Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A numerical revision of the genus Ochotona (Lagomorpha:Mammalia) and an examination of its phylgenetic… Weston, Marla Lynn 1982

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1982_A1 W37.pdf [ 22.32MB ]
Metadata
JSON: 831-1.0095644.json
JSON-LD: 831-1.0095644-ld.json
RDF/XML (Pretty): 831-1.0095644-rdf.xml
RDF/JSON: 831-1.0095644-rdf.json
Turtle: 831-1.0095644-turtle.txt
N-Triples: 831-1.0095644-rdf-ntriples.txt
Original Record: 831-1.0095644-source.json
Full Text
831-1.0095644-fulltext.txt
Citation
831-1.0095644.ris

Full Text

A NUMERICAL REVISION OF THE GENUS OCHOTONA (LAGOMORPHA:MAMMALIA) AND AN EXAMINATION OF ITS PHYLOGENETIC RELATIONSHIPS by  MARLA LYNN WESTON Honours B . S c ,  Carleton University,  1975  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  in THE FACULTY OF GRADUATE STUDIES (Department of  Zoology)  We a c c e p t t h i s t h e s i s as to the  conforming  required standard  THE UNIVERSITY OF BRITISH COLUMBIA February,  (c)  1982  M a r i a Lynn Weston,  1982  In  presenting  requirements  this thesis  f o r an a d v a n c e d  of  British  it  freely available  agree for  that  Columbia,  I agree  f u l f i l m e n t of the  degree a t the U n i v e r s i t y that  f o r reference  permission  scholarly  in partial  the Library  shall  and study.  I  f o rextensive  for  copying or p u b l i c a t i o n  f i n a n c i a l gain  shall  ^aOJ-O^Y  The U n i v e r s i t y o f B r i t i s h 2075 Wesbrook P l a c e V a n c o u v e r , Canada V6T 1W5  DE-6  (2/79)  S^eA  /?, SS>8*2  of this  It is thesis  n o t be a l l o w e d w i t h o u t my  permission.  Date  thesis  p u r p o s e s may be g r a n t e d by t h e h e a d o f my  that  Department o f  further  copying o f t h i s  d e p a r t m e n t o r by h i s o r h e r r e p r e s e n t a t i v e s . understood  make  Columbia  written  As a s m a l l token of my g r a t i t u d e f o r t h e i r unending p a t i e n c e , support and u n d e r s t a n d i n g , I . d e d i c a t e t h i s t h e s i s to my p a r e n t s , W i l h e l m i n a C. Weston and Leonard A . Weston  ABSTRACT  The  genus O c h o t o n a  i s revised using numerical  42 c r a n i o m e t r i c m e a s u r e m e n t s . As a r e s u l t extant  species  are  recognized:  of  this  0. a l p i n a ,  techniques  on  revision  18  0.  collaris,  0. c u r z o n i a e , 0. d a u r i c a , 0. e r y t h r o t i s , 0. k a m e n s i s , 0. , 0. l a d a c e n s i s , 0. l a m a , 0. m a c r o t i s , 0. p a l l a s i , 0. p u s i l l a ,  0. r o y l e i , 0. r u f e s c e n s , 0. r u t i l a ,  0. t h o m a s i .  A  its  r e f e r e n c e , synonymies,  the  original 42  craniometric  the animal species  d e s c r i p t i o n i s given  and i t s  and  maps  of s p e c i e s  Phylogenetic a  cladogram  0. p r i n c e p s ,  0. t h i b e t a n a and  f o r each s p e c i e s as w e l l as univariate  statistics  for  measurements and a g e n e r a l d e s c r i p t i o n of  habitat.  A  outlining  general  R e s u l t s of l i n e a r d i s c r i m i n a n t affinity  koslowi  skull  representative ranges a r e a l s o  function  analyses  of  each  presented.  indicate  an  from s i m i l a r h a b i t a t s .  r e l a t i o n s h i p s among s p e c i e s a r e d i s c u s s e d , a n d  i s presented.  Changes i n o v e r a l l  cladogram, with small s i z e appearing  to  be  s i z e dominate the the  plesiomorphic  state. Some  fossil  ochotonid  t h e measurement s e t s fragmentary  groups a r e a l s o examined,  used  were  of  the  nature  greatly fossil  measurement s e t s do n o t a p p e a r t o differences,  but  they  d i f f e r e n c e s . As a r e s u l t ,  do  appear  be  reduced  due  to the  material.  The  reduced  diagnostic  of  t o be r e f l e c t i v e  the ochotonids  although  taxonomic of h a b i t a t  may p r o v e t o be  useful  iv  indicators  of  paleoenvironments.  influence  of c l i m a t e  the  toward  trend  an  and  competition  overall  increase  Range  reduction  is also i n body  due  discussed, size.  t o the as  is  V  TABLE OF CONTENTS  DEDICATION i i ABSTRACT i i i L I S T OF TABLES v i i L I S T OF FIGURES viii L I S T OF PLATES x ACKNOWLEDGEMENTS xi PREFACE . . . 1 PART I INTRODUCTION 4 HISTORICAL REVIEW 6 C l a s s i f i c a t i o n Above t h e S p e c i e s L e v e l 6 The S p e c i e s 8 P r o b l e m a t i c Taxa 13 Phylogenetic History 16 MATERIALS AND METHODS17 G e n e r a l Methods 17 1. C o l l e c t i o n s , ...17 2. M e n s u r a l Methods .18 3. G e o g r a p h i c G r o u p s and Complexes 19 S t a t i s t i c a l Methods 23 1 . General 23 2. M i s s i n g V a r i a b l e s and O u t l i e r s 28 3. S e x u a l D i m o r p h i s m 29 I n d i v i d u a l A s s e s s m e n t and Sample S i z e 30 1. I n d i v i d u a l A s s e s s m e n t 30 2 . Sample S i z e .. 31 Subspecies . . 32 Spec i e s 34 INDIVIDUAL ASSESSMENT: RESULTS 37 An Example 37 SPECIES CONCEPT 50 SUBSPECIES AND THE PROBLEMATIC TAXA GROUPS RESULTS AND DISCUSSION 54 The S u b s p e c i e s 54 The P r o b l e m a t i c Taxa : 61 1. The A l p i n a Complex 61 A. C o m p a r i s o n o f 0. a l p i n a and 0. h y p e r b o r e a .... 61 B. O. a l p i n a v s . O. p r i n c e p s and 0. c o l l a r i s ... 69 2. 0. c u r z o n i a e and 0. d a u r i c a 73 3. 0. r u t i l a and O. e r y t h r o t i s (including 0. glover i ) 79 - 9.' l a t 0- mac r o t i s and 0. r o y l e i 85 5. 0. f o r r e s t i , 0. o s g o o d i and 0. c a n s u s 92 SYSTEMATIC DESCRIPTIONS 103 Introduction 103 Descriptions 104 Ochotona a l p i n a ' 1 05 Ochotona c o l l a r i s 111 Ochotona c u r z o n iae .116 Ochotona daur i c a 123 Ochotona e r y t h r o t i s 128 4  m  a  vi  O c h o t o n a kamensis Ochotona koslowi Ochotona l a d a c e n s i s O c h o t o n a lama Ochotona m a c r o t i s Ochotona p a l l a s i Ochotona p r i n c e p s Ochotona p u s i l l a Ochotona r o y l e i Ochotona ruf escens Ochotona r u t i l a Ochotona t h i b e t a n a Ochotona thomasi ALL SPECIES Phylogenetic Analysis 1 . Results 2. I n t e r p r e t a t i o n SUMMARY PART I I INTRODUCTION FOSSIL HISTORY MATERIALS AND METHODS Collections Localities G e n e r a l Methods S t a t i s t i c a l Methods 1 . Univariate 2. M u l t i v a r i a t e RESULTS Univariate Results 1. D e s c r i p t i v e S t a t i s t i c s 2 . Allometry . Multivariate Results 1 . Yukon F o s s i l s 2. L i t t l e Box E l d e r a n d E n g l i s h F o s s i l s 3. F o s s i l C o m b i n a t i o n S e t s 4. R e c e n t S p e c i e s 5. F o s s i l and R e c e n t S p e c i m e n s DISCUSSION Morphological V a r i a b i l i t y Paleoecology I n c r e a s e In S i z e Extinction SUMMARY GENERAL SUMMARY AND CONCLUSIONS FUTURE STUDIES LITERATURE CITED APPENDIX I APPENDIX I I APPENDIX I I I PLATES  133 140 146 '..153 159 ..166 ..172 180 185 191 196 201 207 213 224 224 235 250 252 254 .258 258 259 263 265 265 267 270 270 270 274 282 282 286 290 295 305 309 309 311 316 318 320 322 325 328 346 364 37 1 388  vii  L I S T OF  TABLES  I.  A c o m p a r i s o n of the 5 most recent revisions of the genus O c h o t o n a 11 II. L i s t of measurements t a k e n on t h e s k u l l 19 III. L i s t of G e o g r a p h i c Complexes 23 IV. Character loadings for PCA's on s u b s p e c i e s of 0. p r i n c e p s and on 0. a l p i n a and 0. h y p e r b o r e a 57 V. C h a r a c t e r l o a d i n g s f o r PCA's on 0. c u r z o n i a e and 0. d a u r i c a and on 0. e r y t h r o t i s , 0. g l o v e r i and 0. r u t i l a 76 VI. C h a r a c t e r l o a d i n g s f o r PCA's on 0. lama, 0. m a c r o t i s and 0. r o y l e i and on 0. thibetana, 2- r o y l e i and 0. p u s i l l a group 88 VII. U n i v a r i a t e s t a t i s t i c s f o r 0. a l p i n a 109 VIII. U n i v a r i a t e s t a t i s t i c s f o r 0. c o l l a r i s ...114 IX. U n i v a r i a t e s t a t i s t i c s f o r 0. c u r z o n i a e ...... . ... 1 1 9 X. U n i v a r i a t e s t a t i s t i c s f o r 0. daur i c a 127 XI. U n i v a r i a t e s t a t i s t i c s f o r 0. e r y t h r o t i s 131 XII. U n i v a r i a t e s t a t i s t i c s f o r 0. kamensis 136 XIII. U n i v a r i a t e s t a t i s t i c s f o r 0. k o s l o w i 143 XIV. U n i v a r i a t e s t a t i s t i c s f o r 0. l a d a c e n s i s 149 XV. U n i v a r i a t e s t a t i s t i c s f o r 0. lama 156 XVI. U n i v a r i a t e s t a t i s t i c s f o r 0. m a c r o t i s 163 XVII. U n i v a r i a t e s t a t i s t i c s f o r 0. p a l l a s i 170 XVIII. U n i v a r i a t e s t a t i s t i c s f o r 0. p r i n c e p s .....178 XIX. U n i v a r i a t e s t a t i s t i c s f o r 0. p u s i 1 1 a 183 XX. U n i v a r i a t e s t a t i s t i c s f o r 0. r o y l e i 189 XXI. U n i v a r i a t e s t a t i s t i c s for'O. rufescens 195 XXII. U n i v a r i a t e s t a t i s t i c s f o r 0. r u t i l a 199 XXIII. U n i v a r i a t e s t a t i s t i c s f o r 0. t h i b e t a n a 205 XXIV. U n i v a r i a t e s t a t i s t i c s f o r 0. t h o m a s i 210 XXV. Summary of d i s c r i m i n a n t f u n c t i o n r e s u l t s 214 XXVI. Character coefficients for DFA on Old World s p e c i e s ' means 218 XXVII. Character coefficients for DFA on all s p e c i e s ' means 225 X X V I I I . L i s t of Yukon f o s s i l c o l l e c t i o n s i t e s 262 XXIX. L i s t of measurements t a k e n on the m a n d i b l e 264 XXX. U n i v a r i a t e s t a t i s t i c s f o r the f o s s i l groups 271 XXXI. C h a r a c t e r l o a d i n g s f o r a PCA on the Yukon fossils 285 XXXII. Character loadings for PCA's on LBEC and GTDC specimens 290 XXXIII. Character loadings for a PCA on fossil combination set 1 ....293 XXXIV. C h a r a c t e r l o a d i n g s f o r a PCA on R e c e n t s p e c i e s subset 1 302 XXXV. Calculated discriminant functions for Recent species .306 XXXVI. A s s i g n m e n t of f o s s i l s p e c i m e n s t o h a b i t a t groups 307 x  viii  L I S T OF  .1 . 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34.  FIGURES  Ranges of the R e c e n t s p e c i e s 10 G e o g r a p h i c Groups 22 Ranges of the f i v e s u b s p e c i e s of 0. p r i n c e p s 34 C o l l e c t i o n s i t e of ROM 74761 and 74763 39 UPGMA c l u s t e r a n a l y s i s on G e o g r a p h i c Group 2A.2 .... 41 3-D PCA p r o j e c t i o n of G r o u p 2A.2 43 3-D PCA projection of 0. r o y l e i , 0. daur i c a , 0. c u r z o n i a e and ROM 74761, 74763 46 Projection on first two canonical variates of 0. r o y l e i , 0. daur i c a , 0. c u r z o n i a e and ROM 74761 , 74763 48 3-D PCA Projection of the Five Subspecies of 0. pr i n c e p s 56 Projection on f i r s t two c a n o n i c a l v a r i a t e s of the F i v e S u b s p e c i e s of 0. pr i n c e p s 59 Projection on first two canonical variates of G e o g r a p h i c Complex 2 ... 63 3-D PCA p r o j e c t i o n of 0. a l p i n a and 0. h y p e r b o r e a .. 67 Projection on first two canonical variates of 0. a l p i n a , 0. h y p e r b o r e a and 0. pr i n c e p s 71 3-D PCA p r o j e c t i o n of 0. c u r z o n i a e and 0. d a u r i c a .. 75 Histogram on the first canonical variate for 0. c u r z o n i a e and 0. daur i c a 78 3-D PCA p r o j e c t i o n of 0. e r y t h r o t i s ( p l u s 0 . g l o v e r i ) and 0. r u t i l a • 81 Histogram on the first canonical variate for 0. e r y t h r o t i s ( p l u s 0. g l o v e r i ) and 0. r u t i l a 84 3-D PCA projection of 0^ lama, 0^ m a c r o t i s and 0. r o y l e i 87 Projection on first two canonical variates of 0. lama, 0. m a c r o t i s and 0. r o y l e i 90 3-D PCA projection of 0. f o r r e s t i , 0. o s g o o d i , 0. c a n s u s , 0. r o y l e i , 0. pus i l i a and 0. t h i b e t a n a 95 Histogram on the first canonical variate for 0. f o r r e s t i , 0. o s g o o d i , 0. c a n s u s , 0. r o y l e i , 0. p u s i 11a and 0. t h i b e t a n a 97 Histogram on the first canonical variate for 0. r o y l e i and 0. t h i b e t a n a ...100 A p p r o x i m a t e d i s t r i b u t i o n of 0. a l p i n a 108 A p p r o x i m a t e d i s t r i b u t i o n of 0. c o l l a r i s 113 A p p r o x i m a t e d i s t r i b u t i o n of 0. c u r z o n i a e 118 D i a g r a m of the s k u l l of 0. c u r z o n i a e . TT ..121 A p p r o x i m a t e d i s t r i b u t i o n of 0. d a u r i c a 125 A p p r o x i m a t e d i s t r i b u t i o n of 0. e r y t h r o t i s 130 A p p r o x i m a t e d i s t r i b u t i o n of 0. kamensis 135 D i a g r a m of the s k u l l of 0. k a m e n s i s 138 A p p r o x i m a t e d i s t r i b u t i o n of 0. k o s l o w i 142 D i a g r a m of the s k u l l of 0. k o s l o w i 145 A p p r o x i m a t e d i s t r i b u t i o n of 0. l a d a c e n s i s 148. D i a g r a m of the s k u l l of 0. l a d a c e n s i s 151  ix 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65.  Approximate d i s t r i b u t i o n of 0 . lama 155 Diagram of the s k u l l of 0. lama 158 Approximate d i s t r i b u t i o n of 0. m a c r o t i s 161 Diagram of the s k u l l of 0 . m a c r o t i s 165 Approximate d i s t r i b u t i o n of 0 . p a l l a s i 168 Approximate d i s t r i b u t i o n of 0 . pr inceps 177 Approximate d i s t r i b u t i o n of 0 . p u s i 1 1 a 182 Approximate d i s t r i b u t i o n of 0 . r o y l e i 187 Approximate d i s t r i b u t i o n of 0 . r u f e s c e n s 193 Approximate d i s t r i b u t i o n of 0 . r u t i l a 198 Approximate d i s t r i b u t i o n of 0 . t h i b e t a n a 204 Approximate d i s t r i b u t i o n of 0. thomasi 209 Diagram of the s k u l l of 0 . thomasi ...212 P r o j e c t i o n of group means of the O l d World species a l o n g the f i r s t three c a n o n i c a l v a r i a t e s 220 P r o j e c t i o n of group means of a l l s p e c i e s a l o n g the f i r s t three canonical v a r i a t e s 223 Phylogenetic relationships of the 1 8 extant spec i e s 227 A map of GRTLEN and ZYGWID on the cladogram of F i g u r e 50 230 Minimum spanning t r e e f o r the 18 extant s p e c i e s . . . . 2 3 4 . H y p o t h e t i c a l range of an 0 . p u s i l l a - l i k e form d u r i n g the end of the P l i o c e n e .240 H y p o t h e t i c range d u r i n g the P r a e t i g l i a n 242 Possible vicariance of the o c h o t o n i d s d u r i n g the Villafranchian 244 H y p o t h e t i c a l p a t t e r n of s p e c i e s d u r i n g the end of the W i s c o n s i n 248 Approximate p o s i t i o n of the s i x f o s s i l c o l l e c t i o n sites 261 B i v a r i a t e c h a r a c t e r p l o t s f o r the Yukon f o s s i l s . . . . 2 7 6 B i v a r i a t e c h a r a c t e r p l o t s for the Yukon f o s s i l s and the two N o r t h American s p e c i e s 279 Bivariate character plots for the nine Recent species 281 3-D PCA p r o j e c t i o n of the Yukon f o s s i l s .284 3-D PCA p r o j e c t i o n of the L i t t l e Box E l d e r Cave f o s s i l s and the Great Doward Cave f o s s i l s . . . . . . . . . 2 8 8 3-D PCA p r o j e c t i o n of f o s s i l subset 1 and the Recent > s p e c i e s means 292 3-D PCA p r o j e c t i o n of Recent s p e c i e s subset 1 . . . . . . . 2 9 8 3-D PCA p r o j e c t i o n of s p e c i e s groups from Recent s p e c i e s subset 1 300  X  L I S T OF  I. II. III. IV. V. VI . VII. VIII. IX. X. XI.  Photograph Photograph Photograph Photograph Photograph Photograph Photograph Photograph Photograph Photograph Photograph  of of of of of of of of of of of  Ochotona Ochotona Ochotona Ochotona Ochotona Ochotona Ochotona Ochotona Ochotona Ochotona Ochotona  PLATES  alpina collaris daur i c a erythrotis pallasi pr i n c e p s . pusilla roylei rufescens rutila thibetana  390 392 394 396 398 400 402 404 406 408 410  xi  ACKNOWLEDGEMENTS  The present cooperation,  study would not have been p o s s i b l e  encouragement  especially grateful permission  to  study  Dr.  help  t o the f o l l o w i n g the  museums a b b r e v i a t i o n s sections):  and  S.  Dr.  J  many  persons  specimens  in  i s g i v e n i n both  people.  for  their  the I  am  granting  me  care (a key t o  'Material  and  Methods'  Anderson and M r . P. G o l d s t e i n , AMNH; D r . G.  Corbet (Recent mammals) and D r . A BM;  of  without  Guilday,  CM;  Ms.  Sutcliffe  M.  E.  (fossil  Rutzmoser,  mammals), MCZ; D r . R.  Angermann, MN; D r . 0. R o s s o l i m o , MS; D r . S. Van Z y l l de J o n g , D. Campbell  (Recent  mammals),  mammals)  and  NMC; D r . M. Johnson,  Dr.  CR.  Harington  PSM; D r . R . L . P e t e r s o n , ROM; D r .  J . Van C o u v e r i n g , UCM; D r . C. Ray, USNM; and ZM.  In  addition,  (fossil  Dr.  I.M.  D r . B . F . Beebe loaned me specimens  Gromov, of  fossil  Ochotona which were c o l l e c t e d under the a u s p i c e s of the N o r t h e r n Yukon  Research  Museums of  Programme  in  cooperation  with  the  National  Canada.  Throughout  almost  Mary T a y l o r served encouragement  as  and  the e n t i r e p e r i o d of t h i s s t u d y , D r . my  research  patience  supervisor.  through  m a n u s c r i p t are g r e a t l y a p p r e c i a t e d .  early  Her drafts  I am a l s o g r a t e f u l  J.  support, of to  the Drs.  L a r k i n , Matthews, S h a c k l e t o n , W i l l i a m s and F i s h e r for s e r v i n g on my  committee  and  offering  manuscript. A special  note  many of  useful  gratitude  suggestions to  Dr.  on  the  Fisher  for  stepping absence  in  of  serving  as  like  t o thank  a i d i n uncovering  the s t a f f  some o f  (Zoological Russian  the  more  Museum,  of  i n the  obscure  localities.  Leningrad)  very  rewarding  by a c t i n g  to her i s immeasurable. (Zoological original  Museum,  I am  Leningrad)  the  Abramson  verified  a l l the  Zoological  as my t r a n s l a t o r .  also  for  for helping to  Natasha  kindly  to  Library  r e f e r e n c e s f o r each  o f t h e Map L i b r a r y  r e f e r e n c e s and made my t r i p  particularly  Woodward  many o f t h e o r i g i n a l  t h e s p e c i e s , and t h e s t a f f  find  my s u p e r v i s o r p r o tempore  of Dr. T a y l o r .  I would their  and  grateful  to  for solving  Museum  My g r a t i t u d e A  Gureev  the problem  of the  r e f e r e n c e f o r 0. k a m e n s i s and f o r h i s  Dr.  interest  in  my  work. The after  numerical  the  many  multivariate and  big  aspect hours  benefited  greatly  Drs.  P.H.A. S n e a t h  Univ.  Of N.Y.  At  (Biosystematics world  of  enthusiasm. topics  Endangered and this  D.M.  Stony  to  H i s support  P.A.  Institute). me  with  shape  i n t r o d u c i n g me t o  uncountable  little  appreciated. I also  of L e i c e s t e r ) ,  Brook);  Research  techniques R.R. S o k a l  Larkin  and  J.  with (State McNeil  D r . D.R. B r o o k s opened t h e enormous  and w i l l i n g n e s s  and  infectious  t o d i s c u s s a l l manner o f  acknowledged.  Smith  (Arizona State),  S p e c i e s ) , C.R. H a r i n g t o n  Shackleton  the  d i s c u s s i o n s on n u m e r i c a l  cladistics  A.T.  o n l y began t o t a k e  t h e way i s d e e p l y  (University  i s gratefully  Drs.  H i s help with  along from  study  D r . D. W i l l i a m s s p e n t  statistics.  problems  of t h i s  helped  with  ( O f f i c e of  ( N a t i o n a l Museums o f Canada)  contributed greatly  study. Dr. Smith  R.M. M i t c h e l l  to almost  preliminary  a l l aspects of  range  maps  and  graciously Mitchell  provided  also  manuscripts, ochotonids Harington but me  c o p i e s of h i s u n p u b l i s h e d  provided  copies  of  his  unpublished  and  wealth  of  his  experience  the  provided not  for  only  h i s unending  support  of the p l a t e s  understanding I their  help with  initiate  me  Brammell  Her  well  i n major  as t h e i r  some  papers.  like early  in  I would a l s o  criticisms  times  of  the l a t e  Lila  skills  throughout  s t u d y . F i n a l l y , . I am  Spence who w r o t e  the b a s i c  dimensions  typed  This (number  place  prepared  and f o r t r y i n g  to  Ms. P. D r u i k k e r a l l the  and  figure  little  helpful  fellow  Among  Sarah and  program  Jeletsky  for  very  of t h i s  made t h e d i f f i c u l t  r e s e a r c h was s u p p o r t e d  Smith  in  3462) t o Dr. J . Mary T a y l o r .  times part  I  several  for  would  Russian  sharing  a l l her  easier an  her  kindness  to  points into  thesis.  by  ear as  f o r h e l p i n g me  grateful  to project  i n the bulk  graduate  these,  work and f o r t r a n s l a t i n g  editorial  understanding  time  lended a sympathetic  need.  extraordinary  and  fossils,  and A. Peacock f o r  f r i e n d s and  t o thank  and  Vogl  throughout  like  this  Dr.  grateful.  of p h o t o g r a p h y .  t o a l l my  t o thank field  Asian  improvements.  thanks  help  and  I had t a k e n . F o r h i s  photographs  who so o f t e n and p a t i e n t l y  particularly with  thank D r s . A.W.  constructive  with  since that  I am e x c e e d i n g l y  inspiration  with  very generously  photographs  the mysteries  My h e a r t f e l t students  t h e poor  notes  discussions.  j o b working  Dr. Shackleton  to  s e r v e d a s my  resulted  first  some o f t h e e a r l y  into  preparation. hints  from  like  interesting  and encouragement  and s u p p o r t ,  would  many  gave me my  f o r e v e r i n h i s debt.  all  manuscripts. Dr.  George three-  His patience  to bear. NSERC  grant  1  PREFACE  The of  the  genus O c h o t o n a ,  family  which  Ochotonidae,  i s the s o l e  i s a monophyletic  related  species,  whose n e a r e s t r e l a t i v e s  hares.  Members  of  'pikas', rock  but  rabbit,  with  the  this  are a l s o little  squeaker, and  throughout  Asia  parts  which  much  is  extended  all  America.  with  and  elevations, varying  little  approximately today,  to a  Great  only  their  Britain  t o as cony,  found  a  range  and  North  in a diversity  rarely  found  diversity  of  of  commensal  habitats  conservative  but d e m o n s t r a t i n g  the s i z e  As  of  i n the  They  a  and  group,  considerable  fascination  fossil  been c o l l e c t e d  Territory.  'giant'  modern . p i k a s .  the  varying  North America,  they are found  species,  exhibited  examined had Yukon  referred  Pikas are c u r r e n t l y  and  Europe,  i n p i k a s grew out  variability  the  commonly  and  variation.  interest  initially in  between  closely  a P l e i s t o c e n e maximum, when t h e y  but a r e of  of  are the r a b b i t s  the p i k a s a r e a m o r p h o l o g i c a l l y  intraspecific  size  from  spite  group  mousehare e t c . , t h e names  range  elevations,  representative  many o t h e r names s u c h as  of E u r o p e  Asia,  their  In  are  the l o c a l i t y .  reduced  across  humans.  My  and  Within  habitats  group  known under  species  extant  from  ranged  forms.  a  of t h e modern p i k a s f o u n d  form,  which  was  almost  The  the O l d from  with  fossils  I  Crow  region  small  animal,  in  the  t w i c e the s i z e  I s p e n t more t i m e e x a m i n i n g  the  these  Yukon of  fossils,  the as  2  well  as f o s s i l s  from  impressed  by  interested  i n how  for  their  comparative  ochotonids.  other  this  compared  purposes,  63  O c h o t o n a was involved  with  the  proposed  of  differences advantages  this  due of  to  their  to  begin  numerical presented not  revision  hoped  I  numerical  obtain  variability.  I I , I encompassed techniques,  traditional  that  numerical  two  reasons.  nature,  and  second,  would forms.  p o r t i o n of t h i s aim i n t h i s  make t h e This  but  fossil on  and  is  to e f f e c t  examine  some  which the s p e c i e s  an i n d i c a t i o n  In t h e s e c o n d  both  to  completed  study  section  led  of  o f t h e s p e c i e s . In a d d i t i o n , I  t h e ease w i t h  could  evaluating  o f t h e genus O c h o t o n a . The  of t h e genus, but a l s o  more  d e t e c t i o n of f i n e  to the f o s s i l  I ' . I t was my  t h a t by d e t e r m i n i n g  intraspecific Part  comparable  interrelationships  delimited,  greater  the  problems, i t  as  for  1  t h e name  became  to  I decided  repeatability  forms t h e major  'Part  phyletic  a  and  revision  only a r e v i s i o n  the  be  a  in  I  genus,  quantitative  objectivity  r e s u l t s more d i r e c t l y me  permit  box.  for  since  taxonomic  purpose admirably  techniques  so,  of Recent  described  i n 1795. As  inadequate.  and  supraspecies,  years  problematic  I was  Pandora's 4  been  forms and t h e i r  this  would s u i t  these  a  300  by L i n k  methods g e n e r a l l y have been  First,  almost  forms  examination  species, have  increasingly  variability.  t h a t a new a p p r o a c h was e s s e n t i a l  systematics  techniques  an  opened  77  genera  the extant  became a p p a r e n t the  in  first  became  the Recent  began  had  subspecies,  ochotonids  with  I  I  subgenus, and 6 a l t e r n a t e extant  I  degree of m o r p h o l o g i c a l  Unwittingly  Altogether,  localities,  part  and R e c e n t a  reduced  could  of i n t e r -  versus  of  study,  forms,  this again  character  using  set  as  3  n e c e s s i t a t e d by the fragmentary My  objective  in  this  nature of the  section  was  to  fossil  material.  examine  m o r p h o l o g i c a l v a r i a b i l i t y w i t h i n the  ochotonids,  with  emphasis  the  forms  on  size  variability  comparison of f o s s i l and Recent  in  material.  fossil  further special and  a  4  INTRODUCTION  The Recent  pikas,  which comprise  representatives  Lagomorpha). P i k a s west  coast  are  steppes,  f o r e s t s and  ranging  from  (Cowan and  sea  and  and  considerable  species  talus, level  and  they  along  with  geographical  number of  consequence  approximately extant  of  77  species  the  members  skull,  their  species  have been d e f i n e d of  much of  m  found  coast  of  of  the  A s i a and  the  deserts,  elevations  British  Columbia  (Thomas  and  wide d i v e r s i t y  of  r e m a r k a b l y homogeneous g r o u p .  As  ' i s a very  small and  the  (order  along  at  i n the H i m a l a y a s  spite  form a  rather  are  the  In  difficult  genus  d i f f e r e n c e s between  seasonal  arid s u b s p e c i e s  genus O c h o t o n a v a r i e s e n o r m o u s l y  as  discontinuously  sole  for  species  differences  within  .... '  The  a  Ochotonidae  throughout  Corbet(1978:66) s t a t e s , Ochotona  and  the  a wide v a r i e t y of h a b i t a t s , s u c h as  range, p i k a s  taxonomist,  family  distributed  Smith,1981 a ) .  the  genus O c h o t o n a , a r e  the  G u i g u e t , 1 9 6 5 ) t o 6130  Hinton,1922; habitat  of  of N o r t h A m e r i c a  O r i e n t . They o c c u p y  the  of  literature,  morphological  and  63  this  p r i m a r i l y on  and  i n the  recognized  subspecies  within  the  doubt  as  no  similarity. have  In  all,  been  described  genus. Both s p e c i e s  and  subspecies  v a r i a t i o n s i n the  size  a l l r e v i s i o n s have g e n e r a l l y  and  relied  on  shape these  characters. The  last  comprehensive  revision  of  the  genus  Ochotona  was  5  produced  in  1964  traditional, revision, numerical  techniques  of n u m e r i c a l  t h e s e methods, their  are  along  particularly  a h i g h degree The  classification numerical cranial  as  the  significant  reflects  of t h i s  species  that  to my  of  repeatability,  the  numerical  permit  of  B e c a u s e of a  greater  differences,  and  s u c h a s O c h o t o n a , w h i c h have (Sneath study the base  is  and  Sokal,l973).  to  genus the  results  results  s e r v e a s a g e n e r a l f o u n d a t i o n f o r any t h e genus O c h o t o n a .  near  widespread  re-examine Ochotona  the using  re-examination would  be  c o m p a r a b l e w i t h p a s t w o r k s . B e c a u s e n u m e r i c a l methods advantage  and  sophistication  current  taxonomic  within  t e c h n i q u e s . I chose so  of  similarity  their  repeatability.  also  a  Gureev's  t h e numerous a d v a n t a g e s  and  to taxa,  on  changes  beginning  s o f t w a r e . The  spectrum  of  increasing  nature,they  objective  . characters  time  p r e d o m i n a n c e of  the  objectivity  suitable  of  to  computer  of o v e r a l l  primary  h i s reassessment  the  increasing  techniques  such  At  undergoing  related  of  quantitative  discrimination  The  doubt  availability  was  based  i n taxonomy were j u s t  growth. no  who  approach.  systematics  methods was  use  Gureev,  phenetic  exponential  and  by  of t h i s  directly have  s t u d y may  f u t u r e taxonomic  on  works  the also on  6  HISTORICAL REVIEW  Classification  The  p i k a s and  generally they  considered  were  in  differences well  in  as  structure joint,  1912  of  by  the  on  relatives,  separated  f u s i o n of  the  from  dental  order  this  into  his  tibia  and  palate,  fibula,  and  G r a d u a l l y , G i d l e y ' s p o i n t of view of  independence  of  more  distinctive  rodents the  are  no  lagomorphs  viewed  as  Ehrik,l926), insectivores The  of  features longer  closer, the  from  numerous  postorbital interorbital  as  condylarths  Ochotonidae  t o be  Rather,  such  (Russell,1960),  family  recognized  considered  the  r e g i o n , the  palate,  the  adopted  groups  in  the  (Van  the the  ascending  The of are  Valen,l964).  Leporidae,  as  as  zalambdodont  defined. It i s  such  differences  ordinal  (Gidley,1906;  the  anagalids  relative,  characteristics,  processes,  tricodonts  is clearly  i t s closest  elbow-  (Wood,1957).  other  (Wood,1957),  and  fossa,  even c l o s e r e l a t i v e s many  the  the  the  became more w i d e l y  were  (Dawson,1967).  distinguishable basis  Lagomorpha  of  on  fibular-calcaneal  articulation.  the  order  incisors,  glenoid  the  until  the  the  caecum, a n t e r o - p o s t e r i o r m o t i o n  the  were  separation  particularly  the  hares,  Rodentia  order  based  formulae, in  Level  r a b b i t s and  the  Gidley. Gidley  differences  the  Species  t o be members of  formally  Lagomorpha  as  their  Above The  readily on  the  absence  of  rostrum, ramus  of  the the  7  mandible, bone  and  replacement  by a s i n g l e  of t h e f e n e s t r a t i o n  large opening. Soviet  authors,  of the m a x i l l a r y e . g . Ognev(l940)  , Argiropulo(1948), Gureev(l964) and Kuznetsov(1965), c a l l family This  Lagomyidae,  generic of  invalid,  according  Marmota)  (Corbet,1978). recognized genera  genera in  toarticle  been  39  only  proposed. Lagomys  (Lyon,1904) gradually  the family of  the 'International  one e x t a n t  and T i b e t o l a g u s  Ochotona  without  (Argiropulo,1948). These  groups  or  subgenera  i.e.  variations  based  Corbet(l978)  their  divisions  i n the p a l a t a l a n d Weston  and i n c i s i v e  et  foramina a r e t o o h i g h l y  al.(l98l)  distinguishing  variable feature.  Division  has been common, b u t though  almost  on t h e same c h a r a c t e r i s t i c s ,  g r o u p i n g s a n d s u b g e n e r a on t h e g r o u n d s t h a t  specific  names.  g e n e r a l agreement among t a x o n o m i s t s even  have  (Gray,1867),  have become s y n o n o m i z e d w i t h O c h o t o n a , a l t h o u g h  into  all  other  g e n e r a a r e : P i ka  Ogot oma  some c a s e s t h e y have been u s e d a s s u b g e n e r i c  of  Code'  genus, O c h o t o n a , i s  These a d d i t i o n a l  (Cuv ier,1800),  (a  name Lagomyidae i s  t h e f a m i l y O c h o t o n i d a e , a s many a s f i v e  (Lacepede,1799), Conotha  homonym o f Lagomys, Storr,l780  and t h u s  Although  within  have  b a s e d on t h e genus Lagomys o f Cuvier(1800).  name i s a j u n i o r  synonym  this  t o be  foramina. have  rejected  palatal useful  Recently, these  and i n c i s i v e as  a  supra-  8  The S p e c i e s  The d i f f i c u l t i e s i n d e l i m i t i n g s p e c i e s are enormous because of  the  homogeneity  of forms.. R e g a r d l e s s ,  s u b s p e c i e s have been proposed, status  remain  although  numerous s p e c i e s and in  many  cases  moot. S p e c i e s ranges o v e r l a p g r e a t l y  their  (Figure  1),  w i t h nine of the c u r r e n t l y r e c o g n i z e d s p e c i e s d e s c r i b e d from the Qinghai-Xizang These  ( T i b e t ) P l a t e a u and f i v e from M t . E v e r e s t  alone.  areas of h i g h c o n c e n t r a t i o n s of s p e c i e s have tended to be  inaccessible result,  all  on both p h y s i o g r a p h i c and p o l i t i c a l grounds. taxonomic  treatments  As  a  of Ochotona ( i n c l u d i n g t h i s  one) have been plagued by the l a c k of adequate c o l l e c t i o n s . A l t h o u g h the problems are numerous, and p r o b a b l y because of them, the genus Ochotona has been the s u b j e c t of many r e v i s i o n s . A comparison of the f i v e most r e c e n t r e v i s i o n s i s g i v e n i n Table I. to  It  i s important to note t h a t the r e v i s i o n by G u r e e v ( l 9 6 4 )  some-  extent  based on the one by A r g i r o p u l o ( 1 9 4 8 ) ,  (1978) r e v i s i o n i s based almost e n t i r e l y on r e v i s i o n by Weston et a l . ( l 9 8 l ) of  the p r e s e n t  reflects  composition  remain c o n s t a n t  the p r e l i m i n a r y  Corbet's and  the  results  s t u d y . A l t h o u g h the t o t a l number of s p e c i e s does  not d i f f e r a p p r e c i a b l y among these f i v e species  Gureev's,  is  does.  throughout  Only all  revisions,  the  actual  n i n e s p e c i e s of a p o s s i b l e remaining  17  s p e c i e s are e i t h e r p l a c e d i n synonomy w i t h o t h e r s p e c i e s , or  are  s p e c i e s which were named a f t e r  revisions.  The  26  a g i v e n r e v i s i o n was c o m p l e t e .  9  Figure 1. Approximate recognized in t h i s  ranges study.  of  the  18  extant  species  2 0"  e o  60' —7  7~  100' "T  *  140' r-  60  180'  O. a I p i n a  O. k o s I o w i  O. c o 11 a r i s  O.  O. c u r z o n i a e  O. I a m a  O. d a u r i c a  O.  ladacensis  m a c r o t i s  O. e r y t h r o t i s  O. p a l l a s i  O.  O.  kamensis  p r i n c e p s  140'  18 0*  140'  -  O. p u s i 11 a  a 0  0  OOi  O. r o y I e i O.  r u f e s c e n s  O. r u t i I a  0. t h i b e t a n a O. t h o m a s i  A r g l r o p u l o (1948) ( 15 s p e c i e s ) 1 . 0. + + +  a 1 p 1 na 0. hyperborea 0. c o ) l a r l s 0. pr1nceps  E1 Ierman and M o r r i s o n - S c o t t {1951) ( 1 2 specles) 0 . a 1 p 1 na  Gureev (19641 ( 15 spec i es ) 0. a l p i n a + 0. c o l l a r Is + 0. pr1nceps  Corbet (1978) (14 s p e c l e s ) 0. + + +  a 1 p 1 na 0. hyperborea 0. co11ar1s 0. prInceps  Weston e t a l . ( 198 1 ) . ( 18 spec 1es) 0. a 1 p 1 na + 0. hyperborea  (see 0. a 1p1na)  (see 0. a l p i n a )  0. c o l 1ar1s  (see 0. d a u r l c a )  0. c u r z o n i a e  0 . curzon1ae  9- curzon1ae  4. 0. daurIca  0. d a u r l c a + 0. c u r z o n i a e  0. d a u r l c a  0. d a u r l c a  Q  5. 0.  (see 0. r u t t l a )  0. e r y t h r o t 1 s + 0. g1 over 1  0 . erythrot1s + 0. g l o v e r t  0. erythrot1s + 0. q l o v e r l  (see 0. pusl11a)  (see 0.  (see 0. r o y l e t )  (see 0. r o y l e l )  7. 0. q l o v e r l  (see 0. rut 11a)  (see 0. e r y t h r o t i s )  (see 0. e r y t h r o t i s )  (s ee 0. e r y t h r o t i s )  8. ( s e e 0. a l p i n a )  0. hyperborea  (see 0. a 1p1na1  (see 0. a l p i n a )  (see 0. a l p i n a )  0. kamensis  0. kamensIs  kamens1s  0. koslowl  0. koslowl  0. koslowl  koslowl  0. 1adacens1s  0 . 1adacens1s  0. 1adacensIs  2.  ( s e e 0. a l p i n a )  3.  0. c u r z o n i a e  6.  erythrot1s  0. f o r r e s t 1  9. 0. kamens1s 10. 0.  koslowt  11. 0. 1adacens1s 12.  **  ••  * *  thibetana)  **  (see 0. r o y l e l )  13.  ( s e e 0. r o y l e l )  0. macroti s  (see 0. roy1e1)  (see 0. r o y l e i )  14.  ( s e e 0. r o y l e I )  (see 0. r o y l e i )  0. nepalens 1s  (see 0. r o y l e i )  Table  I.  °  daurIca  1adacensIs  Q. lama 0. macrotIs  A comparison of the f i v e most recent r e v i s i o n s of the genus Ochotona. * out of the bounds of the r e v i s i o n , i . e . r e v i s i o n c o n f i n e d to c e r t a i n geographic ** not t r e a t e d  area  12  13  Problematic  Fifteen  species  this  g e n u s . These  and  26  first and  (Table  of 0.  these  s p e c i e s are  I) and  All  species  ), d i v i d e d i n t o  species  (Ellerman  aspect  of  whether I  term  specific  level.  The  be  generally noted  and  O.  that  not  s u c h as 0.  these  t o be  Gureev,1964;  Youngman,1975;  the  the  two  Asian to  could  North  be  be  Although  than  those  so,  alpina  related,  a p p l i e d at a  but the  supra-  r e m a i n s moot. by  these  in  the  two  species taxa  are  has  been  similarity  Gureev,1964). Ellerman  greater  if  distinctive  closely  One  American  s p e c i e s 0.  i s represented  species  separate  c o n s p e c i f i c s and  species, their  two  four  Mitchell,1980).  not  are  Corbet,1978  0.  and  Morrison-  daur i c a  c u r z o n i a e and  on  0.  within a single  the  daur i c a species,  rufescens.  erythrotis, of  combined  the d i f f e r e n c e s between 0.  appear 0.  s p e c i e s have been  hyperborea  daur i c a .  The  collaris  were p r o b a b l y  group  taxa.  0.  three  complex'  (see A r g i r o p u l o , 1 9 4 8 ;  basis  group  they  separate  S c o t t (1951) combined  did  all  s t a t u s of 0.  considered  hyperborea,  or d e s c r i b e d as  combined w i t h  found  regarding  8,12,13,16,18,20,21  (Broadbrooks,1965;  pr i n c e p s ,  second p r o b l e m a t i c  curzoniae  to  0.  i s whether or 0.  alpina The  controversy  Morrison-Scott,1951;  t h a t , because  'Ochotona  1  these  a1.,1981)  and  (Weston,1981)  suggested  0.  and  should  the  g r o u p s of p r o b l e m a t i c  alpina,  species  t h i s debate  they  five  0.  of  numbers  f o u r of  et  collaris  core  (Argiropulo,1948;  three  Smith,1981 a;Weston  f o r m s , 0.  form  includes  pr i n c e p s •  into a single  form t h e  Taxa  difficult  0.  gloveri taxa.  and  Each  0. of  rutila these  form  taxa  has  the  third  been  given  1 4  specific  status  synonymized  (Thomas,1922;  with  0. r u t i l a  o r , most commonly, 0.  erythrotis  T a t e , 1947; 0.  (including  erythrotis  and  the b a s i s of s i z e always noted.  unclear,  Corbet,1978;  (which  and  differences  fourth  has  described  n o t been  tentatively  on  placed  difficulties,  of  that  0. m a c r o t i s  did  not  Gureev(l964) any 0.  i s most  the  is a  revisions.  coloration,  strongly  these  cranial  differences  was u n a b l e t o the source from  of  0. r o y l e i  particularly  the  disagrees with the  f e a t u r e and suggests 0. r o y l e i .  Roberts  two t a x a , b u t n e i t h e r  n o r K u z n e t s o v ( 1 9 6 5 ) who d i d , were  significant  Corbet(l978)  but  and  as a d i s t i n g u i s h i n g  of  relatively  and P u n z o , l 9 7 5 ) a n d t h u s  0. m a c r o t i s has been  skulls  on  as c o l o r a t i o n .  0. lama  i s a t b e s t a s u b s p e c i e s of the  based  contains the three species  i n O. r o y l e i ,  size,  is  The d i v i s i o n  often  but i t i s g e n e r a l l y s e p a r a t e d  ear dimension  compare  states  shape a s w e l l  of the e a r . Roberts(1977)  use  relationship  t o 0. e r y t h r o t i s .  of  0. lama  the b a s i s of o v e r a l l  dimensions  close  species)  (Mitchell  i n c l u d e d i n most  -al.,1981).  et  he c o n s i d e r s a s e p a r a t e  group  species  Bonhote,1904b;  although  0. r o y l e i .  examine any o f t h e m a t e r i a l . more  Weston  and  that  0. r u t i l a  in skull  lama, 0. m a c r o t i s and  recently  (eg.  their  close  problematic  0. r u t i l a  have been g e n e r a l l y s e p a r a t e d on  but  i t i s very  between 0. e r y t h r o t i s  0.  species,  F o r example, A r g i r o p u l o ( 1 9 4 8 )  is  The  two  0. g l o v e r i )  and c o l o r  s t a t u s o f 0. g l o v e r i  significant  as  0. g l o v e r i  the  Argiropulo,1948),  ( E l l e r m a n and M o r r i s o n - S c o t t , 1 9 5 1 ) ,  recognized  Gureev,l964;  Allen,1938;  between  able  to  detect  0. macrot i s and  roylei. The  fifth  and f i n a l  group i s perhaps  t h e most  complex  of  1 5  all.  It  is  composed  0. . t h i b e t a n a . 0. (Allen,1938;  of  forresti  Feng  (Corbet,1978),  and  and  similar  to another  like  forresti,  it  (1941),  to  be  a  synonomies species  0.  of  0.  0.  size  the  and  skull  also  on  pusi11a  linked 0.  to  0.  osgoodi  numerous  and to  (Ellerman while  considered  forrest i . with  be  osgoodi,  (Corbet,1978), form,  (  roylei  considered  described this  and  0.  ( A n t h o n y , 1 9 4 1 ) . 0.  thibetana  originally  species  thibetana to  and  the  The  various  characteristics,  but  coloration.  was  bullae.  first of 0.  d e s c r i b e d by Lyon  cansus  especially Feng and  Kao  specifically  distinct  Allen(l938),  Ognev(l940),  Morrison-Scott(1951), subspecific  0.  forresti  thibetana,  auditory  and  based  cansus  (Ellerman  been s y n o n y m i z e d w i t h 0.  b o t h 0. been  0.  0.  pusi11a  is  osgoodi  to  assigned  0.  forrest i  species  cansus  the  who  to  separate  of  have  primarily  that  0.  Morrison-Scott,1951),  Anthony  assigned  Kao,l974),  taxon, has  forrest i ,  been c o n s i d e r e d a s e p a r a t e  assigned  Morrison-Scott,1951).  and  has  t a x a 0.  Argiropulo,1948),  Gureev,1964;  0.  the  is generally smaller in  the  (1974)  although  zygomatic also  most  and  thibetana.  He  authors,  stated  than  width  consider  Argiropulo(1948),  Gureev(1964)  s t a t u s w i t h i n Q.  i n 1907.  and  0.  the  cansus  including  Ellerman  Corbet(1978),  that  and  assign i t  16  Phylogenetic  History  A l t h o u g h most a l l taxonomic  treatments  of  Ochotona  have  been based s t r i c t l y on p h e n o t y p i c c h a r a c t e r i s t i c s , V o r o n t s o v and Ivanitskaya  (1973)  examined  the  k a r y o t y p e s of  s p e c i e s and t h r e e s u b s p e c i e s . On the they  divide  the  nine  basis  development  the d i f f e r e n c e s generally  link  in  by  these  and propose a s c e n a r i o to account  for  speciation  Vorontsov  within  glaciations.  various  propinquities  genus Ochotona.  groups. of  stages.  in  the  and  groups  Although  of  the  Ivanitskaya  ochotonids to  and  isolation  the of  they examined o n l y nine  s p e c i e s , t h e i r s has been the most comprehensive phylogenetic  results,  stages  development of the four s u p e r s p e c i f i c populations  their  s p e c i e s i n t o four s u p e r s p e c i f i c  They suggest t h a t these four groups are evolutionary  of  12 forms, n i n e  extant  examination  of  species within  the  MATERIALS AND METHODS  General  Methods  1 . Collections  Specimens  used  institutions:  American  (AMNH); B r i t i s h Vertebrate (CVM);  in  Museum  Museum,  of  (Natural  (PSM);  National Zoological  the  following  History, London  British  New  (BM);  an d e r Humbolt  zu  Berlin  N a t i o n a l Museum o f Canada,  of  Smithsonian  list  localities  i s given  specimens  examined  which a r e i n d i c a t e d  o f t h e 772 i n Appendix  Natural  History,  Institution,  specimens I. Also  (9 h o l o t y p e s ,  (MN);  Museum, Moscow (MS); N a t i o n a l  Puget  Washington  Museum of t h e Academy o f S c i e n c e s ,  A complete  Cowan  Cambridge  R o y a l O n t a r i o Museum, T o r o n t o (ROM); U n i t e d  Museum,  York  Zoology, Harvard C o l l e g e ,  Zoological  Museum  Natural  History), of  from  Vancouver  Science,  Sound  are  Columbia,  fuer Naturkunde,  Natural  (NMC); Puget  of  University  Moscow S t a t e U n i v e r s i t y Museum  study  Museum  Museum of C o m p a r a t i v e  (MCZ); Museum  Tacoma  this  Sound, States (USNM);  L e n i n g r a d (ZM).  examined  included  2 lectotypes  by a 'T' i n A p p e n d i x I .  Ottawa  and  their  a r e t h e 17 t y p e and 6 p a r a t y p e s )  18  2. M e n s u r a l  A maximum of taken  on  nearest  each 0.05  forty-two specimen  mm.  representation  A  of  skull  measurements  using  dial  complete  these  Methods  calipers  description  measurements  (Table  reading to  and  i s given  II)  was the  diagrammatic  i n Weston  (1.98-1)  (see Appendix I I I ) . S p e c i m e n s were d i v i d e d i n t o a d u l t and following base  (1981).  Weston  in order  Specimens  t o reduce  were  also  problems  excluded  of  indicated  replaced  with  numerical  results.  (n=42)  and  measurements data  that  i f more than  up  estimates  all  After  with an  general data  only very  obscure,  data  up  data  with  used  to  G r o u p s and  was  locality  size; preliminary  than  could  be  affecting  the  specimens  four  t o form  subdivided  information  locality  missing  missing  the  general  analyses.  Complexes  s e t s . A l l specimens l a c k i n g general  four  significantly  more  data  the p o s s i b l e  measurements  in a l l numerical  base  unverifiable  set(n=36).  four  specimens remained  3. G e o g r a p h i c  secondary  with  f o u r of  the  variation.  the e x c l u s i o n of a l l j u v e n i l e  (n=269), 478 then  to  without  specimens  base w h i c h was  The  morphological  were r e t a i n e d t o i n c r e a s e sample  analyses  categories  J u v e n i l e s were d e l e t e d from  42 measurements were m i s s i n g . S k u l l s measurements  juvenile  i n t o primary  locality (eg  were a s s i g n e d  and  information,  'USSR'), or t o the  A l s o , s p e c i m e n s w h i c h were a p p a r e n t l y  with  secondary collected  Cranial  1 . 2 . 3 . 4 . 5 . G . 7 . 8 . 9. 10. 1 1. 12 .  Measurements  Abbrey ia t i ons  Abbrev1 a t i ons  BASLEN GRTLEN  2G . 27 .  Mandible Mandible  depth  1  Zygomatic Braincase  MANDP1  ZYGWID BRNBRD L . I .0 DI AST M MAXTRL-  28 . 29 .  Mandible Mandible  depth depth  2 3  MANDP2 MANDP3  30. 31 . 32 . 33. 34 .  Mandible  width breadth  Least i n t e r o r b i t a l width D i astema M a x i l l a r y t o o t h row length P a l a t a l width Palatal length Nas Bui Bui I I  PALWID PALLEN NSLLEN BULLEN  15 . 16 . 17 . 18 . 19 .  P*  P2WI0  P' P  20. 2 1 . 22 . 23 . 24 . 25 .  Measurements  Basal length Greatest length  al length la length l a width width 1ength I » width P' length  13 . 14 .  Mandible  1  1  1  P' P' M M M' M'  1  1  width 1 ength width  BULWID I 1WID I 1LEN I2WID P2LEN  MANLEN  width  Mandible tooth D i astema P3 1 e n g t h P3 w 1 d t h 35 . P4 w i d t h 3G . P 4 w i d t h 3 7 . M1 1 e n g t h 3 8 . M1 w i d t h 3 9 . M2 1 e n g t h 40. M2 w i d t h 4 1 . M3 1 e n g t h 4 2 : M3 w i d t h  row  length  MANWID MNTRLN MNDIAS MP3LEN MP3WID MP4LEN MP4WID MM1LEN MM1WID MM2LEN MM2WID MM3LEN MM3WID  P3LEN P3W1D P4LEN P4WID M1LEN  1ength width 1ength width length  M1WID M2LEN  width  M2WID  Table  length  II. Measurements taken on the s k u l l s of specimens of Ochotona. their corresponding abbreviations and reference numbers.  along  w i t h  20  well the  outside secondary  consisted  s p e c i e s were  s e t ( n = l 9 ) . As a r e s u l t ,  only and  f o r that  those  which  specimens  fell  included in  the primary  with  data set  complete  approximately  within  locality  that  species'  range. The  primary  (Figure  2),  subsets  in  groups  were  such  as  data  in  to  taking  on  into  small,  variation the b a s i s  ranges,  rivers, size,  easily  was  minimized.  These  boundaries  o r d e s e r t s . When i t became  o r more commonly,  complexes  Statistical  groups  manipulated  geographic  s p e c i e s or s u b s p e c i e s , the groups  overlapping geographic  geographic  of s p e c i e s and s u b s p e c i e s  consideration  t o i n c r e a s e sample  problematic  subdivided into provide  geographic  delimited  mountain  necessary  s e t was  order  which  composition,  into  data  of  information known  t h e known range  to  were t h e n  compare combined  (Table I I I ) .  Methods  1. G e n e r a l  All sets,  were  reduce more  measurements, transformed  the  nearly  Marcus, except  effect normal  1980).  of in  These  to  their  overall  the primary  pair-group  and s e c o n d a r y  logarithmic  skull  distribution  size  equivalents  data to  and t o make t h e d a t a  (Eldredge,1972;  d a t a were u s e d  Neff  and  i n a l l analyses  noted.  f i v e major- t y p e s o f a n a l y s e s used  unweighted, analysis  both  logarithmic  where o t h e r w i s e  The  in  arithmetic  (NT-SYS; R o h l f , K i s h p a u g h  in this  average and K i r k ,  s t u d y a r e : an  (UPGMA) 1968);  a  cluster principal  gure 2. The range of geographic groups.  the O l d World s p e c i e s  divided  into  23  Geographic Complex  Geographic Groups  1  1+6A+6B+6C  2  1+2A+2A.1+2A.2+2A2+3+2A.3+2B  3  2A+2A.1+2A.2+2A2.3+2A.3+2B  4  2A+2A.1+2A.2+2A2.3+2A.3+2B+5  5  2A+2A.1+2A.2+2A2.3+2A.3+2B+3+3.4+4  6  2A+2A.1+5+6A  7  1+2B+3+6C  8  2A.2+2A2.3+2A.3+2B+3+3.4+4  Table I I I . Combinations of g e o g r a p h i c groups (see 2) i n t o geographic complexes.  Figure  24  component  analysis  (PCA) ( u s i n g  function  analysis  (DFA) (BMDP7M; D i x o n ,  of  a  minimum  construction the  first  spanning  of a Wagner t r e e three  through another, p r o g r a m BMDP2M UPGMA  et  analyses  (MST)  linear  1977);  (using  were c h e c k e d  discriminant  the c o n s t r u c t i o n  NT-SYS);  (WAGNER; F a r r i s ,  t h e same d a t a  'Cluster  ( D i x o n , 1 9 7 7 ) was u s e d t o c h e c k  and t h e  1970). R e s u l t s of  by.running  b u t s i m i l a r , p r o g r a m . The  c l u s t e r routine  method o p t i o n PCA  tree  NT-SYS); a  on  Cases'  the r e s u l t s of the  i n t h e NT-SYS p a c k a g e . The program BMD4M,  PCA ( D i x o n ,  1977), p r o v i d e d  r e s u l t s , and t h e d i s c i m i n a n t a l . , 1975) was used  to  for a  comparison  of  p r o g r a m SPSS:DISCRIMINANT ( N i e  check  the  results  of  the  program  BMDP7M. The in  complexities  the  Neff  literature  and M a r c u s ,  aims  of  should,  of numerical (see  these  and  techniques,  establishment useful  in  rather  than  the  are  of a p r i o r i cases  as they  reiterated. PCA  where  of  the  To  begin  similar  in  groups. Thus,  with, that  these  interest.  An  that  i s , i t does  not  unclustered  data.  R a t h e r , a PCA i s an o r d i n a t i o n  are purely  PCA  may  To  produce  be p r o j e c t e d  study  requires are  The component to obtain  these p e r s p e c t i v e  difference  PCA i s n o t a c l u s t e r i n g  find  group a s s o c i a t i o n s  ad hoc.  and  cluster  analyses  important  technique;  PCA  neither  two  i s that  of  the  1 976;  t h e r e l a t i o n s h i p s between i n d i v i d u a l s ,  groups, a r e of  divisions  assumptions  r e l a t e to the present  between PCA and c l u s t e r a n a l y s e s  all  described  S n e a t h a n d S o k a l , 1.973; M o r r i s o n ,  1980), however, some  p e r h a p s , be  analysis  techniques are well  groups  based  scores  in initially technique  on t h e r e s u l t s of a resulting  a multidimensional  plots  and  f o r the  present  from  the  perspective. study,  I  25  projected  individual  scores  onto  the  components u s i n g a s m a l l F o r t r a n program University scheme.  of  British  This combination  three-dimensional a  reasonably  plot  Columbia's  plots  clear  permitted  on a v i s u a l  ( i . e . with  a 'Houston As  here,  assumptions  normality Cluster  either,  do  1976).  chosen  were t h e n  on c o r r e l a t i o n the  ( o p e r a t i o n a l taxonomic  size  1965; S n e a t h and  that  about  express  analysis This  units)  t o be m u l t i v a r i a t e l y  homogeneous,  dispersion  i . e . that  of  matrix  was  coefficient between  1964; R o h l f and  matrices  a l l have  orientation  phenetic  much space.  OTU's  g r o u p s and t h e s e  normally  the groups  Sokal,1973:404) in  1973;  t h e PCA were  the s i m i l a r i t y (Boyce,  but  i s doubtful Sokal,  and  type  the data  Sokal,1973).  membership t o a p r i o r i  the  is  1978).  anything  correlation  in estimating  as i t  Smith,  i s , however, b a s e d on s e v e r a l a s s u m p t i o n s .  assigned  assumed  and  differentiation  product-moment  two  DFA  Neff  to  matrices.  obtained  and m u l t i v a r i a t e  assumptions  cluster  shape o v e r  OTU's  matrix  1972; S n e a t h and .Sokal,1973; the  points)  plotter.  suitability of  (*IG)  (VDT) u n t i l  overlapping  plots  data  require  patterns  Both  because  the  emphasizes  is  display terminal  (Harris,1975,  but t h e i r  and J o h n s t o n ,  performed  be  graphics  p e r s p e c t i v e r o t a t i o n s of the  Complot'  not  categorical  Thorpe,  Sokal,  i n c o n j u n c t i o n with the  a minimum of  about  are necessary analyses  simple, (Gould  principal  l o n g a s t h e use o f a PCA i s p u r e l y d e s c r i p t i v e , no  matrix  Instruments  three  integrated  was p r o d u c e d . Hard c o p i e s o f t h e s e  using  first  distributed. of  the  same  groups a r e  Also  assumed  groups or taxa a r e  (or ' c l u s t e r s ' ; the  must  size,  T h i s assumption  see S n e a t h and shape relates  and to the  26  sample  s i z e and  An  aim  of  characters taxon  a  such  have h i g h  another a  character  three  that  as  many as  In  new  power  general  method  of  the  techniques. matrix  uses  all  functions  The  manner  (see  of  methods of  the  serve  may  of as  single  then  groups,  and  Ferguson,  1975;  be  ideally  can  to  calculations.  (For  the  assessed  is  a more c o m p r e h e n s i v e  'n' An  constructed this  be  used to a s s i g n  new  groups. There  One  is  the  sample to  is virtually difference left  i s used test  procedure  are  cross-  1977), where  i s used  a jackknife  the  same  to avoid  second  but  the  functions.  tables  Tukey,  1978). I t  the  order  while  called  by  In  g r o u p s ; one  Valen,  being  and  the  these  a priori this.  is  calculate  these  i n t o two  c r o s s - v a l i d a t i o n technique individual  also  tested  (Morrison,1976).  to  al.,1965).  be  these  in c l a s s i f i c a t i o n  (Mosteller  is often Van  of  groups using  et  can  classifies  accomplishing  split  functions  then  functions  s e c o n d method  single  a priori  first  functions  technique  The  t o the  functions  and  known a f f i n i t y  i s randomly  calculate  can  t h a n does any  individuals  Frank  discriminant  individuals  sample  one  many p o s s i b l e  'n'  occurs  validation  OTU's i n  as  t a b l e ) ' technique  commonly  basic  of  the  (or  upward b i a s  two  function  of  function  taxa  the  discriminant  a priori  the  the  two  i n d i v i d u a l s to  i n t o the  bias,  and  S o k a l , 1 9 7 3 ) . These  individuals  this  way,  the  linear  possible  function  this of  a  error..  discriminant  in  section.  produce  for t h i s  disciminator  'classification This  to  ( S n e a t h and  with minimal The  is  values.  