) b e c a u s e o f t h e h e a t l o s t w i t h t h e s o l i d w a s t e . T h i s e f f e c t i s s m a l l h o w e v e r , due t o t h e s o l i d w a s t e c o o l e r w h i c h r e c o v e r s much o f t h e h e a t and t r a n s f e r s i t t o t h e s t eam s y s t e m 46 f e e d w a t e r . 4 . 4 C o m p a r i s o n Of C y c l e R e s u l t s The p e r f o r m a n c e o f t h e i n t e r c o o l e d s t e a m c y c l e and t h e a i r h e a t e r c y c l e were c o m p a r e d t o e a c h o t h e r a n d t o a c o n v e n t i o n a l p u l v e r i z e d c o a l b o i l e r p l a n t . The PCB R a n k i n e c y c l e was s i m u l a t e d u s i n g t h e o p e r a t i n g c o n d i t i o n s a n d p r e s s u r e d r o p s f rom a t y p i c a l d e s i g n f o r a u t i l i t y power s t a t i o n ( A p p e n d i x G ) . The PCB p l a n t i n c l u d e d an a i r p r e h e a t e r , one s t e a m r e h e a t , a n d two f e e d w a t e r h e a t e r s . A p p r o x i m a t e l o s s e s due t o f l u e gas d e s u l p h u r i z a t i o n a r e i n c l u d e d i n t h e n e t e f f i c i e n c y c a l c u l a t i o n . The g r o s s a n d n e t e f f i c i e n c i e s a r e p r e s e n t e d i n T a b l e 6. The PFB c y c l e s were c a l c u l a t e d a t low and h i g h t u r b i n e i n l e t t e m p e r a t u r e s , t o d e m o n s t r a t e t h e r a n g e o f i m p r o v e m e n t p o s s i b l e . W i t h t e c h n o l o g y a v a i l a b l e t o d a y , t h e i n t e r c o o l e d s t eam t u b e PFB c y c l e o f f e r s a n e t o p e r a t i n g e f f i c i e n c y w h i c h i s 2 p e r c e n t a g e p o i n t s h i g h e r t h a n c o n v e n t i o n a l PCB p l a n t s . T h i s a d v a n t a g e c a n be i n c r e a s e d t o 3 .2 p e r c e n t a g e p o i n t s w i t h t h e d e v e l o p m e n t o f t u r b i n e s c a p a b l e o f w i t h s t a n d i n g h o t t e r gas f l o w s . The r e s u l t s i n d i c a t e t h a t t h e e f f i c i e n c y o f t h e a i r h e a t e r c y c l e i s n o t s i g n i f i c a n t l y b e t t e r t h a n t h e PCB s y s t e m . E v e n w i t h a 9 0 0 \u00C2\u00B0 C t u r b i n e i n l e t t e m p e r a t u r e , t h e a i r h e a t e r c y c l e i s o n l y 0 . 4 p e r c e n t a g e p o i n t s h i g h e r i n n e t e f f i c i e n c y t h a n t h e PCB p l a n t . 47 V . PART LOAD MODELLING OF THE AIR HEATER C Y C L E 5.1 M o d e l l i n g S t r a t e g i e s And C o n s i d e r a t i o n s The p a r t l o a d p e r f o r m a n c e of t h e a i r h e a t e r c y c l e i s a c h i e v e d i n two s t e p s . F i r s t t h e d e s i g n l o a d c h a r a c t e r i s t i c s a r e d e t e r i m i n e d , and t h e h e a t e x c h a n g e r s and t u r b o m a c h i n e s a r e s i z e d . T h i s i n f o r m a t i o n i s t h e n u s e d t o p r e d i c t t h e s y s t e m p e r f o r m a n c e a t p a r t l o a d . T h e s e s t e p s c o r r e s p o n d t o two new p r o g r a m s and a r e d e s c r i b e d b e l o w . The d e s i g n o p e r a t i n g p o i n t was c h o s e n t o m a t c h t h e C u r t i s s W r i g h t d e s i g n p o i n t . The t u r b i n e i n l e t t e m p e r a t u r e was s e t t o 8 7 1 \u00C2\u00B0 C and t h e c o m b u s t o r p r e s s u r e was s e t t o 7 B a r . The d e s i g n o p e r a t i o n was a n a l y s e d f i r s t i n t h e a i r h e a t e r c y c l e d e s i g n l o a d p r o g r a m d i s c u s s e d i n p r e v i o u s c h a p t e r s . The r e s u l t i n g o p e r a t i n g t e m p e r a t u r e s , p r e s s u r e s , and mass f l o w s were u s e d f o r t h e b a s i s o f a new p r o g r a m f o r d e s i g n l o a d o p e r a t i o n . T h i s p r o g r a m s e l e c t s t h e f l u i d v e l o c i t i e s and c a l c u l a t e s t h e f l o w a r e a s a n d h e a t t r a n s f e r a r e a s f o r e a c h h e a t e x c h a n g e r . The d e s i g n e f f i c i e n c y and o p e r a t i n g c o n d i t i o n s o f e a c h t u r b o m a c h i n e was a l s o d e t e r m i n e d . W i t h t h i s d a t a , t h e p a r t l o a d p e r f o r m a n c e o f t h e t u r b o m a c h i n e r y a n d h e a t e x c h a n g e r c a n be s i m u l a t e d . A new s u b r o u t i n e l i b r a r y was c r e a t e d , w h i c h i n c l u d e s t h e c a l c u l a t i o n o f t r a n s p o r t p r o p e r t i e s a n d h e a t t r a n s f e r c o e f f i c i e n t s and a l s o i n c l u d e s p r o g r a m s t o s i m u l a t e t h e p a r t l o a d o p e r a t i o n o f h e a t e x c h a n g e r s a n d gas t u r b o m a c h i n e s . The c a l c u l a t i o n o f h e a t t r a n s f e r c o e f f i c i e n t s r e q u i r e s t h e p r i o r k n o w l e d g e of t h e t u b e d i a m e t e r and f l u i d v e l o c i t y . The 48 v e l o c i t i e s u s e d i n t h e d e s i g n l o a d p r o g r a m a r e t y p i c a l f o r e a c h g i v e n a p p l i c a t i o n ( 1 0 ) . The o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t (U) o f e a c h h e a t e x c h a n g e r i s t h e n c a l c u l a t e d . The i n l e t a n d o u t l e t t e m p e r a t u r e s o f e a c h f l u i d i n e a c h h e a t e x c h a n g e r a r e t h e n d e t e r m i n e d , a l l o w i n g t h e h e a t t r a n s f e r a r e a s t o be c a l c u l a t e d u s i n g t h e E f f e c t i v e n e s s - NTU m e t h o d ( 2 3 ) . The d a t a c a l c u l a t e d i n t h e f u l l l o a d p r o g r a m i s t r a n s f e r r e d t o a h o l d i n g f i l e f o r u se i n t h e p a r t l o a d p r o g r a m . T h i s f i l e c o n t a i n s t h e f l o w a n d h e a t t r a n s f e r a r e a s f o r e a c h h e a t e x c h a n g e r a n d a l l o f t h e f u l l l o a d p r e s s u r e d r o p s . The f i l e a l s o c o n t a i n s t h e t h e r m o d y n a m i c a n d t r a n s p o r t d a t a f o r e a c h p o i n t i n t h e c y c l e . The s e c o n d p r o g r a m s t a r t s w i t h t h e d e s i g n l o a d , a n d t h e n r e d u c e s t h e f u e l c o n s u m p t i o n r a t e . T h i s u p s e t s t h e e q u i l i b r i u m o f t h e t u r b o m a c h i n e s a n d h e a t e x c h a n g e r s , r e s u l t i n g i n c h a n g e s t h r o u g h o u t t h e s y s t e m . The ga s t u r b o m a c h i n e s o p e r a t e on c h a r a c t e r i s t i c c u r v e s o r maps ( F i g u r e s 36-39) w h i c h a r e s p e c i f i c t o a g i v e n m a c h i n e , b u t a r e u s u a l l y s i m i l a r i n f o r m . T h e c u r v e s u s e d i n t h i s s t u d y a r e d e r i v e d f r o m c u r v e s p r e s e n t e d a s t y p i c a l (24) f o r t u r b i n e s a n d a x i a l c o m p r e s s o r s . T h e c u r v e s were p u t i n t o e q u a t i o n f o r m f o r use i n t h e p r o g r a m s , a n d a r e i n c l u d e d i n A p p e n d i x H . The maps h a v e f o u r i n t e r r e l a t e d p a r a m e t e r s : p r e s s u r e r a t i o , r e d u c e d mass f l o w , r e d u c e d s p e e d , a n d i s e n t r o p i c e f f i c i e n c y . T h e r e d u c e d v a r i a b l e s a r e d e f i n e d a s f o l l o w s . R e d u c e d Mass f l o w M * = M*/T / P o o R e d u c e d S p e e d N* = N/ /T 49 The c h a r a c t e r i s t i c c u r v e s are based on e x p r e s s i o n s w i t h two independent v a r i a b l e s . For example, [ the compressor p r e s s u r e r a t i o f o r m u l a t i o n i s based on the s i m p l e e x p r e s s i o n : P = 1 + a-fM*}*5 - b-{M*}C T h i s f o r m u l a t i o n can be made t o f i t the performance c u r v e at any g i v e n N* by v a r y i n g a, b, arid c. By d e t e r m i n i n g the maxima of the c o n s t a n t N* c u r v e s , a r e l a t i o n s h i p between a, b, and c i s d e r i v e d , e l i m i n a t i n g the need f o r the independent f o r m u l a t i o n of b. Power f u n c t i o n s i n - N * were used t o f i t a and c and the p r o c e d u r e r e s u l t e d i n a smooth, c o n t i n u o u s f u n c t i o n over the e n t i r e o p e r a t i n g range. The f o r m u l a t i o n s a l s o change l i n e a r l y i n response t o d i f f e r e n t d e s i g n p r e s s u r e r a t i o s , mass f l o w s , s h a f t speeds, and e f f i c i e n c y . 1 The o t h e r t h r e e c h a r a c t e r i s t i c f o r m u l a t i o n s are based on the f o l l o w i n g e x p r e s s i o n s : Compressor E f f i c i e n c y n = d-M* - e-{M*}f T u r b i n e Mass Flow M* = g - e x p { h ( N + ) \u00E2\u0080\u00A2 k ( p )} T u r b i n e E f f i c i e n c y n = 1 \" q(N*) \" k ( P ) S \" M l - e x p ( k ( p ) / 2 } 50 P a r t L o a d S i m u l a t i o n o f t h e A i r H e a t e r C y c l e A f l o w c h a r t o f t h e p a r t l o a d s i m u l a t i o n i s p r e s e n t e d i n F i g u r e 4 0 . The c o m p r e s s o r i n l e t a i r p r o p e r t i e s a r e u s u a l l y i d e n t i c a l t o t h e d e s i g n l o a d v a l u e s , a n d a r e d e t e r m i n e d f i r s t . The p r e s s u r e r a t i o a n d e f f i c i e n c y o f t h e c o m p r e s s o r a r e a f u n c t i o n o f mass f l o w a n d s h a f t s p e e d , a n d t h e y a r e i n i t i a l l y a s s u m e d t o be a t t h e i r d e s i g n v a l u e s . The c o m p r e s s o r o u t l e t p r o p e r t i e s c a n t h e n be c a l c u l a t e d u s i n g t h e t u r b o m a c h i n e p e r f o r m a n c e e q u a t i o n s p r e v i o u s l y o b t a i n e d . T h e l o a d i s c o n t r o l l e d by b y p a s s i n g some a i r p a s t t h e PFB a n d r e d u c i n g t h e a i r a n d f u e l f l o w s t o t h e c o m b u s t o r . The e x c e s s a i r l e v e l i n t h e PFB i s k e p t c o n s t a n t a t a l l t i m e s . T h e c o m p r e s s o r o u t l e t a i r i s t h u s s p l i t b e t w e e n t h e c o m b u s t o r a i r , c o o l a n t a i r , a n d b y p a s s a i r . The r a t i o o f c o o l a n t a i r t o c o m b u s t i o n a i r i s a l s o k e p t c o n s t a n t . U s i n g p r e l i m i n a r y e s t i m a t e s f o r t h e t e m p e r a t u r e s o f t h e c o o l a n t a i r a n d f l u i d i z e d bed t e m p e r a t u r e s , t h e o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t f o r t h e PFB h e a t e x c h a n g e r i s d e t e r m i n e d . The a c t u a l h e a t t r a n f e r t o t h e c o o l a n t i s t h e n d e t e r m i n e d u s i n g t h e h e a t e x c h a n g e r d a t a g e n e r a t e d i n t h e d e s i g n l o a d p r o g r a m , a l l o w i n g t h e c o o l i n g a i r o u t l e t t e m p e r a t u r e t o d e t e r m i n e d . The b e d h e a t t r a n s f e r i s t h e n b a l a n c e d i t e i r a t i v e l y by m o d i f y i n g t h e b e d t e m p e r a t u r e . T h e c o o l i n g a i r , b y p a s s a i r , a n d c o m b u s t i o n g a s e s a r e t h e n m i x e d p r i o r t o e n t e r i n g t h e H . P . t u r b i n e . T h e t u r b i n e work a n d e x h a u s t p r e s s u r e a r e d e t e r m i n e d i n t h e same way a s i n t h e f u l l l o a d p r o g r a m . The t u r b i n e p r e s s u r e r a t i o a n d r e d u c e d s p e e d a r e 51 t h e n c a l c u l a t e d a n d t h e r e d u c e d mass f l o w a n d e f f i c i e n c y a r e d e t e r m i n e d f r o m t h e t u r b i n e c h a r a c t e r i s t i c c u r v e s . The r e s u l t i n g c h a r a c t e r i s t i c mass f l o w r e p r e s e n t s t h e o n l y f l o w r a t e p o s s i b l e f o r t h a t m a c h i n e a t t h e g i v e n s h a f t s p e e d a n d p r e s s u r e r a t i o . In o r d e r t o m a t c h t h e a c t u a l mass f l o w t o t h a t a l l o w e d by t h e t u r b i n e , t h e c o m p r e s s o r i n l e t mass f l o w i s m o d i f i e d . The c o m p r e s s o r a n d f l u i d i z e d b e d c o n d i t i o n s a r e t h e n r e c a l c u l a t e d u s i n g t h e new e s t i m a t e t o t h e mass f l o w . T h e g a s e s a r e t h e n e x p a n d e d t o t h e HRSG i n l e t p r e s s u r e i n t h e power t u r b i n e . T h i s i s a s y n c h r o n o u s m a c h i n e , a n d t h e s h a f t s p e e d i s t h e r e f o r e a l w a y s c o n s t a n t . The c h a r a c t e r i s t i c mass f l o w i s t h e n d e t e r m i n e d a s f o r t h e H . P . t u r b i n e a n d t h i s must m a t c h t h e a c t u a l power t u r b i n e mass f l o w . To a c h i e v e a b a l a n c e b e t w e e n i n c o m i n g mass f l o w a n d t h e c h a r a c t e r i s t i c mass f l o w , t h e c o m p r e s s o r s h a f t s p e e d i s m o d i f i e d i n t h e n e x t i t e r a t i o n . T h e r e a r e t h e r e f o r e t h r e e l e v e l s o f i t e r a t i o n s w h i c h must b a l a n c e t h e h e a t t r a n s f e r i n t h e f l u i d i z e d b e d a n d t h e mass f l o w s o f t h e two t u r b i n e s . By v a r y i n g t h e b e d t e m p e r a t u r e , c o m p r e s s o r mass f l o w , a n d c o m p r e s s o r s h a f t s p e e d , t h e e q u i l i b r i u m o p e r a t i n g c o n d i t i o n o f t h e ga s s y s t e m i s d e t e r m i n e d . T h e ga s i n l e t t e m p e r a t u r e o f t h e h e a t r e c o v e r y s t e a m g e n e r a t o r (HRSG) i s now d e t e r m i n e d , p e r m i t t i n g t h e s t e a m t u r b i n e a n d HRSG t o be m o d e l l e d . The c o n d e n s e r c o n d i t i o n s a r e c a l c u l a t e d f i r s t , a n d a r e u n c h a n g e d f r o m t h e d e s i g n v a l u e s . The r e m a i n i n g c o n d i t i o n s a r e d e t e r m i n e d i n an i t e r a t i v e p r o c e d u r e . F i r s t , t h e d e s i g n v a l u e s f o r t h e s t e a m mass f l o w and s u p e r h e a t t e m p e r a t u r e a r e a s s u m e d . T h e s t e a m t u r b i n e i n l e t 52 p r e s s u r e ( b o i l e r p r e s s u r e ) i s t h e n d e t e r m i n e d u s i n g t h e steam t u r b i n e c h a r a c t e r i s t i c s . In g e n e r a l t h e p a r t l o a d ( c o n s t a n t s p e e d ) o p e r a t i o n of steam t u r b i n e s can be m o d e l l e d by t h e f o l l o w i n g r e l a t i o n s h i p ( 2 5 ) : P\u00E2\u0080\u009E \u00C2\u00AB M \u00E2\u0080\u00A2 A o o Knowing t h e b o i l e r p r e s s u r e , t h e s u p e r h e a t e r i n l e t t e m p e r a t u r e ( a t s a t u r a t i o n ) i s c a l c u l a t e d . The t e m p e r a t u r e s and mass f l o w s of t h e steam and g a s e s e n t e r i n g t h e s u p e r h e a t e r s e c t i o n of t h e HRSG have t h u s been d e t e r m i n e d . The a c t u a l h e a t t r a n s f e r a c r o s s t h e s u p e r h e a t e r c a n now be d e t e r m i n e d , a l l o w i n g t h e s u p e r h e a t e r o u t l e t steam t e m p e r a t u r e t o be c a l c u l a t e d . The b o i l e r p r e s s u r e i s t h e n r e c a l c u l a t e d u s i n g t h e t u r b i n e c h a r a c t e r i s t i c , and t h e e q u i l i b r i u m o f t h e t u r b i n e and s u p e r h e a t e r i s t h u s d e t e r m i n e d i t e r a t i v e l y . The f e e d water pump o u t l e t c o n d i t i o n s and t h e p o i n t o f s a t u r a t e d l i q u i d i n t h e b o i l e r a r e t h e n d e t e r m i n e d . The gas t e m p e r a t u r e s a t t h e c o r r e s p o n d i n g p o s i t i o n s i n t h e HRSG a r e a l s o d e t e r m i n e d from t h e a c t u a l h e a t t r a n s f e r t h r o u g h t h e tub e b a n k s . The steam mass f l o w i s m o d i f i e d t o b a l a n c e t h e h e a t l o s t by t h e g a s e s and g a i n e d by t h e steam. The p o i n t i n t h e b o i l i n g l o o p a t w h i c h l i q u i d s a t u r a t i o n o c c u r s a l s o c h a n g e s , r e s u l t i n g i n a s h i f t between t h e l i q u i d p r e h e a t e r and b o i l e r h e a t t r a n s f e r a r e a s . B e c a u s e t h e steam mass f l o w h a s been r e - e s t i m a t e d , t h e t u r b i n e c h a r a c t e r i s t i c i s r e c a l c u l a t e d i n t h e n e x t i t e r a t i o n . When a l l o f t h e h e a t e x c h a n g e r s a r e b a l a n c e d , t h e c y c l e h e a t , work, and e f f i c i e n c y a r e c a l c u l a t e d . 53 5 . 1 . 1 T r a n s p o r t P r o p e r t i e s And H e a t T r a n s f e r C o e f f i c i e n t s The t r a n s p o r t p r o p e r t i e s , v i s c o s i t y a n d t h e r m a l c o n d u c t i v i t y , a r e u s e d i n h e a t t r a n s f e r c a l c u l a t i o n s . The p r o p e r t i e s a r e f o r m u l a t e d i n t e r m s o f t h e same i n d e p e n d e n t p a r a m e t e r s a s w i t h t h e t h e r m o d y n a m i c p r o p e r t i e s : T and p f o r s t e a m , a n d T f o r a i r and g a s e s . T h i s a l l o w s t h e e a s y c a l c u l a t i o n o f t r a n s p o r t p r o p e r t i e s w i t h i n t h e e x i s t i n g t h e r m o d y n a m i c c o m p u t e r r o u t i n e s . T r a n s p o r t P r o p e r t i e s o f S team The c a l c u l a t i o n o f two t r a n s p o r t p r o p e r t i e s , t h e r m a l c o n d u c t i v i t y and v i s c o s i t y , were a d d e d t o t h e t h e r m o d y n a m i c r o u t i n e s . F r o m t h e s e v a l u e s , a l o n g w i t h t h e f l u i d v e l o c i t i e s , s p e c i f i c h e a t and t u b e d i a m e t e r , t h e P r a n d t l a n d R e y n o l d s number s a r e c a l c u l a t e d . , The t h e r m a l c o n d u c t i v i t y i s c a l c u l a t e d u s i n g t h e e q u a t i o n d e v e l o p e d by K e s t i n e t a l a n d recommended f o r i n d u s t r i a l u se by t h e ICPS ( 2 6 ) . An a l t e r n a t i v e e q u a t i o n recommended f o r s c i e n t i f i c u se was a l s o a v a i l a b l e f r o m t h e same r e f e r e n c e . A l t h o u g h t h e a l t e r n a t i v e f o r m u l a t i o n i s more a c c u r a t e n e a r t h e c r i t i c a l p o i n t , no c a l c u l a t i o n s were r e q u i r e d i n t h a t a r e a a n d t h e s i m p l e r i n d u s t r i a l f o r m u l a t i o n was u s e d . T h e v i s c o s i t y c o r r e l a t i o n was d e v e l o p e d by A l e x a n d r o y , I v a n o v , a n d M a l t e e v a n d a d o p t e d by t h e ICPS i n 1975 ( 2 7 ) . T h i s e q u a t i o n i s i n a c c u r a t e n e a r t h e c r i t i c a l p o i n t , b u t no c a l c u l a t i o n s n e a r t h e c r i t i c a l p o i n t were r e q u i r e d i n t h i s s t u d y . 54 T r a n s p o r t P r o p e r t i e s o f A i r and G a s e s A s i n t h e c a s e o f t h e t h e r m o d y n a m i c f o r m u l a t i o n s , t h e t r a n s p o r t p r o p e r t i e s ( v i s c o s i t y a n d t h e r m a l c o n d u c t i v i t y ) a r e c a l c u l a t e d i n two s t e p s . The p u r e component p r o p e r t i e s a r e d e t e r m i n e d f i r s t a n d t h e r e s u l t s a r e u s e d t o c a l c u l a t e t h e m i x t u r e p r o p e r t i e s . The P r a n d t l and R e y n o l d s numbers were t h e n c a l c u l a t e d . The m i x t u r e p r o p e r t i e s were c a l c u l a t e d on t h e b a s i s o f t h e f o u r m a j o r c o n s t i t u e n t s (H20 , C 0 2 , N 2 , , a n d 0 2 ) . Due t o t h e s m a l l c o n c e n t r a t i o n o f t h e r e m a i n i n g c o n s t i t u e n t s , t h e r e s u l t i n g e r r o r i s n e g l i g i b l e . The c o n s t i t u e n t v i s c o s i t y c o r r e l a t i o n s , f u n c t i o n s o f ' t e m p e r a t u r e o n l y , were f i t t e d t o t h e S u t h e r l a n d e q u a t i o n (28) w i t h t h e p o i n t s c h o s e n t o m i n i m i z e t h e e r r o r i n t h e t e m p e r a t u r e r a n g e 0 \u00C2\u00B0 C t o 9 0 0 \u00C2\u00B0 C ( A p p e n d i x B ) . The recommended f o r m u l a t i o n f o r a t h e r m a l c o n d u c t i v i t y c o r r e l a t i o n i s a s i m p l e p o l y n o m i a l i n t e m p e r a t u r e ( 2 8 ) . D a t a f o r t h e v i s c o s i t y and t h e r m a l c o n d u c t i v i t y o f a i r were r e a d i l y a v a i l a b l e and t h e m i x t u r e c a l c u l a t i o n s were n o t r e q u i r e d . The a i r m i x t u r e was t h u s t r e a t e d i n t h e same manner as a p u r e c o m p o n e n t . The r e s u l t i n g c o r r e l a t i o n s a r e p r e s e n t e d i n A p p e n d i x B . The m i x t u r e v i s c o s i t i e s a n d t h e r m a l c o n d u c t i v i t i e s a r e n o t u s u a l l y l i n e a r f u n c t i o n s o f c o m p o s i t i o n . F o r t h i s r e a s o n a s i m p l e p a r t i a l m o l a l sum w o u l d n o t be a c c u r a t e . More c o m p l e x m e t h o d s t a k i n g i n t o a c c o u n t k i n e t i c c o l l i s i o n t h e o r y p r o v i d e i m p r o v e d r e s u l t s . The W i l k e e s t i m a t i o n m e t h o d f o r m i x t u r e v i s c o s i t i e s was 55 u s e d i n t h i s s t u d y . T h i s f o r m u l a t i o n has been shown t o be a c c u r a t e and i s recommended f o r low p r e s s u r e gas m i x t u r e s ( 2 8 ) . The Mason and Saxena f o r m u l a t i o n (28) of t h e W a s s i l j e w a e q u a t i o n was u s e d t o c a l c u l a t e t h e t h e r m a l c o n d u c t i v i t y of t h e m i x t u r e ( A p p e n d i x B ) . H e a t T r a n s f e r C o e f f i c i e n t s The h e a t t r a n s f e r c o e f f i c i e n t s a r e r e q u i r e d i n t h e d e s i g n l o a d c a l c u l a t i o n s t o s i z e t h e h e a t e x c h a n g e r s , and i n t h e p a r t l o a d s i m u l a t i o n , t o d e t e r m i n e t h e i r p e r f o r m a n c e . F o u r h e a t t r a n s f e r c o n d i t i o n s were c o n s i d e r e d : T u r b u l e n t f l o w o u t s i d e t u b e s T u r b u l e n t f l o w i n s i d e t u b e s B o i l i n g h e a t t r a n s f e r PFB h e a t t r a n s f e r o u t s i d e t u b e s The c o e f f i c i e n t f o r m u l a t i o n s a r e i n c l u d e d i n A p p e n d i x B . The o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t (U) o f e a c h h e a t e x c h a n g e r i s c a l c u l a t e d u s i n g t h e a v e r a g e o f t h e c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t (h) a t t h e i n l e t and o u t l e t f o r e a c h f l u i d . 1/U = 2/{h1(i)+h1(o)} + 2/{h2(i)+h2(o)} hj ( i ) = Heat Transfer Coefficient of Fluid 1 at the Heat Exchanger Inlet hp(o) = Heat Transfer Coefficient of Fluid 2 at the Heat Exchanger Outlet In some c a s e s , t h e d e t e r m i n a t i o n o f t h e h e a t t r a n s f e r c o e f f i c i e n t r e q u i r e s t h e c a l c u l a t i o n o f t h e f i l m p r o p e r t i e s . T h e s e w o u l d be d e t e r m i n e d a t a t e m p e r a t u r e midway be tween t h e 56 t u b e w a l l t e m p e r a t u r e a n d t h e b u l k ^ t e m p e r a t u r e . In o r d e r t o c a l c u l a t e t h e f i l m p r o p e r t i e s , a s i g n i f i c a n t i n c r e a s e i n p r o g r a m s o p h i s t i c a t i o n w o u l d h a v e been r e q u i r e d . T h e e f f e c t o f s u b s t i t u t i n g b u l k p r o p e r t i e s f o r t h e f i l m p r o p e r t i e s i s n o t e x p e c t e d t o be l a r g e , s i n c e o n l y t h e c h a n g e s i n h e a t t r a n s f e r c o e f f i c i e n t a r e i m p o r t a n t i n t h e p r o g r a m . An e r r o r i n t h e a b s o l u t e v a l u e o f t h e c o e f f i c i e n t w o u l d r e s u l t i n a d i f f e r e n t s u r f a c e a r e a r e q u i r e m e n t a n d w o u l d n o t a f f e c t t h e p e r f o r m a n c e o f t h e c y c l e . The b u l k p r o p e r t i e s were t h e r e f o r e u s e d t h r o u g h o u t . 5 . 2 P a r t L o a d R e s u l t s The p a r t l o a d a n a l y s i s i s b a s e d on t h e f u l l l o a d d e s i g n s i m u l a t i o n o f a 90 MW m o d u l e w i t h one gas t u r b i n e a n d one s t eam t u r b i n e ( A p p e n d i x F ) . The f u l l l o a d c a l c u l a t i o n s a r e b a s e d on a c o m p r e s s o r i n l e t a i r f l o w o f 1 k g / s . The p a r t l o a d o p e r a t i o n o f t h e s i n g l e m o d u l e a i r h e a t e r c y c l e i s s i m u l a t e d down t o 25% l o a d ( F i g u r e 4 1 ) . A t 50% l o a d t h e e f f i c i e n c y i s r e d u c e d by 6 p e r c e n t a g e p o i n t s t o 3 0 . 8 % . A t 27% l o a d , t h e e f f i c i e n c y d r o p s t o 24 .5%, a t o t a l l o s s o f 12 .3 p e r c e n t a g e p o i n t s . The d e t a i l e d r e s u l t s o f t h e a n a l y s i s a r e i n c l u d e d i n A p p e n d i x F . The s t a c k gas t e m p e r a t u r e a n d a c i d dew p o i n t were a l s o d e t e r m i n e d as t h e l o a d was r e d u c e d ( F i g u r e 4 2 ) . The r e s u l t s i n d i c a t e t h a t t h e s t a c k gas t e m p e r a t u r e d r o p s f a s t e r t h a n t h e a c i d dew p o i n t , a n d i n c r e a s e d s t a c k c o r r o s i o n a t p a r t l o a d c a n t h e r e f o r e be e x p e c t e d . A p o s s i b l e remedy w o u l d be t o b y p a s s some gas p a s t 57 t h e s t e a m g e n e r a t o r a n d t h u s m a i n t a i n t h e d e s i g n s t a c k gas t e m p e r a t u r e . A s m a l l p e n a l t y i n e f f i c i e n c y w o u l d a l s o be i n c u r r e d . T h e r e a r e s e v e r a l a l t e r n a t i v e s t o t h e c o n t r o l o f t h e f l u i d i z e d b e d a t p a r t ' l o a d . The e x c e s s a i r , b e d h e i g h t , a n d b y p a s s a i r c a n be v a r i e d i n d e p e n d e n t l y . I t was f o u n d h o w e v e r t h a t t h e c y c l e e f f i c i e n c y was i n s e n s i t i v e t o v a r i a t i o n s i n t h e e x c e s s a i r a n d b y p a s s a i r f l o w . T h i s i s b e c a u s e t h e t u r b i n e i n l e t t e m p e r a t u r e i s n o t a f f e c t e d by v a r i a t i o n s i n t h e s e p a r a m e t e r s . The b e d h e i g h t a f f e c t e d t h e p r e s s u r e d r o p a c r o s s t h e P F B , b u t d i d n o t s i g n i f i c a n t l y a l t e r t h e c y c l e e f f i c i e n c y . i 58 V I . CONCLUSIONS The o b j e c t i v e o f t h i s p r o j e c t was t o s t u d y t h e p e r f o r m a n c e o f p r e s s u r i z e d f l u i d i z e d b e d , c o m b i n e d c y c l e power g e n e r a t i o n s y s t e m s . Two c y c l e s , t h e s t e a m t u b e , a n d a i r h e a t e r h a v e b e e n s t u d i e d when b u r n i n g H a t C r e e k c o a l . The f o l l o w i n g c o n c l u s i o n s were d r a w n : \u00E2\u0080\u00A2 The s t e a m t u b e c y c l e s a r e , i n g e n e r a l more e f f i c i e n t t h a n t h e a i r h e a t e r c y c l e s . S i g n i f i c a n t i n c r e a s e s i n e f f i c i e n c y o v e r t h e c o n v e n t i o n a l s y s t e m a r e f o u n d w i t h t h e s t e a m t u b e c y c l e , w h e r e a s t h e p e r f o r m a n c e o f t h e a i r h e a t e r c y c l e i s s i m i l a r t o t h e c o n v e n t i o n a l p l a n t . T h e n e t e f f i c i e n c y o f t h e i n t e r c o o l e d s t e a m t u b e c y c l e i s e s t i m a t e d a t 38%, 2 p e r c e n t a g e p o i n t s a b o v e t h e c o n v e n t i o n a l p u l v e r i z e d c o a l c y c l e . . T h e a i r h e a t e r c y c l e n e t e f f i c i e n c y was 35 .7%, s l i g h t l y b e l o w t h e c o n v e n t i o n a l p l a n t . \u00E2\u0080\u00A2 I n t e r c o o l i n g i s b e n e f i c i a l t o t h e e f f i c i e n c y a n d s p e c i f i c work o f t h e s t e a m t u b e c y c l e . The i n c r e a s e i s s i g n i f i c a n t a n d i n t e r c o o l i n g s h o u l d be i n c l u d e d i n s t e a m t u b e c y c l e s . \u00E2\u0080\u00A2 R e c u p e r a t i o n c a u s e s a s i g n i f i c a n t l o s s i n e f f i c i e n c y t o t h e s t e a m t u b e c y c l e s . \u00E2\u0080\u00A2 R e g e n e r a t i v e f e e d w a t e r h e a t i n g i n c r e a s e s t h e e f f i c i e n c y o f s t e a m t u b e c y c l e s , b u t d e c r e a s e s t h e s p e c i f i c w o r k . The d r o p i n s p e c i f i c work r e s u l t s i n a l a r g e r b o i l e r s u r f a c e r e q u i r e m e n t a n d t h u s h i g h e r c a p i t a l c o s t s . \u00E2\u0080\u00A2 T h e i n t e r c o o l e d s t e a m t u b e c y c l e w i t h one f e e d w a t e r 59 h e a t e r i s t h e most e f f i c i e n t o f a l l t h e c y c l e s s t u d i e d . The g r o s s e f f i c i e n c y i s 40 .33%, 2 . 2 p e r c e n t a g e p o i n t s h i g h e r t h a n c o n v e n t i o n a l s y s t e m s . The s i m p l e i n t e r c o o l e d c y c l e i s a l m o s t a s e f f i c i e n t , w i t h a g r o s s e f f i c i e n c y o f 4 0 . 0 7 % . \u00E2\u0080\u00A2 The i n d i c a t e d n e t e f f i c i e n c y o f t h e a i r h e a t e r c y c l e i s low (37.53%) i n c o m p a r i s o n t o t h e s t e a m t u b e c y c l e . The a i r h e a t e r c y c l e i s h o w e v e r , v e r y s e n s i t i v e t o t u r b o m a c h i n e e f f i c i e n c i e s and t o t h e t u r b i n e i n l e t t e m p e r a t u r e . By i m p r o v i n g t h e s e two p a r a m e t e r s a s i g n i f i c a n t i n c r e a s e i n p e r f o r m a n c e c o u l d be made, r e s u l t i n g i n a more c o s t c o m p e t i t i v e s y s t e m . \u00E2\u0080\u00A2 T h e p a r t l o a d o p e r a t i o n o f a s i n g l e m o d u l e , a i r h e a t e r c y c l e was s i m u l a t e d . The p a r t l o a d p e r f o r m a n c e was f o u n d t o be l a r g e l y i n d e p e n d e n t o f t h e m e t h o d o f l o a d c o n t r o l . The c y c l e e f f i c i e n c y d r o p p e d w i t h l o a d , l o s i n g 6 . 0 p e r c e n t a g e p o i n t s a t 50% l o a d . 6.1 A r e a s F o r F u r t h e r Work \u00E2\u0080\u00A2 T h e s t u d y o f c o m b i n e d c y c l e , PFB s y s t e m s c o u l d be e x p a n d e d t o i n c l u d e c y c l e s o u t s i d e t h e two c l a s s e s m o d e l l e d h e r e . A t m o s p h e r i c f , l u i d i z e d b e d c o m b i n e d c y c l e s c o u l d a l s o be i n c l u d e d . \u00E2\u0080\u00A2 T h e e f f e c t o f ga s r e h e a t i n b o t h t h e a i r h e a t e r a n d s t e a m t u b e c y c l e s may be b e n e f i c i a l t o c y c l e p e r f o r m a n c e , b u t was n o t c o n s i d e r e d i n t h i s s t u d y . \u00E2\u0080\u00A2 T h e p a r t l o a d p e r f o r m a n c e o f t h e i n t e r c o o l e d s t e a m t u b e 60 c y c l e c o u l d be s t u d i e d . The d e s i g n l o a d m o d e l l i n g o f t h e a i r h e a t e r c y c l e c o u l d be made more p r e c i s e w i t h b e t t e r e s t i m a t e s o f t h e t u r b i n e e f f i c i e n c y . V a r i a t i o n s o f t h e a i r h e a t e r c y c l e c a n be s t u d i e d . T h e p a r t l o a d m o d e l l i n g t e c h n i q u e c o u l d be i m p r o v e d by i n c l u d i n g t h e f i l m p r o p e r t y c a l c u l a t i o n s a n d i m p r o v i n g t h e t u r b o m a c h i n e maps . 61 BIBLIOGRAPHY 1. M u k h e r j e e , D . K . , \" P r e s s u r i z e d F l u i d i z e d Bed C o m b u s t o r C y c l e A s s e s s m e n t \" , The P r o c e e d i n g s o f t h e 7 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , O c t o b e r , 1982 . 2 . M o s k o w i t z , S . , W a l k e r , W . , \" S t a t u s R e p o r t o f t h e W o o d - R i d g e PFB P i l o t P l a n t \" , The P r o c e e d i n g s o f t h e 7 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , O c t o b e r , 1982 . 3 . G r e y , D . A . , B e l t r a n , A . M . , B r o b s t , R . P . , M c C a r r o n , R . L . , \" H i g h T e m p e r a t u r e C o r r o s i o n / E r o s i o n i n t h e E f f l u e n t f r o m P r e s s u r i z e d F l u i d i z e d Bed C o m b u s t o r s \" , The P r o c e e d i n g s o f t h e 6 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , A p r i l , 1980 . 4 . S t a l - L a v a l T u r b i n e A B , \" P F B C S t a t u s R e p o r t \" , O c t o b e r 1978 . 5 . O ' C o n n e l l , L . P . , W i c k s t r o m , B . , U r b a n , U . , \" S t a t u s o f t h e A E P , S t a l - L a v a l , a n d D e u t s c h e B a b c o c k A n l a g e n PFBC D e v e l o p m e n t P r o g r a m \" , The P r o c e e d i n g s o f t h e 7 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , O c t o b e r , 1982 . 6 . R u b o w , L . N . , B o r d e n , M . , B u c h a n a n , T . L . , \" C o s t A n d P e r f o r m a n c e o f A i r a n d S team C o o l e d PFBC Power P l a n t s \" , The P r o c e e d i n g s o f t h e 7 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , O c t o b e r , 1982 . 7 . K e e n a n , J . H . , K e y e s , F . G . , H I L L , P . G . , M o o r e , J . G . , \" T h e r m o d y n a m i c P r o p e r t i e s o f W a t e r I n c l u d i n g V a p o r , L i q u i d , a n d S o l i d P h a s e s \" , J o h n W i l e y & S o n s , 1978 . 8 . H i l l , P . G . , M a c M i l l a n , R . D . C . , \" A S a t u r a t i o n V a p o r P r e s s u r e E q u a t i o n f o r H e a v y W a t e r \" , I&EC F u n d a m e n t a l s , VOL 18 p . 4 1 2 , N o v e m b e r , 1 9 7 9 . 9 . V a n W y l e n , G . J . , S o n n t a g , R . E . , \" F u n d a m e n t a l s o f C l a s s i c a l T h e r m o d y n a m i c s \" , 2nd E D . , J o h n W i l e y & S o n s , 1976 . 10. B a b c o c k a n d W i l c o x , \" S t e a m , I t s G e n e r a t i o n a n d U s e \" , 1972 . 11 . M o s k o w i t z , S . , \" P r e s s u r i z e d F l u i d i z e d Bed C o a l F i r e d C o m b i n e d C y c l e Power P l a n t \" , I n t e r n a t i o n a l Power G e n e r a t i o n , V o l . 3 N o . 3 , A p r i l 1980 . 12 . B a b u , S . P . , S h a h , B . , T a l k w a l k e r , A . , \" F l u i d i z a t i o n C o r r e l a t i o n s f o r C o a l G a s i f i c a t i o n M a t e r i a l s - Min imum F l u i d i z a t i o n V e l o c i t y a n d F l u i d i z e d Bed E x p a n s i o n R a t i o \" , A I C H E Sympos ium S e r i e s , N o . 1 7 6 V o l . 7 4 , 1978 . 13 . P a p i c , M . , B r i t i s h C o l u m b i a H y d r o a n d Power A u t h o r i t y , P r i v a t e C o m m u n i c a t i o n , 1983 . 62 14. M a k a n s i , J . , \" C o a l F i r e d C o m b i n e d C y c l e P l a n t s A r e On t h e H o r i z o n \" , P o w e r , J u n e 1982. 15 . L i s l e , E . S . , S e n s e n b a u g h , J . D . , \" T h e D e t e r m i n a t i o n o f S u l p h u r T r i o x i d e a n d A c i d Dew P o i n t i n F l u e G a s e s \" , C o m b u s t i o n , J a n u a r y 1965 . 16 . S m o o t , L . D . , P r a t t , D . T . , \" P u l v e r i z e d C o a l C o m b u s t i o n a n d G a s i f i c a t i o n \" , P l e n u m P r e s s , 1979 . 17 . H a y w o o d , R . W . , \" A n a l y s i s o f E n g i n e e r i n g C y c l e s \" , Pergamon P r e s s L t d . , 1967 . 18. G r a v e s , R . L . , \" E f f e c t o f P r e s s u r e and T u r b i n e I n l e t T e m p e r a t u r e on t h e E f f i c i e n c y o f PFB Power P l a n t s \" , ASME P a p e r N o . 8 0 - G T - 1 0 2 , 1980 . 19 . B o r d e n , M . , R u b o w , L . N . , G e f f k e n , J . , \" A F i r s t G e n e r a t i o n PFBC Power P l a n t u s i n g T u r b o e x p a n d e r s \" , The P r o c e e d i n g s o f t h e 7 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , O c t o b e r , 1982 . 2 0 . W i c k s t r o m , B . , S t a l - L a v a l T u r b i n A B , P r i v a t e C o m m u n i c a t i o n . 2 1 . S m i t h , R . W . , G e n e r a l E l e c t r i c Company , P r i v a t e C o m m u n i c a t i o n . 2 2 . M o s k o w i t z , S . , \" D e s i g n a n d C o n s t r u c t i o n o f a P r e s s u r i z e d F l u i d i z e d Bed P i l o t E l e c t r i c P l a n t \" , P r o c e e d i n g s o f t h e 1 7 t h I n t e r s o c i e t y E n e r g y C o n v e r s i o n E n g i n e e r i n g C o n f e r e n c e , A u g u s t 1982. 2 3 . H o l m a n , J . P . , \" H e a t T r a n s f e r \" , 5 t h E d . , M c G r a w - H i l l , 1981 . 2 4 . C o h e n , H . , R o g e r s , G . F . C . , S a r a v a n a m u t t o , H . I . H . , \"Gas T u r b i n e T h e o r y \" , 1974 2 5 . S h e p h e r d , D . G . , \" P r i n c i p l e s o f T u r b o m a c h i n e r y \" 2 6 . K e s t i n , J . , \" T h e r m a l C o n d u c t i v i t y o f W a t e r and S t e a m \" , M e c h a n i c a l E n g i n e e r i n g , A u g u s t 1978. 2 7 . N a g a s h i m a , A . , \" V i s c o s i t y o f W a t e r S u b s t a n c e - New I n t e r n a t i o n a l F o r m u l a t i o n a n d I t s B a c k g r o u n d \" , J . P h y s i c a l a n d C h e m i c a l R e f e r e n c e D a t a , V o l . 6 N o . 4 , 1977 . 2 8 . R e i d , R . C . S h e r w o o d , T . K . , \" T h e P r o p e r t i e s o f G a s e s a n d L i q u i d s \" , 2nd E d . , M c G r a w - H i l l , '1966. 2 9 . R o b e r t s o n , A . S . , S t a r r , J . , \" P r e s s u r i z e d F l u i d i z e d Bed C o m b u s t o r / S team G e n e r a t o r D e s i g n E v a l u a t i o n \" , P r o c e e d i n g s o f t h e I n t e r s o c . o f E n e r g y C o n v e r s i o n , 14 th C o n f e r e n c e , A u g u s t 1979 . 63 3 0 . B e n s o n , R . S . , \" A d v a n c e d E n g i n e e r i n g T h e r m o d y n a m i c s \" , 2nd E d . , Pergamon P r e s s , 1977 . 3 1 . S t u l l , D . R . , P r o p h e t , H . , \" J A N A F T h e r m o c h e m i c a l T a b l e s \" , 2nd E d . , N a t i o n a l B u r e a u o f S t a n d a r d s , 1971 . 3 2 . P e r r y , J . H . , \" C h e m i c a l E n g i n e e r s H a n d b o o k \" , 4 t h E d . , M c G r a w - H i l l , 1963 . 3 3 . W e a s t , R . C , \" H a n d b o o k o f C h e m i s t r y a n d P h y s i c s \" 52nd E d . , C h e m i c a l R u b b e r C o . , 1 9 7 1 . 3 4 . F o r s y t h e , W . E . , \" S m i t h s o n i a n P h y s i c a l T a b l e s \" , T h e S m i t h s o n i a n I n s t i t u t e , 1964 . 3 5 . K r e i t h , F . , \" H e a t T r a n s f e r \" , 5 t h E d . , M c G r a w - H i l l , 1976 . 3 6 . Z a k k a y , V . , M i l l e r , G . , R o s e n , S . , S h a h , S . , K o l a r , A . K . , \" B e d E x p a n s i o n a n d H e a t T r a n s f e r M e a s u r e m e n t s i n a P r e s s u r i z e d F l u i d i z e d B e d \" , M u l t i - p h a s e and H e a t T r a n s f e r Sympos ium W o r k s h o p , V . 4 , 1979 . 3 7 . S t o n e & W e b s t e r C a n a d a L t d . , \" B r i t i s h C o l u m b i a H y d r o a n d Power A u t h o r i t y - H a t C r e e k C o a l U t i l i s a t i o n S t u d y \" , O c t o b e r 1977 . 3 8 . C o n s i d i n e , D . M . , \" E n e r g y T e c h n o l o g y H a n d b o o k \" , McGraw H i l l , 1977 . 3 9 . F r . a a s , A . P . , O s i s i k , M . N . , \" H e a t E x c h a n g e r D e s i g n \" , W i l e y & S o n s , 1965. . 4 0 . H o y , H . R . , R o b e r t s , A , G . , \" I n v e s t i g a t i o n s on t h e L e a t h e r h e a d P r e s s u r i z e d F a c i l i t y \" , T h e P r o c e e d i n g s o f t h e 6 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , A p r i l , 1980 . 4 1 . C a r l s , E . L . , K a d e n , M . , S m i t h , D . , W r i g h t , S . J . , J a c k , A . R . , \" T h e IEA G r i m e t h o r p e P r e s s u r i z e d F l u i d i z e d Bed C o m b u s t i o n E x p e r i m a n t a l F a c i l i t y \" , The P r o c e e d i n g s o f t h e 6 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d Bed C o m b u s t i o n , A p r i l , 1980 . 