to c l a s s i f y  in a later  DFA  values  have low  much b e t t e r  used  i s discussed  the to  them.  (Bissell identical  i s that  out  of  the  treatment  of  these  the  initial last  27  two  methods  sizes  of  see  Neff  s p e c i m e n s of  methods were u s e d on  the  to  canonical  assessment based  of  on  and  Marcus,  Ochotona t e s t the  1980:31-34). Wherever  permitted,  discriminant  v a r i a t e s produced  points  s i m i l a r to that  similarity  by of  matrices  all  of  functions.  the the  DFA  the  above  The  scores  permit  PCA.  sample  a visual  A l l DFA's  composed  of  were  correlation  coefficients. The tree' a  minimum  of  S n e a t h and  single  linkage  together  Hartigan, a  or  network)  a  taxonomic  is  and  MST  1980). The  derived  from  g e n e r a l i z a t i o n of  of  the  phylogenetic of  tree  among  at  means of used  to  second  the  The  raw  some data  represent Wagner of  tree the  of  as  of  numerical  one  of  species.  was  calculated  For  individual species' be  rooted  by  OTU's most  (a Wagner  (Neff  and  frequently  forms a  which  s t u d y . To  has type  differ  this  species  comparative the  This  or  part  which  goals.  f o r each  using  1969;  Sokal(l965)  characters the  some  is similar  cladistics,  i t s major  OTU's of  a given  is  on  'hypothetical  Wagner t r e e  f o r each c h a r a c t e r  Wagner t r e e may  the  to  linked  Ross,  form  Camin and  The  discrete the  and  additional  (or n e t w o r k )  called  based  unrooted  between  algorithm  reasonably  least  equivalents  placed  reconstruction  requires  has  Farris(1970).  analyses  OTU's a r e  tree  (Gower  or  spanning  is closely related  1980). A Wagner t r e e  which  cladistic  the  body of  matrix  Wagner t r e e  'shortest  i n w h i c h the  connected  Marcus,  (HTU's)  Marcus,  the  (1973:255-256),  in i t s undirected  an  units'  the  (MST), or  shortest  Neff  in that it  Sokal  dissimilarity  1977;  MST  tree  cluster analysis  using  similarity  to  spanning  end, were  purposes,  a  logarithmic  means. s e l e c t i n g the  OTU  which  is  28  considered extant to  to  have  s p e c i e s of  retained  the  and  1980;  Part  i t i s the  the  of  the  while  karyotype  (Vorontsov  to appear  i n the  0.  pusilla  extant  Wagner t r e e was  the  MST  numerical  Amdahl  was  is and  fossil  considered Ivanitskaya,  record  deemed t o be  s p e c i e s , and  470  was  b a s e d on  analyses  V/8  b a s e d on.a  was  (Sych,  the . most  s e l e c t e d to  a Mahalanobis  within this  computer a t  Manhattan  study  form  This and  with  of  a  order  study few  i s based p r i m a r i l y  exceptions  complete  data  t o have a c c e s s  missing  values  these  to the  see  (Dixon,1977)  missing values  data from  correlated species,  estimates. (both  a  regression The  w i t h i n each  missing  range  -of  Marcus,  and  the  an  assumption  measurements.  these  the m a t r i x  and  several  on  on  Columbia.  r e q u i r e the  to complete  and  out  Outliers  In  techniques, ( for  other  Sokal,1973:178-182; 1980:39-41). The methods  one  for  program  estimating  or  two  missing  most  r e g r e s s i o n s were c a l c u l a t e d  s p e c i e s , in order  These e s t i m a t e s primary  matrix.  I c h o s e t h e method t h a t e s t i m a t e s  variables.  not  full  provides  values.  distance  on m u l t i v a r i a t e t e c h n i q u e s , ,  i . e . no  Sneath  Morrison,1976:120-124; Neff BMDPAM  2  matrix  were c a r r i e d  techniques  matrix,  were e s t i m a t e d  alternatives,  (D )  distance  t h e U n i v e r s i t y of B r i t i s h  2. M i s s i n g V a r i a b l e s and  base  pusi11a  the  root. The  All  first  I I ) . Therefore,  plesiomorphic  ancestral state. Within  genus O c h o t o n a , 0.  have t h e most p r i m i t i v e  1973)  the  highly over a l l  to reduce b i a s  were then  incorporated  secondary  data  into  s e t s ) and  the  i n the data'  a l l analyses  29  were p e r f o r m e d The  on t h i s  revised  matrix.  p r o g r a m BMDPAM a l s o p r o d u c e s a g e n e r a l  along  with  estimates  of  missing  aspect  of t h e program was u s e d  data.  to test  identified  values)  this  mensural  limits  f o r e a c h v a r i a b l e . The program  outside and  by s p e c i f y i n g b r o a d  o u t l i e r s and or  keypunch,  (maximum and minimum  flagged a l l  measurements  r a n g e . In a d d i t i o n , t h e p r o g r a m was r u n on s p e c i e s  subspecies  groups  identified  examining  the r e s u l t a n t standard  variation,  some of t h e l e s s  in  previous  error,  and  revisions.  By  d e v i a t i o n s and c o e f f i c i e n t s o f  flagrant  outliers  When p o s s i b l e , I r e - e x a m i n e d a l l s p e c i m e n s t h a t mensural  desciption  The d a t a d e s c r i p t i o n  f o r mensural  keypunch e r r o r s . Extreme e r r o r s , e i t h e r were  data  c o r r e c t e d them b e f o r e  were  detected.  were o u t l i e r s by  proceeding  w i t h any  detected  f o r the  analysis.  3.  No s i g n i f i c a n t skulls and  of  three  0. a l p i n a ,  (MANOVA) World  (see  Sexual  sexual  dimorphism  was  s p e c i e s o f O c h o t o n a , 0. p r i n c e p s , 0. using  Weston,  a  multivariate  analysis  1981). An e q u i v a l e n t  species yielded similar  generally  Dimorphism  results,  suggesting  no d i f f e r e n c e s between t h e s k u l l s  pikas.  The  sample  size.  sexes  were  therefore  test  pooled  collaris  of  variance  run on t h e O l d that  there are  o f male  and  female  i n order  to increase  30  I n d i v i d u a l Assessment  1. I n d i v i d u a l  H i s t o r i c a l confusion 'Historical  Review')  made  s p e c i f i c or s u b s p e c i f i c Choate  among  on  homogeneous  Rohwer and K i l g o r e combination  species  designation  individuals groups,  Assessment  and  subspecies  a r e - e x a m i n a t i o n of each  (1972) and Thorpe (1973,  analysis  and Sample S i z e  to  while  imperative.  and  detect Rising  specific (1972),  affinities  and  Moulton (1973) and I  used  a  of both of these t e c h n i q u e s p l u s a DFA to t e s t each  to  association.  about  groups,  determine Because  it  an  I first  requires  any  a  these two t e c h n i q u e s were used individual's  probable  taxon  seemed most l i k e l y t h a t i f a specimen  were m i s - i d e n t i f i e d i t would be a s s i g n e d same a r e a ,  Genoways  (1973) used PCA t o t h i s same end.  judgement  initially  specimen's  1979) among o t h e r s used c l u s t e r  i n d i v i d u a l . As n e i t h e r the PCA nor the c l u s t e r priori  (see  tested  for  taxon  to a n o t h e r taxon i n the association  within  the  a p p r o p i a t e geographic group and then geographic c o m p l e x ( e s ) . The resultant  possible  association  was f u r t h e r t e s t e d by e n t e r i n g  the specimen i n t o a DFA as an unknown to be c l a s s i f i e d , w i t h the r e l e v a n t taxa forming the a pr i o r i g r o u p s . PCA and the c l u s t e r a n a l y s i s complex(es)  indicated  a  I f the r e s u l t s of the  f o r both the geographic  group  and  s t r o n g group membership, then the DFA  s t e p was o m i t t e d i n o r d e r to save computer t i m e . Specimens  from  the  more  secondary  data  set  were  analysed  encompassing geographic complex  stage  precise  All  locality  information.  due of  only to  at their  the lack  of  the secondary data  set  31 specimens were e n t e r e d i n t o a DFA r e g a r d l e s s the  PCA and  cluster  analysis.  These  of the  specimens  i n c o r p o r a t e d i n t o the a p p r o p r i a t e taxa w i t h i n the set  i n order to maximize sample  results  of  were  then  primary  data  size.  2. Sample S i z e  Sample  sizes  enormously. analyses  for  Although  assumption  When of  species  problems  t o some degree,  on the DFA..  the  sample  of  and  sample  subspecies size  varied  affected  all  they had the g r e a t e s t p o t e n t i a l e f f e c t sizes  are  unequal  in  a  DFA,  the  homogeneous d i s p e r s i o n m a t r i c e s of the groups  v i o l a t e d and thus s t a t i s t i c a l  inferences  may  be  is  invalidated.  (For a more complete d e s c r i p t i o n of DFA and the e f f e c t  of  size  1980:148).  see Sneath and S o k a l , 1 9 7 3 : 4 0 4 ;  In o r d e r t o minimize the problems reduced  the  total  of  Neff and Marcus, unequal  sample  had  sample  sizes greater  b a s e l i n e r e p r e s e n t e d the s m a l l e s t value  of  all  I  those  taxa  than t h a t of the b a s e l i n e . The sample  size,  to  a  minimum  10, of any taxon w i t h i n a g i v e n group of taxa e n t e r e d  i n t o the DFA. The a n a l y s i s randomly  size,  number w i t h i n each taxon to a common sample  s i z e b a s e l i n e by randomly o m i t t i n g i n d i v i d u a l s from which  sample  chosen  was  with  new,  i n d i v i d u a l s r e p r e s e n t i n g the l a r g e r taxa  until  i n d i v i d u a l s were i n c l u d e d .  then  run  serially  32  Subspec i e s  A p e r s p e c t i v e on gained  by  choosing  samples  were  (Figure  3).  0.  These  entered  principal  five  p.  and  'classification  the  0.  an  p.  and  then  method, t h e  subsequently  applied  results  each  the  These  for  f o r which  good  0.  a n a l y s i s based a  DFA  same at  range  level  on  using  basic the  the the  and  the  analytical  species level  would  ,  p_. p r i n c e p s ,  j a c k k n i f e procedure  techniques that  was  p_. b r u n n e s c e n s  l u t e s c e n s and  technique.  order  0.  UPGMA c l u s t e r  scores,  level  a maximal e a s t - w e s t  cross-validation were  princeps  subspecies,  f e n i sex,  table'  subspecific  of 0.  w h i c h had  five  i n t o a PCA,  component  at  subspecies  available  p_. c u p p e s , 0.  were  variation  be  in  directly  comparable.  Species  The described separately remaining analyses inter-  and  15  species,  earlier and  (see H i s t o r i c a l in  species were  forming  detail for  used  further  the  however,  w h i c h had  a direct  decisions  will  brevity.  to  use  reported  of  being  formulate  a  and  DFA. on  the  interest  first  PCA  then Only  with  and  hypotheses these  groups examined  combined  assessment.  bearing  i n the  problematic  R e v i e w ) , were  relationships  were t e s t e d t h r o u g h  be  five  before  initially  intraspecific  the  the  cluster regarding  hypotheses  those  results,  subsequent  taxonomic  of  simplification  and  33  F i g u r e 3. Ranges of f i v e s u b s p e c i e s of 0 . pr inceps  i n Canada.  35  All with  DFA's p e r f o r m e d a t t h e s p e c i e s l e v e l  equalized  species, large  22 d a t a  taxa  sizes.  subsets  were c r e a t e d  were  approximately number  sample  of  randomly  of e q u a l subsets  individuals. individuals  DFA  necessary  s i z e s ) of the Old World  run  on t h e O l d W o r l d  i n which i n d i v i d u a l s until  s i z e . The 22 s u b s e t s for  the  from  a l l species represents  were  the t o t a l  inclusion  of  a l l  s u m m a r i z i n g DFA was p e r f o r m e d on a l l  ( i . e . no o m m i s s i o n s  complicated  the  included  An a d d i t i o n a l  Equalization  For  were s e r i a l l y  and  therefore  unequal  sample  species.  of sample s i z e  by t h e r e l a t i v e l y  f o r DFA  r u n s on a l l s p e c i e s  was  l a r g e s i z e o f 0. p r i n c e p s  (n=225).  Appropriate  numbers o f i n d i v i d u a l s o f 0. p r i n c e p s were  randomly  included  the  although  in  ultimately  remaining  i n c l u d e d , and summarizing  so  described  above,  no  individuals extra  data  unlikely  from a d d i t i o n a l  of  0. p r i n c e p s  subsets  were  runs i n  would  created.  be Two  DFA's r u n s were a l s o p e r f o r m e d : one u s i n g a maximum  of 25 i n d i v i d u a l s  five  subsets  i n f o r m a t i o n w o u l d be g a i n e d  the  composed  data  n o t a l l i n d i v i d u a l s were i n c l u d e d . I t - s e e m e d  t h a t any new which  22  of  f o r each taxon  five  subspecies  individuals described  (the  0. p r i n c e p s  group  being  randomly chosen from each of t h e  earlier)  and  one  using  a l l  individuals. General were  interspecific  elucidated  by  r e l a t i o n s h i p s , a s d e f i n e d by t h e DFA,  plotting  canonical variates evaluated were  obtained  using  the  at the  scores group  of  the f i r s t  means.  These  t h e same method a s t h a t d e s c r i b e d  p r i n c i p a l component p l o t s .  Interspecific  f u r t h e r e x a m i n e d by u s i n g a Wagner t r e e  three plots  for' t h e  r e l a t i o n s h i p s were ( o r c l a d o g r a m ) and a  then MST  36  as estimates of phylogeny.  37  INDIVIDUAL ASSESSMENT: RESULTS  An  The confirm were  identification or c o r r e c t  assigned  marked w i t h an involved of  of each  its  t o new  specimen  taxonomic  in reassigning which  in two  was  I),  of t h e s p e c i m e n s generally  i n order to  Some  of t h i s  Appendix  were  checked  designation.  t a x a as a r e s u l t  asterisk  techniques  Example  specimens  action  and  the  (they  procedure  p r o v i d e s an  used  in  are  example  a l l individual  assessments. Two  specimens,  locality 9.'  (Mustang  daur i c a  range and  daur i c a  Ellerman  and  included  0.  0.  (Figure  principal  same d a t a , 0.  than  be  the  while  by  specimen based  components, a  t o 0.  royle i  identified outside  (Figure group  as  t h e known  Orr  (1977)  4 ) . In a UPGMA  (GRP2A.2)  which  #74763 showed some  affinities  #74761  similar  on  the  was  more  scores  on  from a PCA  affinity (Figure  2 in order that  included. A plot  from t h e same  Corbet(1978),  obtained  closer  were  i s well  geographic  specimen  5). Plots  on G e o g r a p h i c . Complex would  Nepal  Morrison-Scott(1951)  implies  c u r z o n iae  Nepal),  as s p e c i f i e d  run on  c u r z o n iae  74763, c o l l e c t e d  of  collector.  these specimens,  roylei  three  the  analysis  74761 and  district  f o r 0.  cluster  to  by  ROM  of  the  of t h e s c o r e s  oh  the  first  run on  these  specimens  6). Another  specimens  the  PCA  of first  0.  to  was  to run  daur i c a  principal  38  F i g u r e 4. Range of 0 . daur i c a and the l o c a t i o n of the c o l l e c t i o n s i t e of the specimens ROM 74761 and ROM 74763.  gure 5. UPGMA c l u s t e r a n a l y s i s on Geographic group 2A.2. See text for e x p l a n a t i o n .  0.020  I  22.3241  O: c u r z o n i a e  74763  ??  74761  ??  74721  O. r o y I e i  74697  O. r o y I e i  74744  O. m a c r o t i s  74737  O. I a m a  74739  O. I a m a  74738  O. I a m a  25.3214  O. c u r z o n i a e  74659  O. r o y I e i  ure 6. R e l a t i v e p o s i t i o n s of the specimens of Geographic group 2A.2 i n a p r o j e c t i o n on the f i r s t three principal components. The f i r s t a x i s r e p r e s e n t s 46%, the second 18% and the t h i r d (vertical) represents 11% of the t o t a l v a r i a t i o n . Dashed l i n e s s e p a r a t e s p e c i e s . Open c i r c l e Open square Open t r i a n g l e C l o s e d square Asterisk  = = = = =  0 . lama Specimens ROM 74761 &•74763 0 . c u r z o n iae 0. macrotis 0. r o y l e i  43  P C  I  44  components  for 0.  inconclusive  r o y l e i , 0 . daur i c a and 0 . c u r z o n i a e  (Figure  7).  I t does appear from the p l o t ,  t h a t 0 . . r o y l e i i s d i s t i n c t i v e and question  fall  within  a  that  swarm  the  unknowns,  groups and the  classified  the f i r s t  of  the  specimens  ( D r . R. M. M i t c h e l l ) , 0. curzon i a e ,  not  however,  specimens  0 . d a u r i c a and 0 .  ROM specimens  in  (Figure to  roylei  entered  both specimens as 0 . c u r z o n i a e .  completing t h i s procedure,  after  two  two c a n o n i c a l v a r i a t e s  similarity  two  is  of 0 . c u r z o n i a e and 0 . daur i c a  specimens. A DFA run w i t h 0 . c u r z o n i a e , as the a p r i o r i  only,  A p l o t of  8), also indicates  0. curzoniae.  the c o l l e c t o r of  the  the  Subsequent ROM  as  to  specimens  c o n f i r m e d t h a t they were indeed members of  0 . daur i c a .  He  E l l e r m a n and M o r r i s o n - S c o t t ' s  had  c a l l e d them 0 . daur i c a  <1951) c l a s s i f i c a t i o n  which  i n c l u d e d 0 . c u r z o n iae as a s u b s p e c i e s of 0 . daur i c a . The verify to  the  purpose  of  the  individual  assessments  was o n l y t o  the i d e n t i f i c a t i o n of each specimen w i t h o u t judgement h i e r a r c h y of the taxon under c o n s i d e r a t i o n .  t h i s study  is,  The bulk of  however, concerned w i t h the assignment of a taxon  to e i t h e r a s p e c i f i c examination  as  of  seems w a r r a n t e d .  the  or s u b s p e c i f i c species  category  concept  and  and i t s use  so  a  in t h i s  brief study  45  F i g u r e 7. R e l a t i v e p o s i t i o n s of the specimens of 0 . r o y l e i , 0 . daur i c a , 0 . c u r z o n i a e and the specimens ROM 74761 and ROM 74763 i n a p r o j e c t i o n on the first three p r i n c i p a l components. Open c i r c l e Open square Open t r i a n g l e C l o s e d square  = = = =  0. r o y l e i 0. daurica 0. curzoniae Specimens ROM 74761 & 74763  46  gure 8. a) P r o j e c t i o n of the specimens of 0 . r o y l e i , 0 . daur i c a , 0 . c u r z o n i a e and the specimens ROM 74761 and ROM 74763 a l o n g the f i r s t two c a n o n i c a l v a r i a t e s . The f i r s t a x i s r e p r e s e n t s 86% and the second 14% of the t o t a l v a r i a t i o n . Open symbols r e p r e s e n t i n d i v i d u a l s , c l o s e d symbols are group means. Open Open Open Open  circle square triangle star  = = = =  0 . daur i c a 0. curzoniae 0. r o y l e i ROM 74761 & 74763  b) C h a r a c t e r c o e f f i c i e n t s f o r the f i r s t two c a n o n i c a l v a r i a t e s . For a key t o the r e f e r e n c e numbers see Table II .  Canonical  variable  II  o  _i_  i  >  >  >  o o o 'o o  *R oo  008 8 o  o  •  0  o  o °o8 o  o  50  SPECIES CONCEPT  One of the most p e r p l e x i n g problems i n taxonomy i s t h a t  of  d e f i n i n g a s p e c i e s . Numerous s p e c i e s concepts, have been proposed but none has a c h i e v e d u n i v e r s a l a c c e p t a n c e . widely  used  Perhaps the two most  are the b i o l o g i c a l s p e c i e s concept and a p h e n e t i c ,  or m o r p h o l o g i c a l , c o n c e p t . Mayr, who i s the foremost advocate  of  the b i o l o g i c a l s p e c i e s c o n c e p t , d e f i n e s  species  as.  'groups of i n t e r b r e e d i n g n a t u r a l p o p u l a t i o n s t h a t  are  comprising  reproductively  i s o l a t e d from o t h e r such groups'  concept has. been Crovello  (1970),  species  concept,  formulation  biological  the in  subject a  of  much  (1969:26).  criticism.  Sokal  This and  d e t a i l e d e x a m i n a t i o n of the b i o l o g i c a l  conclude  that  it  is  imprecise  in  its  and i n p r a c t i c e i s n o n - o p e r a t i o n a l . They s t a t e t h a t  one must e v e n t u a l l y r e s o r t  to p h e n e t i c procedures  to  arrive  at  d e c i s i o n s on the s t a t u s of the p o p u l a t i o n s , which i n t u r n do not meet  the  definition  as  stated.  Lewin  (1981) notes t h a t  almost a l l of the m i l l i o n s of organisms on E a r t h , we s t i l l little  or no i n f o r m a t i o n on s p e c i f i c  are u l t i m a t e l y f o r c e d to r e l y on characters Sokal  for  distinguishing  (1962) observe  species  concept  can  that lead  the to  have  i n t e r f e r t i 1 i t y and thus we  morphological  or  biochemical  s p e c i e s . B l a c k w e l d e r (1962) and employment unwarranted  of  the  biological  i m p l i c a t i o n s about  r e p r o d u c t i v e r e l a t i o n s h i p s of s p e c i e s which have been by c o n v e n t i o n a l c r i t e r i a .  for  described  51.  The  phenetic,  or  taxonomy c o n s i s t e n t l y applicable.  This  morphological, emerges  type  of  as  both  species  commonly employed by t a x o n o m i s t s  s p e c i e s of c o n v e n t i o n a l practical  is  perhaps  and the  widely one most  w o r k i n g on the p l a n t and a n i m a l  kingdoms (Davis and Heywood, 1963; B l a c k w e l d e r , 1967; M i t c h e n e r , 1970; Sneath and S o k a l , 1 9 7 3 ) . its  problems,  This concept,  arbitrary  techniques  has  traditional  somewhat  methods  and  species  procedures.  by  frequently The  alleviated  without  the  use  have  of  Sokal(l973)  them  . subjectiveness  generally  of  more  S p e c i e s may be regarded as  species' explicit.  '(a)  the s m a l l e s t  alternatives.  (most  homogeneous)  c l u s t e r t h a t can be r e c o g n i z e d upon some g i v e n c r i t e r i a as from o t h e r c l u s t e r s ,  diversity  somewhat  below the subgenus c a t e g o r y , (p.  365).  t h a t no matter what the c o n c e p t ,  'species'  have always been  although  in  practice,  being  or (b) a p h e n e t i c group of a g i v e n  i t contains d i s t i n c t subclusters' state  of  note t h a t a p h e n e t i c s p e c i e s d e f i n i t i o n  can r e s u l t from the c o n s i d e r a t i o n of two p r i n c i p a l  distinct  been  numerical  q u a n t i f y i n g the procedures  i d e n t i f i c a t i o n and thus making Sneath  i s not  e s p e c i a l l y w i t h i n t r a d i t i o n a l taxonomy where the  r e c o g n i t i o n and d e l i m i t a t i o n of subjective,  too,  closer  to  whether or not  Sneath  and  Sokal  the meanings of the term the  i f the a l t e r n a t i v e s  first  alternative,  clash seriously  the  second i s u s u a l l y chosen. For the purposes of t h i s s t u d y , species  definition,  such  a p p l i c a b l e as not only defined  on  have  as  that all  I  given  the  morphological characters,  i n f o r m a t i o n on s p e c i f i c  felt  interfertility  that above,  ochotonid  a  phenetic  was the more species  been  but t h e r e i s v i r t u a l l y no for  the  pikas.  As  a  52  result seems  of  the  m o r p h o l o g i c a l homogeneity of the o c h o t o n i d s ,  desirable  available  to  temper  information  history etc.,  on  species habitat,  difficult  than  that  abandonment  the  of  designation  of  W i l s o n and Brown (1953) and  subspecies^  species.  Burt  within  the  the  subspecific  classification  formally  genus  is  names  and  have  even  such  suggested  as the  a p p l i e d t r i n o m i a l s for examination  I do, however, l i s t  synonomies  and a s p e c i e s i s fraught the use of some  when the  of have all  revised  subspecies  (assuming  its  with d i f f i c u l t i e s . Pimental predetermined  percentages  n o n - o v e r l a p and t h e r e are a p l e t h o r a of o t h e r s u g g e s t i o n s i n  the l i t e r a t u r e . For t h i s s t u d y , Pimental's  technique.  I have adopted  0 . pr i n c e p s , subspecific degree  of  intraspecific as  i s t y p i c a l f o r the o c h o t o n i d s and thus d e f i n e s  the  l e v e l . A l t h o u g h other s p e c i e s may of  with  species.,  not  exhibit  i n t r a s p e c i f i c v a r i a t i o n as 0. pr i n c e p s ,  Pierce  interpopulation correlated  well-known  variation  such  K l u g e - K e r f o o t phenomenon (see and  a  I assume t h a t the degree of  o v e r l a p e x h i b i t e d by a reasonably  1976  perhaps  given.  (1959) has advocated  same  are  Ochotona to those that  D e f i n i n g the boundary between a existence)  fossil  approximate  Many a u t h o r s ,  (1954),  d i r e c t b e a r i n g on the s p e c i e s q u e s t i o n .  of  karyotype,  In t h i s r e v i s i o n , I have l i m i t e d my  subspecies  available  all  species.  The problems of s u b s p e c i e s  complete  behavior,  with  thereby p r o v i d i n g what I hope may a l s o  the b i o l o g i c a l  more  delimitations  it  and  Kluge and  Mitton,  character  1979),  Kerfoot, which  differentiation  intrapopulation  variability  1973; suggests  is  if  the the  Sokal, that  positively for  the  same  53  characters, cases,  i s expanded to the i n t e r s p e c i f i c  the r e s u l t s  and  intraspecific  f o r 0 . pr inceps perhaps can be c o n s i d e r e d  form a r e a s o n a b l e b a s e l i n e  for d i f f e r e n t i a t i n g  and s u b s p e c i e s w i t h i n the o c h o t o n i d s .  between  to  species  54  SUBSPECIES AND THE PROBLEMATIC TAXA GROUPS RESULTS AND DISCUSSION  The  A  plot  components  some  the  o f 0. pr i n c e p s ,  principal  from  component  the t h i r d  little  differentiation  the  three  individuals  functions A  principal  principal  plot  from  and  Figure  (Figure  there  principal the  five  g e n e r a l l y i s very  O. p_. l u t e s c e n s  forms  along  is  partially  IVa f o r t h e  same d a t a a  only  correctly  shows  the  first  isolated  however, loadings  exhibit of  classified  'classification  of  the  jackknifed  68% of t h e new  f o r the f i r s t  DFA, r e c o n f i r m s  subspecies characters  three  the  components).  77.6%  of t h e s c o r e s  this  first  component. The r e s t ,  (see Table  using  classified  remaining  0. p_. f e n i s e x  DFA r u n on t h e s e  procedure  the  (Figure 9).  the  and  along  A  on  reveals that  s e p a r a t i o n among t a x a divergence  first  scores  from t h e a n a l y s i s of 25 members of e a c h o f  subspecies little  of  Subspecies  the high  10a).  (The  matrix  88.8% o f  or  individuals,  individuals  table' but t h e  correctly.  two c a n o n i c a l v a r i a t e s degree of o v e r l a p contribution  t o the c a n o n i c a l v a r i a t e s i s depicted  of  taken  among  the  individual  graphically  in  10b.)  The  results  morphological  o f t h e PCA and t h e DFA imply  o v e r l a p among  the subspecies  of  a high  degree of  -0. pr i n c e p s .  The  ure 9 . R e l a t i v e p o s i t i o n s of specimens of the five s u b s p e c i e s of 0 . p r i n c e p s i n a p r o j e c t i o n on the first three p r i n c i p a l components from two p e r s p e c t i v e s . The f i r s t a x i s r e p r e s e n t s 4 3 % , the second 8 % and the third ( v e r t i c a l ) r e p r e s e n t s 5% of the t o t a l v a r i a t i o n . Open c i r c l e Open square Open t r i a n g l e Closed c i r c l e C l o s e d square  = 0. = 0. =0. = 0. = 0.  pr i n c e p s f e n i s e x pr i n c e p s cuppes p r i n c e p s brunnescens pr i n c e p s pr i n c e p s pr i n c e p s l u t e s c e n s  a . Subspecies of 0. p r i n c e p s i (see Fig.9)  BASLEN GRTLEN ZYGWID BRNBRD L.I.0. DIASTM MAXTRL PALWID PALLEN NSLLEN BULLEN BULWID I 1 LEN I 1 Wig 12 WID P2 LEN P2 WID P3 LEN P3 WID P4 LEN P4 WID M1 LEN M1 WID M2 LEN M2 WID MANLEN MANDP1 MANDP2 MANDP3 MANWID MNTRLN MNDIAS MP3LEN MP3WID MP4LEN MP4WID MM 1LEN MM 1WID MM2LEN MM2WID MM3LEN MM3WID  b. 0. a l p i n a and 0. hyperborea (see F1g: 12)  PC I  PC II  PC I l l  PC I  PC II  0 .870 0 .860 0 .741 0 .248 -0 . 147 0 . 752 0 .832 0 838 0 571 0 743 0 522 0 499 0 599 0 625 0 557 0 544 0 691 0 530 0 667 0 739 0 679 0 739 0 485 0 703 0 561 0 731 0 482 0 762 0 679 0. 550 0. 745 0. 538 0. 691 0. 732 0. 671 0. 778 0. 452 0. 752 0. 437 0. 776 0. 461 0. 686  -0.342 -0.396 -0.351 -0.280 -0.186 -0.375 0.068 -0.310 -0.317 -0.366 -0.428 -0.432 0. 162 -0.010 0.250 0. 376 0.211 -0.014 0. 294 0. 242 0.328 0.290 0.381 0.296 0. 352 0.371 -0.188 -0.146 -0.108 -0.119 0. 137 -0.501 0. 226 0. 285 0. 100 0. 167 0.048 0. 296 -0.039 0.238 0. 224 0. 108  0 .089 0 .049 0 .090 -0 . 154 -o . 274 0 .029 0 .242 0 053 0 080 0 113 -0 109 -0 432 -0 005 -0 031 0 140 0 275 0 338 -0 076 0 109 0 034 0 1 17 0 166 -0 020 0 067 0 046 0 086 0 381 0 180 0 324 -0 087 -0 027 -0. 016 -0. 063 -0. 070 -0. 173 -0. 279 -0. 672 -0. 320 -0. 600 -0. 265 -0. 173 -0. 210  • 0.913 0 .928 0 .925 0 . 880 0 .218 0 .862 0 .936 0 939 0 831 0 582 0 708 0 839 0 793 0 846 0 266 0 662 0 893 0 649 0 882 O 836 0 858 0 788 0 833 0 828 0 726 0 921 0 857 0 881 0 864 0. 816 0. 787 0. 796 0. 854 0. 899 0. 763 0. 897 0. 701 0. 900 0. 633 0. 905 0. 360 0. 719  -0 .358 -0 .321 -0 .211 -0 .087 0 .398 -0 . 333 -0 .231 -0 073 -0 119 -0 430 -0 258 -0 158 0 170 -o 279 0 497 0 335 -0 132 0 291 0 018 0 221 0 139 0 397 0 123 0 143 0 185 -o 305 -0 301 -0 235 -0 215 o 076 -0. 140 -0. 244 -0. 088 0. 091 0. 356 0. 113 0. 450 0. 082 0. 486 0. 179 0. 674 0. 385  Table IV. Character  loadings on the f i r s t  three p r i n c i p a l  PC I I I 0.008 -0.034 -0.205 -0.280 -0.771 -0.004 0.069 0.038 0.035 0.093 -0.247 -0.220 0. 102 -0.076 -0.238 0. 168 0. 136 0.217 O. 139 0.281 0.070 0.065 -0.213 0.061 -0.034 -0.062 -0.130 -0.067 0.067 -0.001 -0.103 -0.026 0. 179 0. 146 0.206 0.033 0.033 0.014 -0.102 -0.018 -0.111 0.049  components.  58  F i g u r e 10. a) P r o j e c t i o n of the specimens of the f i v e s u b s p e c i e s of . 0. p r i n c e p s a l o n g the f i r s t two c a n o n i c a l v a r i a t e s . The f i r s t a x i s r e p r e s e n t s 46% and the second 24% of the t o t a l variation. Group means are i n d i c a t e d by the f i r s t l e t t e r of each s u b s p e c i e s ' name. Open c i r c l e Open square Open t r i a n g l e Closed c i r c l e C l o s e d square  O. O. 0. 0. 0.  princeps pr i n c e p s pr inceps pr i n c e p s pr inceps  fenisex brunnescens lutescens princeps cuppes  two c a n o n i c a l b) C h a r a c t e r c o e f f i c i e n t s f o r the f i r s t variates. For a key t o the r e f e r e n c e numbers see Table II.  Canonical  variable  II ro  8  b _i_  O _l_  JL_  >  >  • f t  •  8  .'O*  >  o  o  B  0  .  8  O  n  •  °  o _l  CO  61  delimitation admittedly the  of an  arbitrary  inclusion  behavior  s p e c i e s and  of  etc.,  all the  reflect  approximate  numerical  subspecies  one,  but  available  the  based  on  can  only  one  these  information  designations  more c l o s e l y  and  subspecies  will  situation framework  hope t h a t , on  become l e s s  found  d o e s , however, make t h e  with and  arbitrary  and  Defining  an  separation  process  is  habitat  in nature.  f o r the  results  of  species  more e x p l i c i t  and  repeatable.  The  Problematic  1. The  A)  Comparison  of 0.  A plot  the  resulting degree 0.  of  first  total  0.  two  95%  run  on on  Alpina  Complex  and  hyperborea  0.  the  first  two  Geographic  between  pallasi  0.  alpina  forming  r e s p e c t i v e l y , and presented  frequency  calculated  using  ellipses the  and  the  around  a l p i n a and  0.  i s emphasized  of  the  on  GRTLEN and  11a.  somewhat, l a r g e l y a large size  BRNBRD), w h i c h  hyperborea,  with  (Figure  f o r 74%  given  0.  has  high  and  t h e mean of  in Figure  v a r i a t e II  reveals a  g r a p h i c a l l y in Figure  i s a l s o given  Canonical  0.  variates,  21%  v a r i a b l e subset  1969:527-531,  major axes d i f f e r  1,  d i s c r e t e groups  procedure  hyperborea  canonical  Complex  c a n o n i c a l v a r i a t e s account  v a r i a t e s are  The as  overlap  variation,  the  scores  from a DFA  d a u r i c a and  The  for  of  alpina  Taxa  but with  component  indicates a size  the  loadings  each  the  the  of  11b.  in Sokal  Again,  11a).  species,  and  Rohlf,  overlap  of  orientations  respect (heavy  to  CVII.  loadings  d i f f e r e n c e between  ure 1 1 . a) P r o j e c t i o n of the specimens of Geographic Complex 2 a l o n g the f i r s t two c a n o n i c a l v a r i a t e s . The f i r s t a x i s r e p r e s e n t s 53% and the second 19% of the t o t a l v a r i a t i o n . S o l i d l i n e w i t h i n e l l i p s e i s the major a x i s , dashed line is the minor a x i s . Open symbols r e p r e s e n t i n d i v i d u a l s , c l o s e d symbols are group means. Open Open Open Apex  circle square triangle down t r i a n g l e  = 0. p a l l a s i =2* hyperborea = 0. alpina = 0 . daur i c a  b) C h a r a c t e r c o e f f i c i e n t s f o r the f i r s t two c a n o n i c a l variates. For a key t o the r e f e r e n c e numbers see T a b l e II .  Canonical  _L_  variable  II  65  0. a l p i n a however, are  and  evident  the f i r s t  variable  that  be  intermix  f o r only  but i s only  required  with  the  size  and  Marcus, along are  and  0. h y p e r b o r e a  ( s e e Ognev,1940:28 f o r a t a b l e o f  above  results  valid  in separating to  'always d e t e r m i n e rostrum  of  distance  between  size  along  size  and  a x i s as w e l l as indicative  of  any o f t h e t h r e e  difference knowledge,  may  be  such  as  these  size,  this  the r o s t r a l  0. h y p e r b o r e a  size  criterion  two t a x a .  the species  on t h e b a s i s o f o v e r a l l  Ognev  differences).  t o be  (1940:28) s t a t e s  that,  structure in particular  o f a s p e c i m e n ' . He n o t e s  i s short  equal  0. h y p e r b o r e a ,  of  will the  of the  the  last  t o t h e l e n g t h o f t h e upper d i a s t e m a ' while  'distance  i n 0. a l p i n a t h e d i s t a n c e i s  Ognev's  alveoli  the l a s t  upper m o l a r '  i s approximately  I  of . p a l a t a l  width  took  that  and t h a t a c o m p a r i s o n  'the i n n e r margins of the a l v e o l i  i s about  The  does n o t a p p e a r  much l o n g e r .  measurement  the  0. a l p i n a  generally  1933), s e p a r a t e d  i n d i c a t e that  addition  of  of  a r e g e n e r a l l y , and sometimes  size  in  this  when a p r i o r i  ( e.g. Vinogradov,  (ibid.)  1980).  i s apparent  only  upper molar  principal  a r e o f t h e same s i g n and a r e  rudimentary  evident  projected  1 2 ) . From t h e  correlated loadings  species  by a d i s c r i m i n a n t a n a l y s i s , i s s u p e r i m p o s e d .  0. a l p i n a  in  are  (Figure  i s not,  two  first  freely  a  scores  components  two,, w h i c h  that  these  the  no major d i v i s i o n  suggests  present,  sets  difference  IVb,  (Neff  the remaining  axes,  size  i n .Table  a l l the  i n magnitude  shape. That  principal  given to  as  0. h y p e r b o r e a along  three  seems  individual, similar  when t h e d a t a  loadings  component  This  t o a PCA and t h e r e s u l t i n g  subjected  along  0. h y p e r b o r e a .  between  t h e i n n e r m a r g i n s of  (PALWID),  equal  the  t o the  although  I  gure 12. R e l a t i v e p o s i t i o n s of specimens of 0 . a l p i n a and 0. hyperborea in a projection on the first three p r i n c i p a l components from two p e r s p e c t i v e s . The first axis r e p r e s e n t s 64%, the second 8% and the third ( v e r t i c a l ) r e p r e s e n t s 3% of the t o t a l variation. Dashed l i n e surroundes specimens of 0. a l p i n a n i t i d a . Open square Open t r i a n g l e  = 0. hyperborea = 0. a l p i n a  67  68  measured  this  d i s t a n c e between  the  tooth  rows t e n d  upper  this  i s probably  does n o t a f f e c t  an u n d e r e s t i m a t e  a comparison  The  mean  palatal  diastema  are  7.16  mm  diastama  is  0. a l p i n a of  and 1.4  are  of  these  individual  9.94  the r a t i o  criterion  and  distinguish  they  two t a x a  their  and  When  in distinguishing the  0.  these PCA  hyperborea I view  non-interbreeding  present  a confusing  d i d not  any g r e a t e r I chose to  should  0. a l p i n a  taxa  and  a l l decisions 0. a l p i n a  and  extremes  of a  of t r a n s i t i o n a l whole,  picture.  this  G u r e e v ( l 9 6 4 ) and  complicates  when examined a s a  ratio  rostral  also  o f 0. pr i n c e p s ,  represent  a series  for  taxa.  with  designations.  through  two  c o n s i d e r i n g the  and 0. h y p e r b o r e a  them  a  mean  overlap:  i n f o r m a t i o n become a v a i l a b l e ,  two t a x a  Although  slight.  hierarchial  may  ecological these  relative  and  it  t o mean  with  1.1-1.7. As a r e s u l t ,  composing  Therefore,  extensively  width  respectively,  the  of t h e DFA  I),  for  measurements  following Argiropulo(1948),  and be r e l a t e d  subspecies.  respectively,  These  largely  the  The l a c k o f a d e q u a t e m a t e r i a l f o r t h e s e  0. h y p e r b o r e a cline  between  o f mean p a l a t a l  d i d the subspecies  'subspecies'  regarding  =  between 0. a l p i n a  Corbet(1978). the  0. a l p i n a  the r e s u l t s  than  lump t h e s e  is  the r a t i o s  t o be u n r e l i a b l e  Since  success  taxa  (see P l a t e  t h e mean l e n g t h of t h e  mm,  species.  Since  ' d i s t a n c e ' , but  ratios  and  and 11.55 mm,  two  specimens,  1.1-1.6  of  width  this  7.88 mm  the  1.5. Thus t h e d i f f e r e n c e between  length  and  for  of- Ognev's  of  and  thus  upper p r e m o l a r s .  to converge a n t e r i o r l y  species.  0. h y p e r b o r e a  the l a s t  s p e c i e s or  they  overlap  As more s p e c i m e n s  the  actual  status  e v e n t u a l l y be r e s o l v e d . and  .0. h y p e r b o r e a  do  not  differ  69  appreciably  in  size,  the  distinguished  by  by  in Figure  dashed  points This  line  along  swarm  Mountain area of  that  variation  and  of  form  n i t idaand  The  further  emphasizes  a l p i n a and  princeps  0.  and  North  so  that  and  the  0.  species, the  the  suggests  significant  the  of  the  slightly  serially  most a p p r o p r i a t e  s i z e component. from  the  the  r e s u l t s as scores  of  southernmost  0.  of of  0.  Asian  on a  species choice.  all  this  one  a  clinal  species  0.  alpina  pr i n c e p s  and  0.  1981).  In  that  study,  separate  species  as  first between three  probability  with  two  species,  in a l l subsequent  0.  i n 0. the  canonical  species  of  collaris,  alpina  re-examination  hyperborea  previously,  more o v e r l a p  part  collaris  hyperborea. A  the  Altai  geographic  forms were compared w i t h an  d i f f e r e n c e s at  for a l l three  remaining  hyperborea.  i n c l u s i o n of 0.  run  the  isolation  were r e g a r d e d  s p e c i m e n s of 0. with  indicated  possibility  (Weston,  hyperborea  same b a s i c  plot  MANOVA  found  North American  excluded  a  status  been  species,  points  the  the  d e g r e e of  American  yields  my  a.  readily  nearby T i b e t ,  the  these  A  USSR and  is  from  specimens  d i f f e r e n c e s between the  which  now  large  Significant  alpina  and  of  .  0.  swarm of  separated  alpina  vs.  The  n i t ida  p r i n c i p a l component,  the  between 0.  have p r e v i o u s l y 0.  is  range of 0.  0.  alpina  12  composed  the  of  criterion.  first  region  forming  0.  the  is  subspecific  B)  this  subspecies  alpina, exception variates  (Figure again  0.0001.  of  13).  detected Specific  a n a l y s i s was  thus  70  F i g u r e 13. a) P r o j e c t i o n of the specimens of and 0 . c o l l a r i s a l o n g the f i r s t The f i r s t a x i s r e p r e s e n t s 61% and total variation. Open symbols c l o s e d symbols are group means. Open c i r c l e Open square Open t r i a n g l e  0. a l p i n a , 0. princeps two c a n o n i c a l v a r i a t e s . the second 39% of the represent individuals,  = 0 . pr inceps = O. a l p i n a = 0. c o l l a r i s  b) C h a r a c t e r c o e f f i c i e n t s f o r the first two canonical variates. For a key to the r e f e r e n c e numbers see Table II .  Canonical  o  to  CO  I o  b  b  —i_  variable  _1_  _1_  cn b  > >  O  o 8  >  o O  >  o  >  ° 8  OO  • 8  o o o o  >  8  . •  •  •  • B  cn b  a  a  72  4  21  I  33  II  73  2. 0. c u r z o n iae  Although (see  ranges  of  these two s p e c i e s do not  F i g u r e 1 and the range maps i n F i g u r e s  appear  to  the f i r s t between (Figure Va)  the  and 0. daur i c a  be  and  25  2 7 ) , they  m o r p h o l o g i c a l l y s i m i l a r . A p l o t of the s c o r e s on  three  principal  components  indicates  a  separation  these two taxa o n l y a l o n g the t h i r d p r i n c i p a l 1 4 ) . The c h a r a c t e r  implies  overlap  l o a d i n g s on these  t h a t the main d i f f e r e n c e s  component  components  (Table  between the taxa are  the  shape of the b u l l a (BULLEN and BULWID) and the a n t e r i o r depth of the mandible (MANDP1). These d i f f e r e n c e s single data  are a l s o r e f l e c t e d i n a h i s t o g r a m of  the  c a n o n i c a l v a r i a t e d e r i v e d from a DFA based on these same (Figure  correctly  1 5 ) . The classified  calculated  discriminant  of  97.9%  the  same  ( c l a s s i f i c a t i o n m a t r i x ) , 95.8% -of i n d i v i d u a l s i n procedure, specimens specimens  and of of  9 2 % of  0. daur i c a  functions individuals  the  jackknife  new i n d i v i d u a l s . In a l l c a s e s , a l l the were  classified  correctly  and  0. c u r z o n iae were i n c o r r e c t l y c l a s s i f i e d .  demonstrated g r a p h i c a l l y i n F i g u r e 15, where  two  only  This  specimens  is of  0. c u r z o n iae from the Mekong R i v e r b a s i n were s p u r i o u s l y a l i g n e d with  0 . daur i c a .  0. c u r z o n iae  The  probably  misclassification indicates  a  of  individuals  of  degree  of  greater  i n t r a s p e c i f i c v a r i a b l y i n t h i s s p e c i e s than i n 0. daur i c a . Historically,  0. daur i c a  and  d i s t i n g u i s h e d m a i n l y on the b a s i s of  0. c u r z o n i a e habitat  and on c o l o r a t i o n of the pelage (Bonhote, Mitchell,  1980).  Past  workers  have  (Mitchell,  been 1980)  1904b; A r g i r o p u l o , 1 9 4 8 (e.g.  Bonhote,  1904b;  74  F i g u r e 14. R e l a t i v e p o s i t i o n s of the specimens of 0 . c u r z o n i a e and 0 . d a u r i c a in a p r o j e c t i o n on the first three principal components. The f i r s t a x i s r e p r e s e n t s 55%, the second 7% and the t h i r d ( v e r t i c a l ) r e p r e s e n t s 6% of the total v a r i a t i o n . Dashed l i n e i n d i c a t e s main grouping of 0 . c u r z o n i a e specimens. Open square Open t r i a n g l e  = 0 . daur i c a = 0. curzoniae  a . 0. curzoniae and 0 . daurica (see Fig.14) PC I BASLEN GRTLEN ZYGWID BRNBRD L.I.0. DIASTM MAXTRL PALWID PALLEN NSLLEN BULLEN BULWID I 1 LEN I 1 WID 12 WID P2 LEN P2 WID P3 LEN P3 WID P4 LEN P4 WID M1 LEN M1 WID M2 LEN M2 WID MANLEN MANDP1 MANDP2 MANDP3 MANWID MNTRLN MNDIAS MP3LEN MP3WID MP4LEN MP4WID MM 1LEN MM1WID MM2LEN MM2WID MM3LEN MM3WID  0 .893 0 .889 0 . 775 0 .654 -0 .380 0 747 0 798 0 818 0 745 0 874 0 662 0 543 0 712 0 787 0 522 0 458 0 747 0 754 0 797 0 833 0 810 0 823 0 747 0 845 0 727 0 823 0 278 0 829 0 731 0. 586 0. 870 0. 657 0. 760 0. 854 0. 776 0. 813 0. 747 0. 831 . 0.690 0. 875 0. 446 0. 707  Table V. Character  PC II -0 .314 -0 .328 -0 372 -0 311 0 219 -0 415 0 027 0 049 -0 293 -0 315 -0 223 -0 173 0 365 0 156 0 058 0 107 0 276 0 206 0 063 0 233 0 244 0 297 -0 050 0 095 0 053 -0 433 -0 118 -0 273 -0 150 •• 0.032 0.012 -0. 586 0. 218 0.087 0. 312 0. 148 0. 321 0. 1 17 0. 335 0. 137 0. 485 0. 161  PC I l l 0 .073 0 . 133 0 .200 -0 .364 0 . 155 0 . 195 0 .003 0 051 -0 015 -0 136 -0 553 -0 656 -0 232 0 194 -0 457 -0 087 0 253 0 160 0 192 0 108 . 0 102 -0 135 0 055 0 222 0 052 0 146 -0 531 0 085 0 045 0 014 0 214 0 055 0 124 0 063 -o 008 -o.005 -0. 205 -0. 127 -0. 355 -o.008 -0. 206 0. 394  loadings on the f i r s t  b. 0. e r y t h r o t i s , 0. g l o v e r i and 0. r u t i l a [see F i g . 16) PC I  PC II  • 0.936 0 .771 0 .833 0 . 784 -0 . 321 0 .896 0 944 0 934 0 770 0 924 0 702 0 856 0 724 0 722 0 577 0 076 0 661 0 847 0 793 0 896 0 834 0 837 0 828 0 880 0 854 0 909 0 779 0 881 0 803 0 806 0 964 0 867 0. 778 0. 901 0. 883 0. 947 0. 812 0. 903 0. 482 0. 891 0. 729 0. 812  -0 .296 -o .373 -0 . 398 -o .434 -0 .654 -0 .144 -0 066 O 162 0 156 -0 184 -0 384 -0 416 0 458 -0 326 0 484 0 786 0 482 0 330 0 31 1 0 301 0 053 0 149 -0 166 0 21 1 0 156 -0 344 -0 339 -0 231 -0 244 -0 177 -0 165 -0 028 0 215 0 165 0. 279 0.063 -0. 152 0.028 -0. 029 0.006 0. 405 0. 410  three p r i n c i p a l components  PC I l l 0 .095 0 .068 0 .049 -0 .079 -0 .084 0 . 160 0 199 -o 1 16 0 035 0 194 0 082 -0 002 0 078 0 378 -0 358 -0 300 0 367 -0 084 0 399 0 077 0 390 -0 269 -0 028 -0 024 -0 053 -0 019 -0 356 -0 1 1 1 -0 351 -0 332 -0 019 0 097 0 443 0 270 0 •1 19 0. 151 -0. 31 1 -0. 2 16 -0. 582 -0. 146 -0. 393 -0. 129  g.ure 15. a) H i s t o g r a m of the s c o r e s of specimens of 0 . c u r z o n i a e and 0 . daur i c a on the s i n g l e c a n o n i c a l v a r i a t e . b) Inset i s the h i s t o g r a m of the c h a r a c t e r c o e f f i c i e n t s on the s i n g l e c a n o n i c a l v a r i a t e . Numbers a s s o c i a t e d with each bar c o r r e s p o n d t o the c h a r a c t e r r e f e r e n c e numbers of Table I I .  CO  u u u u  D o o d C\J CM b o o o CM  u,  poooo^ O O O O O l o o o o o o q CM DOOOOOO o p OOOOO,  o  I* * •  o  i — i — i — i — i — i — r  CD  CO  CO  Aouenbajj  T-  79  A r g i r o p u l o , 1 9 4 8 ) have commented skulls my 0.  of  these  results. daurica  In  and  suggest  as  by  alpina  0.  princeps.  in  h a b i t a t and  3.  0.  larger  along  the  0.  is  not  probably The  DFA  by  PCA,  in  between did  that  not  exhibited  subspecies  on  the  of  differences  specific  first  based and  status  for  0.  has  PCI  rutila,  loadings  the  greatest  isolated  of 0.  separates  in  given  and  component  the  in  and  first  three  a size  vector  P2LEN  and  is  LIO  slightly  differences  lie  and  i n the  least  rutila  that  falls  the  locality  of  rutila  0. " r u t i l a  s i n g l e s p e c i m e n of 0.  from a  on  upper p r e m o l a r  individuals  is  between 0.  of  principal  specimens  is largely  that although  second  three  on  loadings  high  e r y t h r o t i s,  the  gloveri)  second p r i n c i p a l  i n d i c a t e that  typical  clearly  as  the  retain  the  Character  erythrotis  specimen  to  the  suggests  of  (?juvenile)  or  on  a  along  w i d t h . The 0.  overlap  reveals a separation  t h a n 0.  length  results  information  gloveri)  first.  This  overall  the  the  similarities  numerical  taxonomic  the  i s a l s o apparent  e r y t h r o t i s ( i n c l u d i n g 0.  from  components  interorbital  the  scores  mainly  Vb).  the  among  of  PCI I, a shape v e c t o r ,  (Table  in  cranial  between  curzon iae f o r a l l subsequent a n a l y s i s .  the  This plot  principal  the  with  0.  (plus  erythrot is  while  0.  and  of  erythrotis  slightly  of  c o l o r a t i o n , l e d me  obtained  16.  similarity  hyperborea  T h i s , along  plot  Figure  0.  resemblance  this  curzoniae,  and  the  and  a degree  rutila  components  0.  0.  d a u r i c a and  A  0.  taxa  spite  great  0.  b o t h 0.  two  on  plot,  is a  small  i n Ladak and  thus  rutila. a l l i n d i v i d u a l s of 0.  rutila  and  80  Figure 16. Relative positions of the specimens of 0. e r y t h r o t i s (plus g l o v e r i ) and 0. r u t i l a in a projection on the f i r s t t h r e e p r i n c i p a l components.. The f i r s t a x i s r e p r e s e n t s 64%, the second 12% and the. t h i r d (vertical) r e p r e s e n t s 6% of the t o t a l v a r i a t i o n . Dashed lines generally s e p a r a t e 0. r u t i l a and 0 . e r y t h r o t i s (plus 0. g l o v e r i ) . Open c i r c l e Open square Open t r i a n g l e  0. 0. 0.  rutila gloveri erythrotis  81  82  0.  e r y t h r o t i s along  From  the  histogram  discriminated and  three  character all  also  measurements,  with  P2LEN  the  apparent  the  rest.  The  dissimilarity  0. e r y t h r o t i s s p e c i m e n s  represent 0.  a structurally  rutila  cranial  right-hand  by t h e  this of  The  may  of the l e c t o t y p e  t o t h e m a j o r i t y of  as  that  by  narrow  w h i c h may w a r r a n t taxa  appear  Ellerman  may  by  Buechner  following  pelage  (1890),  t h e DFA s u p p o r t  of the b r a i n c a s e .  differences  examinations.  g l o v e r i was i n c l u d e d  in  t o which the narrowness  c o l o r a t i o n o f 0. r u t i l a  further  separated  o f 0. e r y t h r o t i s h a s  by t h e w i d t h  some q u a l i t a t i v e  t o be d i s t i n c t i v e ,  e r y t h r o t i s,  specimen  differences  skull  to the extent  0. e r y t h r o t i s a s s e p a r a t e 0.  this  ( 1 9 4 7 ) . My r e s u l t s from  be d e s c r i b e d  and t h e p e l a g e  to  f o r 0. e r y t h r o t i s .  well  but only  Ognev(l940) provides skulls  belongs  i s the lectotype  suggests  relatively  (1904b) and T a t e  skull  In  the histogram  and 0. e r y t h r o t i s have been p r e v i o u s l y  distinction, the  PCA.  only  100% o f t h e t i m e  specimen  been u s e d t o d i s t i n g u i s h i t from 0. r u t i l a Bonhote  the  abberant i n d i v i d u a l .  d i f f e r e n c e s as  coloration.  0.  being  MANDP3  17a, two s p e c i m e n s o f 0. e r y t h r o t i s a r e somewhat  g l o v e r i and t h e l e f t - h a n d  The  and  of BRNBRD,  s p e c i m e n s were c o r r e c t l y c l a s s i f i e d  from  17a).  17b) 0. r u t i l a i s  u s e d a s a. d i s t i n g u i s h i n g f e a t u r e  in. F i g u r e  isolated  by  c o e f f i c i e n t s (Figure  (Figure  w i t h p o s t e r i o r p r o b a b i l i t i e s o f <0.990. W i t h i n  given  0.  of  variate  from 0. e r y t h r o t i s on t h e b a s i s teeth  cases,  and  the s i n g l e canonical  between  and 0. e r y t h r o t i s  Generally,  and s o I have  the  retained  these 0.  two  rutila  species. i n the a n a l y s i s as a s u b s p e c i e s Corbet(1978),  and M o r r i s o n - S c o t t ( 1 9 5 1 ) ,  Gureev(1964),  among o t h e r s .  In b o t h  of and  t h e PCA  83  F i g u r e 17. a) H i s t o g r a m of the s c o r e s of specimens of 0 . e r y t h r o t i s ( p l u s g l o v e r i ) and 0 . r u t i l a on the s i n g l e c a n o n i c a l variate. b) Inset i s the h i s t o g r a m of the c h a r a c t e r c o e f f i c i e n t s on t h e . s i n g l e c a n o n i c a l v a r i a t e . Numbers a s s o c i a t e d w i t h each bar c o r r e s p o n d to the c h a r a c t e r r e f e r e n c e numbers of T a b l e II .  84  E3  to O  o co  0)  d  o  i—i—r Aouanbajj  CO  85  (Figure  16) and t h e DFA  intermixed  with  assignment  (Figure  those  of  as a s u b s p e c i e s  17),  0. e r y t h r o t i s ,  a plot  components 0. lama  is  from  to  a  some  first  a size  with  the PCA  heavy  there  0. r o y l e i ,  the taxa  outlier  represent  A DFA r u n individuals plot  of  distinctive again  show  partial  obvious  first  nature some  one  while  integral  units  and  vectors  same  both  0.  macrotis  the major  division  of  data  canonical  of  one  axes.  variates  axes  roylei,  of  the  of >0.995. A  reiterates and  the  0.  roylei  particularly  i n the  ellipses  do, however,  principal  100%  probabilities  association,  0.  The  animals.  classified  confidence  two t a x a  two  integrity.  and  juvenile  two  the  roylei  'shape'  the f i r s t  0. m a c r o t i s  posterior  o v e r l a p of t h e 95% These  0.  t h a t PCI  from  a degree  with  degree  19).  and  roylei,.  indicate  of 0. lama, w h i l e 0. m a c r o t i s  (Figure  and 0.  o v e r l a p between 0. m a c r o t i s and  maintain  these  correctly, the  i s separated  s m a l l , and p o s s i b l y , on  principal  MP3WID and I1WID, MANDP2,  a l l t h r e e axes,  still  supporting i t s  three  (Table V i a ) again  0. lama  an  gloveri  ( F i g u r e 1 8 ) . The c h a r a c t e r l o a d i n g s on  specimens,  very  first  and 0. m a c r o t i s i s a l o n g is  0.  roylei  PC's I I and I I I a r e more  along  between 0. r o y l e i  two  the  l o a d i n g s on BULWID, MNDIAS,  0. r o y l e i  Although  of  and 0.  swarm w h i l e 0. m a c r o t i s  t h r e e components  vector while  thus  on 0. lama, 0. m a c r o t i s  degree  MP3LEN, r e s p e c t i v e l y . and  scores  forms a d i s t i n c t  overlap these  of  of  of the l a t t e r .  4. 0. lama, 0. m a c r o t i s  In  specimens  for  remain as of  their  the  mean  reasonably respective  86  Figure 18. R e l a t i v e p o s i t i o n s of the specimens of 0 . lama, 0 . m a c r o t i s and 0 . r o y l e i i n a p r o j e c t i o n on the first t h r e e p r i n c i p a l components. The f i r s t a x i s r e p r e s e n t s 48 %, the second 17% and the t h i r d ( v e r t i c a l ) r e p r e s e n t s 7% of the t o t a l v a r i a t i o n . Dashed l i n e i n d i c a t e s 0 . lama specimens. Open c i r c l e Open square Open t r i a n g l e  = 0. = 0. = 0.  macrotis roylei lama  PC I  a . 0. lama, 0 0. macrotis PC I BASLEN GRTLEN ZYGWID BRNBRD L.I.0. DIASTM MAXTRL PALLEN PALWID NSLLEN BULLEN BULWID I 1 LEN 11 WID 12 WID P2 LEN P2 WID P3 LEN P3 WID P4 LEN P4 WID M1 LEN M1 WID M2 LEN M2 WID MANLEN MANDP1 MANDP2 MANDP3 MANWID MNTRLN MNDIAS MP3LEN MP3WID MP4LEN MP4WID MM 1LEN MM 1WID MM2LEN MM2WID MM3LEN MM3WID  0 .770 0 .796 0 615 0 552 0 112 0 803 0 620 0 929 0 688 0 687 0 491 0 468 0 519 0 519 0 498 0 540 0 760 0 738 0 797 0 874 0 741 0 781 0 724 0 849 0 745 0 692 0 488 0 738 0 760 0 444 0 833 0 606 0 580 0 669 0 74 1 0 879 0. 734 0. 874 0. 613 0. 729 0. 377 0. 797  roylei  (see Fig.18)  PC II  -o  and  521 -0 529 -0 509 -0 487 -0 375 -0 489 -0 265 -0 086 0 091 -0 597 -0 545 -0 668 0 586 0 164 0 703 0 483 0 349 0 185 -0 271 0 320 0 038 0 492 -0 025 0 1 17 -0 168 -0 663 0 225 -0 504 -0 356 0 385 -0 109 -0 61 1 0 352 0 601 0 494 0 21 1 0 301 0. 278 0. 356 0. 307 0. 560 0. 231  PC I l l 038 067 437 079 137 067 024 083 347 107 230 208 258 660 112 093 127 492 24 1 209 021 035 166 107 341 083 602 025 -o 160 0 445 -0 127 0 007 -o 530 -0 095 -0 175 0 013 0 022 0. 208 -0. 348 0. 276 -0. 342 -0. 020 0 0 0 0 -0 -0 0 -0 0 -0 -0 -0 0 0 0 -0 -0 -0 -0 -0 -0 -0 0 -0 0 0 0 0  Table VI. Character loadings on the f i r s t  b. 0. f o r r e s t i , 0. osgoodi. cansus, 0. roy1e1, 0. pus i l i a and 0. t h i b e t a n a (see F i g . 20)  0.  PC I 0 .942 0 954 0 889 0 855 0 424 O 919 0 996 0 964 0 399 0 928 0 683 0 865 0 665 0 906 0 418 0 405 0 659 0 678 0 922 0 905 0 888 0 930 0 899 0 950 0 919 0 943 0 890 0 940 0 898 0 833 0 945 0 828 0 624 0 786 0 85 1 0 945 0. 897 0. 962 0. 872 0. 960 0. 181 0. 813  PC II  PC 111  -0 .210 -0 215 -0 395 -0 342 -0 440 -0 1 13 -0 207 0 078 -0 145 -0 239 -0 480 -0 384 0 512 -0 046 0 721 0 637 0 588 0 532 0 154 0 280 0 140 0 143 0 005 0 04 1 -0 146 -0 259 -0 1 10 -0 248 -0 146 -0 126 -0 230 -0 248 0 590 0 430 0 294 0 180 -0 068 0 082 0 012 0 04 1 0 324 0. 351  -0 016 -0 064 -0 077 -o 078 -0 217 -0 044 0 010 -0 008 -0 008 -0 067 0 249 Q ,100 -o" 178 -0 044 . 0 252 -0 312 -0 228 0 201 -0 033 0 1 14 0 193 0 063 0 1 16 0 076 0 067 -0 057 -0 121 -0 038 0 079 -0 21 1 -0 003 -0 069 -0 290 -0 156 -0 005 0 032 0 055 0 081 0 206 0 161 0. 829 -0. 