64 T a b l e 1 - P u b l i s h e d C y c l e A n a l y s i s R e s u l t s R e s e a r c h G r o u p C y c l e D e s c r i p t i o n E f f i c Ne t i e n c y G r o s s PFB P r e s s u r e T u r b i n e Temp C u r t i s s -W r i g h t (22) A i r H e a t e r C y c l e 4 0 . 0% 7 Bar 871 \u00C2\u00B0 C S - L , AEP & DBA (5) I n t e r c o o l e d Steam Tube 1 FW H e a t e r 39.7% 40.7% 16 Bar 8 3 2 \u00C2\u00B0 C Oak R i d g e Nat i o n a l L a b . P r e h e a t e d S team Tube 2 FW H e a t e r s 39.2% 41.2% 1 0 b a r 8 0 0 \u00C2\u00B0 C F o s t e r W h e e l e r (29) S u p e r c r i t c a l S team Tube 40.5% 1 0 Bar 9 2 7 \u00C2\u00B0 C B r o w n / B o v e r i ( 1 ) Steam Tube C y c l e A i r H e a t e r C y c l e 4 1.4% 37.5% 1 0 Bar 7 B a r 8 4 8 \u00C2\u00B0 C 871 \u00C2\u00B0 C G i l b e r t / Common-w e a l t h (6) ' S team Tube C y c l e A i r H e a t e r C y c l e 40 . 5% 38.2% 41.2% 39.0% 65 T a b l e 2 - E q u i l i b r i u m D i s s o c i a t i o n P r o d u c t C o n c e n t r a t i o n s Combust i o n P r o d u c t C o n c e n t r a t i o n N i t r o g e n 7 3 . 3 % C a r b o n D i o x i d e 1 3 . 0 % Oxygen 7 . 7 % W a t e r 5 . 9 % N i t r i c O x i d e 52 ppm H y d r o x y l R a d i c a l 0 . 2 ppm A t o m i c O x y g e n < 1 ppb Carbon M o n o x i d e < 1 ppb H y d r o g e n < 1 ppb A t o m i c H y d r o g e n << 1 ppb T a b l e 3 - A n d e r s o n C r e e k L i m e s t o n e S u l p h u r R e t e n t i o n (13) C a / S M o l e R a t i o S u l p h u r R e t e n t i o n 2 : 1 66 % 4 : 1 8 1 . 5 % 6:1 86 % 8:1 89 % 10:1 90 % 66 T a b l e 4 - S team Tube C y c l e P e r f o r m a n c e C r i t e r i a C y c l e D e s c r i p t i o n E f f i c i e n c y ( G r o s s ) % S p e c . Work A i r Ba se M J / k g , S p e c . Work Steam Base M J / k g GT Power F r a c t i o n % B a s i c C y c l e 3 8 . 7 0 . 928 1 . 839 17 .8 P r e h e a t 3 8 . 8 0 . 9 2 7 1 .832 2 3 . 0 I n t e r -c o o l i n g ( s i n g l e ) 4 0 . 1 0 .961 1 .962 2 4 . 4 I n t e r -c o o l i n g ( d o u b l e ) 3 9 . 8 0 . 9 5 5 1.998 18 .4 F e e d W a t e r H e a t i n g 3 9 . 2 0 . 9 4 0 1 .553 17 .5 I n t e r -c o o l i n g & FWH 4 0 . 3 0 . 9 5 9 1.710 2 2 . 4 67 T a b l e 5 - E f f e c t o f C o a l T y p e on PFB C o m b i n e d C y c l e P e r f o r m a n c e I l l i n o i s #6 C o a l Hat C r e e k (As R e c e i v e d ) H a t C r e e k (Washed) Hat C r e e k ( D r y ) Hat C r e e k ( D r y , A s h F r e e ) U l t i m a t e A n a l y s i s C H 0 S N H 2 0 ASH 66.4% 4.5% 7.5% 2.7% 1 . 3% 5.8% 11.7% 30.8% 2.4% 10.6% 0.4% 0.8% 22.5% 32.5% 37.6% 3.1% 13.5% 0.6% 0.8% 10.0% 34.3% 39.7% 3.1% 13.7% 0.5% 1 .0% 41.9% 68.4% 5.3% 23.6% 0.9% 1 .8% G r o s s E f f i c ' c j I n t e r -c o o l e d S team 40.62% 39.36% 40.07% 40.56% 40.72% A i r H e a t e r C y c l e 38.44% 36.39% 37.53% 37.95% 38.17% T a b l e 6 - C o m p a r i s o n o f Power G e n e r a t i o n E f f i c i e n c i e s I n t e r c Ste Cyc : o o l e d ?am : l e A J He\u00C2\u00A3 Cyc . r i t e r : l e P u l v e r . C o a l B o i l e r T u r b i ne I n l e t Temp. 8 0 0 \u00C2\u00B0 C 9 0 0 \u00C2\u00B0 C 8 7 0 \u00C2\u00B0 C 9 0 0 \u00C2\u00B0 C G r o s s E f f ' c y 4 0 . 0 7 % 4 1 . 2 9 % 3 7 . 5 3 % 3 8 . 2 9 % 3 8 . 1 8 % Net E f f ' c y 3 8 . 0 % 3 9 . 2 % 3 5 . 7 % 3 6 . 4 % 3 6 . 0 % F u e l . H a t C r e e k C o a l (Washed) 6 8 Steam Turbtnes Pump F i g u r e 1 - R a n k i n e C y c l e 69 F i g u r e 2 - B r a y t o n C y c l e F i g u r e 3 - T e m p e r a t u r e / E n t r o p y D i a g r a m s f o r t h e B r a y t o n a n d R a n k i n e C y c l e s Combustor F i g u r e 4 - O i l F i r e d C o m b i n e d C y c l e P l a n t S c h e m a t i c F i g u r e P r e s s u r i z e d F l u i d i z e d Bed C o a l C o m b u s t o r F i g u r e 6 - A i r H e a t e r PFB C o m b i n e d C y c l e 03 C ro rt fD DJ 3 -3 C rj-fD ^ W O O 3 t r 3 fD a o *~< o t \u00E2\u0080\u0094 \u00E2\u0080\u00A2 fD Coaxial Heat Exchange H.P. Turbine/ Compressor 5 L.P. Turbine/ Compressor Power Turbine/ Generator A i r Inlet Hot Gas VF11trat ion Steam Drum PFB Combus Economiser ^ 1 ISuper-V J Heater V J istors I T ) 1 1 Steam Turbines Generator Condenser Ash Cooler P\u00C2\u00AB\u00E2\u0084\u00A2P 76 Read Steam D a t a ( F u n d a m e n t a l Steam E q u a t i o n P a r a m e t e r s ) Read Des i gn P a r a m e t e r s ( T u r b 1 n e I n l e t Temp, Combustor P r e s s u r e . Ambient, and Steam C o n d i t i o n s ) Gas S y s t e m C a l c u l a t e C o m p r e s s o r I n l e t a n d O u t l e t A i r P r o p e r t i e s E s t i m a t e C o - a x i a l Heat E x c h ange In t h e PFB D u c t i n g C a 1 c u l a t e Combust i o n R e a c t 1ons, PFB Heat E x c h a n g e , and Gas P r o p e r t i e s C a l c u l a t e H.P. T u r b i n e I n l e t Gas P r o p e r t i e s C a l c u 1 a t e t h e H.P. T u r b 1 n e work and O u t l e t Gas P r o p e r t i e s E s t i m a t e t h e L.P. T u r b i n e and E c o n o m i s e r O u t l e t Gas P r o p e r t i e s Ca1cu1 a t e t h e S t a c k Gas Dew P o i n t , Econom i s e r Out 1et T e m p e r a t u r e . and P r e s s u r e Drop a c r o s s t h e Econom1ser NO I F i g u r e 9 - S team T u b e C y c l e A n a l y s i s F l o w C h a r t 77 Steam S y s t e m C a l c u l a t e H.P. Steam T u r b i n e I n l e t , R e h e a t e r I n l e t , L.P. Steam T u r b i n e I n l e t . C o n d e n s e r I n l e t and O u t l e t , E c o n o m i s e r I n l e t , B o i l e r I n l e t , and S u p e r h e a t e r I n l e t Steam P r o p e r t i e s C a 1 c u l a t e Steam M a s s f l o w and P r e s s u r e D r o p s C a 1 c u l a t e T o t a l H e a t , work and E f f i c i e n c y Wr i t e Thermodynamic P r o p e r t l e s . Component Work, and E f f i c i e n c y 78 S t a r t Read Steam D a t a (Fundamenta 1 Steam E q u a t i o n P a r a m e t e r s ) Read D e s i g n P a r a m e t e r s ( T u r b i ne I n l e t Temp, Combustor P r e s s u r e , Ambient C o n d i t i o n s , a n d Steam C o n d i t i o n s ) Gas S y s t e m C a l c u l a t e C o m p r e s s o r I n l e t and O u t l e t A i r P r o p e r t i e s C a l c u l a t e C o m b u s t i o n R e a c t i o n s . PFB Heat Exchange, and Gas P r o p e r t i e s E s t i m a t e t h e C o o l i n g A i r Flow C a l c u l a t e C o o l i n g A i r T e m p e r a t u r e a t t h e PFB O u t l e t and A i r / G a s M i x t u r e P r o p e r t i e s a t t h e H.P. T u r b i n e I n l e t R e - E s t i m a t e t h e C o o l i n g A i r Mass Flow yes C a l c u l a t e H.P. T u r b i n e work a n d O u t l e t Gas P r o p e r t i e s E s t i m a t e L.P. T u r b i n e a n d HRSG O u t l e t Gas P r o p e r t i e s C a l c u l a t e S t a c k Gas Dew P o i n t . E c o n o m i s e r O u t l e t T e m p e r a t u r e , and P r e s s u r e Drop a c r o s s t h e Econom1ser F i g u r e 10 - A i r H e a t e r C y c l e A n a l y s i s F l o w C h a r t 79 Steam S y s t e m C a l c u l a t e Max ifflum S u p e r h e a t T e m p e r a t u r e w i t h an HPSG E f f e c t i v e n e s s of 8 0 % C a l c u l a t e B o i l e r P r e s s u r e w h i c h r e s u l t s 1n a n 8 8 % Steam T u r b i n e E x h a u s t O u a l i t y C a 1 c u l a t e Bo i 1 e r , C o n d e n s e r , a n d Pump I n l e t and O u t l e t C o n d i t i o n s C a l c u l a t e t h e Gas P r o p e r t i e s t h r o u g h t h e HRSG Reduce t h e B o i l e r P r e s s u r e R e - E s t i m a t e t h e 5team Mass Flow YES C a l c u l a t e T o t a l H e a t , Work, and E f f i c i e n c y Wr 1 t e Thermodynamic P r o p e r t i e s , Component Work, a n d E f f i c i e n c y S t o p 6 0 0 PERCENT OF TOTAL HEAT TRANSFER F i g u r e 11 - B o i l i n g P i n c h P o i n t i n a H e a t R e c o v e r y S team G e n e r a t o r Coaxial Heat Exchange H.P . Turbine/ Compressor 3 L . P . Turbine/ Compressor Power Turb i ne/ Generator A i r Inlet Hot Gas F i 1 t r a t i o n Steam Drum Super-Heater PFB Combustors V Stack Recuperator Economiser Steam Turbines Generator Condenser -E3-Pump iQ C w r t fD OJ 3 -3 C cr ro o *< o ro r r \u00C2\u00A3T O D ro fD fD a CU r t fD X fD CU rr fD i-l Coaxial Heat Exchange H.P. Turbine/ Compressor 5 L.P. Turbine/ Compressor Power Turbine/ Generator Air Inlet Hot Gas Fi1trat ton Steam (S14) Drum Ol -O L J y 39 L J UJ I O o 3 8 00 o cr o 37-^ 36 In tercooled Steam Tube Cycle 1 1.5 2 2.5 C O M B U S T O R P R E S S U R E M P a COAL O I l l i n o i s #6 Hat Creek (Washed) Hat Creek (As Received) F i g u r e 33 - C o m p a r i s o n o f C y c l e P e r f o r m a n c e w i t h T h r e e D i f f e r e n t F u e l s 98 5 ZD m m L d cr: Q_ 4.5 4 -r - 3.5H <. Cr: 3-2.5-2-1.5-\ 1 + -0.3 \ \u00E2\u0080\u00941 1 1 0.4 0.5 0.6 0.7 0.8 REDUCED MASSFLOW 0.9 1.1 Legend A N*=1.0 X N*=0.9 Q N*=0.8 g| N*\u00C2\u00AB=0.7 S N*=0.6 ^ N*=0.5 N*=Reduced Speed F i g u r e 36 - A x i a l C o m p r e s s o r P e r f o r m a n c e Map 1 F i g u r e 37 - A x i a l C o m p r e s s o r P e r f o r m a n c e Map 2 Legend $ N*=1.0 \u00C2\u00A9 N*=0.9 O N*=0.8 + N*=0.7 O N*=0.6 ffl N*=0.5 Reduced Speed F i g u r e 38 - T u r b i n e P e r f o r m a n c e Map 1 1 0.60 H 1 1.5 2 2.5 3 PRESSURE RATIO 3.5 Legend V N*=1.0 (Sa N*=0.8 0 N*=0.6 A N*=0.4 N* = Reduced Speed F i g u r e 39 - T u r b i n e P e r f o r m a n c e Map 2 103 F i g u r e 40 - A i r H e a t e r C y c l e P a r t L o a d C y c l e A n a l y s i s F l o w C h a r t ^ Start Read Design Data (Design operat ing Condi t ions , Heat Exchanger s i ze s ) Read Bypass A i r Percentage Gas System C a l c u l a t e Compressor Inlet P . T . H . S Estimate A1r Massflow, Compressor Shaft Speed, and Bed Temperature Ca l cu la te Compressor C h a r a c t e r i s t i c s : E f f i c i e n c y and Pressure Rat io Ca1cula te Compressor Outlet P . T . H . S S p l i t of f Bypass and Cool 1ng A i r C a l c u l a t e PFB Combustion and Required Heat Removal by Cool 1ng A i r Ca l cu l a te Heat Transfer to Cool ing A i r 1 04 Mix t h e C o m b u s t i o n Gases w i t h t h e C o o l i n g A i r a n d B y p a s s A i r a n d C a l c u l a t e T u r b i n e I n l e t C o n d i t i o n s Ca1culate T e m p e r a t u r e a n d P r e s s u r e o f H.P. T u r b i n e E x h a u s t Ca1cu1 a t e H.P. T u r b i n e C h a r a c t e r i s t i c s E f f i c i e n c y and Mass Flow C a l c u l a t e t h e HRSG Gas I n l e t T.P.H.S.Cp 1 05 Steam S y s t e m C a l c u l a t e t h e C o n d e n s e r O u t l e t C o n d i t i o n s E s t i m a t e Steam M a s s f l o w and S u p e r h e a t T e m p e r a t u r e C a l c u l a t e t h e Bo i 1 e r P r e s s u r e f r o m t h e Steam T u r b i n e C h a r a c t e r i s t i c s C a l c u l a t e S u p e r h e a t e r Heat T r a n s f e r and S u p e r h e a t e d Steam T e m p e r a t u r e y Has Xtn\u00C2\u00ABa r p < s r n \u00C2\u00BB s i t \ y r f T e m p e r a t u r e \ Changed / NO \ C a l c u l a t e F e e d Water Pump C o n d i t i o n s a n d t h e C o n d i t i o n s a t t h e O n s e t of B o i 1 i n g Ca1cu1 a t e t h e Heat T r a n s f e r f r o m t h e C o m b u s t i o n G a s e s C a l c u l a t e t h e Gas T e m p e r a t u r e s C o r r e s p o n d i n g t o t h e B o i l i n g S a t u r a t i o n p o i n t s and t h e S t a c k Ent r a n e e R e d i s t r i b u t e t h e Heat T r a n s f e r A r e a s and R e - E s t i m a t e t h e Steam Mass Flow VES J_ C a l c u l a t e The C y c l e P e r f o r m a n c e Wri t e T h e r m o d y n a m i c P r o p e r t i e s . Component Work, a n d E f f l d e n c y - i r 1 1 1 1 i i I i 10 20 30 40 50 60 70 80 90 100 SYSTEM LOAD (PERCENT OF DESIGN LOAD) F i g u r e 41 - P a r t L o a d P e r f o r m a n c e o f A i r H e a t e r C y c l e 160 1 5 5 UJ 1 5 0 o r Z> % UJ CL 1 4 5 -UJ 140-135 -r 0 D / P / \u00E2\u0080\u00A2 JOT 10 20 30 40 50 60 70 80 90 100 SYSTEM LOAD (PERCENT OF DESIGN LOAD) Legend Stack Gas LJ Temperature Dew Point O F i g u r e 42 - V a r i a t i o n o f S t a c k Gas T e m p e r a t u r e a n d Dew P o i n t W i t h L o a d 108 APPENDIX A - COMPUTER SUBROUTINES L i s t Of R o u t i n e s A i r T h e r m o d y n a m i c s S u b r o u t i n e I n p u t P a r a m e t e r s O u t p u t P a r a m e t e r s AIR P , T , M H , S , C p , p AI RH P , H , M T , S , C p , p AIRS P , S , M H , T , C p , p Gas T h e r m o d y n a m i c s and C o m b u s t i o n S u b r o u t i n e I n p u t P a r a m e t e r s O u t p u t P a r a m e t e r s GAS P , T , M H , S , C p , p , Dew P o i n t GASH P , H , M T , S , C p , p , Dew P o i n t GASS P , S , M H , T , C p , p , Dew P o i n t GAHS H , S , M P , T , C p , p , Dew P o i n t 109 Gas T h e r m o d y n a m i c s and C o m b u s t i o n c o n t . BED (Combust i o n ) I n l e t H , M O u t l e t T , P E x c e s s A i r C o a l A n a l y s i s % C o a l B u r n e d C a / S M o l e R a t O u t l e t M , S , H , C p , p , D e w P o i n t C o o l a n t H e a t T r a n s f e r S o l i d s C o o l e r H e a t T r a n s f e r MIX Gas P , H , M A i r P , H , M T , H , M , C p , p 1 10 W a t e r and S team T h e r m o d y n a m i c s S u b r o u t i n e V a l i d R e g i o n s I n p u t P a r a m e t e r s O u t p u t P a r a m e t e r s S T A T E T E v e r y w h e r e e x c e p t t h e 2 P h a s e R e g . P , T H , S , C p , X , p STEAM (L=2) V a p o r P , T H , S , C p , X , p STEAM (L=3) L i q u i d P , T H , S , C p , X , p STATEH E v e r y w h e r e P , H T , S , C p , X , p INTEH V a p o r P , H T , S , C p , X , p LIQH L i q u i d P , H T , S , C p , X , p STATES E v e r y w h e r e P , S T , H , C p , X , p INTES V a p o r P , S T , H , C p , X , p LIQS L i q u i d P , S T , H , C p , X , p VATS V a p o r T , S P , H , C p , X , p VATH V a p o r T , H P , S , C p , X , p 111 W a t e r and S team T h e r m o d y n a m i c s c o n t . PSAT T < 6 4 7 . 2 5 K S a t u r a t i o n T e m p e r a t u r e S a t u r a t i o n P r e s s u r e T S A T P < 2 2.1 MPa S a t u r a t i o n P r e s s u r e S a t u r a t i on P r e s s u r e SATCON T < 6 4 7 . 2 5 K P < 22 .1 MPa P , T ( S a t u r a t i o n ) H f , H g , S f , S g T h e s e i n p u t and o u t p u t p a r a m e t e r s a r e f o r t h e s h o r t t h e r m o d y n a m i c s l i b r a r y . In t h e h e a t t r a n s f e r l i b r a r y ( f o r p a r t l o a d a n a l y s i s ) , t h e f o l l o w i n g p a r a m e t e r s a r e a d d e d : I N P U T : F l u i d V e l o c i t y , Tube D i a m e t e r , and H e a t T r a n s f e r M o d e . O U T P U T : V i s c o s i t y , T h e r m a l C o n d u c t i v i t y , P r a n d t l n u m b e r , R e y n o l d s n u m b e r , and H e a t T r a n s f e r C o e f f i c i e n t . ) 1 1 2 APPENDIX B - THERMODYNAMIC AND TRANSPORT PROPERTIES P u r e Component P r o p e r t y F o r m u l a t i o n s E n t h a l p y ( k j / k m o l ) Gene T i r ; r a l E q u a t ] 1 K e l v i n , o n : h=8.31 4 ( a + b T + c T : S o u r c e : I + d T 3 + e T \" ) <.S. Bensor 1 (30) a b c d e o 2 CO 2 H 2 0 NO - 1 0 2 9 . 7 -1 030 .7 - 1 1 5 3 . 9 - 1 1 7 5 . 0 - 1 0 7 7 . 4 3 . 3 4 4 3 . 253 3 . 0 9 6 3 . 7 4 3 3 . 5 0 2 2 . 9 4 3 E - 4 6 . 5 2 4 E - 4 2 . 7 3 0 E - 3 5 . 6 5 6 E - 4 2 . 9 9 4 E - 4 1 . 9 5 3 E - 9 - 1 . 4 9 5 E - 7 - 7 . 8 8 5 E - 7 4 . 9 5 2 E - 8 - 9 . 5 9 0 E - 9 - 6 . 5 7 5 E - 1 2 1 .539E-11 8 . 6 6 0 E - 1 1 - 1 . 8 1 8 E - 1 1 - 4 . 9 0 4 E - 1 2 Genera T=T/ i l E q u a t i o r ' 1 0 0 0 . 0 I : h = 4 l 8 6 . c Raw d a t a 3 (a + b r + c r 2 -s o u r c e : Je r d r 3 + e r q ) i n a f T a b l e s 5 ( 3 1 ) a b c d e S 0 2 S 0 3 - 2 . 2 9 5 6 - 2 . 7 3 5 . 6 0 0 5 . 5 1 9 8 . 2 1 6 2 1 4 . 2 1 0 7 - 4 . 1 5 3 1 - 7 . 2 2 6 9 0 . 8 6 1 5 1 .4769 Genera T i n ? i l E q u a t i o n : e^ l v i n h = 4 . 1 8 4 ( a+bTH S o u r c e : C - c T 2 + d / T ) I.E. Handboor 1 (32) a b c d C a C 0 3 C a S O \u00E2\u0080\u009E S i 0 2 A 1 2 0 3 F e 2 0 3 CaO MgO - 7 4 6 3 . 8 - 7 0 6 6 . 9 - 8 1 3 8 . 1 - 8 7 2 2 . 5 - 9 4 9 9 . 6 - 3 5 5 7 . 3 - 3 9 8 9 . 8 19 .68 18 .52 1 7 . 0 9 2 2 . 0 8 2 4 . 7 2 10 .0 1 0 . 8 6 0 . 005945 0 . 0 1 0 9 8 5 0 . 0 0 0 2 2 7 0 . 0 0 4 4 8 5 0 . 0 0 8 0 2 0 . 0 0 0 5 5 9 0 . 0 0 0 5 9 9 307600 156800 897200 522500 423400 108000 208700 C o a l h = 1 4 1 . 5 ( T - 2 9 8 . 0 ) T i n K e l v i n H e a t o f F o r m a t i o n ( k j / k m o l ) Hf 0 S o u r c e CO 2 -393522 (9) H 2 0 -241827 (9) NO 90417 (32) S 0 2 - 2 9 7 0 4 0 (32) S 0 3 -396030 (32) C a C 0 3 - 1 2 1 1 2 6 8 (32) C a S O \u00E2\u0080\u009E - 1 4 0 3 8 1 6 (32) 1 1 3 S p e c i f i c Heat Cp ( k j / k m o l K) G e n e r a l E 0=T/1 00 Equation: C c :p=a + b\u00C2\u00A3 Source: ?k.+cc?m+dt?n) Van Wyler l & Sc >nntag (9) i a b k c m d r lN 2 o 2 CO 2 H 20 NO 39.060 37.432 -3.7357 143.05 59.283 -512.79 0.02010 30.529 -183.54 -1.7096 -1.5 1 .5 0.5 -0.25 0.5 1072.7 -178.57 -4 . 1034 82.751 -70.613 -2.0 -1.5 1 .0 0.5 -0.5 -820.4 236.88 0.02420 -3.6989 74.889 -3.0 -2.0 2.0 1 . 0 -1.5 Genera T=T/1( i l E q u a t i o n : )00.0 Rav Cp=4.1868(a+h * d a t a source 5 r + c r 2 + d r 3 ) Janaf Table is (31 ) a b c d S 0 2 S 0 3 5.8257 -2.73 15.509 5.519 1 1 . 2842 14.2107 2.9751 -7.2269 Ent r o p y ( k j / k m o l K) Gene T = T/ ; r a l Equate '1 000. 0 .on: s=a+b-Raw d a t a \u00E2\u0080\u00A2 + C T 2 + d r 3 + e s o u r c e : J c inaf Tables 5 (31) a b c d e o 2 C0 2 H 20 NO S0 2 S 0 3 152.692 166.61 9 167.043 144.602 171.329 197.977 195.207 178.36 173.96 199.38 200.38 179.93 215.22 253.37 -192.85 -180.07 -168.11 -209.50 -192.14 -185.76 -181.85 1 19.242 110. 388 92.482 128.447 1 18.696 101.649 85.576 -29.3123 -27.3588 -21.4962 -31 . 2672 -29.3130 -23.4504 -17.5878 V i s c o s i t y Suther T i n } 'land E q u a t i c t e l v i n >n: M=a/(T+b) ( T / c ) 1 ' 5 a b c Source AIR H 20 N 2 o 2 C0 2 0.00669 0.00843 0.01911 0.02319 0.02149 117.9 659.0 109.17 129.68 246.88 273. 15 273. 1 5 573. 15 573. 1 5 573 . 1 5 (34) (34) (33,34) (33,34) (33,34) 1 1 4 T h e r m a l C o n d u c t i v i t y Genera r = T / 1 ( i l E q u a t i o n : ) 0 0 . 0 k =(a + br+c T 2 ) / ' 1 0 0 . 0 a b c S o u r c e AIR H 2 0 N 2 o 2 CO 2 0 . 3 3 0 1 7 - 0 . 3 2 2 6 0 . 6 4 9 6 2 0 . 1 2 9 0 2 - 0 . 9 8 5 6 8 . 2 6 5 6 . 7 4 6 9 6 . 4 9 5 0 8 . 6 9 4 3 9 . 3 5 1 1 - 1 . 8 1 3 2 . 3 7 5 - 0 . 3 4 3 8 - 1 . 2 9 1 9 - 1 . 6 3 3 3 . A V . . G . . G . . G . . G . H e a t T r a n s f e r C o e f f i c i e n t s 1) F o r c e d T u r b u l e n t C o n v e c t i o n i n T u b e s Nu= 0 . 0 2 3 - R e \u00C2\u00B0 ' 8 - P r \u00C2\u00B0 ' 3 3 S o u r c e : K r e i t h (35) 2) F o r c e d C o n v e c t i o n o v e r Tube B u n d l e s Nu= 0 . 3 3 - R e \u00C2\u00B0 ' 6 - P r \u00C2\u00B0 ' 6 7 S o u r c e : K r e i t h (35) 3) C o n v e c t i o n o v e r Tube B u n d l e s i n a B u b b l y PFB Nu= 5 + 0 . 0 5 - R e \u00C2\u00B0 ' 9 2 - P r S o u r c e : Z a k k a y (36) 4) B o i l i n g H e a t T r a n s f e r i n s i d e T u b e s Nu= 0 . 0 6 - ( p \u00C2\u00A3 / p v ) \u00C2\u00B0 ' 2 8 - R e 0 ' 8 7 - P r \u00C2\u00B0 ' 4 ( E v a l u a t e d w i t h t h e l i q u i d p r o p e r t i e s ) S o u r c e : K r e i t h (35) 1 15 M i x t u r e C a l c u l a t i o n s Enthalpy hm= {Zryh^/m Specific Heat Cp = Iy.-Cp. Entropy sm = { ( Z n i * s i ^ \" R ' U r y l n y i ) } / m ' R , l n ( p / p 0 ) Viscosity Thermal Conductivity km = i k./a * 1 J ( ic)-(y 1 /yj)> - { l+Ca . / a^^CMj/M.)^} 2 /\" { / M l+^/Mj)) 1*} Notation: Cp Specific Heat h Enthalpy k Thermal Conductivity s Entropy m Mass R Gas Constant M Molecular Weight y Viscosity Subscripts i Component i m Mixture 0 Standard Conditions 1 16 H a t C r e e k A s h A n a l y s i s and E n t h a l p y C o r r e l a t i o n H a t C r e e k A s h A n a l y s i s : Component C o n c e n t r a t i o n S i 0 2 58.6% A 1 2 0 3 30.7% F e 2 0 3 6.4% CaO 1 .6% MgO 1 . 