204  three p r i n c i p a l  components. CO CO  gure 19. a) P r o j e c t i o n of the specimens of 0 . lama, 0 . m a c r o t i s and 0 . r o y l e i a l o n g the f i r s t two c a n o n i c a l v a r i a t e s . The f i r s t a x i s r e p r e s e n t s 72% and the second 28% of the t o t a l variation. S o l i d l i n e w i t h i n e l l i p s e i s the major a x i s , dashed l i n e i s the minor a x i s . Open symbols represent i n d i v i d u a l s , c l o s e d symbols are group means. Open c i r c l e Open square Open t r i a n g l e  = 0. r o y l e i = 0 . lama = 0. macrotis  b) C h a r a c t e r c o e f f i c i e n t s f o r the f i r s t two c a n o n i c a l v a r i a t e s . For a key t o the r e f e r e n c e numbers see Table II .  Canonical  variable  II  92  confidence different The  ellipses angles  are perpendicular  has  status  long  been  of the  0. m a c r o t i s source  0. m a c r o t i s  i s generally separated  of  ear s i z e  overall  0. r o y l e i , an  Roberts,  equivalent  1977).  differences taxa,  (Ellerman  i n some p a r t s  ear s i z e  to  Habitat  however, have been to  the  exhibited  by my  0 . • m a c r o t i s as s e p a r a t e 0. lama the  was  0. lama  with  5.  These  0. r o y l e i , plot  derived  either status  taxa  0. p u s i l l a  of  These r e p o r t e d  l e d me t o  retain  t o 0. r o y l e i  ranges,  basis  although attains  (Gureev,1964; pers.comm.) and two  differences, of  both  the  in  s k u l l s as  0. r o y l e i  as  by C o r b e t ( l 9 7 8 )  he  did  not  and  species  which  0. r o y l e i  or  for this  not  likely  0. m a c r o t i s .  any  suggest to  be  Therefore,  I  taxon.  0. o s g o o d i  been  is  o n l y on  examine  o f t h e PCA and t h e DFA s t r o n g l y  with  and 0. c a n s u s  the  respect  on t h e f i r s t  from a PCA run on a l l s i x o f  source  to their  and 0. t h i b e t a n a  the scores  the  1971a) .between t h e s e  distinctiveness  have  especially  0. m a c r o t i s  (Kawamichi,  noted.  0. f o r r e s t i ,  three  confusion,  A  results  specific  on  apparently  differences (Mitchell,  assigned  is a distinctive  confused retained  The  disagreement.  from 0. r o y l e i  of  to  species.  b a s i s of o v e r l a p p i n g  specimens.  much  respect  and M o r r i s o n - S c o t t , 1 9 5 1 )  that  relative  results,  of  with  of i t s d i s t r i b u t i o n ,  in vocalization  addition  suggesting  of v a r i a t i o n .  hierarchial  0. r o y l e i  t o each o t h e r ,  of  considerable  r e l a t i o n s h i p s with  (see H i s t o r i c a l  three these  principal taxa,  Review).  components, reveals  the  93  presence roylei  of  two  g e n e r a l groups  and t h i b e t a n a - p u s i 1 1 a ,  first  two a x e s ,  from  the  serve  ( F i g u r e 2 0 ) . These two  which a r e d i v i d e d mainly  to separate  remaining  forms.  a l l specimens  Within  of  0. c a n s u s ,  group  members  loadings).  this  sample  along  The  geographical its  w h i l e 0. p u s i l l a  apparent  isolation  size,  section.  roylei  the t h i b e t a n a - p u s i l l a  group,  to  (see  from  Table  VIb  of  the other  l e d me t o omit  had b o t h  0.  osgoodi  from  for  other  character  0. p u s i 1 1 a ,  its  t a x a and, i n p a r t i c u l a r ,  i t from  a l l further  analysis  specimens r e p r e s e n t e d  of F i g u r e 20, one b e l o n g i n g  0. r o y l e i ,  sub-adults',  i s strongly isolated  discreteness  The two o u t l i e r  left-hand corner one  PCIII  along the 0.  0. t h i b e t a n a g e n e r a l l y i n t e r m i n g l e s w i t h 0. f o r r e s t i , and  groups,  originally  in  i n t h e lower  t o 0. t h i b e t a n a and  been c o d e d a s ' p o s s i b l e  and a r e by f a r t h e s m a l l e s t  individuals  for  each  group. A  DFA  performed  0. f o r r e s t i , latter  0. o s g o o d i ,  two  classified  on  taxa  of  the  on  the  produced  as a r e s u l t  between  0. r o y l e i  0. c a n s u s  BRNBRD  difference  a  single of  and  forming (see  between  the  0. o s g o o d i  the  DFA,  a distinctive  21b)  0. t h i b e t a n a  and A  variate  reiterates  remaining  cansus,  with  the  correctly  and a s s i g n e d a l l  = 1.000).  and 0. f o r r e s t i  Figure  groups,  groups,  canonical  o f 0.  0. r o y l e i ,  priori  probabilities  0. t h i b e t a n a , 0. o s g o o d i  the  the  0. f o r r e s t i ,  (posterior  on  set consisting  0. t h i b e t a n a and  forming  0. t h i b e t a n a  with  data  a l l members o f t h e a p r i o r i  individuals  scores  a  0. c a n s u s  to  histogram  of  (Figure 21a), the  separation  t a x a . The s i m i l a r i t y of is  clearly  indicated,  s u b g r o u p . The h i g h l o a d i n g suggests  and  a  0. c a n s u s ,  possible at l e a s t  size with  94  F i g u r e 20. R e l a t i v e p o s i t i o n s of the specimens of 0 . f o r r e s t i , 0. osgoodi, 0. cansus, 0. r o y l e i , 0. p u s i l l a and 0 . t h i b e t a n a i n a p r o j e c t i o n on the f i r s t t h r e e p r i n c i p a l components. The f i r s t a x i s r e p r e s e n t s 71%, the second 10% and the t h i r d (vertical) r e p r e s e n t s 4% of the total v a r i a t i o n . Dashed l i n e s s e p a r a t e O. r o y l e i and 0 . p u s i l l a from the remaining t a x a . Open c i r c l e Open square Open t r i a n g l e Closed c i r c l e C l o s e d square Halved box  0. thibetana 2- cansus 0. r o y l e i 0. f o r r e s t i 0- osgoodi 0. p u s i l l a  96  F i g u r e 21. a) Histogram of t h e s c o r e s of s p e c i m e n s o f 0. f o r r e s t i , 0. o s g o o d i , 0. c a n s u s , 0. r o y l e i and 0. t h i b e t a n a on t h e single canonical variate. 0. r o y l e i and 0. t h i b e t a n a formed t h e a p r i o r i g r o u p s . b) I n s e t i s t h e h i s t o g r a m o f t h e c h a r a c t e r coefficients on t h e s i n g l e c a n o n i c a l v a r i a t e . Numbers a s s o c i a t e d w i t h e a c h b a r c o r r e s p o n d t o t h e c h a r a c t e r r e f e r e n c e numbers of . Table I I .  98  respect  to s k u l l  The and  inclusion  0.  cansus, that  0.  (D  roylei The  of  in  histogram  22a).  width. the 0.  more  taxa,  thibetana strongly  = 96.3  2  three  vs. D  in  discriminant into  probabilities  of  1.000. O.  c a n s u s no  in t h i s  analysis,  but  0.  t h i b e t a n a , 0. In  noted He  his  forresti  original  basis  of  (1938)  This size  who  noted  The  reconfirmed inclusion  authors  of  has  the  very  that  small  resolution to  0.  two  taxa  the  forresti  of  the  thibetana  is reflected  smallness  typical.  are  of 0.  of  the  Assignment  on  this  the  sample, 0.  all  distinctive  specimens  Thomas 0.  of  (1923)  thibetana.  by  roylei  the  Allen  the  pelage.  in  the  pelages  t o 0.  thibetana. by  quantitative  of  on  in  species  forresti  of 0.  t o 0. the . My  various data.  roylei  For only  type s t r o n g l y access  to  a  also precluded a substantive  taxon,  marked. The  of  forresti  several  forresti  i n both  (Figure  posterior  voiced  differences  in  race  s t a t u s of  to  also  'Examination  i t as a s m a l l  from  thibetana mainly  was  been b a s e d  that,  of 0.  forresti,  0.  (1978:68) a s s i g n s 0.  sample  formed a  distinctions  similarity  observation  suggests  from  difference  g e n e r a l l y not  example, C o r b e t on  0.  of 0.  commented on  the  with  a  osgoodi.  further  also  yielded  thibetana  groups  longer  osgoodi  classified  habitat similarity  forresti  size.  Argiropulo(1948) and  0.  and  0.  intermixed with  description  i t s morphological  distinguished  was 0.  DFA,  again  appropriate  and  0.  i n the p r e v i o u s DFA)  individuals  subgroup  another  functions  their  forresti,  separated  = 62.7  2  0.  size PCA  although  difference  and  the DFA,  i t is difficult  forresti  its  to  between but  t o say  either  affinities  0.  these  due  to  i f this  is  roylei  or  gure 22. a) H i s t o g r a m of the s c o r e s of specimens of 0 . f o r r e s t i , 0. osgoodi, 0 . c a n s u s , 0 . r o y l e i and 0 . t h i b e t a n a on the single canonical variate. 0. r o y l e i and 0 . t h i b e t a n a (with 0. f o r r e s t i , 0 . osgoodi and 0 . cansus i n c l u d e d ) formed the a p r i o r i groups. b) I n s e t i s the h i s t o g r a m of the c h a r a c t e r coefficients on the s i n g l e c a n o n i c a l v a r i a t e . Numbers a s s o c i a t e d w i t h each bar c o r r e s p o n d to the c h a r a c t e r r e f e r e n c e numbers of Table I I .  100  101  0.  pusilla,  however,  information suggest  that  subspecies of 0.  to  the  of 0.  The  taxon  i n 0.  of 0. of  Scott(l95l)  provisionally  similarity  between 0.  results  0.  s p e c i m e n s of 0. Feng distinct that  and  these  taxa  (including the the  (Figure indicate  in  examining  that  an  in  and  0.  0.  entered  breadth cansus  History  Museum  Peoples  Mitchell  (pers.comm.) v i e w e d 0.  I  the  thibetana. species  and  suggest  sets  0.  for  c a n s u s ) and  the this  thibetana 0.  roylei,  ZYGWID ( F i g u r e  22b),  cansus,  other  on  thibetana, DFA  analysis could 0.  the  0. as  forresti  an  unknown  (Figure  prove  t o be  thibetana.  cansus  i n the  'Republic  of  c a n s u s as  my  included  support  from  The  d i f f e r e n c e s in  i n t o the  for that  Morrison-  partially  on  a  i s c l e a r from  Review)  c a n s u s . 0. from  osgoodi  a separate  by  data  weighting  of 0.  0.  a  difficult  pusilla.  f o r 0.  c a n s u s as  the  0.  so  set  results  s e r i e s of 0.  the  and  data  0.  to  thibetana  DFA,  on  braincase  extensive  0.  osgoodi  i t was  distinguishing  taxon  distinguished  coefficients  the  this  (see H i s t o r i c a l  separated  when  The  and  the  coefficient  effectively  21a).  0.  separation  osgoodi  Ellerman  the  performed  as  specimen  is less  although  s k u l l s . My  forresti,  poorest  0.  useful  0.  DFA  highest  hand, was and  The  the  osgoodi  0.  (1974) t r e a t  be  results  the  consider  and  within  may  w i d t h of  suggestion.  but  Kao  and  included  authors  assign  from'0. t h i b e t a n a  zygomatic  had  osgoodi  of 0.  Most  osgoodi  PCA  my  f o r a l l subsequent a n a l y s i s .  thibetana,  f o r b o t h the  available,  I, t h e r e f o r e ,  assignment  subspecies  unless a d d i t i o n a l  more a p p r o p r i a t e l y r e g a r d e d  thibetana  forresti.  and,  becomes  is  thibetana.  taxonomic  than t h a t  questionable  contrary  this  forresti  is  Peking China,  p o s s i b l y only  21b) more After  Natural Dr.  R.M.  a  race  1 02  of  0.. t h i b e t a n a  and  noted  0. c a n s u s were p r o b a b l y  that  juvenile  felt  t h a t t h e minor d i f f e r e n c e s  these  two  taxa  0. c a n s u s .  My  distinctive (see 22). of  did  results  subgroup  Figure  conflicting  eventually  addition,  he  between h a b i t a t s and p e l a g e s o f a  less  species clear.  designation  0. c a n s u s  t h e PCA's and i n one o f  for  forms the  a  DFA's  (see F i g u r e  t o i n c l u d e 0. c a n s u s as a p r o v i s i o n a l  subspecies  for  a l l subsequent  Mitchell's results.  however, be  as a d u l t  i n t e r m i x i n g i n t h e o t h e r DFA  0. t h i b e t a n a  consideration  are  labelled  0. t h i b e t a n a . . I n  warrant  i n both  21) w h i l e  I decided  necessary,  not  specimens  extensive  More before  confirmed.  analyses  after  experience  work and a d d i t i o n a l this  provisional  and  taking  into  my  samples w i l l assignment  own be may  103  SYSTEMATIC DESCRIPTIONS  Introduction  This  section  provides  the  systematic  treatment f o r each  s p e c i e s I r e c o g n i z e as a r e s u l t of t h i s s t u d y . W i t h i n of  synonomies,  the  name  of a subsequent  name i s s e p a r a t e d from i t by a c o l o n ,  the  list  user of a s c i e n t i f i c  following A r t i c l e 5 1 ( i )  of  the ' I n t e r n a t i o n a l Code of Z o o l o g i c a l Nomenclature' (as g i v e n i n M a y r , l 9 6 9 ) . D i s t r i b u t i o n a l ranges are based on a c o m p i l a t i o n the  l i t e r a t u r e and l o c a l i t y  i n t h i s s t u d y . In information the  works  on  the  section  listed  whereever p o s s i b l e ,  s k u l l s are my own, but a l l were whenever  feasible.  literature, are  under  'General  used  descriptions',  summer and w i n t e r p e l a g e s has been d e r i v e d from  generally  augmented,  i n f o r m a t i o n from the specimens  of  after  the  description  is  by my own n o t e s . D e s c r i p t i o n s of compared  with  the  literature  H a b i t a t d e s c r i p t i o n s are based on p u b l i s h e d  e s p e c i a l l y t h a t of S m i t h ( 1 9 8 1 a ) .  self-explanatory.  and  The taxonomic  notes  1 04  Descriptions  Genus Ochotona L i n k  Ochotona L i n k , 1 7 9 5 : 7 4 ( h o l o t y p e : Ochotona ogotona P a l l a s = Lepus d a u u r i c u s P i k  a  Lacepede, 1-799:9  (holotype:  minor  Link  =  Lepus  Pallas)  Pika  a l p i n u s = Lepus a l p i n u s  Pallas) Lagomys C u v i e r , 1 8 0 0 : t a b l . I . Ogotoma Gray,1867:220  ( h o l o t y p e : Lepus a l p i n u s )  (holotype:  ogotoma C u v i e r , Lepus ogotoma Abra Gray and Gray,1863:11  Oqotoma  Conothoa Lyon,1904:438  =  Lagomys  Pallas)  ( h o l o t y p e : Lagomys c u r z o n i a e Hodgson)  [ p r e o c c u p i e d by Abra Lamarck,1818 Abrana S t r a n d , 1 9 2 8 : 5 9  Pallasii  (Mollusca)]  (no type) ( h o l o t y p e : Ochotona r o y l i i O g i l b y )  Tibetolagus Argiropulo,1948:128 (holotype: 0. koslowi  Buechner)  1 05  Ochotona a l p i n a (Altai  (Pallas)  or A l p i n e  Ochotona a l p i n a a l p i n a ( P a l l a s ) Lepus a l p i n u s Pallas,1773:701 (type A l t a i M t s . , S i b e r i a , USSR) Lagomys a t e r Eversmann,1842:3  pika)  locality:  Tigeretski  Ochotona a l p i n a hyperborea ( P a l l a s ) Lepus h y p e r b o r e u s P a l l a s , 1 8 1 1 : 1 5 2 Lagomys h y p e r b o r e u s v a r n o r m a l i s S c h r e n k , 1 8 5 8 : 1 4 8 Lagomys l i t o r a l i s P e t e r s , 1 8 8 2 : 9 5 Ochotona kolymensis Allen,1903:154 Ochotona a l p i n a f erruginea- (Schrenk) Lagomys h y p e r b o r e u s v a r f e r r u g i n e a S c h r e n k , 1 8 5 8 : 1 4 8 O c h o t o n a h y p e r b o r e a t u r u c h a n e n s i s Naumov,1934:78 Ochotona a l p i n a c i n e r e o f u s c a (Schrenk) Lagomys h y p e r b o r e u s v a r c i n e r e o - f u s c a Schrenk,1858:148 Ochotona a l p i n a scorodumovi Skalon,1935:85 Ochotona a l p i n a c i n e r e o f l a v a (Schrenk) Lagomys h y p e r b o r e a v a r c i n e r e o - f l a v a S c h r e n k , 1 8 5 8 : 1 4 8 O c h o t o n a a l p i n a m a n t c h u r i c a Thomas O c h o t o n a h y p e r b o r e a mantchur i c a Thomas,1909:504 Ochotona a l p i n a Ochotona n i t i d a  nitida Hollister Hollister,1912a:4  O c h o t o n a a l p i n a c o r e a n a A l l e n and Andrews O c h o t o n a c o r e a n u s A l l e n and Andrews,1913:409 Ochotona a l p i n a s v a t o s h i Turov O c h o t o n a s v a t o s h i T u r o v , 1 924 : 1.1 0 Ochotona a l p i n a u r a l e n s i s F l e r o v O c h o t o n a h y p e r b o r e a u r a l e n s i s F l e r o v , 1 9 2 7 :139  Ochotona a l p i n a Ochotona a l p i n a  argentata argentata  Howell Howell,1928:116  Range,  106 Ochotona a l p i n a y e s o e n s i s K i s h i d a Ochotona y e s o e n s i s K i s h i d a , 1 9 3 0 : 4 6 [= y e z o e n s i s ] (Ellerman and Mor r i s o n - S c o t t , 1 95 1 : sen io.r synonym of convexa K i s h i d a , 1 930; iniikai i K i s h i d a , 1 930 ; k i n u t a K i s h i d a , 1 930; kobayashi i Kishida,1930; ornata Kishida,1930; rufa Kishida,1930; s a d a k i i K i s h i d a , 1 9 3 0 ; a l l nom. nud. ) Ochotona o r n a t a Kishida,1930:372 Ochotona a l p i n a y o s h i k u r a i K i s h i d a Ochotona y o s h i k u r a i K i s h i d a , 1 9 3 2 : 1 5 0 Ochotona a l p i n a chanqica Ochotona a l p i n a c h a n q i c a  Distribution:  Northern  China;  ?Korea;  given in Figure  General d e s c r i p t i o n :  and A l t a i Mountains,. Mongolia and the  Kansu,  Northern  Sakhalin;  Ningsia  Hokkaido,  and  Japan.  north-east Range map  is  23.  O. a l p i n a v a r i e s g r e a t l y  In summer the p e l a g e , depending rust  voshikurai)  Ognev Ognev,1940:33  Ural,Sayan  USSR;  ( = yochi k u r a i ,  i n s i z e and c o l o r .  on s u b s p e c i e s , ranges  to brown or l i g h t brown r u f o u s ,  vary from a dark r u s t to brown or  In w i n t e r , the  gray.  from colors  (Argiropulo,1948;  Mitchell,1980)  The  s i z e of the s k u l l  region the  is  flattened  frontal  and  is highly variable.  and b r o a d . the  skull  The i n t e r o r b i t a l  No f e n e s t r a e are p r e s e n t profile  is  generally  in flat.  U n i v a r i a t e s t a t i s t i c s f o r the s k u l l are g i v e n i n Table V I I . The s k u l l  Habitat:  is depicted  • O. a l p i n a  (Kawamichi,1969,1971b;  in Plate  is  a  I.  rock-dwelling  Naumov,!974;  Zevegmid,1975),  species but  it  1 07  Figure 23. Approximate d i s t r i b u t i o n c i r c l e i n d i c a t e s type l o c a l i t y .  of  0. a l p i n a .  Closed  108  CoeffIclent 1  Character  Mean  Standard . devlatIon  a'  varlatIon  Minimum  MaxImum  i Basal length Greatest length Zygomatic w i d t h Bra Incase b r e a d t h Least I n t e r o r b i t a l width Diastema M a x i l l a r y t o o t h row l e n g t h P a l a t a l width P a l a t a l length Nasal length Bui l a length Bui l a width 11 width 11 l e n g t h 12 width P2 l e n g t h P2 width P3 l e n g t h P3 w i d t h P4 l e n g t h P4 w i d t h HI l e n g t h Ml w i d t h M2 l e n g t h M2 width Mandible l e n g t h Mandible depth 1 Mandible depth 2 Mandible depth 3 Mandible width Mandible t o o t h row length Mandible diastema MPS l e n g t h MP3 width MP4 length MP4 width MM 1 length MM 1 width MM2 l e n g t h MM2 width MM3 l e n g t h MM3 width  34 40 20 16 4 9 7 14 6 12 10 9 0 1 0 0 1 1 2 1 2 1 2 1 2 26 2 5 4 2 7 5 1 1 1 1 1 1 1 1 0 1  64 84 13 31 76 32 51 94 92 30 56 27 99 64 55 66 29 09 26 34 37 26 29 31 1 1 IB 67 17 55 58 18 60 32 28 45 60 55 59 54 52 64 1 1  Table V I I . U n i v a r i a t e s t a t i s t i c s  3 4 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  65 19 54 09 50 52 71 82 65 58 97 86 14 19 12 1 1 19 14 26 13 25 13 21 13 23 80 43 64 58 27 77 87 16 16 14 17 17 17 16 16 10 13  10 55% 10 27% 7 67% 6 67% 10 39% 16 36% 9 48% 12 20% 9 4 4% 12 8 7% 9 19% 9 33% 14 00% 1 1 89% 22 15% 17 32% 14 42% 12 79% 1 1 30% 9 65% 10 4 8% 10 4 2% 9 01% 10 16% 10 78% 10 70% 16 09% 12 4 2% 12 66% 10 60% 10 78% 15 59% 12 36% 12 4 7% 9 98% 10 6 1% 1 I 03% 10 73% 10 3 1% 10 6 3% 16 4 1% 1 1 52%  28 35 34 50 18 15 14 20 3 00 6 95 6 50 1 1 75 5 80 7 50 8 60 7 60 0 70 1 30 0 30 0 50 0 95 0 85 1 85 1 10 1 95 1 05 1 95 1 10 1 70 22 65 2 10 4 30 3 70 2 00 4 60 4 35 1 00 1 OO 1 20 1 25 1 20 1 20 1 25 1 20 0 40 0 90  f o r the measurements of 0. a 1p1na. (ave. n * 29)  43.20 52.20 24 . 20 19.60 5.95 15.50 9 . 25 21 .05 9.30 15.60 13.80 1 1 . 40 1 . 35 2. 15 0.90 1 .00 1 .95 1 . 40 3.00 1 .65 3. 10 1 .60 2.85 1 .60 2.95 34 .60 4.20 7 . 10 6 40 3.50 8 .90 8 . 20 1 . 70 1 .65 1 . 75 2 .05 2 .00 2 .00 1 95 1 .90 0.90 1 . 55  1 10  is  also  known t o l i v e  Khmelevskaya,1961; roots  Taxonomic  i n moss  covered  Naumov,1974)  scree  (Ognev,1940;  and i n burrows  under  tree  ( L o u s k a s h k i n , 1 9 7 0 ; Naumov,1974).  notes:  Ognev(l940) species,  Ellerman treat  while  0. a l p i n a  Morrison-Scott(1951) and 0. h y p e r b o r e a  Argiropulo(1948),  Corbet(!978)  consider  Gureev(l964)  and  American  and  0. c o l l a r i s  results  and  them c o n s p e c i f i c . A r g i r o p u l o ( 1 9 4 8 ) ,  C o r b e t d 978)  also  include  (see  Weston,1981),  alpina.  the  North  i n 0.  alpina.  indicate  and O. pr i n c e p s . a r e s t a t i s t i c a l l y  e a c h o t h e r and 0.  as s e p a r a t e  Gureev(l964)  forms, 0. pr i n c e p s and 0. c o l l a r i s,  Previous  and  distinct  that from  111  Ochotona  collaris  (Collared  (Nelson)  p i ka)  Lagomys collaris Nelson,1863:117 Tanana River, Alaska) Trouessart,1897:648  Distribution:  Alaska,  Territories given  General  and  collar, winter  and  the  The  skull  0.  The  The  broken  but  differs  statistics skull  Northwest  Range  map  pika  from  the  (Yukon),  which had  a burrow  sides.  forms  creamy  large size  The  and  skull  mainly  an  is  Summer  and  apparently  and  size  the  Hall,1981).  there  is similar  are  Grayish  relatively  flat,  in  grayish  indistinct  white.  and  skull  broad. are  to that  no of  of  the  teeth.  given  in  Table  in Plate I I .  is confined  shore  the  s p e c i e s are  (Smith,1981 a ) , a l t h o u g h  collected  i s a dark  Youngman,1975;  f o r the  is depicted  collared  rock  are  i s broad  frontals.  on  shoulders  northern  region  collaris  grayer  Guiguet,1965;  i n the  Univariate  Habitat:  this  interorbital  VIII.  and  i s of medium t o  pr i n c e p s ,  the  Columbia.  of 0.  underparts  of  (Cowan and  fenestrae  pelage  nape  pelages  British  becoming  the  same  The  The  dorsally on  Territory,  24.  description:  patches  Yukon  northern  in Figure  color  the  ( t y p e l o c a l i t y : Near head of [Ochotona] collaris:  of just  to t a l u s a  Cultus below  or  to p i l e s  specimen Bay, water  of  has  been  Kluane  Lake  level  under  gure 2 4 . . Approximate distribution c i r c l e i n d i c a t e s type l o c a l i t y .  of 0 . c o l l a r i s .  Closed  113  Character  Mean  Basal length Greatest length Zygomatic w i d t h Bra Incase b r e a d t h Least I n t e r o r b l t a l width Diastema M a x i l l a r y t o o t h row l e n g t h P a l a t a l width P a l a t a l length Nasal l e n g t h Bu11 a 1ength Bui l a width 11 w i d t h 11 l e n g t h 12 width P2 length P2 width P3 length P3 width P4 length P4 width Ml length Ml width M2 length M2 width Mandible l e n g t h Mandible depth 1 Mandible depth 2 Mandible depth 3 Mandible w i d t h Mandible tootri row l e n g t h Mandible diastema MP3 length MPS width MP4 length MP4 width MM 1 length MM 1 width MM2 length MM2 width MM3 length MM3 width  Table v i l l .  36 63 43 06 2 1 68 17 27 5 60 10 28 8 16 16 97 7 53 12 56 1 1 54 10 09 1 79 I 10 0 62 0 72 1 22 1 15 2 29 1 45 2 40 1 43 2 39 1 50 2 19 27 37 2 71 5 55 4 57 2 85 7 78 6 09 1 32 1 38 1 68 1 70 1 83 1 77 1 83 1 69 0 76 1 15  Univariate s t a t i s t i c s  Standard dev1 a tIon  1 99 15 R2 54 30  ?  0 0 0 0  75  0 43 1 0 0 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  0 0 0 0 0 0  0 0  10 37 99 66 55 12 12 06 07 15 13 15 12 15 09  13  10 13 36 22 36 37 27 30 48 07 I 1 1 1 12 1 1 1 1 12 10 19 08  Coef f I c 1 e n t of var1 a tIon  Mini mum  5 44% 5 00% 3 BOX 3 14% 5 27% 7 34V. 5 30V. 6 497. 4 90V. 7 86% 5 76% 5 4 1% 6 55% 10 62% 10 23% 9 90% 1 1 91% 1 1 54% 6 76% 8 56% 6 39% 6 28% 5 37% 6 63% 5 78% 4 97% 8 08% 6 49% 8 01% 9 34% 3 82% 7 80% 5 17% 7 68% 6 4 3% 7 15% 6 12% 6 22% 6 3 1% 5 85% 24 53% 6 99%  30 00 36 00 19 15 15 70 4 80 7 60 7 00 13 50 6 35 9 25 9 50 8 50 1 50 0 80 0 40 0 55 0 90 0 85 1 90 1 10 2 .00 1 25 2 15 1 20 1 95 23 20 2 10 4 60 3 40 2 05 7 05 4 75 1 20 1 20 1 40 1 40 1 50 1 50 1 50 1 45 0 60 0 80  MaxImum  39.40 45.60 23 . 20 1R . 20 6.35 1 1 .60 9.05 19.00 8.20 13 . 45 13.00 1 1 . 25 2.00 1 . 50 0. 80 0.90 1 .55 1 . 55 2 .60 I . 70 2 .65 1 .60 2 . 70 1 . 80 2.40 29 . 80 3 . 10 6 . 10 5. 10 3 40 8 . 40 7.05 1 50 1 .60 1 . 95 1 .95 2 .05 2 .00 2 05 1 . 90 1 .80 1 . 30  f o r the measurements of 0. co11ar 1 s. (ave. n = 48)  1 15  150 mm  willows  i n grass  and h o r s e t a i l  (H.Tinker  as c i t e d i n  Youngman,1975).  Taxonomic  notes:  B r o a d b r o o k s ( 1 9 6 5 ) and Youngman(1975)  0. p r i n c e p s and 0. c o l l a r i s and  Corbet(l978)  0. a l p i n a . (see  t o be c o n s p e c i f i c .  i n c l u d e 0. c o l l a r i s  Previous  Weston,1981)  statistical strongly  O. p r i n c e p s and 0. a l p i n a  (and  consider  Gureev(l964)  0. pr i n c e p s )  e v a l u a t i o n of t h e s e  suggests  that  are s p e c i f i c a l l y  0.  in taxa  collaris,  distinct.  1 16 Ochotona c u r z o n iae  (Hodgson)  (Black-lipped pika)  Ochotona c u r z o n i a e curzon iae (Hodgson) Lagomys c u r z o n i a e Hodgson,1858:207 (type l o c a l i t y : Chumbi V a l l e y i n extreme southern T i b e t ) Ochotona c u r z o n i a e melanostoma (Buechner) Lagomys melanostoma B u e c h n e r , 1 8 9 0 : p i . 2 2 f i g s . 2 - 3 Ochotona c u r z o n i a e s e i a n a Ochotona curzon iae se iana  Distribution:  East  (Thomas) Thomas,1922:189  I r a n , east Nepal; S i k k i m ,  I n d i a ; east T i b e t  and east T s i n g h a i , C h i n a . Range map i s g i v e n i n F i g u r e 25.  General d e s c r i p t i o n : This species i s nearly  white  sandy-brown  dorsally  v e n t r a l l y . D o r s a l h a i r s are g e n e r a l l y  t i p p e d and a r u s t p a t c h o c c u r s behind each e a r . of  the  The  such as melanostoma and  have a b l a c k muzzle and c h i n Thomas,1922;  soles  skull  (Guenther,1875;  is  of  Bonhote,1904b;  The i n t e r o r b i t a l r e g i o n i s moderately i n the f r o n t a l s .  size. Univariate s t a t i s t i c s  skull  Table  given  in  IX.  The s k u l l  i n the narrow  The tympanic  b u l l a e are of moderate  F i g u r e 26.  seiana,  medium s i z e and s h a r p l y e l e v a t e d  no f e n e s t r a e are p r e s e n t  are  the  Argiropulo,1948; Mitchell,1980).  f r o n t a l area. and  black-  feet are covered w i t h l o n g h a i r s which c o n c e a l  toe pads. Some s u b s p e c i e s ,  The  and  for  the  is depicted in  1 17  F i g u r e 25. Approximate d i s t r i b u t i o n of c i r c l e i n d i c a t e s type l o c a l i t y .  0. curzoniae.  Closed  118  Coef Mean  Character  B a s a l length Greatest length Zygomatic width Bra Incase b r e a d t h Least I n t e r o r b i t a l w i d t h Diastema M a x i l l a r y t o o t h row l e n g t h P a l a t a l width P a l a t a l length Nasal length Bui l a length Bui l a width 11 width 11 l e n g t h 12 width P2 length P2 width P3 length P3 width P4 length P4 width Ml length Ml width M2 length M2 width Mandible l e n g t h Mandible depth 1 Mandible depth 2 Mandible depth 3 Mandible width Mandible t o o t h row l e n g t h Mandible diastema MPS length MP3 width MP4 length MP4 width MM 1 length MM1 width MM2 length MM2 width MM3 length MMS width  35 41 20 15 3 9 8 14 7 13 10 8 0 1 0 0 1 1 2 1 2 1  19 94 99 54 78 23 10 74 01 78 74 9t 96 87 55 72 48 25 57 43 74 40 56 1 55 2 37 27 26 2 66 6 10 5 25 2 64 7 97 5 36 1 54 1 32 1 65 1 72 1 67 1 76 1 67 1 70 0 65 1 25  2  Table IX. U n i v a r i a t e s t a t i s t i c s  Standard dev1 at 1 on  1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0  44 49 78 43 35 56 56 60 22 56 64 60 09 07 27 07 1 1 1 1 18 09 17 06 13 06 21 07 18 22 33 21 21 31 08 08 10 08 10 06 10 07 06 09  fIclent of varlatIon  4 3 3 2 9 6 6 4 3 4 5 6 9 3 48 9 7 8 6 6 6 4 4 3 8 3 6 3 6 7 2 5 5 6 6 4 6 3 5 3 9 7  09*/ 56V. 72% 78% 20% 08% 88% 09% 12% 07% 95% 78% 17% 51% 88% 06% 55% 4 6% 85% 37% 24% 17% 92% 77% 79% 92% 70% 68% 28% 89% 59% 78% 33% 33% 20% 53% 17% 40% 7 7% 85% 60% 55%  Minimum  33 29 39 90 20 00 15 00 3 35 8 40 6 50 13 70 6 75 12 60 9 90 8 00 0 85 1 80 0 40 0 65 1 30 1 15 2 25 1 30 2 55 1 30 2 40 1 45 2 OO 25 80 2 25 5 80 4 70 2 20 7 65 4 90 1 40 1 25 1 45 1 60 1 50 1 70 1 50 1 60 0 60 1 15  f o r the measurements of 0. c u r z o n i a e .  Max 1 mum  37.90 44 . 50 22 .50 16 . 24 4 . 30 10.60. 8 65 15.60 7 .40 14 .60 1 1 .80 10.20 1.15 2 .00 1 . 20 0.90 1 . 70 1 .50 2 . 90 1 .60 3 . 20 1 . 50 2 . 70 1 .60 2 . 70 29.50 2 .85 6.40 5.80 2 .90 8 . 30 5.80 1 .70 1 .50 1 .85 1 .90 1 .85 1 .90 1 . 85 1 . 80 0.75 1 .50  (ave. n » 12)  1 20  F i g u r e 26. Diagram of the s k u l l of 0. c u r z o n i a e . (Drawn from a photograph of ZM 50195 Tcranium) and BM. 77-3438 (mandible))  121  *  1 22  H a b i t a t : M i t c h e l l ( 1 9 8 0 ) notes that  0 . curzon iae  inhabits  high  a l p i n e d e s e r t r e g i o n s where i t commonly burrows i n the ground  on  dry  f l o o d p l a i n s . He f u r t h e r s t a t e s t h a t  soft it  is  seldom found below 4500m.  Taxonomic  notes:  This  taxon  is  included  E l l e r m a n and M o r r i s o n - S c o t t ( 1 9 5 1 ) , distinct  species  by  in  0 . daur i c a  by  a l t h o u g h r e c o g n i z e d as a  Argiropulo(1948),  Gureev(l964)  and  Corbet(1978).  Bonhote(1904b) melanostoma  found few and  s l i g h t l y larger  E l l e r m a n and seiana  to  distinguishing  O. c u r z o n iae than the  except  that  the former  assign  Thomas(1922:189),  the  characteristics  curzoniae' .  is  Corbet(l978)  [are] also  very  like  assigns  subspecies  however,  o r i g i n a l d e s c r i p t i o n of t h i s s u b s p e c i e s , s t a t e s general  between  latter.  Morrison-Scott(1951) O. d a u r i c a .  features  in his  that  those  of  se iana  0. c u r z o n i a e f o l l o w i n g an e x a m i n a t i o n of the h o l o t y p e .  'the true to  1 23  Ochotona  daur i c a  (Pallas)  (Daurian pika)  Ochotona daur i c a d a u r i c a ( P a l l a s ) Lepus d a u u r i c u s Pallas,1776:692 (type l o c a l i t y : R i v e r , e a s t e r n S i b e r i a , USSR) Lepus ogotona P a l l a s , 1 7 7 8 : p ! 2 , p i . 4 a , f i g . 1 6 Lagomys d a u r i c u s : B u e c h n e r , 1 8 9 0 : E m e n d a t i o n Ochotona Ochotona  d a u r i c a b e d f o r d i Thomas b e d f o r d i Thomas,1908a:45  Ochotona Ochotona  d a u r i c a a l t a i n a Thomas d a u u r i c a a l t a i n a Thomas,1911 a:761  Ochotona Ochotona  daur i c a annectens M i l l e r annectens Miller,1911:54  Ochotona Ochotona  daur i c a daur i c a  Distribution:  Range map  (Thomas,1908b:981)  Asia  description:  0. daur i c a  ranges  in Figure  In  summer  from  yellowish  and t h e b e l l y  tipped  and g r a y e r , overall  The  but s t i l l  appearance there  (Bonhote,1904b;  with of  east  Mountains  o f Lake  Baikal.  a  pale  dorsal  coloration  of  yellowish,  straw-gray  to  flanks  are  i s pure white.  w i t h g r a y . In w i n t e r ,  0. c u r z o n i a e , ear.  the  pale,  straw-gray.  tinge  Altai  27.  duller,deeper,  are  from t h e  C h i n a , and t o s o u t h S i b e r i a i s given  Onon  Bannikov Bannikov,1951:56  S t e p p e s of C e n t r a l  to Shensi,  General  mursaevi mursaevi  Kulusutai,  the d o r s a l  yellowish  with a  Dorsal  hairs  color  tinge  sandy-buff.  i s no r u s t - c o l o r e d  light  In  patch  i s paler  giving  an  c o n t r a s t to. behind  each  Thomas,1911 a; A l l e n , 1 9 3 8 ; Ognev,1940;  1 24  F i g u r e 27. Approximate d i s t r i b u t i o n c i r c l e i n d i c a t e s type l o c a l i t y .  of  0 . daur i c a .  Closed  1 26 A r g i r o p u l o , 1 9 4 8 ; Feng,1973;  The s k u l l  Mitchell,1980)  i s cf medium s i z e and i s s l i g h t l y e l e v a t e d  i n the  f r o n t a l a r e a . The i n t e r o r b i t a l r e g i o n i s r e l a t i v e l y narrow, and i n o l d specimens  t h e r e are two weakly marked c o n v e r g i n g  c r e s t s i n the c e n t r a l p a r t of the i n t e r o r b i t a l f r o n t a l . fenestrae large.  No  are p r e s e n t and the tympanic b u l l a e  are  Univariate s t a t i s t i c s  Table X . The s k u l l  Habitat:  region.  0. daurica  deserts  and  Ognev,1940;  f o r the  is depicted  is  found  in Plate  are  steppes  (Allen,1938;  Loukashkin,1940;  Mitchell,1980;  Smith,1981 a ) .  quotes A . N . Formozov when n o t i n g t h a t t h i s p i k a  and i s the c h a r a c t e r i s t i c  the  the  burrows  c o m p l e t e l y f l o o d e d d u r i n g r i s e s i n the water  O. d a u r i c a g e n e r a l l y a v o i d s  where  it long  in  III.  sometimes s e t t l e s i n damp or low p l a c e s where become  given  i n open c o u n t r y , h i g h p l a t e a u s ,  Zevegmid,1975;  Ognev(l940)  skull  overlaps stiff  0. p a l l a s i or canyons  Taxonomic . n o t e s : 0. curzoniae  (Mitchell,1980)  p i k a of the Gobi d e s e r t . In areas  w i t h 0. p a l l a s i ,  grasses  remains  rocky h a b i t a t s  table'.  of  the  i n the s l i d e  0. daur i c a i s found i n valley  bottoms  while  rock on the s i d e s of  hills  (Allen,1938).  Ellerman  and  Morrison-Scott(1951)  i n 0 . d a u r i c a a l o n g w i t h the forms  and se i a n a . See  'Taxonomic n o t e s '  for 0 .  include melanostoma  curzoniae.  Character  B a s a l length Greatest length Zygomatic width Bra Incase b r e a d t h Least I n t e r o r b i t a l width 01astema M a x i l l a r y t o o t h row l e n g t h P a l a t a l width P a l a t a l length Nasal length Bui l a l e n g t h Bui l a width I 1 width 11 length 12 width P2 length P2 width P3 length P3 width P4 length P4 width Ml length Ml width M2 length M2 width Mandible l e n g t h Mandible depth 1 Mandible depth 2 Mandible depth 3 Mandible w i d t h Mandible t o o t h row length Mandible diastema MP3 length MP3 width MP4 length MP4 width MM 1 length MM 1 width MM2 length MM2 width MM3 length MM3 width  Mean  34 .79 40 97 20 47 15 75 3 70 8 96 7 91 14 85 6 83 13 78 1 1 34 9 62 1 03 1 68 0 58 0 71 1 36 1 IB 2 46 1 4 1 2 63 1 4 1 2 53 1 49 2 29 26 7 1 2 81 5 94 5 19 2 56 7 74 5 32 1 50 1 32 1 61 I 69 1 68 1 77 1 70 1 69 0 68 1 15  Table X. U n i v a r i a t e s t a t i s t i c s  Standard devlatIon  Coef f I c l e n t of varlatIon  Minimum  Max 1 mum  2 44 2 52 0 80 0 55 0 42 0 66 0 59 1 20 0 4 1 1 19 0 98 0 51 0 15 0 17 0 23 0 13 0 16 0 13 0 23 0 14 0 IB 0 13 0 21 0 1 1 0 18 1 50 0 18 0 4 1 0 34 0 20 0 4 1 0 4 1 0 14 0 12 0 14 o 12 0 17 0. 14 0. 16 0. 12 0. 13 0 09  7 .01% 6 . 14% 3 89% 3 49% 1 1 29% 7 34% 7 45% 8 08% 6 06% 6 2% 8 64% 5 33% 14 80% 10 15% 39 59% 17 91% 1 1 76% 1 1 07% 9 4 7% 9 99% 6 95% 9 04% 8 39% 7 37% 7 85% 5 62% 6 49% 6 89% 6 60% 7 70% 5 26% 7 7 2% 9 55% 9 4 3% 8 69% 7 26% 10 34% 7 76% 9 4 1% 7 12% 19. 38% 7 .78%  29 .50 34 .90 IB .65 14 . 45 2 .70 7 .60 6 60 1 1 85 5 80 1 1 45 8 80 8 50 0 70 1 10 0 20 0 50 1 05 0 B5 2 00 1 05 2 20 1 10 2 10 1 25 1 90 23 40 2 40 5 10 4 40 2 15 6 70 4 60 1 20 1 05 1 05 1 35 1 35 1 40 1 30 1 40 0 40 0 90  39 80 45.75 22 90 17 .00 4 .55 10 40 9 . 55 16.50 7 75 16 OO 13.60 10. 70 1 . 30 1 .90 1 .05 1 .00 . 1 65 1 . 45 2 .95 1 .70 2 . 95 1 .65 3.25 1 . 70 2 . 70 30. 25 3 . 30 6.95 5 . 85 3.05 8 . 30 6 . 50 1 . 70 1 .55 1 . 85 1 90 1 . 95 1 .95 2 . 10 1 . 90 0. 90 t . 30  a  f o r the measurements of 0. d a u r I c a . (ave. n = 38)  1 28  Ochotona e r y t h r o t i s (Chinese  red  (Buechner) pika)  Ochotona e r y t h r o t i s e r y t h r o t i s (Buechner) Lagomys erythrotis Buechner,1890:165; pi.21,24; l o c a l i t y : Burchan-Budda, E a s t e r n T i b e t ) Ochotona Ochotona  e r y t h r o t i s g l o v e r i Thomas g l o v e r i Thomas,1922:190  Ochotona Ochotona  erythrotis erythrotis  bookei bookei  Ochotona Ochotona  erythrotis erythrotis  v u l p i n a Howell v u l p i n a Howell,1928:117  Distribution:  East  Range map  General  i s given  uniform  the c h e s t 0. The  is  in Figure  The  erythrotis  is  subspecies,  generally  of  rusty-red color and  a drab  gloveri,  darker  China.  28.  summer p e l a g e  reddish  (type  Allen Allen,1937:341  T s i n g h a i , S o u t h Kansu, n o r t h Szechwan,  description:  bright,  figs.1-6  the gray  on  0.  t h e dorsum.  belly both  i s very  erythrotis  white.  dorsally  similiar  (Allen,1938;  is  a  Ventrally, In  and  winter,  ventrally.  in c o l o r a t i o n  but  Argiropulo,1948;  Mitchell,1980).  The  skull  Fenestrae region given  is  is are  of  present  broad.  in Table  medium  XI.  i n the  length  and  frontals  is slightly  and  Univariate statistics The  skull  the  arched.  interorbital  f o r the  i s depicted in Plate  skull IV.  are  1 29  Figure 28. Approximate d i s t r i b u t i o n of 0 . e r y t h r o t i s . c i r c l e i n d i c a t e s type l o c a l i t y .  Closed  130  ,  -  6 0'  ,  I  _ J  BO'  2  >»  1  L  1  1  12 0'  Character  B a s a l length Greatest length Zygomatic w i d t h Bralncase breadth Least I n t e r o r b i t a l width Diastema M a x i l l a r y t o o t h row length P a l a t a l width P a l a t a l length Nasal length Bu11 a 1ength Bui l a width 11 width 11 length 12 width P2 l e n g t h P2 w i d t h P3 length P3 width P4 length P4 width Ml l e n g t h Ml width M2 l e n g t h M2 width Mandible l e n g t h Mandible depth 1 Mandible depth 2 Mandible depth 3 Mandible width Mandible t o o t h row length Mandible diastema MPS length MP3 width MP4 length MP4 width MM 1 length MM 1 width MM2 length MM2 width MM3 length MM3 width  Mean  Standard d e v l a 11 on  Coef f I c 1 e n t of varlatIon  Minimum  37 .57 43 . 94 22 . 48 17.95 5 .93 10. BS 8 . 30 16 85 7 62 14 . 82 10. 56 9. 34 1 .01 1 . 74 0.51 0.77 1 . 32 1 . 19 2.41 1 . 38 2 .67 1 .42 2 60 1 .47 2.41 29.04 2.91 5.97 5 .05 2.56 8 . 19 6 . 52 1 . 58 1 . 36 1 .57 1 .69 1 73 1 . 79 1 . 73 17 1 0.62 1 .23  2 48 4 83 0 80 0 47 0 42 0 89 0 58 1 1 1 0 37 1 31 0 95 0 71 0 12 0 18 0 16 0 1 1 0 15 0 13 0 32 0 17 0 33 0 14 0 21 0 13 0 18 1 68 0 17 0 43 0 33 0 13 0 46 0 52 0 20 0 18 0 23 0 18 0 08 0 13 0 12 0 15 0 12 0 13  6 59% 10 98-/. 3 56% 2 63"/. 7 05% 8 2 3% 6 94% 6 60% 4 87% 8 8 1% 9 04% 7 60% 1 1 73% 10 29% 30 30% 13 79% 1 1 05% 10 60% 13 4 7% 12 53% 12 26% 9 78% 8 09% 8 69% 7 65% 5 79% 5 93% 7 17% 6 50% 5 08% 5 62% 8 03% 12 75% 13 28% 14 55% 10 94% 4 35% 7 2 1% 6 7 2% 8 92% 18 64% 10 40%  32 70 33 60 2 1 10 17 20 5 10 9 40 7 15 15 30 7 05 12 40 9 20 8 10 0 80 1 40 0 30 0 60 1 00 1 00 1 75 1 10 2 05 1 30 2 30 1 30 2 20 25 80 2 60 5 30 4 50 2 40 7 40 5 60 1 20 1 00 1 20 1 35 1 60 1 70 1 50 1 55 0 50 1 10  Table XI. U n i v a r i a t e s t a t i s t i c s  f o r the measurements of 0. e r y t h r o t 1 3 .  Max 1 mum  (ave. n = B)  40.30 47 . 75 23.40 18.50 6 . 40 12.25 8.90 19 . 10 8 . 20 16. 15 12 .05 tO. 05 1 . 15 1 .90 0.80 0.90 1 . 50 1 . 40 2.75 1 .60 3 .05 1 .65 2 . 90 1 .70 2 . 70 31 . 30 3.20 6.45 5.50 2.70 8 . 70 7 . 40 1 .90 1 .60 1 . 90 1 . 90 1 . 85 2 .05 1 . 90 2.00 O. 90 1 . 50  1 32  Habitat:  Little  it  is  i s known about  thought  be  Allen(l938)  notes  is  almost  confined  10,000 f t ( a p p r o x .  Taxonomic  notes:  Ellerman this  due  that  habitat  rock-dwelling i n Kansu  3,050 m)  is  to t h e i r  also  vulpina  form  high  included  Morrison-Scott(1951),  g l o v e r i and  this  species,  but  ( M i t c h e l l , 1980) . there  it  alpine  zone  from  in  rutila  upward.  species  They  of  i t i s common and  e x c l u s i v e l y t o the  This  assignment.  brookei, doubt  and  a  the  although  tentatively t o O.  i n c l u s i o n of O.  rutila,  O. they  refer but  this  e r y t h r o t i s i n 0.  by  question the is  taxa no  rutila.  133  Ochotona  kamensis (Kam  Argiropulo  pika)  Ochotona kamensis A r g i r o p u l o , 1 9 4 8 : 1 2 6 notes" ) ( t y p e l o c a l i t y : Kam, E a s t 5-  Distribution: China.  General  from Kam, west  Possibly also  waters given  Known o n l y  of  (Not 1941, see 'Taxonomic Tibet)  found  in  the Blue River  Szechwan and e a s t  the  vicinity  of  i n t h e Mekong a r e a .  the  i n F i g u r e 29.  summer gray  i s brownish, while c o l o r . In b o t h  a brilliant  skull  long  and  bullae skull  summer and w i n t e r  rust color  the  interorbital  are present  are given  i t is pelages  of  i n the  a  light  the ears are  (Argiropulo,1948).  in  are r e l a t i v e l y  Figure  i n the winter  i s l a r g e and a r c h e d .  Fenestrae  Habitat:  head  Range map i s  d e s c r i p t i o n : The d o r s a l c o l o r a t i o n o f 0. kamensis  The  Tibet,  the  The region  nasals  XII.  frontals  The  relatively  i s moderately and  small. Univariate  i n Table  are  the  statistics  skull  is  narrow. tympanic f o r the  depicted  in  30.  No  information  is  available  on t h e h a b i t a t o f t h i s  species.  Taxonomic  notes:  Argiropulo's  The 1948  1941  date  paper  cited  for  refers  to  0. k a m e n s i s an  in  unpublished  1 34  F i g u r e 29. Approximate d i s t r i b u t i o n c i r c l e i n d i c a t e s type l o c a l i t y .  of  0 . kamensis.  Closed  Mean  Character  Basal length Greatest length Zygomatic width Bralncase breadth Least I n t e r o r b i t a l width Diastema M a x i l l a r y t o o t h row length P a l a t a l width P a l a t a l length Nasal l e n g t h Bui l a l e n g t h Bui l a w i d t h 11 width 11 l e n g t h 12 width P2 l e n g t h P2 width P3 l e n g t h P3 width P4 l e n g t h P4 width Ml length Ml width M2 l e n g t h M2 width Mandible l e n g t h Mandible depth 1 Mandible depth 2 Mandible depth 3 Mandible width Mandible t o o t h row length Mandible diastema MPS length MP3 width MP4 length MP4 width MM 1 length MM 1 width MM2 length MM2 width MM3 length MM3 width  39 05 47 67 23 23 18 78 5 27 1 1 55 8 85 17 53 7 SB 16 14 10 22 9 68 1 07 1 BO 0 62 0 75 1 53 I 22 2 62 1 45 2 70 1 45 2 70 1 58 2 53 30 60 2 88 6 30 5 32 2 75 8 37 7 07 1 78 1 45 1 55 I 75 1 68 1 87 1 68 I 78 0 65 1 37  Table XTI. U n i v a r i a t e s t a t i s t i c s  Standard dev1 a t1 on  2 2 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  64 GO 40 28 12 00 40 80 70 16 28 89 08 15 OB 09 24 03 70 15 20 13 05 06 12 60 19 17 56 17 60 38 10 15 18 09 13 06 24 03 05 08  Coef f Ic I ent of var1 at 1 on  6 75% 5 46% 1 74% 1 4 7% 2 19% 8 65% 4 49% 4 5 7% B B9% 13 39% 2 69% 9 24% 7 16% 8 33% 12 39% 1 1 55% 15 4 1% 2 37% 7 7 2% 10 34% 7 4 1% 9 12% 1 85% 3 65% 4 56% 5 24% 6 57% 2 75% 10 49% 6 30% 7 23% 5 36% 5 84% 10 34% 1 I 63% 4 95% 7 48% 3 09% 14 04% 1 62% 7 69% 5 59%  Minimum  36 45 22 18 5 10 8 16 7 14 9 8 1 I 0 0 1 1 2 1 2 1 2 1 2 29 2 6 4 2 7 6 1 1 1 1 1 1 1 I 0 I  15 60 80 50 20 70 55 70 20 03 90 65 00 65 55 70 35 20 50 30 50 30 65 55 40 65 75 20 90 55 90 80 70 30 35 70 55 80 50 75 60 30  f o r the measurements of 0. kamens1s. (n * 3)  MaxImum  41 50 23 19 5 12 9 18 8 18 10 10 1 I 0 0 1 I 2 1 2 1 2 1 2 32 3 6 5 2 9 7 1 1 1 1 1 1 1 1 O 1  30 55 60 05 40 65 30 30 60 35 40 20 15 95 70 85 80 25 85 60 90 55 75 65 60 45 10 50 95 85 05 50 90 60 70 85 80 90 95 80 70 45  1 37  Figure 30. Diagram of the s k u l l of 0 . kamensis. photograph of the h o l o t y p e ZM 454861  (Drawn from a  139  m a n u s c r i p t . The  1948 p a p e r  death)  abridged  is  an  (published  version  constitutes  the f i r s t  publication  description  (Gureev,  pers.comm.).  after  of t h e 1941 this  Argiropulo's manuscript  species'  name  and and  1 40  Ochotona  koslowi  (Koslov's  (Bonhote) pika)  Lagomys k o s l o w i Buechner,1894:187 , p i . 2 3 and 24; f i g s . 3 and 1317 (type locality.-Guldsha V a l l e y , 14,000 f t , Northern Tibet)  Distribution: map  General  South  i s given  Sinkiang  in Figure  d e s c r i p t i o n : No  and  winter  described  and n o r t h e r n  information but  as a uniform  pale  white  or  Range  31.  pelages,  entirely  T i b e t , China.  i s a v a i l a b l e on  the. coloration buff  yellow  is  tinged with ventrally  the  summer  generally  vinaceous  and  (Bonhote,1904b;  Feng,1973).  The  skull  region  i s l a r g e and s t r o n g l y  i s very  narrow and t h e n a s a l s  are  no f e n e s t r a e  the  skull  Figure  Habitat:  arched.  i n the f r o n t a l s .  are given  in Table  The  interorbital  relatively  long.  There  Univariate s t a t i s t i c s for  X I I I . The s k u l l  i s depicted in  32.  No  information  is  available  on t h e h a b i t a t of  this  species.  Taxonomic  notes:  distinctive  0. k o s l o w i species  distinctiveness, • Tibetolagus  has and,  usually on  Argiropulo(1948)  for this  species  alone.  been the  regarded basis  proposed  the  of  as  a  this  subgenus  141  F i g u r e 31. Approximate distribution c i r c l e i n d i c a t e s type l o c a l i t y .  of  0.  koslowi.  Closed  142  143  O i n O i n o O i T O O O O O O O i r O O O n r>icinc>ir-cj)OiDO-ini0nnoavSLOC)f^cNcooa rT «- — ^ — ,^ ~- _ ^ ~ C N C l C N r i — C C * ? • n co  ID  n cn ic -  • CM (N — ( N C N C N O -  c o r > * o u > * » n e c i n i n q « > e G c o r - * ^ r - ^ • O  6-  — f- t  O O - ' - r*  N  W  (N  O '  • O O n if n B - I P O O ' : i r . » O n C f i O t t t f  ^ec^na)0iOif)icr)tfir>iniri — i n i c i n N m e n r i ' - c ' i i f i ' - o j ' — 0 ^ e c O r - - C f i - - u : r ; r ; n — - - o - O O - O O C C - r - n n - O O O O O O - O O O O O O O O O O C O O O O f ^ O O O O O O O O O O O O O O O O  Oin^ii)vpnenentr roonoOa>coinui<cr--r^ J  £ X T> X £ £ £  « —  & L. £ c- L 0 *- a* * £ L 0)CO C 0 o> n c — in ^ u — *- E c IT) «C IC 0 to a ai (D (C (C L > 0> O B  ft -  CD U  K I CO - J  c a 2 0  L.  CV D £ £ - £ £ £ O £ 0>«Ol£ £ 0 C Q C r C 0! a* o> © a oi *- -o £ £ > * c c -o 8) -£*-£•'£ - _ * - £ • ' (C L a — oi — 0 — 0 E (C — — — > - • O Ol*oi*l * - O) CT< Ol*' Ol Ol ^ *a — « c — C O — CO — © — 01— tt — oi— 01 — £— £— £— £— V) *c e — — •D "D <C X — (0 — — c c c c (C ( C D S < » w n v> i-j •v — »ct rre & ICt.* O £<c CL CL Z CQ CD Z £ 2 5  £  £  1  tc  -  L E 0) •* (fi C — T> £  £ £ *0 - o -  £ £ £ O) 0' a> a> Oi c "O c 0' £ £ £ 0' 3 * T> t) -o c c c n IC c a CL 3 z z£ z z Z  « rc  £  £ £ *- £ Ol *- C *c T J c ri 0> - Oi 3 > — 3 CN N D R £ Z z £ Z Z Z Z z £ Z Z Oi c Oi  £  £  1 44  Figure 32. Diagram of the s k u l l of 0 . k o s l o w i . (A composite drawing based on a photograph of BM 972264 and the diagram s u p p l i e d i n Gureev(1964))  145  146  Ochotona  ladacensis (Ladak  (Guenther)  pika)  Lagomys ladacensis Guenther,1875:231 L a k e , 14,000 f t , Ladak, K a s h m i r . )  Distribution: China;  Approximately and  (type  southwest  Kashmir, P a k i s t a n .  locality:  Sinkiang,  Changra  west  Range map  i s given  in  is  Tibet,  in Figure  33.  General  description:  Bonhote(1904b) yellowish winter  pelage  skull  very The  as  a  light  brownish  no  bullae  statistics  f o r the  is depicted  in Figure  information  described  by  dorsally  with  describes  the  dorsally,  with  gray  Argiropulo(1948) or o c h e r  r u s t - c o l o r e d e x t e r i o r s i d e s of  and  tympanic  July  as p a l e y e l l o w - p i n k  i s l a r g e and  narrow  H a b i t a t : No  pelage  white u n d e r p a r t s .  distinctively  The  The  the  arched.  The  interorbital  fenestrae  are  present  are  skull  relatively are  given  ear.  region  i n the  small.  in Table  is  frontals. Univariate  XIV.  The  skull  of  this  34;  is available  on  the  habitat  species.  Taxonomic 0.  notes:  ladacensis  previously  Guenther's i n 1875  assigned  was  t o 0.  original  b a s e d on  description  s p e c i m e n s w h i c h had  curzon iae.  0.  ladacensis  is  of been very  1 47  Figure 33. Approximate d i s t r i b u t i o n of 0 . c i r c l e i n d i c a t e s type l o c a l i t y .  ladacensis.  Closed  1 48  Character  Mean  Basal length Greatest length Zygomatic width B r a l n c a s e breadth Least I n t e r o r b i t a l width 01 astema M a x i l l a r y tooth row length P a l a t a l width P a l a t a l length Nasal length Bui l a length Bui l a width 11 width 11 length 12 width P2 length P2 width P3 length P3 width PA width length P4 Ml length Ml width M2 length M2 width Mandible length Mandible depth 1 Mandible depth 2 Mandible depth 3 Mandible width Mandible tooth row length Mandible diastema MP3 length MP3 width MP4 length MP4 width MM 1 length MM1 width MM2 length MM2 width MM3 length MM3 width  40 . 72 49 . 28 24 59 18 60 3 85 12 50 9 37 IB 46 8 02 IS 73 1 107 9 97 1 10 2 03 1 02 0 67 1 55 1 24 2 74 1 60 2 92 1 67 2 77 1 81 2 56 32 05 3 44 6 89 5 50 2 94 9 34 7 02 I 64 1 50 1 75 1 85 1 99 2 03 2 02 1 96 0 80 1 36  S tandard devlatIon  2 3 0 0 0 0 0  85 26 75 60 47 97 69 1 5 1 0 41 1 69 0 74 0 84 0 16 0 17 0 18 o 11 0 25 0 20 0 46 0 22 0 40 0 19 0 23 0 19 0 25 2 36 0 25 0 54 0 29 0 10 0 63 0 48 0 22 0 18 0 23 0. 23 0 13 0. IB 0. 13 0. 15 0. 13 0. 13  CoeffIclent of varlatIon  Minimum  Max 1 mum  7.01% 6 .627. 3 .06/. 3 . 70% 12 . 18% 7 BOX 7 38X 8 I6X 5 14% 10 72% 6 66% 8 4 1% 14 38% 8 2B% 17 70% 16 20% 16 00% 15 88/. 16 70% 13 73% 13 75% I 1 37% 8 39% 10 47% 9 77% 7 37% 7 22% 7 78% 5 30% 3 53% 6 74% 6 87% 13 3 1% 12 27% 13 20% 12 28% 6 58% 8 B3% 6 40% 7 77% 16 68% 9 7 7%  34 75 42 . 10 23 .40 17 .80 3 15 10 . 30 7 85 14 90 7 40 12 50 9 60 9 05 0 80 1 80 0 65 0 50 1 10 0 90 1 90 1 20 2 15 1 30 2 30 1 45 2 05 26 90 2 95 6 00 5 10 2 75 8 10 6 10 1 15 1 15 1 30 1 40 1 80 1 65 1 80 1. 70 0. 60 1 .10  42 90 52 50 25 50 19 65 4 60 13 50 10 00 19 65 8 60 17 35 12 OO 1 1 20 1 25 2 25 1 25 0 85 1 85 1 50 3 20 1 BO 3 35 1 85 3 10 2 00 2 80 34 30 3 80 7 50 5 90 3 10 10 00 7 60 1 90 1 70 2 OO 2 05 2. 10 2 .20 2 .20 2 .15 1 .00 1 .55  Table XIV. U n i v a r i a t e s t a t i s t i c s f o r the measurements of 0. l a d a c e n s i s . (ave. n = 10)  150  F i g u r e 34. Diagram of the s k u l l of 0 . l a d a c e n s i s . ( A l l views drawn from p h o t o g r a p h s . D o r s a l view and l a t e r a l view of the mandible from BM 3 6 . 4 . 1 2 . 5 ; ventral view from BM 3 6 . 4 . 1 2 . 5 ; l a t e r a l view of the cranium from BM 2 0 . 7 . 4 . 4 5 )  1 52  p o o r l y known, but i t i s c o n s i d e r e d t o be a d i s t i n c t s p e c i e s by  most  authors  (e.g.  Argiropulo,1948;  M o r r i s o n - S c o t t , 1 9 5 1 ; Gureev,1964;  Ellerman  Corbet,1978).  and  1 53  Ochotona lama M i t c h e l l and Punzo (Lama's p i k a )  Ochotona lama M i t c h e l l Mustang d i s t r i c t of  Distribution:  Mustang  and Punzo,1975:420 Nepal)  description:  described  as  The  The  overall  brownish  red  coloration  of  with black h a i r s  0.  lama  skull  present  interspersed  yellowish  ventral  is  relatively  in  the f r o n t a l s .  small there  and are  flattened. no  The s k u l l  is depicted  The b u l l a e are of moderate  lama  desert-alpine rocks'  Taxonomic to 0 .  is  found  roylei.  size. XV.  36.  'on the wind-swept s l o p e s of  areas where i t burrows under  ( M i t c h e l l and  notes:  in Figure  The  fenestrae  U n i v a r i a t e s t a t i s t i c s f o r the s k u l l are g i v e n i n Table  0.  is  ( M i t c h e l l and P u n z o , 1 9 7 5 ) .  i n t e r o r b i t a l r e g i o n i s broad and  Habitat:  Range,  35.  throughout the coat d o r s a l l y and w i t h a surface  locality:  d i s t r i c t of N e p a l ; p o s s i b l y T i b e t .  map i s g i v e n i n F i g u r e  General  (type  large  open,  isolated  Punzo,1975:422).  Corbet(l978)  t e n t a t i v e l y assigns this  species  1 54  Figure 35. Approximate d i s t r i b u t i o n of 0 . i n d i c a t e s type l o c a l i t y .  lama. C l o s e d c i r c l e  155  Character  Mean  B a s a l length Greatest length Zygomatic width Bralncase breadth Least I n t e r o r b i t a l width D1 astema M a x i l l a r y t o o t h row l e n g t h P a l a t a l width P a l a t a l length Nasal length Bui l a length Bui l a width 11 width I 1 1ength 12 width P2 l e n g t h P2 w i d t h P3 length P3 width P4 length P4 width M1 length M1 width M2 length M2 width Mandible length Mandible depth 1 Mandible depth 2 Mandible depth 3 Mandible width Mandible t o o t h row l e n g t h Mandible diastema MPS length MPS width MP4 length MP4 width MM 1 length MM 1 width MM2 length MM2 width MM3 length MMS width  Table XV.  32 3B IB 15 4 8 7 14  88 9B 28 18 53 47 75 80 52 92 77 82 00 55 47 75 30 12 40 38 4B 40 30 43 02 75 42 22 55 53 77 90 57 32 67 63 75 62 68 53 73 12  fi 12  9 8 1 1 0 0 1 1 2 1 2 1 2 1 2 24 2 5 4 2 7 4 1 t 1 1 1 I 1 1 0 1  Univariate s t a t i s t i c s  Standard devlatIon  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  64 68 08 19  06 1 1 05 20 28 16 35 08 13 05 06 05 09 03 18 08 15 0 10 08 10 20 31 24 30 10 10 13 03 10 12 03 09 03 10 06 06 03  Coef f I c l e n t of var1 a 11 on  1 1 0 1 1 1  o  1 4 1 3  0 13  3 12 6 6 2 7 5 6 0 4 5 5 0 12 4 6 4 1 2 1 7 6 1 4 1 6 3 7 2  94% 75% 4 1% 25% 27% 24% 64% 35% 2 3% 25% 60% 8B% 2 3% 23% 37% 67% 66% 5B% 51% 57% 15% 0 % 35% 33% 16% 8 1% 64% 53% 6B% 1 1% 35% 70% 84% 90% 93% 7 7% 95% 79% 18% 7 7% 87% 58%  Mini mum  32 38 18 15 4 B 7 14 6 12 9 8 0 1 0 0 1 1 2 1 2 1 2 1 1 24 2 4 4 2 7 4 1 1 1 1 1 1 1 1 0 1  15 20 20 05 50 35 70 60 25 80 40 75 85 50 40 70 20 10 25 30 35 40 20 35 90 55 15 95 35 45 65 80 55 20 60 60 70 60 60 50 70 10  f o r the measurements of 0. lama, (n = 3)  MaxImum  33 39 18 15 4 8 7 15 6 13 10 8 1 1 0 0 1 1 2 1 2 1 2 1 2 24 2 5 4 2 7 5 1 1 1 1 1 1 1 1 0 )  30 45 35 40 60 55 BO 00 BO 10 10 90 10 60 50 80 35 15 60 45 65 40 40 50 10 95 75 40 90 65 85 05 60 40 80 65 85 65 80 60 80 15  157  F i g u r e 36. D i a g r a m of t h e s k u l l of 0. lama. (Drawn from a p h o t o g r a p h of t h e h o l o t y p e ROM 74737 s u p p l i e d by Dr. R.M. Mitchell)  1 58  159  Ochotona m a c r o t i s  (Guenther)  ( L a r g e - or B i g - e a r e d  pika)  O c h o t o n a m a c r o t i s macrot i s ( G u e n t h e r ) Lagomys m a c r o t i s G u e n t h e r , 1 8 7 5 : 231 ( t y p e l o c a l i t y : Tibet) Lagomys a u r i t u s Blanford,1875:111 Lagomys g r i s e u s B l a n f o r d , 1 8 7 5 : 1 1 1 O c h o t o n a s a c a n a Thomas,1914:572  Doba, C e n t r a l  1  O c h o t o n a m a c r o t i s w o l l a s t o n i Thomas and H i n t o n O c h o t o n a w o l l a s t o n i Thomas and H i n t o n , 1 9 2 2 : 1 8 4  Distribution: Runlun  Himalayas  Bhutan  Shan, P a m i r s and  in Figure  General  from  through  west T i e n Shan. Range map  In summer t h e  general coloration  species  i s a p a l e g r a y i s h brown w i t h an  and  rufous  tinge  i n both  summer  surface whitish. fluffy  In  winter,  p a l e gray  skull  to and  head  and  winter  the d o r s a l  overall  for  this  ocher  tinge  s h o u l d e r s . The pelages  color  with a straw-yellow  Ognev,1940; Feng,1973;  The  i s given  37.  description:  a  t h e Rarakorum Range,  is  ventral  white  or  changes to a dense,  tinge.  (Bonhote,1904b;  Mitchell,1980)  i s of medium s i z e  and  is  flat  in  profile.  The  The t y p e l o c a l i t y i s i n some d i s p u t e . G u e n t h e r ( 1 8 7 5 ) lists the locality as 'Doba' without any additional information. B l a n f o r d ( 1 8 7 5 ) g i v e s the t y p e l o c a l i t y as 'Duba' near t h e R u n l u n Range i n C h i n e s e T u r k e s t a n . O g n e v ( l 9 4 0 ) s u g g e s t s that in fact the 'Doba' i n C e n t r a l T i b e t i s more l i k e l y the' t e r r a t y p i c a f o r 0. m a c r o t i s . I concur with Ognev(l940) on zoogeographical grounds.  1 60  Figure 37. circle  Approximate d i s t r i b u t i o n i n d i c a t e s type l o c a l i t y .  of 0 . m a c r o t i s .  Closed  162  i n t e r o r b i t a l r e g i o n i s broad and f l a t t e n e d .  There are  often  f e n e s t r a e i n the f r o n t a l , p a r t i c u l a r l y i n j u v e n i l e a n i m a l s . Univariate statistics The s k u l l  Habitat:  f o r the s k u l l are g i v e n i n Table X V I .  is depicted in Figure  This  species  (Ognev,1940;  is  a  38.  high a l t i t u d e rock-dwelling p i k a ;  Bernstein,1970;  Mitchell,1977,1980).  A c c o r d i n g to O g n e v ( l 9 4 0 ) , 0 .  is sporadically d i s t r i b u t e d in mountainous  Kawamichi,1971 a ;  of  the  i n h a b i t s s c r e e s i n spruce  forests. Altitudinal  ranges g i v e n  by s e v e r a l a u t h o r s  2500-4000m  (Kawamichi,1971a);  H i n t o n , 1 9 2 2 ) . O. m a c r o t i s h i g h e r than 0 .  Taxonomic  notes:  roylei  and  Asia  in  i t commonly  are:  Central  colonies where  5630m  regions  isolated  macrotis  (Zimina,1962);  4423-6130m  i s g e n e r a l l y found  4000-  (Thomas at  and  altitudes  ( B e r n s t e i n , 1 970)..  Corbet(l978)  and  Gureev(l964)  include  0 . macrot i s i n 0 . r o y l e i . Kawamichi(1971a), however, ( t r e a t s 0 . m a c r o t i s as s p e c i f i c a l l y d i s c t i n c t from O. r o y l e i on the b a s i s of m o r p h o l o g i c a l and e c o l o g i c a l d i f f e r e n c e s of  sympatry.  in  areas  Character  Mean  Basal length Greatest length Zygomatic width Bra Incase b r e a d t h least . Interorb!tal width D1 a s tema M a x i l l a r y t o o t h row length Palatal width Palatal length Nasal length Bu11 a l e n g t h Bui l a width I 1 width 11 l e n g t h • 12 w i d t h P2 length P2 w i d t h P3 length P3 w i d t h P4 length P4 w i d t h M1 length Ml w i d t h M2 length M2 w i d t h Mandible length Mandible depth 1 Mandible depth 2 Mandible depth 3 Mandible width M a n d i b l e t o o t h row length Mandible diastema MP3 length MP3 width MP4 length MP4 width MM 1 l e n g t h MM 1 w i d t h MM2 length MM2 width MM3 length MM3 width  Table  35 42 21 17 4 9 8 15 6 14 9 9 0 1 0 0 1 1 2 1 2 I 2 1 2 27 2 5 4 2 7 5 1 1 1 1 I 1 1 1 0 1  XVI. U n i v a r i a t e  44 50 03 63 88 75 07 47 91 2 1 76 84 88 64 39 66 75 1 1 45 36 53 35 49 4 1 30 55 48 93 93 36 95 95 50 24 49 59 67 66 72 60 64 16  statistics  Standard d e v 1 a t1 o n  2 2 0 0 0 1 0 1 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  o o  62 85 69 58 35 01 67 19 22 66 79 58 10 15 09 12 15 13 38 1 1 17 OR 15 12 15 72 28 37 39 15 29 45 09 07 09 1 1 10 07 08 10 05 10  Coef f i c 1 e n t of v a r l a 11 o n  7 .38% 6 .71% 3 29% 3 3 1% 7 1 1% 10 3 5 % 8 34% 7 7 1% 3 17% 1 1 70% 8 14% 5 93% 1 1 98% 8 90% 23 9 6 % 18 8 4 % 1 1 63% 1 1 94% 15 3 6 % 8 26% 6 76% 6 00% 5 84% 8 82% 6 57% 6 24% 1 1 24% 6 17% 8 02% 6 4 1% 3 69% 7 49% 6 30% 5 8 1% 5 84% 6 90% 6 17% 4 09% 4 64% 6 20% 7 55% 8 34%  f o r thp measurements  o f 0.  Minimum  27 33 18 16 4 6 6 12 6 9 7 7 0 1 0 0 1 0 1 1 2 1 2 1 2 22 1 4 3 2 7 4 1 1 1 1 I 1 1 1 0 1  macrot1s.  MaxImum  25 55 90 35 15 95 95 OO 60 00 25 95 75 15 30 50 05 80 20 10 10 20 20 10 05 20 75 80 75 20 35 80 35 15 30 30 50 55 60 45 GO OO  (n *  37 .80 45.00 2 1 . 60 18 . 8 0 5 . 50 10.80 10.00 16.95 7 .50 15 8 0 10.70 10.50 1 . 15 1 . 75 0.60 1 .00 1 .65 ' 1 .35 2.75 1 . 55 2 . 70 1 .50 2 . 75 1 55 2 . 70 2 9 .45 2 .95 6 . 40 5 . 40 2 . 70 8 40 6.60 1 .65 1 . 40 1 .65 1 .80 1 .85 1 .80 1 . 90 I . 80 0. 75 1 . 35  15)  1 64  F i g u r e 38. Diagram of the s k u l l of 0 . m a c r o t i s . (A composite drawing based on a photograph of AMNH 83445, u n i v a r i a t e s t a t i s t i c s c a l c u l a t e d f o r 0 . m a c r o t i s and the diagram supplied in Ognev(l940).  1 65  1 66  Ochotona p a l l a s i (Pallas'  (Gray)  pika)  Ochotona p a l l a s i p a l l a s i (Gray) Ogotoma p a l l a s i i Gray,1867:220 (type l o c a l i t y : ' A s i a t i c R u s s i a Kirgisen') Lagomys ogotona Waterhouse,1848:17 Ochotona ogotona: Bonhote,1904b:210 Ochotona p r i c e i opaca A r q i r o p u l o , 1 9 3 9 : 3 1 Ochotona p a l l a s i p r i c e i Thomas Ochotona (Ogotoma) p r i c e i Thomas,1911 a:760 Ochotona p a l l a s i hamica Thomas Ochotona (Ogotoma) hamica Thomas,1912a:407 Ochotona p a l l a s i s u s h k i n i Thomas Ochotona (Ogotoma) s u s h k i n i Thomas, 1924:16 3  D i s t r i b u t i o n : A r i d r e g i o n s of  Kazakh  Range map i s g i v e n i n F i g u r e General  description:  The  SSR  and  west  Mongolia.  39.  summer  pelage of 0 . p a l l a s i  is  sandy or d i r t y g r a y i s h o c h e r . I n c l u d i n g the s u b s p e c i e s , color  varies  duller, the  ocher-rust-gray,  to  g r a y i s h brown tones w i t h a s l i g h t y e l l o w t i n g e ,  but  impression  of  drab  a  remains.  d o r s a l c o l o r becomes a b r i g h t e r s t r a w - g r a y ,  In w i n t e r , the w i t h a r u s t y or  b u f f y t i n g e . The b l a c k pads of the toes are bare plainly  the  cinnamon-buff  overall  from  drab  in  contrast  s y m p a t r i c 0 . daur i c a .  to  the  heavily  and  f u r r e d feet of  show the  (Gray, 1 867 ; Thomas,1911 a ; A l l e n , 1 9 3 8 ;  Ognev,1940; M i t c h e l l , 1 9 8 0 )  1 67  F i g u r e 39. circle  Approximate d i s t r i b u t i o n i n d i c a t e s type l o c a l i t y .  of  0. p a l l a s i .  Closed  168  1 69  The s k u l l  i s moderately  interorbital  region  large  in  the  somewhat  arched.  The  i s r e l a t i v e l y narrow and the tympanic  b u l l a e are c o m p a r a t i v e l y present  and  large.  frontals.  There  are  Univariate  s k u l l are g i v e n i n Table X V I I . The  no  fenestrae  statistics  skull  is  for  the  depicted  in  Plate V.  Habitat:  0. p a l l a s i  appears  to  i n t e r m e d i a t e between the those  which  species  is  true  inhabit  Ognev(1940:65)  occupy  talus  rocks  r e s i d u a l outcrop  exclusively  Formozov(1929)  who  favorite  with  scattered  deep over  states  as  under  characterizes it also shrubs  inhabits  habitat  man-made  Although  Ochotona gives  this i n the  He  cites  occurs  in  peashrub  as  Zevegmid(1975)  rocks  in  and  burrows  a r i d , mountains and  states that 0. p a l l a s i  that under  semi-desert  is  found  in  a l l the l o w l a n d s between h i l l s w i t h c o n t i n u o u s  penetrate  notes:  and  under  dwellings  into  biotopes  found i n d r y r a v i n e s and rock  Taxonomic  for  0. p a l l a s i  or patchy beds of bushes. He f u r t h e r s t a t e s not  and  ( S m i t h , 1981'a).-.  desert'.  deserts  sandhills.  Smirov(l974)  practically  the  is  t h i s s p e c i e s as a r o c k - d w e l l e r , he notes  between  regions.  that pikas  passages,  that  isolated colonies in rockless well  habitat  steppe-dwelling  notes t h a t the 'in  a  This  pr i c e i  in  with  that  it  does  h i g h m o i s t u r e , but  is  crevices.  species  is  commonly  the  Russian  referred  literature.  to  as  Ognev(l940)  the f o l l o w i n g reasons f o r u s i n g 0 . pr i c e i as the name  Character  Basal length Greatest length Zygomatic w i d t h Bra Incase b r e a d t h Least I n t e r o r b i t a l width 0 l a s tema Max 111ary*tooth row l e n g t h P a l a t a l width Palatal length Nasal length Bui l a l e n g t h Bui l a width 11 width I 1 1ength 12 width P2 l e n g t h P2 width P3 length P3 width P4 length P4 width Ml length Ml width M2 length M2 width Mandible l e n g t h Mandible d e p t h 1 Mandible d e p t h 2 Mandible depth 3 Mandible w i d t h Mandible t o o t h row l e n g t h Mandible diastema MPS length MP3 width MP4 length MP4 width MM 1 length MM 1 width MM2 length MM2 width MM3 length MM3 width  Mean  Standard dev1 a t1 on  CoeffIclent of varlatIon  37 68 44 39 22 45 17 57 3 90 10 49 8 49 17 26 7 33 14 63 1 1 79 10 44 1 22 1 85 0 67 0 80 1 47 1 31 2 69 1 55 2 82 1 52 2 71 1 59 2 46 28 86 3 16 6 33 5 45 3 01 8 29 6 17 1 52 1 49 1 71 1 80 1 83 1 88 1 84 1 79 0 79 1 24  2 11 2 20 0 66 0 63 0 4 1 0 88 0 48 1 42 0 42 1 OO 0 48 0 70 0 13 0 14 0 12 0 1 1 0 14 0 14 0 22 0 12 0 23 0 10 0 15 0 10 0 17 1 55 0 2 1 0 33 0 34 0 22 0 43 0 55 0 14 0 14 0 14 0 12 0 15 0 10 0 14 0 09 0 13 0. 10  5 .60% 4 96% 2 96% 3 58% 10 50% 8 4 2% 5 62% 8 2 1% 5 67% 6 80% 4 06% 6 74% 10 30% 7 82% 17 32% 14 27% 9 68% 10 33% 8 19% 7 83% 8 08% 6 7 1% 5 65% 6 55% 6 95% 5 36% 6 48% 5 16% 6 14% 7 3B% 5 15% 8 89% 9 15% 9 2 1% 7 96% 6 86% 8 15% 5 4 1% 7 85% 4 94% 15 79% 7 67%  T a b l e XVII. U n i v a r i a t e s t a t i s t i c s  Minimum  "32 38 21 16 3 8 7 14 6  30 95 30 60 25 95 70 95 40  1 1 15 10 80 9 20 1 00 1 60 0 45 0 60 1 20 1 10 2 30 1 30 2 45 1 35 2 50 1 40 2 20 25 30 2 70 5 70 4 90 2 50 7 65 5 15 1 30 1 20 1 50 1 55 1 55 1 70 1' 60 1 65 0 50 1 10  MaxImum  4 1 .60 49. 90 23.65 18.80 4 .80 12.60 9.20 20.00 8 . 10 16.15 12 . 80 12 .00 1 .50 2 . 25 1 .00 1 . 10 1 .75 1 . 60 3.20 1 .80 3 . 30 1 .70 3 .05 1 .75 2 . 80 32 . 40 3 . 50 7 . 20 6.00 3.35 9. 20 7.50 1 .85 1 . 80 1 .95 2.00 2 . 15 2.05 2 . 20 1 . 95 1 . 15 1 . 50  f o r the measurements of 0. pal 1 as 1. (ave. n - 30)  171  for  this  species:  'As no t e r r a t y p i c a was g i v e n f o r 'Ogotoma pa11asi i ' , as there i s no d e s c r i p t i o n of t h i s s p e c i e s , and as Gray p a r t l y c o n f u s e d h i s s p e c i e s w i t h 0. d a u r i c a P a l l . (=0gotoma P a l l . ) , we t h i n k t h a t 'Ogotoma p a l l a s i i ' is best considered a doubtful synonym of 0. pr i c e i ' (p.68).  Although  Gray(l867)  Ogotoma  pallasi i' ,  partially  that  pallasi  and p r i c e i ,  of for 0.  there  o f 0. p a l l a s i  these a  a  brief  Thomas(1911 a)  were  two  one b e i n g was more  major size  description  p r o p o s e d h i s new  on t h e b a s i s of a c o m p a r i s o n  stated  skull  gave o n l y  with  differences  (p.701).  m i n o r d i f f e r e n c e s , t h e name 0. p r i c e i new  pallasi.  species  and  thus  is  the  '  species  0. p a l l a s i .  and t h e o t h e r  'humped'  of  He  between that  the  Irrespective was  proposed  j u n i o r synonym of  1 72  Ochotona  princeps (Southern  (Richardson) pika)  Ochotona p r i n c e p s p r i n c e p s (Richardson) L e p u s (Lagomys) princeps Richardson,1828:520 (type locality: Head of the A t h a b a s c a R i v e r near Athabasca Pass, A l b e r t a , Canada) [Ochotona] p r i n c e p s T r o u e s s a r t , 1 8 9 7 : 6 4 8 O c h o t o n a p r i n c e p s : E l l i o t , .1 90 1 : 267 , f i g . 6 1 Ochotona l e v i s H o l l i s t e r , 1 9 1 2 b : 5 7  O c h o t o n a pr i n c e p s f e n i sex Osgood Lagomys minimus Lord,1863:98 O c h o t o n a f e n i s e x Osgood,1913:80 ( r e n a m i n g of L. minimus 0. p r i n c e p s f e n i s e x : H o w e l l , 1 9 2 4 : 2 8 O c h o t o n a pr i n c e p s s c h i s t i c e p s ( M e r r i a m ) Lagomys s c h i s t i c e p s Merriam,1889:11 O c h o t o n a p r i n c e p s s c h i s t i c e p s : M i l l e r , 1 9"36 : 1 75 O c h o t o n a p r i n c e p s c u p p e s Bangs O c h o t o n a c u p p e s Bangs,1899:40 O. p r i n c e p s c u p p e s : H o w e l l , 1 9 2 4 : 2 7 Ocho-tona p r i n c e p s s a x a t i 1 i s Bangs O c h o t o n a s a x a t i l i s Bangs,1899:41 0. p r i n c e p s s a x a t i l i s : H o w e l l , 1 924 :.23 O c h o t o n a p r i n c e p s c innamomea A l l e n O c h o t o n a cinnamomea A l l e n , 1 9 0 5 : 1 2 1 O. p r i n c e p s c innamomea: H a l l , 1 9 3 4 : 1 0 3  Ochotona p r i n c e p s a l b a t a G r i n n e l l Ochotona a l b a t a Grinnell,1912:125 O. p r i n c e p s a l b a t a : H a l l , 1 9 5 1 : 1 2 7  Ochotona p r i n c e p s f i g g i n s i A l l e n Ochotona f i g g i n s i Allen,1912:103 O. p r i n c e p s f i g g i n s i : Howell,1924:21  O c h o t o n a pr i n c e p s t a y l o r i G r i n n e l l Ochotona t a y l o r i Grinnell,1912:129 0. p r i n c e p s t a y l o r i : H a l l , 1 9 5 1 : 1 3 3  Lord)  1 73  Ochotona p r i n c e p s u i n t a H o l l i s t e r Ochotona u i n t a H o i 1 i s t e r , 1 9 1 2 b : 5 8 0. pr i n c e p s u i n t a : H o w e l l , 1 9 2 4 : 19  Ochotona p r i n c e p s n i g r e s c e n s B a i l y O c h o t o n a n i g r e s c e n s Baily., 1 91 3 :1 32 0. pr i n c e p s n i g r e s c e n s : H o w e l l , 1 9 2 4 : 2 6  O c h o t o n a p r i n c e p s mui r i G r i n n e l l and S t o r e r O c h o t o n a s c h i s t i c e p s m u i r i G r i n n e l l and S t o r e r , 1 9 1 6 : 6 0. pr i n c e p s mui r i : H a l l , 1 9 3 4 : 1 0 3 Ochotona pr i n c e p s s h e l t o n i G r i n n e l l Ochotona s c h i s t i c e p s s h e l t o n i Grinnell,1918:429 0. p r i n c e p s s h e l t o n i : H a l l , 1 9 4 6 : 5 9 2 Ochotona p r i n c e p s brunnescens Howell Ochotona f e n i s e x brunnescens H o w e l l , 1 9 1 9 : 1 0 8 O. p r i n c e p s b r u n n e s c e n s : H o w e l l , 1 9 2 4 : 3 1 O c h o t o n a p r i n c e p s fumosa H o w e l l O c h o t o n a f e n i sex fumosa H o w e l l , 1 9 1 9 : 1 0 9 0. p r i n c e p s fumosa: H o w e l l , 1 9 2 4 : 3 3 Ochotona pr i n c e p s fuse i p e s Howell O c h o t o n a s c h i s t i c e p s f u s e i p e s Howell,1919:110 0 [ c h o t o n a ] . p [ r i n c e p s j . f u s c i ' p e s : H a l l and Hayward, 1 94 1 :1 08 Ochotona pr i n c e p s incana Howell Ochotona s a x a t i l i s incana Howell,1919:107 O. pr i n c e p s i n c a n a : H o w e l l , 1 9 2 4 : 2 5 Ochotona pr inceps jewett i Howell Ochotona s c h i s t i c e p s jewett i Howell,1919:109 O. p r i n c e p s j e w e t t i : H a l l , 1 9 5 1 : 1 3 0 O c h o t o n a p r i n c e p s lemhi H o w e l l Ochotona u i n t a lemhi Howell,1919:106 0. pr i n c e p s l e m h i : H o w e l l , 1 9 2 4 : 1 6  Ochotona pr i n c e p s l u t e s c e n s Howell O. p r i n c e p s l u t e s c e n s H o w e l l , 1 9 1 9 : 1 0 5  Ochotona pr i n c e p s n e v a d e n s i s Howell Ochotona u i n t a n e v a d e n s i s Howell,1919:107 0. p r i n c e p s n e v a d e n s i s : Howell,1924:21  Ochotona p r i n c e p s ventorum Howell Ochotona u i n t a ventorum Howell,1919:106 0. p r i n c e p s v e n t o r u m : H o w e l l , 1 9 2 4 : 1 8 Ochotona p r i n c e p s b r o o k s i Howell 0. p r i n c e p s b r o o k s i : H o w e l l , 1 9 2 4 : 30 Ochotona pr i n c e p s goldmani Howell O c h o t o n a s c h i s t i c e p s g o l d m a n i Howell,1924:40 0. p r i n c e p s g o l d m a n i : H a l l and Bowles,1938:337 O c h o t o n a pr i n c e p s h o w e l l i B o r e l l O. p r i n c e p s h o w e l l i B o r e l l , 1 9 3 1 : 3 0 6 O c h o t o n a pr i n c e p s t u t e l a t a H a l l 0. p r i n c e p s t u t e l a t a H a l l , 1 9 3 4 : 1 0 3 O c h o t o n a p r i n c e p s c l a m o s a H a l l and Bowles 0. p r i n c e p s c l a m o s a H a l l and Bowles,1938:335 O c h o t o n a p r i n c e p s u t a h e n s i s H a l l and Hayward O. p r i n c e p s u t a h e n s i s H a l l and Hayward,1941:107 O c h o t o n a pr i n c e p s s e p t e n t r i o n a l i s Cowan and Racey O. p r i n c e p s s e p t e n t r i o n a l i s Cowan and Racey,1946:1 Ochotona p r i n c e p s moorei Gardner O. p r i n c e p s m o o r e i G a r d n e r , 1 9 5 0 : 3 4 4 O c h o t o n a p r i n c e p s b a r n e s i D u r r a n t and Lee O. p r i n c e p s b a r n e s i D u r r a n t and Lee,1955:6 O c h o t o n a p r i n c e p s l a s a l e n s i s D u r r a n t and Lee O. p r i n c e p s l a s a l e n s i s D u r r a n t and Lee,1955:4 O c h o t o n a p r i n c e p s l i t t o r a l i s Cowan 0. p r i n c e p s l i t t o r a l i s Cowan,1955:22  1 75 Ochotona p r i n c e p s s a t u r a t u s Cowan 0. pr inceps s a t u r a t u s Cowan,1955:23 Ochotona pr inceps wasatchensi s D u r r a n t and Lee 0. p r i n c e p s w a s a t c h e n s i s D u r r a n t and L e e , 1 9 5 5 : 2 Ochotona pr inceps obscura Long 0. p r i n c e p s obscura Long,1965:538  D i s t r i b u t i o n : Mountains of western North  America  from  British  Columbia t o New M e x i c o . Range map i s g i v e n i n F i g u r e  General  description:  In summer the d o r s a l pelage of 0 . pr inceps  v a r i e s from g r a y i s h t o cinnamon-buff, with  tawny  Ventrally,  often  or  ochraceous  depending  the  coloration  ranges  cinnamon-buff.  40.  richly  on  subspecies. to  a  The w i n t e r pelage i s s i m i l a r t o t h a t of  the  summer but p a l e r .  (Anthony,1928;  from  the  colored  Cowan  whitish  and  Guiguet,1965;  Hall,1981 )  The  skull  profile. skull  is  variable  s i z e and g e n e r a l l y  The i n t e r o r b i t a l r e g i o n i s  is  given  broad  very s i m i l a r to 0 . c o l l a r i s ,  the s i z e of the t e e t h . are  in  in  and  flat  flat.  The  d i f f e r i n g mainly i n  Univariate s t a t i s t i c s  Table X V I I I . The s k u l l  has a  f o r the  is depicted  skull  in Plate  VI .  Habitat:  T h i s s p e c i e s i s found i n t a l u s and r a r e l y  where  it  might  have  primarily  found  at  to  burrow  high a l t i t u d e s  in  (Smith,1981b). over much of  situations It its  is range  176  F i g u r e 40. Approximate d i s t r i b u t i o n c i r c l e i n d i c a t e s type l o c a l i t y .  of  0 . pr i n c e p s .  Closed  1 77  Character  Mean  Basal l e n g t h Greatest length Zygomatic w i d t h Bra Incase b r e a d t h Least I n t e r o r b i t a l width Dlastema M a x i l l a r y t o o t h row l e n g t h P a l a t a l width Palatal length Nasal l e n g t h Bui l a l e n g t h Bui l a width I 1 width 11 length 13 width P2 length P2 width P3 length P3 width P4 length P4 width Ml length M1 width M2 length M2 width Mandible l e n g t h Mandible depth 1 Mandible depth 2 Mandible d e p t h 3 Mandible w i d t h Mandible t o o t h row l e n g t h Mandible diastema MPS length MPS width MP4 length MP4 width MM 1 length MM 1 width MM2 length MM2 width MM3 length MM3 width  Table X V I I I .  36 43 21 17 5 9 8 16 7 13 10 9 1 1 0 0 1 I 2 1 2 1 2 1 2 27 2 5 5 2 7 5 1 1 1 1 1 1 1 1 0 1  dev1 a t1 on  CoeffIclent of var1 a t1 on  Mini mum  1 7 1 1 66 0 64 0 52 0 37 0 59 0 35 0 81 0 31 0 75 0 70 0 53 0 16 0 14 0 na 0 10 0 14 0 12 0 18 0 10 0 16 0 10 0 13 0 09 0 13 1 21 0 24 0 45 0 37 0 20 0 33 0 38 0 10 0 1 1 0 12 0 to 0 10 0 09 0 IO 0 08 0 09 0 08  4 65% 3 80% 2 97% 2 99% 6 99% 5 94% 4 19% 4 76% 4 21% 5 55% 6 40% 5 4 2% a 78% 12 07% 10 75% 13 06% 10 4 8% 9 53% 7 19% 6 80% 6 21% 6 40% 5 32% 6 19% 5 80% 4 38% 8 4 3% 7 67% 7 20% 6 90% 4 16% 6 49% 6 80% 7 93% 7 13% 5 4 2% 5 67% 4 79% 5 63% 4 7 1% 1 1 97% 6 33%  3 1 50 SB 80 19 60 15 85 4 25 8 20 7 40 14 85 6 40 11 85 S OO 8 05 0 95 0 90 0 40 0 50 1 05 0 90 2 10 1 15 2 20 1 10 2 25 1 30 2 00 22 BO 2 35 2 60 4 20 2 40 6 25 4 70 1 15 1 15 1 40 1 50 1 60 1 60 1 55 1 55 0 55 1 05  68 58 51 29 33 96 26 93 35 47 97 70 83 17 71 73 36 28 49 54 61 49 52 53 27 56 90 a i 13 84 97 87 45 45 72 77 84 80 84 72 78 23  Univariate s t a t i s t i c s  Max 1 mum  40.70 47 . 25 23. 10 18 .50 6 . 45 1 1 . 80 9.00 18.90 8. 15 15 . 50 12 .50 13.00 2.20 2 .00 0.90 1 . 30 2 . 30 1 .65 3 .05 1 .75 3.05 1 .70 2 .90 1 .75 2 .65 30.25 3 . 70 6 .50 5 . 90 3.40 8 .90 6 . 85 1 . 70 1.70 2 .00 2 .00 2 . 15 2 .00 2 . 15 1 .90 0.95 1 . 40  f o r the measurements of 0. p r I n c e p s . (ave. n - 225)  1 79  (Howell,1924), British  Taxonomic  but i t i s known  Columbia  notes:  taxa  include  Previous  level  t o be c o n s p e c i f i c .  in  0. pr i n c e p s  and  Gureev(l964)  0. c o l l a r i s  s t a t i s t i c a l e v a l u a t i o n of these  ( s e e Weston,1981),  9.- c o l l a r i s  sea  B r o a d b r o o k s ( 1 9 6 5 ) and Youngman(1975) c o n s i d e r  Corbet(1978)  0. a l p i n a .  at  (Cowan and G u i g u e t , 1 9 6 5 ) .  0. p r i n c e p s and 0. c o l l a r i s and  to occur  s t r o n g l y suggests  and 0. a l p i n a  are s p e c i f i c a l l y  in  three  t h a t 0. p r i n c e p s , distinct.  180  Ochotona p u s i 1 1 a ( P a l l a s ) • (Small or Steppe  pika)  Ochotona p u s i 1 1 a p u s i l l a ( P a l l a s ) Lepus p u s i l l u s Pallas,1768:531 (type l o c a l i t y : Samara, S o u t h - e a s t e r n R u s s i a ) Lepus m i n i t u s P a l l a s , 1 7 7 1 : 1 5 5 ( f o o t n o t e )  vicinity  of  Ochotona p u s i 1 1 a a n g u s t i f r o n s A r g i r o p u l o 0. p u s i l l a a n g u s t i f r o n s A r g i r o p u l o , 1 9 3 2 : 5 5  Distribution:  Steppes  of  the  USSR  from  southern U r a l s east through Kazahk SSR. in Figure  General  the upper V o l g a and Range map i s  41.  description:  The d o r s a l  c o l o r a t i o n of 0 . p u s i l l a  summer pelage i s a dark g r a y i s h brown w i t h a more marked  straw  coloration slightly  s p e c k l i n g on the back and f l a n k s .  from  that  of  the  summer  Argiropulo,1948,  region  large.  The v e n t r a l  Smith,1981a)  is and  differs  i t s paler  flat  color.  profile.  a  The tympanic b u l l a e  Univariate s t a t i s t i c s  are g i v e n i n Table X I X . The s k u l l  0. p u s i l l a  less  The  i s of moderate b r e a d t h and t h e r e are  f e n e s t r a e p r e s e n t i n the f r o n t a l s . proportionally  its  Mitchell,1980)  i s very s m a l l w i t h a r e l a t i v e l y  interorbital  Habitat:  in  in  or  i s a d u l l w h i t i s h g r a y . The w i n t e r coat  (Bonhote,1904b;  The s k u l l  given  typical Ognev(l940)  is depicted  steppe  f o r the  are skull  in Plate V I I .  form  reports  no  that  (Pakizh,1969; this  pika  181  Figure 41. circle  Approximate distribution i n d i c a t e s type l o c a l i t y .  of  0. p u s i l l a .  Closed  Character  Mean  B a s a l length Greatest length Zygomatic w i d t h Bralncase breadth Least I n t e r o r b i t a l width D1 as tema M a x i l l a r y t o o t h row l e n g t h P a l a t a l width P a l a t a l length Nasal length Bui 1 a 1ength Bui l a width I 1 width II l e n g t h 12 width P2 length P2 width P3 l e n g t h P3 width P4 l e n g t h P4 width Ml l e n g t h Ml width M2 length M2 width Mandible l e n g t h Mandible depth 1 Mandible depth 2 Mandible depth 3 Mandible width Mandible t o o t h row length Mandible diastema MP 3 length MP3 width MP4 length MP4 width MM 1 length MM 1 width MM2 l e n g t h MM2 width MM3 length MM3 wldtt-  31 25 3S 60 18 65 15 00 4 10 7 35 7 05 13 25 6 60 1 I 40 10 55 9 15 0 70 1 50 0 55 0 50 0 95 1 00 1 90 1 30 2 40 1 25 2 25 1 30 2 10 23 40 2 40 5 05 4 75 2 25 6 90 4 60 0 95 0 95 1 30 1 40 1 60 1 55 1 70 1 55 0 60 0 80  Table XIX. U n i v a r i a t e s t a t i s t i c s  Standard tlov 1 a t 1 on  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  Coef f I c l e n t of var1 a t1 on  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  Mini mum  X X  y.  % % % X %  x X  y.  X X  y. y.  •/. X  X X X X X  y.  o X 0 X 0 X 0 X 0 X 0 X  0 0 0 0 0 0 0 0 0 0 0 0 0  y. y.  X %  x  X X  y.  X % %  •/. %  f o r the measurements of 0. pus 111a.  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0  o 0  o 0 0 0 0  o 0 0 0 0 0  o  0 0 0 0 0 0 0 0 0 0 0 0 0 0  Max 1 mum  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  OO  0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  (n = 1)  00 Co  184  i n h a b i t s wheat rare  in  crevices,  Smirov(V974) moist  fields,  soil  Dubrovsky(1963) river  Taxonomic  valleys  notes:  include  among  observes  which  weeds and  that  notes  this  that  E l l e r m a n and forms  two  forrest i  0. r o y l e i osgoodi,  not and  i s found grass  but  is  meadows.  primarily in and  pika ubiquitously  forms  Morrison-Scott(1951)  nubr i c a ,  the  does  0. p u s i 1 1 a with thick  Corbet(l978)  but  or on m o u n t a i n  i s covered  0. p u s i 1 1 a .  refers  rocks,  thickets,  bushes. inhabits  and water s p r i n g s .  the  other  dense  forresti  places forresti  and in  osgoodi.  0. t h i b e t a n a  respectively.  osgoodi  0. r o y l e i  in and  i n 0. t h i b e t a n a , w h i l e G u r e e v ( l 9 6 4 )  t o 0. t h i b e t a n a and nubr i c a treat  tentatively  to  See 'Taxonomic  for  nubr i c a  and  0.  roylei,  notes'  under.  forrest i  185  Ochotona r o y l e i  (Ogilby)  (Royle's pika)  Ochotona r o y l e i r o y l e i ( O g i l b y ) Lagomys r o y l i i O g i l b y , 1 8 3 9 : l x i x , p i . 4 (type l o c a l i t y : Choor M o u n t a i n , 60 m i l e s n o r t h of Saharanpur, Punjab) Lagomys hodgsoni B l y t h , 1 8 4 1 : 8 1 7 , p l a t e a t ' p a g e 844 Lagomys n e p a l e n s i s Hodgson,1841:854, p l a t e at page 816 Lagomys r o y l e i : B l a n f o r d , 1 8 9 1 : 4 5 6 . Emmendation Ochotona angdawai Biswas and K h a j u r i a , 1 9 5 5 : 2 6 Ochotona m i t c h e l l i Agrawal and C h a k r a b o r t y , 1 9 7 1 : 4 3 Ochotona himalayana Feng,1973:69 Ochotona r o y l e i wardi Bonhote 0 . r o y l e i wardi Bonhote,1904a:13  (Bonhote,1904b:214)  Ochotona r o y l e i c h i n e n s i s . Thomas 0 . r o y l e i c h i n e n s i s Thomas,1911b:728 O. r o y l e i s i n e n s i s L y d e k k e r , 1 9 1 2 : 4 6 ( l a p s u s c a l a m i ) Ochotona r o y l e i b a i t i n a Thomas 0 . r o y l e i b a l t i n a Thomas,1922:188 Ochotona r o y l e i n u b r i c a Thomas O. r o y l e i n u b r i c a Thomas,1922:187  D i s t r i b u t i o n : Along the Himalayas from Punjab  to  Szechwan  and  In summer, the d o r s a l c o l o r a t i o n f o r  this  Yunan, C h i n a . Range map i s g i v e n i n F i g u r e 42.  General  description:  species shoulders  is  dark and  brown  flanks  grizzled are  bright  with  buff;  the  head,  rufous. V e n t r a l l y ,  the  c o l o r a t i o n ranges from w h i t e to g r a y i s h w h i t e to dark  gray.  In some forms t h e r e i s a p a l e  or  chestnut  band  over  the  band on the t h r o a t . The w i n t e r coat  t h a t of the summer, but  only  the  head  nape  a  i s s i m i l a r to  shows  traces  of  186  Figure 42. circle  Approximate d i s t r i b u t i o n i n d i c a t e s type l o c a l i t y .  of  0.  roylei.  Closed  188  rufous.  The s u b s p e c i e s , w a r d i ,  i s similar  in color  described  above, but i s g e n e r a l l y d a r k e r . Nubr i c a  and  i s no  there  Mitchelli typical  and  evidence  angdawai d i f f e r  roylei  in that their  respectively.  Argiropulo,1948; Agrawal  and  of  a  slightly  mantle.  in coloration  Thomas,1911 a; Biswas  i s grayer  rufous  f u r i s more s l a t e y  (Bonhote,1904b;  Hinton,1922; Abe,1971;  apparent  to that  from  or g r a y i s h , Thomas  and  and  Khajuria,1955;  Chakraborty,1971;  Feng,1973;  Mitchell,1980)  The and is  skull  i s of moderate s i z e  the p r o f i l e  fenestrae  Univariate The  i s s l i g h t l y arched.  o f moderate b r e a d t h  Frontal  skull  i s depicted  areas  and t h e b u l l a e a r e r e l a t i v e l y  small.  present  in  f o r the s k u l l  juvenile  are given  addition  and  huts  at  a variety  to  3660-4880m  that  alpine  to occupying  this  i n T a b l e XX.  associated  pika  regions rocky  and s t o n e  of  the  biotopes,  from  with  rocky  Roberts,1977).  inhabits  the  moist  H i m a l a y a s and, i n  i t also  f e n c e s . 0. r o y l e i  of a l t i t u d e s ,  the H i m a l a y a s ,  animals.  in Plate VIII.  (Kawamichi,1968,1971 a; M i t c h e l l , 1 977 ;  subalpine  is  region  is characteristically  M i t c h e l l ( 1 9 8 0 ) notes  native  the subspecies  The i n t e r o r b i t a l  are  statistics  H a b i t a t : 0. r o y l e i  varying with  h a s been  2400-3600m  nests  in  reported  (Roberts,1977)  ( A l l e n , 1 9 3 8 ) . Kawamichi(1968) r e p o r t s t h a t i n 0. r o y l e i  r e p l a c e d at higher  occupies  altitudes  t h e humid  forest  by 0. m a c r o t i s .  zone and  Character  Basal l e n g t h Greatest length Zygomatic w i d t h Bra Incase b r e a d t h Least I n t e r o r b i t a l w i d t h Diastema M a x i l l a r y t o o t h row l e n g t h P a l a t a l width P a l a t a l length Nasal l e n g t h Bui l a l e n g t h Bui l a width 11 width 11 length 12 width P2 length P2 width P3 length P3 width P4 length P4 width M1 length Ml width M2 l e n g t h M2 width Mandible l e n g t h Mandible d e p t h 1 Mandible depth 2 Mandible depth 3 Mandible w i d t h Mandible t o o t h row l e n g t h Mandible diastema MP3 l e n g t h MPS width MP4 length MP4 width MM 1 length MM 1 width MM2 length MM2 width MM3 l e n g t h MM3 width  Mean  35.94 47.9G 21.41 17.01 4.69 9.67 8.11 15.89 7.27 14.11 9.65 9 . 15 1 00 1 81 0.48 0. 77 1.31 1 . 13 2.47 1 .43 2.56 1 . 42 2 . 56 1 . 49 2 . 38 27.29 2 . 77 5.78 4 . 95 2 . 52 8.01 5.58 1 43 1 .35 1 .59 1 .69 1 . 77 1 . 72 1 .73 1 67 0.67 1 19  Table XX. U n i v a r i a t e s t a t i s t i c s  Standard dev1 a t1 on  1 92 2 05 0 82 0 50 0 35 0 59 0 37 1 16 0 4 1 0 84 0 50 0 40 0 15 0 15 0 16 0 31 0 17 0 17 0 28 0 16 0 22 0 14 0 22 0 13 0 2 1 1 28 0 32 0 37 0 32 0 23 0 34 0. 35 0. 19 0. 19 0. 17 0. 15 0. 13 0. 12 0. 13 0. 12 0. 14 0. 10  Coef f I c l e n t of var1 a tIon  Minimum  5 . 35% 4 . 78% 3 .84% 2 9 1% 7 .51% 6 . 14% 4 .54% 7 .28% 5 65% 5 97% 5 14% 4 32% 14 87% 8 2 3% 33 33% 40 85% 13 30% 15 18% 1 1 2 7% 1 1 35% 8 74% 10 03% 8 55% 8 66% 8 67% 4 70% 1 1 57% 6 4 4% 6 57% 9 02% 4 72% 6 33% 13 03% 14 07% 10 69% 8 64% 7 07% 7 18% . 7 65% 6 .96% 21 .44% 8 .7 3%  31 .85 38 .05 19 .80 15 .80 4 .05 8 . 15 7 30 13 10 6 60 12 80 8 95 8 50 0 70 1 45 0 15 0 30 0 95 0 80 1 90 1 10 2 05 1 10 2 05 1 25 2 00 24 70 2 20 5 05 4 30 2 10 7 30 5 00 1 10 1 00 1 15 1 35 1 55 1 45 1 50 1 . 40 0. 40 1 . 00  f o r the measurements of 0. r o y l e l . (ave.  Max tmun  39. 15 46. 30 23.05 17 .85 5. 15 10.45 8 .60 17 . 70 8.0O 15.60 10. 80 10.00 1 .20 2.00 0. 70 1 . 75 1 55 1 .45 3.00 1 . 70 2 . 90 1 .60 2 .90 1 . 70 2.90 29 . 75 3 . 20 6 . 40 5. 35 2 . 90 8.60 6 45 1 .70 1 .60 1 .80 1 90 1 . 90 1 . 90 2.00 1 .90 0.90 1 . 30  15)  190  Taxonomic  notes:  Both  0.  macrotis  0.  macrotis).  0.  a n g d a w a i , 0.  0.  roylei  0.  roylei  0.  by  roylei  roylei.  juvenile  taxon  'Taxonomic  include  most  mitchelli,  and  were  mi t c h e l l i  0.  Corbet(1978).  a  three  (see  0.  See  notes'  0.  forresti the  little  'small species  zoogeographic  grounds.  the  color  p h a s e and  in this  0.  roylei  on  that phases  is  that likely  r e f e r s 0.  0.  lama  roylei  form  in  t h e b a s i s of  i n w h i c h Thomas r e f e r r e d  of  states  ( p e r s . comm.)  placed of  with  by the  thibetana.  nubr i c a , i n  description  color  under  synonymized  Corbet(l978) also  is  under  d e s c r i b e d taxa (  more t h a n  suggests  discussion  f o r 0.  notes'  Mitchell(1980:17)  he  include  himalayana) l i s t e d  tentatively  'are  animals.  Gureev(l964)  recently  represents yet another  to  original  'Taxonomic  '. In a d d i t i o n  on  I  roylei  Corbet(1978).  based  The  The  and  himalayana  0.  0.  and  roylei,  angdawai of  in  Corbet(l978)  roylei  group'  t o nubr i c a  (p.187)  and  the as on  191  Ochotona  rufescens  (Afghan  (Gray)  pika)  Ochotona r u f e s c e n s r u f e s c e n s (Gray) Lagomys rufescens Gray,1842:266 ( t y p e Tomb, K a b u l , Afghanistan)  locality:  Near  Barbers  O c h o t o n a r u f e s c e n s r e g i n a Thomas 0. r u f e s c e n s r e g i n a Thomas,1911 a:762 O c h o t o n a r u f e s c e n s v i z i e r Thomas 0. r u f e s c e n s v i z i e r Thomas,1911 a:762 O c h o t o n a r u f e s c e n s v u l t u r n a Thomas 0. r u f e s c e n s v u l t u r n a Thomas,1920:937 ' ( b u t Morrison-Scott,1951:453)  see  Ellerman  and  Ochotona r u f e s c e n s s h u k u r o v i Heptner 0. r u f e s c e n s s h u k u r o v i Heptner,1961:621  Distribution:  Mountains of A f g h a n i s t a n ;  I r a n ; B a l u c h i s t a n , west  Pakistan;  and s o u t h w e s t T u r k m e n i a , USSR. Range map  in  43.  General  Figure  description:  The summer d o r s a l p e l a g e  is  generally a pale  the  head  tending  underparts yellowish ears  venter  brown o r cream, w i t h  0.  t o be more r u f e s c e n t . The f l a n k s gray  to d i r t y  gray-white,  coalesce  In t h e w i n t e r , than is  in  the  a  pale  on  the  nape  and  the  commonly w i t h a behind  t o form a b r o a d  the f u r i s d u l l e r , summer.  rufescens  t h e back and  t i n g e . There a r e o f t e n white patches  which  collar. brown  are  gray  for  i s given  grayer  and  the white more  The f l a n k s a r e p a l e r and t h e  yellowish  buff.  (Bonhote,1904b;  1 92  Figure 43. Approximate d i s t r i b u t i o n of 0 . c i r c l e i n d i c a t e s type l o c a l i t y .  rufescens.  Closed  193  1 94  Ognev,1940;  Feng,1973;  and  Khakhor,1980;  The  skull  region crests  The  Univariate The  relatively  present  skull  on b o t h are  no  narrow  fenestrae  0. r u f e s c e n s  essentially  Puget,1976). at  the In  species  is  He s t a t e s t h a t  contrast,  devoid  of  to  serious  This  pika  agricultural  economic  burrow  pest.  distribution  areas  habitat  exclusively country that  is  that  1200m and up t o  systems  also  rock-  notes  i t s specific  flat  in  Argiropulo,1941;  above  reports  makes e x t e n s i v e  with  and  i t almost  Puget(l976)  stones.  associated  non-obligatory  that the i r r e g u l a r  related  area  i n Table XXI.  Roberts(1977)  s l o p e s of r a v i n e s and a v o i d s  occasionally  a  elevations  3600m. O g n e v ( l 9 4 0 ) s u g g e s t s  lateral  i n the f r o n t a l s .  are given  (Ognev,1940; V i n o g r a d o v  occurs  requirements.  Fulk  interorbital  interorbital.  present  i n P l a t e IX.  is  The  well developed  s i d e s of the  i s depicted  pika  this  with  f o r the s k u l l  Hassinger,1973;  of  arched.  statistics  H a b i t a t : 0. r u f e s c e n s dwelling  Roberts,1977;  Mitchell,1980)  i s l a r g e and m o d e r a t e l y  is  adults.  Hassinger,1973;  inhabits  and v a l l e y s . 0.  rufescens  i n open  fields  sometimes  found  where  (Roberts,1977;  i t c a n become a Fulk  and  Khokhar,1980)  Taxonomic of  notes: pika  taxonomic  0. r u f e s c e n s  which  has  confusion.  i s perhaps  n o t been  the only extant  species  the s u b j e c t of a t l e a s t  some  Character  Mean  Basal length Greatest length Zygomatic width Bra incase breadth Least Interorbital width Diastema Maxillary t o o t h row l e n g t h Palatal width Palatal length Nasal length Bulla length Bui l a width 11 w i d t h 11 l e n g t h 12 w i d t h P2 length P2 w i d t h P3 length P3 w i d t h P4 length P4 w i d t h Ml length Ml w i d t h M2 length M2 w i d t h Mandible length Mandible depth 1 Mandible depth 2 Mandible depth 3 M a n d i b l e wlfclth M a n d t b l e t o o t h row l e n g t h Mandible diastema MPS length MPS width MIM length MP4 width MM 1 l e n g t h MM 1 w i d t h MM2 length MM2 width MM 3 l e n g t h MM3 width  Table  37 45 22 17 S  72 04 SG 1 1 B2 to 31 9 01 17 66 7 04 14 44 1 1 79 10 44 1 22 1 89 0 69 0 G6 1 36 1 24 7 59 1 53 7 94 1 59 2 79 1 58 2' 62 30 19 3 39 6 36 5 78 2 96 8 50 6 33 I 3B 1 49 1 67 1 87 1 89 2 00 1 93 1 89 0 7 I I 2 1  XXI. U n i v a r i a t e  statistics  Standard devlatIon  4 4 1 0 0 1 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  27 03 36 83 34 20 67 43 44 78 3G 79 26 22 20 2 1 20 26 38 24 36 20 3 1 23 23 03 33 HQ 69 36 76 83 30 34 34 32 26 30 23 25 22 25  CoeffIclent of varlatIon  1 1 sty. B 95% 5 99% 4 88"/. 8 99% 1 1 59% 7 49% 13 7 6 % 6 30% 12 3 1 % 1 1 54% 7 52% 21 7 0 % 1 1 65% 28 7 6 % 32 6 9 % 14 9 1 % 20 8 8 % t4 5 3 % 15 9 0 % 12 3 3 % 12 3 7 % 1 1 09% 14 3 4 % 8 8 2% 10 0 3 % 9 8 1% 12 5 2% I 1 95% 12 3 4 % 8 92% 13 13% 2 1 54% 22 7 8 % 2 0 18% 17 0 4 % 13 7 9 % 14 8 8 % 1 1 98% 13 4 9% 30 8 5 % 2 0 7 2%  f o r t h e m e a s u r e m e n t s o f 0.  MaxImum  Minimum  31 SB 20 15 3 8 7 14 G 1 1 10 9 0 1 0 0 1  o  1 1 2 1 2 1 2 25 2 5 4 2 7 5 0 1 1 I 1 I 1 1 0 0  rufescens.  4 3 . 15 50.20 24 . 25 18. 10 4 . 50 12 . 15 9 . 70 20.30 7 . 70 16 .65 13 .50 1 1 . 60 1 . 50 2 . 15 1 OO 0.9O 1 .65 1 .60 3.00 1 .80 3 . 25 1 . 80 3.15 1 . 85 2 . 85 34 . 4 0 3.90 7.50 6 50 3 . 55 9. 45 7 . 40 1 . 70 1 . 80 2 .00 2 . 20 2 . 30 2 . 35 2. 15 2 . 10 1 .00 1 .45  20 80 40 60 45 60 70 20 60 80 00 40 BO 50 40 35 OO 80 90 20 30 30 30 25 25 70 90 10 BO 45 45 10 90 00 20 35 50 55 50 50 40 80  (ave. n  =  8)  196  Ochotona  rutila  ((Turkestan)  Severtozov red pika)  Lagomys r u t i l u s S e v e r t o z o v , 1 8 7 3 : 1 9 (see a l s o 1876:168) l o c a l i t y : Vernow M o u n t a i n s , R u s s i a n Turkestan)  Distribution: Tien  General  Isolated  mountain  Shan, USSR. Range map i s g i v e n  description:  dorsally, Behind  with  the  Ventrally tinge.  In summer  ears  there  The  winter  caused  the pelage  i s a broad  coat  is  Mitchel1,1980)  The  is  interorbital present  in  region the  skull  are given  Plate  X.  0. r u t i l a  mountains According rocky  vegetation  large is  i n Table  is  found  and  is  high.  is  y e l l o w i s h white  collar.  with  tips.  a  rust  black  brown  (Bonhote,1904b;  moderately  and  broad.  arched.  The  Fenestrae  are  statistics  XXII.  The  skull  in  the  s c r e e and t a l u s  Berstein,1963;  not  this  pika  found  0. r u t i l a  reddish flanks.  Univariate  to Berstein(1963), but  rust  cinnamon-buff  gray  hair  flat  frontals.  (Allen,1938;  biotopes,  ash  by b r o w n - b l a c k  very  is a rich  i s g e n e r a l l y w h i t i s h with  Ognev,1940;  skull  from t h e P a m i r s t o t h e i n F i g u r e 44.  y e l l o w i s h tinged with  the c o l o r a t i o n  speckling  Habitat:  ranges  (type  depicted  in  of h i g h  Grzimek,1975). i s s t r i c t l y tied to  in  lives  is  f o r the  rocks  where  the  a t e l e v a t i o n s up t o  Figure 44. circle  Approximate d i s t r i b u t i o n i n d i c a t e s type l o c a l i t y .  of  0. r u t i l a •  Closed  198  Character  Mean  Basal length Greatest length Zygomatic w i d t h Bra Incase b r e a d t h Least I n t e r o r b i t a l w i d t h 01 astema Max 1 M a r y t o o t h row l e n g t h P a l a t a l width Palatal length Nasal l e n g t h Bui l a l e n g t h Bui l a width I 1 width 11 length 12 width P2 length P2 width P3 length P3 width P4 length P4 width M1 length Ml width M2 length M2 width Mandible l e n g t h Mandible depth 1 Mandible d e p t h 2 Mandible depth 3 Mandible w i d t h Mandible t o o t h row l e n g t h Mandible diastema MP3 length MP3 width MP4 length MP4 width MM 1 length MM 1 width MM2 lenqth MM2 width MM3 length MM3 width  40 96 48 79 23 57 18 77 5 69 1 161 8 84 18 22 7 83 IS IB 1 1 91 10 58 1 10 1 88 0 63 0 73 1 34 1 32 2 58 1 56 2 85 1 58 2 85 1 61 2 58 32 16 3 42 S 74 S 04 2 86 8 91 7 02 1- 66 1 51 1 69 1 89 1 92 2 02 1 90 1 92 0 75 1 33  Table XXII. U n i v a r i a t e s t a t i s t i c s  S1andard dev1 a tIon  2 3 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  76 22 07 63 49 97 44 42 4 1 34 82 75 11 17 10 OB 15 13 20 13 15 05 20 09 13 43 28 32 42 22 44 65 04 10 16 10 10 OB 15 09 15 09  Coef f 1 c l e n t of var1 a tIon  M i n i mum  6 7sy. 6 60% 4 55% 3 38% 8 60% 8 38% 4 98% 7 78% 5 22% 8 31% 6 91% 7 09% 10 4 1% 8 90% 16 47% 1 1 31% 1 1 48% 10 20% 7 58% 8 1 1% 5 19% 3 21% 7 07% 5 55% 4 86% 7 56% 8 1 1% 4 80% 6 95% 7 6 1% 4 96% 9 20% 2 5 1% 6 53% 9 6 1% 5 09% 5 38% 4 1 1% 7 89% 4 53% 20 00% 6 76%  35 65 42 60 2 1 35 17 40 4 55 9 85 8 20 15 60 7 30 13 90 10 65 9 10 0 90 1 65 0 50 0 60 1 05 1 10 2 25 1 30 2 65 1 50 2 50 1 50 2 40 27 10 3 00 6 05 5 25 2 50 8 20 5 80 1 60 1 35 1 40 1 70 1 70 1 90 1 80 1 80 0 60 1 20  f o r the measurements of 0. r u t 11a.  (ave. n - 9)  Max 1 mum  42.85 5 1 . 10 24 .90 19.60 6.20 12 . 40 9 . 35 20.85 8.40 17 .60 13 . 40 1 1 .50 1 .30 2 . 10 0.80 0. 85 1 .55 1 .55 2.80 1 .70 3. 10 1 .65 3 . 10 1 .80 2 . 80 34 . 30 3 . 80 7.18 6 75 3 . 20 9.55 7 . 75 1 .70 1 .60 2.00 2 .00 2.0O 2 . 10 2 . 20 2 .05 1 . 10 1 . 50  200  3000m ( G r z i m e k , 1 9 7 5 ) , 4700m  Taxonomic  2300-2900m  (Berstein,1963)  and  3000-  (Allen,1938).  notes:  E l l e r m a n and M o r r i s o n - S c o t t ( 1 9 5 1 ) i n c l u d e the  forms e r y t h r o t i s ,  v u l p i n a , brooke i and t e n t a t i v e l y  in 0. r u t i l a .  'Taxonomic n o t e s '  See  gloveri  under O. e r y t h r o t i s .  201  Ochotona t h i b e t a n a (Milne-Edwards) (Moupin p i k a )  Ochotona t h i b e t a n a t h i b e t a n a (Milne-Edwards) Lagomys thibetanus Milne-Edwards,1872:93(footnote) l o c a l i t y : Moupin, Szechwan, China) Ochotona t h i b e t a n a : deWinton and Styan,1899:577 Ochotona hodgsoni Bonhote,1904:218 (Not of B l y t h , 1 8 4 l ) Ochotona z a p p e y i Thomas,1922:192 0 . t h i b e t a n a s a c r a r i a Thomas,1923:663 Ochotona t h i b e t a n a cansa Lyon Ochotona cansa Lyon,1907:136 Ochotona Conothoa Conothoa Ochotona Ochotona  t h i b e t a n a huangensis ( M a t s c h i e ) huangensis M a t s c h i e , 1 9 0 7 : 2 1 4 huanghoensis M a t s c h i e , 1 9 0 7 : 2 4 3 ( l a p s u s c a l a m i ) s y r i n x . T h o m a s , 1 9 1 1 c : 2 7 (Thomas,191 i d : 6 9 2 ) cansa morosa Thomas,1912b:403  Ochotona t h i b e t a n a s o r e l l a Thomas Ochotona s o r e l l a Thomas,1980a:45 (Thomas,1980b:982) Ochotona t h i b e t a n a s i k i m a r i a Thomas Ochotona s i k i m a r i a Thomas,1922:191 Ochotona t h i b e t a n a f o r r e s t i Thomas Ochotona f o r r e s t i Thomas,192 3:662 Ochotona t h i b e t a n a s t e v e n s i Osgood Ochotona cansa S t e v e n s i Osgood,1932:328 Ochotona t h i b e t a n a osgoodi Anthony Ochotona osgoodi Anthony,1941:113 Ochotona t h i b e t a n a c i l a n i c a Bannikoy 0. thibetana c i l a n i c a Bannikov,1960:6 Ochotona t h i b e t a n a l h a s a e n s i s Feng and Kao O. t h i b e t a n a l h a s a e n s i s Feng and Kao,1974:82  (type  202  Distribution: Shensi,  Szechwan, Shansi,  South  Kansus,  North  Yunnan,  Hupeh,  C h i n a ; S i k k i m ; Burma. Range map i s g i v e n i n  F i g u r e .45.  General  description:  overall  a  The  dark  speckling,  due  summer  russet-brown  winter, with  are  whitish  russet.  similar  and to  not  behind  tinged  with  the  but p a l e r  but  buffy  some  is  buff.  forest-dweller.  shrubbery. osgoodi  subspecies more  black  but  Forresti again  osgoodi on the  Ognev,1940;  is back.  Anthony,1941;  Mitchell,1980)  Univariate s t a t i s t i c s  Allen(l938)  but  The  w i d t h . No f e n e s t r a e  i n Table X X I I I . The s k u l l  rocks,  In  s m a l l and s l i g h t l y convex. The i n t e r o r b i t a l  r e g i o n i s of moderate the f r o n t a l s .  In The  brown  i n summer p e l a g e .  with  Allen,1938;  A r g i r o p u l o , 1 9 4 8 ; Feng,1973;  skull  is  ears.  ochraceous  generally a  speckled.  forresti  (Lyon,1907;  Habitat:  with  a l s o very s i m i l a r to the t y p i c a l 0 . t h i b e t a n a but  is paler  The  thibetana  The s u b s p e c i e s cansa i s s i m i l a r t o the  t y p i c a l 0. thibetana, is  0.  coloration  collar  the pelage i s p a l e r ,  some  in  of  to the t i p s of l i g h t e r s t r a n d s of h a i r s .  some forms t h e r e i s a p a l e underparts  pelage  are  for the s k u l l are  burrows  Anthony(1941)  given  t h i b e t a n a as a h i g h a l t i t u d e  He notes t h a t t h i s p i k a does it  in  is depicted in Plate X I . "  described 0.  that  present  not  frequent  and makes runways among the  captured  three  i n a 'dark,damp f o r e s t environment'  specimens (p.115).  of  203  Figure 45. circle  Approximate d i s t r i b u t i o n of 0 . t h i b e t a n a . i n d i c a t e s type l o c a l i t y .  Closed  Character  Mean  Standard d e v 1 a t1 o n  Coef f1c1ent of var lat'lon  Mini  mum  MaxImum  1 Basal length Greatest length ZygomatIc width Bralncase breadth Least Interorbital width D iastema M a x i l l a r y t o o t h row length Palatal width Palatal length Nasal length Bui l a length Bui l a width 11 w i d t h 11 length 12 w i d t h P2 length P2 w i d t h P3 length P3 w i d t h P4 length P4 w i d t h M1 length Ml w i d t h M2 length M2 width Mandible length Mandible depth 1 Mandible depth 2 Mandible depth 3 Mandible width M a n d i b l e t o o t h row length Mandible diastema MP3 length MP3 width MP4 length MP4 width MM 1 l e n g t h MM 1 w i d t h MM2 length MM2 width MM3 length MM3 width  Table  XXIII.  29 35 17 14 4 7  e  13 G 1 1 8 7 0 1 0 0 1 1 2 1 2 I 2 I 1 22 2 4 4 2 G 4 1 1 I 1 1 1 1 1 0 1  84 7G 14 07 14 54 G6 38 32 27 48 G4 94 54 4G 72 24 04 06 23 20 19 t2 22 92 59 27 58 08 19 49 51 34 17 38 42 47 45 43 39 68 05  Univariate  2 2 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  statistics  35 55 36 09 55 73 57 13 48 32 49 57 15 18 1 1 10 13 10 26 15 28 1 1 23 16 20 83 3 1 45 42 23 49 38 1 1 17 15 17 15 16 17 16 09 14  7 7 7 7 13 9 8 8 7 1 1 5 7 16 1 1 22 14 10 9 12 1 1 12 9 10 12 10 B 13 9  to  10 7 B 7 14 10 12 10 1 1 1 1 1 1 13 13  89% 12% 92% 74% 18% 70% 52% 4 4% 57% 6 7% 75% 41% 09% 44% 75% 35% 59% 7 1% 52% 82% 90% 30% 76% 88% 76% 10% 8 1% 80% 2 3% 56% 53% 46% 87% 28% 65% 05% 2 2% 16% 63% 38% 10% 34%  f o r the measurements  o f 0.  22 28 15 12 3 5 5 9 5 7 7 6 0 1 0 0 0 0 1 0 1 0 1 0 1 17 1 3 3 1 5 3 1 0 1 1 1 1 1 1 0 0  33 39 19 15 4 8 7 14 7 13 9 8 1 1 0 0 1 1 2 1 2 1 2 1 2 25 2 5 4 2 7 5 1 1 1 1 1 1 1 I O 1  60 10 20 20 15 30 43 80 40 85 60 05 60 05 30 55 90 75 40 90 40 95 60 85 50 50 70 80 15 80 50 80 15 80 15 00 20 10 20 00 50 70  thIbetana.  (ave. n  •  17)  45 40 15 50 80 30 50 70 20 40 40 30 10 80 70 85 40 20 60 45 60 35 55 45 20 60 70 30 60 GO 15 40 50 40 60 65 70 70 70 65 80 25  206  Taxonomic  notes:  forresti  Gureev(l964)  and  Feng and Kao(l974)  i n 0 . t h i b e t a n a , but C o r b e t ( l 9 7 8 )  0. r o y l e i ,  include  assigns  and E l l e r m a n and M o r r i s o n - S c o t t ( 1 9 5 1 ) p l a c e s  i n 0 . p u s i 1 1 a . E l l e r m a n and M o r r i s o n - S c o t t ( 1 9 5 1 ) a l s o osgoodi refers  in  it  0. p u s i l l a ,  i t . to  while  Corbet(l978)  0 . t h i b e t a n a . The form cansa  Feng and K a o ( l 9 7 4 )  to it  place  tentatively i s regarded by  t o be s p e c i f i c a l l y d i s t i n c t .  207  Ochotona thomasi (Thomas'  Argiropulo pika)  Ochotona thomasi A r g i r o p u l o , 1 9 4 8 : 1 2 7 N o r , T s i n g h a i , China)  D i s t r i b u t i o n : Northeast given in Figure  General  T s i n g h a i and T i b e t , C h i n a . Range map  is  interorbital  No i n f o r m a t i o n i s a v a i l a b l e , on the pelage  small, region  narrow is  and  broad  flat  and  f e n e s t r a e p r e s e n t i n the f r o n t a l s . elongated. Univariate s t a t i s t i c s Table XXIV. The s k u l l i s d e p i c t e d  No  is  species.  The s k u l l  Habitat:  (Lake) A l a k  46.  description:  of t h i s  (type l o c a l i t y :  information  is  in  flat.  profile. There  are  The tympanic b u l l a e  The no are  f o r the s k u l l are g i v e n i n in Figure  available  47.  on the h a b i t a t  of  this  species.  Taxonomic n o t e s : Very l i t t l e i n f o r m a t i o n i s a v a i l a b l e s p e c i e s , but i t appears to be t a x o n o m i c a l l y  for  distinct.  this  208  F i g u r e 46. Approximate d i s t r i b u t i o n c i r c l e i n d i c a t e s type l o c a l i t y .  of  0. thomasi•  Closed  60"  80"  —i  _. -  6 0'  1  i  1  i  80* -  z  i 9  0"  »  1  x  • \  r  i  JJ  ,  w  ieo'  60"  Mean  Character  Basal length Greatest length Zygomatic w i d t h Bralncase breadth Least I n t e r o r b i t a l width D1astema M a x i l l a r y t o o t h row l e n g t h P a l a t a l width P a l a t a l length Nasal l e n g t h Bui l a length Bui l a width I 1 width 11 l e n g t h 12 width P2 length P2 width P3 length P3 width P4 l e n g t h P4 width Ml length Ml width M2 length M2 width Mandible l e n g t h Mandible depth 1 Mandible depth 2 Mandible depth 3 Mandible width Mandible t o o t h row length Mandible diastema MP3 length MP3 width MP4 length MP4 width MM 1 length MM 1 width MM2 length MM2 width MM3 length MM3 width  29 62 34 55 14 4 1 12 17 3 21 7 23 6 20 1 1 42 5 20 10 31 8 94 6 61 0 75 1 31 0 36 0 46 1 08 0 91 1 84 1 1 1 2 02 1 01 1 87 1 03 1 76 21 46 1 97 3 96 3 44 1 83 5 96 4 34 1 20 0 90 1 23 1 20 1 25 1 24 1 23 1 19 0 53 0 90  Table XXIV. U n i v a r i a t e s t a t i s t i c s  S tandard dev1 a 11 on  1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  S3 4 1 31 41 24 33 19 63 39 45 65 48 04 13 10 08 04 05 07 02 04 07 04 04 07 23 23 22 32 07 34 38 06 04 09 07 07 04 10 07 04 06  Coef f I c 1 e n t of varlatIon  5 16% 4 09% 9 09"/. 11 59% 7 50% 4 53% 3 02% 5 49% 7 42% 4 32% 7 26% 7 30% • 4 7 1% 10 24% 26 53% 17 86% 4 14% 6 02% 3 54% 2 01% 2 2 1% 6 46% 2 39% 4 34% 3 70% 5 73% 1 1 44% 5 61% 9 33% 3 66% 5 73% 8 7 1% 5 10% 3 93% 7 38% 5 89% 5 66% 3 37% 7 92% 6 23% 8 4 4% 6 8 1%  Minimum  28 00 32 90 13 40 1 1 35 2 90 6 85 6 00 10 80 4 65 9 80 8 05 6 OO 0 70 1 10 0 25 0 40 1 00 0 85 1 80 1 10 2 OO 0 90 1 80 1 00 1 70 20 10 1 70 3 60 3 10 1 75 5 60 3 70 1 15 0 85 1 10 1 10 1 15 1 20 1 10 1 10 0 50 0 85  f o r the measurements of 0. thomasI  (n * 5)  Max 1 mum  32 . 15 36 . 70 16 . 70 14.65 3 . 50 7.70 6.40 12 . 35 5 . 60 10. 90 9 . 50 7 . 30 0.80 1 . 40 0.50 0.55 1 . 10 1 .00 ' 1 .95 1 . 15 2 . 10 1 .05 1 .90 1 . 10 1 , 85 23.00 2 . 30 4 . 20 3.90 1 .90 6 . 50 4 .60 1 . 30 O. 95 1 . 35 1 . 30 1 . 30 1 . 30 1 . 30 1 . 30 0 60 1 .00  21 1  F i g u r e 47. Diagram of the s k u l l of 0 . t h o m a s i . photograph of the h o l o t y p e ZM 399561  (Drawn from a  212  213  ALL SPECIES  A  summary of the c l a s s i f i c a t i o n  results  of the DFAs run on  the e q u a l i z e d sample s i z e data s u b s e t s of the O l d World and  of  all  species  are  given  species  i n Table XXV. I n c l u d e d i n the  summary are the DFA runs u s i n g a l l i n d i v i d u a l s and those w i t h maximum per s p e c i e s n - v a l u e of 25 (see details  of  sections.  these  groups).  The f i r s t  percentages  of  table'  the  classified  procedure.  results  of  XXVb)  and  cross-validation sizes  (n<=lO)  to  new  technique for  of  performed. rendered  the  of  jackknife  summary  other  a  individuals  the  sections when  jackknife  the  procedure  through the use of  of the s p e c i e s , the  the  of  two  classifications in  very  discriminant (n=l)  the  small  cross-validation  and so f o r these s p e c i e s  The v e r y s m a l l sample s i z e the  a  (Table X X V c ) . Due to the  eight  power  d i v i d e d i n t o three  i n d i v i d u a l s based on the  The  the  t e c h n i q u e was not always f e a s i b l e , test  is  contains  d i s c r i m i n a n t f u n c t i o n s were a p p l i e d (Table  M a t e r i a l s and Methods f o r  table  XXVa)  correctly  'classification summarize  (Table  The  a  functions  this  was  not  f o r 0. pus i l i a ,  also  procedure meaningless  for t h i s  species  and so i t i s o m i t t e d from Table XXVb. Examination discriminant  of  Table  functions  s p e c i e s , 0. l a d a c e n s i s , where  almost  all  XXV  appear  to  0. lama,  specimens  reveals be  that  most e f f e c t i v e  0. t h i b e t a n a  were  the  correctly  and  linear for  four  0. t h o m a s i ,  classified.  The  in —  0)  ro  •~  cro D  c  0 N L  o t.  3  o L  r  >  (0 TJ  01  ra  U  Ol  Ol  Ol  Ol  29  12  38  8  a)Ciassif1cation matrix  7 1%  92%  92%  88%  b(Jackkn i fed c1 a s s i f I c a t I o n  6 1%  88%  91%  69%  c ) C 1 a s s 1f1 c a t 1 o n o f new 1nd1v1dua1s  52%  73%  80%  -  n  Table  (/I  in —  in  in — tn c  c d) 0  0)  tra >  E ID  ra  .*  Ero  ra  •~  Ol  3  2  10  3  ... m  ra E  ,ra — ,_ ro Q  Ol  ol  Ol  15  30  1  0  l_ u  m — >  in c di u in d>  10 c  ro •—  sz  0 r +J  ~L.  Q  •— o o  ol  Ol  Ol  5  225  48  01 u -•-  3 1_  ol  ol  15  8  9  17  i_  in  ...in  3 c  0  in Q 01 U c  ro ±>  *-'  ro E  t.  ro  100%  100%  100%  100%  90%  90%  1 oo%  97%  75%  89%  100%  100%  60%  96%  0%  40%  1 oo%  1 oo%  90%  87%  -  94%  57%  89%  100%  90%  56%  96%  -  84%  80%  -  83%  -  -  97%  -  55%  83%  -  -  XXV. Summary o f t h e c l a s s i f i c a t i o n r e s u l t s s p e c i e s and over a l l i n d i v i d u a l s ( s e e text  o f DFA's r u n on e q u a l i z e d d a t a for additional explanation).  s e t s , on  a maximum  o f 25  individuals per  215  success  with  which  discriminate  the  these  calculated  species  suggests  reasonably  d i s c r e t e and, t h e r e f o r e ,  each other  and t h e r e m a i n i n g  For  the  majority  0. m a c r o t i s ,  0.  an  of  average  correctly. effectively any  species  species  with  confused  ( i . e . from  Historical  which  the  habitat-type. 0. c u r z o n i a e  For were  to  example, most  from  certainty.  and  species  0.  •either  problematic  taxa  misclassified  s p e c i m e n s of to  historically -  see  in a similar  specimens  of  t o 0. d a u r i c a ,  case  a l t h o u g h a few s p e c i m e n s of  0. m a c r o t i s were p l a c e d dweller.  Individuals  always assigned was were  w i t h 0. p r i n c e p s ,  of 0. c o l l a r i s  t o 0. p r i n c e p s ,  l a r g e l y maintained. assigned  randomly  been most e f f e c t i v e l y , 0. t h i b e t a n a  and 0.  Specimens  of  indicating not  of 0.  specimens  t o ' a l l but t h e f o u r  0. a l p i n a ,  the  were  obligate  the  rock-  of  species  collaris 0.  rutila  w h i c h had  i . e . 0. l a d a c e n s i s ,  0.  lama  0. e r y t h r o t i s  and  thomasi.  were  functions  Misclassified  in  were m i s i d e n t i f i e d were  but the i n t e g r i t y  discriminated,  0. r u f e s c e n s trials,  that  another  true  and  This  0. mac r o t i s and 0. r o y l e i ,  is  a  t h o s e of 0. daur i c a t o 0. c u r z o n i a e . of  also  also  group  i s found  assigned  classified  assigned  has been  that  rutila,  were  species  commonly  taxa are  distinguished  0. p a l l a s i  a taxon  to  0. c u r z o n i a e , 0. daur i c a ,  these  first  able  four  Incorrectly classified  same  or  these  relative  were g e n e r a l l y  the  Review),  be  were  80% of i n d i v i d u a l s were  that  discriminated.  one of t h e s e  with  species,  than  suggests  that  may  0. c o l l a r i s ,  greater  This  taxa  of  roylei,  functions  0. p r i n c e p s ,  correctly classified  as  that  the  effective  in approximately  calculated f o r these  four  60% of  discriminant species.  The  216  assignment pattern  of the m i s c l a s s i f i e d  individuals generally  s i m i l a r to t h a t d e s c r i b e d above.  individuals  of  0. a l p i n a  0. p r i n c e p s when the l a t t e r 0. p r i n c e p s  was  not  were  Incorrectly  most  commonly  misidentified  p l a c e d w i t h any of the r e m a i n i n g taxa except that  had  or  not  0. p r i n c e p s  therefore similar  i n d i v i d u a l s of 0. a l p i n a were was  included  in  group. . When were  those i n i t i a l  four  i n the number of  negligible  the data s e t .  whether 0. a l p i n a  appears to be a r e l a t i v e l y heterogeneous s p e c i e s elements  to a g r e a t number of s p e c i e s , e s p e c i a l l y  with those  t h a t are o b l i g a t e  r o c k - d w e l l e r s . 0. pr inceps a l s o appears to  a  form.  heterogeneous  aligned  the o b l i g a t e  be  M i s c l a s s i f i c a t i o n s of t h i s s p e c i e s were  commonly a s s i g n e d t o 0. c o l l a r i s , spuriously  to  specimens  been w e l l d i s c r i m i n a t e d . D i f f e r e n c e s  misclassified  classified assigned  was i n c l u d e d as a t e s t  included,  followed a  individuals  with  the  scattered  remainder almost  of  the  e q u a l l y among  r o c k - d w e l l e r s 0. a l p i n a , 0. m a c r o t i s and 0. r o y l e i ,  among o t h e r s .  Incorrectly classified  specimens  of  0. e r y t h r o t i s  were c o n s i s t a n t i y a s s i g n e d to 0. kamensis and never t o 0. r u t i l a , not  which  s u p p o r t s the view t h a t O. e r y t h r o t i s a n d  conspecific.  classified  Specimens  correctly  were  d w e l l e r s , p a r t i c u l a r l y to  of  0. r u f e s c e n s  always  assigned  0. p a l l a s i  and  0. r u t i l a  that to  less  were  other  are not  steppe-  frequently  to  0. pusi11a. The  last  three  s p e c i e s are the most d i f f i c u l t to a s s e s s .  These s p e c i e s , 0. kamensis, represented so  small  Neither  0. k o s l o w i and 0. p u s i l l a ,  by very s m a l l sample s i z e s , as  to  nor  all  t h a t of 0. pusi11a being  make any i n t e r p r e t a t i o n v i r t u a l l y  0. k o s l o w i  are  0. kamensis  were  impossible. effectively  217  discriminated problem minor  lies  although with  the  exceptions,  assigned  to  0.  between  these  erythrotis, two  0.  