3% S 0 3 1 .4% E n t h a l p y o f A s h and S i 0 2 a t V a r i o u s T e m p e r a t u r e s : E n t h a l p y E n t h a l p y E n t h a l p y TEMP o f S i 0 2 ( k J / k g ) o f A s h o f S i 0 2 +4% ( k J / k g ) E r r o r ( k J / k g ) ( k J / k g ) 300 K - 0 . 0 0 . 5 0 . 0 - 0 . 5 400 K 6 3 . 9 7 2 . 1 6 6 . 5 - 5 . 6 500 K 147 .6 159 .4 1 5 3 . 5 - 5 . 9 600 K 241 .3 2 5 5 . 5 251 .0 - 4 . 5 700 K 341 .0 357 . 1 3 5 4 . 6 - 2 . 5 800 K 4 4 4 . 4 4 6 3 . 0 4 6 2 . 2 - 0 . 8 900 K 550 .4 572 . 1 572 .4 0 . 3 1000 K 6 5 8 . 4 684 . 1 6 8 4 . 7 0 . 6 1100 K 7 6 7 . 9 798 . 5 7 9 8 . 6 0 . 1 1 200 K 878 .5 9 1 5 . 2 9 1 3 . 6 - 1 . 6 1 300 K 9 9 0 . 2 1 034 . 0 1029 .8 - 4 . 2 The E n t h a l p y o f H a t C r e e k a s h was t h u s m o d e l l e d by S i 0 2 w i t h a 4% c o r r e c t i o n . 1 1 7 A c i d Dew P o i n t F o r m u l a t i o n _\u00E2\u0080\u0094\u00E2\u0080\u0094 ( The f o l l o w i n g f o r m u l a t i o n f o r t h e a c i d dew p o i n t a s a f u n c t i o n o f s u l p h u r t r i o x i d e c o n c e n t r a t i o n was d e v e l o p e d f rom L i s l e and S e n s e n b a u g h d a t a ( 1 5 ) , u s i n g a l e a s t s q u a r e f i t . T = 1 1 4 . 9 + 6 . 5 l 3 - L o g [ S 0 3 ] + 0 . 4 0 5 2 \u00E2\u0080\u00A2 ( L o g [ S 0 3 ] ) 2 T i n K e l v i n [ S 0 3 ] - C o n c e n t r a t i o n of S 0 3 i n p a r t s p e r m i l l i o n s o 3 (ppm) Dew P o i n t T e m p e r a t u r e (K) D a t a E q u a t i o n E r r o r 0 . 7 0 373 .2 3 7 3 . 6 0 . 4 0 . 4 0 383 .2 3 8 2 . 4 - 0 . 8 2 . 0 3 9 3 . 2 392 .4 - 0 . 8 3 . 0 394 . 3 3 9 5 . 7 1 . 4 4 . 0 3 9 9 . 3 397 .8 - 1 . 5 11 .0 4 0 5 . 4 4 0 6 . 1 0 . 7 2 6 . 0 4 1 3 . 2 4 1 3 . 6 0 . 4 6 0 . 4 2 2 . 1 4 2 1 . 5 - 0 . 6 200 . 4 3 3 . 2 433 . 9 0 . 7 400 . 442 . 2 441 . 6 - 0 . 6 1 18 APPENDIX C - COMBUSTION CALCULATIONS C o a l and S o r b e n t A n a l y s e s and M o l a r C o m p o s i t i o n s H a t C r e e k C o a l : As R e c e i v e d (37) U l t i m a t e A n a l y s i s # M o l e s P e r 100 kg o f C o a l C a r b o n 30.8% 2 . 5 6 4 3 H y d r o g e n 2.4% 2.381 O x y g e n 10.6% 0 . 6 6 2 5 S u l p h u r 0.4% 0 . 0 1 2 4 6 N i t r o g e n 0.8% 0 .05711 M o i s t u r e 22.5% 1 . 2489 A s h 32.5% 0 . 5 4 0 9 H e a t of. C o m b u s t i o n H e a t o f F o r m a t i o n 1 1 5 5 5 . 0 k J / k g - 5 5 4 5 9 0 . 7 k J / k m o l H a t C r e e k C o a l : P a r t i a l l y Washed (As p e r CURL s p e c i f i c a t i o n s 13) U l t i m a t e # M o l e s A n a l y s i s P e r 100 kg o f C o a l C a r b o n 37 . 6% 3 . 2 9 6 8 2 H y d r o g e n 3.1% 3 . 0 7 4 4 8 O x y g e n 13.5% 0 . 8 4 5 3 9 S u l p h u r 0.64% 0 . 0 1 9 9 5 N i t r o g e n 0.8% 0 . 0 5 7 0 9 M o i s t u r e 10.0% 0 .55491 A s h 34.3% 0 . 5 7 0 6 3 H e a t o f C o m b u s t i o n 1 5 1 0 0 . 0 k J / k g H e a t o f F o r m a t i o n - 3 2 5 5 3 7 . 0 k J / k m o l 1 1 9 H a t C r e e k C o a l : D r y U l t i m a t e # M o l e s A n a l y s i s P e r 100 kg o f C o a l C a r b o n 39.7% 3 . 3 0 8 8 H y d r o g e n 3.1% 3 . 0 7 2 3 O x y g e n 13.7% 0 . 8 5 4 8 S u l p h u r 0.5% 0 . 0 1 6 0 8 N i t r o g e n 1 .0% 0 . 0 7 3 6 9 A s h 41 .9% 0 . 6 9 7 9 4 H e a t o f C o m b u s t i o n 1 4 9 0 9 . 7 k J / k g H e a t of F o r m a t i o n - 2 5 4 9 7 8 . 4 k J / k m o l Hat C r e e k C o a l : D r y and A s h F r e e (DAF) U l t i m a t e A n a l y s i s # M o l e s P e r 100 kg o f C o a l C a r b o n 68.4% 5 . 6 9 8 4 H y d r o g e n 5 \u00E2\u0080\u00A2 3 *6 5.2911 O x y g e n 23.6% 1.4722 S u l p h u r 0.9% 0 . 0 2 7 6 9 N i t r o g e n 1 .8% 0 .12691 H e a t o f C o m b u s t i o n H e a t o f F o r m a t i o n 2 5 6 7 7 . 8 k J / k g - 4 3 9 0 8 5 . 7 k J / k m o l 1 20 I l l i n o i s #6 C o a l (38) U l t i m a t e A n a l y s i s # M o l e s P e r 100 kg o f C o a l C a r b o n 66 . 4% 5 . 5 2 8 2 H y d r o g e n 4.5% 4 . 5 0 4 O x y g e n 7.5% 0 . 4 7 1 2 7 S u l p h u r 2.7% 0 .08421 N i t r o g e n 1 . 3% 0 . 0 9 4 2 4 M o i s t u r e 5.8% 0 . 3 2 1 9 5 A s h 11.7% 0 . 1 9 4 7 2 H e a t o f C o m b u s t i o n H e a t of F o r m a t i o n 2 7 7 0 3 . 0 k J / k g - 1 6 5 9 1 5 . 0 k J / k m o l A n d e r s o n C r e e k L i m e s t o n e (13) Component C o n c e n t r a t i o n M o i s t u r e 0.2% CO 2 42.2% CaO 53.0% MgO 0.4% S i 0 2 2.7% A 1 2 0 3 0.8% F e 2 0 3 0.2% N a 2 0 0.07% K 2 0 0.03% S 0 3 0.06% CI 0.01% 121 C o m b u s t i o n C a l c u l a t i o n s N o m e n c l a t u r e : C o m b u s t i o n R e a c t a n t s A i r M F C o m b u s t i o n a i r mass f l o w ( N 2 ) i # mol o f n i t r o g e n i n a i r f l o w ( 0 2 ) i # M o l e s o f Oxygen i n c o m b u s t i o n a i r f l o w ( C o a l ) # M o l e s o f C o a l r e q u i r e d f o r a g i v e n a i r f u e l r a t i o (1 m o l = 100 kg) ( C a C 0 3 ) i # mol o f S o r b e n t r e q u i r e d f o r a g i v e n C a / S mol r a t i o C o a l C o m p o s i t i o n Cf # M o l e s o f C a r b o n i n 100 kg o f c o a l Hf # M o l e s o f H y d r o g e n a toms i n 100 kg of c o a l Of # M o l e s o f Oxygen a toms i n 100 kg o f c o a l S f # M o l e s o f S u l p h u r i n 100 kg o f c o a l Nf # M o l e s o f N i t r o g e n a toms i n 100 kg o f c o a l K 2 O f # mol o f W a t e r i n 100 kg o f c o a l ASH f # M o l e s o f A s h i n 100 kg of C o a l C o m b u s t i o n P a r a m e t e r s 7 A i r F u e l R a t i o C a / S C a l c i u m t o S u l p h u r a t o m i c mol r a t i o BU F r a c t i o n o f c o a l b u r n e d i n c o m b u s t i o n ( C o m b u s t i o n E f f i c i e n c y ) SRF S u l p h u r R e t e n t i o n F a c t o r : f r a c t i o n o f s u l p h u r c a p t u r e d by s o r b e n t C o m b u s t i o n P r o d u c t s ( N 2 ) # mol o f n i t r o g e n i n c o m b u s t i o n g a s e s ( C 0 2 ) # mol o f C a r b o n D i o x i d e i n c o m b u s t i o n g a s e s ( H 2 0 ) # mol o f w a t e r v a p o r i n c o m b u s t i o n g a s e s (SOx) # o f m o l o f SOx i n c o m b u s t i o n g a s e s ( S 0 2 ) # o f mol o f S u l p h u r D i o x i d e i n c o m b u s t i o n g a s e s ( S 0 3 ) # o f mol o f S u l p h u r T r i o x i d e i n c o m b u s t i o n g a s e s ( C a C 0 3 ) # o f m o l o f u n s p e n t S o r b e n t i n s o l i d s d i s p o s a l ( C a S O \u00C2\u00AB ) # o f mol o f s p e n t S o r b e n t i n s o l i d s d i s p o s a l ( A s h ) # o f mol o f C o a l A s h i n s o l i d s d i s p o s a l ( U B c o a l ) # o f mol o f u n b u r n e d c o a l i n s o l i d s d i s p o s a l 1 22 C o m b u s t i o n R e a c t a n t s Oxygen ( 0 2 ) i = A irMF-0.007279 N i t r o g e n ( N 2 ) i = AirMF-0.027383 F u e l C o n s u m p t i o n (Coal) = (0 2 )1/Y \u00E2\u0080\u00A2 {Cf + Hf/4 - Of/2 + Sf + Nf/2) S o r b e n t ( C a C 0 3 ) C o n s u m p t i o n ( C a C 0 3 ) = ( C o a l ) - S f - C a / S Gaseous P r o d u c t s Of C o m b u s t i o n N i t r o g e n P r o d u c t s ( N 2 ) = ( N 2 ) i + ( C o a l ) - N f - B U / 2 C a r b o n D i o x i d e E m i s s i o n s ( C 0 2 ) = ( C o a l ) \u00E2\u0080\u00A2 [Cf.BU+Sf-SRF] Water V a p o u r ( H 2 0 ) = ( C o a l ) \u00C2\u00AB B U \u00C2\u00AB [ H f / 2 + H 2 0 f ] 123 S u l p h u r G a s e s (SOx) = ( C o a l ) - S f \u00E2\u0080\u00A2 [ B U - S R F ] ( S 0 3 ) = (SOx) \u00E2\u0080\u00A2 S K / M + S K ] ( S 0 2 ) = (SOx) - ( S 0 3 ) SK = K S 0 2 \u00E2\u0080\u00A2 /{(02)/ZProducts> KS0 2 = e x P { 9 - 8 4 7 - 16.339'T + 4.727-r2} x = T/1000 T in Degrees K O x y g e n ( 0 2 ) = ( 0 2 ) i + ( C o a l ) - B U - [ O f / 2 - H f ] - ( C 0 2 ) - ( C a S O , ) / 2 - ( S 0 2 ) - 1 . 5 - ( S O 3 ) S o l i d P r o d u c t s C a l c i u m C a r b o n a t e ( U n s p e n t S o r b e n t ) ( C a C 0 3 ) = ( C o a l ) - S f \u00E2\u0080\u00A2 [ C a / S - S R F ] C a l c i u m S u l p h a t e ( C a S O \u00E2\u0080\u009E ) = ( C o a l ) - S f - S R F A s h (From b u r n e d c o a l o n l y , a n d i n c l u d e s f l y a s h ) ( A s h ) = ( C o a l ) - B U - A S H f U n b u r n e d C o a l ( U B c o a l ) = ( C o a l ) \u00E2\u0080\u00A2 ( 1 - B U ) 124 E q u i l i b r i u m C o m b u s t i o n C a l c u l a t i o n s The f o l l o w i n g c o m p u t e r p r o g r a m c a l c u l a t e s t h e e q u i l i b r i u m c o n c e n t r a t i o n s o f 10 c o m b u s t i o n p r o d u c t s . Due t o t h e low c o m b u s t i o n t e m p e r a t u r e , i t was a s sumed t h a t t h e c o n c e n t r a t i o n o f t h e m a i n f o u r c o n s t i t u e n t s d i d n o t c h a n g e s i g n i f i c a n t l y . T h i s a s s u m p t i o n was s u p p o r t e d by t h e r e s u l t s and g r e a t l y s i m p l i f i e d t h e c a l c u l a t i o n s . \" C o m b u s t i o n \" F u e l : D r y A s h F r e e H a t C r e e k C o a l n e g l e c t i n g N i t r o g e n a n d S u l p h u r . E x c e s s A i r : 40% T e m p e r a t u r e : 8 2 5 \u00C2\u00B0 C P r e s s u r e : 1.6 MPa 1 I M P L I C I T R E A L * 8 ( A - H , 0 \" Z ) 2 R E A L * 8 K , L , M , N , K A , K B , K C , K D , K E , K F , , X ( 1 0) , C C ( 1 0) ,N2I ,LAMBDA 3 T = 8 2 5 . + 2 7 3 . 1 5 4 P=1 .6 5 CN=5.523 6 HM=5.038 7 0 0 = 1 . 7 7 0 8 LAMBDA=1.4 D i s s o c i a t i o n R e a c t i o n s : A C 0 2 = CO + 1 /20 Z B H 2 0 = OH + 1 / 2 H 2 C H 2 0 = H 2 + l / 2 0 2 D NO = 1 / 2 N 2 + l / 2 0 2 E H 2 = 2H F 0 2 = 20 S e t t h e ga s c o n s t a n t a n d t h e f u e l a n d a i r mass f l o w s : 9 RM0L=8.314 10 N 2 I = 0 . 0 2 7 3 8 3 2 11 021=0 .007278884 12 F U E L = 0 2 I / L A M B D A / ( C N + H M / 4 - 0 0 / 2 ) C a l c u l a t e t h e p r i m a r y r e a c t i o n p r o d u c t s : CO 2 13 K = C N * F U E L H 2 0 14 L = H M / 2 * F U E L 0 2 15 M = 0 2 I + F U E L * 0 0 - K - L / 2 N 2 125 15 N=N2I C a l c u l a t e t h e e q u i l i b r i u m c o n s t a n t s f o r e a c h d i s s o c i a t i o n r e a c t i o n 16 15 K A = D E X P ( D L O G ( T ) * * ( - 5 . 9 4 3 2 4 ) * ( - 3 7 9 4 l 0 0 ) + 1 5 . 4 4 0 8 ) 17 1 * D S Q R T ( 0 . 1 0 1 3 / P ) 18 K B = D E X P ( D L O G ( T ) * * ( - 5 . 7 5 2 2 ) * ( - 2 7 5 3 0 8 2 ) + 1 4 . 8 7 1 ) 19 1 * D S Q R T ( 0 . 1 0 1 3 / P ) 20 K C = D E X P ( D L O G ( T ) * * ( - 5 . 6 8 8 8 ) * ( - 2 1 3 1 2 4 5 ) + 1 2 . 6 3 1 3 ) 21 1 * D S Q R T ( 0 . 1 0 1 3 / P ) 2 2 K D = D E X P ( D L O G ( T ) * * ( - 5 . 8 5 0 3 ) * ( - l 0 3 6 1 3 7 ) + 3 . 3 4 8 3 ) 23 K E = D E X P ( - 1 1 5 . 5 4 + 0 . 1 0 2 2 1 * T ~ 0 . 0 0 0 0 2 6 4 4 * T * T ) * ( 0 . 1 0 1 3 / P ) 2 4 K F = D E X P ( - 1 3 1 . 3 4 + 0 . 1 1 6 4 1 * T - 0 . 0 0 0 0 3 0 1 8 * T * T ) * ( 0 . 1 0 1 3 / P ) C a l c u l a t e t h e t o t a l number o f p r i m a r y p r o d u c t s 25 S=K+L+N+M C a l c u l a t e t h e d e g r e e o f r e a c t i o n c o m p l e t i o n 26 A = K * K A * D S Q R T ( S / M ) 2 7 B = D S Q R T ( L / K C * ( K B * * 2 ) * D S Q R T ( M * S ) ) 28 C = K C * D S Q R T ( S / M ) * L - B / 2 29 D=KD*DSQRT(N*M) 30 E = D S Q R T ( S * K E * ( C + B / 2 ) ) / 2 . 0 31 F = D S Q R T ( S * K F * ( M - D / 2 ) ) / 2 . 0 D i s s o c i a t i o n P r o d u c t s : 1 CO 2 2 CO 3 H 2 0 4 H 2 5 0 2 6 N 2 7 NO 8 OH 9 H 1 0 O C a l c u l a t e t h e number o f m o l e s o f e a c h c o n s t i t u e n t 32 X ( 1 ) = K - A 33 X ( 2 ) = A 34 X ( 3 ) = L - B - C 35 X ( 6 ) = N - D / 2 36 X ( 7 ) = D 37 X ( 4 ) = C + B / 2 38 X ( 5 ) = M + ( A + C - D ) / 2 39 X ( 8 ) = B 126 40 X ( 9 ) = 2 * E 41 X ( 1 0 ) = 2 * F C a l c u l a t e t o t a l number o f p r o d u c t s 4 2 S U M X = X ( 1 ) + X ( 2 ) + X ( 3)+x ( 4 ) + X ( 5 ) + X ( 6 ) + X ( 7 ) + X ( 8 ) + X ( 9 ) + X ( 1 C a l c u l a t e t h e p r o d u c t c o n c e n t r a t i o n s 43 DO 231 1=1 ,10 44 C C ( I ) = X ( I ) / S U M X 4 5 231 CONTINUE 46 STOP 47 END E q u i l i b r i u m C a l c u l a t i o n R e s u l t s C o m b u s t i o n a i r : 1 kg N i t r o g e n i n a i r f l o w : 0 . 02738 kmol O x y g e n i n a i r f o l w : 0 . 00728 kmol F u e l c o n s u m e d : 0 . 00088 kmol o r 0 . 0 8 8 kg R e a c t i o n E q u i l i b r i u m C o n s t a n t s : Ka 0 . 3 0 4 E - 0 9 Kb 0 .261 E-1 0 Kc 0 . 3 0 7 E - 0 9 Kd 0 . 2 1 9 E - 0 3 Ke 0 . 3 3 2 E - 1 6 Kf 0 . 2 9 7 E - 1 8 D e g r e e o f r e a c t i o n c o m p l e t i o n A 0 . 535 E-1 1 mol B 0 . 7 1 5 E - 0 8 mol C - 0 . 3 5 7 E - 0 8 m o l D 0 . 1 94 E - 0 5 mol E 0 . 8 7 4 E-1 5 mol F 0 .281 E - 1 1 m o l 1 27 D i s s o c i a t i o n P r o d u c t s kmol o f P r o d u c t P r o d u c t C o n c e n t r a t i o n c o 2 0 . 4 8 7 E-02 0 . 1 30 CO 0 . 5 3 6 E - 1 1 0 . 1 4 3 E - 0 9 H 2 0 0 . 2 2 2 E - 0 2 0 . 0 5 9 5 H 2 0 . 2 4 6 E-1 1 0 . 6 6 0 E - 1 0 o 2 0 . 2 8 6 E - 0 2 0 . 0 7 6 6 N 2 0 . 2 7 4 E-01 0 . 733 NO 0 . 194 E - 0 5 0 .0000521 OH 0 . 7 1 5 E - 0 8 0 . 1 9 2 E - 0 6 H 0 . 1 7 5 E - 1 4 0 . 4 6 8 E - 1 3 0 0 . 5 6 3 E-11 0 .151 E - 0 9 1 28 H e a t L o s s i n P r o d u c t i o n o f CO a n d NO T y p i c a l r e a c t a n t s N 2 0 . 7 3 3 5 moi 0 2 0 . 1 9 5 0 moi C o a l 0 . 0 3 0 2 moi o r 3 .02 kg T y p i c a l p r i m a r y r e a c t i o n p r o d u c t s C 0 2 0 . 1 3 0 4 moi H 2 0 0 . 0 5 9 5 moi 0 2 0 . 0 7 6 6 moi N 2 0 . 7 3 3 5 moi H e a t o f C o m b u s t i o n 9990 k J / k g T o t a l H e a t A v a i l a b l e i n c o m b u s t i o n = 9990 k J / k g \u00E2\u0080\u00A2 3 . 0 2 k g = 3 0 . 2 MJ H e a t l o s t t o p r o d u c t i o n o f CO H e a t o f F o r m a t i o n o f C O : - 1 1 0 . 5 M J / k m o l H e a t o f F o r m a t i o n o f C 0 2 : - 3 9 3 . 5 M J / k m o l H e a t l o s t by t h e f o r m a t i o n o f CO i n l i e u o f C 0 2 : 2 8 3 . 0 M J / k m o l Q u a n t i t y o f CO p r o d u c e d @ 50 ppm : 5 0 \u00E2\u0080\u00A2 1 0 6 kmol H e a t L o s t = ( 50 - 1 0 6 k m o l ) - ( 2 8 3 . 0 M J / k m o l ) = 14 k J P e r c e n t o f t o t a l h e a t p r o d u c t i o n = 0.05% H e a t l o s t t o p r o d u c t i o n o f NO H e a t o f F o r m a t i o n o f NO: 9 0 . 4 M J / k m o l Q u a n t i t y o f NO p r o d u c e d Ci 250 ppm : 250 - 10 6 kmol H e a t L o s t = ( 2 5 0 - 1 0 s k m o l ) - ( 9 0 . 4 M J / k m o l ) = 20 k J P e r c e n t o f t o t a l h e a t p r o d u c t i o n = 0.07% 1 29 APPENDIX D - COMPONENT PERFORMANCE FORMULATIONS AND DATA P r e s s u r e L o s s e s t h r o u g h E q u i p m e n t H e a t E x c h a n g e r s PFB C o m b u s t o r Bed s i d e p r e s s u r e d r o p : B o i l e r p u m p i n g p o w e r : 4 5 KPa (5,18) N e g l i g i b l e S u p e r h e a t e r p u m p i n g p o w e r : R e h e a t e r p u m p i n g power : Wp=1.0% o f ( 1 3 , 3 9 ) Wp=2.8% o f ( 1 3 , 2 9 ) H e a t T r a n s f e r H e a t T r a n s f e r H e a t R e c o v e r y S team G e n e r a t o r S team s i d e p u m p i n g p o w e r : Gas s i d e p r e s s u r e d r o p : Wp=0.15% o f (13) P=0.4% p e r (2) T u r b i n e Power 100 k J / k g E c o n o m i s e r W a t e r s i d e p u m p i n g p o w e r : Gas s i d e p r e s s u r e d r o p : Wp=0.10% of (13) P=3.3% p e r H e a t T r a n s f e r 100 k J / k g I n t e r c o o l e r s W a t e r s i d e p u m p i n g p o w e r : N e g l i g i b l e (13) A i r s i d e p r e s s u r e d r o p : P=3.0% p e r ( 1 3 , 2 0 ) 100 k J / k g R e c u p e r a t o r s A i r s i d e p r e s s u r e d r o p : Gas s i d e p r e s s u r e d r o p : P=2.4% p e r 100 k J / k g (18) P=7% p e r 100 k J / k g (39) F e e d W a t e r H e a t e r s A l l p r e s s u r e d r o p s n e g l i g i b l e 1 30 A u x i l i a r y E q u i p m e n t Hot Gas C l e a n Up E q u i p m e n t P r e s s u r e d r o p : P=2.5% of C o m b u s t o r P r e s s u r e (18) \u00E2\u0080\u00A2 D u c t i n g Gas C o m p r e s s o r t o T u r b i n e : P=2% o f C o m b u s t o r P r e s s u r e ( 1 , 1 8 ) 131 P e r f o r m a n c e o f T u r b o m a c h i n e r y Gas C o m p r e s s o r S team Tube C y c l e : n = 86% (19) A i r H e a t e r C y c l e : 7? = 9 2 . 6 ~ 4 . 6 - P c (%) ( 2 0 , 2 9 ) Gas T u r b i n e A i r H e a t e r C y c l e : i? = 88% ( 1 8 , 2 0 ) The f o l l o w i n g t u r b i n e e f f i c i e n c y d a t a was c o m p i l e d f o r t h e s t eam t u b e c y c l e s . P r e s s u r e E f f i c i e n c y S o u r c e Ra t i o 3 80% 4 81% Oak R i d g e N a t i o n a l 5 83% L a b o r a t o r y 7 85% (18) 1 0 88% >1 0 88% 1 4 . 6 88.3% S t a l - L a v a l GT120 T u r b i n e 20 T h i s d a t a was f i t t e d t o t h e f o l l o w i n g f o r m u l a t i o n s : S team Tube C y c l e Gas T u r b i n e E f f i c i e n c y : P < 1 0 7? = 0 .75 + 0 . 0 1 8 - P - 0 . 0 0 0 5 - P 2 P > 1 0 T? = 0 .88 1 32 S team T u r b i n e The f o l l o w i n g s t e a m t u r b i n e e f f i c i e n c i e s were c o m p i l e d . ( 13,21 ) P r e s s u r e MPa T e m p e r a t u r e Deg C Power MW E f f i c i e n c y P a r a s i t i c L o s s e s S team Tut je C y c l e ( 1, 5) 1 4 . 0 0 540 500 .0 8 9 . 5 A i r Heate >r C y c l e (21 ) 2 . 6 2 0 . 38 385 245 3 2 . 1 1 7 . 9 8 4 . 2 8 2 . 8 0.46% 0.47% S team Tube C y c l e : v = 89.5% A i r H e a t e r C y c l e : 7? = 80 . 35 + 0 . 000 1 \u00E2\u0080\u00A2( S u p e r h e a t Temp) F e e d W a t e r Pumps F e e d W a t e r Pump: V = (18) 1 33 A u x i l i a r y Power L o s s e s f o r Ne t E f f i c i e n c y C a l c u l a t i o n s T u r b o m a c h i n e L o s s e s Gas T u r b i n e : S team T u r b i n e S team t u b e c y c l e : A i r h e a t e r c y c l e : 0.25% o f gas s y s t e m power 2% o f s t e a m t u r b i n e power 3% o f s t eam t u r b i n e power M a t e r i a l s H a n d l i n g L o s s e s C o a l C r u s h i n g 2 3 . 4 k J / k g c o a l S o r b e n t C r u s h i n g 4 6 . 0 k J / k g s o r b e n t C o a l & S o r b e n t 5 2 . 4 k J / k g s o l i d s h a n d l i n g A s h D i s p o s a l 61 .1 k J / k g a s h A l t e r n a t o r E f f i c i e n c y 98.5% M i s c e l l a n e o u s L o s s e s 0.2% o f t o t a l power 1 34 APPENDIX E - STEAM TUBE C Y C L E RESULTS S e l e c t e d S team C y c l e R e s u l t s B a s i c Steam Tube C y c l e Gas S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y Cp E n t r o p y G1 0 . 1 0 0 8 1 5 . 00 - 1 2 . 0 7 1.0127 6 . 8 5 8 9 G2 0 . 4 8 8 4 2 0 6 . 5 4 1 8 6 . 3 5 1.031 3 6 . 9 1 8 4 G5 1.6000 4 1 8 . 6 4 4 1 4 . 0 3 1 . 0835 6 . 9 6 4 6 G7 1.6000 5 4 4 . 3 5 552 .71 1 .1133 7 . 1450 G8 1 . 5550 9 0 0 . 0 0 - 1 4 8 2 . 4 4 1.2742 7 . 6 4 4 8 G1 0 1.481 6 8 0 0 . 0 0 - 1 6 0 8 . 1 7 1.2542 7 . 5 4 4 0 G l 5 0 . 6 2 6 2 632 . 1 7 - 1 8 1 4 . 5 9 1.2148 7 .5754 G l 6 0 .2611 4 8 1 . 5 7 - 1 9 9 4 . 5 0 1 .1727 7 . 6 0 7 7 G l 7 0 . 1087 3 5 2 . 2 5 - 2 1 4 4 . 5 8 1.1317 7 . 6 4 0 6 G21 0 . 1 0 1 3 1 6 6 . 8 5 - 2 3 5 1 . 8 8 1 . 0726 7 . 2 6 9 0 S team S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y 3 4 0 9 . 9 5 E n t r o p y D e n s i t y Cp SI 16. 0000 540 .00 6 . 446 4 7 . 7 5 3 2 .802 S3 3. 5001 3 1 7 .32 3 0 2 2 . 7 7 6 . 524 14 .004 2 . 561 S4 3. 2959 540 .00 3 5 4 3 . 6 9 7 . 301 8 . 9 6 9 2 . 265 S5 0 . 0067 38 . 32 2 3 9 8 . 0 0 7 . 733 0 . 0 0 .0 S6 0 . 0067 38 .32 1 6 0 . 5 5 0 . 550 9 9 2 . 8 6 4 4 . 1 76 S7 1 7 . 5964 39 .83 182 .34 0 . 563 9 9 9 . 8 6 8 4 . 1 34 S8 1 7 . 4868 66 .26 2 9 1 . 6 9 0 . 899 9 8 7 . 2 9 9 4 . 1 50 S9 1 7 . 0395 173 .77 744 .61 2 . 058 9 0 3 . 7 2 0 4 . 324 SI 4 17. 0394 352 .52 2 5 4 5 . 0 8 5 . 1 74 1 2 0 . 1 7 7 1 8 .337 A i r F l o w = 1 .0000 k g / s Gas F l o w = 1 .1030 k g / s F u e l F l o w = 0 . 1 5 8 9 k g / s A s h F l o w = 0 . 0 6 8 6 k g / s L i m e F l o w = 0 . 0 1 2 7 k g / s B o i l e r F low= 0 . 5 0 4 8 k g / s C y c l e E f f i c i e n c y = 3 8 . 7 0 T o t a l H e a t = 2399 .11 T o t a l Work = 928 Power T u r b i n e Work= 165 .54 S team T u r b i n e Work= 773 Pump Work = 11 1 k J / s 38 k J / s k J / s k J / s k J / s 84 00 Bed H e a t = 1608 .54 k J / s A s h H e a t = 55 .21 k J / s E c o n o m i s e r H e a t = 2 2 8 . 