New  The  at  p l o t s of  g r o u p means in matrix  four  main  consists  the  of 0.  pusilla,  0.  obligate  rock-dwellers,  0.  and  for be  0.  0.  a rock-dweller which  dwellers  and  0.  pallasi  available  appear  and  0.  the  the  0.  suggests  0.  the  The  forms.  The  were  very  assigned  the  close  habitat  DFAs and  This  but  is clearly evaluated  Old World  s p e c i e s as  the  plot  0.  macrotis,  0.  the  is available  results,  i t may  well  i s formed by  the  case  habitat or  0.  koslowi  with  two  the  roylei,  between o b l i g a t e  is  of 0.  are  (II), contains  (III),  first  ( I ) , which  daur i c a ,  information  no  indicates  group  group  ladacensis 0.  a  are  intermediate  proximity  relatives.  variates  these  group  their  canonical  0.  b a s i s of  these  allow  to  h a b i t a t s emerges as  and  alpina, No  similarity  may  first  second  l a d a c e n s i s and that  strong  three-dimensional  third  t o be  either  the  With  k a m e n s i s were  canonical variates  only  rufescens,  of 0.  intermediate  for  of  size.  the  c o n s i d e r i n g t h a t most  as  similar  steppe-dwellers.  association rufescens  0.  a l s o . The  true  for  on  least  curzon iae  erythrotis.  kamensis but,  species  at  48).  while  sample  material  three  the  (Figure  steppe-dwellers,  rutila  and  XXVI). Using  groups  a  erythrotis  results  first  f o r t h e DFA,  low  s p e c i m e n s of 0.  from  (coefficients  Table  data  true  species  theme t h r o u g h o u t ' t h e  in  given  0.  c o n s p e c i f i c s or of  the  especially  information  affinity  constant shown  as  of  t o d e t e r m i n e whether  indicating  species,  species  recognition  s p e c i e s or w i t h  misclassified  misidentifed kamensis.  i t is difficult  rock-  for  both  information  is  koslowi.  The  0.  and  species  koslowi  the  pallasi are  t o the  also steppe-  Character  BASLEN ZYGWID BRNBRD • L.I.0. DIASTM PALLEN BULLEN BULWID MANDP3 MNTRLN MP3LEN MP3WID  CV I  CV II  CV I I I  -55.24 64.90 -16.71 -13.24 -4.26 12.71 14.73 5.09 1 1 .88 19.35 - 7 . 32 -5.95  -8.95 -1 .55 -34.37 1 2.68 29.51 0.54 -6.27 -5.49 -15.56 -4.61 -13.73 9.65  -3.35 -23.49 13.58 -2.60 -19.71 -45.43 13.15 12.50 -6.84 -27.54 -27.36 17.87  Table X X V I . C h a r a c t e r c o e f f i c i e n t s f o r the f i r s t t h r e e c a n o n i c a l v a r i a t e s f o r the group means of the O l d World s p e c i e s o n l y (see F i g u r e 49) .  219  F i g u r e 48. P r o j e c t i o n o f g r o u p means' of t h e O l d W o r l d species along the f i r s t three canonical variates from two p e r s p e c t i v e s . The f i r s t a x i s a c c o u n t s f o r 37%, t h e s e c o n d f o r 32% and t h e t h i r d ( v e r t i c a l ) f o r 12% o f t h e total variation. First three or four l e t t e r s of each s p e c i e s name i s g i v e n above i t s p r o j e c t e d g r o u p mean. See text for a d d i t i o n a l e x p l a n a t i o n .  220  221  dwellers this  group ( I ) i n F i g u r e  species  might  48 l e a d s  to  the  speculation  that  i n h a b i t more s t e p p e - l i k e e n v i r o n m e n t s  d o e s 0. l a d a c e n s i s , w h i c h i s n e a r e r  to the  rock-dwellers  than group  (II). The form  remaining  a. v e r y  a feature  loose  of where  the  species  habitat.  to  ( M i t c h e l l and Punzo,  be  found  in  inhabits  this  1975; M i t c h e l l ,  unique  in  dweller  among t h e e x t a n t  0. t h o m a s i  0. lama  i t burrows, u n d e r l a r g e i s o l a t e d  that  a n d 0. t h o m a s i  f o u r t h g r o u p ( I V ) , b u t do n o t a p p e a r t o s h a r e  common  deserts only  s p e c i e s , 0. l a m a , 0. t h i b e t a n a  type  i sdifficult  t o assess  rocks of  alpine  and i t i s  environment  1 9 8 0 ) . 0. t h i b e t a n a  i t a p p e a r s t o be t h e o n l y h i g h ochotonids  open  (Allen,  altitude  forest-  1938; A n t h o n y , 1 9 4 1 ) .  b e c a u s e no h a b i t a t  species  other  48 makes even s p e c u l a t i o n d i f f i c u l t .  i n Figure  possible  t h a t 0. t h o m a s i  i s found  0. lama  or  but there  0. t h i b e t a n a  isolation  information  is available forthis taxa  and i t s  i s also  in  a  from  habitat  a l l  the  It is  similar  to  i s no e v i d e n c e t o s u p p o r t an  assignment t o e i t h e r . When 25 members o f e a c h o f t h e two N o r t h A m e r i c a n 0. p r i n c e p s species means  0. c o l l a r i s ,  were i n c l u d e d w i t h  i n t h e DFA, a p r o j e c t i o n o f of  dimensional according species  and  the  first  plot to  three  that  canonical  continued  h a b i t a t type  the  analysis.  This  obligate provides  to  scores  the O l d World of  the  group  variates yielded a threeseparate  the  species  (Figure 4 9 ) . Both the North American  are obligate rock-dwellers  Group I I ,  the  species,  and they f e l l  rock-dweller  group  securely  of  the  within previous  f u r t h e r support to the hypothesis  these groups a r e r e l a t e d t o h a b i t a t  type.  that  222  F i g u r e 49. P r o j e c t i o n of group means of a l l s p e c i e s a l o n g the f i r s t t h r e e c a n o n i c a l v a r i a t e s from two p e r s p e c t i v e s . The f i r s t a x i s accounts f o r 35%, the second f o r 32% and the third ( v e r t i c a l ) for 13% of the t o t a l v a r i a t i o n . F i r s t t h r e e or four l e t t e r s of each s p e c i e s name i s g i v e n above its p r o j e c t e d group mean. See text for additional explanat i o n .  223  224  The are  c o e f f i c i e n t s f o r the c a n o n i c a l v a r i a t e s  very  similar  to  those  (Table  f o r the Old World s p e c i e s  XXVI), but with a few a d d i t i o n s and some s h i f t i n g The all  variables  BRNBRD,  habitat  grouping  variate, especially dwellers  and  of  canonical  species  Groups  the  (Group  II  and  intermediate  I)  are  I I I , the  along  this  heavy weighting group  The  along  obligate  of  this rock-  and  the  true  steppe-  from both the rock-dwellers  the  intermediate  forms  (Group  t h i r d c a n o n i c a l v a r i a t e , with i t s  on PALLEN, appears to be more u s e f u l for w i t h i n -  separation  relative  axis.  All  forms. BASLEN and ZYGWID weight,  isolated  (Group II) and the m a j o r i t y of III)  emphasis.  variate.  are separated  h e a v i l y on the second c a n o n i c a l v a r i a t e dwellers  in  (Table  DIASTM, MP3LEN, PALLEN, LIO and MP3WID,  c o n t r i b u t e h e a v i l y to the f i r s t  the  XXVII)  rather  functional  than  among-group  importance  of  separation.  The  a l l of the aforementioned  c h a r a c t e r s t o the d i f f e r e n t h a b i t a t groups i s unknown,  but may  provide an i n t e r e s t i n g b a s i s f o r f u t u r e s t u d i e s .  Phylogenetic  1.  The  cladogram  Results  (or Wagner  c o n s t r u c t e d on the b a s i s of shared the  most  means.  and  tree)  given  i n F i g u r e 50 was  apomorphies  and  represents  parsimonious tree f o r the species when using raw data  Consistency  indicators  Analysis  of  the  ratios fidelity  for this  type  of  analysis  are  of the c h a r a c t e r s t o the cladogram  the degree of convergence. The value of these  ratios  range  Character  BASLEN ZYGWID BRNBRD L.I.O. • DIASTM PALLEN BULLEN BULWID 11 WID MANDP1 MANDP3 MNTRLN MP3LEN MP3WID  CV I  7.58 0.60 -22.85 -15.52 -22.36 1 5.73 0.71 4.16 3.91 1 .77 19.10 5.26 19.90 -14.46  CV I I  CV I I I  -57.09 65.84 -11.34 -13.09 -0.25 10.14 14.50 6.25 -0.26 3.42 8.83 16.31 -9.12 -3.76  9.54 1 3.45 13.07 4.22 20.88 -41.48 -23.49 -6.27 -2.04 -5.43 10.63 16.97 21 .69 -13.73  T a b l e X X V I I . C h a r a c t e r c o e f f i c i e n t s f o r the f i r s t t h r e e c a n o n i c a l v a r i a t e s f o r the group means of a l l s p e c i e s (see F i g u r e 5 0 ) .  2 2.6  Figure 50. P h y l o g e n e t i c r e l a t i o n s h i p among the 18 e x t a n t s p e c i e s forming the genus Ochotona• H a b i t a t type f o r each s p e c i e s i s g i v e n i n p a r e n t h e s e s below the s p e c i e s name, (rck) = obligate r o c k - d w e l l e r ; (stp) = s t e p p e - d w e l l e r ; ( i n t ) = i n t e r m e d i a t e between rock and s t e p p e ; (for) f o r e s t - d w e l l e r ; (des) = a l p i n e d e s e r t - d w e l l e r .  O. pusilla (stp) O. t h i b e t a n a (for) O.thomasi (?) O. I  ma  a  (des) O. a I p i n a (rck) O. c u r z o n i a e (stp) O. d a u r i c a (stp) O. m a  cro  t  is  (rck) O. r o (rck)  y  Iei  O. p r i n c e p s (rck) c o 11 a r i s (rck)  O.  O. e r y (rck)  th  rot i s  O. p a 11 a s i (int) O. r u f e s c e n s (int)  0. k o s I o w i (int) O. kamensis (rck) O. l a d a c e n s i s (int) O. rutila (rck)  228  from  0  to  1, w i t h the h i g h e r v a l u e s  l e s s convergence  indicating better  (Kluge and F a r r i s , 1 9 6 9 ) .  The c o n s i s t e n c y  f o r the cladogram g i v e n here range from 0.29 to 0 . 9 6 , greater  than  0.50  and  12% g r e a t e r  than 0 . 8 0 .  g e n e r a l l y good f i t of the c h a r a c t e r s relatively statistic the  small  degree  of  to  the  convergence.  values  indicate  a  better  is  0.20,  characters The appears  which  further  with  81%  cladogram  and  The goodness of  fit  1,  but  cladogram  supports  a fit  here  ( F a r r i s , Kluge and  E c k h a r d t , 1 9 7 0 ) . The d e v i a t i o n r a t i o f o r the study  ratios  T h i s suggests a  ( d e v i a t i o n r a t i o ) a l s o ranges from 0 to  lower  f i t and  the  of  this  good f i t of  the  t o the c l a d o g r a m . dominant  apomorphic • ' c h a r a c t e r '  of  the  cladogram  t o be one of i n c r e a s e d s i z e . T h i s can be i l l u s t r a t e d by  mapping a  length  measurement  on  mapped r e s u l t s increase  as  (e.g. the  cladogram  reveals the  GRTLEN)  and  a  (Figure 5 1 ) .  t h a t both of the  stem  width  progresses  (e.g.  E x a m i n a t i o n of  measurements  upward.  ZYGWID)  The  generally  most  notable  e x c e p t i o n i s t h a t of the O. t h i b e t a n a - 0 . thomasi s i s t e r i n which t h e r e i s a decrease i n both measurements.  the  groups  The r e m a i n i n g  40 measurements  a l s o e x h i b i t a g e n e r a l t r e n d towards i n c r e a s e i n  size  with  (usually  0 . thomasi  sister  the  exception  group),  although  c o n s i s t e n c y as the measurements not or  appear  the not  GRTLEN and  0.  thibetana  always ZYGWID.  with  such  There  does  t o be any e v i d e n c e of s i z e changes w i t h h a b i t a t  geographical  locality,  r e l a t i o n s h i p of changes attributable  of  to  so  the  in o v e r a l l size  a single factor.  dominant  type  phylogenetic  i s a p p a r e n t l y not e a s i l y  The changes  i n s i z e appear  be g e n e r a l l y monotonic r a t h e r than a l l o m e t r i c , as .the  to  cladogram  229  F i g u r e 5 1 . A map of GRTLEN and ZYGWID on the cladogram of F i g u r e 50. Synaptomies f o r GRTLEN are preceded w i t h a 'G', w h i l e those f o r ZYGWID are preceded by a ' Z ' . The p e r c e n t change i n GRTLEN i s g i v e n in parenthesis following the synaptomies. S p e c i e s groups are based on the p e r c e n t change and h a b i t a t type - see text for explanation.  O. p u s i 11 a (stp) O. t h i b e t a n a (for) N cr O. t h o m a s i (?) - °> O. I a m a (des) O. a I p i n a (rck) O. c u r z o n i a e (stp) roN  »  O. d  a  <  uric a  (stp) O. m a c r o t i s (rck) O. r o y I e i (rck)  N  -* a>  ro 00  F?  CO <J1 cn o  N  ™/ ON CO CO co CD CD  N ro O CO  £ §  a o  a  ro p co  co  CO  --4  CO  < cr  O. c o 11 a r i s (rck) O. e r y t h r o t i s (rck)  N  o  a Z M co  o  J^V O. palia s i (int)  ON  ro  N CO O)  cN  ro ^ - co CD cn cc ao  O. r u f e s c e n s (int)  ao  &  <  a  N CV ro » ro co  O. k o s I o w i (int)  fi co  N ro  O. k a m e n s i s (rck)  fi cn cn  O  N  O  ro  &  — W  N  ro O)  W  N  t-/ O. l a d a c e n s i s (int)  *.  .  N d ro •• •• oo ro A ro 00 ~* cn -«*  0 3  0 1  «g  OZZ  N  O. p r i n c e p s (rck)  CD  O. rutila (rck)  231  based each  on  logarithmic  species, produced  very s i m i l a r  A major  emerges  continuous the  t r a n s f o r m a t i o n of t h e raw d a t a means f o r  problem  morphometric  relating  assessing  data,  the  to  changes  value  size.  of  solely  on  primate  f a m i l y Adapidae,  basis  of  correlated  a  cladogram  tooth  with  a  Gould  useless  a  as  increase  can  relevant  to a  assume  that  host  true phylogeny  that  Pliocene  genus  genus.  species,  Ochotona  age c o l l e c t e d  (Shotwell,  overall  size  i n Europe,  remains  Pleistocene Koenigswald  small have  found  sediments  in  and S c h m i t t - K i t t l e r ,  species  are  not  known  can  then  may  species  r e p r e s e n t the to  some  record. specimens  and w e s t e r n 1980).  and  North  Among  the f o s s i l  fossils  the  of midAmerica extant  r e c o r d and  late-Pliocene  Europe  1972; Sych, as  one  reconfirmed  throughout  Asia  and t h u s be  Ochotona,  0. p u s i 1 1 a d o m i n a t e s been  size  i s important to the  known from  Asia  may be  phyletic  If  on  history  size  advantages  T h i s may be  is first  based  i s highly  life  that  genus  1956; Dawson, 1957; S y c h , the  and  p o r t r a y e d by t h e c l a d o g r a m  of t h i s  with  largely  size  absolute  but  by an e x a m i n a t i o n of t h e f o s s i l  The  tooth  reconstruction.  the  faced  i t s phylogeny  adaptive  in  than  i n h i s examination of the  criterion,  important  on  i s that  other  i s then  physiological  states  of  based  reconstruction  He n o t e s t h a t  of  increase  interrelationships  extant  size.  history  One  (1979),  phylogenetic an  size.  phylogenetic  (1966)  have  synaptomies  reconstructed  taxonomic  evolutionary  degree  a  is  a s i t i s h e r e , and t h a t  in  Gingerich  parameters.  its  when  n a t u r e o f t h e s e d a t a p r e c l u d e s any  those  the  results.  (Kurten,  1980). until  The the  to 1968; other late  232  P l e i s t o c e n e , w i t h the e x c e p t i o n of a occurrence  of  0. alpina  0 . p u s i l l a appears to species  and,  be  possible  hyperborea the  most  early-Pleistocene  (Kurten,1968).  primitive  of  Thus,  the  extant  i n d e e d , i t has the most p r i m i t i v e k a r y o t y p e known  w i t h i n the genus (Vorontsov and I v a n i t s k a y a , at the base of the cladogram i s  i n keeping  and f o r these reasons I a s s i g n e d  1973). with  Its position  these  results  i t an a n c e s t r a l p o s i t i o n . Among  the next four s p e c i e s i n the c l a d o g r a m , 0 . t h i b e t a n a , 0 . ,  0 . lama  thomasi  and 0 . a l p i n a , f o s s i l evidence i s a v a i l a b l e o n l y f o r  0 . a l p i n a and i t s p o s s i b l e e a r l y - P l e i s t o c e n e o c c u r r e n c e a r e l a t i v e l y plesiomorphic state for t h i s s p e c i e s .  supports  Very  little  i n f o r m a t i o n i s a v a i l a b l e on the l i f e h i s t o r y of 0 . t h i b e t a n a and virtually  nothing  is  known  habitat.  Although  fossil  Mitchell  ( p e r s . comm.)  about  evidence  feels  0. thomasi, for  that,  0 . lama  on  the  morphology, h a b i t a t and b e h a v i o r , 0 . lama i s a and  perhaps  relative  ancestral,  position  remaining  species  in  form. the  are  This  cladogram.  largely  including is  lacking,  basis very  of  skull  primitive,  would tend t o support The  positions  unverifiable  r e c o r d , but may be c o r r e c t i f the apparent  its  of  u s i n g the  its the  fossil  a c c u r a c y of the  more  p l e s i o m o r p h i c forms i s extended throughout the c l a d o g r a m . A  comparison of the cladogram w i t h a minimum spanning  ( F i g u r e 52) based on the same raw data means reveals  a similarity  in r e s u l t s .  more r e a d i l y comparable,  for  the  species,  In order to make the two t r e e s  the s p e c i e s were d i v i d e d i n t o groups on  the b a s i s of p e r c e n t change i n GRTLEN a l o n g the main r i g h t of  the  cladogram  (Figure  whenever the. percentage  tree  51),  with  change exceeded  a  new group  one.  The  stem  designated  large  fifth  233  F i g u r e 52. A minimum spanning t r e e based on the raw d a t a means species with species groups for the 18 extant superimposed (see F i g u r e 51 and t e x t ) .  O . ladacensis  Q  O. c u r z o n i a e O. d a u r i c a 0.  a 1pin a  c  IV.  P  O.lhomasi  / Ill  0.1  ama ( O.thibetana  I.  O. p u s i 11 a  II.  235  group  (Group  similarity  V),  was  in habitat.  further With  b o t h g r o u p and s u b g r o u p both of  trees.  within  each  different  generally size  results,  Since  indicate  that  taxon  into  of  biotic to  This  descendant events context  of  the  slightly  essentially was  i m p o r t a n c e of  o c h o t o n i d s , and t h e the  fossil  record,  In t h i s  proposes a large  which  1978).  cannot  be  biotas  way  correspond  provide ancestral  populations (vicariance)  scale  followed  by  dispersal disjunction  process a f f e c t i n g  a c l a d o g r a m may  scheme  to  of an  historical  as t h e b a s i c  hierarchical  taxa  be used  descendant  assumes  speciation  a  of the s p e c i e s .  discrete  widespread a n c e s t r a l  (Rosen,  b a s e d on  Interpretation  generally  configuration.  specify  II,  species  the p o s s i b l e  of t h e c l a d o g r a m w i t h  geographically  and a l l o p a t r i c  of  of two  t h e p r o c e s s of d i v e r s i f i c a t i o n  b i o g e o g r a p h y , which produce  and  i n the cladogram  of t a x a i n a c l a d o g r a m may  (cladogenesis).  to  results,  interrelationships  sequence  estimate  I  produced  of s p e c i e s  phylogeny  2.  an  basis  t h e c l a d o g r a m p r o v i d e s a r e a s o n a b l e d e p i c t i o n of  the p h y l o g e n e t i c  The  two t r e e s ,  approaches,  the  consistency  of g r o u p s  due t o t h e r e v e r s a l  the o r d e r i n g  to  the  Va, Vb and t h e g r o u p VI t h e o r d e r  these  r e c o n f i r m e d . These  increase  apparent  slightly  group.  on  o r d e r and c o m p o s i t i o n were e q u i v a l e n t i n  theoretical  equivalent  the e x c e p t i o n  In t h e s u b g r o u p s  species d i f f e r e d  subdivided  of  be  modern  considered  relationships  t o a sequence  of  among  speciation  The i n t e r p r e t a t i o n  of a c l a d o g r a m  in  complete  reference  specific  without  to  this  236 v i c a r i a n t events patterns  and  ( g e o l o g i c a l or g e o g r a p h i c a l c h a n g e s ) ,  environmental  d i s j u n c t i o n of  populations.  principles  historical  of  changes, The  a  framework  which may have l e d to the  application  of  the  general  ( v i c a r i a n c e ) biogeography and r e l a t e d  i n t e r p r e t a t i v e t e c h n i q u e s to the provides  climatic  upon  cladogram which  to  in  Figures  base  a  51-52,  phylogenetic  r e c o n s t r u c t i o n of the e x t a n t s p e c i e s of the genus Ochotona. The s p e c i e s w i t h i n the genus Ochotona occupy variety  such  a  wide  of h a b i t a t s throughout a l a r g e geographic range t h a t  is d i f f i c u l t broadest  to  discuss  their  biogeography  on  any  but  it the  of t e r m s . At the peak of t h e i r d i v e r s i t y i n the Miocene  (Dawson,  1967),  the  ochotonids  P a l e a r c t i c r e g i o n and i n t o A f r i c a subsequently  diminished,  extended  throughout  (Maclnnes, 1953). T h e i r  but they are s t i l l  the range  found over much of  A s i a and i n t o N o r t h A m e r i c a . Although pikas  are  widely  distributed,  appears t o be l i m i t e d by temperature f a c t o r s . are  found  only  in  frequently  in alpine  dispersal  in  the  northern zones. North  their  dispersal  The e x t a n t  species  and a r c t i c r e g i o n s and then most Smith  (1974b)  American  species,  demonstrated 0 . pr i n c e p s ,  s t r o n g l y i n f l u e n c e d by t e m p e r a t u r e . He found t h a t p i k a s at altitudes, wide  where  ranging  temperature  was high  the mean d a i l y temperature was l o w , were more  than  pikas  at  lower  altitudes,  where  the  was c o n s i d e r a b l y h i g h e r . With the a i d of b e h a v i o r a l  observations, environmental Smith  that  (1974a)  he c o n c l u d e d factor, and  that  temperature  contributing Brown  (1971)  achieved i t s current d i s t r i b u t i o n a l  to  was  the  primary  d i s p e r s a l s u c c e s s . Both  suggested  that  0.  princeps  range d u r i n g the P l e i s t o c e n e  237  when  the  climatic  barriers,  which p r e s e n t l y  limit  dispersal,  were i n t e r m i t t e n t l y a b o l i s h e d . The h i g h degree of sympatry  among  species  suggests  h a b i t a t d i s r u p t i o n , subsequent r e i n v a s i o n , and perhaps displacement,  could  have  o c h o t o n i d s . The areas i n  been which  species  is  Plateau,  are the product of  a  common  the  character  occurrence  highest  for  the  concentration  of  found, the Himalayas and the Q i n g h a i - X i z a n g a  relatively  that  recent  (Tibet)  and  complex  tectonic  h i s t o r y . The I n d i a n s u b c o n t i n e n t  i s c o n s i d e r e d t o have  collided  with  million  Asia  (LeFort,1975). Oligocene (c. appears  to  which s t i l l  The  only  about  uplift  of  30 my) ( L e F o r t , be  the  the  p l a t e a u was a p p a r e n t l y  subaerial  above sea  achieve  ago  present  elevation  r e s u l t of an e n d - P l i o c e n e phase of u p l i f t , progress  not  years  Himalayas began d u r i n g the  1975), but the  in  did  seems  40  its  (Sengor,  1981).  d u r i n g and a f t e r  The  Tibetan  the Eocene and  c u r r e n t average e l e v a t i o n of n e a r l y 5 km  l e v e l u n t i l the end of the P l e i s t o c e n e  (Sengor,  1981).  A s i a , as w e l l as N o r t h A m e r i c a , was e x t e n s i v e l y a f f e c t e d numerous g l a c i a t i o n s during  the  throughout  Pleistocene.  its  history,  Vegetation  but  and  s i g n i f i c a n t l y a l t e r e d and, d u r i n g g l a c i a l p e r i o d s , bridges,  i n c l u d i n g the B e r i n g l a n d b r i d g e ,  an avenue f o r f a u n a l exchange. from an  climate  were  several  land  emerged and p r o v i d e d events,  t e c t o n i c a c t i v i t y to the opening of l a n d b r i d g e s ,  provided  for  a  spectrum  these  particularly  vicariant  opportunity  A l l of  by  of  • diversification  and  known from s p e c i m e n s o f  mid-  s p e c i a l i z a t i o n w i t h i n the genus Ochotona. The  genus  Ochotona  is f i r s t  P l i o c e n e age c o l l e c t e d i n Europe, A s i a and western N o r t h America  238  (Shotwell, the  1956; Dawson,  1967). The presence  l a t e - P l i o c e n e sediments  The  spread  of  and widespread by t h i s time  0. pusi11a,  or  been  aided  in  by the e x t e n s i v e  it  (Figure  an 0 . p u s i l l a - l i k e form,  d u r i n g the end of the P l i o c e n e ( R e u v e r i a n , c . have  0. p u s i l l a  of Europe and A s i a suggests t h a t  had become w e l l e s t a b l i s h e d 53).  of  2.8  m.y.)  would  f o r e s t - s t e p p e environment of  t h a t t i m e . T h i s environment was p r o b a b l y the r e s u l t  of a warmer,  m o i s t e r c l i m a t e r e l a t e d t o the lower e l e v a t i o n of the H i m a l a y a s , T i b e t P l a t e a u and many of the o t h e r mountain ranges i n the (Frenzel,  1968).  By  the P r a e t i g l i a n . ( c .  2.3 m . y . )  the c l i m a t e  had become c o l d and d r y , but t h e r e were s t i l l widespread and f o r e s t s mountain  (Frenzel,  glaciers  1968). There i s evidence of  from  into  some  of  the  form  more  along  yrs.  (approximately  unstable  c l i m a t i c a l l y , and  between  hot  and  inland ice  was  c o l d (Cooke,  the  mountainous  o c c u r r e d ( F i g u r e 5 4 ) . The ensuing p e r i o d 700,000  steppes or  t h i s t i m e , but c o n t i n u i n g r a d i a t i o n of  0 . p u s i l l a or an 0 . p u s i l l a - l i k e perhaps  area  the  upper  steppes  areas  probably  2.1  m.y. and  between  Villafranchian)  characterized  and  by  was  fluctuations  1973). T h i s was a l s o a p e r i o d of  g r e a t t e c t o n i c a c t i v i t y and the c o n t i n u e d impingement and undert h r u s t i n g of G r e a t e r continued  rising  India  of  against  the Himalayas  Eurasia, (LeFort,  as  well  1975).  as  Glaciations  o c c u r r e d throughout the c e n t r a l A s i a n mountain r a n g e s : the Shans,  the  Peninsula  Altais,  (Frenzel,  the  1968). T h i s l i n e of g l a c i a t i o n s ,  s i m i l a r to t h a t . i l l u s t r a t e d i n F i g u r e 55, groups  were  Tien  Yablonovyy and those of the Kamchatka  w i t h a c t i v i t y i n the H i m a l a y a s , c o u l d have produced a  species  the  becoming  more  concomitant situation  i n which the o c h o t o n i d  isolated  from each  other.  239  F i g u r e 53. H y p o t h e t i c a l range of 0 . p u s i l l a or an 0 . p u s i l l a like form d u r i n g the end of the P l i o c e n e i f i t was c o i n c i d e n t w i t h the f o r e s t - s t e p p e environment of that time as d e f i n e d by F r e n z e l ( 1 9 6 8 ) .  eo'  eo*  BO"  eo'  241  Figure 54. H y p o t h e t i c a l range of 0 . pusi11a or an 0 . l i k e form d u r i n g the P r a e t i g l i a n .  pusilla-  eo' —  '  so*  8oj 1  I  ~S  ZZ  I  eo" 1 \  JJ  v\  nn  243  F i g u r e 55. P o s s i b l e v i c a r i a n c e of the upper V i l l a f r a n c h i a n .  ochotonids  during  the  245  Since the B e r i n g l a n d b r i d g e between A s i a and N o r t h America open  intermittently  during  t h i s p e r i o d ( H o p k i n s , 1967),  were p r o b a b l y from one to s e v e r a l Asia  i n v a s i o n s of  i n t o N o r t h America ( S h o t w e l l , 1 9 5 6 ) .  was l a r g e l y a one-way f i l t e r North  American  Eurasia  (Harington,  Ochotona,  established 1979).  up  mammals  700,000 y r s . ;  similar  to  to  a l o n g the e a s t  Cooke,  from  of  the  derived  coast  of  1973), a was  North  from  (Guilday, ago,  cold.  This  and i s o l a t i o n w i t h i n  the o c h o t o n i d s , and d u r i n g . t h i s time very l a r g e in A l a s k a and i n the Yukon ( H a r i n g t o n , 1 9 7 7 ;  well  200,000 y r s .  between warm and  an o p p o r t u n i t y for c o n t i n u e d d i s p e r s a l  species  already  America  From the Cromerian u n t i l a p p r o x i m a t e l y  yrs. b.p.,  75%  being  0 . pr inceps,,  the c l i m a t e c o n t i n u e d to f l u c t u a t e was  ochotonids  1978a).  By the Cromerian ( c . of  there  The B e r i n g l a n d b r i d g e  b a r r i e r , with  Quaternary . l a n d  was  forms  Part I I ) .  the R i s s / S a a l e g l a c i a t i o n had reached  appeared By 200,000  i t s maximum i n  A s i a . There was widespread g l a c i a t i o n from the n o r t h as w e l l along  the major mountain c h a i n s .  the h e i g h t of the g l a c i a t i o n s , northern  Asia  (Frenzel,  no f o r e s t b e l t s  its  sister  were  and at  evident  species,  O. t h i b e t a n a ,  0. t h o m a s i ,  possibly  along  i n the southern Mekong  R i v e r b a s i n where f o r e s t would have l i k e l y remained. The obligate  r o c k - d w e l l e r s may have s u r v i v e d i n nunataks and  at  h e i g h t of the g l a c i a t i o n s  the  pushed f u r t h e r  south.  .0. pusi11a  Switzerland,  Austria,  alpine refugia  and the steppes were p r o b a b l y likely  around t h i s t i m e , as t h e r e are f o s s i l England,  in  1968). T h i s p e r i o d may have l e d to the  i s o l a t i o n of the f o r e s t - d w e l l e r , with  Steppes were e x t e n s i v e ,  as  spread  into  Europe  remains of t h i s s p e c i e s i n  Romania  (Kurten,  1968)  and  246  Germany (Sych,  1980)  from the Eemian c .  100,000  yrs.  G l a c i a t i o n s i n N o r t h America were a l s o widespread not  reach  their  Wisconsin,  maxima  however,  until  there  the  appears  Wisconsin. to  have  but  Prior  been  did  to the  a  gradual  r e s t r i c t i o n of Ochotona t o i t s c u r r e n t west c o a s t range i n N o r t h America  (Guilday,  1979).  The  division  s p e c i e s , O. p r i n c e p s and 0 . c o l l a r i s , until  between  probably  the  did  sister  not  occur  the W i s c o n s i n g l a c i a t i o n when 0 . c o l l a r i s would have been  i s o l a t e d i n the B e r i n g refugium i n 0 . pr inceps advancing  would  have  been  pushed  i n Europe and A s i a ,  as  the  the  further  Yukon  south  and  by  the  (1973) p o s t u l a t e the  Ziryan  were e s t a b l i s h e d . 's  consequence  Wisconsin  is  Vorontsov  and  Ivanitskaya  t h a t 0 . a l p i n a moved i n t o S a k h a l i n and Hokkaido glaciation  a p r o x i m a t e l y 40-35,000  0. a l p i n a  classic  a l s o must have r e s u l t e d i n a d d i t i o n a l  i s o l a t i o n s and h a b i t a t d i s r u p t i o n s .  during  and  ice.  The Wurm, or the W e i c h s e l , known  Alaska  yrs.)  (=  Wurm  I  =  Early Wisconsin  when l a n d b r i d g e s w i t h the mainland  They a l s o a t t r i b u t e the d i s r u p t i v e p a t t e r n  range  and  the  of  s u b s p e c i a t i o n of O. p a l l a s i as a  of t h i s g l a c i a l p e r i o d . T h i s  was  also  range r e s t r i c t i o n f o r the f a r - r e a c h i n g 0 . pus i l i a .  a  time  of  By the end of  the Wurm/Weichel/Wisconsin and the b e g i n n i n g of the H o l o c e n e , no members of the genus Ochotona o c c u r r e d i n Europe ( K u r t e n , The  last  major  glaciation  isolated species, invasion  into  may  have r e s u l t e d i n a p a t t e r n of  such as t h a t g i v e n i n F i g u r e 56,  areas  1968).  followed  of sympatry. I t i s a l s o p o s s i b l e  that  by the  s p e c i e s were not always i s o l a t e d from each o t h e r d u r i n g  glacial  periods,  further  but  existed  in  sympatry  and d i f f e r e n t i a t e d  247  F i g u r e 56. H y p o t h e t i c a l p a t t e r n of s p e c i e s d u r i n g the end of the W i s c o n s i n .  248  249  under  pressures  displacement Eldridge,  is  of often  1974) and  thus  character linked it  displacement.  with may  divergence  be  an  influencing d i f f e r e n t i a t i o n (vicariance) strict  i n t e r p r e t a t i o n of the cladogram i s  Character in  important  size  (see  mechanisn  i n the o c h o t o n i d s , i f a adopted.  250  SUMMARY  1)  Based  on  craniometric genus 0.  Ochotona.  pusi11a,  0.  thomasi.  Six  to  follows:  3)  0.  similar  one  of  on  rufescens,  0.  with  0.  0.  nubrica  suggest  an  run  on  affinity  g r o u p s emerged  of  one  obligate  forms and  results,,  for 0.  four  rock-dwellers, a  final  one  steppe-dwellers it  species  was  possible  f o r which no  kamensis a l i g n s w i t h . t h e  of nor to  of  synonomized  with  the of  0. 0.  or as  roylei.  Old  World  species of  from the One  steppe-dwellers, which  intermediate speculate  obligate  and  osgoodi  g r o u p means.  species  habitat  koslowi  status  in a plot  a t the  the  thibetana  forresti,  canonical v a r i a t e s evaluated  these  available.  and  in  pr i n c e p s ,  specific  were  a l p i n a ; 0.  0.  0.  42  collaris,  kamensi s, 0.  rutila,  function analyses,  rock-dwellers,  habitats  0.  species  pallasi,  species,  thibetana;  a l l species,  intermediate  neither Using  macrot i s, 0.  for  a l p i n a , 0.  e r y t h r o t i s, 0.  h a b i t a t s . Four g e n e r a l  consisting  18 e x t a n t  f o l l o w s : 0.  different  discriminant  three  techniques  w h i c h have o f t e n been a s s i g n e d  hyperborea  and  as  0.  0.  numerical  I recognize  lama, 0.  roylei,  cansus with  species  of  are  daur i c a ,  several  0.  Linear  first  0.  taxa,  referred  and  0.  They  l a d a c e n s i s , 0.  0.  2)  results  measurements,  curzon iae,  , 0.  the  are  forms. on  information  the was  rock-dwellers,  251  0. l a d a c e n s i s and 0. k o s l o w i  show a f f i n i t i e s  forms,  probably  with  environment largely  than  4) in  0. k o s l o w i .  unknown,  0. t h i b e t a n a alpine  0. l a d a c e n s i s  suggests  deserts  within  size  the  inhabiting  0. t h o m a s i '  i t s association that  i t might  results  5) by  0. p u s i l l a  mechanisms.  more  still  be  found  rocky  remains  in  Ochotona.  t o some e x t e n t ,  o f an  interrelationships A tendency  toward spanning  i n the f o s s i l  o r an 0. p u s i l l a - l i k e  t h e end o f t h e P l i o c e n e and t h e n  geographically  a  0. l a d a c e n s i s and  i n d i c a t e the importance  t o the p h y l e t i c  genus  reflected,  with  either  d o m i n a t e s t h e c l a d o g r a m and t h e minimum also  habitat  intermediate  high  or i n f o r e s t s .  Phylogenetic overall  but  to the  d i s c r e t e descendant  of  populations  species  increasing tree  and  size is  record.  form, was l i k e l y probably  increase  widespread  diversified through  into  vicariant  252  INTRODUCTION  The h o l a r c t i c genus Ochotona comprises pikas  intraspecific  morphological  i n t e r s p e c i f i c ones. is possible  craniometric  group,  differences  and  set as  on  portions  In the p r e v i o u s s e c t i o n , I demonstrated  that  to d e l i m i t the e x t a n t s p e c i e s on the b a s i s of measurements.  the  of  The fragmentary nature o f the  basis  the  of  mandible  patterns,  lagomorphs within  so  the  pikas  (see  Sych,1980  in  the  The  character  Gromov  as the p a t t e r n s  delimitation  appear  and  D i f f e r e n c e s i n cheekof  same  early purpose  to have v a r i e d  history  of  little  the  genus  1979). necessity  of u s i n g a reduced c h a r a c t e r set  e x t i n c t taxa l e a d s to q u e s t i o n s c o n c e r n i n g characters  the  morphologically  in defining  reliability  in discerning actual differences  e s p e c i a l l y f o r a group, be  and  are u n a v a i l a b l e f o r the  throughout the known P l i o c e n e t o Recent (Guilday,  fossil  v a r i a t i o n s i n the s i z e and shape of  useful  (Dawson,1967),  reduced  42  t h a t most e x t i n c t taxa have been  Baranovoi,1981 among o t h e r s f o r e x a m p l e s ) . teeth  numerous few  i s evidenced by the f a c t  defined  with  relatively  m a t e r i a l , however, n e c e s s i t a t e s the use o f . a  these  species.of  (Weston et a l . , 1 9 8 1 ; . P a r t I) and a p p r o x i m a t e l y 14 e x t i n c t  t a x a . They form a remarkably homogeneous  it  18 e x t a n t  between  such as the o c h o t o n i d s , which appear  conservative.  study i s to begin to answer  some  The of  main these  o b j e c t i v e of questions  of taxa, to this  through  253  examination  of  some  s p e c i e s . In d o i n g so, on  the  overall  fossil  groups and comparison w i t h Recent  the purpose i s to a l s o g a i n a  m o r p h o l o g i c a l v a r i a b i l i t y w i t h i n the genus and  perhaps an i n s i g h t  i n t o some of i t s  t o pursue t h i s o b j e c t i v e f o r two r e a s o n s . F i r s t ,  evolutionary trends.  through the use of n u m e r i c a l  methods and have a l r e a d y  have  section  this  than do  proven e f f e c t i v e (i.e.  Part I ) .  most  directly genus.  by  techniques  Second,  others  the r e s u l t s of  traditional  for the genus Ochotona numerical  the advantage of o b j e c t i v i t y and r e p e a t a b i l i t y  S o k a l , 1 9 7 3 ) and, t h e r e f o r e , used  I chose  they permit g r e a t e r d i s c r i m i n a t i o n along  the spectrum of taxonomic d i f f e r e n c e s  i n the p r e v i o u s  perspective  this  (Sneath and  study  working on the p r o b l e m a t i c  methods  can  be  s p e c i e s of  254  FOSSIL HISTORY  The lagomorphs,  which i n c l u d e the r a b b i t s ,  f i r s t appear i n the f o s s i l throughout  upper  Paleocene,  t h e i r h i s t o r y they have been a r e l a t i v e l y  group. The f i r s t our  r e c o r d i n the  hares and p i k a s ,  modern  problematic recognized  are  history. (see  successful  t r u e p i k a s were p r o b a b l y O l i g o c e n e i n  pikas  the  product  Eighteen  age  of a complex and  extant  species  and  are  and  somewhat currently  Weston et a l . , 1 9 8 1 and P a r t I) and a l l belong  to  the s i n g l e genus, Ochotona. The  genus  Ochotona  is  first  r e c o r d e d i n the P l i o c e n e i n  e a s t e r n Europe, A s i a and western N o r t h Sych,  1980). Specimens  Europe  and  (Schlosser, described Ochotona  Asia, 1924)  from is  (Shotwell,  at  least  and 0 . u r s u i  0. 1956).  (Dawson,  time.  spangeli There  species,  (Simionescu, The  from are  two  1930),  to be near the a n c e s t r a l  Pleistocene.  localities pikas  Specimens  in  the  early  been  direct  of  Oregon  ancestors  of  is  thought  Asia  during  1967).  throughout Europe and  have been found i n numerous  from the middle V i l l a f r a n c h i a n  occur  lagreli  have  Hemphillian  known  l i n e (Dawson,  Ochotona was widespread  in  f i r s t N o r t h America r e c o r d of the  no  0.  Ochotona, a l t h o u g h an e x t i n c t A s i a n genus, B e l l a t o n a ,  the  1967;  are not uncommon from A s t i a n sediments and  that  America  onwards.  fossil  Remains  of  P l e i s t o c e n e of e a s t e r n and c e n t r a l  Europe, but are l a c k i n g i n western  Europe  (Sych,  1980).  Four  255  species  have  Eurasia;  0.  1941),  0.  been  lazari  described from  antiqua  from  Gombasek  from  the  in  0.  first  polonica  Moldavia  (Pidoplitshko,  from P o l a n d (Sych,  of these s p e c i e s , 0 . l a z a r i ,  Pleistocene  Czechoslovakia  pseudopusi11a from the U k r a i n e (Gureev and  early  and  of  (Kretzoi, 1938),  Shevtshenko,  0. 1964)  1980). The h o l o t y p e of  is considered  by  Sych  the  (1980)  to r e p r e s e n t a young specimen of 0 . p u s i 1 1 a and so the s t a t u s of this  species  is  debatable.  The  species  0.  antigua  and 0 .  pseudopusi11a were o r i g i n a l l y thought to be of P l i o c e n e age  but,  based on the  Sych  (1980)  faunal  refers  compositions  them  to  species, 0. p o l o n i c a ,  the  of  early  a  small s i z e .  Numerous o t h e r e x t i n c t  the  dodogolica 1976),  (Erbaeva,  to  from  1976)  and  Pleistocene.  species  mainly forms  late-Pleistocene  (Erbaeva,  all  Gromov  distinctive  mid-  localities,  i s middle V i l l a f r a n c h i a n  considered  from  their  and 0 .  Baranovoi,  Transbaikal tologoica 1981)  age  and  is  on the b a s i s of  its  been  Eurasia,  1966) , 0 . gromovi and  the  in  have  of  The remaining  0.  region,  (Chabaeva,  described such  minor and  0.  1966  as  and  0.  (Erbaeva, intermedia cited  from the Buryat R e p u b l i c .  d e s c r i p t i o n of each of these i s g i v e n i n Gromov  as  in  (A b r i e f  Baranovoi,  1981 ) . The  extant  O l d World s p e c i e s , 0 . p u s i 1 1 a , appears t o have  been w i d e l y d i s t r i b u t e d d u r i n g been  found  the  Pleistocene.  only  Koenigswald unknown  have  throughout A s i a , Europe, and the B r i t i s h I s l e s ,  d u r i n g the middle and l a t e P l e i s t o c e n e , the  Remains  species and  of  Ochotona  Schmitt-Kittler,  when 0 . p u s i 1 1 a f i r s t  i t appears to have  in 1972;  Europe Sych,  been  (Kurten, 1980).  and  1968; It  appeared but i t was p r o b a b l y  is well  256  e s t a b l i s h e d by the A s t i a n available  on  the  ( K u r t e n , 1968). L i t t l e  remaining  information  e x t a n t s p e c i e s , but Kurten  is  (1968)  suggests t h a t 0 . a l p i n a hyperborea may have been r e p r e s e n t e d  in  some of the e a r l y P l e i s t o c e n e faunas of Europe. In N o r t h A m e r i c a , t h e r e i s a gap of perhaps in  the  known  0.spangeli  record  years  of Ochotona, from the P l i o c e n e r e c o r d of  to the m i d - P l e i s t o c e n e remains of ? 0 . pr inceps i n the  c e n t r a l A p p a l a c h i a n s of e a s t e r n N o r t h America The  3 million  Appalachian  fossils  have  (Guilday,  1979).  been c o l l e c t e d from four  sites:  Cumberland Cave i n Maryland ( G u i l d a y and G a z i n ,  1938;  1979),  ( G u i l d a y , 1971,  Trout  and Rapp's Caves i n West V i r g i n i a  1979), and J a s p e r S a l t p e t e r The  Cumberland  Irvingtonian c.  Cave  Cave i n  deposits  have  been  dated  it  appears  1979). at  late  1978)  and,  of t h e r e m a i n i n g caves are  that  these  became e x t i n c t sometime p r i o r t o single  (Guilday,  700,000 years B . P . (Van der Meulen,  as the O c h o t o n a - b e a r i n g d e p o s i t s pre-Wisconsin,  Virginia  Guilday,  the  also  Appalachian ochotonids  Wisconsin  glaciation.  A  specimen of a l a r g e o c h o t o n i d has been r e p o r t e d from the  K e l s o Cave i n O n t a r i o , Canada (Churcher and Dods,  1979).  The age  of t h i s specimen i s unknown, but Churcher and Dods suggests t h a t K e l s o Cave c o u l d have l a i n a l o n g dispersal  pre-Wiscons i n  west-to-east  route which c i r c u m v e n t e d the Great P l a i n s .  Ochotona  is  better  represented  w i t h c o l l e c t i o n s from W i l s o n Jaguar  a  Butte  Cave ( G u i l d a y and Adam,  i n western N o r t h A m e r i c a ,  Cave  in  Chimney  Colorado,  Animal  Trap  in  1969)  1967; Kurten and Anderson,  i n Idaho, L i t t l e Box E l d e r Cave Rock  (Guilday,  Nevada, Kokowef Cave i n C a l i f o r n i a  Wyoming  (Anderson, Smith  and 1972) 1968),  Creek Cave i n  (Kurten and A n d e r s o n ,  1980),  257  Cape  Deceit  and Gold H i l l  Cut i n A l a s k a  ( G u t h r i e and Matthews,  1971), and an e x t e n s i v e c o l l e c t i o n from the Old Crow R i v e r in the Yukon ( H a r i n g t o n , records  of  Ochotona  Rancholabrian  to  in  western  Recent  southern U n i t e d S t a t e s Holocene.  In A l a s k a ,  wharton i ,  were  sediments  of  Matthews,  1977; Weston,  times,  being  North  confined  (Harington,  Proochotona  Ochotonoides  Prolagus  (Tobien,  Prolagus,  from  Wisconsin  and  p i k a , d e s i g n a t e d 0.  early  to  middle  and  Gold  Hill  Cut  Pleistocene (Guthrie  to  0.  and  whartoni  sediments of China and of  the  1977).  (Chemenko,  (Teilhard 1935).  Of  these  into  the  sardus may even have  been  present  C o r s i c a and S a r d i n i a decline  (Tobien,  of P r o l a g u s  1914), Prolagomys  (Erbaeva,  de C h a r d i n and Young, 1931)  persisted  four  Postglacial  1935;  during  genera,  only  one,  and the s p e c i e s P. historic  K u r t e n , 1968;  times  Dawson,  (Dawson,  1967).  The  of Ochotona was f o l l o w e d by a r e s t r i c t i o n to i t s  range ( F i g u r e  and  on  1969).  has been l i n k e d to c l i m a t i c change and  perhaps to c o m p e t i t i o n w i t h Ochotona spread  are  l e a s t four other genera of o c h o t o n i d s were found i n the  Pleistocene;  The  the  1971). A d d i t i o n a l specimens r e f e r r e d  Old Crow B a s i n  1976),  to  from  Deceit  sub-arctic  w i t h those r e c o r d s i n the more  have been found i n the P l e i s t o c e n e  At  America  specimens of a ' g i a n t '  collected Cape  1981). A l l the  basin  1) i n A s i a and western N o r t h A m e r i c a .  great present  258  MATERIALS AND METHODS  C o l l e c t ions  Specimens institutions:  used  in  study  following  Carnegie  History,  Natural  the  (AMNH); B r i t i s h Museum ( N a t u r a l H i s t o r y ) , London (BM); Natural  of  from  New York  of  Museum  are  History,  Museum  American  this  Pittsburg  (CM); Cowan  Museum, U n i v e r s i t y of B r i t i s h C o l u m b i a , Vancouver of Comparative fuer  Zoology, Harvard C o l l e g e ,  Naturkunde,  an  der  (MCZ); Museum  National  S c i e n c e , N a t i o n a l Museum of Canada, Ottawa History,  Royal  Toronto  Ontario (UCM);  Museum, United  Museum  Humbolt zu B e r l i n (MN); Moscow S t a t e  Sound Museum of N a t u r a l  Denver  (CVM);  Cambridge  U n i v e r s i t y Z o o l o g i c a l Museum, Moscow (MS); Natural  Vertebrate  States  Puget  Sound,  Museum  (NMC); Puget  Tacoma  (ROM); U n i v e r s i t y of National  Museum,  of  (PSM);  Colorado,  Smithsonian  I n s t i t u t i o n , Washington (USNM); Z o o l o g i c a l Museum of the Academy of S c i e n c e s , L e n i n g r a d (ZM).  259  Locali ties  I examined f o s s i l specimens Crow  River  B a s i n (OCRB) i n the Yukon ( n = l 0 6 ) , L i t t l e Box E l d e r  Cave (LBEC) i n Virginia  from s i x g e n e r a l a r e a s : the O l d  Wyoming  (n=1),  Great  (n=90), Doward  Rapp's Cave  (n=131), Oberfranken (OBER) i n West Russia  (MIDR) i n the USSR. (n=5)  Cave  (RAPP)  (GTDC)  in  Germany  in  West  Great  Britain  and  Middle  (n=9)  ( F i g u r e 5 7 ) . A complete l i s t of  these 342 f o s s i l specimens and t h e i r exact  l o c a l i t i e s are  given  Appendix 11. All  fossil  sediments.  Specimens  approximately 1979),  specimens  late  from  were the  Wisconsin  as are those from Great  (Sutcliffe  and  Kowalski,  and the USSR I e s t i m a t e  Little i n age Doward  Material collected  be  them  into  Cave  A  in  are  Guilday,  Great  Britain  from West Germany solely  (the o r i g i n a l m a t e r i a l of  the  (see  in  the  Yukon  was  (Table X X V I I I ) . Only t h r e e of  Table XXVI11), but  all  appear  (Harington,1978b).  were c o l l e c t e d from s e v e r a l  sites,  a s i n g l e group i n order t o i n c r e a s e  s i z e and because 75% of the specimens had reworked  Cave  (Anderson, 1968;  to e a r l y Holocene i n age  A l t h o u g h the Yukon f o s s i l s combined  Elder  replaced).  14 s e p a r a t e s i t e s  Pleistocene  Pleistocene  to be a l s o l a t e W i s c o n s i n i n age,  these s i t e s have been dated to  Box  from the O l d Crow R i v e r b a s i n  from  from  1976). The f o s s i l s  on the b a s i s of t h e i r p r e s e r v a t i o n mandible has not been  collected  been  collected  T  sample from  sediments. list,  localities  of  the  789  Recent  i s g i v e n i n Appendix I.  specimens examined and t h e i r  260  F i g u r e 5 7 . Approximate p o s i t i o n of the s i x sites.  fossil  collection  Old Crow Locality  Number of Spec imens  11 A  9  1 4N  1  20  2  22  4  27  1 1  27W  38  28  2  29  4  44  28  45  2  65  1  1 04  1  1 37  1  1 55  2  Age  early  Pleistocene - early  Holocene  Wisconsin  Sangamon ian  Table X X V I I I . L i s t of the Yukon f o s s i l c o l l e c t i o n s i t e s and t h e i r approximate ages (when known). For a map to the s i t e s see Appendix I I I .  263  G e n e r a l Methods  A maximum of each  17 measurements was taken on the  specimen  (Table  XXIX).  For  a  description  measurements, see Weston (1981) (Appendix I I I ) . cases  was  it  possible  to  obtain  measurements f o r any of the f o s s i l nature nine  of  the  Therefore, the  specimens  (those  taken  The  The  specimens.  in  starred more  first  fossil  in  than  three  The  group  with  up  fragmentary  of  XXIX) the  -were  specimens.  indicated  second  (n=22l)  consisted  of  sample s i z e and  because  preliminary  t h a t a maximum of two measurements c o u l d be  'incomplete'  the n u m e r i c a l  results.  group ( n = l 2 l ) c o n t a i n e d the remaining  which had s i x or fewer of the nine measurements.  techniques,  the  full  I estimated missing values  group u s i n g the REGRES o p t i o n of  the  range  of  numerical  for the f i r s t  'complete'  program  BMD:PAM  1977). T h i s o p t i o n p e r m i t s the e s t i m a t i o n of m i s s i n g data a  of  t o two m i s s i n g v a l u e s were i n c l u d e d i n t h i s  In order to have a c c e s s to  from  of  were then d i v i d e d i n t o two  replaced without s i g n i f i c a n t l y a f f e c t i n g  specimens  only  complement  Table  half  specimens  'complete'  group i n order to i n c r e a s e  The  these  which had a minimum of seven of the n i n e measurements.  Specimens  analyses  full  of  these n i n e measurements formed the b a s i s for much  analysis.  groups.  the  In  of  f o s s i l m a t e r i a l was such t h a t o n l y a maximum of  measurements  consistently  mandible  regression  based  on  all  available  e s t i m a t e s were i n c l u d e d i n the ' c o m p l e t e ' m a t r i x of f u l l Harington  data  (Dixon, values  variables. set  These  whenever  a  rank was r e q u i r e d . (1977),  noting  the  size  variability  in  the  Measurements  Abbreviat ion  1 . T o t a l l e n g t h of the mandible  MANLEN  2 . M a n d i b l e depth at  MANDP1  symphesis  MANDP2  *  3. M a n d i b l e depth at M1  *  4. M a n d i b l e depth at p o s t e r i o r  *  5. M a n d i b l e w i d t h p o s t e r i o r t o M3  MANWID  6. Length of the mandibular t o o t h row  MALVLN  7. Length of the  MDIAST  diastema  to M3  MANDP3  8. Length of P3  MP3LEN  9. Width of P3  MP3WID  * 10. Length of P4  MP4LEN  * 1 1 . Width of P4  MP4WID  * 12. Length of M1  MM1LEN  * 13. Width of M1  MM1WID  * 14. Length of M2  MM2LEN  * 15. Width of M2  MM2WID  16. Length of M3  MM3LEN  17. Width of M3  MM3WID  Table XXIX. Measurements taken on the mandible of specimens of Ochotona and t h e i r c o r r e s p o n d i n g a b b r e v i a t i o n s . Those measurements marked by an a s t e r i s k were common t o the g r e a t e s t number of f o s s i l specimens.  265  o c h o t o n i d f o s s i l m a t e r i a l c o l l e c t e d from suggested  that  they  might r e p r e s e n t  proposed t h a t the very approximately  twice  large the  or  the  Old  Crow  River,  more than one s p e c i e s . He  giant  specimens,  which  are  s i z e of the modern p i k a s now found i n  the Yukon, c o u l d . b e r e f e r r e d to the e x t i n c t s p e c i e s 0 . w h a r t o n i . Other specimens, are  which are not as l a r g e as the  approximately  half  again  as  giant  ones  but  l a r g e as modern Yukon p i k a s ,  H a r i n g t o n t e n t a t i v e l y a l s o r e f e r r e d to 0 . w h a r t o n i but suggested t h a t they needed f u r t h e r specimens order  to the e x t a n t  to  allow  i n v e s t i g a t i o n . He r e f e r r e d the s p e c i e s of the  I d i v i d e d the Yukon specimens  classes following Harington's as p o s s i b l e .  relative  In g e n e r a l ,  In  assigned to ' C l a s s  size  delimitations  'Class I ' .  a MANDP2 of 7.00 - 8.90 mm were r e l e g a t e d those specimens  size  i n t o three  I p l a c e d specimens  MANDP2 of 6.90 mm or l e s s i n c a t e g o r y  while  0. c o l l a r i s .  f o r the presence of more than one taxon w i t h i n  t h i s - f o s s i l group,  closely  Yukon,  smallest  as  which had a  Specimens  to a ' C l a s s I I '  with group,  t h a t had a MANDP2 of 9.00 or g r e a t e r were  III'.  Statistical  Methods  1. U n i v a r i a t e  Simple d e s c r i p t i v e variation each  i n c l u d i n g the c o e f f i c i e n t  ( C V ) , were computed u s i n g a l l a v a i l a b l e  of  localities. calculated  statistics,  the  Recent  species  and  The u n i v a r i a t e s t a t i s t i c s  for  each  variables of  the  f o r . t h e Yukon f o s s i l s  of for  fossil were  for each of the s i z e c a t e g o r i e s and f o r a c o m b i n a t i o n  266  of a l l t h r e e s i z e c l a s s e s . The s t a t i s t i c s localities  and  size  for  all  the  groups were based on a c o m b i n a t i o n of  ' c o m p l e t e ' , u n r e p l a c e d data set and the ' i n c o m p l e t e ' Duncan's  new  fossil  multiple  significant differences  range  test  was  used  the  data  to  set.  test  for  between f o s s i l group means f o l l o w i n g  the  procedure o u t l i n e d i n Z a r ( l 9 7 4 ) . A l l data were n o r m a l i z e d t o s t a n d a r d MANDP2 t o c o r r e c t size  differences  among  species  for the problems a s s o c i a t e d were  (but see A t c h l e y e t . a l . ,  w i t h the use of r a t i o s ) .  1980).  The  great  size  of a l l o m e t r i c growth (Neff differential  1976  These  then t r a n s f o r m e d t o t h e i r l o g a r i t h m i c e q u i v a l e n t s  to m i n i m i z e the e f f e c t s  for  data  i n order  and  Marcus,  i n the Yukon f o s s i l s ,  r e p r e s e n t e d by the t h r e e s i z e c a t e g o r i e s ,  as  l e d . me to c o n s i d e r  the  p o s s i b i l i t y t h a t m o r p h o l o g i c a l v a r i a t i o n i n t h i s group might  be  attributed  to  the  effects  of a l l o m e t r i c g r o w t h . T h e r e f o r e , I  performed a s i m p l e l i n e a r r e g r e s s i o n a n a l y s i s on n o n - n o r m a l i z e d , log-transformed, fossils  using  b i v a r i a t e c h a r a c t e r c o m b i n a t i o n s f o r the the  regression analysis for  testing  for  1966; Sneath and logarithmic  program  data  the presence  1977).  A  linear method  of a l l o m e t r i c growth (see  Sokal,1973,  for  transformations  of  reviews). pairs  By of  l i n e by a l e a s t squares  Gould,  plotting  is  In most  straight  line  character  is plotted against (Sneath  obtained  and  cases if the  of  the  characters method,  allometric  and  it  to o b t a i n an i n d i c a t i o n of a l l o m e t r i c t r e n d s f o r  ( G o u l d , 1966).  character  (Dixon,  i s a r e l a t i v e l y s i m p l e but e f f e c t i v e  estimating a regression possible  BMDP6D  Yukon  is  those  increase,  a  the l o g a r i t h m of the s i z e of a logarithm  Sokal,1973).  For  of  some  the purposes  standard of  this  267  study, two  I used  the character  reasons.  generally  The  been  size  based  measurement w h i c h  MANDP2 a s t h e s t a n d a r d c h a r a c t e r f o r  classes on  this  as a whole and f o r e a c h included  species,  0. c o l l a r i s  I  plotted  Recent  species.  groups  and  (Dixon,  in  routine  randomly  component  o f t h e two e x t a n t N o r t h  American  individuals  of t h e r e g r e s s i o n s  was t e s t e d  using  purposes,  from h a l f both  t h e program  (option: A  PCA) o f t h e NTSYS p a c k a g e PCA  i s an  interrelationships  and M a r c u s , PCA  does  and  ordination  Sokal,1973) among  both  (Rohlf, or  which  not r e q u i r e  of  the  within BMDP1R  normalized  and  and so t h i s  character  t h e n o r m a l i z e d d a t a base  t h e FACTOR  dimension-reducing  p r o v i d e s a method f o r  about  or  variables  as i t i s here, the data matrix  1978). A l l d a t a e n t e r e d i n t o  transformed  e q u i v a l e n t s . The n o r m a l i z a t i o n  Recent  Kishpaugh and  individuals  any a s s u m p t i o n s  the  using  1980). When used d e s c r i p t i v e l y ,  1975; N e f f and S m i t h ,  were  (PCA) on  g r o u p s were p e r f o r m e d  displaying  using  fossils  analyses  (Sneath  MANDP2  The  Multivariate  technique  PCA  Yukon  chosen  The s i g n i f i c a n c e  and t h e f o s s i l  1968).  (Harris,  class.  1977).  specimens  the  size  were o b t a i n e d f o r t h e Yukon  and. 0. pr i n c e p s . F o r c o m p a r a t i v e  between g r o u p s ,  Principal  (Neff  plots  plots  2.  Kirk,  had  number o f t h e  Bivariate  character  specimens  was c o n s t a n t among t h e g r e a t e s t  fossils  also  Yukon  MANDP2 was t h e  specimens.  also  the  and  fossil  were  of  process  to  their  produced  was d e l e t e d (see Sneath  the  logarithmic an  invariant  from a l l a n a l y s e s when and S o k a l , 1 9 7 3 ) . A l l  268  PCA's  were  performed  on  emphasize shape over s i z e Sneath and  3)  all  (Boyce,  were  groups  conducted  on:  Sokal,  1965;  1)  each  of the t h r e e  largest  (OCRB, LBEC, GTDC), 2) a l l Recent specimens,  fossil  and  Recent  specimens  v i s u a l i z a t i o n of the r e s u l t s , random  1964; Rohlf and  i n order to  Sokal,1973).  PCA's fossils  the c o r r e l a t i o n m a t r i c e s  t o g e t h e r . ' For an  a n a l y s e s were  also  and easier  performed  s u b s e t s of the f o s s i l and the Recent specimens.  on  The mean  v a l u e s of Recent s p e c i e s were i n c l u d e d i n a l l subset a n a l y s e s i n order to provide reference p o i n t s . the  resulting  scores  on  Perspective  projections  the f i r s t t h r e e p r i n c i p a l  were o b t a i n e d through the use of  a  small  Fortran  A  in  integrated  scheme. linear  discriminant  maximize between- or weighted  linear  function  while  function  as  function  among-group  members as p o s s i b l e of one  of  analysis  differences  the c h a r a c t e r s  group  have  high  (DFA) s e r v e s to by  producing  a  such t h a t as many values  for  this  many members of another have l o w . Thus, the  weighted f u n c t i o n can serve as a much the  components program  c o n j u n c t i o n w i t h the U n i v e r s i t y of B r i t i s h C o l u m b i a ' s graphics  of  better  discriminator  of  two groups than does any c h a r a c t e r taken s i n g l y (Sneath and  S o k a l , 1 973).-'Inherent composition  i n the DFA i s the  assumption  respect  of  the  a  priori  to m u l t i v a r i a t e  covariance Sokal(!973),  group  i s known and can be a c c u r a t e l y d e f i n e d a p r i o r i  t h a t the new i n d i v i d u a l s to be c l a s s i f i e d by the members  that  matrices, Morrison  groups.  normality  and  functions  are  A d d i t i o n a l assumptions,  with  and  equality  of  variance-  are d e s c r i b e d i n P a r t I , and i n Sneath and (1976),  and Neff and Marcus (1980),  among  269  others.  The  power  of  three- ways. The f i r s t table'  technique.  to c a l c u l a t e  the d i s c r i m i n a n t f u n c t i o n may be t e s t e d  of these i s  in  by the f u n c t i o n s .  a result  F r a n k , Massey and  discussion). used  as  matrix  a l l n i n d i v i d u a l s are  the d i s c r i m i n a n t f u n c t i o n s and then  produced  b i a s e d (see  ' c l a s s i f e a t ion  In t h i s t e c h n i q u e ,  i n d i v i d u a l s are c l a s s i f i e d matrix'  a  these  The  1965  used  same  for  a  upwardly detailed  In order t o a v o i d t h i s b i a s , a second method may be  which a s i n g l e  individual  i s s e r i a l l y o m i t t e d from the  c a l c u l a t i o n of the d i s c r i m i n a n t f u n c t i o n s and then c l a s s i f i e d these f u n c t i o n s which  is  in a  also  'jackknife'  unbiased,  one to produce the  the  discriminant  purposes  procedure.  A  third  function  and  the  of t h i s s t u d y ,  specimens o n l y ,  (Dixon,  only  specimens  I t e s t e d the power of the d i s c r i m i n a n t  entered  into  to  together, using  the  1977). For the runs made on the Recent  u s i n g the t h r e e methods d e s c r i b e d above. were  second  I performed a DFA on the  and subsets of e a c h . These a n a l y s e s were a c c o m p l i s h e d BMDP7M  method,  them.  Recent specimens o n l y , the Recent and f o s s i l  program  by  i s to d i v i d e the data i n t o two p a r t s ,  c o n t a i n 'new i n d i v i d u a l s ' to t e s t For  n  'classification  of t h i s method i s o f t e n Morrison,  or  the  s p e c i e s forming the a p r i o r i  The  fossil  functions specimens  DFA as unknowns, w i t h the Recent  groups.  270  RESULTS  Univariate  Results  1. D e s c r i p t i v e  the  Statistics  Means, s t a n d a r d d e v i a t i o n s , c o e f f i c i e n t s of v a r i a t i o n ,  and  range  are  for  each v a r i a b l e f o r each of the f o s s i l groups  g i v e n i n Table XXX. The low number of specimens and  West  Virginia  (at  best)  for  from  the  have p r e c l u d e d c a l c u l a t i o n s beyond the mean  these  groups.  The  average  coefficients  v a r i a t i o n f o r the r e m a i n i n g groups r e v e a l t h a t the Yukon are  together  specimens  the  most  variable,  on  with  forming the l e a s t v a r i a b l e  v a r i a b i l i t y of the Yukon f o s s i l s , run  a l l the f o s s i l groups  the Yukon f o s s i l s significantly  the  group.  different  (p  In  < 0.05)  size  spite  are g e n e r a l l y l a r g e r than the o t h e r  tests,  category)  subset i n a l l  fossil  fossils.  but  I n s p e c t i o n of  groups,  i n the s i g n i f i c a n t d i f f e r e n c e s  specimens and the r e s t of the  the  i n d i c a t e that  means i n Table XXX suggests t h a t the Yukon  resulted  of  are  from the o t h e r groups. The  case (MM3LEN), i m p l y i n g an o v e r a l l s i m i l a r i t y .  have  L i t t l e Box E l d e r  f o r each c h a r a c t e r ,  ( e i t h e r as a group or by  of  fossils  Duncan's m u l t i p l e range  o t h e r f o s s i l groups formed a homogeneous  individual  USSR  one the  specimens which  may  between the Yukon  FOSSIL GROUP  Yukon f o s s i l s :  Class  Class  MANLEN  I  II  Al 1  III  L i t t l e Box E l d e r Cave  Oberfranken  Rapp's Cave  MANWID  6.29*10% (4.20-6.90) 45  5.55*9% (4.00-6.40) 52  3.27*9% (2.45-4.00) 55  33 . 20  3.98*11% (3.60-4.70) 5  7.44*5% (6.75-8.05) 28  6 . 38*6% (5.55-7.05) 30  3.61+5% (3.30-4.00) 30  10.48*5% (9.90-10.90) 3  8.71*13% (7.20-9.90) 4  4.57+11% (3.85-5.00) 5  3 .64+ 167. < 2.55-4.70) 12  6.88*16% (4.20-10.90) 76  5.97*14% (4.00-9.90) 86  3.45+12% (2.45-5.00) 90  2.87*7% ( 2 40-3.50) 7 1  5.45*6% (4.40-6.10) 115  5.20*6% (4 50-6.0O) 1 13  2.64+7% (2.10-3.10) 1 12  2 . 84*8% (2.50-3.50) 28  5 . 98*7% (5.10-7.35) 62  4.95*6% (4.30-5.60) 57  2.61+8% (2.20-3.30) 57  2.68*8% (2.40-3.05) 6  5.00*7% (4.40-5.40) 8  4 .86*6% (4.50-5.35) 7  2.46+7% (2.20-2.65) 7  -  33. 20  24.38+7% (20.85-26.70) 23  -  2 1 .43*4% (20.85-22.00) 2  -  -  2.20 1  M i d d l e Russia  MANDP3  3.40* iay„ (2.55-4.20) 7  1 Great Doward Cave  MANDP2  -  1 Class  MANDP1  -  2.93'4% (2.85-3.O0) 2  e XXX. U n i v a r i a t e s t a t i s t i c s and the average c o e f f i c i e n t  5 . 50  3 . 70  1  1  5.55*4% (5.40-5.70) 2  6.10*15% (5.20-7.40) 5  of v a r i a t i o n (CV)  f o r the f o s s i l  2 . 70 1 3 .05 + 20% (2.40-3.80) 4  groups  FOSSIL GROUP  MALVLN  8.74*9%  OCRB-I  ( 6 . 4 5 - 9 . 6 0 )  OCRB  Al1  (7.25-7  6  -  -  -  -  90)  15-7.60)  25  5.76*12% ( 4 . 8 0 - 8 . 8 0 )  49  OBER  4.77+6% (0  85-1.13)  7  RAPP  7 . 95 1  MIDR  1.59*12% ( 1 .20-1  8  5.0O 1  1.07*11%  1.09*12% (0 .90-1.40)  13  13  7.40*4%  4.78*7% (4.55-5.00)  2  2  1 .94*5% ( 1  8 0 - 2 . 2 0 ) 28  2.04+4% ( 1. 9 0 - 2 . 2 5 ) 28  2.52+1%  2.72+1%  ( 2 . 5 0 - 2 . 5 5 )  (2 . 7 0 - 2 . 7 5 )  2  2  1.89+10% ( 1 . 5 0 - 2 . 5 5 ) 65  1 . 9 7 + 1 1% ( 1 . 5 0 - 2 . 7 5 ) 65  1.50+6%  1.50+6%  ( 1 . 2 5 - 1 . 7 0 )  ( 1.25-1.80)  105  105  1.43*7%  1.35*5%  1.74+6%  1.78+8%  (1.35-1.501  ( 1 .30-1.40)  ( 1 . 4 0 - 1 . 9 5 )  ( 1. 4 0 - 2 . 2 5 )  2  2  1.O1'20% (0.85 - 1 .30) .  4  1.06*22% (0 .90-1.40) 4  1 . 30  1 . 20  1  ( 7 . 2 0 - 7 . 6 0 )  90)  19  (O.85-1.30)  30  7.05*5% ( 6 . 7 0 - 7 . 5 5 )  10)  104  8.51*4% ( 7 . 6 5 - 9 . 6 0 )  20-2.50) 19  4.39*8% ( 3.20-5.  1 13  LBEC  1.86*17% ( 1  5  7.42*4% ( 6 . 4 0 - 8 . 4 0 )  1 1 . 7(1-2. 5 0 )  6.52*15% (5.  1.87+9% ( 1 .50-2.15) 35  1.67*8%  2  9.09*8%  1.80*9% 35  10  (6.45-9  GTDC  2.06i16%  60)  80)  13  ( 1 .55-1.90) 6  ( 9 . 3 8 - 9 . 9 0 )  OCRB-11 I  7.43*3%  9.61*2%  ( 1 .20-1  1 3  MP4WID  ( 1 . 5 0 - 2 . 0 5 )  1 .55*13%  (1.20-2.20)  3  MP4LEN  MP3WI0  1.77*15%  5.92*12% (5.15-6.60)  15  OCRB-II  M P 3t. r N  MD1AST  1  1 . 00  1 . 20  45  1 .35+5% ' 1 . 2 5 - 1 . 4 5 ) 8  1 . 25 1  1 . 4 8 + 2% (1.45-1.SO)  1  (Table  xxx  1  continued)  2  45  1 .36+6% ( 1 .25-1.50) 8  1 .40 1  1.50+5% ( 1 . 4 5 - 1 . 5 5 ) 2  FOSSIL GROUP  OCRB-I  MM 1 L E N  MM  1.95*12% ( 1 . 4 0 - 2 . 5 0 )  OCBR-II  2.10+7%  2.09+5% ( 1 . 9 0 - 2 . 3 5 )  2.07+14% 85  LBEC  106  107  1.47+6% ( 1 . 3 0 - 1 . 6 0 ) 8  1  MIDR  4  1 . 50 1  1.65+4%  1 . 65  ( 1 . 6 0 - 1 . 7 0 )  ( 1 .65)  2  90)  1.60+7%  .56+8%  ( 1 .20-1.85)  '  ( 1 . 30-2 . 30)  ( 1.40-1.85  1 .75+6% )  0.94+12% 66  1.55-2.05)  1 . 4 2 + 5%  ( 1 .20-1.60)  ( 1 .30-1.50)  6  6  1 . 40 1  1 .50 1  1 .60 1  1 .60 1  ( T a b l e XXX c o n t i n u e d )  5 5 - 2 . 0 O )  0.67+7% 7 1  1.51+11% ( 1. 0 5 - 2 . 0 0 )  13%  . 0.90+8% (0 . 6 0 - 0 . 2 0 )  7%  7 1  0.70+16%  1 .2 1+9%  ( 0 . 5 5 - 0 . 8 5 )  ( 1. 0 5 - 1 . 5 0 )  8  8  0.52+6% ( 0 . 5 0 - 0  8%  66  ( 0 . 5 0 - 0 . 7 5 )  44  1 .42+13% )  (  ( 1  6  ( 0 . 7 0 - 1 . 2 5 )  95  44  1 . 48 +4% ( 1.40-1.55  2  1.97+12% ( 1 35-2  1 .82+11%  1.07+12%  4  ( 1 . 4 5 - 3 . 0 5 )  7%  26  6  1.67+6% 15)  63  8  1 .60  2.62+12%  103  1 .8 1+6% ( 1 .50-2  1.56+8% ( 1. 3 0 - 1 . 9 0 )  26  ( 0 . 9 5 - 1 . 2 5 )  1  1.63+5%  0.97+9% ( 0 . 8 0 - 1 . 1 0 )  ( 2 . 0 0 - 2 . 9 0 )  95  ( 1.35- 1 90)  1.7 1+7%  1+10%  55)  8%  0.96+7% (0 . 9 0 - 1 . 0 5 )  8%  4  4 0 . 6 0 1  0.75+19%  CV  1 1%  36  ( 2 . 2 5 - 3 . 0 5 )  89  1 .59+6%  63  RAPP  OO)  30)  34  2.06+13%  2.03+13% ( 1 . 4 0 - 3  ( 1 . 2 5 - 1 . 9 0 )  ( 1 . 2 0 - 1 . 9 0 )  OBER  2.8  . 10-3.00) 6  ( 1 . 4 0 - 3 . 0 5 )  GTDC  2.69+12% (2  ( 1. 0 5 - 1 . 6 5 )  36  2.02+5% ( 1 9 0 - 2  34  33  7 0 - 1 . 1 0 )  Ave  1.43+9%  0.90+12% (0  55  ( 1 .90-2.60)  5  A l l  55  2 . 12 + 7 %  2.89+5%  ( 1 3 5 - 2 . 15)  MM3WID  MM3LEN  1 .87+9%  1.45-2.30)  ( 1 . 8 5 - 2 . 4 5 )  ( 2 . 7 0 - 3 . 0 5 )  OCBR  (  50  34  OCBR-1 I I  1.96+9%  1.90+10% (1.40-2.251  48  MM?win  MM2LEN  1WID  0. 70  -  1  1.08+3%  ( 0 . 6 5 - 0 . 8 5 )  (1 . 0 5 - 1 . 1 0 )  2  2  8%  274  2. A l l o m e t r y  The l o g a r i t h m i c b i v a r i a t e c h a r a c t e r fossils  r e v e a l a g e n e r a l monotonic i n c r e a s e  individual  characters  when  MANDP2. These l o g - l o g line,  plots  for  the  Yukon  i n each of the e i g h t  they were p l o t t e d as a f u n c t i o n of  plots  closely  approximated  a  straight  so another a l l o m e t r i c t r a n s f o r m a t i o n was not r e q u i r e d . An  example of these b i v a r i a t e p l o t s i s g i v e n F i g u r e 58  and  it  is  t y p i c a l of the r e m a i n i n g 7 p l o t s . The  monotonic i n c r e a s e and the s t r a i g h t  l i n e approximation  h e l d t r u e f o r a l l the Yukon specimens t o g e t h e r and f o r each class. A straight squares  l i n e was f i t t e d to  the  by  S o k a l and R o h l f , 1969;  Zar,  f o r the r e g r e s s i o n  least  regression  1973,  classes  together  l i n e s f o r each s i z e c l a s s  were  tested  in  successive  through an a n a l y s i s of v a r i a n c e of the r e g r e s s i o n All  the  etc.,  formulae and the method of c a l c u l a t i o n ) . The r e s u l t i n g  equations the  plot  method, employing the u s u a l formulae f o r the  of l o g Y on l o g X (see for  each  size  the  regression  and  all  combination coefficients.  l i n e s proved t o be s i g n i f i c a n t l y d i f f e r e n t  w i t h an average p r o b a b i l i t y of 0 . 0 0 8 3 . the  intercepts  This  implies  slopes  and/or  groups.  I t has been suggested t h a t the slope of  that  the  d i f f e r beyond chance beyond the the  regression  l i n e measures ' t h e complex of p h y s i o l o g i c a l p r o c e s s e s ' w h i l e the intercept  of  the  l i n e w i t h the o r d i n a t e i n d i c a t e s  opportunity'  (Parker  significant  difference  the Yukon  fossil  d i f ferences.  and  groups  Larkin,  among may  1959:742).  'ecological Thus,  the s l o p e s and/or i n t e r c e p t s reflect  some  basic  the for  biological  275  F i g u r e 58. B i v a r i a t e c h a r a c t e r p l o t f o r the Yukon f o s s i l s . The solid l i n e i s the l e a s t squares r e g r e s s i o n l i n e for a l l points. Individual size class regression lines are i n d i c a t e d by the dashed l i n e s .  276  if)  c\j  QIMSHN  son  277  The  plots  of  the N o r t h American s p e c i e s , 0 . c o l l a r i s and  0 . pr i n c e p s , w i t h the Yukon f o s s i l s monotonic  increase  which t e s t e d between  for  the  (see  exhibited  a  general  F i g u r e 59 f o r an example). The F - r a t i o  differences  Recent  also  in  specimens  the and  regression the  coefficients  fossils,  varied  in  s i g n i f i c a n c e a c c o r d i n g t o the s i z e c l a s s of the Yukon  specimens.  The r e g r e s s i o n s  Class  fossils  were  f o r both  the  large  Class  and  s i g n i f i c a n t l y d i f f e r e n t from the Recent  w i t h an average p r o b a b i l i t y of 0 . 0 0 7 1 , larger  II  Class  II  and  Class  III  which suggests  fossils  III  specimens that  exhibit  the  different  a l l o m e t r i c t r e n d s than the Recent s p e c i e s . The c o e f f i c i e n t s the  Class  I fossils  were not s i g n i f i c a n t l y d i f f e r e n t from those  of e i t h e r 0 . c o l l a r i s  or  0. princeps  i m p l y i n g a s i m i l a r i t y among these The  regression  analysis  (see F i g u r e 60 f o r example) species,  produced  for  a  for  (average  p  =  0.0512),  groups.  performed on the b i v a r i a t e individuals  from  nine  plots Recent  s i g n i f i c a n t F - r a t i o for d i f f e r e n c e s  the r e g r e s s i o n c o e f f i c i e n t s  for a l l nine  species  at  among  the  0.05  l e v e l of s i g n i f i c a n c e but the F - r a t i o was not s i g n i f i c a n t at  the  0.01  the  level  (average  p = 0.0159).  T h i s serves to emphasize  s i m i l a r i t y among the Recent s p e c i e s i n c o n t r a s t t o the differences result, separate  exhibited  the  Yukon  fossil  the s e p a r a t i o n of the Yukon f o s s i l s taxa  (?species)  c o n s e r v a t i v e measure, all  by  further  analyses.  appears  into  apparent  specimens. at  least  As a two  to be j u s t i f i a b l e and, as a  I have r e t a i n e d a l l these s i z e c l a s s e s  in  278  F i g u r e 59. B i v a r i a t e c h a r a c t e r p l o t f o r the Yukon f o s s i l s and the two North American species, 0 . pr i n c e p s and .0. c o l l a r i s . The solid line i s the • l e a s t squares regression line for a l l points. Individual group r e g r e s s i o n l i n e s are i n d i c a t e d by the dashed l i n e s . Only random i n d i v i d u a l s of 0 . pr inceps and 0 . c o l l a r i s have been p l o t t e d . X's Tr i a n g l e s Squares Crosses Diamonds  Class III f o s s i l s Class II f o s s i l s Class I f o s s i l s 0. princeps 0. c o l l a r i s  280  Figure 60. B i v a r i a t e c h a r a c t e r p l o t for n i n e Recent s p e c i e s . I n d i v i d u a l group r e g r e s s i o n l i n e s are i n d i c a t e d by the broken l i n e s . R e g r e s s i o n l i n e s have been c a l c u l a t e d over a l l i n d i v i d u a l s , o n l y random p o i n t s have been p l o t t e d . Squares Tr i a n g l e s Crosses Circles Diamonds X's H a l v e d oblong Square w i t h rounded edges A s t e r i sk  = = = = = = =  0. 0. 0. 0. 0. 0. 0.  alpina collaris daur i c a kamens i s ladacens i s princeps roylei  = 0. rut i l a = 0 . thomasi  CO O. l a d a c e n s i s  /'^-O. y If/  X , O. k a m e n s i s  A X A' CD  rutila  CDO  V^S?'U O. p r i n c e p s  O.collaris^ O. r o y I e i /  y  O. d a u r i c a  O. a I p i n a  O.thomasi  ^.0  1.8  1.4  L O G MANDP2  2.2  282  Multivariate  1. Yukon  A  plot  on  the  components d e r i v e d from a PCA  run  on  reveals  Class III  the  FossiIs  scores  only,  of  Results  first Yukon  three  principal  fossil  specimens  a d i v i s i o n between the C l a s s I and the C l a s s  i n d i v i d u a l s ( F i g u r e 6 1 ) . The l o a d i n g s of the  II-  variables  on the f i r s t t h r e e components i n d i c a t e the e x t e n t to which character XXXI)..  contributes  The  component  t o the v a r i a n c e i n t h a t dimension  generally suggest  high  positive  between  the  more  large  smaller Class  I individuals  along  first  the  loadings  indicative  Class  occurs,  principal  axis.  of  . 11 — 111 not  the  first  component.  shape.  A  This  fossils  surprisingly,  s e p a r a t i o n between these two groups a l s o i s second  on  (Table  t h a t t h i s i s p r o b a b l y a s i z e component, w i t h  the r e m a i n i n g two axes being separation  each  small  evident  and the mainly  degree  of  along  the  p r i n c i p a l component but none i s apparent a l o n g the W i t h i n the C l a s s  evident  between  principal division  the  components between  the  11-111 f o s s i l s , size  an  overall  I and the C l a s s  the l a c k of one between the C l a s s II and C l a s s further  separation  groups a l o n g any of the f i r s t  suggesting Class  no s t r o n g  similarity. 11-111 f o s s i l s III  support to the s e p a r a t i o n of these f o s s i l s  two d i f f e r e n t  taxa.  third  ones i n t o at  is  three The and lends least  283  F i g u r e 6 1 . R e l a t i v e p o s i t i o n s of the Yukon f o s s i l specimens i n a p r o j e c t i o n on the f i r s t t h r e e p r i n c i p a l components from two p e r s p e c t i v e s . The f i r s t axis represents 54%, the second 13% and the t h i r d ( v e r t i c a l ) r e p r e s e n t s 12% of the total v a r i a t i o n . Dashed l i n e s g e n e r a l l y s e p a r a t e C l a s s I and C l a s s II - I I I specimens. Open c i r c l e Open square Open t r i a n g l e  = Class I f o s s i l s = Class II f o s s i l s = Class III f o s s i l s  284  Character  PC I  PC I I  PC I I I  MANDP3 MANWID MP4LEN MP4WID MM1LEN MM1WID MM2LEN MM2WID  0.261 0.611 0.816 0.801 0.623 0.887 0.748 0.895  -0.688 -0.415 0. 135 0.404 -0.361 0.171 ' -0.147 0.204  -0.624 0. 1 00 0.011 -0.164 0.515 -0.219 0.385 -0.212  Table X X X I . C h a r a c t e r l o a d i n g s on the f i r s t t h r e e p r i n c i p a l components f o r the Yukon f o s s i l specimens (see F i g u r e 61 ) .  286  2. L i t t l e Box E l d e r and E n g l i s h F o s s i l s  Distinct  groupings do not emerge i n PCA's run on data  comprised of e i t h e r E n g l i s h specimens both groups fossils,  with  Box  Elder  specimens  the  remaining  individuals  principal  two  axes  occurred  component,  but  in  as  separation  c o u l d l a r g e l y be the r e s u l t  coefficient  the  i t was f o r the Yukon accounting  as  for  more  between  neither  case  t h a t d i s p l a y e d by the Yukon f o s s i l s .  variation  for  larger  to a minor degree a l o n g the  extensive  within-group  or  ( F i g u r e 6 2 ) . The f i r s t p r i n c i p a l component  i n shape (Table X X X I I ) . S e p a r a t i o n s  smaller  first  Little  i s l a r g e l y a s i z e component, as  differences and  the  sets  of  suggested  the by  was  it  as  T h i s l a c k of  relatively the  low  of v a r i a t i o n for each of these two f o s s i l  low  average  groups.  3. F o s s i l Combination Sets  The r e s u l t s subset  of a PCA run on the  first  the  previous  separation second  the  PCA r e s u l t s  and  third  'shape'  In  Recent  species  five  contrast  f o r each i n d i v i d u a l f o s s i l  group,  along  the  (Table X X X I I I ) a x e s . The Great Doward  are g e n e r a l l y s e p a r a t e d from the r e m a i n i n g  p r i n c i p a l components. group,  together.  among a l l the f o s s i l groups occurs m a i n l y  Cave f o s s i l s and  combination  ( F i g u r e 63) are t y p i c a l of those a n a l y s e s run on the  c o m b i n a t i o n s u b s e t s and on a l l the f o s s i l s to  fossil  fossils  means a l o n g both the second and t h i r d  Included  within  the  Great  Doward  Cave  r o u g h l y d e l i m i t e d by the lower dashed l i n e i n F i g u r e 63,  287  F i g u r e 62. 3-D p r i n c i p a l components  projection.  a.-.b. R e l a t i v e p o s i t i o n s of the L i t t l e Box E l d e r fossil specimens i n a p r o j e c t i o n on the f i r s t p r i n c i p a l components from two p e r s p e c t i v e s . The axis r e p r e s e n t s 58%, the second 16% and the ( v e r t i c a l ) r e p r e s e n t s 8% of the t o t a l v a r i a t i o n .  Cave three first third  c - d . R e l a t i v e p o s i t i o n s of the Great Doward Cave fossil specimens i n a p r o j e c t i o n on the f i r s t t h r e e principal components. The f i r s t a x i s r e p r e s e n t s 51%, the second 11% and the t h i r d (vertical) represents 10% of the total variation. (Numbers II . )  correspond  with  assigned  numbers  i n Appendix  288  PC I  289  Character  PC I  PC I I  PC I I I  MANDP3 MANWID MP4LEN MP4WID MM1LEN MM 1WID MM2LEN MM2WID  0.418 0.444 0.899 0.861 0.705 0.897 0.779 0.913  -0.729 -0.759 0.150 0.048 0.264 0. 1 54 0.085 0.082  -0.487 0.362 0.089 0.203 -0.409 -0.093 0.257 -0.044  a) L i t t l e Box E l d e r Cave f o s s i l (see F i g u r e 6 2 a , b ) .  specimens  MANDP3 MANWID MP4LEN MP4WID MM1LEN MM1WID MM2LEN MM2WID  0.449 0.571 0.757 0.786 0.745 0.869 0.630 0.822  -0.816 -0.332 0. 144 0.249 0.066 0. 190 -0.036 0.072  b) Great Doward Cave f o s s i l Figure 63c,d).  -0.074 0.436 -0.249 0.281 -0.255 0. 1 94 -0.548 0. 144  specimens  Table X X X I I . C h a r a c t e r l o a d i n g s on the t h r e e p r i n c i p a l components.  (see  first  291  F i g u r e 63. Two p e r s p e c t i v e s of the p r o j e c t i o n of alternate p o i n t s of F o s s i l subset 1 and the Recent s p e c i e s means a l o n g the f i r s t t h r e e p r i n c i p a l components.. The first axis represents 56%, the second 16% and the third ( v e r t i c a l ) r e p r e s e n t s 10% of the t o t a l v a r i a t i o n . Dashed lines i n d i c a t e g e n e r a l g r o u p i n g s of LBEC specimens and GTDC specimens. Open c i r c l e Open square Open t r i a n g l e Closed c i r c l e C l o s e d square Closed t r i a n g l e  Yukon f o s s i l s ( c l a s s assignment i n d i c a t e d above c i r c l e ) L i t t l e Box E l d e r Cave f o s s i l s Great Doward Cave f o s s i l s Recent s p e c i e s group means Rapp's Cave f o s s i l Oberfranken f o s s i l  292  Character  PC I  PC I I  PC I I I  MANDP3 MANWID MP4LEN MP4WID MM1LEN MM 1WlD MM2LEN MM2WID  0.255 0.436 0.853 0.783 0.775 0.907 0.786 0.901  -0.808 -0.611 0. 1 64 0.394 -0.156 0.112 -0.055 0.096  -0.478 0.449 -0.151 0. 107 0.368 -0.292 0.245 0.269  Table X X X I I I . C h a r a c t e r l o a d i n g s on the f i r s t t h r e e p r i n c i p a l components f o r f o s s i l c o m b i n a t i o n set 1 (see F i g u r e .63) .  294  is  a German  Recent this  specimen,  specimens  a  similarity  were  were  included  derived  Yukon f o s s i l s  fossils than  implying  group,  included Cave, their  group  upper  separated  collector(s)  mean i n t h i s  Little  of  supports that  Cave f o s s i l s the  plot  from o t h e r s p e c i m e n s  are  emphasizing  o f t h e Yukon rather  Two  Recent  0. p u s i l l a  was  occasionally  to  0. pus i l i a  Figure  63. T h i s  m a i n l y a l o n g the second from any of in  by  of the  assignment.  form of a l o o s e  in  included  the v a r i a b i l i t y  from G r e a t Doward  and t h e c o n s t a n t i n c l u s i o n  group  Box E l d e r  portion  runs  t h e G r e a t Doward Cave  were r e f e r r e d  component. A g a i n , Yukon s p e c i m e n s sizes  forms.  two o t h e r r u n s . The s p e c i m e n s  original  The  these within  six  i n a l l a n a l y s e s w h i l e 0. r u f e s c e n s was  t h e USSR and West Germany  0. p u s i l l a  the  included  fossil  of v a r i a t i o n )  and 0. r u f e s c e n s . The mean of  this  in only  also  USSR,  The i n c l u s i o n o f  the v a r i a b i l i t y  among  the  of  two  within  Yukon  out  classes.  i n the high c o e f f i c i e n t s  were  from  groups.  in five  size  probably r e f l e c t s  0. pus i l i a in  these  and  were i n c l u d e d  specimens  group  three  some p r o p i n q u i t y  means  included  in this  specimens,  specimens  among  from.all  (reflected  species  fossils  i n a l l r u n s , as were a l l  indicating  the  Yukon  s p e c i e s means. The German  group  and  two  the  this  of t h e s e f o s s i l s  the  in  group i s principal  three  group,  from  group  class further  Old  Crow  area. The the the  specimen  remaining specimens first  0. c o l l a r i s but  from Rapp's Cave i s r e a d i l y  they  and  second.  approach are  along the t h i r d Some  axis  and p a r t i a l l y  Yukon s p e c i m e n s  t h e Rapp's s p e c i m e n  generally  distinguished  s e p a r a t e d from  along  from along  and t h e mean f o r the  third  i t a l o n g the f i r s t  axis and  295  second. As o n l y a s i n g l e specimen has been c o l l e c t e d from Rapp's Cave, i t i s i m p o s s i b l e t o a s c e r t a i n whether i t i s of t h a t  representative  locality.  The means of Recent s p e c i e s form a b r o a d , somewhat band more or l e s s a c r o s s the c e n t e r  of  the  three  angular,  dimensional  p l o t . F o s s i l specimens occur on almost a l l s i d e s of t h i s band of means f o r Recent s p e c i e s , s u g g e s t i n g in  the  f o s s i l specimens.  a greater  overall diversity  The Yukon specimens appear  most w i t h the means of the Recent s p e c i e s , w h i l e fossil  groups  are  somewhat  occurs  along  the  the  remaining  more d i s t i n c t i v e . Some s e p a r a t i o n  between the means of the Yukon f o s s i l s species  to overlap  and those of  the  Recent  t h i r d p r i n c i p a l component, w i t h the  n o t a b l e . e x c e p t i o n of the mean f o r  0. c o l l a r i s .  0. c o l l a r i s  is  the e x t a n t s p e c i e s found i n A l a s k a and the Yukon and some of the fossil  Yukon  specimens  (generally  Class  I) were t e n t a t i v e l y  r e f e r r e d t o t h i s s p e c i e s by H a r i n g t o n (1977). p a r t i a l l y supported i n the p r e s e n t all  six  groups,  of and  regression  T h i s assignment  (my) study by the r e s u l t s  the p r i n c i p a l component a n a l y s e s run on the is  also  in  keeping  w i t h . the  results  is of  fossil of  the  analysis.  4. Recent S p e c i e s  PCA's  run  on a data set comprised of a l l Recent  ( w i t h s p e c i e s means i n c l u d e d ) produced a p p r o x i m a t e l y results.  The r e s u l t s of the f i r s t  so they can be assumed to r e p r e s e n t  specimens equivalent  random subset are t y p i c a l and a l l runs.  No c l e a r , d i v i s i o n of s p e c i e s i s e v i d e n t i n a • p l o t  of  the  296  scores  on  the  first  three  p r i n c i p a l components  (Figure  S e l e c t i v e l y p l o t t i n g groups of s p e c i e s on the same axes a better  visual  reducing  insight  the  appropriate provide account  number  s p e c i e s means are points.  of  points  retained  The f i r s t  (Figure  in a l l plots  The p l o t consists  considered  the  the  species  The  i n order  three p r i n c i p a l  to  components loadings  i s g i v e n i n Table XXXIV.  of  of  by  65).  f o r 86% of the t o t a l v a r i a t i o n and the v a r i a b l e  of each component  These  provides  i n t o the c o m p o s i t i o n of each s p e c i e s  overall  reference  64).  first  group  of  species  (Figure  t a x a , 0 . a l p i n a , 0 . pr inceps and 0 .  are  morphologically  conspecifics  (see  similar  Weston,  among these t h r e e s p e c i e s i s e v i d e n t  and  1981).  65a)  collaris.  are  Some  i n F i g u r e 65a,  often  separation  i n which the  m a j o r i t y of the 0 . a l p i n a specimens form a group s e p a r a t e d the  other  two  species  components.  0. c o l l a r i s  0 . pr inceps  along  from  0. a l p i n a  the  along  0. c o l l a r i s  and  variability  in this  0 . daur i c a subgroup.  to  only  first  this  axis.  and second p r i n c i p a l  partially  second a x i s ,  separated  but i s c o m p l e t e l y 0 . pr inceps  suggesting  0. c u r z o n i a e  a  from isolated  overlaps high  both  degree  of  form  the  second  species  two taxa a l s o are very s i m i l a r m o r p h o l o g i c a l l y by E l l e r m a n and  0 . curzon iae  a l o n g the f i r s t  the  species.  and  and are c o n s i d e r e d  appears  is  0. a l p i n a ,  These  conspecific.  along  from  axis  is  (Figure  separated 65b),  be l a r g e l y an a r t i f a c t  The mean f o r 0. c u r z o n i a e ,  Morrison-Scott(1951) from  although  to  0 . daur i c a o n l y this  separation  of t h i s p a r t i c u l a r data  which o c c u p i e s  a  be  reasonably  set.  central  p o s i t i o n when a l l i n d i v i d u a l s of 0. c u r z o n i a e are p l o t t e d ,  falls  297  F i g u r e 64. P r o j e c t i o n of the Recent s p e c i e s f i r s t t h r e e p r i n c i p a l components from The f i r s t axis r e p r e s e n t s 63%, the t h i r d ( v e r t i c a l ) r e p r e s e n t s 6% of the Open symbols r e p r e s e n t individuals, group means. Each s p e c i e s i s a s s i g n e d a number as 1 = 0. a l p i n a 10 = 0 . 2 = 0 . daur i c a 1 1 0. 3 = 0. curzoniae 12 0. 4 0. e r y t h r o t i s 1 3 = 0. 5 = 0 . kamensis 1 4 = 0. 6 = 0. koslowi 1 5 •= 0 . 7 = 0. ladacensis 1 6 = •0 . 8 = 0 . lama 17 0. 9 = 0 . macrot i s 18 0.  subset 1 a l o n g the two p e r s p e c t i v e s . second 11% and the total variation. c l o s e d symbols are  follows: pallasi pusilla roylei rufescens rut i l a thibetana thomasi princeps collaris  a.  PC I  299  F i g u r e 65. P r o j e c t i o n of s p e c i e s groups from Recent species subset 1 a l o n g the same t h r e e p r i n c i p a l components as i n F i g u r e 64. See the legend f o r F i g u r e 64 f o r a key t o the numbers.  PC I  PC I  Character  PC I  PC I I  PC I I I  MANDP3 MANWID MP4LEN MP4WID MM1LEN MM1WID MM2LEN MM2WID  0.392 0.801 0.843 0.912 0.904 0.897 0.877 0.878  0.914 -0.174 -0.097 0.025 -0.035 -0.124 0.048 -0.069  -0.029 0.074 0.325 -0.112 0.221 -0.357 0.257 -0.369  T a b l e XXXIV. C h a r a c t e r l o a d i n g s on the f i r s t t h r e e p r i n c i p a l components f o r the Recent s p e c i e s subset 1 (see F i g u r e 64) .  303  within  the  swarm . of  0 . daur i c a  p o i n t s , not 0 . c u r z o n i a e , i n  F i g u r e 65b. T h i s i n d i c a t e s t h a t the this  data  set  do  not  0. curzoniae  represent  specimens  of  the m e d i a l t r e n d and, i f a l l  0 . c u r z o n i a e specimens were p l o t t e d , O. d a u r i c a and 0 . curzon iae would g e n e r a l l y o v e r l a p . The o v e r l a p between these i s e v i d e n t i n other p l o t s The  from o t h e r  f i v e s p e c i e s p l o t t e d i n F i g u r e 65c form a very  species, 0. macrotis, 0. separated  along  a l o n g the second or 0.  species  runs.  d e f i n e d group of s i m i l a r s p e c i e s (see  well  two  Part I ) .  Three  of  r o y l e i and 0 . t h i b e t a n a , are the  third  first  loosely these  reasonably  p r i n c i p a l component, but not  axes.  The  lama and 0 . t h o m a s i , are s c a t t e r e d  two almost  remaining  species,  randomly throughout  the p l o t . The  seven  remaining  0. k o s l o w i ,  0.  plotted  Figure  in  s p e c i e s except the 0.  other  remaining  0. p a l l a s i  and  65d. There i s l i t t l e  for 0 . l a d a c e n s i s ,  species  ladacensis  the  ladacensis,  species, 0. e r y t h r o t i s , 0.  along  which  separation is  among these  distinguished  from  the  axes  from  remains e q u a l l y d i s t i n c t i v e i n p l o t s d e r i v e d and  two  are  65d).  runs  first  rufescens,  (Figure  PCA  the  0.  kamensis,  o t h e r s p e c i e s vary i n t h e i r  degree of i s o l a t i o n . In specimens  general,  these  results  that  the'  normalized  and  log-transformed  used i n the P C A ' s . For comparative p u r p o s e s , I ran the  PCA  on  data  s e t s . These a l t e r n a t i v e m a t r i c e s c o n s i s t e d o f :  data  Recent  do not appear t o form d i s t i n c t i v e s p e c i e s groups when  based on a m a t r i x of the e i g h t variables  indicate  t h r e e other types of data m a t r i c e s  matrix,  (2)  for these same b a s i c (1)  a  raw  the raw data n o r m a l i z e d by v a r i a b l e s and cases  304  (following  Eldridge,  transformed  to  19.74),  their  and  (3)  logarithmic  definition  was  generally  i s o l a t i o n of the e x t a n t  The  in Part  maximum  (jackknifed classified  of  all  39%  the  (new  individuals)  Misclassified to  be  and  o n l y a rudimentary the  (cf.  assigned  (classification of  individuals  Recent  specimens,  sample  sizes  and  on  the  matrix)  the  any  were  correctly  composed the data were  equalized)  w i t h o n l y an average of 17%  specimens  other  steppe  22  and 32%  14% ( j a c k k n i f e d c l a s s i f i c a t i o n )  of  to  PCA's  PCA p l o t s  correctly  and  species  species1,  in a regular  however,  7%  classified.  were  appear pattern.  generally  at l e a s t 60% of the time) a s s i g n e d to o t h e r steppe s p e c i e s individuals  from  rock-dwelling  species  to  other  d w e l l i n g s p e c i e s . A l t h o u g h the d e l i m i t a t i o n of a s i n g l e is  species  i n d i v i d u a l s w i t h i n a g i v e n s p e c i e s d i d not  I n d i v i d u a l s from a (i.e.  species  s e t s , but r a t h e r  together  i n poorer c l a s s i f i c a t i o n s ,  (classification matrix),  not  I).  m a t r i x . The data s u b s e t s (where resulted  (i.e.  among  used t h i s study  specimens  classification) when  data  been  among s p e c i e s i s a l s o r e f l e c t e d i n the  DFA run on a l l the Recent A  had  s p e c i e s c o u l d be o b t a i n e d i n  poor s e p a r a t i o n  subsets.  separation  worse. T h e r e f o r e ,  based upon the e i g h t measurements u s i n g 42 measurements  which  equivalents only  a l s o n o r m a l i z e d ) . In no case was the b e t t e r d e f i n e d for these a l t e r n a t e  data  difficult,  habitat  it  may  be p o s s i b l e  to i s o l a t e  of each s p e c i e s see P a r t  species  i t to a t l e a s t a  group.  For the h a b i t a t " t y p e  rock-  I..  305  5. F o s s i l and Recent  The i n c l u s i o n of the f o s s i l s a l s o r e s u l t e d i n what appeared Examining  the  assignments  t h a t , w i t h one allied  with  exception either  the  Specimens  as unknowns i n the above DFA's  to be random s p e c i e s  assignment.  i n terms of h a b i t a t groups (LBEC),  the  fossils  steppe-dwellers  indicated  were  strongly  or the o b l i g a t e  rock-  dwellers. The f o s s i l s been  f o r the USSR, East  Germany  and  England  have  t e n t a t i v e l y r e f e r r e d t o the s t e p p e - d w e l l e r , 0 . p u s i 1 1 a ,  t h e i r c o l l e c t o r s . Using Table  the  discriminant  functions  XXXV, i n d i v i d u a l s from these f o s s i l s  to s t e p p e - d w e l l i n g s p e c i e s i n g r e a t e r (Table  XXXVI),  thus  lending  groups were  than  support  given  80%  of  by in  assigned  the  cases  f o r t h e i r assignment  to  0. p u s i l l a . H a r i n g t o n (1977) suggested t h a t the l a r g e f o s s i l ( a p p r o x i m a t e l y my C l a s s II and C l a s s  III)  R i v e r area were probably, s t e p p e - d w e l l e r s  from  the  ochotonids Old  Crow  and the s m a l l e r a n i m a l s  (my  C l a s s I) were i n h a b i t a n t s of r o c k y o u t c r o p s . Assignments of  the  Yukon  fossil  Harington-'s  specimens  hypothesis.  The  by  Class  w i t h s t e p p e - d w e l l i n g s p e c i e s i n 87% Class  I  fossils  showed  the  greater  DFA  lends  II-Class of  the  III  support fossils  cases,  a f f i n i t i e s for  while  to align the  rock-dwelling  species. The f o s s i l s propinquity  to  f o r the L i t t l e Box E l d e r either  Cave  show  been  habitat  clear  the s t e p p e - or the r o c k - d w e l l e r s . These  animals may have o c c u r r e d i n d i f f e r e n t environments or have  no  specific.  The  Rapp's  Cave  may  not  specimen  was  Spec i e s  MANDP3  MANWID  MP4LEN  MP4WID  MM1LEN  0. a l p i n a  31 .33  19.17  8.18  51.01  -3.12  0. curzon iae  31 .55  14.41  11.41  44. 1 6  -3.39  0 . daur i c a  32.25  13.53  9.95  44.88  -1.19  0. e r y t h r o t i s  30.92  13.28  6.79  44.43  2.81  0 . kamensi s  31.01  15.34  4.73  47. 19  -3.04  0. koslowi  31.61  10.45  8.02  47.27  -5.90  0. ladacensi s  28.75  14.10  6.81  39.36  5.30  0 . lama  30.35  15.74  16.93  .43. 13  4.54  0. macrotis  30.64  10-95  6.38  41 .28  4.74  0. p a l l a s i  31 .06  18.00.  9.75  42.58  -1 .44  0. pusi11a  35.35  12.57  2.57  38.09  10.72  2- r o y l e i  30.91  12.65  7.70  45.51  4.99  0. rufescens  33.58  15.59  4.04  47. 17  1  0. rut i l a  33.58  12.45 .  3.62  45.71  2.05  0. thibetana  31 .73  15.59  12.50  46.59  2.21  0 . thomasi  30.75  14.68  17.60  42.69  1 .59  0 . pr i n c e p s  30.88  16.96  1 3.56  42.35  2.86  0. c o l l a r i s  28.1 2  18.70  1 6.35  38.36  6.09  .29  T a b l e XXXV. D i s c r i m i n a n t f u n c t i o n s c a l c u l a t e d from an a n a l y s i s i n which the Recent s p e c i e s formed the a p r i o r i g r o u p s .  307  Steppe  Rock  N  %  %  47  43  57  Rapp's Cave  1  100  0  Middle Russia  2  1 00  0  E . Germany  8  1 00  0  97  82  18  Class I  36  39  61  C l a s s II & I I I  30  87  13  L i t t l e Box E l d e r Cave  English O l d Crow R i v e r  221  Table XXXVI. The assignment of the f o s s i l specimens to h a b i t a t groups based on the r e s u l t s of a DFA. See t e x t f o r f u r t h e r e x p l a n a t i o n .  308  a s s i g n e d to a s t e p p e - d w e l i i n g s p e c i e s a l t h o u g h , due to the poor  sample  size,  about  i t s probable  i t i s i m p o s s i b l e to make any habitat.  very  generalizations  309  DISCUSSION  •Morphological  Corbet genus  Variability  (1978:66) notes t h a t Ochotona ' i s a  very  difficult  f o r the t a x o n o m i s t , w i t h r a t h e r s m a l l d i f f e r e n c e s  s p e c i e s and c o n s i d e r a b l e g e o g r a p h i c a l and within taxa,  species  ....'  Although  morphological  differences  Corbet was r e f e r r i n g to modern  i t appears from the r e s u l t s  past,  seasonal  between  of t h i s  variability  may  w i t h i n the o c h o t o n i d s than i t i s  study  have  that,  been  in  even  the  greater  today.  A d i s c u s s i o n of the m o r p h o l o g i c a l v a r i a b i l i t y  i n f o s s i l and  Recent o c h o t o n i d s and i t s r a m i f i c a t i o n s i s hampered by  problems  i n the p r i m a r y data r e s u l t i n g from the fragmentary nature of the fossil possible  material.  Previously,  (Part  r e d u c e d , as  a v a i l a b l e f o r the delimitations  the  found  specimens  regression  this  t h a t i t was  measurement  i t was h e r e , to conform t o the  fossil  also  When  material,  the  set  was  measurements  accuracy  of  species  g r e a t l y r e d u c e d . The DFA based on the e i g h t  most common mandible measurements, classify  I)  t o d e l i m i t the e x t a n t o c h o t o n i d s p e c i e s on the b a s i s of  42 c r a n i o m e t r i c measurements. greatly  I  was only  able  to  correctly  i n a maximum of 40% of the c a s e s . The PCA and  analysis  were  no  better  in  separating  s p e c i e s . T h i s suggests t h a t the mandible fragments, the e i g h t or n i n e measurements  at l e a s t  used i n t h i s s t u d y , are  the for  possibly  310  not d i a g n o s t i c  f o r t h i s v e r y homogeneous group. In s p i t e of  poor  r a t e f o r the e x t a n t  success  appear  forms, d i s t i n c t g r o u p i n g s d i d  w i t h i n the a n a l y s e s run on the  specimens  fossil  data.  0 . w h a r t o n i . The f o s s i l s two  general  fossils  groups.  species,  morphological related  to  The  possibly  the  Although  greater  fossil  This  the  the  eight  DFA  This  fell  a  but  greater  greater  common  not  for  variability  may  throughout  Europe,  Asia  and  run they  is  in  species  delimitation,  on the Recent s p e c i e s and the do  appear  to  reflect  of  l a r g e l y consistent with previous  measurements  used i n  in  P a r t I)  where,  using  the  fossil habitat results the  42  a DFA, the Recent s p e c i e s ' means T h i s somewhat c o n t r a d i c t s  the g e n e r a l t r e n d i n the lagomorphs i n which a r e l a t i v e l y  broad  range appears c h a r a c t e r i s t i c f o r the f o s s i l as w e l l  the Recent forms  (Dawson,  1967).  Small  mammal  f r e q u e n t l y been used to i n t e r p r e t p a l e o h a b i t a t s 1977;  be  range f o r the o c h o t o n i d s i n  i n t o w e l l d e f i n e d h a b i t a t groups.  adaptive  the  past i n t e r t a x o n  or nine mandible measurements  f o r the Recent s p e c i e s o n l y (see craniometric  and  'Fossil History*).  i n d i c a t e that  differences.  fell  from the USSR, West  forms,  geographic  t h i s study may not be d i a g n o s t i c  groups  taxon  r e f e r r a b l e to 0 . p u s i 1 1 a ,  reflect  variability.  N o r t h America (see  of  specimens  appear  f o r the  the p a s t , when they were  results  extinct  from Wyoming and West V i r g i n i a to 0 . pr i n c e p s . The  d e f i n i t i o n of groups extant  Yukon  from the r e m a i n i n g l o c a l i t i e s a l s o  Germany and Great B r i t a i n , the  The  c l e a r l y d i v i d e d i n t o two s u b s e t s , w i t h one a p p a r e n t l y  a l i g n i n g w i t h 0 . c o l l a r i s and the o t h e r w i t h the  into  this  Guilday,  remains  as  have  (e.g. Harington,  1979; Kurten and A n d e r s o n , 1980) and the  results  311  of the DFA imply t h a t Ochotona may a l s o prove t o be u s e f u l as an i n d i c a t o r of d i f f e r i n g  paleoenvironments.  Paleoecology  S i n c e m o r p h o l o g i c a l v a r i a b i l i t y i n the tied  to  fossil  habitat forms  geographical 1979),  type,  appears  one  is  since  be  of  greater  related  to  to  the  the  greater  questions  i n the past and what causes  best to t u r n  past  concerning  o c h o t o n i d s . Why was the  i t i s perhaps  be  also Guilday,  could  to  the  geographical  subsequent r e d u c t i o n i n range? For p o s s i b l e  these q u e s t i o n s ,  may  v a r i a b i l i t y i n the  of the o c h o t o n i d s (see  brought  d i s t r i b u t i o n greater the  to  distribution  paleozoogeography  for  and  ochotonids  account  answers  to  paleoecological  evidence. D u r i n g the P l e i s t o c e n e , widespread,  with  fossil  steppe or g r a s s l a n d remains  of  the  0 . p u s i l l a , found i n A s i a , Europe and Great the f o s s i l groups c o n s i d e r e d i n t h i s s t u d y , Germany  and  Great  Britain,  all  o c h o t o n i d s were steppe  species,  Britain.  Three  those from the USSR,  apparently  referable  0 . p u s i l l a , p r o v i d e a d d i t i o n a l evidence of the g r e a t e r  Asia  have  not  been  reported,  v a r i e t i e s were the common p i k a s of  distribution  considerably ochotonids  of  reduced ranged  Recent  from' that  of  outside  s u g g e s t i n g t h a t the steppe  Eurasia.  In N o r t h A m e r i c a , the s i t u a t i o n i s l e s s c l e a r . The patchy  to  range  t h i s s p e c i e s . P l e i s t o c e n e r e c o r d s of r o c k - d w e l l i n g forms of  of  pikas in  current  a l o n g the west coast the  Pleistocene  throughout N o r t h A m e r i c a . F a u n a l  is  when  association  312  w i t h mammalian g r a z e r s and browsers Pleistocene  of  cervids, Ochotona.  (Guilday, the  in  a ground s l o t h and mastodon occur w i t h the  remains  the  hunting giant  may  in  Cave  deposits  have been brought different  evidence  of  probably  i n t o the cave by  habitats.  is  based  on  more  ( G u t h r i e and Matthews,  also  supported  by  the  than relates  reason  that  steppe  the to  the  rock-dwellers the  the  during  overall  of  which s t i l l  a  lived  substantial  results  of  the  forms the  were  more  Pleistocene  environment t h a t e x i s t e d  geologically  the  recent,  present  The  in  character  Himalayas  is  e n d - P l i o c e n e phase of  seems i n p r o g r e s s (Sengor,  the  uplift  1981). The Q i n g h a i - X i z a n g  P l a t e a u , which now has an average e l e v a t i o n of n e a r l y  km above sea the  the  A s i a n c o n t i n e n t has changed s i g n i f i c a n t l y over the past  two m i l l i o n y e a r s . The r i s e of  (Tibet)  That  1971; H a r i n g t o n ,  Europe, A s i a and N o r t h America d u r i n g t h a t t i m e .  result  since  study.  widespread  the  Maryland  i s not c o n c l u s i v e , however,  several  however,  1978b), and i s  Part  of  of.  p i k a , 0 . w h a r t o n i of A l a s k a and the Yukon,  paleobotanical  present  Cumberland  remains  grasslands,  1977,  example, tapir,  ochotonid  extinct  these  a  in  an o v i b o v i d , two p e c c a r i e s ,  1979). Such evidence  predators  of  forms may have o c c u r r e d i n g r a s s l a n d s . For  remains of a f o s s i l h o r s e , two  suggest t h a t some  5  l e v e l , d i d not extend above 1000 m u n t i l the end of  Pleistocene  (Sengor,  1981).  Thus, the physiognomy of  the  r e g i o n was c o n s i d e r a b l y d i f f e r e n t and so was the c l i m a t e . By the end of the  Pliocene  and  the  first  forest-steppe  vegetation  was  widespread throughout Europe and  Asia  1968). T h i s v e g e t a t i o n  (Frenzel,  appearance  type  of  continued  Ochotona,  into  the  313  Pleistocene periods.  and  existed,  in  F r e n z e l (1968:638)  some  form,  during  the  glacial  states:  'The most s t r i k i n g f e a t u r e of the v e g e t a t i o n of the g l a c i a l periods [in northern Eurasia] was undoubtedly the wide distribution of steppe v e g e t a t i o n , w i t h i n the b e l t of i n t e r g l a c i a l f o r e s t s . But a p p a r e n t l y the g l a c i a l periods differed from one another w i t h r e s p e c t t o the dominant types of open v e g e t a t i o n . . . f o r e s t steppes seemed to have p r e v a i l e d d u r i n g the P r a e t i g l i a n , open steppes d u r i n g the S a a l i a n and W e i c h s e l i a n . ' Interglacial  periods  were  marked  by  the  increased  development of the f o r e s t communities, but l a r g e areas of  steppe  and f o r e s t - s t e p p e remained (see  plant-  geographical periods). the  conditions  F r e n z e l , 1968 f o r maps of  during  glacial  interglacial  S i n c e the steppe environment was so widespread  Pleistocene,  and  since  many  of  e l e v a t i o n a r e a s so favored by modern just  and  coming  into existence,  the  during  mountains and h i g h  rock-dwelling  pikas  were  i t i s p r o b a b l y not s u r p r i s i n g  i n Europe and A s i a the s t e p p e - d w e l l i n g  forms,  such as 0 .  that  pusilla  , dominated. The  mountain  geologically  ranges  than  the  in  North  Himalayas.  America The  two  are  much  older  major ranges,  A p p a l a c h i a n s and the C o r d i l l e r a , were i n e x i s t a n c e  well  the  before  the f i r s t appearance of the genus Ochotona, a s i t u a t i o n markedly different  from  that  in  Asia.  P i k a s are c o n s i d e r e d to be O l d  World immigrants to N o r t h A m e r i c a , e n t e r i n g the N e a r c t i c across  the  Bering  Land B r i d g e (Dawson,  B r i d g e was i n e x i s t e n c e  sea  levels  land bridge  dropped  (northeast  the Y u k o n ) , an i c e - f r e e  1967). The B e r i n g Land  p e r i o d i c a l l y d u r i n g the P l i o c e n e and the  P l e i s t o c e n e as" water became i n c r e a s e l y and  region  tied  into  the  glaciers  ( H o p k i n s , 1967). On e i t h e r s i d e of  S i b e r i a , C h u k o t k a , A l a s k a and a refugium e x i s t e d d u r i n g g l a c i a l  part  the of  periods.  314  This  'Beringian'  f a u n a l exchange, (Guthrie Pollen  and  refugium but a l s o  Matthews,  profiles  environment arctic,  and  within  may  been not o n l y an area of  an  important  1971;  Sher,  faunal the  have  center 1973;  associations  of  speciation  H a r i n g t o n , 1978). indicate  that  refugium ranged from c o l d - t e m p e r a t e  and t h a t e x t e n s i v e g r a s s l a n d s and steppes were  present  at  Colinvaux, 1978).  l e a s t d u r i n g the l a s t 1964;  The  provided a  Guthrie,  presence mixed  the  of  to  probably  g l a c i a t i o n ( L i v i n g s t o n , 1955;  1968a,b;  Matthews,  1974;  Hoffman,  both mountains and widespread steppes  environment  for  ochotonids  entering  North  America d u r i n g the P l e i s t o c e n e . The h i g h degree of m o r p h o l o g i c a l variability study,  exhibited  by  the Yukon f o s s i l s  suggests t h a t the e a r l y p i k a s were  exploit  both  these  two h a b i t a t  able  h a b i t a t s . T h e presence  w i t h i n the Yukon f o s s i l s  considered in t h i s to  invade  and  of two s e p a r a t e  taxa  may r e f l e c t the e x i s t e n c e of  at  least  types.  The severe c l i m a t e of the l a t e P l e i s t o c e n e of N o r t h America (Dillon,  1956;  Taylor,  1965; Matthew, 1974) no doubt a i d e d i n  the spread of the c o l d - a d a p t e d p i k a a c r o s s N o r t h America to  the  A p p a l a c h i a n s . G u i l d a y (1979) proposes a n o r t h e r n m i g r a t i o n route which  circumvented  Plains  forms  therefore,  an  the  Great  ecological  probably  did  P l a i n s . He notes t h a t the Great barrier  throughout  to the  pikas  today  and,  P l e i s t o c e n e as  well.  G u i l d a y ' s suggestion  i s supported by the l a c k of any remains  Ochotona  extensive  from  the  (Hibbard et a l . ,  1965). ' G u i l d a y  Pleistocene (1979)  faunas of t h a t  further  notes  of area  that  a  m i g r a t i o n a c r o s s North America would i n c l u d e a r e a s free of rocky talus,  suggesting  t h a t the New World P l e i s t o c e n e o c h o t o n i d s had  315  greater e c o l o g i c a l is consistent  freedom than do modern forms. T h i s  w i t h the apparent d i v e r s i t y of  assumption  Pleistocene  pikas  i n the Yukon. The  presence of f o s s i l o c h o t o n i d s at L i t t l e Box E l d e r Cave  i n Wyoming, however, p r o b a b l y more s t r o n g l y change  of  pikas. near  climate  than  of g r e a t e r e c o l o g i c a l  The cave i s i n the f o o t h i l l s of the  edge  indicates  the  a  freedom for  Laramie  Mountains,  of a r c t i c and a l p i n e mammals, Clethrionomys,  Pleistocene,  such as  suggest  w i t h tundra and t a i g a  Dicrostonyx,  a  The  i s s e m i - a r i d and  dominated by g r a s s l a n d s , shrubs and a few s c a t t e r e d t r e e s .  and  the  of the c u r r e n t d i s t r i b u t i o n of 0 . p r i n c e p s .  c l i m a t e near L i t t l e Box E l d e r Cave p r e s e n t l y  Gulo  local  is  Finds  Microsorex,  c o l d e r c l i m a t e d u r i n g the  c o n d i t i o n s nearby  (Anderson,  1968). The over  range  another  variations. distribution, relative  and appear  Although  dominance to  be  this  of one s p e c i e s or h a b i t a t strongly  is  not  climatic  only factor  affecting affecting  abundances of s t e p p e - v e r s u s r o c k - d w e l l i n g o c h o t o n i d s .  Dawson  to the p i k a s , appears  the  to  i t appears to be the most important one  C o m p e t i t i o n w i t h other s m a l l s i z e d (e.g.  linked  group  to  in Guiday, as  1979)  herbivores  as a s i g n i f i c a n t  I w i l l discuss l a t e r .  have a l i m i t e d e f f e c t  factor  by  contrast,  list  species  and  their  p r o b a b l y dampened the e f f e c t s of  limiting  The h i g h  S m i t h , 1981a  sizes)  cited  on p i k a p o p u l a t i o n s .  (see  litter  been  Predation,  r a t e of r e p r o d u c t i o n of p i k a s and  has  for  a  isolated habitats  predation.  of have  316  I n c r e a s e In S i z e  M o r p h o l o g i c a l v a r i a b i l i t y w i t h i n many P l e i s t o c e n e including  the p i k a s ,  an i n c r e a s e examples bison,  i n body  of  appears to be m a n i f e s t e d size  (see  Part  t h i s t r e n d , such a s :  I).  exceeded Keison,  the  66  cm  of  the  Castoroides  extant  ohioensis,  are  the e x t i n c t g i a n t of  numerous  Pleistocene  215  cm  greatly  B i s o n b i s o n ( S k i n n e r and  1947; K u r t e n and Anderson, 1980);  beaver,  i n a t r e n d toward  There  B i son l a t r i f r o n s , whose horn spread  mammals,  and the e x t i n c t  giant  which p r o b a b l y weighed between  150 and 200 kg and thus was c o n s i d e r a b l y l a r g e r than the  modern  C a s t o r c a n a d e n s i s which weighs between 9 and 32 k g . A l t h o u g h the extinct  giant  Yukon f o s s i l s example,  o c h o t o n i d , 0. w h a r t o n i (to which my C l a s s are p r o b a b l y r e f e r a b l e ) ,  i s not such a  11 -111  spectacular  i t was a p p r o x i m a t e l y t w i c e the s i z e of the Recent  pikas  from the same a r e a . Two e c o l o g i c a l , , or e v o l u t i o n a r y , ' r u l e s ' to e x p l a i n trends 'Bergmann's general animals.  in  body  Rule',  is  correlation Since  Bergmann,  it  analysis  and  has  The  first  ecologically  of  this  size.  size  'rule'  been  with was  subjected  substantial  r e f o r m u l a t e d Bergmann's Rule as  based latitude  have been  proposed  of  these  rules,  and  refers  to the  in  homeothermic  f i r s t proposed  i n 1847 by C.  to  increasingly  redefinition.  James  detailed (1970:387)  follows:  ' I n t r a s p e c i f i c s i z e v a r i a t i o n i n homeotherms i s r e l a t e d to a combination of climatic variables that include temperature and m o i s t u r e . S m a l l s i z e is associated with hot, humid c o n d i t i o n s , larger size, w i t h c o o l e r or d r i e r condit i o n s . ' Bergmann's  Rule . i s  generally  applied  to  geographic  317  variation  rather  than  to  the  widespread  phenomenon of  increment d u r i n g the P l e i s t o c e n e . T h i s r u l e does not be  generally  appear  a p p l i c a b l e t o the P l e i s t o c e n e o c h o t o n i d s , which e x h i b i t  the  size,  approximately  the same l a t i t u d e . A l s o ,  from  variability  I  group,  were  steppe-dwelling  that  Cope's  toward  rule,  larger  i n d e t a i l by  size,  what  because  refers  is  optimum  for  the  (1973).  Stanley  most  mammals  variability  (1977) a t t r i b u t e s  in  population.  suggestion  on  counters  the  forms  Ochotona,  the l a r g e  it  s i z e of  than f o r o b l i g a t e situation  (see  size.  is  the  advantages relative (1977)  grounds  that  Rule  Class  within  most  may  11-111  that,  explain  fossils  food a v a i l a b i l i t y f o r  rock-dwellers. Recent  This  species  somewhat where  the  0 . p u s i l l a , i s one of  the  P a r t I ) . The p o s s i b l e  correct  has  i s unmistakable. Harington  0 . pus i l i a may account f o r i t s s m a l l s i z e contention  the  suggests  Gingerich the  Bergmann's  r e l a t i v e l y widespread s t e p p e - d w e l l e r , smallest  to  alone.  the Yukon and 0 . w h a r t o n i t o g r e a t e r  steppe-dwellers  large  are s m a l l , a b i a s i s i n t r o d u c e d f a v o r i n g  A l t h o u g h n e i t h e r Cope's nor  small  directly  but r a t h e r by e v o l u t i o n from s m a l l s i z e  o r i g i n s from s m a l l s i z e by chance  from  their  s i z e through time and i t  Stanley  p a r t i a l l y discounts Stanley's  size  than  t h i s t r e n d cannot be e x p l a i n e d by the i n t r i n s i c  of l a r g e to  rule,  trend  been d i s c u s s e d  smaller  the  relatives.  The second evolutionary  considerably  in  those  p i k a s t h a t p r o b a b l y i n h a b i t e d the c o l d e r a l p i n e rock a r e a s , Class  to  because  the Yukon f o s s i l s , come  greatest  size  ancestral if  p o s i t i o n of  Stanley's  (1973)  mammalian groups arose at a  318  Stanley  (1973) a d d i t i o n a l l y proposes t h a t  nature of l a r g e allometric  forms,  growth,  ochotonids  specialized  r e q u i r e d by the problems of s i m i l i t u d e or renders  these  a n c e s t o r s f o r major new descendant large  the  forms  unlikely  potential  t a x a . The e x t i n c t i o n  and the p e r s i s t e n c e  of  the  of the s m a l l e r ones,  such  as 0 . p u s i l l a , suggest t h a t t h i s might h o l d t r u e f o r the. If  this is extrapolated  pikas.  to the Recent s p e c i e s , one can s p e c u l a t e  t h a t l a r g e r Recent taxa might be l e s s l i k e l y to g i v e r i s e to new s p e c i e s and a l s o l e s s l i k e l y t o s u r v i v e h a b i t a t  disruptions.  Extinction  Extinction, replacement,  which  is  the  end of a p h y l e t i c l i n e w i t h o u t  i s the u l t i m a t e d e s t i n y of every  species.  Perhaps  the two best known examples of widespread e x t i n c t i o n are t h a t of the d i n o s a u r s  at the end of the Mesozoic and of the megafauna  the  the  end  of  W i s c o n s i n . A l t h o u g h e x t i n c t i o n i s such a w e l l  r e c o g n i z e d phenomenon, f o r the most p a r t  i t remains an enigma.  Of the s i x P l e i s t o c e n e l o c a l i t i e s forming t h i s s t u d y , two,  the  Ural  which are s t i l l Wyoming i s c l o s e three,  at  Mountains  and the O l d Crow B a s i n , are  only  i n areas  i n h a b i t e d by p i k a s . The L i t t l e Box E l d e r Cave of to the range of 0 . p r i n c e p s and  the  remaining  Rapp's Cave, Oberfranken and Great Doward Cave, are  well  o u t s i d e the d i s t r i b u t i o n of Recent Ochotona. In a d d i t i o n t o t h i s o v e r a l l r e d u c t i o n of range, had  become  Pleistocene  extinct  by  38% of a l l known s p e c i e s of Ochotona  the  end  of  the  Pleistocene.  Late  e x t i n c t i o n of mammalian s p e c i e s has been a t t r i b u t e d  to numerous causes (Van V a l e n ,  1969 g i v e s  86),  but b a s i c a l l y  to  319  climate  and to humans (Kurten and Anderson, 1980). I t  u n l i k e l y t h a t humans p l a y e d a s i g n i f i c a n t  role  in  is  highly  extinctions  w i t h i n the genus Ochotona e i t h e r through l a r g e - s c a l e k i l l i n g s or competition  for  living  space.  Competition  with  other  h e r b i v o r e s may, however, have been an important l i m i t i n g for  the  o c h o t o n i d s , as even t o d a y ,  populations a r e . s e r i o u s l y , influxes  small factor  d i s t r i b u t i o n s of l o c a l p i k a  and o f t e n d e t r i m e n t a l l y , a f f e c t e d  i n l o c a l rodent p o p u l a t i o n s  by  ( S m i t h , p e r s . comm.). A l s o  Dawson (as c i t e d i n G u i l d a y , 1 9 7 9 )  has noted t h a t the d e c l i n e  the  i n post-Miocene time c o i n c i d e s  varied  Neogene  ochotonids  w i t h the p r o l i f e r a t i o n of likely  had  a  significant  arvicolids. effect  Competition,  choice for  extinction  'humans'.  i n the o c h o t o n i d s than i s  distribution  of  Ochotona  was r e s p o n s i b l e  through,  habitat  the number of f a c t o r s  unsuitability  Probably  no  of  or  single  The e f f e c t s of both c l i m a t e  no doubt p r o f o u n d l y a f f e c t e d  any o t h e r number of f a c t o r s  imagination.  cause  f o r the widespread e x t i n c t i o n s and range  r e d u c t i o n of many of the p i k a s . competition  the  e f f e c t s of c l i m a t e i n l i m i t i n g or r e d u c i n g the  d e s t r u c t i o n has been d i s c u s s e d p r e v i o u s l y . factor  therefore,  i n both l o c a l and l a r g e - s c a l e  e x t i n c t i o n s and i s a more a p p r o p r i a t e  The p o s s i b l e  of  ochotonid fortunes  may have been i n v o l v e d . The l i m i t  i s probably  only  imposed  by  one's  and but to own  320  SUMMARY  1) of for  The n i n e mandible measurements fossil  specimens,  the  very  common to the g r e a t e s t number  do not appear to  homogeneous  be  met w i t h g r e a t e r  the  fossil  between  group  r e l a t e d to the g r e a t e r  Although  diagnostic reflective  of  greater  p a s t geographic  differences  of  habitat  f o s s i l Ochotona may prove  differences, differences. to  be  may  in be  range of the o c h o t o n i d s .  the n i n e mandible measurements taxonomic  for  differences  g e n e r a l , m o r p h o l o g i c a l v a r i a b i l i t y may have been g r e a t e r  the past than they are t o d a y . The  2)  although  s u c c e s s . The i n c r e a s e d s u c c e s s r a t e  the f o s s i l o c h o t o n i d s suggests t h a t and  diagnostic  o c h o t o n i d s . The Recent s p e c i e s were  p o o r l y d e l i m i t e d u s i n g these measurements, groups  generally  they  do not appear to be do  appear,  Assuming t h i s i s  useful  as  an  to  be  correct,  indicator  of  paleoenvironments.  3) The r e d u c t i o n i n range of the o c h o t o n i d s from the to  the  factors  present  is  likely  due  to  a c o m b i n a t i o n of c l i m a t i c  and c o m p e t i t i o n w i t h o t h e r s m a l l h e r b i v o r e s .  4) A major e v o l u t i o n a r y t r e n d w i t h i n the o c h o t o n i d s be one toward an o v e r a l l i n c r e a s e common  Pleistocene  appears  to  i n body s i z e . T h i s was a t r e n d  to many P l e i s t o c e n e mammals, and has been r e f e r r e d to  as  321  ' C o p e ' s R u l e ' . The s p e c i a l i z e d n a t u r e of required  by  problems  u n l i k e l y ancestors  of  similitude,  the may  f o r major new descendent  large  forms,  as  render these forms taxa.  322  GENERAL SUMMARY AND CONCLUSIONS  This  study  objectives  was  given  generally  built  i n the P r e f a c e  along  the  five  main  and they are addressed i n t u r n  below.  1) O b j e c t i v e : A r e v i s i o n of the genus Ochotona  using  numerical  techniques.. This different results  objective  was  realized  0.  of  these  techniques,  0 . curzon i a e , koslowi,  0.  0 . pr i n c e p s ,  I recognize  0. d a u r i c a ,  ladacensis,  0. p u s i l l a ,  0 . t h i b e t a n a and 0 .  2)  Objective:  of the e x t a n t  0. 0.  royle i ,  0.  kamensis, pallasi,  0.  rutila,  interrelationships  species.  among  s p e c i e s of  the  genus  t o be one toward an o v e r a l l i n c r e a s e i n  most  plesiomorphic smallest  as  collaris  0.  rufescens,  the  species  0.  0 . mac r o t i s,  D e t e r m i n a t i o n of the p h y l e t i c  appears  the •  on  thomasi.  Those s p e c i e s t h a t are have  18 e x t a n t  0. e r y t h r o t i s , lama,  several  Based  f o l l o w s : 0. a l p i n a , 0.  The dominant, t r e n d w i t h i n the e x t a n t Ochotona  the use of  u n i v a r i a t e and m u l t i v a r i a t e p r o c e d u r e s .  c o m p r i s i n g the genus Ochotona as ,  through  found e a r l i e s t  primitive  positions all  the  within  i n the f o s s i l  karyotypes, the  species.  are  cladogram It  record  size. and  in  the  most  and  are  the  appears l i k e l y t h a t  the  323  d i v e r s i t y of s p e c i e s arose through the v i c a r i a n c e widespread  ancestor  species appearing  3)  Objective:  variability  (?0.  Determination  as  a  small,  f o r m ) , w i t h the  largest  last.  i n the e x t a n t  Emerging  pusilla-like  of  of  inter-  versus  intraspecific  ochotonids.  a constant  theme throughout t h i s study  r e l a t i v e l y h i g h degree of v a r i a b i l i t y w i t h i n s p e c i e s i n to t h a t between s p e c i e s . results,  and  is  This  evidenced  by  forming many of the s p e c i e s . of forms, basis  is  apparent  42  the  contrast  all  numerical  the l a r g e number of  subspecies  In s p i t e of the o v e r a l l homogeneity  i t appears t h a t the s p e c i e s may be  of  in  is  craniometric  delimited  measurements. The r e s u l t s  on of  the  linear  d i s c r i m i n a n t f u n c t i o n a n a l y s e s i n d i c a t e t h a t s p e c i e s can a l s o be separated i n t o h a b i t a t  groups u s i n g these same 42 measurements.  4) O b j e c t i v e : Comparison of m o r p h o l o g i c a l v a r i a b i l i t y w i t h i n f o s s i l and Recent  ochotonids.  The n u m e r i c a l • c o m p a r i s o n s imply  that  between f o s s i l and  reduced c h a r a c t e r the  clear,  fossil but the  remained. useful  Recent  forms  m o r p h o l o g i c a l v a r i a b i l i t y w i t h i n the o c h o t o n i d s was  p r o b a b l y g r e a t e r i n the past than  of  the  This  set,  is  now.  The  use  as n e c e s s i t a t e d by the fragmentary  material,  made  affinities  of  suggests  that  i n d i c a t o r s of  it  of  nature  the s p e c i e s d e l i m i t a t i o n s species the  from  similar  a  less  habitats  o c h o t o n i d s may prove to be  paleoenvironments.  5) O b j e c t i v e : E x a m i n a t i o n of  morphological  variability  within  324  fossil  ochotonids with p a r t i c u l a r  The  fossil  ochotonids  reference  exhibited  to  size.  differing  w i t h i n - g r o u p v a r i a b i l i t y , w i t h t h a t of the Yukon the  greatest.  Yukon ranged pika  The f o s s i l s  i n s i z e from a s m a l l a n i m a l s i m i l a r to  found i n t h a t area t o d a y ,  and  attributable  fossils  the  small  form,  forms,  difference  do  not  allometric  appear  modern  between to  growth,  in environmental  the  approximately  one. The d i f f e r e n c e s  to changes due to  they seem to r e f l e c t  to a ' g i a n t '  the  of  being  from the O l d Crow R i v e r b a s i n of  t w i c e the s i z e of the s m a l l e r large  degrees  the  be  solely  but  rather  conditions.  325  FUTURE STUDIES  Any  study  which  is  built  uncover even more problems exception.  on a broad b a s i s i s l i k e l y  than  it  solves.  My  W i t h i n each of the w r i t t e n s e c t i o n s ,  i n d i c a t e those areas which I additional  work,  but  I  feel  would  are  in  like  problems t h a t I t h i n k are the most  most  need  p o i n t out here  no to of  those  pressing.  A major problem throughout t h i s s t u d y , and plagued  is  I have t r i e d  the  to  study  to  one  which  has  a l l t r e a t m e n t s of the genus Ochotona, has been the l a c k  of adequate c o l l e c t i o n s . For example, 0. lama i s known  only  three  (which I  specimens,  synonomize  with  and  0. angdawai  0. r o y l e i ) the  general  by  a  lack  and  0. m i t c h e l l i  single  addition  to  of  behavioral  information is unavailable for  specimen  specimens, many  each.  habitat  species,  by  In and  which  s e r v e s to c o m p l i c a t e a l l taxonomic a s s e s s m e n t s . The  taxa  which I t h i n k have s u f f e r e d  of adequate c o l l e c t i o n s and a r e , future  work  therefore,  the most from a l a c k i n the most need  are 0. a l p i n a , 0. kamensis, O. f o r r e s t i , 0. cansus  and 0. n u b r i c a . The h i g h degree of v a r i a b i l i t y w i t h i n and  0. a l p i n a  the i n c l u s i o n of the p r o b l e m a t i c 0. h y p e r b o r e a , make t h i s a  particularly 0. a l p i n a cline, this  of  and  troublesome  species.  0. hyperborea  may  I  have  represent  suggested  the two ends of a  w i t h a s e r i e s of o v e r l a p p i n g s u b s p e c i e s i n remains t o be t e s t e d when b e t t e r  that  between,  but  samples become a v a i l a b l e .  326  The  next  taxon,  0. e r y t h r o t i s .  0.  Both  kamensis, species  they occur i n p a r a p a t r y . subspecies is 0.  of  this  to  be  My  0. t h i b e t a n a ,  It  are  apparently  This  suggest  but the poor sample  for 0 . cansus was a v a i l a b l e , . I  is  to  r o c k - d w e l l e r s and 0.  also  that  it  size  assignment open to q u e s t i o n .  debatable.  affinities  kamensis  is  a  but w i t h o u t a d d i t i o n a l samples i t  certain.  results  great  is p o s s i b l e that  0. e r y t h r o t i s ,  difficult forresti.  shows  the  case  i s very s i m i l a r  for  0.  forresti  Although a better  feel  that  for  its  makes  sample s i z e  status  I have t e n t a t i v e l y synonomized i t w i t h 0 .  but my r e s u l t s are c o n t r a d i c t o r y . A g a i n , w i t h  a  to  remains  thibetana,  more  complete  sample, the s t a t u s of t h i s s p e c i e s may e v e n t u a l l y be v e r i f i e d . . I assigned  0 . nubr i c a  to  0.  royle i  only  o r i g i n a l d e s c r i p t i o n and on zoogeographic to  examine  future  any  material.  on  the  grounds,  I was  The s t a t u s of t h i s s p e c i e s  the  unable requires  work.  The e n t i r e s u b s p e c i f i c should  be  carefully  composed of  36  species,  the  World  Old  q u e s t i o n w i t h i n the  r e v i e w e d . 0 . pr inceps  separate  American  subspecies,  genus. Ochotona  is considered  while  the  listed  those  other  to be North  0 . c o l l a r i s , appears to be m o n o t y p i c . W i t h i n  species,  the  number  of  subspecies  enormously and seems t o be i n a s t a t e of c o n s t a n t I  b a s i s of  subspecies  s p e c i e s , I f e e l t h a t they are  I  considered  to  varies  f l u x . Although belong  to each  i n need of a g r e a t d e a l more  and I would recommend the use of n u m e r i c a l t e c h n i q u e s  work  f o r such a  study. The  fossil  ochotonids,  too,  are  in  need of more work,  p a r t i c u l a r l y on a broad s c a l e . The l a c k of adequate  collections  327  has  always  been  troublesome  f o r any study d e a l i n g w i t h  forms, but i t i s a more d i f f i c u l t Recent fossil  material.  greater  problem to s o l v e than f o r  m o r p h o l o g i c a l v a r i a b i l i t y of  o c h o t o n i d s , p r o v i d e s a marked c o n t r a s t  Recent p i k a s . and  The  Perhaps through c o n t i n u e d  Recent specimens,  fossil  to t h a t w i t h i n  comparisons  some of the m y s t e r i e s  of  the the the  fossil  of the p r o b l e m a t i c ,  but f a s c i n a t i n g genus Ochotona, may e v e n t u a l l y be s o l v e d .  328  LITERATURE CITED Abe,  H . 1971. Small mammals of central A g r i c . Hokkaido U n i v . , 56 : 403-406.  Nepal.  J.  Faculty  of  A g r a w a l , V . C . , and S. C h a k r a b o r t y . 1971. Notes on a c o l l e c t i o n of s m a l l mammals from N e p a l , w i t h the d e s c r i p t i o n of a new mouse-hare (Lagomorpha: O c h o t o n i d a e ) . Proc. zool. Soc, C a l c u t t a , 24:41-46'. A l l e n , G . M . 1937. Second p r e l i m i n a r y r e p o r t on the results of the second Dolan e x p e d i t i o n to west China and T i b e t : a new race of Ochotona . P r o c . A c a d . N a t . S c i . P h i l . , 89:341-342. A l l e n , G . M . 1938. The mammals of China and M o n g o l i a . Natural Hist. of C e n t r a l A s i a , V o l 11, P a r t 1. American Mus. of N a t u r a l H i s t o r y , N . Y . , 620pp. A l l e n , J . A . 1903. Report on mammals c o l l e c t e d i n N . E . S i b e r i a , by the Jesup N . P a c i f i c E x p e d i t i o n , w i t h f i e l d - n o t e s by N . G . B u x t o n . B u l l . Amer. Mus. N a t . H i s t . , 19:101-184. Allen, J.A. 1905. Mammals from Beaver County, U t a h . B r o o k l y n I n s t . A r t s and S c i . , S c i . B u l l . , J_: 1-17-122.  Mus.  A l l e n , ' J . A . 1912. A new p i k a from N a t . H i s t . , 31:103-104.  Mus.  Colorado.  Bull.  Amer.  A l l e n , J . A . , and R . C . Andrews. 1913. Mammals c o l l e c t e d B u l l . Amer. Mus. N a t . H i s t . , 32:427-436.  in Korea.  Anderson, E. 1968. Fauna of the L i t l e Box E l d e r Cave, Converse County, Wyoming. The C a r n i v o r a . U n i v . of Colorado Studies, S e r i e s i n E a r t h S c i . #6. U . of Colorado P r e s s , 59pp. Anthony, H . E . 1941. Mammals c o l l e c t e d by the V e r n a y - C u t t i n g Burma E x p e d i t i o n . F i e l d Mus. N a t . H i s t . ( Z o o l . S e r i e s ) , 27: 37. Argiropulo, A . I . 1932. M a t e r i a u x pour s e r v i r a l a c o n n a i s s a n c e . des Rongeurs de l ' A s i e C e n t r a l e . II Les ogotones (Ochotona L i n k , fam. Ochotonidae) de L ' A s i e C e n t r a l e et du K a z a k s t a n . Revue p r e l i m i n a i r e . Trudy Z o o l . I n s t . Akad. Nauk SSR, L e n i n g r a d , _1_: 35. A r g i r o p u l o , A . I . 1939. On a new form of Ochotona pr i c e i from Kazahkstan. I n v e s t . Kasach. f i l . Acad. S c i . USSR( 1939) , j_: 31-33. A r g i r o p u l o , A . I . 1948. A review of the Recent s p e c i e s of the f a m i l y Lagomyidae L i l l j e b , 1886 (Lagomorpha, Mammalia). Trudy Z o o l . I n s t . Akad. Nauk SSR, L e n i n g r a d , 7:124-128.  329  A t c h l e y , W . R . , C . T . G a s k i n s , and D. Anderson. 1976. Statistical p r o p e r t i e s of r a t i o s . I. E m p i r i c a l r e s u l t s . S y s t . Z o o l . , 2_5 :137-148. Bailey, V. 1913. Ten new mammals from New M e x i c o . P r o c . Soc. W a s h . , 26: 129-134.  Biol.  Bangs, 0 . 1899. D e s c r i p t i o n s of two new p i k a s from western N o r t h A m e r i c a . . P r o c . New England Z o o l . C l u b , J_:39~42. B a n n i k o v , A . G . 1951. Uchenyie z a p i s k i Moscovskogo (named a f t e r V . P . P o t e m k i a ) , 18:23-68.  instituta  B a n n i k o v , A . G . 1960. Notes on the mammals i n N i e n - s h a n and South Gobi a r e a ( C h i n a ) . B y a l l . Mosk. Obshch, I s p . P r i r . B i o l . , 65:5-12. B e r n s t e i n , A . D . 1963. Data on the e c o l o g y of the red p i k a ( Ochotona r u t i l a Sev.) i n Z a i l i i s k A l a t a u ( T i e n - S h a n ) . Way of l i f e and f e e d i n g . B y u l l . Mosk. Obshch. I s p y t a t . Prirody Otd. B i o l . , 68:24-36. Bernstein, A . D . 1970. The e c o l o g y of the b i g - e a r e d p i k a i n the T i e n - S h a n . Fauna E c o l . Rodents (Moscow), 9 : 6 2 - 1 0 9 . B i s s e l , A . F . , and R . A . F e r g u s o n . The j a c k k n i f e - t o y , edged weapon? The S t a t i s t i c i a n , 2 4 : 7 9 - 1 0 0 .  t o o l or two-  B i s w a s , B. and K h a j u r i a , H . 1955. Zoological results of the 'Daily Mail' Himalayan E x p e d i t i o n 1954. four new mammals from Khumbu, e a s t e r n N e p a l . P r o c . Z o o l . Soc. London, 8_:2530. Blackwelder, R.. 1967. Taxonomy: W i l e y , New Y o r k ) b , 688pp.  A  t e x t and r e f e r e n c e  book.  B l a c k w e l d e r , R . E . 1962. Animal taxonomy and the New S y s t e m a t i c s . Survey B i o l . P r o g r . , 4 : 1 - 5 7 . B l a n d f o r d , W . I . 1891. The fauna of Ceylon and Burma. Mammalia, P t .  B r i t i s h India, 11:251-617.  including  B l a n f o r d , . W.T. 1875. List of Mammalia c o l l e c t e d by the D r . S t o l i c s k a i n Kashmir, Ladak, E a s t e r n T u r k e s t a n , and Wahkan; w i t h d e s c r i p t i o n s of new s p e c i e s . J . A s i a t . Soc. B e n g a l , 44 :105-112. B l y t h , E . 1841. D e s c r i p t i o n s of another new s p e c i e s of (Lagomys) from the H i m a l a y a . J . A s i a t . Soc. B e n g a l , 817. Bonhote, J . L . 1904a. ' M o u s e - h a r e s ' of the genus Ochotona. P r o c . Z o o l . Soc. London, 1 0 : 1 3 .  Pika, 10:816Abstr.  330  Bonhote, J.L. 1904b. On the mouse-hares of the genus Ochotona. P r o c . Z o o l . Soc. London, 2 : 2 0 5 - 2 2 0 . B o r r e l l , A . E . 1931. A new p i k a from Idaho. 308.  J.  Mammal.,  12:306-  Boyce, A.J. 1964. The v a l u e of some n u m e r i c a l taxonomy w i t h r e f e r e n c e t o hominoid c l a s s i f i c a t i o n , pp. 47-65. I_n V . H . Heywood and J . M c n e i l l ( e d s . ) , P h e n e t i c and P h y l o g e n e t i c C l a s s i f i c a t i o n , S y s t . A s s . Pub. 6 . , 164pp. B r o a d b r o o k s , H . E . 1965. E c o l o g y and d i s t r i b u t i o n of the p i k a s Washington and A l a s k a . Amer. M i d i . N a t . , 7 3 : 2 9 9 - 3 3 5 .  of  Brown, J.H. 1971. Mammals on m o u n t a i n t o p s : Non-equilibrium i n s u l a r b i o g e o g r a p h y . Amer. N a t . , 105:467-478. Buechner, E. 1890. Wissenschaftliche Resultate der von N . M . P r e z e w a l s k i nach C e n t r a l - A s i e n unternommenen R e i s e n . Zool. T h e i l I . S a e u g e t h i e r e , p t . IV : 137-184. Buechner, E. 1894. Wissenschlaftliche R e s u l t a t e der von N . M . P r z e w a l s k i nach C e n t r a l e - A s i e n unternommenen R e i s e n . Zool. T h e i l I . Saeugethiere, pt. V :185-232. B u r t , W.H. 1954. The s u b s p e c i e s c a t e g o r y i n mammals. , 3:99-104.  Syst.  Zool.  Camin., J . H . and S o k a l , R.R. 1965. A method f o r deducing b r a n c h i n g sequences i n p h y l o g e n y . E v o l u t i o n , 19:311-326• Chemenko, I . 1914. B e i t r a e g e zur P a l a e o n t o l o g i e der tertiaeren und p o s t - t e r t i a e r e n s a u g e t i e r e des n o e r d l i c h e n Kaukasus. S t r a v i p o l i T r d . Obsc. i z u c . sev.-Kauk K r a j a , 3 : 1 - 3 9 . Churcher, C.S., and R . R . Dods. 1979. Ochotona and other v e r t e b r a t e s of possible Illinoian age from K e l s o Cave, H a l t o n County, O n t a r i o . Can. J . E a r t h S c i . , 16:1613-1620. C o l i n v a u x , P . A . 1964. The environment of the B e r i n g Land B r i d g e . E c o l . M o n o g r . , 34:297-329. Cooke, H . B . S . 1973. Pleistocene chronology: Quaternary R e s e a r c h , 3_ : 2 06-220.  long  or  short?  Corbet, G.B. 1978. The mammals of the P a l e a r c t i c r e g i o n : a taxonomic r e v i e w . B r i t i s h Museum ( N a t u r a l H i s t o r y ) , C o r n e l l U n i v e r s i t y P r e s s , I t h a c a , 314pp. Cowan, I . M c T . 1946. A new p i k a (genus Ochotona) C o l u m b i a . Canad. F i e l d - N a t . , 60:102-104.  from  British  331  Cowan, I.McT. 1955. The d i s t r i b u t i o n of p i k a s (Ochotona) i n B r i t i s h Columbia and A l b e r t a . M u r r e l e t , 3 5 : 2 0 - 2 4 . Cowan, I . M c T . , and C . J . G u i g u e t . 1965. The mammals of British Columbia. B.C. Provincial Museum, Handbook No. 11, V i c t o r i a , B . C . , 414pp. C u v i e r , G. 1800. Tableau G e n e r a l des C l a s s e s des Animaux. Lecons d ' a n a t o m i e comparee, V o l . I , t a b l . I . (not seen) D a v i s , P . H . , and V . H . Heywood. 1963. Principles of Taxonomy. O l i v e r and Boyd, E d i n b u r g h , 556pp.  Angiosperm  Dawson, M.R. 1965. Oreolagus and other Lagomorpha (Mammalia) from the Miocene of C o l o r a d o , Wyoming and Oregon. Univ. C o l o . S. ( E a r t h S c i . ) , J _ : 1 - 3 6 . Dawson, M.R. 1967. Lagomorph h i s t o r y and s t r a t i g r a p h i c r e c o r d , pp. 287-316 I_n C. T e i c h e r t and E . L . Yochelson, (eds.) Essays i n p a l e o n t o l o g y and stratiqraphy. Special Publ. Dept. G e o l . , U n i v . of Kansas, U . of Kansas P r e s s No. 2, Dawson, M.R. 1969. O s t e o l o g y of P r o l a g u s sardus, a Quaternary ochotonid (Mammalia, Lagomorpha). P a l e o v e r t e b r a t a , 2:)51190. De W i n t o n , W . E . , • a n d F.W. S t y a n . 1899. On Chinese Mammals, p r i n c i p a l l y from Western Szechuen. P r o c . Z o o l . Soc. London, 1899:592-578. Dillon, L.S. 1956. Wisconson climate m e r i c a . S c i e n c e , 123:167-176.  and l i f e zones i n North  Dixon, W.J. 1977. BMDP-77. B i o m e d i c a l computer s e r i e s . Los A n g e l e s , U n i v . of C a l i f . P r e s s .  programs  P-  Dubrovsky, Y u . A . 1963. Distribution of some f e a t u r e s of i t s e c o l o g y i n West K a z a k h s t a n . B y u l l . Mosk. Obshch. Ispytat. Prirody Otd. B i o l . , 68:44-79. Durrant, S.D., and M.R. L e e . 1955. Three new p i k a s (genus Ochotona) from U t a h . P r o c . B i o l . Soc. Wash., 6 8 : 1 - 1 0 . E h r i k , J . 1926. The r i g h t interpretation of the cheek-teeth t u b e r c l e s of Titanomys. Mus. N a t l . Hungar. A n n . , 23:178-186 Eldridge, N. 1972. S y s t e m a t i c s and e v o l u t i o n of Phacops rana (Green, 1832) and Phacops i o w e n s i s D e l o , 1935 (Trilobeta) from the M i d d l e Devonian of N o r t h A m e r i c a . B u l l . Amer. Mus. N a t . H i s t . , 147:45-114.  332 Eldridge, N . 1974. C h a r a c t e r d i s p l a c e m e n t Amer. Z o o l . , U:1083-1097.  in evolutionary time.  E l l e r m a n , J . R . , and T . C . ' S . M o r r i s o n - S c o t t . . 1 9 5 1 . P a l e a r c t i c and I n d i a n Mammals, 1758 to Museum, London, 810pp.  C h e c k l i s t of 1946. British  E l l i o t , D . G . 1901. A s y n o p s i s of the Mammals of N o r t h and the a d j a c e n t s e a s . F i e l d Mus. Z o o l . , 2_: 1 - 4 7 .  America  Erbaeva, M. 1966. New data on the b i o s t r a t i g r a p h y Quaternary d e p o s i t s of western T r a n s b a i k a l i a . B i o l . po i z u c h e n y u c h e t v e r t . p e r i o d a , Moskva, 3 1 : 9 3 - 1 0 3 .  of the Komisii  E r b a e v a , M. 1976. F a m i l y Lagomyidae. pp.66-74 I_n D. Bazhanov, M. E r b a e v a , and I . Rezanov. The Geology and Fauna of Key Sections of the Quaternary of Western Transbaikalia. Moskva, Nauka. Eversmann, E .  1842. Uchen. Zap. Kasan. U n i v . .3:3.  (hot seen)  F a r r i s , J . D . , A . G . K l u g e . , and M . J . E c k h a r d t . 1970. A n u m e r i c a l approach t o p h y l o g e n e t i c s y s t e m a t i c s . S y s t . Z o o l . , 19:172189. F a r r i s , J . S . 1970. Methods f o r Z o o l . , j_9:83-92.  computing  Wagner  trees.  Syst.  Feng, T. 1973. A new s p e c i e s of Ochotona (Ochotonidae, Mammalia) from M t . Jolmo-Lungma A r e a . A c t a Z o o l . S i n i c a , 19:69-75. Feng,  T . , and Y . Kao. 1974. Taxonomic notes on the T i b e t a n p i k a and a l l i e d s p e c i e s - i n c l u d i n g a new s u b s p e c i e s . A c t a Z o o l . S i n i c a , 20 : 76.-87 .  Feng,  T.C. 1973. A new s p e c i e s of Ochotona (Ochotonidae: Mammalia) from Mount Jalmo-Lungma area C h i n a . A c t a Z o o l . S i n i c a , _i_9-69-75.  F l e r o v , K. 1927. Sur 1'Ochotona (Mammalia, R o d e n t i a ) , provenant du l ' O u r a l du Nord. Ann. Mus. Z o o l . L e n i n g r a d , 28:138-144. Frank, R . E . , Massey, W . F . . and M o r r i s o n , D . G . 1965. B i a s i n m u l t i p l e d i s c r i m i n a n t a n a l y s i s . J . of M a r k e t i n g R e s e a r c h , 2 :250-258. Frenzel, B. Eurasia. Fulk,  1968. The P l e i s t o c e n e S c i e n c e , 161:637-649.  vegetation  of  northern  G . W . , and A . R . Khokhar. 1980. O b s e r v a t i o n s on the n a t u r a l h i s t o r y of a P i k a (Ochotona rufescens) from P a k i s t a n . Mammalia, 4 4 : 5 1 - 5 8 .  333  Gardner, M . C . 1950. An Acad. Sc i . , £0 : 344.  undescribed  p i k a from U t a h . J . Wash.  Genoways, H . H . , and J . R . C h o a t e . 1972. A m u l t i v a r i a t e analysis of s y s t e m a t i c r e l a t i o n s h i p s among p o p u l a t i o n s of the s h o r t tailed shrew (genus B l a r i n a ) i n . N e b r a s k a . S y s t . Z o o l . , 21: 106-116. G i d l e y , J . W . 1906. Evidence b e a r i n g on t o o t h P r o c . A c a d . S c i Wash., 8:91 - 106.  cusp  development.  Gidley, J.W. 1912. The lagomorphs an independent o r d e r . n . s . , 3_6:285-286.  Sci.,  G i n g e r i c h , P . D . 1977. P a t t e r n s of E v o l u t i o n i n the mammalian fossil record, pp.469-500 I_n: A . Hallam (ed.) P a t t e r n s of evolut i o n , as illustrated by the fossil record. (Developments i n P a l e o n t o l o g y and S t r a t i g r a p h y ; 5) E l s e v i e r S c i e n t i f i c P u b l i s h i n g Co. Gingerich, P.D. 1979. Paleontology, classification: An example from the r e c o r d . S y s t . Z o o l . , 28:451-464. Gould, S . J . 1966. A l l o m e t r y and s i z e B i o l . R e v . , 4J_: 587-640.  phylogeny, and mammalian fossil  i n ontogeny and p h y l o g e n y .  G o u l d , S . J . , and R . F . J o h n s o n . 1972. Geographic v a r i a t i o n . Rev. E c o l . S y s t . , 3:457-498.  Ann.  Gower, J . C . , and G . J . S . Ross. 1969. Minimum spanning t r e e s and single linkage cluster analysis. Appl. S t a t i s t . , 18:54-64. G r a y , J . E . 1842. D e s c r i p t i o n s of some new genera and fifty unrecorded s p e c i e s of Mammalia. Ann. Mag. N . H . , s e r i e s 1, 10:255-267. G r a y , J . E . 1867. Notes on the s k u l l s of hares (Leporidae) and picas (Lagomyidae) i n the B r i t i s h Museum. A n n . Mag. N . H . , s e r i e s 3, 2 0 : 2 1 9 - 2 2 5 . G r a y , J . E . , and G . R . G r a y . 1"863. Catalogue of specimens and drawings of Mammalia and b i r d s of Nepal and T h i b e t , p r e s . B . H . Hodgson, to B . M . 2nd E d . London. G r i n n e l , J . and S t o r e r , T.L. 1916. Diagnoses of seven new mammals from e a s t - c e n t r a l C a l i f o r n i a . Univ. C a l i f . Publ. Z o o l . , r ? : 1-8. G r i n n e l l , J . 1912. A new Cony from Whitney. Univ. C a l i f . P u b l . Z o o l . ,  the v i c i n i t y 10:125-129.  of  Mount  334  Grinnell,  J. 1918. S i x new mammals from the Mojave Desert and regions of C a l i f o r n i a . Univ. C a l i f . P u b l . Zool., 17: 423-430. Inyo  Gromov, I . M . , and G . I . B a r a n o v o i . 1981. O c o t o n i d a e . pp.66-74 Catalogue of the Mammals of the USSR. Akad. Nauk. SSSR ( L e n i n g r a d T V 4 56pp. Grzimck, h.c.Bernhard. 1975. H a r e s , R a b b i t s and P i k a s , pp.457462 I_n Grzimck' s An imal L i f e E n c y c l o p e d i a . Mammals I I I V o l 12, Van Nostrand R e i n h o l d Co. N . Y . 657pp. G u e n t h e r , A . 1875. D e s c r i p t i o n s of some L e p o r i n e Mammals from C e n t r a l A s i a . Ann. Mag. N . H . , s e r i e s 4, 16;228. Guilday, J.E. Ochotona 444.  1979. E a s t e r n N o r t h e r n American Pleistocene (Lagomorpha: Mammalia). Ann. C a r n . M u s . , 48:435-  G u i l d a y , J . E . , and E . K . Adam. 1967. S m a l l mammal remains Jaguar Cave, Lemhi County, Idaho. Tebiwa, 1 0 : 2 6 - 3 5 .  from  Gureev, A . A . 1964. Fauna of the USSR, mammals, v o l . 3, p a r t Lagomorpha. Moscow.  10,  Gureev, A . A . , and A . I . S c h e v t s c h e n k o . 'Ochotona pseudopussila' pp.231-232 In A . A . Gureev. Fauna of the USSR, mammals, v o l . 3 p t . 10, Lagomorpha. Moscow Guthrie, R . D . 1968a. P a l e o e c o l o g y of the l a r g e mammal community i n i n t e r i o r A l a s k a d u r i n g the l a t e P l e i s t o c e n e . Amer. M i d i . Nat., 79:346-363. G u t h r i e , R . D . 1968b. P a l e o e c o l o g y of a l a t e Pleistocene small mammal community from i n t e r i o r A l a s k a . A r c t i c , 21:224-243. Guthrie, R . D . , and J . V . Matthews, J r . 1981. The Cape D e c e i t f a u n a : e a r l y P l e i s t o c e n e Mammalian assemblage from the A l a s k a n A r c t i c . Quat. R e s . , J_:474-510. Hall,  E.R. 1934. A new p i k a (Mammalian genus Ochotona) from c e n t r a l Nevada. P r o c . B i o l . Soc. W a s h . , . 4 7 : 1 0 3 - 1 0 5 .  Hall,  E.R. 1946. Mammals B e r k e l e y , 710pp.  Hall,  E.R. 1951. A s y n o p s i s of the N o r t h America Lagomorpha. U n i v . Kansas P u b l . , Mus. N a t . H i s t . , 5:119-202.  Hall,  E . R . 1981. The Mammals of N o r t h A m e r i c a . 2nd e d . W i l e y - I n t e r s c i e n c e / John W i l e y , 1181pp.  of  Nevada.  Univ.  Calif.  Press,  2  vols.  335  Hall,  E.R., and C . L . H a y w a r d . 1941. Three new Mammals ( M i c r o t u s and Ochotona) from U t a h . Great B a s i n N a t u r a l i s t , 2:105-107.  Hall,  E . R . , and H . L . Bowlus. 1938. A new p i k a (Mammalian genus Ochotona) from s o u t h - e a s t e r n Idaho w i t h notes on near-by s p e c i e s . U n i v . C a l i f . P u b l . Z o o l . , 42:335-339.  Harington, CR. 1977. Pleistocene Territory. unpublished Ph.D. Edmonton, 1060pp.  Mammals of thesis, Univ.  the Yukon of A l b e r t a ,  H a r i n g t o n , C R . 1978. Faunal exchanges between S i b e r i a and N o r t h America - Evidence from Quaternary l a n d mammal remains in Siberia, A l a s k a and the Yukon T e r r i t o r y . A b s t r a c t s , F i f t h Biennial Conference, AMQUA. Univ. Alberta. Edmonton, A l b e r t a . S e p t . , 1978 :56-77 Harington, CR. 1978b. Quaternary v e r t e b r a t e faunas of Canada and A l a s k a and t h e i r suggested c h r o n o l o g i c a l sequence. S y l l o g e u s , 15:1-105. H a r r i s , R . J . 1975. A Primer of M u l t i v a r i a t e S t a t i s t i c s . P r e s s , New Y o r k , 332pp.  Academic  Hartigan, J . A . 1977. D i s t r i b u t i o n problems i n c l u s t e r i n g p p . 4 5 77. I_n Van R y z i n (ed.) Classification and Clustering. Academic P r e s s , New York Hassinger, J.D. 1973. A survey of the mammals of A f g h a n i s t a n , r e s u l t i n g from the 1965 S t r e e t E x p e d i t i o n ( e x c l u d i n g b a t s ) . F i e l d i a n a : Zoology, 6 0 : 1 - 1 9 5 . H e p t n e r , V . G . 1961. On geographic v a r i a b i l i t y of p i k a s (Ochotona L i n k : Mammalia, Lagormorpha) inhabiting Turkminia. Zool. Z h . , 40:621-622. Hibbard, C . W . , C . E . Ray, D . E . Savage, D.W. T a y l o r , and J . E . G u i l d a y . 1965. Quaternary mammals of North America p p . 5 0 9 525 I_n H . E . W r i g h t , J r . and D . D . Frey ( e d s . ) The Quaternary of the U n i t e d S t a t e s P r i n c e t o n U n i v . P r e s s , 922pp. Hodgson, B . H . 1841. Of a new s p e c i e s of Lagomys i n h a b i t i n g N e p a l , ( w i t h p l a t e ) - Lagomys n e p a l e n s i s , Nob. J . Asiat. Soc. B e n g a l , 10:854. Hodgson, B . H . 1857. On a new s p e c i e s of Lagomys ( L . c u r z o n i a e ) i n h a b i t i n g the n o r t h of S i k k i m and the proximate parts of T i b e t . J . A s i a t . Soc. B e n g a l , 26:207-208. Hoffman, R.S. 1978. Comments on. 'Faunal exchanges between S i b e r i a and North A m e r i c a ' , by C . A . Repenning. Abstracts, Fifth B i e n n i a l - C o n f e r e n c e , AMQUA. U n i v . A l b e r t a . Edmonton, A l b e r t a . S e p t . , 1978 :78~80.  336 H o l l i s t e r , N . 1912a. New mammals from the h i g h l a n d s of Smiths. Misc. C o l l . , 60:1-6. Hollister, N . 1912b. Wash. , 2_5:57-58.  Two new American p i k a s .  Siberia.  Proc. B i o l .  Soc.  H o p k i n s , D . M . 1967. The Cenozoic h i s t o r y of Beringia - a synthesis. pp.451-484 I_n D . M . Hopkins ( e d . ) , The B e r i n g Land B r i d g e . S t a n f o r d U n i v e r s i t y P r e s s , S t a n f o r d , C a l i f . H o w e l l , A . B . 1928. New A s i a t i c Mammals c o l l e c t e d by F . R . Wulsun. P r o c . B i o l . Soc. W a s h . , 4_1_: 1 15-120. H o w e l l , A . H . 1919. Descriptions of n i n e new p i k a s . P r o c . B i o l . Soc. W a s h . , 3 5 : 1 0 5 - 1 1 0 . Howell, A . H . 1924. Fauna, 47 : 1-57.  Revision  of  North  American  the American p i k a s .  N . Amer.  James, F . C . 1970. Geographic s i z e v a r i a t i o n in birds r e l a t i o n s h i p t o c l i m a t e . E c o l o g y , 5 J _ : 365-390. Kawamichi, T. 1968. Ochotona r o y l e i . j_6:582-594.  Winter behavior of J . F a c . Hokkaido U n i v .  and  its  the H i m i l a y a n p i k a , ( s e r i e s VI Z o o l . ) ,  Kawamichi, T. 1969. B e h a v i o r and d a i l y a c t i v i t i e s of Japanese- p i k a , Ochotona hyperborea yesoensis. J. Hokkaido U n i v . ( s e r i e s VI Z o o l . ) , T T T l 2 7 - 1 5 1 .  the Fac.  Kawamichi, T. 1971a. D a i l y a c t i v i t i e s and s o c i a l p a t t e r n of two Himalayan p i k a s , Ochotona m a c r o t i s and Ochotona r o y l e i observed a t M t . E v e r e s t . J . F a c . Hokkaido U n i v . ("series VI Z o o l . ) , 17:587-609. Kawamichi, T. 1971b. Annual c y c l e of b e h a v i o r and s o c i a l p a t t e r n of the Japanese p i k a , Ochotona hyperborea yesoensis. J. F a c . Hokkaido U n i v . ( s e r i e s VI Z o o l . ) , 1 8 : 1 7 3 - 1 8 5 . Khmelevskaya, N . V . 1961. On the b i o l o g y P a l l a s . Z o o l . Z h . , 4_0 : 1 583-1 585. K i s h i d a , K. 1930. A d i a g n o s i s of a new P i p i n g L a n s a n i a ( J . A r a c h n . and Z o o l . ) , 2. Kishida,  K. 1932. L a n s a n i a ,  Tokyo 4 : 1 5 0 .  (not  of Ochotona a l p i n a Hare  from  Yezo.  seen)  Kluge, A . G . , and J S . F a r r i s . 1969. Q u a n t i t a t i v e p h l y e t i c s and the e v o l u t i o n of A n u r a n s . S y s t . Z o o l . , 18: 1-32. K l u g e , A . G . , and W.C. K e r f o o t . 1973. The p r e d i c t a b i l i t y and r e g u l a r i t y of c h a r a c t e r d i v e r g e n c e . Amer. N a t . , 107:426-442  337  Koenigswald, W.v., and N. Schmitt-Kittler. 1972. Eine Wirbeltierfauna des Riss/Wuerme-Interglazials ErkenbrechtsweiIer (Schwaebische A l b , Baden-Wuerttemberg). M i t t . B a y e r . S t a a t s s a m l . P a l a e o n t o l . h i s t . G e o l . , Muenchen, _1_2: 1 43-1 47. R r e t z o i , M. 1941. W e i t e r e B e i t r a e g e zur K e n n t n i s der Fauna vom Gombaszoeg. Ann. Mus. N a t . H u n g . , Budapest, 34:105-138• Kurten, B. 1968. P l e i s t o c e n e mammals of Europe. N i c h o l s o n , London, 317pp.  W e i d e n f e l d and  K u r t e n , B . , and E . A n d e r s o n . 1972. The sediments and Jaguar Cave: II - The Fauna. Tebiwa, 1 5 : 2 1 - 4 6 .  fauna  of  Kurten, B . , and E. Anderson. 1980. P l e i s t o c e n e Mammals of N o r t h America Columbia U n i v . P r e s s , N . Y . , 442pp. K u z n e t s o v , B . A . 1965. Order R o d e n t i a . I_n N . A . B o b r i n s k i i , B.A. Kiznetsov and A . P . K u z y a k i n ( e d s . ) Key t o the mammals of the USSR. Moscow. 382pp. Lacepede, B . G . E . (not seen) L e w i n , R . A . 1981.  1799.  Tableau  des  divisions  des  Three s p e c i e s c o n c e p t s . Taxon,  Mammiferes.  30:609-613.  LeFort, P. 1975. The C o l l i d e d Range; P r e s e n t Knowledge of C o n t i n e n t a l A r c . Am. J o u r . S c i . , , 275-A:1-44. L i n k , H . F . 1798. (not seen)  Beytraege zur N a t u r g e s c h i c h t e ,  Livingston, D . A . 1955. Some p o l l e n p r o f i l e s E c o l o g y , 36:587-600.  Bd.I,  the  Th.2:74.  from a r c t i c  Alaska.  Long, C A . 1965. The mammals of Wyoming. U n i v . Kansas P u b l . Mus. N a t . H i s t . , J_4:493-758. Lord, J.K. Zool.  1863. Notes on two new s p e c i e s Soc. London, 1863:95-98.  of  mammals.  Proc.  Loukashkin, A.S. 1940. On the p i k a s of N o r t h e r n M a n c h u r i a . Mammal., 2j_: 402-405. Lydekker, R. 1912. Leporidae, Ochotonidae. S y s t e m a t i c , Zoo R e c . , 4 8 : 3 7 - 5 1 . Lyon,  M.W. Smiths.  1904. Classification of M i s c . C o l l . , 45:321-447.  hares  Mammalia, and t h e i r  J. III  allies.  L y o n , M.W. 1907. Notes on a c o l l e c t i o n of Mammals from the p r o v i n c e of K a n - s u , C h i n a . S m i t h s . M i s c . C o l l . , 50:133-138.  338  Maclnnes>. D . G . 1953. The Miocene and P l e i s t o c e n e Lagomorpha of East A f r i c a . B r i t i s h Museum (Nat. Hist.) F o s s i l Mammals A f r i c a , 6:1-30. Mathews, J . V . 1974. Quaternary environments at Cape D E c e i t (Seward P e n i n s u l a , A l a s k a ) : Evolution of a tundra ecosystem. G e o l . Soc. Amer. B u l l . , 85:1353-1384. Matschie, .214.  P.  1907. W i s s . E r g e b n . Exped. F i l c h n e r to C h i n a ,  Mayr, E . 1969. P r i n c i p l e s of Systematic Book C o . , New Y o r k , 428pp.  Zoology.  10:  McGraw-Hill  M e r r i a m , C . H . 1889. D e s c r i p t i o n s of f o u r t e e n new s p e c i e s and one new genus of N o r t h American mammals. N . Amer. Fauna, 2:1. Miller, A . H . 1936. An Nevada. J . Mammal.,  i s o l a t e d c o l o n y of grey-headed 17:174-175.  M i l l e r , G . S . 1911. Four new Chinese mammals. Wash., 2 4 : 5 3 - 5 5 .  Proc.  pika in  Biol.  Milne-edwards, A . 1872. Nouv. A r c h . Mus. N . H . P a r i s 7, 304. (not seen)  Soc.  Bull.:1-  M i t c h e l l , R . M . 1977. Accounts of Nepalese mammals and analysis of the h o s t - e c t o p a r a s i t e data by computer techniques, u n p u b l i s h e d P h . D . t h e s i s , Iowa S t a t e U n i v e r s i t y . 576pp. M i t c h e l l , R . M . 1980. The Ochotona (Lagomorpha: Ochotonidae) of Asia. Proceedings of Symposium on Q i n g h a i - X i z a n g ( T i b e t ) P l a t e a u , (page number u n s p e c i f i e d ) Mitchell, R . M . , and F . P u n z o . 1975. Ochotona lama sp. n. (Lagormorpha: O c h o t o n i d a e ) . A new p i k a from the T i b e t a n h i g h l a n d s of N e p a l . Mammalia, 39:419-422. M i t c h e n e r , C D . 1970. D i v e r s e approaches to B i o l . , 4:1-38.  systematics.  Evol.  Morrison, D.F. 1976. M u l t i v a r i a t e S t a t i s t i c a l Methods. 2nd E d . M c G r a w - H i l l Book C o . , New Y o r k , 415pp. Mosteller, F., regression.  and J . W . Tukey. 1977. Data analysis R e a d i n g , M a s s a c h u s e t t s : Addison-Wesley  and  Moulton, T . P . 1973. P r i n c i p a l s components a n a l y s i s of v a r i a t i o n i n form w i t h i n Oncaea con i f e r a G i e s b r e c h t , 1891, a species of Copepod ( C r u s t a c a e ) S y s t . Z o o l . , 22:141-156. Naumov, N . P . 1934. The mammalian fauna of the Tungus D i s t r i c t . A b s t r . Works z o o l . I n s t . Moscow S t a t e U n i v . (not seen)  339  Naumov, R . L . 1974. Ecology of Ochotona a l p i n a i n the West Z o o l . Zh. , 5_3: 1524-1529.  Sayan.  Neff,  N . A . , and G . R . S m i t h . 1978. M u l t i v a r i a t e a n a l y s i s f i s h e s . S y s t . Z o o l . , 28:176-196.  of h y b r i d  Neff,  N . A . , and L . F . M a r c u s . 1980. A survey of multivariates methods for systematics. New Y o r k : p r i v a t e l y p u b l i s h e d . 243pp.  N e l s o n , E.W. 1893. D e s c r i p t i o n of a new s p e c i e s of Lagomys A l a s k a . P r o c . B i o l . Soc. Wash., 8 : 1 1 7 - 1 2 0 . Nie,  from  N.H., C.H. Hull, K. S t e i n b r e n n e r , and D . H . B e n t . 1975. SPSS. S t a t i s t i c a l Package f o r the Soc i a l Sc i e n c e s . 2nd E d . M c G r a w - H i l l Book C o . , New Y o r k , 675pp.  Ogilby, W.M. 1839. Memoir on the mammalogy of t h H i m a l a y a s , p . l v i - l x x i v I_n J . F . R o y l e . I l l u s t r a t i o n s of the botany and other branches of the natural h i s t o r y of the Himalayan M o u n t a i n s , and of the f l o r a of Cashmere. Reprint Edition (1970) Today and Tomorrow's P r i n t e r s and P u b l i s h e r s . New D e l h i . 468pp. Ognev, S . I . 1940. Mammals of the USSR and a d j a c e n t countries (mammals of e a s t e r n Europe and N o r t h e r n A s i a . V o l . 4: R o d e n t s . Moscow ( T r a n s l a t e d : I s r a e l Program f o r Scientific T r a n s l a t i o n s , Jerusalem, - o r i g i n a l in Russian) O r r , R . T . The L i t t l e - K n o w n P i k a . M a c M i l l i a n P u b l i s h i n g Co. New Y o r k , 144pp.  Inc.,  Osgood, W.H. 1913. A new name f o r Ochotona m i n i m a . P r o c . Soc. Wash., 2 6 : 8 0 .  Biol.  Osgood, W.H. 1932. Mammals of the K e l l y - R o o s e v e l t s and Delacour A s i a t i c E x p e d i t i o n s . F i e l d museum P u b l . Z o o l . , 18:193. Pakizh, V . I . Some d a t a on the ecology of Ochotona p u s s i l a i n n o r t h e a s t Kazakhstan i n r e s p e c t to change of its range. Z o o l . Z h . , 48:1214-1220. Pallas, P.S. 1768. Descriptio Leporis p u s i l l i . A c a d . P e t r o p o l . T . , 13:531-538. Pallas,  P.S.  Novi  1769. Nov. Comm. S c i . P e t r o p . , J_8:531. (not  Pallas, P.S. 1771. R e i s e durch v e r s c h i e d e n R u s s i c h e n R e i c h s , S t . P e t e r s b u r g . T h e i l 1. Pallas, P.S. 1773. Russichen Reichs,  commemt. seen)  Provinzen (not seen)  R e i s e durch v e r s c h i e d e n Provinzen S t . P e t e r s b u r g . T h e i l 2. (not seen)  des des  340  Pallas, P.S. 1776. Reise durch v e r s c h i e d e n R u s s i c h e n R e i c h s , S t . P e t e r s b u r g . T h e i l 3. Pallas, P.S. Erlangen.  Provinzen (not seen)  des  1778. Novae S p e c i e s Quadrupedum e G l i r i u m O r d i n e . (not seen)  P a l l a s , P . S . 1811. B e r i c h t e ueber d i e Zoographia Rosso-Asiatica von P a l l a s a b g e s t a t t e t .an d i e K a i s e r l . I. Akad. der W i s s e n s c h a f t e n zu S t . P e t e r s b u r g , (not seen) P a r k e r , R . R . , and P . A . L a r k i n . 1959. f i s h e s . J . F i s h . Res. Bd. C a n . , Peters,  W. 1882. S . B . ' G e s .  A concept 16:721-745.  of  growth  in  N a t . F r . B e r l i n 95:55 (not seen)  Pidoplitshka, I . G . 1938. A survey of p a l e o n t o l o g i c a l f i n d s 1917 t o 1937. P a r t I . M a t . Study f o s s i l Fauna U . K . R . S . S . R . K i e v , J_: 9 7 - 1 7 4 .  P i e r c e , B . A . , and J . B . M i t t o n . 1979. A r e l a t i o n s h i p of genetic v a r i a t i o n w i t h i n and among p o p u l a t i o n s : An e x t e n s i o n of the K l u g e - K e r f o o t phenomenon. S y s t . Z o o l . , 2 8 : 6 3 - 7 0 . Pimental, R . A . 1959. M e n d e l i a n i n f r a s p e c i f i c d i v e r g e n c e and t h e i r a n a l y s i s . S y s t . Z o o l . , 18:363-373.  levels  P u g e t , A . 1976. The Afghan p i k a : Ochotona r u f e s c e n s rufescens (Mamm. Lagomorpha). B u l l . Soc. Z o o l . . F r a n c e , 101 : 203-208. Richardson, J. 1828. Short c h a r a c t e r s of p r o c u r r e d on C a p t . Franklin's late Z o o l o g i c a l J o u r n a l , 3_:516-520.  a few Quadrupeds Expedition. The  R i s i n g , J . D . 1970. M o r p h o l o g i c a l v a r i a t i o n and e v o l u t i o n i n some N o r t h American o r i o l e s . S y s t . Z o o l . , 19:315-351. Roberts, T.J. 1977 London, 361pp.  The Mammals of P a k i s t a n . E r n e s t Benn L t d . ,  R o h l f , F . J . and R.R. S o k a l . 1965. Coefficients of correlation and d i s t a n c e i n n u m e r i c a l taxonomy. U n i v . Kansas S c i . B u l l . , £5:3-27. Rohlf, F.J. 1974. NT-SYS N u m e r i c a l Taxonomy system of m u l t i v a r i a t e s t a t i s t i c a l programs. The S t a t e U n i v e r s i t y of N.Y. at Stony B r o o k , Stony Brook, N . Y . (page number unspecified) Rohwer, S . A . , and D . J . K i l g o r e . 1973. I n t e r b r e e d i n g i n the a r i d l a n d f o x e s , Vulpes v e l o x and V . m a c r o t i s . S y s t . Z o o l . , 22: 157-165.  341  Rosen, D . E . 1978. V i c a r i a n t p a t t e r n s and h i s t o r i c a l i n b i o g e o g r a p h y . S y s t . Z o o l . , 27:159-188.  explanation  R u s s e l l , L . S . 1960. The d e n t i t i o n of r a b b i t s and o r i g e n Lagomorpha. B u l l . n a t . Mus. C a n . , 166:41-45. Schrenk  1858.  Amurland I ,  p.148  (not  Sengor', . A . M . C . 1981. Symposium on Q i n g h a i - X i z a n g ( T i b e t ) - Beijing (Peking), C h i n a . EOS Am. G e o p h y s i c a l T r a n s . , 62:601-603.  Sher,  the  seen)  'Sclosser, M. 1924. T e r t i a r y v e r t e b r a t e s from M o n g o l i a . S i n i c a , s e r . C , J_:1-132.  S e v e r t z o f f , N . A . 1873. 1-157.  of  Fauna of T u r k e s t a n .  Paleont. Plateau Union,  Nachr. Ges. M o s c ,  8:  A . V . 1973. Mammals and the B e r i n g l a n d d u r i n g the L a t e C e n o z o i c : p u z z l i n g problems and some ways to s o l v e them., pp.49-56 I_n R.Ye. Gitterman, A . I . Kozlovsky, V . L . Kontrimavichus, Yu.A. Motchanov, O.M. Petrov, F.B. Chernjavsky, A . V . Sher and B . A . Y e r t s e v ( e d s . ) The B e r i n g Land B r i d g e and i t s Role for the H i s t o r y of Holarctic F l o r a s and Faunas i n the L a t e Cenozoic ( A b s t r a c t s ) . A c a d . S c i . USSR, F a r - E a s t e r n S c i . C e n t r e . Khabarovsk.  Shotwell, J.A. 1956. H e m p h i l i a n mammalian assemblage from n o r t h e a s t e r n Oregon. G e o l . Soc. Amer. B u l l . , 67:717-738• Simionescu, I. 1930. Les vertbres Pliocenes de Malustene (Roumanie). Acad. Romana P u b l . Fond. V a r . Adamachi, 9 : 1 - 6 9 . Skalon 1938. seen)  B u l l . Anti-Plague Organis E. S i b e r i a  Skinner, M . F . , a n d O.C. Keison. and p r e l i m i n a r y revision N a t . H i s t . , 8_9: 127-256.  1:85-87  (not  1947. The f o s s i l B i s o n of A l a s k a of the genus. B u l l . Amer. Mus.  Smirov. P.K. 1974. Biotopic distribution and territorial relationships of the steppe nd the P a l l a ' s p i k a s i n the sympatic zone of their ranges. Byull. Mosk. Obshch. I s p y t a t . Prirody Otd. B i o l . , 75:72-80. Smith, A . T . 1974a. The d i s t r i b u t i o n and d i s p r e s a l of p i k a s : Consequences of i n s u l a r p o p u a l t i o n s t r u c t u r e s . E c o l o g y , 55: 1112-1119. S m i t h , A . T . 1974b. The d i s t r i b u t i o n and d i s p e r s a l of pikas: I n f l u e n c e s of b e h a v i o r and c l i m a t e . E c o l o g y , 55:1368-1376.  342  Smith, A . T . 1981 a. P o p u l a t i o n dynamics of p i k a s (genus Ochotona ). p.311-324 In: K.Myers and C.D.MacInnes (eds.! Proc. World Lagomorph C o n f . G u e l p h , O n t . 1979. U . G u e l p h , ( i n press) S m i t h , A . T . 1981b. T e r r i t o r i a l i t y and s o c i a l behavior of Ochotona pr i n c e p s . p.572-586 I_n: K.Myers and C.D.MacInnes ( e d s . ) P r o c . World Lagomorph C o n f . G u e l p h , O n t . 1979. U. G u e l p h , ( i n press.) Sneath, P.H.A. and S o k a l , R . R . 1973. N u m e r i c a l Taxonomy. W.H. Freeman and Company, San F r a n c i s c o , 573pp. Sokal, R.R. Biol.,  1962. Typology and e m p i r i c i s m i n taxonomy. J . 3:230-267.  S o k a l , R . R . 1973. The s p e c i e s problem r e c o n s i d e r e d . 22:360-374.  Syst.  Theor. Zool.,  S o k a l , R . R . 1976. The K l u g e - K e r f o o t phenomenon reexamined. Amer. N a t . , 110:1077-1091. S o k a l , R . R . , and F . J . R o h l f . 1969. B i o m e t r y . The p r i n c i p l e s and p r a c t i c e of s t a t i s t i e s i n b i o l o g i c a l r e s e a r c h . W.H. Freeman and C o . , San F r a n c i s c o , 776pp. Sokal, R.R., and T . J . concept: a c r i t i c a l  C r o v e l l o . 1970. The b i o l o g i c a l s p e c i e s e v a l u a t i o n . Amer. N a t . , 104:127-153.  S t a n l e y , S . M . 1973. An e x p l a n a t i o n 27:1-26. Storr,  G.C.C.  1780.  Strand, E. 1928. palaeontologica.  f o r Cope's  rule.  Prodromus M e t h o d ! Mammalium. (not  Evolution, seen)  Miscellanea nomenclatorica zoologica et A r c h . N a t u r e s c h . B e r l i n 92A, 8_:59-6l,75.  S u t c l i f f e , A . J . , and K. K o w a l s k i . 1976. P l e i s t o c e n e rodents the B r i t i s h I s l e s . B r i t i s h Museum (Nat. H i s t . ) , B u l l . , 35-147.  of 27:  Sych, L . 1980. Lagomorpha (Mammalia) from the P l i o c e n e and E a r l y P l e i s t o c e n e of P o l a n d . F o l i a Q u a t e r n . , 5 1 : 5 7 - 6 4 . Tate,  G.H.H. 1947. Mammals of Eastern P u b l i s h i n g Co. I n c . , New Y o r k , 366pp.  Asia.  MacMillian  Taylor, D.W. 1965. The study of P l e i s t o c e n e non-marine m o l l u s k s i n N o r t h A m e r i c a , p.597-611 In H . E . Wright and D . G . Frey ( e d s . ) The Quaternary of the U n i t e d S t a t e s P r i n c e t o n U n i v . P r e s s , P r i n c e t o n , N . J . 922pp.  343  T e i l h a r d de C h a r d i n , P., a n d C.C. Young. 1931. F o s s i l mammals from the late Cenozoic of northern China. P a l a e o n t o l o g i a S i n i c a S e r . C., 9:1-67. Thomas, 0. 1908a. Mammals c o l l e c t e d i n t h e p r o v i n c e and Shen-si, Northern China. Abstr. Proc. London,, 63:44-45.  of Shan-si Zool. Soc.  Thomas, 0. 1908b. On mammals f r o m t h e p r o v i n c e of Shan-si and S h e n - s i , N o r t h e r n C h i n a . P r o c . Z o o l . S o c . L o n d o n , 1908:963983 . Thomas, 0. 1909. A c o l l e c t i o n o f Mammals f r o m N o r t h e r n a n d C e n t r a l M a n c h u r i a . A n n . Mag. N.H., s e r i e s 8, 4:500-505. Thomas, 0. 191 l a . New Mammals f r o m Central and Western Asia, m o s t l y c o l l e c t e d by Mr. D o u g l a s C a r r u t h e r s . Ann. Mag. N.H., s e r i e s 8, 8 : 758. Thomas, 0. 1911b. New r o d e n t s f r o m Sze-chwan c o l l e c t e d by C a p t . F.M. B a i l e y . Ann. Mag. N.H., s e r i e s 8, 8:727-729. Thomas, O. 1911c. Mammals c o l l e c t e d i n S o u t h e r n S h e n - s i , C h i n a . A b s t r . P r o c . Z o o l . S o c . London, 95:26-27.  Central  Thomas, 0. 1911d. On mammals from C h i n a . Proc. Z o o l . Soc. London,  Central  Southen Shen-si, 1911:687-695.  Thomas, 0. 1912a. On mammals f r o m C e n t r a l A s i a , c o l l e c t e d by Mr. D o u g l a s C a r r u t h e r s . Ann. Mag. N.H., s e r i e s 8, 9:391-408. Thomas, O. 1912b. On a c o l l e c t i o n o f s m a l l Mammals f r o m t h e T s i n - L i n g Mountains, C e n t r a l China, presented by Mr. G. F e n w i c k Owen t o t h e N a t i o n a l Museum. Ann. Mag. N.H., s e r i e s 8, J_0:395. Thomas, 0. 1914. On s m a l l mammals f r o m D j a r k e n t , Ann. Mag. N.H., s e r i e s 8, 13:563-573.  Central  Thomas, 0. 1920. Some new mammals f r o m Baluchistan and w e s t I n d i a . J . Bombay N a t . H i s t . S o c , 2 6 : 9 3 3 - 9 3 8 .  Asia. north-  Thomas, 0. 1922. On some new f o r m s o f O c h o t o n a . Ann. Mag. N.H., s e r i e s 9, 9:187-193. Thomas, 0. 1923. On Mammals f r o m the Li-Kiang Range, Yunnan, being a. f u r t h e r o b t a i n e d by Mr. G e o r g e F o r e s t . Ann. Mag. N.H., s e r i e s 9, n _ : 6 5 5 - 6 6 3 . Thomas, 0. 