6 5 k J / s Power T u r b i n e C o n t r i b u t i o n \u00E2\u0080\u00A2= 1 7 . 8 3 % 135 Steam Tube C y c l e w i t h I n t e r c o o l i n g ( s i n g l e ) Gas S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y Cp E n t r o p y G1 0 . 1 0 0 8 15 .00 - 1 2 . 0 7 1 .0127 6 . 8 5 8 9 G2 0 . 4 8 8 4 2 0 6 . 5 4 186 .35 1 . 0313 6 . 9 1 8 4 G3 0 . 4 6 7 8 71 . 9 6 4 6 . 2 0 1 .0146 6 . 5 9 1 7 G4 0 . 4 6 7 8 71 . 9 6 4 6 . 2 0 1 .0146 6 . 5 9 1 7 G5 1 .6000 2 3 6 . 2 9 2 1 7 . 7 8 1.0378 6 . 6 3 9 8 G7 1 . 6000 3 6 5 . 7 2 3 5 6 . 4 7 1.0701 6 . 8 7 9 8 G8 1 . 5550 9 0 0 . 0 0 - 1 4 8 2 . 4 4 ' 1 . 2 7 4 2 7 . 6 4 4 8 Gl 0 1 . 4816 8 0 0 . 0 0 - 1 6 0 8 . 1 7 1.2542 7 . 5 4 4 0 G1 5 0 . 7 8 4 7 6 7 3 . 9 8 - 1 7 6 3 . 7 4 1.2254 7 . 5 6 6 7 G1 6 0 . 3 4 0 2 5 2 4 . 6 0 - 1 9 4 3 . 6 3 1.1854 7 . 5 9 7 3 G1 7 0 . 1 0 8 7 3 5 2 . 6 9 - 2 1 4 4 . 0 9 1.1318 7 . 6 4 1 4 G21 0 . 1 0 1 3 1 6 6 . 8 5 - 2 3 5 1 . 8 8 1 .0726 7 . 2 6 9 0 Steam S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y E n t r o p y D e n s i t y Cp SI 1 6 . 0000 5 4 0 . 00 3 4 0 9 . 95 6 . 4 4 6 4 7 . 753 2 .802 S3 \u00E2\u0080\u00A2 3 . 5001 3 1 7 . 32 3 0 2 2 . 77 6 . 524 14. 004 2 .561 S4 3 . 2959 5 4 0 . 00 3 5 4 3 . 69 7 .301 8 . 969 2 .265 S5 0 . 0067 38 . 32 2 3 9 8 . 00 7 . 7 3 3 0 . 0 0 .0 S6 0 . 0067 38 . 32 1 6 0 . 55 0 . 5 5 0 992 . 864 4 . 1 76 S7 1 7 . 8775 39 . 85 1 8 2 . 68 0 . 5 6 4 9 9 9 . 977 4 . 133 S8 1 7 . 4785 1 3 5 . 51 581 . 34 1 . 675 9 3 9 . 057 4 .230 S9 1 7 .0394 2 4 2 . 08 1 0 4 9 . 05 2 . 6 9 2 8 2 4 . 597 4 . 636 SI 4 1 7 .0394 352 . 52 2 5 4 5 . 09 5 . 1 7 4 1 2 0 . 1 76 1 8 .337 A i r F l o w = 1 . 0000 Gas F l o w = 1.1 030 F u e l F l o w = 0 . 1 5 8 9 A s h F l o w = 0 . 0 6 8 6 L i m e F l o w = 0 . 0 1 2 7 B o i l e r F l o w - 0 . 4 9 0 0 Bed H e a t = 1412 .30 A s h H e a t = 55 .21 I n t e r c o o l e r H e a t = 1 4 0 . 1 5 E c o n o m i s e r H e a t = 2 2 9 . 2 0 k g / s k g / s k g / s k g / s k g / s k g / s k J / s k J / s k J / s k J / s C y c l e E f f i c i e n c y = 4 0 . 0 7 T o t a l H e a t = 2399 .11 T o t a l Work = 9 6 1 . 4 2 Power T u r b i n e W o r k - 2 2 1 . 1 0 S team T u r b i n e W o r k - 7 5 1 . 1 7 Pump Work = 10 .85 Power T u r b i n e C o n t r i b u t i o n = 2 3 . 0 0 k J / s k J / s k J / s k J / s k J / s 1 36 S team Tube C y c l e wi t h I n t e r c o o l i n g and J_ F e e d W a t e r H e a t e r Gas S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y Cp E n t r o p y G1 0 . 1 008 1 5 . 0 0 - 1 2 . 0 7 1 .0127 6 . 8 5 8 9 G2 0 . 4884 2 0 6 . 5 4 1 8 6 . 3 5 1 .0313 6 . 9 1 8 4 G3 0 . 4678 71 . 9 6 4 6 . 2 0 1 .0146 6 . 5 9 1 7 G4 0 . 4678 71 . 96 4 6 . 2 0 1 .0146 6 . 5 9 1 7 G5 1 . 6000 2 3 6 . 2 9 2 1 7 . 7 8 1.0378 6 . 6 3 9 8 G6 1 . 6000 2 3 6 . 2 9 2 1 7 . 7 8 1.0378 6 . 6 3 9 8 G7 6000 3 6 5 . 7 2 3 5 6 . 4 7 1.0701 6 . 8 7 9 8 G8 1 . 5550 9 0 0 . 0 0 - 1482 .44 1.2742 7 . 6 4 4 8 G l 0 1 . 4816 8 0 0 . 0 0 - 1 6 0 8 . 17 1.2542 7 . 5 4 4 0 G1 5 0 . 7847 6 7 3 . 9 8 - 1 7 6 3 . 7 4 1.2254 7 . 5 6 6 7 Gl 6 0 . 3402 5 2 4 . 6 0 - 1 9 4 3 . 6 3 1.1854 7 . 5 9 7 3 G l 7 0 . 1 087 3 5 2 . 6 9 - 2 1 4 4 . 0 9 1.1318 7 . 6 4 1 4 G1 8 0 . 1 087 3 5 2 . 6 9 - 2 1 4 4 . 0 9 1 .1318 7 . 6 4 1 4 G21 0 . 1013 166 .85 - 2 3 5 1 . 8 8 1 .0726 7 . 2 6 9 0 Steam S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y E n t r o p y Mass Dens i t y Cp S1 16. 0000 540 . 00 3 4 0 9 . 95 6 . 446 0 . 560 47 . 753 2 .802 S3 3. 5001 3 1 7 . 32 3 0 2 2 . 77 6 . 524 0 . 487 1 4 . 004 2 . 561 S4 3. 2959 5 4 0 . 00 3 5 4 3 . 69 7 . 301 0 . 487 8 . 969 \u00E2\u0080\u00A2 2 . 265 S5 0 . 0067 38 . 32 2 3 9 8 . 00 7 . 733 0 . 487 0 . 0 0 .0 S6 0 . 0067 38 . 32 1 6 0 . 55 0 . 550 0 . 487 9 9 2 . 864 4 . 1 76 S7 9 . 04 1 0 3 9 . 09 171. 76 0 . 557 0 . 487 9 9 6 . 512 4 . 1 53 S8 8 . 6416 1 34 . 87 572 . 68 1 . 677 0 . 487 9 3 5 . 073 4 .252 S9 8 . 2018 24 1 . 10 1043. 06 2 . 701 0 . 487 8 1 7 . 1 65 4 .712 SIO 8 . 2039 2 9 6 . 81 1 326 . 27 3 . 223 0 . 560 7 1 8 . 962 5 .664 S1 1 8 . 2039 432 . 75 3223 . 65 6 . 477 0 . 073 2 7 . 883 2 .655 S 12 17. 0394 301 . 07 1341 . 35 3. 228 0 . 560 727 . 927 5 .431 S1 4 17 . 0393 3 5 2 . 52 2 5 4 5 . 09 5 . 1 74 0 . 560 1 2 0 . 1 76 18 .337 A i r F low= Gas F low= F u e l F l o w = A s h F low= L i m e F low= B o i l e r F low= F e e d W a t e r H e a t e r B l e e d F l o w = 0000 1 030 1 589 0686 0127 5600 k g / s k g / s k g / s k g / s k g / s k g / s C y c l e E f f i c i e n c y T o t a l H e a t T o t a l Work Power T u r b i n e S team T u r b i n e Pump Work 4 0 . 3 3 = 2399 .11 k J / s = 9 6 7 . 6 6 k J / s Work= 2 2 1 . 1 0 k j / s Work= 7 6 0 . 4 7 k J / s 1 3 . 9 0 k J / s 0 . 0 7 2 7 k g / s Power T u r b i n e C o n t r i b u t i o n 2 2 . 8 5 Bed Heat= 1 4 1 2 . 3 0 k J / s I n t e r c o o l e r Heat= 1 4 0 . 1 5 k J / s A s h H e a t = 55.21 k J / s E c o n o m i s e r H e a t = 2 2 9 . 2 0 k J / s 1 37 Net E f f i c i e n c y o f t h e I n t e r c o o l e d Steam Tube C y c l e T u r b i n e I n l e t Temp C a s e 1 8 0 0 \u00C2\u00B0 C C a s e 2 8 0 0 \u00C2\u00B0 C C a s e 3 9 0 0 \u00C2\u00B0 C C o m b u s t o r P r e s s u r e 1.6 MPa 1.6 MPa 1.6 MPa F u e l Hat C r e e k Washed I l l i n o i s #6 H a t C r e e k Washed G r o s s Work 9 6 1 . 4 3 k j 9 6 1 . 8 8 k J 9 9 0 . 5 0 k J A l t e r n a t o r L o s s e s 14 .42 k j 1 4 . 4 3 k j 1 4 . 8 6 k J M a t e r i a l s H a n d l i n g 17 .48 k j 1 1 . 8 3 k j 17 .48 k J T u r b o -m a c h i n e L o s s e s 1 5 . 5 7 k j 1 5 . 9 6 k J 1 5 . 3 0 k J Mi sc . L o s s e s 1.92 k j 1 .89 kJ 1.98 k J T o t a l l o s s e s 4 4 . 3 9 k j 44 .11 kJ 4 9 . 6 2 k J Ne t Work ' 9 1 2 . 0 4 k j 9 1 7 . 7 7 k J 9 4 0 . 8 8 k J Net E f f i c i e n c y 3 8 . 0 % 3 8 . 8 % 3 9 . 2 % 1 38 APPENDIX F - AIR HEATER C Y C L E RESULTS A i r H e a t e r C y c l e R e s u l t s ( D e s i g n L o a d ) Gas S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y Mass Cp E n t r o p y G1 0 . 1008 15 .00 - 1 2 . 0 7 2 . 9 3 0 1 . 0 1 2 7 6 . 8 5 8 9 G5 0 . 7 0 0 0 2 5 1 . 4 5 2 3 3 . 8 7 2 . 9 3 0 1 . 041 4 6 . 9 0 9 0 G7 0 . 7 0 0 0 2 5 1 . 4 5 2 3 3 . 8 7 1 . 000 1 . 0 4 1 4 6 . 9 0 9 0 G8 0. 6550 9 0 0 . 0 0 - 1 4 8 2 . 4 4 1 . 103 1 . 2742 7 . 8 8 8 9 G9 0 .6221 9 0 0 . 0 0 - 1 4 8 2 . 4 4 1.103 1 . 2742 7 . 8 8 8 9 G1 0 0 . 7 0 0 0 2 5 1 . 4 5 2 3 3 . 8 7 1 .930 1 . 0414 6 . 9 0 9 0 G1 2 0 .6221 8 5 1 . 3 6 9 0 2 . 19 1 .930 1 . 1 709 7 . 7 8 3 7 G1 3 0 .6221 8 7 0 . 0 0 3 4 . 9 2 3 . 0 3 3 1 . 2082 7 .8581 G1 5 0 . 2 4 3 4 6 6 9 . 13 - 2 0 2 . 6 7 3 . 0 3 3 1 . 1 702 7 .8931 G1 8 0. 1 029 5 0 7 . 9 7 - 3 8 8 . 0 9 3. 033 1 . 1 325 7 . 9 2 5 4 G20 0 . 1 0 1 3 2 4 0 . 6 9 - 6 8 4 . 2 3 3 . 0 3 3 1 .0592 7 .4731 G2 1 0 . 1 0 1 3 157.1 1 - 7 7 3 . 6 7 3 . 0 3 3 1 . 0395 7 . 2 8 3 4 Steam S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y E n t r o p y Q u a l i t y Cp 51 0 . 0 0 6 7 3 8 . 3 2 .160.55 0 . 5 5 0 0 . 0 4 . 1 7 6 52 1 .5657 3 8 . 4 5 162 .48 0 .551 0 . 0 4 . 1 7 2 53 1.5657 2 0 0 . 3 7 854 .11 2 . 3 3 4 0 . 0 4 . 4 9 5 55 1.5657 4 1 4 . 0 4 3 2 8 5 . 1 8 7 . 2 9 3 1.000 2 . 1 6 9 56 0 . 0 0 6 7 3 8 . 3 2 2 4 1 9 . 7 8 7 . 8 0 3 0 . 9 3 7 0 . 0 F u e l F l o w = 0 . 1 5 8 9 k g / s A s h F l o w = 0 . 0 6 8 6 k g / s L i m e F l o w = 0 . 0 1 2 7 k g / s B o i l e r F l o w - 0 . 3 9 2 2 k g / s Bed H e a t = 1 2 8 9 . 7 0 k J / s A s h H e a t = 55 .21 k J / s HRSG H e a t = 1 2 2 4 . 5 7 k J / s C y c l e E f f i c i e n c y = T o t a l H e a t T o t a l Work Power T u r b i n e Work= S team T u r b i n e Work= Pump Work Power T u r b i n e C o n t r i b u t i o n 3 7 . 5 3 % 2399 .11 k J / 9 0 0 . 4 3 k J / 5 6 2 . 3 3 k J / 3 3 9 . 3 7 k J / 1 . 27 k J / 6 2 . 4 5 % 1 3 9 A i r H e a t e r P a r t L o a d S i m u l a t i o n 90 MV? M o d u l e : D e s i g n L o a d A n a l y s i s Gas S y s t e m D a t a : P r e s s u r e Temp E n t h ' p y Mass Cp E n t ' p y HT Cof F low A r e a G1 0 . 1008 15 .0 - 1 2 . 0 7 2 . 930 1.013 6 . 8 6 G5 0 . 7000 251 .5 2 3 3 . 8 7 2 . 930 1.041 6.91 0 . 4520 G7 0 . 7000 2 5 1 . 5 2 3 3 . 8 7 1 . 000 1 .041 6.91 0 . 1 543 G8 0 . 6550 9 0 0 . 0 - 1 4 6 6 . 3 5 1 . 1 02 1 .274 7 . 8 9 208 .11 0 . 6799 G9 0 . 6221 9 0 0 . 0 - 1 4 6 6 . 3 5 1 . 1 02 1 .274 7.91 0 . 71 59 G1 0 0 . 7000 251 .5 2 3 3 . 8 7 1 . 930 1 .041 6 . 9 1 2 6 . 5 5 0 . 2977 G1 2 0 . 6221 8 5 0 . 1 9 0 0 . 7 3 1 . 930 1.171 7 . 7 8 15 .88 0 . 7 1 73 G1 3 0 . 6221 8 6 9 . 2 40 .21 3 .032 1 .208 7 . 8 6 G1 5 0 . 2432 6 6 8 . 3 - 1 9 7 . 4 3 3 .032 1.170 7 . 8 9 G1 8 0 . 1 029 5 0 7 . 4 - 3 8 2 . 4 9 3 .032 1.132 7 . 9 3 8 9 . 2 2 G1 9 0 . 1013 4 5 3 . 7 -443 . 1 0 3 .032 1.118 7 . 8 5 8 8 . 4 9 0 . 41 50 G20 0 . 1013 2 3 6 . 8 - 6 8 2 . 0 8 3 .032 1 . 058 7 . 4 7 8 9 . 0 0 0 . 291 1 G21 0 . 1013 1 5 7 . 1 - 7 6 7 . 3 2 3 .032 1 . 0 3 9 7 . 2 9 8 9 . 2 9 0 . 2456 S team S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y E n t r o p y Cp HT C o e f F l o w A r e a SI 0 . 0 0 6 7 3 8 . 3 2 1 6 0 . 5 5 0 . 550 4 . 1 76 S2 1 .5657 3 8 . 4 5 ' 162 .48 0 .551 4 . 172 1 7 8 3 . 2 6 0 . 0 0 0 9 S3 1.5657 2 0 0 . 3 7 854 . 1 1 2 . 3 3 4 4 . 495 43935 .61 0 .0011 S4 1 . 5657 2 0 0 . 3 7 2 7 9 3 . 4 2 6 . 4 3 0 2 . 7 9 9 3 9 0 . 7 7 0 . 0 0 4 7 S5 1.5657 4 1 4 . 0 4 3 2 8 5 . 19 7 . 2 9 3 2 . 1 69 2 6 0 . 8 9 0 . 0 0 7 4 S6 0 . 0 0 6 7 3 8 . 3 2 2 4 1 9 . 7 9 7 . 8 0 3 H e a t E x c h a n g e r D a t a : PFB H e a t E x c h a n g e r HRSG S u p e r h e a t e r HRSG B o i l e r HRSG W a t e r H e a t e r HT C o e f (U) 1 9 . 2 5 5 0 k J / ( s - m 2 6 9 . 8 1 6 9 k j / ( s - m 2 8 8 . 5 6 5 4 k J / ( s - m 2 8 4 . 8 9 8 3 k J / ( s - m 2 HT S u r f a c e \u00E2\u0080\u00A2 K ) 0 . 2 8 6 4 m 2 \u00E2\u0080\u00A2 K ) 0 . 0 1 6 4 m 2 \u00E2\u0080\u00A2 K ) 0 . 0 7 3 2 m 2 \u00E2\u0080\u00A2 K ) 0 . 0 4 3 7 m 2 E f f i c i e n c y = 3 6 . 82 % T o t a l H e a t = 2399 . 1 k J / s T o t a l Work = 883 .4 k J / s Power T u r b i n e Work = 561 .2 k J / s S team T u r b i n e Work = 323 .4 k J / s Pump Work = 1 .2 k J / s A c i d Dew P o i n t = 1 4 3 . 6 \u00C2\u00B0 C F u e l F l o w = 0 . 1 5 8 9 k g / s B o i l e r F l o w - 0 . 3 7 3 7 k g / s Bed H e a t = 1287 .03 k g / s 1 40 75 % LOAD Gas S y s t e m D a t a : P T H (MPa) (C) ( k J / k g ) G1 0 . 1008 15. 00 - 1 2 . 07 G5 0 . 6247 2 2 9 . 07 2 1 0 . 1 5 G7 0 . 6247 2 2 9 . 07 2 1 0 . 1 5 G8 0 . 5858 8 7 5 . 54 - 1 4 9 7 . 28 G9 0 . 5613 8 7 5 . 54 - 1 4 9 7 . 28 G1 0 0 . 6247 2 2 9 . 07 2 1 0 . 1 5 G1 2 0 . 5613 8 3 5 . 1 2 8 8 3 . 33 G1 3 0 .561 3 7 5 0 . 20 5 0 . 92 G1 5 0 .21 92 5 6 3 . 59 - 1 6 5 . 09 G1 8 0 . 1 023 4 3 3 . 28 - 3 1 2 . 1 4 G1 9 0 . 1013 3 9 5 . 07 - 3 5 4 . 64 G20 0 . 1013 2 1 3 . 1 2 - 5 5 2 . 87 G2 1 0 . 1013 1 5 3 . 71 - 6 1 6 . 05 M Cp S h (kg) ( k J / k g C ) ( k J / k g C ) ( k J / s m 2 2 .31 34 1 .0127 6 . 8 5 8 9 2 . 3 1 3 4 1 .0362 6 . 8 9 5 8 0 . 7 8 9 5 1.0362 6 . 8 9 5 8 0 . 8704 1.2692 7 . 8 9 7 4 2 3 9 . 0 . 8704 1 . 2692 7 . 9 0 9 5 1 . 5238 1.0362 6 . 8 9 5 8 2 2 . 1 . 5238 1 .1683 7 . 7 9 6 0 13. 2 . 8 9 0 6 1 .1809 7 . 7 4 8 9 2 . 8906 1 .1413 7 . 7 8 4 2 2 . 8 9 0 6 1 . 1 084 7.8150 8 9 . 2 . 8 9 0 6 1 . 0980 7 . 7 5 7 3 8 2 . 2 . 8 9 0 6 1.0488 7 . 4 1 4 5 8 4 . 2 . 8 9 0 6 1 .0359 7 .2761 8 6 . S team S y s t e m D a t a : P T H S1 0 . 0067 38 . 32 1 6 0 . 55 S2 1 . 1 758 3 8 . 42 1 6 2 . 00 S3 1 . 1 758 187. 08 794 . 59 S4 1 . 1 758 187. 08 2 7 8 4 . 1 3 S5 1 . 1 758 3 7 5 . 98 3 2 0 9 . 69 S6 0 . 0067 3 8 . 32 2 4 1 2 . 49 S X Cp h 0 . 5 5 0 0 0 . 0 4 . 1 756 0 . 5 5 0 8 0 . 0 4 . 1 726 1454 . 2 . 2 0 7 8 0 . 0 4 . 4359 3 7 5 8 5 . 6 . 5 3 0 5 1 .0 2 . 6342 302 . 7 . 3 0 9 5 1 .0 2 . 1 385 206 . 7 . 7 7 9 2 0 .9341 E f f i c i e n c y T o t a l H e a t = T o t a l Work = Power T u r b i n e Work = S team T u r b i n e Work = Pump Work = 1894 .2 k J / s 6 5 4 . 2 k J / s 425 .1 k J / s 2 2 9 . 9 k J / s 0 . 8 k J / s = 3 4 . 5 3 % A c i d Dew P o i n t = 1 4 2 . 7 \u00C2\u00B0 C F u e l F l o w = 0 . 1 2 5 4 k g / s B o i l e r F low= 0 . 2 8 8 4 k g / s Bed H e a t = 1 0 2 5 . 8 0 k J / s 141 5_0 % LOAD Gas S y s t e m D a t a : P T H G1 0 . 1 008 15. 00 - 1 2 . 07 G5 0 . 5432 204 . 47 1 8 4 . 1 6 G7 0 . 5432 2 0 4 . 47 184. 1 6 G8 0 . 5091 8 4 9 . 27 - 1 5 3 0 . 36 G9 0 . 4918 8 4 9 . 27 - 1 5 3 0 . 36 G1 0 0 . 5432 204 . 47 184. 1 6 G1 2 0 . 4918 8 1 8 . 24 8 6 3 . 78 G1 3 0 . 4918 6 2 8 . 44 5 8 . 04 G1 5 0 . 1 932 4 5 9 . 00 - 1 3 3 . 81 G1 8 0 . 1 022 3 6 3 . 93 - 2 3 9 . 1 0 G1 9 0 . 1013 338 . 47 - 2 6 6 . 98 G20 0 . 1013 1 9 0 . 08 - 4 2 6 . 92 G21 0 . 1013 147 . 91 -471 . 52 M Cp S h 2 . 6381 1.0127 6 . 8 5 8 9 1 . 7240 1 .0309 6 . 8832 0 . 5884 1 .0309 6 . 8 8 3 2 0 . 6486 1.2640 7 . 9073 2 8 6 . 0 . 6486 1 .2640 7 .91 70 1. 1 356 1 .0309 6 . 8832 18. 1. 1 356 1 .1656 7 .81 58 10. 2 . 6983 1 .1510 7 . 6 3 2 6 2 . 6983 1.1108 7 . 6 6 8 3 2 . 6983 1 .0854 7 . 6 9 9 9 8 9 . 2 . 6983 1 .0785 7 . 6 5 8 5 7 5 . 2 . 6983 1. 0403 ' 7 . 3608 7 8 . 2 . 6983 1 .0320 7 .2601 8 2 . S team S y s t e m D a t a : P T H S X Cp h SI 0 . 0067 3 8 . 3 2 160. 55 0 . 5500 0 .0 4 . 1 756 S2 0 . 8345 3 8 . 3 9 161 . 58 0 . 5506 0 .0 4 . 1734 1134. S3 0 . 8345 172 .20 7 2 8 . 88 2 . 0636 0 .0 4 . 3802 30844 . S4 0 . 8345 172 .20 2770 . 92 6 . 6484 1 .0 2 .4812 224 . S5 0 . 8345 3 3 3 . 3 7 3 1 2 5 . 97 7 . 33 1 5 1 . 0 2 . 1 070 1 5 5 . S6 0 . 0067 3 8 . 3 2 2 4 0 5 . 32 7 . 7562 0 . 931 2 E f f i c i e n c y = 3 0 . 9 0 % 1 4 1 1 . 6 k J / s 4 3 6 . 2 k J / s 284 .1 k J / s 1 5 2 . 6 k J / s 0 . 5 k J / s T o t a l H e a t = T o t a l Work = Power T u r b i n e Work = S team T u r b i n e Work = Pump Work = A c i d Dew P o i n t = 1 4 0 . 6 \u00C2\u00B0 C F u e l F l o w = B o i l e r F l o w = Bed H e a t = 0 . 0 9 3 5 k g / s 0 . 2 1 1 7 k g / s 7 7 1 . 7 7 k J / s 1 42 30 % LOAD Gas S y s t e m D a t a : p T H M Cp S h G l 0 . 1 008 15. 01 - 1 2 . 06 2 . 3950 1.0127 6 . 8 5 8 9 G5 0 . 4625 1 7 9 . 30 157. 70 1 . 2539 1 .0259 6 . 8727 G7 0 . 4625 1 7 9 . 30 157 . 70 0 . 4279 1 .0259 6 . 8727 G8 0 . 4309 8 2 3 . 41 - 1 5 6 2 . 79 0 . 4718 1.2588 7 . 9244 3 4 9 . G9 0 . 4 1 88 8 2 3 . 42 - 1 5 6 2 . 79 0 . 4718 1.2588 7 . 9324 G1 0 0 . 4625 1 7 9 . 30 1 5 7 . 70 0 . 8259 1 .0259 6 . 8727 1 4 . G1 2 0 . 4188 800 . 37 8 4 3 . 1 3 0 . 8259 1.1627 7 . 8424 8 . G1 3 0 . 41 88 5 2 6 . 18 5 7 . 02 2 . 4388 1.1240 7 . 5388 G1 5 0 . 1 685 3 7 6 . 22 - 1 0 9 . 69 2 . 4388 1.0857 7 . 5739 G1 8 0 . 1 020 3 1 6 . 93 - 1 7 4 . 42 2 . 4388 1.0697 7 . 61 49 8 9 . G1 9 0 . 1013 298 . 66 - 1 9 4 . 22 2 . 4388 1.0648 7 . 5832 6 7 . G20 0 . 1013 172. 22 - 3 2 9 . 44 2 . 4388 1.0342 7 .3171 72 . G21 0 . 1013 1 4 0 . 60 - 3 6 2 . 73 2 . 4388 1 . 0286 7 . 2398 7 6 . S team S y s t e m D a t a : p T H S1 0 . 0067 3 8 . 32 1 6 0 . 55 S2 0 . 6072 3 8 . 37 161 . 29 S3 0 . 6072 1 5 9 . 33 6 7 2 . 63 S4 0 . 6072 159. 33 2757.. 36 S5 0 . 6072 300 . 20 3061 . 87 S6 0 . 0067 38 . 32 2 4 0 4 . 80 S X Cp h 0 . 5500 0 .0 4 . 1 7 5 6 0 . 5504 0 .0 4 . 1740 8 9 9 . 1 . 9360 0 .0 4 . 3 3 9 0 2 5 4 2 1 . 6 . 7561 1 .0 2 . 3 7 0 2 171. 7 . 3674 1 .0 2 . 0 8 1 5 1 2 0 . 7 . 7 5 4 6 0 . 9 3 0 9 E f f i c i e n c y = 2 5 . 4 9 % 1026 .7 k J / s 2 6 1 . 7 k J / s 1 5 7 . 9 k J / s 104.1 k J / s 0 . 3 k J / s T o t a l H e a t = T o t a l Work = Power T u r b i n e Work = S team T u r b i n e Work = Pump Work = A c i d Dew P o i n t = 1 3 8 . 7 \u00C2\u00B0 C F u e l F l o w = B o i l e r F l o w = Bed H e a t = 0 . 0 6 8 0 k g / s 0 . 1 5 8 5 k g / s 5 6 6 . 1 2 k J / s 143 Net E f f i c i e n c y o f t h e A i r H e a t e r c y c l e T u r b i n e I n l e t Temp C a s e 1 8 7 0 \u00C2\u00B0 C C a s e 2 8 7 0 \u00C2\u00B0 C C a s e 3 9 0 0 \u00C2\u00B0 C C o m b u s t o r P r e s s u r e 0 . 7 MPa 0 . 7 MPa 0 . 7 MPa F u e l H a t C r e e k Washed I l l i n o i s #6 Hat C r e e k Washed G r o s s Work 9 0 0 . 4 3 kJ 9 1 0 . 4 3 k J 9 1 8 . 5 2 k j A l t e r n a t o r L o s s e s 13.51 k J 1 3 . 6 6 k J 13 .78 k J M a t e r i a l s H a n d l i n g 1 7 . 4 8 k J 1 5 . 9 6 k j 17 .48 k J T u r b o -m a c h i n e L o s s e s 1 1 . 5 9 kJ 11 .64 k J 12 .07 k j M i sc . L o s s e s 1.80 kJ 1.82 k j 1.84 k J T o t a l l o s s e s 4 4 . 3 8 k j 4 3 . 0 8 k J 4 5 . 1 7 k J Ne t Work 8 5 6 . 0 5 k J 9 6 7 . 3 5 k J 8 7 3 . 3 5 k J N e t E f f i c i e n c y 3 5 . 7 % 3 6 . 6 % 3 6 . 4 % 1 44 APPENDIX G - P U L V E R I Z E D COAL BOILER A N A L Y S I S RESULTS The o p e r a t i n g c o n d i t i o n s and p r e s s u r e d r o p s were t a k e n f r o m a P u l v e r i z e d C o a l B o i l e r d e s i g n c o m p l e t e d i n 1969 f o r a C a n a d i a n u t i l i t y . Two b o i l e r f e e d w a t e r h e a t e r s a r e i n c l u d e d , r e s u l t i n g i n t h e r e q u i r e d b o i l e r i n l e t t e m p e r a t u r e o f 2 5 0 \u00C2\u00B0 C . C y c l e A n a l y s i s R e s u l t s Gas S y s t e m D a t a : A i r I n l e t A i r P r e h e a t e r O u t l e t / B o i l e r I n l e t B o i l e r O u t l e t P r e h e a t e r O u t l e t Fan O u t l e t P r e s s 0 . 1 0 1 3 1013 1013 0969 1013 Temp 1 5 . 0 0 218 328, 161 1 67, 00 00 57 84 E n t h a l p y Cp E n t r o p y - 1 2 . 0 7 1 .0127 6 . 8 5 7 5 198 .44 \u00E2\u0080\u00A2 2575 .44 \u00E2\u0080\u00A2 2762 .28 \u00E2\u0080\u00A22755 . 40 1 .0337 7 . 3 9 6 5 1 .1339 7 . 5 9 5 5 1 .0789 7 . 2 4 4 9 1 .0808 7 .2481 S team S y s t e m D a t a : P r e s s u r e Temp E n t h a l p y E n t r o p y Mass D e n s i t y Cp S1 16. 8930 537 . 80 3393 . 48 6 . 403 0 . 919 51 . 000 2 . 855 S3 4 . 1 849 3 3 0 . 35 3037 . 54 6 . 473 0 . 737 1 6 .542 2 . 627 S4 4 . 0130 5 3 7 . 80 3531 . 67 7 . 1 98 0 . 737 1 1 . 005 2 . 290 S5 0 . 0067 38 . 32 2 3 6 7 . 87 7 . 636 0 . 618 0 . 0 0 . 0 S6 0 . 0067 38 . 32 160. 55 0 . 550 0 . 618 992 .864 4 . 1 76 S7 0 . 4114 38 . 35 161 . 05 0 . 550 0 . 618 993 .031 4 . 1 75 S8 0 . 4114 1 44 . 66 6 0 9 . 1 6 1 . 787 0 . 737 92 1 . 947 4 . 299 S9 4. 1 097 1 4 5 . 27 6 1 4 . 1 1 1 . 789 0 . 737 923 . 463 4 . 289 S 1 0 4. 1 097 2 5 2 . 00 1 0 9 5 . 08 2 . 81 1 0 . 919 796 .227 4. 873 SI 1 4 . 1 849 3 3 0 . 35 3037 . 54 6 . 473 0 . 182 0 .0 0 . 0 S I 2 0 . 4114 2 4 2 . 36 2 9 4 8 . 03 7 . 335 0 . 1 18 1 . 7 5 6 2 . 062 S 1 3 18. 0650 2 5 6 . 46 1116 . 58 2 . 819 0 . 919 805 . 4 9 5 4 . 743 SHI 18. 0650 3 5 7 . 33 2 5 0 5 . 71 5 . 098 0 . 919 1 34 . 645 2 3 . 1 19 A i r F l o w - 1 . 0000 k g / s C y c l e E f f i c i e n c y 38 . 24 % Gas F l o w - 1.1217 k g / s T o t a l H e a t = 2 8 3 5 . 31 k J / s F u e l F l o w - 0 . 1878 k g / s T o t a l Work = 1084 . 25 k J / s A s h F l o w - 0.081 1 k g / s S team T u r b i n e Work = = 1115 . 69 k J / s L i m e F l o w - 0 . 0 1 5 0 k g / s Pump Work 31 . 44 k J / s B o i l e r F l o w = 0 . 9 1 9 4 k g / s #1 F e e d W a t e r H e a t e r B l e e d F low= 0 . 1 8 3 k g / s #2 F e e d W a t e r H e a t e r B l e e d F low= 0 . 1 1 8 k g / s SHI = S u p e r h e a t e r I n l e t 145 Net E f f i c i e n c y o f PCB C y c l e F u e l : Hat C r e e k C o a l (Washed) G r o s s Work 1082 .64 k J G r o s s ' E f f i c i e n c y 3 8 . 2 % A l t e r n a t o r L o s s e s M a t e r i a l s H a n d l i n g F l u e Gas S c r u b b i n g S team T u r b i n e 16 .24 k J 7 . 0 7 k J 16 .24 k J 2 2 . 2 8 k J T o t a l L o s s e s 6 2 . 2 3 k J Net Work 1020.41 k J Net E f f i c i e n c y 3 6 . 0 % 146 APPENDIX H - GAS TURBOMACHINE C H A R A C T E R I S T I C EQUATIONS Axial Compressor Characteristic Equations P = 1 + 2 \u00C2\u00B0 _ Y \u00E2\u0080\u00A2 { 2p-(M*/a)\" 2 - (M* /a ) p } p = 4 + 3 . 5 - ( N * 2 ' 9 8 ) 6 = 1 . 224 . (N* 2 ' 5 1 ) a = N* - 0.2 n = . { B . M * / e - (M*/e ) 6 } y = { 0.75 + 0.19-/N* - 0 . 8 7 - N * 1 0 ' 7 5 } .TLJ/0.831 6 = 3.9 + 0.011-exp{8N*} e = 1.1-N* - 0.13 Turbine Character i s t ic Equations M* = 1.002 - exp{ - a - i | j } a = 2.11 + 4.25.(1+N*) 2 K, = 3 - ( P - l ) / ( P d - l ) n : C - A*(^~ 2\" 1*) - w{l-exp(-*/2)} C = n d +0.0078 X = exp{6.332\u00C2\u00ABN* - 8.6} a) = exp{ -0.5 - 7 . 1 \u00C2\u00AB ( N * 2 ' 3 2 ) } M* = M./r o/p Q N* = N / A Q 1 4 7 APPENDIX I - COMPUTER PROGRAMS L i s t i n g s o f t h e f o l l o w i n g m a i n p r o g r a m s and s u b r o u t i n e l i b r a r i e s a r e i n c l u d e d i n t h i s A p p e n d i x . INTERCOOLED STEAM TUBE C Y C L E ( D e s i g n L o a d ) AIR HEATER C Y C L E ( D e s i g n L o a d ) AIR HEATER C Y C L E ( D e s i g n L o a d A n a l y s i s f o r P a r t L o a d S i m u l a t i o n ) AIR HEATER C Y C L E ( P a r t L o a d S i m u l a t i o n ) P U L V E R I Z E D COAL POWER PLANT ( D e s i g n L o a d ) SUBOUTINE LIBRARY ( L o n g V e r s i o n f o r P a r t L o a d S i m u l a t i o n ) ' In tercooled Steam Tube Cycle 2 3 Design Load Analysis 4 5 6 IMPLICIT REAL*8(A - H,0 - 2) 7 C 8 REAL'S TG(21). PG(21). HG(21), SG(21). MG(21). CPG(21). LMT3, NGT, 9 1 NGC. NP. NT. NI. MF. MST1, MST. LAMBDA, MU. KT, MSOL. 10 2 MLIME, PS(15). TSI15). HS(15). SS(15). XS(15). CPS(15). 11 3 FAG(21). FAS(15). HTS(15), PCS(15). PCG(21). HTG(21). 12 4 UA(9), U(9). A(9) 13 C 14 COMMON /AREA1/ CN. HM, 00. SU. NI. ASH, H20. HFO. LAMBDA. MF, TS03 15 COMMON /AREA3/ HSOL, TSO, MSOL. MLIME 16 \u00E2\u0080\u00A2 17 Set the Soli d s Cooler Outlet Temperature' 18 TSO - 200.0 19 C 20 C COMMON /AREA 1/: COMBUSTION COMMON DATA 21 C COMMON /AREA2/: HEAT TRANSFER COMMON DATA 22 C 23 LL \u00E2\u0080\u00A2 1 24 CALL STEAM(MU. MU. MU, MU, MU, MU, MU, LL) 25 C 26 HG(8) \u00E2\u0080\u00A2 -1232.0 27 HG(10) \u00E2\u0080\u00A2 -1294.0 28 MG(8) \u00E2\u0080\u00A2 1.0887 29 MST - 1.0 30 TG(17) - 340.0 31 TPR \u00E2\u0080\u00A2 0.0 32 DO 10 IH \u00E2\u0080\u00A2 1, 15 33 TS(IH) - 0.00 34 PS(IH) \u00E2\u0080\u00A2 0.0 35 HS(IH) \u00E2\u0080\u00A2 0.0 36 SS(IH) \u00E2\u0080\u00A2 0.0 37 XS(IH) \u00E2\u0080\u00A2 0.0 38 CPS(IH) - 0.0 39 HTS(IH) \u00E2\u0080\u00A2 0.0 40 10 CONTINUE 41 XS(14) \" 1.0 42 DO 20 IH \u00E2\u0080\u00A2 1, 21 43 TG(IH) \u00E2\u0080\u00A2 0.00 44 PG(IH) \u00E2\u0080\u00A2 0.0 45 HG(IH) \u00E2\u0080\u00A2 0.0 46 SG(IH) \u00E2\u0080\u00A2 0.0 47 MG(IH) - 0.0 48 CPG(IH) - 0.0 49 20 CONTINUE 50 51 Read In the Coal Analysis 52 READ (6,30) HFO, HCO, CN, HM. 00, SU, NI , ASH, H20 53 30 FORMAT (2F12.2, 7F1S.9) 54 55 Read In the Operating Parameters 56 READ (6.40) NX. COOLEF, TCOOL, PREF 57 40 FORMAT (14, 3F12.6) 58 DO 90 IDF \u00E2\u0080\u00A2 1 , NX 59 READ (6,50) TAMB. PAMB, TMIN. TBED. TSTACK, PTURB, TTUR, LAMBDA. 60 1 TMAX. PMAX, PINTER, PARAM, NGC. NGT, NT 61 50 FORMAT (15F20.10) 62 63 Set the Jsentroplc E f f i c i e n c i e s of the Compressor, Gas and Steam 64 Turbines, and the Feed Water Pump 65 NGC - 0.86D0 66 NGT - 0.75 \u00E2\u0080\u00A2 0.178 \u00E2\u0080\u00A2 PTURB - 0.048 \u00E2\u0080\u00A2 PTURB * PTURB 67 IF (PTURB GE. 1.0) NGT \u00E2\u0080\u00A2 0.88 68 NT > 0.895D0 69 NP \u00E2\u0080\u00A2 0.8100 70 PGIC1 \u00E2\u0080\u00A2 0.05 71 PGIC2 - 0.0O1 72 PGEC \u00E2\u0080\u00A2 0.003 73 Calculate the L.P. Compressor I n l e t Properties 74 PG(1) \" PAMB \u00E2\u0080\u00A2 0.995 75 TG(1) \u00E2\u0080\u00A2 TAMB 1 76 MGO) - 1.0 77 CALL AIR(PG(1), TG(1), HQ(1), SG(1), MQ(1), CPG(1). HTG(1!, 78 1 PCG(1)) 79 Calculate the Intercooler I n l e t Properties 80 PG(2) - (PTURB\u00C2\u00AB\u00C2\u00BB0.57) \u00E2\u0080\u00A2 (PAMB*\u00C2\u00AB0.43) 81 MG(2) \u00E2\u0080\u00A2 1.0 82 SG(2) \u00E2\u0080\u00A2 SG(1) 83 CALL AIRS(PG(2). TG(2). HG(2). SG(2). MG(2). CPQ(2), HTG(2), 84 1 PCG(2)> 85 HG(2) - HGO) \u00E2\u0080\u00A2 (HG(2) - HG(D) / NGC 86 CALL AIRH(PG(2). TG(2), HG(2). SG(2). MG(2), CPG(2), HTG(2), 87 1 PCG(2)) 88 Calculate the Intercooler Outlet Properties 89 00 60 I - 1, 3 90 PG(3) - PG(2) - PGIC1 91 MGO) \u00E2\u0080\u00A2 1.0 92 TG(3) \u00E2\u0080\u00A2 TG(2) - COOLEF \u00E2\u0080\u00A2 (TG(2) - TMIN) 93 CALL AIR(PGO), TG(3). HG(3), SG(3). MG(3), CPQ(3), HTG(3), 94 1 PCG(3)) 95 HINT \u00E2\u0080\u00A2 HG(2) - HGO) 96 PG(4) - PGO) 97 MG(4) \"1.0 98 TG(4) \u00E2\u0080\u00A2 TG(3) 99 CALL AIR(PG(4), TG(4), HG(4), SG(4), MGO). CPG(4). HTG(4), lOO 1 PCQ(4)) lot C a l c u l a t e the H.P. Compressor Outlet Properties 102 PG(5) \" PTURB 103 MGO) - 1.0 104 SGI 5) > SGI 4) 105 CALL AIRS(PGO). TG(5). HG(9), SG(5). MQ(5), CPG(5). HTG(5), 106 1 PCG(5)) 107 HG(5) - HG(4) \u00E2\u0080\u00A2 (HG(5) - HG(4)) / NGC 108 CALL AIRH(PG(5). TG(5). HG(5), SG(5). MG(5), CPG(5), HTG(5). 109 1 PCG(5)) 110 Calculate the Fluldltzed Bed I n l e t Properties 111 PG(7) - PG(5) 112 MG(7) \u00E2\u0080\u00A2 MG(5) 113 HG(7) \u00E2\u0080\u00A2 HG(5) + MG(8) / MG(5) \u00E2\u0080\u00A2 (HG(8) - HG(10)) 114 CALL AIRH(PG(7), TG(7). HG(7), SG(7). MG(7), CPG(7), HTG(7), 115 1 PCG(7)) 116 Calculate Combustion and the PFB Outlet Properties 117 TG(8) - TBED 11B PG(8) \u00E2\u0080\u00A2 PG(7) - 0.045 119 L2 - 0 120 CALL BED(HG(7) , MG(7), PGIB). TG(8). HG(8). SG(8). MG(8). 121 1 HPFB, CPG(B), HTG(8), PCG(8), L2) 122 Cal c u l a t e the H.P.Turbine Inlet Properties 123 TG( 10) - TTUH 124 PG(10) - PG(8) - 0.045 * PTUR8 - 0.0014 125 MG(10) \u00E2\u0080\u00A2 MG(8) 12fi CALL GAS(PGdO). TGI 10), HG(10). SGI 10). MGI10), CPG(IO). 127 1 HTG(10). PCG(10) ) 128 Cal c u l a t e the L,P.Tu r b ina Inlet Properties 129 WC0MP2 - MC.(5) * IHGI5) - HG(4)) 130 HGI15) * HG( 10) - WC0MP2 / MG(IO) / NGT '.31 SGf 1 5 ) - SGI 10) 132 MGI 15) \" MGI 10) 1 3 3 CALL GAHSIPG(IS). TGI 15), H G ( I 5 ) . SG(15). MG(15), CPG(IS), 134 1 HTG<15). PCGl15)1 135 HGI15) * HGI10) - WC0MP2 / MGI10) 136 CALL GASH(P<-,( 15) . TGI 15). HGI15). SG(15), MG(15), CPG(15). 137 1 HTGI15), PCGl15)) 136 Cal c u l a t e the Power Turbine Inlet Properties 139 WCQMP1 \u00E2\u0080\u00A2 MGI1) * (HGI2) - HGIt)) 140 HGI16) - HGI15) - WC0MP1 / MGI15) / NGT 141 SG|16) - SG(15) 142 MGI16) \u00E2\u0080\u00A2 MGI15) 143 CALL GAHSIPGI16). TG(16), HG(16), SGI 16). MG(16), CPG(16), 144 1 HTGI16). PCGI161) 145 HG(16) \u00E2\u0080\u00A2 HGI15) - WCQMP1 / MG(15) 146 CALL GASH!PG(16), TG(16). HG(16). SGI 16). MG(16). CPG(16), 147 1 HTGI16). PCG(16)) 148 Cal c u l a t e the Power Turbine Outlet Properties 149 MGI17) \u00E2\u0080\u00A2 MGI10) 150 PG(17) \" PAMB * PGEC 151 SGI 17) - SGI 16) 152 CALL GASSIPGI 17)'. TGI17), HG(17), SG(17). MG(17). CPGI17). 153 1 HTG(17), PCGl17)) 154 HG(17) - HGI16) - NGT * (HGI16) - HGI17)) 155 CALL GASH(PG(17). TGI 17). HG(17). SGI17), MGI17). CPG(17), 156 1 HTG(17). PCGI17)) 157 Calculate the Stack Inlet Properties 158 TG(21) - TSTACK 159 PGI21) - PAMB 160 MGI 21) \u00E2\u0080\u00A2 MGI17) 161 CALL GASIPGI21). TGI21). HG(21). SGI21), MGI21). CPGI21), 162 1 HTGI21), PCG(21)) 163 Calculate Pressure Drops and Economiser Heat Transfer 164 HTE - (HGI17) - HGI21)) * MG(17) 165 PGIC1 - 0.0003 \u00E2\u0080\u00A2 PGI2) \u00C2\u00AB (HG(2) - HG(3)) 166 PGIC2 \" 0.0003 \u00E2\u0080\u00A2 PG(3) * (HG(3) - HG(4)) 167 PGEC - 0.00033 \u00E2\u0080\u00A2 PGI17) \u00E2\u0080\u00A2 (HG(17) - HGI21)) 168 TSTACK - TS03 + 10.0 169 60 CONTINUE 170 171 C STEAM PORTION OF PROGRAM 172 PSOL \u00E2\u0080\u00A2 0.069 173 PSEC \u00E2\u0080\u00A2 0.67 174 PSSH \u00E2\u0080\u00A2 1.2 175 PSRH - 0.2 176 MST - 0.5 177 Calculate the H.P. Steam Turbine Inlet Properties 178 70 PSI1) \u00E2\u0080\u00A2 PMAX 179 TS(1) \u00E2\u0080\u00A2 TMAX 180 LL \u00C2\u00BB 2 181 CALL STEAM(PSO). TS(1). HSI1). SS(1). CPSO), HTS(1). PCS(1), 182 1 LL) 183 XS(1 ) \u00E2\u0080\u00A2 1 .0 184 C a l c u l a t e t h e R e h e a t e r Inlet Properties 1 8 5 PS(3) \u00E2\u0080\u00A2 PINTER 186 S5I3) \u00C2\u00BB SSI 1) 187 CALL STAT65IPS(3). TSI3). HSI3). SS(3), CPSI3), XSI3). HTSI3). i\u00C2\u00AB8 1 PCSI.'))) 189 HS(3) - MSI1) - NT \u00E2\u0080\u00A2 (HSI1) - HSI3)) 190 CALL S T A T E H I P S O ) . TSI3). HSI3). SSI3), CPSO). XSI3), HTSI3). 19 1 1 P C S I 3 ) ) 192 C a l c u l a t e the L.P. Steam Turbine Inlet Properties 193 TS(4) - TMAX 194 P S ( 4 ) \u00C2\u00AB PSI3) - PSRH 195 ) 233 C a l c u l a t e the Properties at the Onset of B o i l i n g 234 PSI14) - PMAX \u00E2\u0080\u00A2 PSSH 235 CALL TSAT(PS(14). TS(14)) 236 LL - 2 237 CALL STEAM(PS(14). TS(14), HSI14), SS(14). CPS(14). HTSI14). 238 1 PCSI14), LL) 239 Re-Estimate the Pressure Drops and Steam Mass Flow 240 HSTE - HSID - HS(9) + HS(4) - HS(3) 241 IF (DABSfHPFB - MST'HSTE) .LE. 0.1) GO TO 80 242 MST - HPFB / HSTE 243 PSOL \u00E2\u0080\u00A2 HTS(7) \u00E2\u0080\u00A2 0.000001 \u00E2\u0080\u00A2 (HS(8) - HSC7)) 244 PSEC \u00E2\u0080\u00A2 HTS(8) \u00C2\u00BB 0.000001 \u00E2\u0080\u00A2 (HS(9) - HS(8)) 245 PSSH - HTS(14) \u00E2\u0080\u00A2 0.000010 \u00E2\u0080\u00A2 (HS(1) - HS(14)) 24S PSRH \u00E2\u0080\u00A2 HTSO) * 0.000028 \u00E2\u0080\u00A2 (HS(4) - HS(3)) 247 GO TO 70 24B 249 C a l c u l a t e the Cycle Performance 250 SQ HEAT \u00E2\u0080\u00A2 MF * HCO 251 WGT \u00E2\u0080\u00A2 MG(16) * (HG(16) - HG(17)) 252 WST - MST \u00E2\u0080\u00A2 (HS(1) - HS(3) \u00E2\u0080\u00A2 HS(4) - HS<5)) 253 WP \u00E2\u0080\u00A2 MST \u00E2\u0080\u00A2 (HS(7) - HS(6)) 254 WORK \u00E2\u0080\u00A2 WGT + WST - WP 255 EFF - WORK / HEAT \u00E2\u0080\u00A2 100 256 WR \u00E2\u0080\u00A2 WGT / WORK \u00E2\u0080\u00A2 100 257 258 90 CONTINUE 259 STOP 260 END End of f i l e O i A1r Heater Cycle 2 s Design Load Analysis 5 6 IMPLICIT REAL*8(A - H.O - Z) 7 C 8 REAL'S TG(21). PG(21), HG(21), SG<21). MG(21), CPG(2t). LMT3. NGT. 9 1 NGC, NP, NT, NI, MF, MST 1, MST, LAMBDA, MU, KT, MSOL, 10 2 MLIME, INC. PS(15), TS(15), HS(15), SS(15), XS(15). 11 3 CPSOS), FAG(21), FAS(15). HTS(15). PCS(15). PCG(21). 12 4 HTG(21), UA(9). U(9). A(9) 13 C 14 COMMON /AREA 1/ CN, HM. 00. SU, NI, ASH, H20. HFO. LAMBDA, MF, TS03 15 COMMON /AREAS/ HSOL, TSO. MSOL, MLIME 16 Set the S o l i d s CooIor Outlet Temperature 17 TSO \u00E2\u0080\u00A2 200.0 18 C 19 C COMMON /AREA 1/: COMBUSTION COMMON DATA 20 C COMMON /AREA2/: HEAT TRANSFER COMMON DATA 21 C 22 LL - 1 23 CALL STEAMfMU, MU. MU. MU. MU, MU. MU, LL) 24 C 25 HG(8) \u00E2\u0080\u00A2 -1232.0 26 HG(10) \u00E2\u0080\u00A2 -1294.0 27 MG(8) - 1.0887 28 MST - 1.0 29 TG(17) \u00C2\u00BB 340.0 30 TPR - 0.0 31 DO 10 IH \u00E2\u0080\u00A2 1, 15 32 TS(IH) - 0.00 33 PS(IH) \u00E2\u0080\u00A2 0.0 34 HS(IH) \u00E2\u0080\u00A2 0.0 35 SSIIH) - 0.0 36 XS(IH) - 0.0 37 CPS(IH) \u00E2\u0080\u00A2 0.0 38 HTSCIH) - 0.0 39 10 CONTINUE. 40 XS(14) - 1.0 41 DO 20 IN 1 1 , 6 42 TG(IH) - 0.00 43 PG(IH) - 0.0 44 HG(IH) \u00E2\u0080\u00A2 0.0 45 SG(IH) \u00E2\u0080\u00A2 0.0 46 MG(IH) - 0.0 47 CPG(IH) \u00E2\u0080\u00A2 0.0 48 20 CONTINUE 49 50 Read In the Coal Analysis 51 READ (6.30) HFO, HCO, CN, HM, 00, SU. NI, ASH. H20 52 30 FORMAT (2F12.2. 7F15.9) 53 54 Read 1n the Operating Pasrameters 55 READ (6,40) NX, X6, PREF 56 40 FORMAT (14. 2F12.6) 57 DO 260 IOF - 1 , NX 58 READ (6.50) TAMB, PAMB. TMIN, TBED. TSTACK, PTURB. TTUR. LAMBDA 59 50 FORMAT (12F2O.10) 60 61 Set the Isentropic E f f i c i e n c i e s 62 NP \" 0.8100 63 NGC - 0.926 - 0.0046 \u00C2\u00BB PTURB / PAMB 64 NGT \u00E2\u0080\u00A2 0.88 65 PGEC - 0.001 66 C a l c u l a t e the Compressor Inlet Properties 67 PG(1) \u00E2\u0080\u00A2 PAMB \u00E2\u0080\u00A2 0.995 68 TG(1) - TAMB 69 MG(1) \u00E2\u0080\u00A2 1.0 70 CALL AIR(PG(1). TG(1), HQ(1), SG(1), MG(1), CPG(1), HTG( 1). 71 1 PCG(D) 72 Ca l c u l a t e the Compressor Outlet Properties 73 PG(5) \u00E2\u0080\u00A2 PTURB 74 MG(5) \u00E2\u0080\u00A2 1.0 75 SG(5) - SG(1) 76 CALL AIRS(PG(5>, TG(5), HG(5), SG(5). MG(5), CPG(5), HTG(5), 77 1 PCGO)) 78 HG(5) - HGO) + (HG(5) - HG(1)) / NGC 79 CALL AIRH(PG(5), TG(5). HG(5), SG(S), MG(8). CPQ(5). HTG(5), 80 . 1 PCG(5)) 81 C a l c u l a t e the Bed Inlet Properties 82 PG(7) - PG(5) 83 TG(7) \u00E2\u0080\u00A2 TG(5) 84 HG(7) - HG(5) 85 SG(7) \u00E2\u0080\u00A2 SG(5) 86 MG(7) \u00E2\u0080\u00A2 MG(5) 87 CPG(7) \u00E2\u0080\u00A2 CPG(5) 88 MGOO) \"2.0 ' -* 89 IK - 0 cn 90 C a l c u l a t e Combustion and Bed Outlet Properties \u00E2\u0080\u0094\u00E2\u0080\u00A2 91 60 TG(8) \u00E2\u0080\u00A2 TBED 92 PG(8) - PG(7) - 0.045 93 LZ \u00E2\u0080\u00A2 O 94 CALL BED(HG(7), MG(7). PG(8). TG(8), HG(8), SG(8). MG(8). HPFB, 95 1 CPG(B). HTG(8), PCG(8). LZ) 96 Cal c u l a t e the Properties a f t e r Hot Gas F i l t r a t i o n 97 TG(9) \u00E2\u0080\u00A2 TG(8) 98 PG(9) - PG(8) - 0.045 \u00E2\u0080\u00A2 PTURB - 0.0014 99 MGO) \u00E2\u0080\u00A2 MG(B) 100 HGO) \" HGO) \ 101 SG(9) \u00E2\u0080\u00A2 SG(8) 102 CPGO) \" CPG(8) 103 C a l c u l a t e the Coolant A1r Inlet Properties 104 PG(10) \u00E2\u0080\u00A2 PG(5) 105 TGOO) - TG(5) 106 HG(10) - HG(5) 107 SG(10) \u00E2\u0080\u00A2 SG(5) 108 CPG(10) - CPG(5) 109 Ca l c u l a t e the Coolant A1r Outlet Properties 110 PG<12) \u00E2\u0080\u00A2 PG(9) 111 HG(12) - HGOO) + HPFB / MGOO) 112 MG(12) ' MG(10) 1 13 CALL AIRH(PG(12), TG(12), HG(12). SG(12). MG(12), CPG(12). 114 1 HTG(12), PCG(12)) 115 Ca l c u l a t e Properties of the Combustion Gas and Coolant A1r Mixture 116 PG(13) - PG(9) 117 CALL MIX(PG(13), TG(13). HG(13), HG(12). HGO), SG(13), MG(13). 118 1 MG(12), MGO), CPG( 13) , HTG(13). PCG( 13)) 119 Check the Turbine Inlet Temperature, and If wrong. Change the Coolant 120 Flow. A Newton - Raphson Convergence Technique 1s used. 121 IF (DABS(TG(13) - TTUR) .LE. 0.1) GO TO 90 122 ERR \u00C2\u00AB TG(13) - TTUR 123 IF (IK .GE. 1) GO TO BO 124 C 125 El \u00E2\u0080\u00A2 ERR 126 FI - MG(10) 127 IK \u00E2\u0080\u00A2 1 128 MGI 10)\"MG(10)-0.5 129 GO TO 60 130 C 131 80 E2 - ERR 132 F2 - MG(10) 133 MG(10) \u00E2\u0080\u00A2 (F1\u00C2\u00BBE2 - F2\u00C2\u00ABE1) / (E2 - El) 134 El \u00E2\u0080\u00A2 E2 135 . F1 \u00E2\u0080\u00A2 F2 1 136 GO TO 60 137 C 138 90 MGI1) \u00E2\u0080\u00A2 MGI10) + 1.0 139 MGI5) \u00E2\u0080\u00A2 MG( 1) 140 Cal c u l a t e the H.P.Turbine Outlet Properties 141 WCOMP \u00E2\u0080\u00A2 MG(1) \u00E2\u0080\u00A2 (HG(7) - HG(1)) 142 HG(15) \u00C2\u00BB HG(13) - WCOMP / MG(13) / NGT 143 SGI 15) \u00E2\u0080\u00A2 SGI 13) 144 MGI15) \u00E2\u0080\u00A2 MGI13) 145 CALL GAHS(PG(15). TG(15), HG(15). SG(15). MG(15). CPG(15), 146 1 HTGI15). PCGl15)) 147 HGI15) \u00E2\u0080\u00A2 HGI 13) - WCOMP / MG(13) 148 CALL GASH(PG(15), TG(15). HG(1S), SGI 15). MG(15). CPG(15). 149 1 HTG(15), PCGI15)) 150 Ca l c u l a t e the Power Turbine Outlet Properties 151 100 MGI18) \u00E2\u0080\u00A2 MGI13) 152 PG(18) \u00E2\u0080\u00A2 PAMB + PGEC 153 SG(18) \u00E2\u0080\u00A2 SGI 15) 154 CALL GASSIPGI18), TG(18), HGI18). SG(18), MG(18), CPGI18). 155 1 HTGI18), PCGl181) 156 HG(18) - HG(15) - NGT \u00E2\u0080\u00A2 (HGI15) - HGI18)) 157 CALL GASH(PG(18). TG(18). HGI18). SGI 18), MG(18). CPGI18). 158 1 HTGI18), PCG(18)) 159 Calculate the Properties at the Stack Inlet 160 110 TG(21) - TSTACK 161 PG(21) \u00E2\u0080\u00A2 PAMB 162 MGI21) \u00E2\u0080\u00A2 MG(18) 163 CALL GASIPGI21), TGI21). HG(21), SGI21). MG(21), CPGI21), 164 1 HTG(21), PCGl21)) 165 PGEC - 0.00004 \u00E2\u0080\u00A2 PG(18) \u00E2\u0080\u00A2 (HG(18) - HGI21)) 166 IF (DABS(PG(18) - PAMB - PGEC) .GT. 0.0001) GO TO 100 167 TSTACK \u00E2\u0080\u00A2 TS03 + 10.0 168 IF (0ABSITGI21) - TSTACK) . GE . 0.5) GO TO 110 169 TS03A - TS03 170 HTE - MGI21) \u00E2\u0080\u00A2 (HG(18) - HGI2D) + HSOL 171 C 172 C STEAM PORTION OF PROGRAM 173 C 174 Cal c u l a t e the Condenser Outlet Properties 175 IF - O 176 CALL PSAT(PS(1), TMIN) 177 LL - 3 178 TS(1) \" TMIN 179 CALL STEAM(PS(1), TS(1). HS(1), SS(1). CPS(1). HTS(1). PCS(1), 180 1 LL) 181 Estimate the Saturated Steam Temperature and Pressure 182 TS(5) - TS(1) + 0.80 \u00E2\u0080\u00A2 (TG(18) - T S ( D ) 183 PS(5) - DEXPK-2.9531 + ,0137682*TSO) - 0.07726* ( ( TS( 5)/100.0) * 184 1 *2))) 185 NT - 0.8035 + 0.0001 * TS(5) 186 C 187 120 CALL STATET(PS(5). TS(5). HS(5). SS(5). CPS(5), XS(5), HTS(5). 188 1 PCS(5)) 189 Ca l c u l a t e the Steam Turbine Outlet Properties 190 PS(6) \u00E2\u0080\u00A2 PS(1) 191 SS(6) \u00E2\u0080\u00A2 SS(5) 192 CPS(6) - 0.0 193 CALL STATES(PS(6), TS(6), HS(6), SS(5), CPS(6), XS(6). HTS(6), 194 1 PCSI61) 195 HS(6) - HS(5) - NT * (HS(5) - HS(6)) 196 CALL STATEH(PS(6). TS(6). HS(6). SS(6). CPS(6), XS(6), HTSI6). 197 1 PCS(6)) 198 Ca l c u l a t e the Feed Water Pump Outlet Properties 199 PS(2) \u00E2\u0080\u00A2 PS(5) 200 SS(2) \u00E2\u0080\u00A2 SS(1) 201 CALL LI0S(PS(2), T S O ) . HS(2). SS(1), CPS(2), XS(2), HTS(2), 202 1 PCSI2)) 203 HS(2) - HS(1) + (HS(2) - HS(D) / NP 204 CALL LI0HIPSI2), TSI2). HSI2), SSI2). CPSI2), XS(2). HTSI2), 205 1 PCSI2)) 206 Ca l c u l a t e the Steam Mass Flow 207 MST \" HTE / (HS(5) - HS(2)) 20B C a l c u l a t e the Properties at the Onset of B o i l i n g 209 PSI3) - PS(5) 210 CALL TSAT(PSO). TS(3)) 211 LL - 3 212 CALL STEAM(PS(3), TS(3), HS(3), SSI3), CPSO), HTSO), PCSO) 213 1 LL) 214 Cal c u l a t e the Gas Properties Corresponding to the Onset of B o i l i n g 215 HGI 20) - HGI21) * (HSO) - HS(2)) \u00E2\u0080\u00A2 MST / MGI 18) 216 PG(20) \u00E2\u0080\u00A2 PAMB 217 MG(20) - MGI18) 218 CALL GASHIPGI20), TG(20). HGI20), SGI20), MG(20), CPG(20), 219 1 HTG(20), PCG(20)) 220 C a l c u l a t e the Pinch Point Separation 221 TPIN \u00E2\u0080\u00A2 TS(2) + 0.80 \u00C2\u00BB (TG(20) - TS(2)) 222 TPIND \u00E2\u0080\u00A2 TPIN - T S O ) 223 IF (IF .GE. 1) GO TO 150 224 IF (TSO) .LT. TPIN) GO TO 160 225 IF - 1 226 140 TPI1 \u00E2\u0080\u00A2 TPIND 227 , PI \u00C2\u00AB PSO) 228 PSO) - PSO) + TPIND / 10.0 229 IF (PSO) LE. 0.0) PSO) \u00E2\u0080\u00A2 -PSO) / 10.0 230 GO TO 120 231 150 TPI2 \u00E2\u0080\u00A2 TPIND 232 P2 - PSO) 233 IF (DABS(TPIND) .LE. 0.5) GO TO 160 234 PSO) - (P2\u00C2\u00BBTPI1 - P1\u00C2\u00BBTPI2) / ( T P I 1 - TPI2) 235 IF (PSO) .LE. O.O) PSO) - -PSO) / 10.0 236 TPI1 - TPI2 237 P1 - P2 238 GO TO 120 239 240 Ca l c u l a t e the Cycle Performance 241 242 160 HEAT * MF * HCO 243 WGT \u00C2\u00AB MG(1S) \u00E2\u0080\u00A2 (HGC15) - HG(18)) 244 WST \u00C2\u00AB MST \u00E2\u0080\u00A2 (HS(5) - HS(6)) 245 WP - MST \u00E2\u0080\u00A2 (HS(2) - HS(1)) \u00E2\u0080\u00A2 0.0015 \u00E2\u0080\u00A2 WST 246 WORK \u00E2\u0080\u00A2 WGT \u00E2\u0080\u00A2 WST - WP 247 EFF \u00E2\u0080\u00A2 WORK / HEAT \u00E2\u0080\u00A2 100 248 WR \u00C2\u00BB WGT / WORK \u00E2\u0080\u00A2 100 249 260 CONTINUE 250 STOP 251 END End of f i l e 1 2 Ai r Heater Cycle 3 4 Design Load Analysis fo r Part Load Simulat ion 5 IMPLICIT REAL*8(A - H,0 - Z) 7 REAL*8 TG(21), PG(21), HG(21). SG(21). MG(21). CPG(21). NGT. NGC. 8 I NP. NT, NI. MF. MST1, MST. LAM80A, MU. KT. IMT( 5), MRATE, 9 2 PS(6). TS(6). HS(6). SS(6). XS(6). CPS(6). FAG(2I). FAS(6). 10 3 HTS(6). PCS(6). PCG(21). HTG(21). PDS(S). P0G(5), UA(5). 1 1 4 U(5), A(5) 12 C 13 INTEGER OPT. TYPE 14 TVPE - 0 15 OPT \u00E2\u0080\u00A2 0 16 C 17 c OPT: HEAT EXCHGER CALC INSTR. 1- KNOW HOT OUTLET TEMP 18 c 2- KNOW COLD OUTLET TEMP 19 c 20 c TVPE: HEAT TRANSFER CONDITIONS 1- INSIDE TUBE (TURBULENT) 21 c 2- OUTSIDE TUBE (TURBULENT) 22 c 3- OUTSIDE TUBE (BUBBLY PFB) 23 c 4- BOILING HEAT TRANSFER IN TUBES 24 c (CALCULATED AT LIQUID END) 25 c \u00E2\u0080\u00A2 26 CDMMON /AREA1/ CN. HM. 00, SU. NI. ASH. H20. HFO. LAMBDA. MF, TS03 27 COMMON /AREA2/ VEL, RHO. AREA, DIAM, MU. KT. PR. REV, EPS, TVPE 28 c 29 c COMMON /AREA1/: COMBUSTION COMMON DATA 30 c COMMON /AREA2/: HEAT TRANSFER COMMON DATA 31 c 32 LL \u00C2\u00BB 1 33 CALL STEAM(MU, MU, MU. MU. MU, MU. MU, LL) 34 c 35 UK \u00E2\u0080\u00A2 1 36 MST - 1.0 37 PDS(1 ) - 0.0 38 PDS(2) - 0.0 39 DO IO IH \u00E2\u0080\u00A2 1. 21 40 TG(IH) '0.00 41 PG(IH) \u00E2\u0080\u00A2 0.0 42 HG(IH) \u00E2\u0080\u00A2 0.0 43 SG(IH) - 0.0 44 MG(IH) \u00E2\u0080\u00A2 0.0 45 CPG(IH) \u00E2\u0080\u00A2 0.0 46 HTG(IH) - 0.0 47 PCG(IH) - 0.0 48 FAG(IH) \u00E2\u0080\u00A2 0.0 49 10 CONTINUE 50 Read In the Coal Analysis 51 READ (6.20) HFO. HCO, CN. HM, 00, SU, NI, ASH, H20 52 20 FORMAT (2F12.2, 7F15.9) 53 Read m the Operating Perameters 54 READ (6,30) NX. X6, PREF 55 30 FORMAT (14, 2F20.10) 56 READ (6.40) TAMB. PAMB. TMIN. TBED. TSTACK. PTURB. TTUR. LAMBDA 57 40 FORMAT (1OF20.10) 58 OIAM - 0.10 59 Set the Isentroplc E f f i c i e n c i e s 60 NGC - 0.894200 6 1 NGT = 0.88D0 62 NT = O 8449D0 63 NP = 0.81D0 64 Set the Bed Height and Pressure Drop 65 PFBHT - 4.9 66 PDBED - 0.045 67 Cal c u l a t e the Compressor Inlet Properties 68 PG(1) - PAMB \u00E2\u0080\u00A2 .995 69 TG(1 ) - TAMB 70 MG(1) \u00E2\u0080\u00A2 2.930 71 VEL - 15.0 72 TVPE \u00E2\u0080\u00A2 O 73 CALL AIR(PG(1). TG(1). HG(1). SG(1). MG(1), CPG(1). HTG(1). 74 1 PCG(1)) 75 C a l c u l a t e the Compressor Outlet Properties 76 PG(5) =\u00E2\u0080\u00A2 0.70000 77 MG(5) = MG(1) 78 SG(5) \u00E2\u0080\u00A2 SG(1) 79 CALL AIRS(PG(5). TG(5). HG(5). SG(5). MG(5). CPG(S). HTG(5), 80 1 PCG(5)) 81 HG(5) - HGO) \u00E2\u0080\u00A2 (HG(5) - HGO)) / NGC 82 OIAM \u00E2\u0080\u00A2 O.10 83 TYPE \u00E2\u0080\u00A2 O 84 VEL .1.4 I 85 CALL AIRH(PG(5), TG(5), HG(5). SG(5). MG(5). CPG(5). HTG(5), 86 1 PCG(5)) 87 FAG(5) - MG(5) / RHO / VEL 88 FAGOO) \u00E2\u0080\u00A2 2.167 / RHO / VEL 89 FAG(7) - 1.0 / RHO / VEL 90 Cal c u l a t e the F l u i d i z e d Bed Inlet Properties 91 PG(7) - PG(5) (j! 92 TG(7) - TG(5) 93 HG(7) \u00E2\u0080\u00A2 HG(5) 94 SG(7) - SG(5) 95 MG(7) \u00E2\u0080\u00A2 1.0 96 CPG(7) \u00E2\u0080\u00A2 CPG(5) 97 HTG(7) \u00E2\u0080\u00A2 HTG(5) 98 PCG(7) \" PCG(5) ' 99 Ca l c u l a t e Combustion and the F l u i d i z e d Bed Outlet Properties 100 TG(8) \u00C2\u00BB 900.0 101 PG(8) - 0.65500 102 LZ \u00C2\u00AB 0 103 TYPE \" 3 104 VEL - 0.82 105 CALL BED(HG(7) , MG(7). PG(8), TG(B), HG(8), SG(B), MG(8). HPFB. 106 1 CPG(8). HTG(8), PCG(8), LZ) 107 FAG(8) - MG(8) / RHO / VEL 108 PDBED = 0.00980 * PFBHT \u00E2\u0080\u00A2 (1 - EPS) 109 C a l c u l a t e the Gas Properties a f t e r the Hot Gas Cleanup 110 TG(9) - TG(8) 111 PG(9) - O.6221D0 112 MGO) \u00E2\u0080\u00A2 MGO) 113 TYPE * O 114 CALL GAS(PGO), TGO). HGO). SGO), MGO), CPGO), HTGO), 115 1 PCGO)) 116 FAGO) \u00E2\u0080\u00A2 MGO) / RHO / VEL 117 C a l c u l a t e the Cooling A i r Inlet Properties 118 PG(10) \" PG(5) 1 19 TG( 10) \u00E2\u0080\u00A2 TG(5)i 120 MG(10) . 1.93000 I 121 TYPE \u00C2\u00BB 1 122 VEL \" 1.4 123 CALL AIR(PGOO), TG(10), HG(10), SGI 10). MGI10). CPGI10). HTGI10), 124 1 PCGl 10)) 125 FAGI10) - MGI10) / RHO / VEL 126 Cal c u l a t e the Cooling A i r Outlet Properties 127 PG(12) \u00E2\u0080\u00A2 PGI9) 128 HGI12) \" HGI10) + HPFB / MGI10) 129 MGI12) - MG(10) 130 TYPE \u00E2\u0080\u00A2 1 131 VEL - 1.4 132 CALL AIRHIPGI12), TGI12), HGI12), SGI12), MG(12), CPGI12). 133 1 HTGI12). PCGl12)) 134 FAG(12) - MGI12) / RHO / VEL 135 Cal c u l a t e the Cooling A1r and Combustion Gas Mixture Properties 136 PG(13) \u00E2\u0080\u00A2 PG(9) 137 TYPE - 0 138 CALL MIXIPGI13), TGI13), HGI13). HGI12), HGI9), SGI 13), MGI13), 139 1 MG(12), MG(9), CPG(13), HTGI13), PCGl13)) 140 Calculate the H.P.Turbine Outlet Properties 141 WCOMP \u00E2\u0080\u00A2 MG(1) \u00E2\u0080\u00A2 (HGI7) - HGIt)) 142 HGI15) \u00E2\u0080\u00A2 HGI13) - WCOMP / MGI13) / NGT 143 SGI 15) \u00E2\u0080\u00A2 SG(13) 144 MGIIS) ' MGI13) 145 CALL GAHSIPGI15), TGI15), HG(15), SGI15), MGI15), CPG(15). 146 1 HTGI15). PCGl151) 147 HGI15) \" HGI13) - WCOMP / MGI13) 148 CALL GASHlPGI15), TG(15). HGI15). SGI 15), MGI15), CPGI15). 149 1 HTGI15), PCGl15)) 150 Cal c u l a t e the LP.Turbine Outlet Properties 151 50 MGI18) \u00E2\u0080\u00A2 MGI13) 152 PG(18) - O.102900 153 SGI 18) \u00C2\u00AB SGI 15) 154 CALL GASSIPGI18), TGI18). HGI18). SGI 18). MGI18). CPG(18). 155 1 HTGI18), PCGl18)) 156 HG(18) \" HG(15) - NGT \u00E2\u0080\u00A2 (HGI15) - HG(18)) 157 TYPE - 2 158 VEL - 15.0 159 DI AM - 0.05 160 CALL GASHlPGI18), TGI 18). HGI18). SGI18). MG(18). CPGI18), 161 1 HTGI18), PCGl18)) 162 Calculate the Stack Inlet Gas Properties 163 TG(21) - 157.11 164 PGI21) \u00E2\u0080\u00A2 PAMB 165 MGI21) \u00E2\u0080\u00A2 MGI18) 166 CALL GAS(PG(21), TGI21), HGI21). SGI21). MGI21). CPGI21), HTGI21). 167 1 PCGI21)) 168 FAG(21) - MG(21) / RHO / VEL 169 Determine the Heat Transfer Area for the PFB 170 CIC - (HG(12) - HG(10)) / ITG(12) - TGI 10)) \u00E2\u0080\u00A2 MG(10) 171 CIH - 100000.0 172 OPT \u00E2\u0080\u00A2 2 173 CALL HTXCHGt TG(8). TG(8), C1H, TGI 10), TGI12). C1C, UA(1), OPT) 174 C 175 C STEAM PORTION OF PROGRAM 176 C 177 MST \u00E2\u0080\u00A2 0.3737 178 TYPE \" 0 179 Calculate the Condenser Outlet Properties 180 TS(1) - TMIN 181 CALL PSATIPSID, T S ( O ) 182 LL - 3 183 CALL STEAMIPS(I), TS<1). HS<1). SSI 1 ) . CPSO). HTSI 1 ), PCSID, LL) 184 XSl 1 ) \u00E2\u0080\u00A2 0.0 185 Cal c u l a t e the Feed Water Pump Outlet Properties 186 VEL - 0.4 187 TYPE \u00E2\u0080\u00A2 1 188 PSI2) - 1.5657 189 SSO) - SSI 1) 190 CALL LI0S(PS(2). TS(2). HSU). SS(2). CPS(2). XS(2). HTS(2). 191 1 PCS(2)) 192 HS(2) - HS(1) + (HS(2) - HS ( O ) / NP 193 CALL LI0HIPSI2). TS(2). HSU). SS(2), CPS(2). XS(2), HTS(2), 194 1 PCS(2)) 195 FAS(2) - MST / RHO / VEL 196 Cal c u l a t e the Steam Properties at the Onset of B o i l i n g 197 PSO) \u00E2\u0080\u00A2= PSO) 198 CALL TSATIPSO). T S O ) ) 199 LL \u00E2\u0080\u00A2 3 200 VEL - 0.4 201 TYPE \u00E2\u0080\u00A2 4 202 CALL STEAM(PSO), T S O ) . HSO). SS(3). CPSO), HTSO), PCSO), LL) 203 FASO) - MST / RHO / VEL 204 XS(3) - 0.0 205 C a l c u l a t e the Superheater Inlet Steam Properties 206 PS(4) - PSO) \u00E2\u0080\u0094* 207 TS(4) \u00E2\u0080\u00A2 TSO) O l 208 VEL - 10.0 CJ1 209 TYPE \u00E2\u0080\u00A2 1 210 LL - 2 , 211 CALL STEAM(PS(4). TS(4). HS(4), SS(4). CPS(4), HTSI4), PCS!4), LL) 212 FASI4) - MST / RHO / VEL 213 XS(4) - 1.0 214 Cal c u l a t e the Superheater Outlet Steam Properties 215 PSO) - PSO) 216 TSO) \u00E2\u0080\u00A2 414.04D0 217 LL - 2 218 CALL STEAM(PSO). T S O ) . HSO), SSO). CPSO). HTSO). PCSO). LL) 219 FASO) - MST / RHO / VEL 220 XSO) \" 1.0 221 C a l c u l a t e the Steam Turbine Outlet Properties 222 PSO) - PS( 1) 223 SSO) - SSO) 224 60 CALL STATES(PSO). T S O ) . HS<6). S SO). CPSO). XSO). HTSO), 225 1 PCSO)) 226 HSO) - HSO) - NT \u00E2\u0080\u00A2 (HSO) - HSO)) 227 CALL STATEH(PSO), T S O ) . HSO). SSO). CPSO). XSO). HTSO), 228 1 PCSO)) 229 Cal c u l a t e the Steam Mass Flow 230 MST - (HG(18) - HG(21 ) ) / (HSO) - HS(2)) \u00E2\u0080\u00A2 MG(18) 231 Cal c u l a t e the Superheater Outlet Gas Properties 232 HGI 19) - HGI 18) - (HSO) - HS(4)) \u00E2\u0080\u00A2 MST / MG( 18) 233 PGI19) - PAMB 234 MGI19) \u00E2\u0080\u00A2 MGI18) 235 VEL \u00C2\u00AB 15.0 236 TYPE - 2 237 CALL GASHlPGI19). TG(19), HG(19), SG(19), MGI19). CPG(19). 238 1 HTG(19). PCGl19)) 239 FAGI19) \u00E2\u0080\u00A2 MG(19) / RHO / VEL 240 Cal c u l a t e the Gas Properties Corresponding to the Onset of B o i l i n g 24 1 HG(20) - HG(19) - (HS14) - HS<3)> \u00E2\u0080\u00A2 MST / MG(18) 242 PG120) - PAMB 243 MGI20) \u00E2\u0080\u00A2 MGI18) 244 TYPE - 2 245 VEL = 15.0 246 CALL GASH(PG(20), TGI20), HGI20), SGI 20), MGI20). CPGI20), 247 1 HTGI20). PCGI20)) 248 FAGI20) - MGI20) / RHO / VEL 249 Ca l c u l a t e the Heat Transfer Areas for the Three Sections of the HRSG 250 CSC \u00C2\u00BB (HSI5) - HSI4)) / (TSI5) - TS(4)) \u00E2\u0080\u00A2 MST 251 C4C \u00C2\u00AB 100000.0 252 C5C \u00E2\u0080\u00A2 (HSO) - HS(2)) / (TSO) - TS(2)) \u00E2\u0080\u00A2 MST 253 C3H - (HGI18) - HG(19)) / (TG(18) - TGI 19)) \u00E2\u0080\u00A2 MGI18) 254 C4H \u00C2\u00BB (HG(19) - HG(20)) / (TGI 19) - TG(20)) \u00C2\u00BB MG(18) 255 C5H \u00E2\u0080\u00A2 (HGI21) - HG( 20)) / (TGOI) - TG(20)) \u00E2\u0080\u00A2 MGOB) 256 OPT \u00C2\u00AB 2 257 CALL HTXCHG(TG( 18), TG(19), C3H, TSO), TSO), CSC, UA(3), OPT) 258 OPT - 1 259 CALL HTXCHGlTGI 19), TG(20), C4H. TSO). TSO), C4C, UA(4), OPT) 260 OPT \u00E2\u0080\u00A2 1 261 CALL HTXCHG(TG(20). TG(21), C5H, TSO). TSO). C5C. UAO). OPT) 262 C 263 U(1) - 1.0 / <2.0/(HTG( 10) \u00E2\u0080\u00A2 HTG( 12)) + 1.0/HTGO)) 264 UO) - 1.0 / (2.0/(HTG( 18) + HTG( 19)) + 2.0/(HTS(4) + HTSO))) 265 U(4) - 1.0 / (2.0/(HTG( 19) + HTGI 20)) + 1.0/HTSO)) 266 UO) \u00E2\u0080\u00A2 1.0 / (2.0/(HTG(20) + HTGOO) + 1.0/HTSO)) 267 C 268 DO 70 I \u00E2\u0080\u00A2 1. 5 269 IF (I .EQ- 2) GO TO 70 270 A(I) \u00E2\u0080\u00A2 UAO) / UO) 271 70 CONTINUE 272 FAS(1) \u00E2\u0080\u00A2 0.0 273 HTS(1) - 0.0 274 275 Ca l c u l a t e the Cycle Performance 276 277 HEAT - MF \u00E2\u0080\u00A2 HCO 278 WGT \u00C2\u00AB MGI15) \u00E2\u0080\u00A2 (HG(15) - HGI18)) 279 WST \u00E2\u0080\u00A2 MST \u00E2\u0080\u00A2 (HSO) - HSO)) v 280 WP - MST \u00E2\u0080\u00A2 (HSO) - HSO)) + 0.0015 \u00E2\u0080\u00A2 WST 281 WORK \" WGT + WST - WP 282 EFF \u00E2\u0080\u00A2 WORK / HEAT \u00E2\u0080\u00A2 100 283 WR - WGT / WORK \u00E2\u0080\u00A2 100 284 C 285 C DATA FOR OFF-LOAD PROGRAM 286 C 287 DO 210 I - 1. 21 288 WRITE (7.200) PG(I), TG(I), HG(I). MGO). FAG( I ) , HTG( I ) 289 200 FORMAT (6F15.7) 290 210 CONTINUE 291 C 292 FASO) \u00E2\u0080\u00A2 0.0 293 HTSO) - 0.0 294 00 230 1 - 1 . 6 295 WRITE (7.220) PS(I). TSO). HSO). FASO). HTS(I) 296 220 FORMAT (5F15.7) 297 230 CONTINUE 298 c 299 AO) = 0.0 300 DO 250 I - 1, 5 301 WRITE (7,240) A l l ) 302 240 FORMAT (F15.7) 303 250 CONTINUE 304 C 305 MRATE \" MG(7) / MG(1) 306 WRITE (7.260) MST, MRATE. MF, EPS, NGC, NGT. NT. NP. PDBED 307 260 FORMAT (9F15.7) 308 C 309 STOP 310 END End of f i l e i A i r Heater Cycle 2 3 Part Load Analysis 4 5 IMPLICIT REAL\"8(A - H.O - Z) 6 C 7 REAL*8 TG(21), PG(21), HG(21). SG(21). MG(21), CPG(21), NGT. NGC, 8 1 NT. NI, MF. MST1, MST, LAMBDA, MU. KT. LMT(5), VG<5). 9 2 VS(5). PS(6). TS(6). HS(6). SS(6). XS(6). CPS(6). FAG(21). 10 3 FAS(S), HTS(6). PCS(6). PCG(21). HTG(21), PDS(S), PDG(5), 11 4 UA(5), U(5). A(S). MRATE. MD1. MD2. MD3. ND1. ND2. ND3. 12 5 MASS 1. MASS2. MASS3. MG13. MG15. NGT2, NGT3, MS2, MASS. NP 13 6 INC, MSS. MS4. MSS, MGB 14 C 15 INTEGER OPT, TYPE 1G TYPE \u00E2\u0080\u00A2 0 17 OPT \" 0 18 COMMON /AREA1/ CN, HM. 00. SU. NI. ASH. H20. HFO. LAMBDA, MF. TSO 19 COMMON /AREA2/ VEL, RHO. AREA. DIAM, MU, KT, PR, REY, EPS. TYPE 20 21 Read I n Design Load Data 22 DO 20 I - 1. 21 23 READ (7.10) PG(I), TG(I). HG(I), MG(I), FAG(I), HTG(I) 24 10 FORMAT (SF15.7) 25 20 CONTINUE 26 DO 40 I \u00E2\u0080\u00A2 1, 6 27 READ (7.30) PS(I). TS(I). HS(I). FAS(I). HTS(I) 28 30 FORMAT (5F15.7) 29 40 CONTINUE 30 DO 60 I - 1, 5 31 READ (7,50) A(I) 32 50 FORMAT (F15.7) 33 60 CONTINUE 34 READ (7,70) OMST, MRATE. OMF, EPS, EDI, ED2, NT. NP, PDBED 35 70 FORMAT (9F15.7) 36 I n i t i a l i s e Steam Subroutines 37 LL - 1 38 CALL STEAM(MU, MU. MU. MU. MU. MU. MU. LL) 39 UK - 1 40 MST \" OMST 41 MF - OMF 42 PAMB \u00E2\u0080\u00A2 PG(?1) 43 TAMB \u00E2\u0080\u00A2 TG(1) 44 C 45 \u00E2\u0080\u00A2 DO 80 IH \u00E2\u0080\u00A2 1, 21 46 SG(IH) \u00E2\u0080\u00A2 0.0 47 CPG(IH) - 0.0 48 PCG(IH) - 0.0 49 80 CONTINUE 50 PFBHT \u00C2\u00AB 4.9 51 OEPS - EPS 52 VOL - (1.0 - EPS) * PFBHT 53 54 Read I n Coat Analysis 55 READ (6,90) HFO, HCO. CN. HM, 00. SU. NI, ASH, H20 56 90 FORMAT (2F12.2, 7F15.9) 57 58 Read I n the Operating Parameters 59 READ (6.100) NX 60 100 FORMAT ( 14 ) 61 DO 360 IOF * 1. NX 62 READ (6.110) LAMBDA. PFBHT, BYPASS, TEMP, TAMB 63 110 FORMAT (5F20.10) 64 DIAM \u00E2\u0080\u00A2 O.10 65 Set the Design Flow V e l o c i t i e s 66 VG(1) \u00C2\u00BB 0.82 67 VG(2) - 0.82 68 VG(3) \u00E2\u0080\u00A2 15.0 69 VG(4) - 15.0 70 VG(5) \u00E2\u0080\u00A2 15.0 71 VS(1) \" 1.4 72 VS(2) - 1.4 73 VS(3) \u00E2\u0080\u00A2 10.0 74 VS(4) - 10.0 75 VS(5) - 0.4 76 C 77 MG18 - MG(18) 78 TMIN \u00E2\u0080\u00A2 TS(1) 79 TBED - TG(8) 80 TEMP - TG(8) 81 FO - OMST \u00E2\u0080\u00A2 DS0RT(TS(5) + 273.15) / PS(5) 82 Cal c u l a t e the Compressor Design Parameters 83 R0T1 \u00C2\u00AB 1.0 84 MD1 \u00E2\u0080\u00A2 MG(1) * DSQRT(TGO) + 273.15) / PG(1) 85 ND1 \u00E2\u0080\u00A2 1 / DSQRT(TGO) + 273.15) 86 PD1 - PG(7) / PG(1) 87 C a l c u l a t e the H.P.Turbine Design Parameters 88 MD2 \u00E2\u0080\u00A2 MG(13) * 0S0RT(TG(13) * 273.15) / PG(13) 89 ND2 - 1 / DSQRT(TG(13) + 273.15) 90 P02 \" PG(13) / PG(15) 91 NGT2 - ED2 92 MASS2 - 1.0DO 93 Cal c u l a t e the Power Turbine Design Parameters 94 R0T2 \u00C2\u00BB 1.0 95 MD3 \u00E2\u0080\u00A2 MG(15) \u00E2\u0080\u00A2 DSQRT(TG(15) + 273.15) / PG(15) 96 ND3 \u00E2\u0080\u00A2 1 / DS0RT(TG(15) \u00E2\u0080\u00A2 273.15) 97 PDS \u00E2\u0080\u00A2 PG(15) / PG(18) 98 EDS \" ED2 99 Cal c u l a t e the Compressor Inlet Properties 100 120 VEL - 15.0 101 TG(1) - TAMB 102 TYPE - O , 103 CALL AIR(PG(1), TG(1), HG(1), SG(1), MG(1),. CPG(1), HTG(1), 104 1 PCGO)) 105 Determine the Compressor C h a r a c t e r i s t i c s 106 MASS 1 \u00E2\u0080\u00A2 MGO) \u00E2\u0080\u00A2 DSORT(TGO) + 273.15D0) / PG(1) / MD 1 107 SPEE01 - R0T1 / DS0RT(TG(1) + 273.15) / ND1 108 MS2 = MASS2 * MD2 109 00 130 I \u00E2\u0080\u00A2 1. 7 110 CALL GC(SPEED1, MASS 1, NGC, PR 1. P01. ED1, PSUR) 111 MASS \u00E2\u0080\u00A2 MS2 / MD1 * PG(13) / PG(5) \u00E2\u0080\u00A2 DS0RT((TG(1) + 273.15)/( 112 1 TG( 13) + 273.15)) / MG(13) \u00C2\u00BB MGO) \u00E2\u0080\u00A2 PR 1 113 MASS 1 \u00C2\u00AB (MASS + 2.0*MASS1) / 3.0 114 IF (DABS(MASS - MASS 1) .LE. 0.00005) GO TO 140 115 130 CONTINUE 116 140 MGO) =\u00E2\u0080\u00A2 MASS 1 / DSORT(TGO) + 273.15) \u00E2\u0080\u00A2 PGO ) \u00E2\u0080\u00A2 MD 1 117 Cal c u l a t e the Compressor Outlet Properties 118 PG(5) \u00E2\u0080\u00A2 PG(1) \u00E2\u0080\u00A2 PR 1 1 19 MG(5) * MG(1) 120 SG(5) \" SGO ) 121 TYPE \u00E2\u0080\u00A2 O 122 CALL AIRS(PG(5), TG(5), HG(5). SG(5), MGO), CPG(5), HTG15). 123 1 PCG(5)) 124 HG(5) - HG(1) + (HG(5) - HG(1)) / NGC 125 DIAM - 0.10 126 CALL AIRH(PG(5), TG(5), HG(5), SG(5), MG(5). CPG(5). HTG(5), 127 1 PCG(5)) 128 S p l i t o f f the Bypass A i r 129 MGB \u00E2\u0080\u00A2 MGI5) \u00E2\u0080\u00A2 BYPASS 130 MG(5) - MG(5) - MGB 131 Calculate the F l u i d i z e d Bed Inlet Properties 132 MGI7) \u00C2\u00BB MGI5) \u00E2\u0080\u00A2 MRATE 133 TG(7) - TG(5) 134 HG(7) \u00E2\u0080\u00A2 HGI5) 135 PG(7) \u00E2\u0080\u00A2 PGI5) 136 SG(7) - SGI5) 137 CPGI7) \u00E2\u0080\u00A2 CPGI5) 138 HTGI 7 ) - HTGI 5 ) 139 Calculate Combustion and the F l u i d i z e d Bed Outlet Properties 140 150 TG(8) \u00E2\u0080\u00A2 TEMP 141 PG(8) \u00E2\u0080\u00A2 PGI7) - 0.0305 * ((VG(1)/0.82)*\u00C2\u00BB2) - PDBED 142 LZ - 1 143 TYPE \u00E2\u0080\u00A2 3 144 VEL \" VGID 145 CALL BEDIHGI7), MGI7), PGI8), TGI8), HG(8). SGI8). MGI8), HPFB, 146 1 CPGI8), HTGI8), PCG(B>; LZ) 147 VGI1) \u00E2\u0080\u00A2 MG(8) / RHO / FAGl8) 148 PDBED - 0.0098 \u00E2\u0080\u00A2 (1 - EPS) \u00E2\u0080\u00A2 PFBHT 149 Calculate the Heat Transfer to the Coolant Air 150 C1C - (HGI12) - HGI10)) / (TG(12) - TG(10)) \u00E2\u0080\u00A2 MG(10) 151 C IH \u00E2\u0080\u00A2 100000.0 152 U(1) \u00E2\u0080\u00A2 1.0 / (2.0/(HTG(10) t HTG(12)) + 1.0/HTGI8)) 153 UAI1) - AH) * U(1) 154 OPT - 2 155 CALL EFFECT(TG(8) , TG(8), C IH, TG(10). TG(12). C1C, UAO), OPT) 156 Calculate Gas Properties a f t e r the Hot Gas Cleanup 157 TG(9) \u00E2\u0080\u00A2 TG(8) 158 PG(9) \u00E2\u0080\u00A2 PG(8) - 0.0329 \u00E2\u0080\u00A2 ( (VGO )/0.82 )\u00E2\u0080\u00A2\u00E2\u0080\u00A22 ) 159 MGO) - MGI8) 160 TYPE - 0 161 CALL GAS(PGO), TG( 9) , HGO), SG(9), MG(9). CPGO), HTGI 9), 162 1 PCG(9)) 163 Calculate the Cooling A1r Inlet Properties 164 MG(IO) \u00E2\u0080\u00A2 MG(5) \u00E2\u0080\u00A2 (1.0 - MRAfE ) 165 PG(10) \" PG(7) 166 TG(10) \u00E2\u0080\u00A2 TG(7) 167 TYPE - 1 168 VEL - VS(1) 169 CALL AIR(PGOO), TGOO), HGOO). SGOO). MGOO), CPG(IO). 170 1 HTGOO). PCGOO)) 171 Calculate the Cooling A1r Outlet Properties 172 PG( 12) \u00E2\u0080\u00A2 PGO) 173 MGI12) \u00E2\u0080\u00A2 MGI10) 174 TYPE - 1 175 VEL \u00E2\u0080\u00A2 VSI1) 176 CALL AIRIPGI12). TG(12). HG(12), SG(12). MG(12), CPG(12), 177 1 HTGI12), PCG(12)) 178 VSO) - MG(12) / RHO / FAGl 12) 179 HEAT 1 \u00E2\u0080\u00A2 MG(10) \u00E2\u0080\u00A2 (HGI12) - HGI10)) 180 Check the PFB Heat Balance 181 TEMP-TEMP+IHPFB-HEAT1)/UA(1) 182 IF (0ABS(HEAT1 - HPFB) .GE. 0.05) GO TO 150 183 Cal c u l a t e the Properties of the Cooling A i r and Combustion Gas Mixture 184 PG( 13) - PGO) 185 TYPE - O 186 CALL MIX(PG( 13). TG(13). HG(13), HG(12), HGO), SG(13). MG(13), 187 1 MG(12). MGO), CPG(13), HTGI 13). PCG(13)) 188 Calculate the Properties of Bypass and Cooling A i r and Combustion Gas 189 Mixture 190 CALL MIX(PG(13). TG(13), HG13, HG(5), HG(13), SG(13), MG13, MGB, 191 1 MGI13). CPGI13), HTGI13), PCGl13)) 192 HGI 13) \u00E2\u0080\u00A2 HG13 193 MG(13) \u00E2\u0080\u00A2 MG13 194 Cal c u l a t e the'H.P.Turbine Outlet Properties 195 WCOMP - MGO) \u00E2\u0080\u00A2 (HGO) - HG(1)) ' 196 SG(15) - SG(13) 197 MG(15) \u00E2\u0080\u00A2 MG(13) 198 HGI15) \u00E2\u0080\u00A2 HGI13) - WCOMP / NGT2 / MG(13) 199 CALL GAHSIPGI15). TG(15). HG(15). SGI 15), MGI15), CPGI15), 200 1 HTG(15). PCG(15)) 201 HGI15) \u00E2\u0080\u00A2 HGI13) - WCOMP / MG(13) 202 CALL GASHlPGI 15), TGI 15). HGI 15), SG(15). MG(15), CPGOS), 203 1 HTG(15), PCGl15)) 204 Cal c u l a t e the H.P.Turbine C h a r a c t e r i s t i c s 205 SPEED2 \u00E2\u0080\u00A2 R0T1 / DS0RT(TG(13) + 273.1S) / N02 206 PR2 - PG(13) / PG(15) 207 CALL GTISPEED2. MASS2, NGT2, PR2. PD2, EOS) 208 MG13 - MASS2 / 0S0RT(TGO3) + 273.15) * PGO3) \u00E2\u0080\u00A2 M02 209 IF (DABS(MG(13) - MG13) .GE. 0.0001) GO TO 120 210 Cal c u l a t e the L.P.Turbine C h a r a c t e r i s t i c s 211 SPEEDS - R0T2 / DSQRT(TG(1S) + 273.15) / ND3 212 PR3 - PG(15) / PG(18) 213 CALL GT(SPEEDS, MASSS, NGT3, PR3, PDS. EDS) 214 MG15 \u00E2\u0080\u00A2 MASSS / DSQRT(TG(15) \u00E2\u0080\u00A2 273.15) \u00E2\u0080\u00A2 PG(15) * MD3 215 Calculate the L.P.Turbine Outlet Properties 216 MGI18) - MG(13) 217 PGOB) \u00E2\u0080\u00A2 .1013 + 0.0011 \u00E2\u0080\u00A2 ( (MG(1B)/MG18)**2) 218 SG(18) - SG(15) 219 CALL GASSIPGI18). TG(18), HGI18). SG(18). MG(18), CPGI18), 220 1 HTG(18), PCG(18)) 221 HGI18) \u00E2\u0080\u00A2 HGI15) - NGT3 \u00E2\u0080\u00A2 (HG(15) - HOI 18)) 222 TYPE - 2 223 VEL - 15.0 224 DIAM \u00E2\u0080\u00A2 0.05 225 CALL GASHlPGI 18), TG(18), HG(18). SG(18). MG(18). CPGOB), 226 1 HTGI18), PCGl18)) 227 C 228 R0T1 - R0T1 \u00E2\u0080\u00A2 ((MG15/MG(15))**0.3) 229 IF (0ABS(MG15 - MG(15)) . GT '. 0.0001) GO TO 120 230 C 231 C STEAM PORTION OF PROGRAM 232 C 233 TA1 \u00E2\u0080\u00A2 A(4) + A(5) 234 Cal c u l a t e the Condenser Outlet Properties 235 TYPE ' O 236 CALL PSAT(PSO). TMIN) 237 LL \u00E2\u0080\u00A2 3 238 TSO) - TMIN 239 CALL STEAM(PSO). T S O ) . HSO). SSO), CPSO). HTSO). PCSO). 240 1 LL) 241 XS(1) \" 0.0 242 C 243 DIF \u00C2\u00BB 0.1 244 MXO \u00E2\u0080\u00A2 1 245 IZ - 1 246 MST \u00E2\u0080\u00A2 OMST 247 INC \u00C2\u00BB -MST / 10.0 248 Calculate the B o i l e r Pressure and Saturation Temperature from the 249 Steam Turbine C h a r a c t e r i s t i c s 250 160 PS(5) \u00E2\u0080\u00A2 MST \u00E2\u0080\u00A2 DSQRT(TSO) \u00E2\u0080\u00A2 273.15) / FO 251 PS(4) \u00E2\u0080\u00A2 PS(5) 252 CALL TSAT(PS(4), TS(4)) 253 Cal c u l a t e the Superheater Heat Transfer 254 CSC - (HS(5) - HS(4)) / (TS(5) - TS(4)) \u00E2\u0080\u00A2 MST 255 CSH - (HG(19) - HG(18)) / (TG(19) - TG(18)) \u00E2\u0080\u00A2 MG(18) 256 U(3) - 1.0 / <2.0/(HTG<18) \u00E2\u0080\u00A2 HTG(19)) + 2.0/(HTS(4) \u00E2\u0080\u00A2 HTS(5))) 257 UA(3) - AO) \u00E2\u0080\u00A2 U(3) 258 170 FORMAT ('#3 U(3),C3C,C3H\u00C2\u00BB', SF10.5) 259 OPT - 1 260 CALL EFFECT! TG( 18), TG(19), C3H. TS(4), T S O ) . CSC, UA(3), OPT) 261 Calculate the Superheater Outlet Gas Temperature 262 PG(19) \u00E2\u0080\u00A2 PAMB 263 MG(19) \u00C2\u00BB MG(18) 264 TYPE \u00E2\u0080\u00A2 2 265 VEL \u00E2\u0080\u00A2 VGO) 266 CALL GAS(PG(19). TG(19), HG(19). SG(19), MG(19). CPG(19), 267 1 HTG(19). PCG(19)) 268 VGO) \" MG(19) / RHO / FAG(19) 269 Cal c u l a t e the Superheater Outlet Steam Temperature 270 TYPE \u00E2\u0080\u00A2 1 271 TS5 \u00E2\u0080\u00A2 TSO) 272 HS(5) \u00E2\u0080\u00A2 HS(4) + MG(18) / MST \u00E2\u0080\u00A2 (HG(18) - HG(19)) 273 VEL - VSO) 274 LL \u00E2\u0080\u00A2 2 275 CALL STATEH(PSO) . TS(5). HS(5). SS(5), CPS(5). XS(5), HTS(5). 276 1 PCSO)) 277 VSO) - MST / RHO / FASO) 278 Check to see If the Superheated Steam Temperature has Changed 279 IF (DABS'TSO) - TS5) GE. 0.01) GO TO 160 280 Calculate the B o i l i n g Saturation Properties 281 PSO) \u00E2\u0080\u00A2 PS(4) 282 CALL TSAT(PSO). TSO)) 283 VEL \u00E2\u0080\u00A2 VS(4) 284 LL \u00E2\u0080\u00A2 2 285 CALL STEAM(PS(4), TS(4). HS(4). SS(4), CPS(4), HTS(4), PCS(4). 286 1 LL) 287 XS(4) - 0.0 288 VS(4) - MST l/ RHO / FAS(4) 289 TYPE - 4 290 VEL \u00E2\u0080\u00A2 VSO) 291 LL - 3 292 CALL STEAM(PSO). T S O ) , HSO), SSO), CPSO), HTSO), PCSO) . 293 1 LL) 294 XSO) - 0.0 295 Calculate the Feed Water Pump Outlet Properties 296 TYPE \u00C2\u00AB 1 297 PSO) - PSO) 298 CALL LI0S(PS(2), T S O ) . HSO), SS(1). CPSO), XSO). HTSO). 299 1 PCSO)) 300 HSO) - HSO) \u00E2\u0080\u00A2 (HSO) - HSO)). / NP 301 CALL LIQH(PSO). T S O ) . HSO), S S O ) . CPSO). XSO). HTSO), 302 1 PCSO)) 303 VSO) \u00E2\u0080\u00A2 MST / RHO / FASO) 304 C a l c u l a t e the Heat Transfer In the B o i l i n g Section of the HRSG 305 C4C - 10CO00.0 306 C4H \u00E2\u0080\u00A2 (HGOO) - HG(19)) / (TGOO) - TG(19)) \u00E2\u0080\u00A2 MG(18) 307 U(4) \u00E2\u0080\u00A2 1.0 / (2.0/IHTGO9) + HTGOO)) \u00E2\u0080\u00A2 1.0/HTSO)) 308 UA(4) \u00E2\u0080\u00A2 U(4) * A(4) 309 180 FORMAT ('#4 U(4),C4C,C4H-', 3F10.5) 310 OPT - 1 311 CALL EFFECT(TG( 19). TGI 20). C4H. T S O ) . T S(4), C4C, UA(4). OPT) 312 Cal c u l a t e the Gas Properties Corresponding to the Onset of B o i l i n g 313 PGOO) - pAMB 314 MGOO) \u00E2\u0080\u00A2 MG( 18) 315 VEL - VG(4) 316 TYPE \u00E2\u0080\u00A2 2 317 CALL GAS(PGOO), TGOO). HG(20). SGOO). MGOO). CPGOO). 318 1 HTGOO), PCGOO)) 319 VGO) - MGOO) / RHO / FAG(20) 320 C a l c u l a t e the Heat Transfer i n the Feed Water Section of the HRSG 321 C5C \u00E2\u0080\u00A2 (HSO) - HSO)) / (TSO) - T S O ) ) \u00E2\u0080\u00A2 MST 322 C5H - ( H G O O - HGOO)) / (TG(21) - TGOO)) * MG(18) 323 U(5) \u00E2\u0080\u00A2 1.0 / (2.0/(HTG(20) + HTGOO) + 1.0/HTSO)) 324 UA(5) - U(5) * A(5) 325 190 FORMAT ('#5 U(5),C5C,C5H\"'. 3F10.5) 326 OPT - 1 327 CALL EFFECT(TG(20) . T G O O . C5H, T S O ) . T S O ) , CSC, UA(5). OPT) 328 C a l c u l a t e the Stack Inlet Gas Properties \u00E2\u0080\u0094* 329 200 P G O O - PAMB (JI 330 MG(21) \u00E2\u0080\u00A2 MG(18) VO 331 VEL \u00E2\u0080\u00A2 VGO) 332 CALL GAS(PG(21), T G O O . HGOO, SG(21). MGOO. CPGOO. 333 1 HTGOO, PCGOO) 334 VGO) \u00E2\u0080\u00A2 MGOO / RHO / FAGOI) 335 Re-Estimate the Steam Mass Flow 336 MS4 - MG( 18) \u00E2\u0080\u00A2 (HG(19) - HGOO)) / (HS(4) - H S O ) ) 337 MSS \u00E2\u0080\u00A2 MG(18) * (HGOO) - H G O O ) / ( H S O ) - H S O ) ) 338 MST \u00E2\u0080\u00A2 (MS4 \u00E2\u0080\u00A2 MS5) / 2.0 339 C0NV1 - C0NV2 340 R e d i s t r i b u t e the Heat Transfer Areas 341 A4 \u00E2\u0080\u00A2 A(4) 342 A5 - A O ) 343 210 A(4) - A4 \u00E2\u0080\u00A2 MST / MS4 344 A(5) - A5 \u00E2\u0080\u00A2 MST / MS5 345 TA2 - A(4) + A(5) 346 A(4) - TA1 / TA2 \u00E2\u0080\u00A2 A(4) 347 AO) \u00E2\u0080\u00A2 TA 1 / TA2 \u00E2\u0080\u00A2 A(5) 348 C0NV2 - A O ) - A5 349 IF ((C0NV1\u00C2\u00ABC0NV2) .GE. 0.000) GO TO 220 350 A(4) - (A(4) + A4) / 2.0 351 AO) - (A(5) + A5) / 2.0 352 220 CONTINUE 353 C 354 IF (0ABS(MST - MS4) . GE. 0.0005) GO TO 160 355 IF (DABS1MST - MS5) .GE. 0.0005) GO TO 160 356 C a l c u l a t e the Steam Turbine Outlet Properties 357 PSO) - PSO) 358 CALL STATES(PS(6). TS(6). HSO), SSO), CPSO)', XSO), HTSO), 359 1 PCSO)) 360 HSO) - HSO) - NT * (HSO) - HSO)) 361 CALL STATEH(PS(6), TS(6), HS(6). SS(6). CPS(6), XS(6), HTS(6). 362 1 PCS16)) 363 364 Ca l c u l a t e the Cycle Performance 365 366 240 HEAT * MF * HCO 367 WGT > MG(15) * (HG(15) - HG(I8)> 368 WST - MST \u00E2\u0080\u00A2 (HS(5) - HS(6)) 369 WP - MST * (HS(2) - HS(D) + 1.3 \u00E2\u0080\u00A2 MST 370 WORK \u00E2\u0080\u00A2 WGT \u00E2\u0080\u00A2 WST - WP 371 EFFO - EFF 372 EFF - WORK / HEAT * 100 373 WR \u00E2\u0080\u00A2 WGT / WORK * 100 374 360 CONTINUE 375 STOP 376 END End of f i l e o i Pulverized Coal Bo i le r Plant 2 a Design Load Analysis 5 e IMPLICIT REAL'S (A-H.O-Z) 7 C 8 REAL'S TGOO.PG(21),HGOO.SG(21),MGOO.CPGOO,LMT3 9 -,NGT,NGC, NP ,NT ,NI ,MF.MST1,MST,LAMBOA,MU,KT.MSOL,MLIME 10 -,PS(1S).TS(1S),HS(15),SS(I5),XS(1S),CPS(15).FAG(21).FAS(15) 1 1 -,HTS(15).PCS(15),PCG(21),HTG(21),UA(9),U(9),A(9),MS(15) 12 C 13 COMMON /AREA1/ CN.HM.00.SU.NI.ASH.H20.HFO,LAMBOA,MF.TS03 14 COMMON /AREA3/ HSOL.TSO,MSOL.MLIME IB TSO-328.0 16 C 17 LL-1 18 CALL STEAM(MU.MU,MU.MU,MU,MU,MU,LL) 15 C 20 MST-1.0 21 DO 752 IH-1,IS 22 TS(IH)-0.00 23 PS(IH)-0.0 24 HS(IH)-0.0 25 SS(IH)-0.0 26 XS(IH)'0.0 27 CPS(IH)\"0.0 28 HTS(IH)-0.0 29 752 CONTINUE 30 XS(14)-1.0 31 C Read In Fuel Data 32 READ(6,600)HFO,HCO.CN.HM,00,SU.NI,ASH,H20 33 600 F0RMAT(2F12.2,7F1B.9) 34 C 35 NT\"0.89500 36 NP-0.81D0 37 C Calc u l a t e Ambient A i r Properties 38 PG(1)>0.1013 39 TG(1)-15.0 40 MG(1)-1.0 41 CALL A1R(PG(1),TG(1),HG(1),SG(1).MG(1).CPG<1),HTG(1),PCG(1)) 42 C Calc u l a t e A1r Properties at A i r Preheater Exit / Burner Inlet 43 PG(2)-PG(1) 44 MG(2)-1.0 45 TG(2)\u00C2\u00BB218.0 46 CALL AIR(PG(2),TG(2).HG(2),SG(2).MG(2).CPG(2).HTG(2),PCG(2)) 47 C Calc u l a t e Gas Properties at B o i l e r Outlet 48 LAMBDA-1.1 49 TG(8)-328.0 50 PG(8)-PG(2) 51 LZ-0 52 CALL BED(HG(2),MG(2),PG(B),TG(S).HG(8),SG(8),MG(8),HPFB,CPG(8) 53 -,HTG(8),PCG(S),LZ) 54 C Calc u l a t e Gas Properties at A i r Preheater Outlet 55 TG(10)\u00E2\u0080\u00A2161.57 56 PG( 10)-0.09687 57 MG(10)-MG(8) 58 CALL GAS(PG(10),TG(10).HG(10),SG(10),MG(10),CPG(10),HTG(10) 59 -, PCGOO)) 60 C Calc u l a t e Gas Properties at Fan Outlet 61 PGOO-O.1013 62 SG(11)\u00C2\u00ABSG(10) 63 MG(11)\u00C2\u00ABMG(10) 64 CALL GASS(PGOO.TG(11).HGOO.SG(11).MGOO.CPGOO.HTGOO 65 -.PCGOO) 66 HG(11)\u00C2\u00ABHG(10)+(HG(11)-HG(10))/0.80 67 CALL GASH(PGOO,TGOO.HGOO.SGOO,MGOO,CPGOO,HTGOO 68 -.PCGOO) 69 C 70 C STEAM PORTION OF PROGRAM 71 C 72 C C a l c u l a t e Steam Properties at the Superheater I n l e t 73 PS(14).18.065 74 CALL TSAT(PS(14),TS(14)) 73 LL-2 76 CALL STEAM(PS04).TS(14).HS(14),SS(14),CPS04),HTSO4).PCS04) 77 -.LL) 78 C Ca l c u l a t e Steam Properties at the Superheater Outlet 79 77 PS(1)-16 893 80 TSO)-S37.8 81 LL-2 82 CALL STEAM(PSO).TSO).HSO),SSO),CPSO).HTSO).PCSO),LL) 83 XSCO-1.0 84 C C a l c u l a t e Steam Properties at the Reheater I n l e t 85 PS(3)-4.1850 86 SS(3)-SSO) 87 CALL STATES(PS(3),TS(3).HS(3),SS(3),CPS(3),XS(3),HTS(3),PCS(3)) 88 HS(3)-HSO)-NT'(HSO)-HS(3)) 89 CALL STATEH(PS(3),TSO).HSO).SSO).CPSO),XS(3).HT'S(3),PCSO)) 90 CALL TSAT (PS(3).TS(13)) 91 C Ca l c u l a t e steam Properties at the Reheater Outlet 92 TS(4)-537.8 93 PS(4)-4.013 94 XS(4)-1.0 95 LL-2 96 CALL STEAM(PS(4).TS(4).HS(4).SS(4),CPS(4).HTS(4),PCS(4).LL) 97 C C a l c u l a t e Steam Properties at the Condenser I n l e t 98 TMIN-38.32 99 CALL PSAT(PLOW.TMIN) 100 PS(5)-PL0W 101 SS(5)-SS(4) 102 CALL STATES( PS< 5 ).TS(5), HSO). SSO).CPSO). XSO). HTSO), PCSO)) 103 HS(5)-HS(4)-NT'(HS(4)-HSO)) 104 CALL STATEH(PSO) . TSO ) , HS( 5 ) , SS( 5) ,CPS( 5 ) . XS( S) ,HTS(5 ) , PCS(5 )) 105 CPS(S)-0.0 106 C C a l c u l a t e Steam Properties at the Condenser Outlet 107 PS(6)-PL0W 108 TS(6)\u00C2\u00BBTMIN 109 LL-3 110 CALL STEAM(PS(6),TS(6),HS(6).SS(6),CPS(6).HTS(6).PCS(6).LL) 111 C Ca l c u l a t e #1 Feed Hater Heater Performance 112 TS(8)-144.66 113 CALL PSAT(PSO).TSO)) 114 LL-3 115 CALL STEAM(PSO).TS(8).HS(8).SS(8).CPS(B).HTS(S).PCSO) 116 -.LL) 117 C 118 PS(12)-PS(S) 119 SS(12)-SS(4) 120 CALL STATES! PS( 12 ) , TSO 2 ) , HS(12 ) . SS( 12),CPS( 12 ). XS(12 ) . HTS02 ) 121 -,PCS(12)) 122 HS(12)-HS(1)-NT*(HS(4)-HS(12)) 123 CALL STATEH(PS(12),TS(12),HS(12).SS(12).CPS(12),XS(12),HTS(12) 124 -,PCS(12)) 125 C 126 PS(7)-PS(12) 127 SS(7)\u00C2\u00BBSS(6) 128 CALL LI0S(PS(7),TS(7),HS(7).SS(7).CPS(7).XS(7).HTS(7),PCS(7)) 129 HS(7)-HS(6)+(HS(7)-HS(6))/NP 130 CALL LI0H(PS(7),TS(7),HS(7).SS(7),CPS(7),XS(7),HTS(7),PCS(7)) 131 C Calc u l a t e #2 Feed Water Heater Performance 132 TS(10)-252.0 133 CALL PSAT(PS(10).TS(10>) 134 LL\u00C2\u00AB3 135 CALL STEAM(PS<10),TS(10),HS(10),SS(10),CPS(10).HTS(10),PCS(10) 136 -.LL) 137 C 138 PS(9)-PS(10) 139 SS(9)-SS(8) 140 CALL LIQS(PS(9).TS<9).HS(9),SS(9).CPS(9),XS(9),HTS(9),PCS(9)) 141 HS(9)-HS(8)+(HS(9)-HS(8))/NP 142 CALL LIQH(PS(9).TS(9),HS(9).SS(9).CPS(9).XS(9).HTS(9).PCS(9)) 143 C 144 PS(13)-PS(14) 145 SS(13)-SS(10) 146 CALL LI0S(PS(13).TS(13),HS(13).SS(13),CPS(13),XS(13),HTS(13) 147 -,PC5(13)) 148 HS(13)\"HS(10)*(HS(13)-HS(10))/NP 149 CALL LI0H(PS(13),TS(13).HS(13).SS(13),CPS(13),XS(13),HTS(13) 150 -,PCS(13)) 151 C 152 T S ( t l ) - T S O ) 153 PS(11)-PS(3) 154 HS(H)-HSO) 155 SS(11)-SS(3) 156 C Calc u l a t e Mass Flows through the Feed Water Heaters and B o i l e r 157 FWH1-(HS(10)-HS(9))/(HS(11)-HS(9)) 158 FWH2-(HS(8)-HS(7))/(HS(12)-HS(7))\u00E2\u0080\u00A2(1-FWH1) 159 HSTE-HS(1)-HS(13)+=X(2)/SUMX 56 17 TT-T/100.0 57 TJ=T/1000.0 58 C 59 C CALCULATE CP VALUES 60 C 61 CPGI 11=39.060-512.79'(TT*\u00C2\u00BB(-1.5)1+1072.7*(TT*\u00C2\u00AB(-2)) 62 --B20.4*(TT\u00C2\u00BB\u00C2\u00BB(-3)) 63 CPGI2 I=37.432*0.020102*(TT**1.5)- 178.57*(TT*\u00E2\u0080\u00A2(- 1.5)) 64 -+236.88*8.314D0 130 N2I\"M1\u00C2\u00BB0.0273832D0 131 021=M1*0.00727888400 132 IF (LZ.EO.1)FUEL*MF/100.0DO 133 IF ( LZ.EQ.0)FUEL*021/LAMBDA/(CN+HM/4.ODO-00/2.ODO+SU+NI/2 134 MF=FUEL*100.0D0 135 C 136 . HFOL--1207700.000 137 TC-T-273.1500 138 C 139 BURNUP =0.99D0 140 LIMEF*0.85D0 141 NCONV-0.70D0 142 MOLRAT-2 .000 143 C 144 CAC03I*FUEL\u00C2\u00ABSU*M0LRAT 145 C 146 c N2;1 02;2 C02;3 H20;4 NO;5 S02;6 S03;7 147 c 148 c CAC03;8 CAS04;9 ASH;10 COAL;11 149 c 150 X( 10)=BURNUP*FUEL*ASH 151 X(3)\u00C2\u00BBFUEL*(BURNUP*CN+LIMEF*SU) 152 S02\"FUEL*SU*(BURNUP-LIMEF) 153 X(1)=N21 + (FUE L *NI* 170 DH(10)\"4.184\u00C2\u00AB(17.09*T+0.000227*T*T+897200/T-813B.1) 171 DH(11)=\u00E2\u0080\u00A2141.5*(T-298.0) 172 CPG(8)=4.184*(19.68+0.01189*T-307600/T/T) 173 CPG(9)=4.184*(18.52+0.02197\u00C2\u00ABT-156800/T/T) 174 CPGI10)=4.184*117.09*O.O0O454*T-89720O/T/T) 175 CPGI11)\u00C2\u00BB141.5 176 c 177 c HEAT OF FORMATION OF COMPONENTS 178 c 179 UUU(1)=0.0 180 UUU(2)=0.0 181 UUU(3)=-393522.0 182 UUUI4 ) = -241827.0 183 UUU(5)=90417.0 184 UUU(6)\u00C2\u00BB-297040.0 185 UUUI 7) =--396030.0 186 UUU(8) = -121 1268.0 187 UUU(9)=-14O3816.0 188 UUU(10)=0.0 189 UUU(11)=HF0 190 HLL-X(8)*(DH(B)-121126B.O)+X(9)*(DH(9)-1403816.0)+Xl10)*DH(10) 191 -+X(11)*(0H(10)+HF0) 192 GOTO 17 193 C///////////// 194 CI I G A H S // 195 C///////////// 196 ENTRY GAHS(P,THETA,H,S.MASS,CP.HTC.VSI) 197 LX0=6 198 S2=S 199 H2*H 200 P-0.7 201 T*900.0 202 GOTO 17 203 C/////////// 204 CI I M I X / / 205 CIII///I//II 206 ENTRY MIX(P,THETA,H.HA,HG.S.MASS,MA.MG.CP,HTC.VSI) 207 C 208 MASS=MA*MG 209 H=>(HA*MA+HG*MG)/MASS 210 X(1)-X(1)+MA*0.0273832 211 02*02+MA*0.007278884 212 Cllllll/llllll 213 C/l G A S H / / 214 C///////////// 215 ENTRY GASH(P.THETA.H.S,MASS.CP,HTC.VSI) 216 C 217 LXQ=2 218 H2=H 219 T*9CO.O 220 GOTO 17 221 C///////////// 222 CII G A S S // 223 Clllllllllllll 224 ENTRY GASSiP.THETA.H.S,MASS,CP,HTC,VSI) 225 LXQ=-4 226 S2=S 227 T=900.0 228 GOTO 17 229 Cl/ll/llllll 230 C/l G A S / / 231 Clllllllllll 232 ENTRY GAS(P,THETA,H,S,MASS.CP,HTC.VSI) 233 T=THETA+273.15D0 234 C 235 LXQ=3 236 C 237 C GAS COMPONENT THERMODYNAMIC PROPERTIES; DH-ENTH CPG-CP SE-ENTHPY 238 C 239 17 TT=T/10O.O 240 Td = T/1000.0 241 C 242 C DISSOCIATION REACTION: S02 + 1/2 02 \" SO3 243 C 244 KSD2=DEXP(9.8471-16.3392\u00C2\u00ABTd+4.7273*(Td**2 ) ) 245 SUMX=X(1)+02+X<3)+X<4)+X(5)+S02 246 SK=KSD2*DSQRT(02/SUMX) 247 X(7)\u00C2\u00BBSK/( 1+SK)*S02 248 X(6)=S02-X(7) 249 X(2)-02-X(7)/2 250 C 251 SUMX=X(1)+X(2)+X(3)+X(4)+X(S)+X(6)+X(7) 252 DO 179 IV=1.7 253 CC(IY)=X(IY)/SUMX 254 179 CONTINUE 255 C 256 CPG(11=39.060-512.79*) 262 --3.69BB9*TT 263 CPG(5)=59.283-1.7O96*(TT**0.5)-7O.613*(TT**(-0.5)) 264 -+74.889*(TT*\u00C2\u00AB(-1.5)) 265 CPG(6)=4.1868*(5.8257+15.S095*TU-11.2842*(Td**2)+2.9751*(Td\u00C2\u00AB*3) 266 CPG<7)=4.1868\u00C2\u00AB(4.2157+35.6419*Td-35.5649*(Td**2)+17.065*(Td*\u00C2\u00AB3) 267 --3.20*(Td**4)) 268 CP=0.0 269 DO 192 1-1.7 270 CPP=X(I)*CPG(I) 271 CP-CP+CPP 272 192 CONTINUE 273 IFd.XO.EO.1) MASS-X(3)*44.01+X(4)*18.02+X(6)*96.0 274 -+X(2)*32.0+X(1)\u00C2\u00AB28.01+X(7)\u00C2\u00AB112.0+X(5)*30.0 275 CP-CP/MASS 276 C 277 DH( 1)-((3.344\u00C2\u00ABT+2.943E-04*(T**2)+1.953E-09\u00C2\u00AB(T**3) 278 1-6.575E-12*(T*\u00C2\u00AB4))-1O29.7)*RM0L 279 DH(2)-((3.253*T+6.524E-04\u00C2\u00AB(T**2)-1.495E-07*(T**3) 280 1+ 1 . 539E - 1 1*',T**4 ) )- 1030. 7 )*RM0L 28 1 DH(3)-((3.096*T*O.0O273*(T**2)-7.885E-O7*(T\u00C2\u00AB*3) 282 1+8 . 66E-11*(T**4))-1153.91)\u00C2\u00ABRMOL 283 DH(4)-((3.743\u00C2\u00ABT+5.656E-04*(T**2)+4.952E-08*(T**3) 284 1-1.818E-11\u00C2\u00AB(T**4))-1175,0)*RMOL 285 DH(S)=((3.502\u00C2\u00ABT+2.994E-O4*(T**2)-9.59E-09\u00C2\u00AB(T**3) 286 1-4.904E-12*(T**4()-1077,4)\u00C2\u00ABRM0L 287 DH(6)=4186.8\u00C2\u00AB(-2.2956+5.6001\u00C2\u00ABTd+8.2162*(Td**2)-4.1531*(Td**3) 288 1+0.8615*\u00C2\u00BBW(2.1)+AA'(1-1) 913 C 854 AA-EXPE'(C(9.1)+RHO'C(10.1)) 914 DO 111 1-1.10 855 W(1,1)=w(1,1)+C(1.1)+AA 915 c 4 856 W(2.1)=W(2,1)+EXPE\u00C2\u00ABC(10.1)- E *AA 916 RM(1)-1.0 857 W( 1.1)=W(1.1)\u00C2\u00ABRHO 917 LD-0 858 W(2.1)=W(2,1)\u00C2\u00BBRH0*\"2 918 LDA-1 859 W(1,2)-W(1,2)\u00C2\u00ABRH0*TAU 919 IF (1-9) 240.241.241 860 C 920 240 IFIO.EO.1) RM(1)-EXPK(RHO-0.634,1-1-LD) B61 IF(OUMP.EQ.O) GOTO 18 921 IF(O.NE.1) RM(1)-EXPK(RHO-1.0,1-1-LD) 862 PCALC=RHO*RT\u00C2\u00AB(1.+W(1.1)+W(2,1) ) 922 GOTO 249 863 DRHO-(P-PCALC)/(PCI-PCALC)*(RH1-RH0) 923 241 IA-I-8 864 IF (DABS(DRHO)-RMAX) 26.26.27 924 DRHO-RHO 865 27 DRHO-RMAX*DRHO/DABS(DRHO) 925 EXPE-DEXP(-E-RHO) 866 26 IF <0UMP-2O)22,42,42 926 RM(1)=EXPE\u00C2\u00BBEXPK(DRHO.IA-1) 867 22 IF (DABS(DRHO)-.1E-6*RH0) 60.60.33 927 249 CONTINUE 868 33 IF(DABS(P-PCALC)-1 E-5*P) 60,60,20 928 c 5 869 C 929 RM(2)-1.0 870 C L-3 930 5 LD-1 871 C 931 IF (1-9) 250.251,251 872 3 V-.97+.032*(,01*THETA)--2 932 250 IF(J.EO.1) RM(2)-EXPK(RHO-0.634,1-1-LD) 873 RHO-1./V 933 IFIO.NE.1) RM(2)\u00C2\u00ABEXPK(RH0-1.0,1-1-LD) 874 DRHO-1./(V+.01+.005M,01\u00C2\u00ABTHETA)*-2) -RHO 934 RM(2)-RM(2)*(I-1) 875 GO TO 25 935 GOTO 259 876 C 936 251 IA-I-8 877 60 V-1./RHO 937 DRHO-RHO 878 C 938 EXPE=DEXP(-E*RHO) 879 C L-4 939 RM(2)=EXPE\u00C2\u00AB(IA-1)\u00C2\u00ABEXPK(ORHO.IA-2) -E'EXPE \u00E2\u0080\u00A2EXPMORHO. IA 880 C 940 259 CONTINUE 881 4 RHO-1 ./V 94 1 c 7 882 C 942 123 RM(3)=1.0 883 00 101 1-1.5 94 3 LD-2 884 DO 101 d-1.5 944 IF (1-9) 270.271.271 885 101 W(I.0)=0. 945 270 1F(O.EO.1) RM(3)-EXPK(RHO-0.634,I- 1-LD) 886 C 946 IF(d.NE.1) RM(3)=EXPK(RH0-1.0,1-1-LD) B87 C \u00E2\u0080\u00A2\u00E2\u0080\u00A2 LONG VERSION USING GRST ALL W OR OS 947 RM(3)-RM(3)-(1-2) 888 c 948 RM(3)-RM(3)*(I-1) 889 121 DO 111 J-1,7 949 GOTO 279 890 TM(1)=1 950 271 IA-1-8 891 203 IF (0-2) 230.231,232 95 1 DRHO-RHO 892 232 TM( 1)=EXPK(TAU-2.5.J-2) 952 EXPE-DEXP( - E*RHO) 893 23 1 TM( 1 ) = TM( 1 )\u00C2\u00AB(TAU-1.544912) 953 RM(3) = EXPE-(I A-1)*(IA-2)\u00C2\u00BBEXPK(DRH0.IA-3) 894 230 CONTINUE 954 \u00E2\u0080\u00A2-2.-E'EXPE'lIA-1)*EXPK(DRHO.IA-2) 895 C 6 955 \u00E2\u0080\u00A2+E*\u00C2\u00BB2*EXPE*EXPK(0RH0.IA-1) 896 TM(2)-1 956 279 CONTINUE 897 206 IF (0-2) 261.260.262 957 c 8 898 261 TM(2)=0.0 958 RM(4)-1.0 o 959 LD = 3 9 G 0 LDA = 4 9 6 1 IF ( 1 - 9 ) 280.281.281 962 280 IF(d.EO.1) RM(4) = EXPK(RHO-0.634,I - 1-LD) 963 IF(J.NE.1) RM<4)=EXPK(RH0-1.0.I-1-LD) 964 RM(4)=RM(4)\u00E2\u0080\u00A2( 1-3) 965 RM(4)-RM(4)*(1-2) 966 RM(4)=RM(4)\u00E2\u0080\u00A2(1-1) 967 GOTO 289 968 281 IA=I-8 969 DRHO=RHO 970 EXPE=DEXP(-E*Rlin) 97 1 RM(4)=EXPE\u00C2\u00AB(IA-3)*+0L0G(RH0)> 992 C 993 C OHVT \u00C2\u00BB OH/DV AT CONSTANT T, SIMILARLY FOR DPTV AND DPVT 994 C 9 9 5 DHTV=CPZER0+R*(W( 1, 1) + W(2,1)-W(1.2)-W(2,2)-W( 1 , 3)) 996 DHVT=-RHO*RT*(W(1,1)+3.*W<2,1)+W(3.1)+W<1.2)+W(2,2)) 997 DPTV=RHO*R\u00C2\u00AB(1.+W(1.1)+W(2,1)-W(1,2)-W(2,2)) 998 0PVT = -RH0\"2*RT*( 1.+2.*W(1,1)+4.*W(2.1)+W( 3,1)) 999 CV-DHTV-DPTV/RHO 1000 CP\u00C2\u00BBDHTV-DHVT\u00C2\u00ABDPTV/DPVT 1001 DENS=RHO*10O0.0 1002 RHO=RHO* 1000.0 1003 C 1004 C CALCULATE THERMAL CONDUCTIVITY KT 1005 C 1006 TAW=(THETA+273.15)/647.27 1007 RHR=DENS/317.763 1008 KT0=0ABS(TAW-1.0)+0.00308976 1009 IF(TAW.GE.1.0) KT1=KT0**(-1.0) 1010 IF(TAW.LT.1.0) KT1\"10.0932*(KT0**(-0.6)) 101 1 KT2=2.0*0.0822994\u00C2\u00ABKTO**(-0.6) 1012 KT3=KT2+1.0 1013 KTA=DSQRT(TAW)*(0.0102811+0.0299621*TAW+0.0156146*TAW**2 1014 -0.00422464*TAW\u00C2\u00AB*3) 1 0 1 5 KTB=-0.39707+0.400302*RHR+1.06*DEXP(-0.171587*((RHR+2.39219) 1016 \u00E2\u0080\u00A2*2) ) 1017 KTC=(0.0701309/TAW* * 10.0+0.011852)*RHR*\u00C2\u00AB1.8*DEXP(0.642857* 1018 (1.O-RHR\u00E2\u0080\u00A2\u00E2\u0080\u00A22.8))\u00C2\u00AB0.O0l69937*KT1'RHR*\u00E2\u0080\u00A2KT2*DEXP(KT2/KT3* 1019 -( 1 0-RHR\u00C2\u00AB'KT3) )-1 02*DEXP(-4.11717*TAW**1.5-6. 17937/RHR**5 1020 KT=KTA+KTB+KTC 102 1 C 1022 C CALCULATE VISCOSITY VISC 1023 c 1024 RH1=RHR-1.0 1025 TA1=1 O/TAW-1.0 1026 MUA=DSORT(TAW)/(0.0181583+0.0177624/TAW+0.0105287/TAW* *2 1027 --0.003G744/TAW*\u00C2\u00AB3) 1028 MUO-O.501938+0.235622*RH1-0.274637*RH1**2+0.145831*RH1 \u00E2\u0080\u00A2*3 1029 --0.0270448*RH1*\u00C2\u00BB4 1030 MU1=TA1*(0.162B88+0.789393*RH1-0.743539*RH1**2 1031 -+0.263129*RHI*\u00C2\u00AB3-0.0253093*RH1**4) 1032 MU2=TAl**2*(-0.130356+0.673665*RH1-0.959456*RH1**2 1033 -+0.347247*RH1*\u00C2\u00AB3-O.02677S8*RH1**4) 1034 MU3-TA1**3*(0.907919+1.207552*RH1-0.687343+RH1**2 1035 -+0.2134B6*RH1**3-0.O822904*RH1**4) 1036 MU4=TA1**4*(-0.551119+0.067O665*RH1-0.497089*RH1**2 1037 -+0.100754\u00C2\u00ABRH1\u00C2\u00AB*3+0.0602253*RH1**4) 1038 MU5=TA1\u00C2\u00AB*5*(0.146543-0.0843370*RH1+0.195286\u00C2\u00ABRH1\u00C2\u00AB*2 1039 --0.032932*RH1\u00C2\u00AB*3-0.0202S95*RH1**4) 1040 MU=MUA\"DEXP(RHR*(MUO+MU1+MU2+MU3+MU4+MU5))* 1E-6 104 1 c 1042 PR=MU*CP/KT*1000.0 1043 REY=RHO*VEL*DIAM/MU 1044 IF(TYPE.EO.I) HTC-0.023*KT/DIAM*(REY**0.8)*(PR**0.33) 1045 IF(TYPE.E0.2) HTC\"0.33*KT/DIAM*(PEY**0.6)*(PR**0.3) 1046 IF (THETA.LE.374.14) THA\u00C2\u00ABDSQRT((374.14-THETA)/100.0) 1047 IF(TYPE.E0.4) HTC\u00C2\u00BBO.O33*KT/0lAM*(REY**O.87)*(PR**O.4)*DEXP 1048 -(1 0429*THA-0.2B24*(THA**2)-O.OO115*(THA**3)+O.1437*(THA**. 1049 VSIM .0 1050 c 1050.5 c WRITE(4.420) P,THETA,RHO.VEL,PR,REV,HTC.VSI 105 1 420 FORMAT!' PRESS TEMP DENSITY VELCTY ', 1052 -'PRANDL* REYNOLDS* VISCOSITY KT HTC VSI'/ 1053 -.F7.4.F7.1,F10.3,F8.1.FB.4,' '.E12.4,' '.F10.7, 1054 -F10.5.F8.1.F8.3///) 1055 319 FORMAT(' VISCOSITY COND-K DIAM MASS PR REYNOLDS ' 1056 -,'H.T.COEF P.COEF TYPE'/,F10.7,F7.4,F6.3,F6.2.F6.3.' ',E9 1057 -' '.E9.3.' '.F8.5.I3//) 1058 RETURN 1059 c 1060 c NONCONVE RGENCE STATEMENT 1061 c 1062 42 WRITE(9,43)P,THETA.RHO.DRHO.L 1063 NE0=1 1064 GO TO 60 1065 43 FORMAT ('NO CONVERGENCE P,T,RHO,DRHO-'/.4F20.5.15) 1066 END 1067 c 1068 c * \u00E2\u0080\u00A2 4 *\u00C2\u00ABEXPK FUNCTION**** 1069 c 1070 DOUBLE PRECISION FUNCTION EXPK (A.L) 107 1 REAL'S A 1072 IF (L) 1.2,3 1073 1 EXPK=0. 1074 RETURN 1075 2 E X P K = 1 - 1078 RETURN 1076 RETURN , 0 7 9 END 1077- 3 EXPK=A-\u00C2\u00ABL E n d o f f ) l 8 "@en . "Thesis/Dissertation"@en . "10.14288/1.0096182"@en . "eng"@en . "Mechanical Engineering"@en . "Vancouver : University of British Columbia Library"@en . "University of British Columbia"@en . "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en . "Graduate"@en . "A thermodynamic analysis of several pressurized fluidized bed combined cycle power generation systems"@en . "Text"@en . "http://hdl.handle.net/2429/24804"@en .