1924. A new p i k a s e r i e s 9, L 3 ~ : 1 6 3  1 6 4  from  the  Altai.  Ann.  Mag.  N.H.,  344  Thomas, 0., and M.A.C. H i n t o n . 1922. The mammals o f t h e 1921 Mt. E v e r e s t E x p e d i t i o n . Ann. Mag. N.H., s e r i e s 9, 9:178-186. Thorpe, R.S. 1973. I n t r a s p e c i f i c v a r i a t i o n o f t h e r i n g e d s n a k e N a t r i x n a t r i x ( 1 . ) . u n p u b l i s h e d Ph.D. t h e s i s , C o u n c i l f o r N a t i o n a l Academics Awards. Thorpe, and  R.S. 1976. B i o m e t r i c a n a l y s i s o f g e o g r a p h i c v a r i a t i o n r a c i a l a f f i n i t i e s . B i o l . R e v . , 5,1 :407-452.  T h o r p e , R.S. 1979. M u l t i v a r i a t e a n a l y s i s o f t h e p o p u l a t i o n systematics of t h e r i n g e d snake Natr i x n a t r i x ( ? ) . P r o c . Roy. S o c . E d i n . , 7 8 8 : 1 - 6 2 . T o b i e n , H. 1935. U e b e r d i e p l e i s t o z a e n e n and postpleistozaenen Prolagus - formen Korsikas und S a r d i n i e n s . B e r . n a t u r f . Ges. F r e i b u r g , 3_4:253-344. Trouessart, 1897. C a t a l o g u s mammaliam, f o s s i l i u m . B e r l i n , 2nd e d . , 664pp.  tarn  viventium  Turov, S. 1924. S u r l a f a u n e d e s V e r t e b r e s du L i t t o r a l l a c B a i k a l . C R . A c a d . S c i . , L e n i n g r a d : 109-112 Van  V a l e n , L. 1969. L a t e P l e i s t o c e n e Extinctions. Am. P a l e o n t . C o n v e n t i o n : 469-485  Van  V a l e n , L. 1973. A p o s s i b l e o r i g i n :484-49l .  Van  Valen, L. 1978 T h e o r y , 4:33-43.  The s t a t i s t i c s  Proc.  quam N.E. du North  f o r r a b b i t s . E v o l u t i o n , J_8 of v a r i a t i o n .  Evolutionary  V i n o g r a d o v , B.S. 1933. M l e k p i t a y u s h c h i e SSR (Mamma1s U S S R ) . T r u d y Z o o l . I n s t . A k a d . Nauk SSR, L e n i n g r a d .  of t h e 87pp.  Vinogradov, B.S., and A . I . A r g i r o p u l o . 1941. Fauna o f t h e USSR, mammals. Key t o R o d e n t s . Zool. I n s t . Acad. S c i . USSR Moscow-Leningrad. 241pp. (Translated: I s r a e l Program f o r Scientific Translations, Jerusalem, 1968 - o r i g i n a l i n Russian) Von  der Meulen, A . J . 1978. M i c r o t u s and P i t y m y s ( A r v i c o l i d a e ) from Cumberland Cave, M a r y l a n d , w i t h a c o m p a r i s o n o f some New a n d O l d W o r l d s p e c i e s . Ann. C a r n e g i e Mus., 4 7 : 1 0 1 - 1 4 5 .  Vorontsov, N.N., and E.Yu. I v a n i t s k a y a . 1973. C o m p a r a t i v e karyology of North Palaearctic pikas ' (Ochotona, O c h o t o n i d a e , Lagomorpha) C a r y o l o g i a , 26:213-223. Waterhouse  1848. N a t . H i s t . Mammalia 2:17. ( n o t s e e n )  345  W e s t o n , M.L. 1981. The O c h o t o n a a l p i n a c o m p l e x : a s t a t i s t i c a l r e - e v a l u a t i o n , pp. 74-90 I_n: K.Myers a n d C.D.MacInnes ( e d s . ) P r o c . W o r l d Lagomorph C o n f . G u e l p h , O n t . 1979. U. Guelph, (in press) W e s t o n , M.L., R.M. Mitchell, a n d A.T. S m i t h . 1981. F a m i l y Ochotonidae - Order Lagomorpha. I_n J . H . H o n a c k i , K.E. Kinman a n d J.W. Koeppl ( e d s . ) Mammal i an Spec i e s o f t h e W o r l d . A s s o c . S y s t . C o l l . , Mus.. N.H., K a n s a s , ( i n p r e s s ) W i l s o n , E.O., a n d W.L. Brown. S y s t . Z o o l . , 2:97-1 11. Wood,  1953.  The  subspecies  concept.  A.E. 1957 What, i f a n y t h i n g , i s a r a b b i t ? E v o l u t i o n , 11: 417-425.  Youngman, P.M. 1975. Mammals o f t h e Yukon Territory, Canada. N a t l . Mus. N a t . S c i . ( O t t a w a ) P u b l . Z o o l . ( 1 0 ) . 192pp. Zar,  J.H. 1974. B r o s t a t i s t i c a l A n a l y s i s. P r e n t i c e - H a l l , I n c . E n g l e w o o d C l i f f s , N . J . , 620pp.  Z e v e g m i d , D. Mongolian 53 .  1975. B i o l o g y of p i k a s (Ochotonidae) i n the P e o p l e ' s R e p u b l i c . M i t t . Z o o l . Mus. B e r l . , 51:41 -  Zimina, R.P.. 1962. The e c o l o g y o f O c h o t o n a m a c r o t i s G u e n t h e r d w e l l i n g i n the area of T e r s k y - A l u t a u mountain range. B y u l l . Mosk. O b s h c h . I s p y t a t . P r i r o d y O t d . B i o l . :5—12  346  APPENDIX  I  L I S T OF RECENT SPECIMENS I.D. # . Museum  Locality  0. a l p i n a 0. a l p i n a a l p i n a 23293 MCZ 178808 AMNH 7611 0. a l p i n a T240726  CVM  S i b e r i a , A l t a i , B a k h t a r m a R. ( G r o u p 1) USSR, E. K a z a k h s t a n , K a r a g a y D i s t . , K a t o n ( G r o u p 1) A l t a i ( G r o u p 1)  argentata USNM C h i n a : 15 mi NNW N i n g h s i a , K a n s u ( G r o u p 2B)  Northern  0. a l p i n a c i n e r e o f u s c a 14246 MCZ S i b e r i a , 50 m i . s. o f I r k u t s k ( G r o u p 1) 23967 T r a n s b a i k a l i a n e a r B a l z i n o ( G r o u p 1) 25962 Amur P r o v i n c e , J a b l o n o i Range ( G r o u p 1) 1474 MN F e l i u m , K l ( L e s s e r ) H s i n g a n (Wald) ( G r o u p 1) 1475 F e l i u m , K l ( L e s s e r ) H s i n g a n (Wald) ( G r o u p 1) 1476 F e l i u m , K l ( L e s s e r ) H s i n g a n (Wald) ( G r o u p 1) 0. a l p i n a c o r e a n a 34051 AMNH P o c h o n g , K o r e a ( G r o u p 6C) 34049 Pochong., K o r e a ( G r o u p 6C) 0. a l p i n a h y p e r b o r e a 45640 AMNH 45 m i . ne o f U r g a , M o n g o l i a ( G r o u p 1) 45644 45 m i . ne o f U r g a , M o n g o l i a ( G r o u p 1) 45646 45 m i . ne o f U r g a , M o n g o l i a ( G r o u p 1) 45650 45 m i . ne o f U r g a , M o n g o l i a ( G r o u p 1) 45651 45 m i . ne o f U r g a , M o n g o l i a ( G r o u p 1) 87105 S i b e r i a : S r e t e n s k , T r a n s b a i k a l i a ( G r o u p 1) .11376 MCZ E a s t S i b e r i a : Emma H a r b o r ( G r o u p 6B) S-13310 MS K u r e y k a R i v e r ( G r o u p 6A) S-14828 T u n g u s k a R i v e r ( G r o u p 6A) S-88995 P o l a r U r a l s ( G r o u p 6A) S-88997 P o l a r U r a l s ( G r o u p 6A) S-88998 P o l a r U r a l s ( G r o u p 6A) S-89001 P o l a r U r a l s ( G r o u p 6A) S-89003 P o l a r U r a l s ( G r o u p 6A) S-89004 P o l a r U r a l s ( G r o u p 6A) T16107 ZM R i v e r S o c h . ( G r o u p 6A) 16110 R i v e r Soch ( G r o u p 6A) 1481 MN Kenho, e r r D s i n g a n 1483 Kenho, e r r D s i n g a n 1484 Kenho, e r r D s i n g a n 1485 Kenho, e r r D s i n g a n  347  1487 1488 1489 1490 1492 MCZ 1 1 387 23448 23449 MCZ 15271 1 5274 1 5275 . •  9 km v o n Kenho err Dsingan Kenho, e r r D s i n g a n Kenho, e r r D s i n g a n Kenho, e r r D s i n g a n E a s t S i b e r i a , Emma H a r b o r ( G r o u p 6B) 45 mi ne o f U r g a , M o n g o l i a ( G r o u p 1) 45 mi ne of U r g a , M o n g o l i a ( G r o u p 1) N i s c h n i j , K o l y m s k ( G r o u p 6A) N i s c h n i j , K o l y m s k ( G r o u p 6A) N i s c h n i j , K o l y m s k , S i b e r i a ( G r o u p 6A)  , a l p i n a mantchur i c a AMNH 45 mi ne of U r g a , M o n g o l i a ( G r o u p 4561 3 4561 5 45 mi ne of U r g a , M o n g o l i a ( G r o u p 45622 45 mi ne of U r g a , M o n g o l i a ( G r o u p 45627 45 mi ne of U r g a , M o n g o l i a ( G r o u p 45628 45 mi ne of U r g a , M o n g o l i a ( G r o u p 45629 45 mi ne of U r g a , M o n g o l i a ( G r o u p 45630 45 mi ne of U r g a , M o n g o l i a ( G r o u p 45632 45 mi ne of U r g a , M o n g o l i a ( G r o u p 45634 45 mi ne of U r g a , M o n g o l i a ( G r o u p 45635 45 mi ne of U r g a , M o n g o l i a ( G r o u p 45636 45 mi ne of U r g a , M o n g o l i a ( G r o u p 45638 45 mi ne o f U r g a , M o n g o l i a ( G r o u p 45639 45 mi ne of U r g a , M o n g o l i a ( G r o u p 23447 45 mi ne of U r g a , M o n g o l i a ( G r o u p 178820 USSR: K y u s y a r , Lower C o u r s e , L e n a R i g h t Bank ( G r o u p 1) 0 . a l p i n a n.itida MCZ S i b e r i a , A l t a i , Dapucha 1 4232 S i b e r i a , A l t a i , Dapucha 14234 14237 S i b e r i a , A l t a i , Dapucha 1 4246 S i b e r i a , A l t a i , Tckeyan-Burgazi 34548 S i b e r i a , A l t a i , Dapucha 1 4244 S i b e r i a , A l t a i , Tckeyan-Burgazi 1 4245 S i b e r i a , A l t a i , Tckeyan-Burgazi alpina svatoshi MCZ 27 1 72 ZM T49776 T49777 49778 T20220 20221 T25009 MS 88357 91041 91043 91 057 91 060 S-40461 S-40464 S-40477 S-46696 S-46697  0.  S i b e r i a , B a r u s i n g e b i r g e ( G r o u p 1) n e a r T a r b a g a t a y , USSR ( G r o u p 1) n e a r T a r b a g a t a y , USSR ( G r o u p 1) n e a r T a r b a g a t a y , USSR ( G r o u p 1) Hangayn N u r u , USSR ( G r o u p 1) Hangayn N u r u , USSR ( G r o u p 1) n e a r T a r b a g a t a y , USSR ( G r o u p 1) U e l e n , USSR ( G r o u p T U e l e n , USSR ( G r o u p 1 U e l e n , USSR ( G r o u p 1 U e l e n , USSR ( G r o u p 1 U e l e n , USSR ( G r o u p 1 K r o n o t s k i y P e n n , USSR ( G r o u p 1) K r o n o t s k i y P e n n , USSR ( G r o u p 1) K r o n o t s k i y P e n n , USSR ( G r o u p 1) Deep B a y , USSR ( G r o u p 1) Deep B a y , USSR ( G r o u p 1)  R  Pass Pass Pass  348  alpina 34716 34717 34718  0.  yesoensis NMC Japan: Hokkaido Japan: Hokkaido Japan: Hokkaido  I s . , Karibetsu, I s . , Karibetsu, I s . , Karibetsu,  800m ( G r o u p 6 800m ( G r o u p 6 700m ( G r o u p 6  collaris T36297 17802 31165 35317 17829 17824 17328 35322 35325 31168 31166 35319 31164 35329 31163 31167 31173 35330 35321 35320 35323 35324 17830 17831 17869 31161 40318 40314 40313 40315 40317 40312 40316 40311 40303 40304 40305 40306 40307 40302  USNM NMC  A p p r o x . 200 m i . S o f F t . Y u k o n , N e a r h e a d o f Tanana R i v e r , A l a s k a Rose R i v e r , C a n o l Rd. M i . 95 L i t t l e H y l a n d R., 128 m i . n. Watson L . , 5000' K e e l e L. , 63 31'N 130 28'W, 4000' Rose R i v e r , C a n o l Rd. M i . 95 Rose R i v e r , C a n o l Rd. M i . 95 Teepee L a k e K e e l e L., 63 31 ' N .130 28'W, 4200' . K e e l e L., 63 31'N 130 28'W, 4300' 138 m i . n. Watson L. & 5 m i . e... L i t t l e H y l a n d R., 6000' 138 m i . n. Watson L. .£ 5 mi., e. L i t t l e H y l a n d R., 6000' K e e l e L., 63 31'N 130 28'W, 4000' L i t t l e H y l a n d R., 128 m i . n. Watson L., 4000' K e e l e L., 63 3 l ' N 130 28'W, 5200' L i t t l e H y l a n d R., 128 m i . n. Watson L., 4000' 138 m i . n. Watson L. & 5 m i . e. L i t t l e H y l a n d R., 6000' O g i l v i e M t s . , 48 m i . ne. Dawson, 4000' K e e l e L., 63 3 1 ' N 130 28'W, 5200' K e e l e L., 63 3 l ' N 130 28'W, 4700' K e e l e L., 63 3 l ' N 130 28'W, 4700' K e e l e L., 63 3 1 ' N 130 28'W, 2820' K e e l e L., 63 3 l ' N 130 28'W, 4300' Rose R i v e r , C a n o l Rd. M i . 95 Rose R i v e r , C a n o l Rd. M i . 95 Rose R i v e r , C a n o l Rd. M i . 95 H a e k e l H i l l , 8 m i . nw. W h i t e h o r s e , 4800' F i s h h o o k , 61 45'N 149 15'W F i s h h o o k , 61 45'N 149 15*W F i s h h o o k , 61 45'N 149 15'W F i s h h o o k , 61 45'N 149 15'W F i s h h o o k , 61 45'N 149 15'W F i s h h o o k , 61 45'N 149 15'W F i s h h o o k , 61 45'N 149 15'W F i s h h o o k , 61 45'N 149 15'W D e n a l i Hwy. e. o f M a c l a r e n , 63 08'N 146 30'W D e n a l i Hwy. n e a r M a c l a r e n , 63 08'N 146 15'W D e n a l i Hwy. n e a r M a c l a r e n , 63 08'N 146 15'W D e n a l i Hwy. n e a r M a c l a r e n , 63 08'N 146 15'W D e n a l i Hwy. n e a r M a c l a r e n , 63 08'N 146 15'W D e n a l i Hwy.- e. o f M a c l a r e n , 63 08'N 146 30'W  349  40308 40309 40310 30653 30654 30655 5639 5640 5634 30649 2190 30651 30650 30652 5075 5076 5077 5078 5079 5080 5081 1397 1 13972 13973  PSM  L u c k y S h o t , 61 47'N 149 20'W L u c k y S h o t , '-61 47'N 149 20'W L u c k y S h o t , 61 47'N 149 20*W M i . 32, D e n a l i Hwy, 4000' M i . 32, D e n a l i Hwy, 4000' M i . 3 2 , D e n a l i Hwy, 4000' A l a s k a , C h i t i n a R., H u b r i c k ' s Camp A l a s k a , C h i t i n a R., H u b r i c k ' s Camp A l a s k a , C h i t i n a R., H u b r i c k ' s Camp Y.T., M i . 11 C a n o l r d . , 5500' Y.T., near T e s l i n L a k e A l a s k a , I s a b e l P a s s , M i . 206, R i c h a r d s o n Hwy., 5000' A l a s k a , I s a b e l P a s s , M i . 206, R i c h a r d s o n Hwy., 5000' A l a s k a , I s a b e l P a s s , M i . 206, R i c h a r d s o n Hwy., 5000' Talkeetna Mts., Archangel C r . Talkeetna Mts., Archangel C r . Talkeetna Mts., Archangel C r . Talkeetna Mts., Archangel Cr. Talkeetna Mts., Archangel C r . Talkeetna Mts., Archangel C r . Talkeetna Mts., Archangel C r . Mt. M c K i n l e y N a t l Park Mt. M c K i n l e y N a t l Park Mt. M c K i n l e y N a t l Park  0. c u r z o n i a e 223241 253214  BM  773438 773439 1783 W2741 50193 50195 2710 2715 2719 50202 *74761  ROM  *74763  ROM  ZM  T i n g r i , T i b e t ( G r o u p 2A-2) f o o t o f Donka L a . , Mt E v e r e s t Comm, 16000' ( G r o u p 2A=2) C h i n a (no i n f o ) C h i n a : T s i n g - h a i , T i e n t s i n ( G r o u p 2B) Koko Nor ( G r o u p 2B) Koko Nor ( G r o u p 2B) T o s o ' N o r ( G r o u p 2B) T o s o Nor ( G r o u p 2B) K a n s u ( G r o u p 2B) T i b e t ( G r o u p 2B) T i b e t ( G r o u p 2B) Mekong R i v e r B a s i n ( G r o u p 3-4) L h o Chhoga, T i b e t , n. o f M u s t a n g , 12500' 29 12.00'N 038 57.00'E ( G r o u p 2A-2) L h o Chhoga, T i b e t , n. o f M u s t a n g , 12500' 29 12.00'N 038 57.00'E ( G r o u p 2A-2)  0. d a u r i c a 23454 23456  MCZ  M o n g o l i a , 20 mi sw o f U r g a ( G r o u p 1) M o n g o l i a , E. A l t a i , A r t s a Bogdo, 6500'  (Group  350  56859 58876 58878 58879 58882 58884 58885 58887 58888 58898 58906 59715 59716 59719 59725 59726 59727 59729 59730 59731 59732 59734 59735 59745 59746 59747 59748 59750 59790  AMNH  59792 59793 178806 7421 23452 23289 23453 S-63158 S-63171 S-63181 S-63194 S-63201 S-63208 S-63565 S-63585 S-63588 S-63589 1463 1465 1468 1469  CVM MCZ  MS  MN  K w e i h u a , Cheng, S h a n s i , M o n g o l i a ( G r o u p 1) M o n g o l i a , Gun B u r t e , 6800' ( G r o u p 1) M o n g o l i a , Gun B u r t e , 6800' ( G r o u p 1) Gun B u r t e , 6800' ( G r o u p 1) M o n g o l i a , S a i n N a i n Khan, 8000' ( G r o u p 1) M o n g o l i a , S a i n N a i n Khan, 8000' ( G r o u p 1) M o n g o l i a , S a i n N a i n Khan, 8000' ( G r o u p 1) M o n g o l i a , S a i n N a i n Khan, 8000' ( G r o u p 1) M o n g o l i a , S a i n N a i n Khan, 8000' ( G r o u p 1) Gun B u r t e , 6800' ( G r o u p 1) Gun B u r t e , 6800' ( G r o u p 1) M o n g o l i a , Ussuk ( G r o u p 1) M o n g o l i a , Ussuk ( G r o u p 1) M o n g o l i a , 20 mi sw U r g a ( G r o u p 1) M o n g o l i a , 20 mi sw U r g a ( G r o u p 1) M o n g o l i a , 20 mi sw U r g a ( G r o u p 1) M o n g o l i a , 20 mi sw U r g a ( G r o u p 1) M o n g o l i a , T u r i n ( G r o u p 1) M o n g o l i a , 30 mi ne T z e Tzen Wang ( G r o u p 1) M o n g o l i a , 30 mi ne T z e Tzen Wang ( G r o u p 1) M o n g o l i a , 30 mi ne T z e T z e n Wang ( G r o u p 1) M o n g o l i a , 30 mi ne T z e T z e n Wang ( G r o u p 1) M o n g o l i a , T z e T z e n Wang ( G r o u p 1) M o n g o l i a , S a i n N o i n Khan, 8000' ( G r o u p 1) M o n g o l i a , S a i n N o i n Khan, 8000' ( G r o u p 1) M o n g o l i a , S a i n N o i n Khan, 8000' ( G r o u p 1) M o n g o l i a , S a i n N o i n Khan, 8000' ( G r o u p 1) M o n g o l i a , S a i n N o i n Khan, 8000' ( G r o u p 1) M o n g o l i a , A n t s a Bogdo, E . . A l t a i M t s . 6000' ( G r o u p 1) M o n g o l i a , A n t s a Bogdo, 6000' ( G r o u p 1) M o n g o l i a , A n t o u Bogdo, E. A l t a i M t s . 6000' ( G r o u p 1) USSR: B u r y a t M o n g o l , v i c i n i t y o f K y a k h t a ( G r o u p 1) T o u v a , USSR ( G r o u p 1) M o n g o l i a , T u r i n ( G r o u p 1) Siberia, Transbaikalia, Chita-Manchuria R a i l w a y , S o k t n i S t a t i o n ( G r o u p 1) M o n g o l i a , 20 mi sw o f U r g a ( G r o u p 1) T o u v a , USSR ( G r o u p 1) T o u v a , USSR ( G r o u p 1) T o u v a , USSR ( G r o u p " 1 ) T o u v a , USSR ( G r o u p 1) T o u v a , USSR ( G r o u p 1) T o u v a , USSR ( G r o u p 1) T o u v a , USSR ( G r o u p 1) T o u v a , USSR ( G r o u p 1) T o u v a , USSR ( G r o u p 1) T o u v a , USSR ( G r o u p 1) M a n c h o u l i , M o n g o l i a ( G r o u p 1) M a n c h o u l i , M o n g o l i a ( G r o u p 1) D a l a i - n o r , M o n g o l i a ( G r o u p 1) D a l a i - n o r , M o n g o l i a ( G r o u p 1)  351  0. e r y t h r o t i s T1 553 T1 554 240724 240725  ZM USNM  K a n s u ( G r o u p 2B) B u r c h a n Budda ( G r o u p 2B) C h i n a : K a n s u , 35 mi w S i n i n g C h i n a : K a n s u , 35 mi w S i n i n g  0. e r y t h r o t i s g l o v e r i MCZ W. "Szechuan, 7587 W. S z e c h u a n , 7588 W. S z e c h u a n , 7591 USNM W. S z e c h u a n , 175140  0.  ( G r o u p 2B) ( G r o u p 2B)  Rama-la P a s s ( G r o u p 3) Na-chu-kan ( G r o u p 3) N a - c h u - k a r ( G r o u p 3) Nachu K a r , 12000' ( G r o u p 3)  kamensis T45486 50342 50343  ZM  Tibet Tibet Tibet  ( G r o u p 2A-3) ( G r o u p 2A-3) ( G r o u p 2A-3)  BM  T i b e t ( G r o u p 2A-3) W. T i b e t ( G r o u p 2A-3)  BM  T u r k e s t a n ( G r o u p 2A) T u r k e s t a n ( G r o u p 2A) T u r k e s t a n ( G r o u p 2A) S u t l e j R i v e r ( G r o u p 2A-1) T i b e t ( G r o u p 2A-3) l o c a l i t y unknown Dakpo K a r p o V a l l e y , E. Ladak Dakpo K a r p o V a l l e y , E. Ladak Ladak ( ? S a d a k ) ( G r o u p 2A-1) l o c a l i t y unknown  O'... k o s l o w i 972274 971212  0.  ladacensis 91159 911510 911511 1012235 207445 79619 364124 364125 876128 4139  0.  ZM  ( G r o u p 2A-1) ( G r o u p 2A-1)  lama T74737 T74738 T74739  ROM  L u p r a , M u s t a n g P r o v . , 12000' 28 48.00'N 083 47.00'E ( G r o u p 2A-2) L u p r a , M u s t a n g P r o v . , 12000' 28 48.00'N 083 47.00'E ( G r o u p 2A-2) T h i n i , 3 mi e Jomoson, M u s t a n g . P r o v . , 10000' 28 46.00'N 083 48.00'E ( G r o u p 2A-2)  352  0. m a c r o t i s  0.  176278 83445 74744  AMNH  176159 176162 176165 176166 176168 176170 176171 176173 .176174 198656 198659 198664  USNM  ROM  P a m i r , T a d j i k i s t a n ( G r o u p 2A) I n d i a : K a s h m i r , M a r s e m i k P. ( G r o u p 2A-1) M u k t i n a t h , M u s t a n g P r o v . , 11750' 28 48.00'N 083 52.00'E ( G r o u p 2A-2) B a l t i s t a n , B a s h a V l y , 12000' ( G r o u p 2A-1) B a l t i s t a n , Basha V l y , 12000' ( G r o u p 2A-1) B a l t i s t a n , Basha V l y , 12000' ( G r o u p 2A--1 ) B a l t i s t a n , Basha V l y , 12000' ( G r o u p 2 A - 1 ) B a l t i s t a n , Basha V l y ( G r o u p 2A-1) B a l t i s t a n , Basha V l y ( G r o u p 2A-1) B a l t i s t a n , Basha V l y ( G r o u p 2A-1) B a l t i s t a n , Basha V l y ( G r o u p 2A-1) B a l t i s t a n , Basha V l y ( G r o u p 2A-1) K a s h m i r : L a d a k , D u r g u , 13000' ( G r o u p 2A-1) K a s h m i r : L a d a k , D u r g u ( G r o u p 2A-1) K a s h m i r : L a d a k , D u r g u ( G r o u p 2A-1)  pallasi 23457  MCZ  23458 23459 23460 23966 58877 58883 58893 58895 58899 58902 58903 58905 58907 58910 58911 58912 59713 59714 59739 59743 59744 59779 59781 59783 59784 59785  AMNH  M o n g o l i a , A r t s a Bogdo, E. A l t a i M t s , 6500' ( G r o u p 1) M o n g o l i a , A r t s a Bogdo, E. A l t a i M t s , 6500' ( G r o u p 1) M o n g o l i a , 40 mi sw T z e T z e n Wang ( G r o u p 1) M o n g o l i a , Gun B u r t e , 6800' ( G r o u p 1) M o n g o l i a , R J u i n - g o c ( G r o u p 1) M o n g o l i a , Gun B u r t e , 6800' ( G r o u p 1) M o n g o l i a , Gun B u r t e , 8000' ( G r o u p 1) M o n g o l i a , Gun B u r t e , 6800' ( G r o u p 1) M o n g o l i a , Gun B u r t e , 6800' ( G r o u p 1) M o n g o l i a , Gun B u r t e , 6800' ( G r o u p 1) M o n g o l i a , Gun B u r t e , 6800' ( G r o u p 1) M o n g o l i a , Gun B u r t e , 6800' ( G r o u p 1) M o n g o l i a , Gun B u r t e , 6800' ( G r o u p 1) M o n g o l i a , Gun B u r t e , 6800' ( G r o u p 1) M o n g o l i a , U s s u k , 6800' ( G r o u p 1 )• M o n g o l i a , Ussuk ( G r o u p 1) M o n g o l i a , Ussuk ( G r o u p 1) M o n g o l i a , Ussuk ( G r o u p 1) . M o n g o l i a , Ussuk ( G r o u p 1) M o n g o l i a , A r t s a Bogdo, 6500' ( G r o u p 1) M o n g o l i a , T z e T z e n Wang ( G r o u p 1) M o n g o l i a , 40 mi sw T z e Tzen Wang ( G r o u p 1) M o n g o l i a , A r t s a Bogdo, E. A l t a i M t s , 6000' ( G r o u p 1) M o n g o l i a , A r t s a Bogdo, E. A l t a i M t s ( G r o u p 1.) M o n g o l i a , A r t s a Bogdo, E. A l t a i M t s , 6000' ( G r o u p 1) M o n g o l i a , A r t s a Bogdo, E. A l t a i M t s , 6800' ( G r o u p 1) M o n g o l i a , A r t s a Bogdo, E. A l t a i M t s , 6000' ( G r o u p 1)  353  59791 60404 19887 29339 36833 36834 36835 36836 60327 60328 60329 60330  ZM  M o n g o l i a , A r t s a Bogdo, E. A l t a i 6000' ( G r o u p 1) K h o l o b o l c h i Nor, M o n g o l i a K a r k a r a l i n s k ( G r o u p 2A) K a r a g a n d a ( G r o u p 2A) K a r a g a n d a ( G r o u p 2A) K a r a g a n d a ( G r o u p 2A) K a r a g a n d a ( G r o u p 2A) K a r a g a n d a ( G r o u p 2A) K a r a g a n d a ( G r o u p 2A) K a r a g a n d a ( G r o u p 2A) K a r a g a n d a ( G r o u p 2A) K a r a g a n d a ( G r o u p 2A)  Mts,  0. p r i n c e p s O.  princeps princeps 1584 CVM Wataton Lake, A l t a . 1587 Tonquin V a l l e y , A l t a . 1589 Maynard P a s s , J a s p e r , A l t a . 1590 Maynard P a s s , J a s p e r , A l t a . 1591 Tonquin V a l l e y , Jasper Park, A l t a . 1592 Tonquin V a l l e y , Jasper Park, A l t a . 1593 Tonquin V a l l e y , Jasper-Park, A l t a . 1594 Tonquin V a l l e y , Jasper Park, A l t a . 1600 Yellowhead Pass, A l t a . 1602 M e d i c i n e Lake, Jasper 1603 Waterton Lakes Park 1605 Tonquin V a l l e y , Jasper Park, A l t a . 1607 Thompson P a s s , A l t a . 2173 E m i g r a n t s Mtn., J a s p e r Park, A l t a . 2174 E m i g r a n t s Mtn., J a s p e r Park, A l t a . 4018 K i n b a s k e t L a k e , B.C. 4019 K i n b a s k e t L a k e , B.C. 4020 S u l l i v a n R., n e a r K i n b a s k e t L., B.C. 4021 S u l l i v a n R., n e a r K i n b a s k e t L., B.C. 10781 NMC Jasper, Alta. 10784 Jasper, A l t a . 10798 Jasper, Alta. 10813 Jasper, Alta. 10814 Jasper, Alta. 10816 Jasper, Alta. 10817 Jasper, Alta. 18770 M i e t t e R i v e r , J a s p e r Park 23786 V a l e m o u n t , B.C., 52 50'N 119 16'W 16854 A l t a . : w. s i d e o f Snake I n d i a n R., J a s p e r P a r k , 6000' 53564 ROM Deer C r e e k , M i s s o u l a Co., M o n t a n a O. p r i n c e p s b r o o k s i T69275 USNM S i c a m o u s , B.C. 5948 NMC Shuswap L a k e 5949 Shuswap L a k e 5947 Shuswap L a k e  4025 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 1 69 170 153  R o b b i n ' s Range • S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C. S i c a m o u s , B.C.  0. p r i n c e p s b r u n n e s c e n s T227259 USNM USA: W a s h i n g t o n , K i t t i t a Co. 440 CVM B l a c k M t n . , N. V a n c o u v e r 441 B l a c k M t n . , N. V a n c o u v e r 336 B l a c k M t n . , N. V a n c o u v e r 335 B l a c k M t n . , N. V a n c o u v e r 334 A l t a Lake 339 A l t a Lake 478 A l t a Lake 479 A l t a Lake 340 A l t a L a k e , Mons 442 A l t a Lake 443 A l t a Lake 444 A l t a Lake 445 A l t a Lake 446 A l t a Lake 447 A l t a Lake 448 A l t a Lake 449 A l t a Lake 450 A l t a Lake 451 A l t a Lake 452 A l t a Lake 453 A l t a Lake , 454 A l t a Lake 455 A l t a Lake 456 A l t a Lake 457 A l t a Lake 458 A l t a Lake 459 A l t a Lake 460 A l t a Lake 461 A l t a Lake 462 A l t a Lake 463 A l t a Lake 464 A l t a Lake 465 A l t a Lake 466 A l t a Lake  355  467 468 469 470 471 472 473 474 475 476 477 480 481 482 483 1797 504 1084 1085 1086 1087 5911 5912 5913 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 1798 1799 3619 4024 5914 338  A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake . A l t a Lake London M t n . , A l t a L a k e London M t n . , A l t a L a k e Sproat Mtn., A l t a Lake Sproat Mtn., A l t a Lake Sproat Mtn., A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l t a Lake A l p h a Lake A l p h a Lake N i t a Lake N i t a Lake N i t a Lake B l a c k Mtn., Vancouver B l a c k Mtn., W h y t e c l i f f e A l t a Lake A l t a Lake B l a c k Tusk Meadows, G a r i b a l d i Hope S p r o a t M t n . , Mons, B.C. Mons  3216 81 08 8939 8940 8941 8942 8944 8945 8946 1 0096 1 0321 1 1 035 1 1 965 1 1 966 558 560 610 61 1 612 41 86 4187 5953 7952 5954 7953 7954 7955 7956 7957 1 1 970 1 0361 1 0362 19122 19123 1 91 24 1 91 25 7951  PSM  M y r t l e Lake, W e l l s Gray Park 1/2 m i l e n., Spuzzum Hope A l t a Lake A l t a Lake B r a n d y Wine F a l l s , G a r i b a l d i B r a n d y Wine F a l l s , G a r i b a l d i Outram L., 11 m i l e s e. o f Hope C u t r a m L., 11 m i l e s e. o f Hope Mt. R a n i e r N a t l P a r k , Wash. C r y s t a l M t n . , P i e r c e Co., Wash. G r e e n R. w a t e r s h e d , K i n g Co., Wash. C o w l i t z Co., Wash. C o w l i t z Co., Wash. C h i n o o k P a s s , Wash. C h i n o o k P a s s , Wash. Mt. R a n i e r , S u n s e t P a r k , Wash. Mt. R a n i e r , S u n s e t P a r k , Wash. Mt. R a n i e r , S u n s e t P a r k , Wash. Goat R i d g e , L e w i s Co., Wash. Goat R i d g e , L e w i s Co., Wash. P i e r c e Co., Wash. S p i r i t L., 3 mi w on Hwy, S k a m a n i a P i e r c e Co., Wash. F i s h L., L i n n Co., O r e . F i s h L., L i n n Co., O r e . F i s h L., L i n n Co., O r e . F i s h L., L i n n Co., O r e . S a l t C r e e k F a l l s , Lane Co., O r e . Lane Co., O r e . M u l t n o m a h Co., O r e . M u l t n o m a h Co., O r e . Linn co., Ore. L i n n co., Ore. L i n n co., Ore. L i n n co., Ore. N i t a L a k e , B.C.  p r i n c e p s cinnamomea 9329 PSM S e v i e r Co., U t a h 9330 S e v i e r Co., U t a h 9331 S e v i e r Co., U t a h O. p r i n c e p s c u p p e s 2802 CVM 5908 5909 5910 4021 4022 2924 2925 2926 2927 2928 2935  M i l e 18, H o p e - P r i n c e t o n Hwy. Monashee D i v i s i o n , G o l d Range Monashee P a s s Mt. R e v e l s t o k e P a r k Monashee F a l l s C r e e k , Monashee Range Monashee P a s s Monashee P a s s Monashee P a s s Monashee P a s s Monashee P a s s Phoenix  357  2936 1576 1578 1579 1580 1581 1594 1595 1596 1610 1611 1612 4023 10005 10012 10015 10120 10126 29081 22980 29068 29069 29070 29071 29072 29074 29075 29076 29077 29078 29079 29080 1575 1577 1582 1 583 1597 2924 2925 2926 2927 1576 1595 1596 1613 1614 4023 5908 5909 1560 3775 3776 3777 3778 3779  ROM  CVM  PSM  Phoenix Toby C r e e k Toby C r e e k Toby C r e e k Toby C r e e k Toby C r e e k Toby C r e e k Toby C r e e k Toby C r e e k Toby C r e e k Toby C r e e k Toby C r e e k Sugar Lake R o s s l a n d , B.C. R o s s l a n d , B.C. R o s s l a n d , B.C. R o s s l a n d , B.C. Nr. Green Mtns. O s o y o o s D i s c . , B.C. B a l s a m L., R e v e l s t o k e , B.C. O s o y o o s D i s t . , B.C., Monashee D i v i d e O s o y o o s D i s t . , B.C., Monashee D i v i d e O s o y o o s D i s t . , B.C., Monashee D i v i d e O s o y o o s D i s t . , B.C., Monashee D i v i d e S i m i l k a m e e n D i s t . , B.C., C a s c a d e M t n . , 20 m i l e s w. R o s s l a n d K o o t e n a y D i s t . , B.C., G l a c i e r K o o t e n a y D i s t . , B.C., G l a c i e r S i m i l k a m e e n D i s t . , B.C., P h o e n i x O s o y o o s D i s t . , B.C., Monashee P a s s O s o y o o s D i s t . , B.C., Monashee P a s s O s o y o o s D i s t . , B.C., Monashee D i v i d e O s o y o o s D i s t . , B.C., Monashee D i v i d e Toby C r . , B.C. . Toby C r . , B.C. Toby C r . , B.C. Toby C r . , B.C. Toby C r . , B.C., w. o f I n v e r m e r e Monashee P a s s , B.C. Monashee P a s s , B.C. Monashee P a s s , B.C. Monashee P a s s , B.C. Toby C r . , B.C. Toby C r . , w o f I n v e r m e r e , B.C. Toby C r . , w. o f I n v e r m e r e , B.C. Toby C r . , B.C. Toby C r . , B.C. S u g a r L a k e , B.C. Monashee D i v i d e , G o l d Range, B.C. Monashee P a s s , B.C Sherman P a s s , F e r r y CO., Wash. G r a n i t e P a s s , C o e u r D ' A l e n e Co. G r a n i t e P a s s , C o e u r D ' A l e n e Co. G r a n i t e P a s s , C o e u r D ' A l e n e Co. G r a n i t e P a s s , C o e u r D ' A l e n e Co. G r a n i t e P a s s , C o e u r D ' A l e n e Co.  358  4190 4191  G r a n i t e Pass, G r a n i t e Pass,  P e n o l O r e i l l e Co., Wash. P e n o l O r e i l l e Co., Wash.  0. p r i n c e p s f e n i sex 29065 ROM Y a l e D i s t . , B.C., Tulameen Rd., T u l a m e e n , 20 m i l e s n. o f C o a l m o n t 29066 Y a l e D i s t . , B.C., Tulameen Rd. 29067 Y a l e D i s t . , B.C., Tulameen Rd. 29068 Y a l e D i s t . , B.C., T u l a m e e n Rd. 29069 Y a l e D i s t . , B.C., T u l a m e e n Rd. 15741 NMC B.C.: R a i n b o w M t s . , Mt. B r i l l i a n t , M a c k e n z i e V a l l e y , 5500' 16544 B.C.: K i m s q u i t , mouth o f Dean R. 16561 B.C.: K i m s q u i t , mouth o f Dean R., 1000' 16667 B.C.: R a i n b o w M t s . , Mt. B r i l l i a n t 16669 B.C.: R a i n b o w M t s . , Mt. B r i l l i a n t 16673 B.C.: R a i n b o w M t s . , Mt. B r i l l i a n t 16682 B.C.: R a i n b o w M t s . , Mt. B r i l l i a n t 2929 CVM M a n n i n g P a r k , B.C. 2930 M a n n i n g P a r k , B.C. 2931 M a n n i n g P a r k , B.C. 2932 M a n n i n g P a r k , B.C. 2934 M a n n i n g P a r k , . B.C. 3542 A s h n o l a R i v e r , B.C., 2500' 3543 C a t h e d r a l L a k e , B.C., 7000' 5942 Head T e x a s C r e e k , L i l o o e t , B.C. 5943 Head T e x a s C r e e k , L i l o o e t , B.C. 5944 Head T e x a s C r e e k , L i l o o e t , B.C. 5945 Head T e x a s C r e e k , L i l o o e t , B.C. 5946 Head T e x a s C r e e k , L i l o o e t , B.C. 16668 NMC Rainbow M t s . , Mt. B r i l l i a n t , B.C. 16738 K i m s q u i t , mouth o f Dean R., B.C. 16761 K i m s q u i t , mouth o f Dean R., B.C. 16768 K i m s q u i t , mouth o f Dean R., B.C. 16662 NMC R a i n b o w M t s . , Mt. B r i l l i a n t , B.C., 5000' 16751 K i m s q u i t , mouth o f Dean R., B.C. 2147 PSM T a b l e M t n . , K i t t i t a s Co., Wash. 2148 T a b l e M t n . , K i t t i t a s Co., Wash. 5620 Okanagan a r e a , 6 m i . C r e e k , B.C. 5621 Okanagan a r e a , 6 m i . C r e e k , B.C. 5622 Okanagan a r e a , 6 m i . C r e e k , B.C. 5623 Okanagan a r e a , 6 m i . Creek", B.C. 5624 Okanagan a r e a , 6 m i . C r e e k , B.C. 5625 Okanagan a r e a , 6 m i . C r e e k , B.C. 5626 Okanagan a r e a , 6 m i . C r e e k , B.C. 5627 Okanagan a r e a , 6 m i . C r e e k , B.C. 8724 M i s s i o n R i d g e , C h e l a n Co., Wash. 9552 R a t t l e s n a k e C r . , Y a k i m a Co., Wash 0. p r i n c e p s fumosa 11967 PSM 11968 11969 11964 11965 14503  Jefferson Jefferson Jefferson Jefferson Jef ferson L a n e Co.  Co. Co. Co. Co. Co.  359  16646 16647 16648 11921 11922 11923 O. p r i n c e p s 31356  Lane Linn Linn Linn Linn Linn howelli ROM  0. p r i n c e p s l e m h i 3922 PSM 3923 3924 7956 7957 7958 7959  Co. Co. Co. Co. 5300' Co. 5300' Co. 5300' 40 m i . w. o f S a l m o n , I d a h o Co.,  E. K e t c h e m , B l a i n e Co., I d . E. K e t c h e m , B l a i n e Co., I d . E. K e t c h e m , B l a i n e Co., I d . Salmon R i v e r M t n s . , Lemhi Co., Salmon R i v e r M t n s . , Lemhi Co., Salmon R i v e r M t n s . , Lemhi Co., Salmon R i v e r M t n s . , Lemhi Co.,  Idaho,  Id. Id. Id. Id.  O. p r i n c e p s l u t e s c e n s T108650 USNM A l b e r t a , B a n f f , nr.Mt. I n g l e s m a l d i e 950 CVM Mt. S t e p h e n , F i e l d , B.C. 951 Mt. S t e p h e n , F i e l d , B.C. 952 Mt. S t e p h e n , F i e l d , B.C. 953 Mt. S t e p h e n , F i e l d , B.C. 954 Mt. S t e p h e n , F i e l d , B.C. 955 Mt. S t e p h e n , F i e l d , B.C. 956 Mt. S t e p h e n , F i e l d , B.C. 957 Mt. S t e p h e n , F i e l d , B.C. 2175 Panther R i v e r , Banff, A l t a . 5950 Banff, A l t a . 22989 ROM M e d i c i n e L., J a s p e r P a r k , A l t a . 22985 M e d i c i n e L., J a s p e r P a r k , A l t a . 22982 Mt. C a r t h e w , W a t e r t o n L., A l t a . 22981 C r a n d e l l , W a t e r t o n L., A l t a . 22411 C o l e m a n , A l t a . , V i c a r y W. Mt. C o l e m a n , 7200' 22410 Mt. C o l e m a n , 7200' 22409 Mt. C o l e m a n , 7200' 22408 Mt. C o l e m a n , 7200' 22407 Mt. C o l e m a n , 7200' 22405 Mt. C o l e m a n , 7200' 22404 C o l e m a n , A l t a . , 7200' 22423 C o l e m a n , A l t a . , Ma B u t t e , 7100' 22422 C o l e m a n , A l t a . , Ma B u t t e , 7100' 22391 C o l e m a n , A l t a . , Ma B u t t e M t n . , 7100' 22390 V i c a r y W. Mt. C o l e m a n , A l t a . , 7400* 22389 C o l e m a n , A l t a . , V i c a r y W. M t n . , 7400' 22383 C o l e m a n , A l t a . , V i c a r y W. M t n . , 7400' 22382 C o l e m a n , A l t a . , V i c a r y W. M t n . , 6350' 22416 C o l e m a n , A l t a . , V i c a r y W. Mt. C o l e m a n , 7200' 22414 C o l e m a n , A l t a . , V i c a r y W. Mt. C o l e m a n , 7200' 22413 C o l e m a n , A l t a . , 7200' 22412 C o l e m a n , A l t a . , V i c a r y W. Mt. C o l e m a n , 7200' 22983 Bow Summit, B a n f f P a r k , A l t a . , 6900' 22984 Bow Summit, B a n f f P a r k , A l t a . , 6900' • 22988 Mummy L., B a n f f P a r k , A l t a . , 7100'  360  22990 22990 261191  M o r a i n e L., B a n f f P a r k , A l t a . , P h a r a o h L., B a n f f P a r k , A l t a . , Pharaoh L.; B a n f f P a r k , A l t a . ,  6200' 7000' 7000'  0. p r i n c e p s s a x a t l i s 9345 PSM E g g l e s t o n L a k e , D e l t a Co., C o l . 19656 ROM C o l o r a d o , 4 m i . w. A l m a , P a r k Co.,  1200'  0. p r i n c e p s t a y l o r i 7956 PSM H a r t M t n . , L a k e Co., O r e . 0.  princeps 3221 CVM 3222 3223 3216 3218 3217 8110  M y r t l e L., W e l l s G r a y P a r k M y r t l e L., W e l l s G r a y P a r k M y r t l e L., W e l l s G r a y P a r k M y r t l e L., W e l l s G r a y P a r k Mt. H u n t l e y , W e l l s Gray Park Mt. H u n t l e y , W e l l s Gray Park No l o c a t i o n  O. p u s i l l a  O.  176280  AMNH  7419  CVM  W. K a z a k s t a n , V i l l . P e t r o v , 90 km N. U r a l s k . ( G r o u p 6A) K a z a k s t a n , USSR ( G r o u p 6A)  roylei 14762 28606 29012 29013 34859 54629 87075 87076 59712 171154 171148 171155 171150 111318 74657  MCZ AMNH  ROM  74659 74697 74721 90887 90891  MN  I n d i a : Kahkan V a l l e y , nw F.P. ( G r o u p 2A-1) I n d i a : K h u r b u Sadak Rd. ( G r o u p 2A-1) T u l l i a n , K a s h m i r ( G r o u p 2A-1) T u l l i a n , K a s h m i r ( G r o u p 2A-1) no l o c a t i o n I n d i a : B u r z i l V a l l e y , 10800' ( G r o u p 2A-1) T i b e t : Bhaga V a l l e y , 10500' ( G r o u p 2A-3) T i b e t : K i m l u n g L a h o u l , 15100' T i b e t (Group 2a-2) I n d i a : Kumauni Bedang I n d i a : Kumauni Bedang I n d i a : Garhwal I n d i a : Kumauni Bedang I n d i a : Kumauni Bedang T h a r i P a t i ( U r i n g Ghyang), S i n d u Prov. 28 01.00'N 085 30.00'E ( G r o u p 2A-2) G o s a i n k u n d L a k e s , Nuwakot P r o v . , 13750' 28 03.00'N 085 25.00'E ( G r o u p 2A-2) M a h a r i g a o n , 10 mi ne J u m l a , J u m l a P r o v . , 10375', 29 21.00'-N 82 23.00'E ( G r o u p 2A-2) Dhukphu, S i n d u P r o v . , 13100' 28 06.00'N 085 35.00'E ( G r o u p 2A-2) Sikkim India  361  90892 14769 14770 14771 14772  PSM  r o y l e i wardi AMNH 28608 28609 2861 0 2861 1 87073 87074 201217 USNM 201218 201 220. 326337 326340 333333  India-Sikkim N e p a l : Newakot N e p a l : Newakot N e p a l : Newakot N e p a l : Newakot  District District District District  Tamr i a , K a s h m i r , I n d i a ( G r o u p 2A-1) K o l o h o r , K a s h m i r , I n d i a ( G r o u p 2A-1) Yemhau, K a s h m i r , I n d i a ( G r o u p 2A-1) T u l l i a n , K a s h m i r ( G r o u p 2A-1) T i b e t : B a r a l a c h a P a s s ( s s i d e ) , 13500' ( G r o u p T i b e t : Bhaga V a l l e y , 10500' ( G r o u p 2A-3) Kashmi r , Dandwar, 9000' ( G r o u p 2A-1) Kashmi r , Dandwar, 9000' ( G r o u p 2A-1) Kashmi r , Dandwar, 9000' ( G r o u p 2A-1) W. Pak S t a n : H a z a r a D i s t . L a l a z a r 4 mi 9500 ( G r o u p 2A-1) W. Pak s t a n : H a z a r a D i s t . L a l a z a r 4 mi e 9500 ( G r o u p 2A-1) W. P a k i s t a n : H a z a r a D i s t . N a r a n ( G r o u p 2A-1)  rufescens 176279  AMNH  217305 27640 51174 51 175 51176  AMNH MN  Turkmenia: Chandyr D i s t . K a r a - K a l a w K o p e t - D a g h ( G r o u p 5) P a k i s t a n : (w) B a l u c h i s t a n , U r a k ( G r o u p 5) K h a r d o u g P a s s , L a d a k , T i b e t ( G r o u p 2A-1) K o p e t - D a g h by A s c h c h a b a d , d i r e c t i o n F i r j u s a ( K o p e t - D a g h by A s c h c h a b a d , d i r e c t i o n F i r j u s a ( K o p e t - D a g h by A s c h c h a b a d , d i r e c t i o n F i r j u s a (  . rufescens regina 29564 MCZ T u r k i s t a n : K o p e t Dagh ( G r o u p 5) 32650 MCZ T r a n s c a s p i a : K a r p e t - D a g h M t s . ( G r o u p 5) 97803 AMNH T u r k m e n i s t a n : Kopet-Dagh M t s . , K a r a - R o l i n s k R e g i o n , T c h a n d y r ( G r o u p 5) 206565 USSR: Turkmen, K o p e t - D a g h ( G r o u p 5)  rut i l a 28605 176281  AMNH  S-15108 S-45855 S-60601 S-64874 S-64877 S-64878  MS  T i b e t : Durgh v i e Sadak ( G r o u p 2A-3) USSR: T a d j i k i s t a n , G i s s a r Range, T s c h a n d e r k y e L a k e ( G r o u p 2A) K i r g i z s k i j Range ( G r o u p 2A) P a m i r ( G r o u p 2A) K i r g i z s k i j Range ( G r o u p 2A) Alama A t a ( G r o u p 2A) Alama A t a ( G r o u p 2A) Alama A t a ( G r o u p 2A) •  362  S-64957  Alama A t a ( G r o u p 2A)  0. t h i b e t a n a 7599 MCZ 56851 AMNH * 1 1345 * 11322 * 11327 * 1 1319 *11344 * 11342 * 11321 '*11347 * 11341 •*11338 *11348 * 1 1 33 1 * 11339  W. S z e c h u a n , L i a n g Hokow ( G r o u p 3) C h i u Fung S l o p e , 8000' ( G r o u p 3) W. S z e c h u a n L i a n g Range ( G r o u p 3) W. S z e c h u a n L i a n g Range ( G r o u p 3) W. S z e c h u a n L i a n g Range ( G r o u p 3) W. S z e c h u a n L i a n g Range ( G r o u p 3) W. S z e c h u a n L i a n g Range ( G r o u p 3) W. S z e c h u a n L i a n g Range ( G r o u p 3) L i a n g Range ( G r o u p 3) •w. S z e c h u a n L i a n g Range ( G r o u p 3) W. S z e c h u a n L i a n g Range ( G r o u p 3) W. S z e c h u a n L i a n g Range ( G r o u p 3) W. S z e c h u a n L i a n g Range ( G r o u p 3) W. S z e c h u a n L i a n g Range ( G r o u p 3) W. S z e c h u a n L i a n g Range ( G r o u p 3) W. S z e c h u a n  0. t h i b e t a n a t h i b e t a n a 7592 MCZ C h i n a : W. S z e c h u a n , T a - c h i a o ( G r o u p 3) 7593 C h i n a : W. S z e c h u a n , T a - c h i a o ( G r o u p 3) 7600 C h i n a : W. S z e c h u a n , T a - c h i a o , S h o o - o - l o ( G r o u p 3) 0. t h i b e t a n a c a n s a 27554 AMNH China: 27555 China: 27556 China: 27557 China: 27558 China: 27559 China: 27560 China: 60406 AMNH Kansu, 60407 Kansu, 60408 Kansu, 60411 Kansu, 60412 Kansu, 84262 China: 24456 MCZ Kansu,  T a i p a s h i a n g , S h e n s i ( G r o u p 3) T a i p a s h i a n g , S h e n s i ( G r o u p 3) T a i p a s h i a n g , S h e n s i ( G r o u p 3) T a i p a s h i a n g , S h e n s i ( G r o u p 3) T a i p a s h i a n g , S h e n s i ( G r o u p 3) T a i p a s h i a n g , S h e n s i ( G r o u p 3) T a i p a s h i a n g , S h e n s i ( G r o u p 3) 10' sw o f A r c h u e n ( G r o u p 2B) 10' sw o f A r c h u e n ( G r o u p 2B) 10' sw o f A r c h u e n ( G r o u p 2B) 10' sw o f C h o u i u ( G r o u p 2B) 10' sw o f C h o u i u ( G r o u p 2B) m o u n t a i n s 10 mi w o f A r c h u e n ( G r o u p 2B 10' s o f A r c h u e n ( G r o u p 2B)  0. t h i b e t a n a f o r r e s t i 44000 AMNH C h i n a : Yun-nan P r o v . , L i c h i a n g  ( G r o u p 3)  0. t h i b e t a n a h u a n g e n s i s 56855 AMNH C h i n a : T a i P a i S h e n , S h e n s i , 1000' ( G r o u p 3) 56856 M o n g o l i a : H a l t T a i P a i Shan, S h e n s i , 10000' ( G r o u p 3) 56857 C h i n a : T a i P a i S h e n , S h e n s i , 1000' ( G r o u p 3)  363  56858 23446  MCZ  M o n g o l i a : H a l t T a i P a i Shan, S h e n s i , 10000' ( G r o u p 3) C h i n a : S h e n s i T a i P a i S h a h , 10000' ( G r o u p 3)  0. t h i b e t a n a o s g o o d i 15465 AMNH Burma: r o a d t o C h i m e l i P a s s , 10000' ( G r o u p 4) 15466 Burma: r o a d t o C h i m e l i P a s s , 10000' ( G r o u p 4)  0. t h o m a s i 2746 T39956 50322 773440 773441  ZM BM  no l o c a l i t y A l a k Nor ( G r o u p 2B) A l a k Nor ( G r o u p 2B) C h i n a : K w a n g - t a i ( G r o u p 3) C h i n a : T s i n g - h a i ( G r o u p 2B)  364  APPENDIX I_I L I S T OF FOSSIL SPECIMENS I.D. #  0. p r i n c e p s 1 40588 2 23506 3 23505 4 24673 5 24674 6 2291 0 22913 7 2291 7 22918 8 22919 22920 9 22921 1 0 22925 1 1 22926 22928 1 2 22930 13 22931 22932 22933 1 4 22934 1 5 22935 22936 1 6 22937 1 7 22938 18 22939 1 9 22940 20 22942 21 22943 22 22944 23 22946 24 22947 25 22948 22949 26 22950 27 22951 28 22953 29 22954 22955 30 22958 3 1 22960 32 22962 33 22963 34 22965"  Museum  UCM  Locality  Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little  Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box  Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder' Elder Elder Elder  Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave,  Wyoming Wyoming Wyoming Wyomi ng Wyomi ng Wyomi ng Wyoming Wyoming Wyoming Wyomi ng Wyomi ng Wyoming Wyoming Wyoming Wyoming Wyomi ng Wyomi ng Wyoming Wyoming Wyoming Wyoming Wyomi ng Wyoming Wyoming Wyomi ng Wyoming Wyomi ng Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyomi ng Wyomi ng Wyomi ng Wyomi ng Wyoming Wyoming  365  22967 22969 22970 22971 22972 22973 22976 22977 22978 22979 22984 22990 40545 UCM 40546 40547 40548 40549 40550 40553 ' 40556 47 40559 40560 40561 40562 40563 40564 40565 40567 48 40568 40569 40570 40571 40573 40574 40575 40576 40577 40578 40580 40585 2291 4 22927 22952 22957 22968 22975 22985 22989  35 36 37 38 39 40 41 42 43 44 45 46  0. p u s i 1 1 a 1 12666 101 2000 102 2001 103 2003  BM  Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little : Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little Little  Great Great Great Great  Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box Box  Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder "Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder Elder  Doward Doward'. Doward Doward  Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave , Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave,  Cave, Cave, Cave, Cave,  Wye Wye Wye Wye  Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyomi ng Wyoming Wyoming Wyoming Wyoming Wyoming Wyomi ng Wyoming Wyomi ng Wyoming Wyoming Wyoming Wyomi ng Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyoming Wyomi ng Wyomi ng Wyoming Wyoming Wyoming Wyomi ng Wyomi ng Wyoming Wyomi ng Wyoming Wyoming Wyomi ng Wyoming  Valley, Valley, Valley, Valley,  Herefordshire, Herefordshire, Herefordshire, Herefordshire,  366  2 2004 3 2005 4 2006 5 2007 6 2008 7 2009 8 201 0 9 201 1 10 201 2 1 1 2013 1 04 2014 1 2 201 5 1 3 201 6 1 4 2017 1 05 2018 1 5 201 9 1 6 2020 1 7 2021 18 2022 1 9 2023 20 202 4 21 2025 22 2026 23 2027 24 2028 2 5 2029 26 2030 27 2031 28 2032 29 2033 30 2034 31 2035 32 2036 33 2037 34 2038 35 2039 36 2040 37 2041 38 2042 39 2043 40 2044 41 2045 42 2046 2047 43 2048 2049 44 2050 45 2051 46 2052 47 2053 48 2054 49 2055 50 2056 51 2057 52 2058 53 2059'  Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great  Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward  Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave,  Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye  Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley, Valley,  Herefordshi re H e r e f o r d s h i re H e r e f o r d s h i re Herefordshire Herefordshi re Herefordshi re H e r e f o r d s h i re Herefordshi re Herefordshire H e r e f o r d s h i re 'Herefordshi re Herefordshi re Herefordshire Herefordshi re Herefordshi re Herefordshi re H e r e f o r d s h i re Herefordshi re Herefordshi re Herefordshi re Herefordshi re H e r e f o r d s h i re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Here f o r d s h i r e Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re H e r e f o r d s h i re Herefordshi re H e r e f o r d s h i re Herefordshi re Herefordshi re Herefordshi re Herefordshire Herefordshi re Herefordshi re H e r e f o r d s h i re H e r e f o r d s h i re Herefordshi re Herefordshi re H e r e f o r d s h i re H e r e f o r d s h i re Herefordshi re  367  54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 84 85 96 86 97 98 99 87 88 89 90 91 92 93 94 95 77 78 79 80 81 82 83 100  Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great Great  2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 M36486a M36486b M36486C M36486d M7770 M7770a M7770b M7772a M7772b M7772c M7772d M7772e M7772f M7772g 1 5086  49764 497391 497392  MN  Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward Doward  Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave, Cave,  Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye Wye  O b e r f r a n k e n , W. Germany O b e r f r a n k e n , W.. Germany O b e r f r a n k e n , W. Germany  Valley, Valley, Valley, Valley, Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley Valley  Herefordshi re, Herefordshi re, Herefordshire, Herefordshi re, Herefordshi re, H e r e f o r d s h i re, Herefordshire, Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshire Herefordshi re Herefordshire Herefordshire H e r e f o r d s h i re Herefordshi re Herefordshi re Herefordshi re H e r e f o r d s h i re Herefordshi re Herefordshi re H e r e f o r d s h i re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshire Herefordshire Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshire H e r e f o r d s h i re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshire Herefordshire Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re Herefordshi re  368  497393 497394 497395 49740 497151 497152  0.  Oberfranken, O b e r f r a n k e n ,• Oberfranken, Oberfranken, Oberfranken, Oberfranken,  W. W. W. W. W. W.  Germany Germany Germany Germany Germany Germany  24290  CM  Rapp's C a v e , G r e e n b r i a r Co., W.  12671 GROM1 GROM2 GROM3 GROM4  CM ZM  U r a l Mtns., M i d d l e R u s s i a , M i d d l e R u s s i a , USSR M i d d l e R u s s i a , USSR M i d d l e R u s s i a , USSR M i d d l e R u s s i a , USSR  USSR  collaris Class I f o s s i l s 3300 NMC 24893 24895 18776 28853 31472 18636 18637 18646 28709 31353 31362 31371 22052 22061 22135 22140 22174 22189 22193 22208 22215 22241 22242 22247 22256 22264 22267 22268 22279  O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow O l d Crow  River River River River River River River River River River River River River River River River River River River River River River River River River River River River River River  Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin,  L o c 11A L o c 11A L o c 11A L o c 20 L o c 22 L o c 22 L o c 27 L o c 27 L o c 27 L o c 27 L o c 27 L o c 27 L o c 27 L o c 27W L o c 27W L o c 27W L o c 27W L o c 27W L o c 27W L o c 27W L o c 27W L o c 27W L o c 27W L o c 27W L o c 27W L o c 27W L o c 27W L o c 27W L o c 27W L o c 27W  Virginia  369  Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow  River River River River River River River River River River River River River River River River River River River River River River River River River River River River River River River River River River River River River River  Basin, Basin, Bas i n , Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Bas i n , Basin, Basin, Basin, Basin, Bas i n , Bas i n , Basin, Basin, Basin, Basin, Bas i n , Basin, Basin, Basin, Basin, Basin,  Loc 27W Loc 27W Loc 27W Loc 27W Loc 27W Loc 27W Loc 2 7W Loc 27W Loc 28 Loc 28 Loc 29 Loc 29 Loc 29 Loc 44 Loc 44 Loc 44 Loc 44 Loc • 44 Loc 44 Loc 44 Loc 44 Loc 44 Loc 44 44 LOC Loc 44 Loc 44 Loc 44 Loc 44 Loc 44 Loc 44 Loc 44 Loc 44 Loc 44 Loc 44 Loc 45 Loc 45 Loc 1 37 Loc 1 55  Class II f o s s i l s 45 NMC O l d Crow O l d Crow 1 8224 O l d Crow 24741 31 489 O l d Crow 24673 O l d Crow 25053 O l d Crow O l d Crow 18269 O l d Crow 18635 28700 O l d Crow O l d Crow 28733 22161 . O l d Crow 221 62 O l d Crow • O l d Crow 22163 22166 O l d Crow 22167 O l d Crow  River River River River River River River River River River River River River River River  Basin, Basin, Basin, Bas i n , Basin, Basin, Bas i n , Basin, Basin, Basin , Bas i n, Basin, Basin, Basin, Basin,  Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc  25277 25284 25291 25303" 2531 3 31404 31 408 31 426 1 5633 1 571 3 1 8368 18559 18563 1 5830 1 5831 1 5832 1 5833 1 5834 15835 1 5836 1 9241 20740 25487 32218 32219 32535 32537 32538 32539 32621 32623 32625 32626 32627 24790 24792 28666 31213  Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old  11 A 11 A 11 A 20 22 22 27 27 27 27 27W 27W 27W 27W 27W  22205 22231 22240 22245 22265 22266 22276 18568 1 5835 25488 25489 3221 7 32533 32534 32536 32622 32624 28649 28768 31235 Class I I I f o s s i l s 645 NMC 9484 24380 16817  Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old Old  Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow Crow  River River River River River River River River River River River River River River River River River River River River  Basin, Basin, Basin, Basin, Basin, Bas i n, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin, Basin,  Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc  27W 27W 27W 2 7W 27W 27W 27W 29 44 44 44 44 44 44 44 44 44 65 1 04 1 55  Old Old Old Old  Crow Crow Crow Crow  River River River River  Basin, Basin, Basin, Basin,  Loc Loc Loc Loc  11A 11A 11A 14N  371  APPENDIX  3  THE OCHOTONA ALPINA COMPLEX: A STATISTICAL RE-EVALUATION MARIA L. WESTON, Zoology Department, University of B r i t i s h Columbia, 2075 Wesbrook Mall, Vancouver, B.C. Canada V6T 1W5 Abstract: The taxonomic statuses of Ochotona alpina, 0.collaris and 0. princeps are reviewed and, using craniometric data taken on f o s s i l and Recent specimens, are s t a t i s t i c a l l y re-evaluated. A l l 3 species are d i s t i n c t i v e , although alpina appears to be morphologically more similar to princeps than i t is to collaris. Speciation of the 3 taxa is probably the result of isolation due to glaciation, and i t is suggested that a l l 3 species are descendent from a common ancestor. The term 'Ochotona alpina complex' appears best applied at a super-specific level to denote the propinquity of these 3 species. The genus Ochotona consists of approximately 14 species of pikas (see Smith 1981). The variations in total number of species contained within the genus has been largely affected by differing methods of handling 3 species in particular, Ochotona alpina, 0.collaris and 0.princeps. These have been combined, into a single species (Gureev 1964, Corbet 1978), divided into 2 species (Broadbrooks 1965, Youngman 1975) and described as 3 separate species (Ellerman and Morrison-Scott 1951). Both 0.collaris and 0.princeps are North American forms (Fig. 1). 0.collaris is found in portions of Alaska, the Yukon, the Northwest Territories and northernmost B r i t i s h Columbia, and 0.princeps ranges throughout southern B r i t i s h Columbia and discontinuously along the west coast of the United States. Fossil remains have been reported from various caves across the United States. These caves include Owl and Jaguar Caves in Idaho (Guilday 1969, Guilday and Adam 1967, Kurten and Anderson 1972) and Trout and Rapps Caves in West Virginia (Guilday 1971). Very l i t t l e taxonomic work has been done on these specimens although Guilday (pers. comm. 1978) is beginning to re-examine much of this material and tentatively assigns the specimens to 0.princeps. Harington, in 1977, working under the assumption that there is only 1 extant species of Ochotona in North America {princeps), examined 77 f o s s i l pika specimens from the Old Crow Basin in the Yukon. He referred 75 of these specimens to 0.princeps and the remaining 2 to an extinct species O.uhartoni. In 1973, Guthrie described a mummified pika carcass found in a gravel d r i f t near Fairbanks, Alaska and noted that i t was similar to 0. collaris. The Asian species 0.alpina, taken in i t s broadest sense (cf Kawamichi 1981), has a very extensive range throughout much of northeastern Asia (Fig. 1). Unfortunately, v i r t u a l l y no information is available on the fossil record of this species and further research is needed in that area. In 1965 Broadbrooks proposed that since the northern and southern Recent populations of North American pikas resembled each other so closely in morphology, behaviour and habitat, they should be viewed as a single species. Youngman (1975) suggested that 0.collaris be given subspecific status as 0.princeps collaris. Gureev (1964) and Corbet (1978) not only considered the 2 North American populations conspecific, but included them with 0. alpina, forming what may be termed as 'Ochotona alpina complex'.  73  372  Corbet noted however t h a t Ochotona ' i s a very d i f f i c u l t genus f o r t h e taxonomist w i t h r a t h e r small d i f f e r e n c e s between s p e c i e s . . . ' (Corbet 1978:66).  F i g u r e 1.  Approximate ranges o f Ochotona alpina, Ochotona collaris and Ochotona princeps based on Ellerman and M o r r i s o n - S c o t t (1951), Grzimek (1975), O r r (1977), Kawamichi (1981), Hall and Kelson (1959) and F e i s t and McCourt (1973).  Although the s t a t u s o f these 3 s p e c i e s remains moot, a trend toward the s i m p l i f i c a t i o n o f the genus i s e v i d e n t . In almost a l l c a s e s , taxonomic d e c i s i o n s r e g a r d i n g the s p e c i e s have been based mainly on s k u l l characteristics. G e n e r a l l y , d e s c r i p t i o n s have been v e r b a l with Youngman (1975) and Harington (1977) p r e s e n t i n g a few simple s t a t i s t i c s . The purpose o f t h i s study i s , t o r e - e v a l u a t e the r e l a t i o n s h i p s between the 3 forms using c r a n i o m e t r i c data gathered on both f o s s i l and recent specimens. Sneath and Sokal (1973) note t h a t being q u a n t i t a t i v e , numerical  74  373  methods p r o v i d e g r e a t e r d i s c r i m i n a t i o n along the spectrum o f taxonomic d i f f e r e n c e s , and a l s o have the advantages o f r e p e a t a b i l i t y and o b j e c t i v i t y . These methods a r e , as a r e s u l t , more s e n s i t i v e i n d e l i m i t i n g t a x a , an important c o n s i d e r a t i o n when d e a l i n g with a genus i n which d i f f e r e n c e s between s p e c i e s are s m a l l . Acknowledgements: \ indebted to Drs. D. W i l l i a m s and S.S. Le f o r t h e i r s t a t i s t i c a l h e l p , t o Veronica Brown f o r p a t i e n t l y t y p i n g v a r i o u s v e r s i o n s o f the t e x t and to Sarah Smith f o r her many h e l p f u l suggestions on improving the m a n u s c r i p t . For the loan of specimens or f o r permission t o study m a t e r i a l i n t h e i r c a r e , I would l i k e to thank the c u r a t o r s o f the mammalogy and v e r t e b r a t e p a l e o n t o l o g y c o l l e c t i o n s o f the National Museums o f Canada (Ottawa), the American Museum of Natural H i s t o r y (New Y o r k ) , Museum o f Comparative Zoology ( H a r v a r d ) , Puget Sound Museum of Natural H i s t o r y (Tacoma), Cowan V e r t e b r a t e Museum (Vancouver), and the Royal Ontario Museum ( T o r o n t o ) . T h i s study was p r i m a r i l y supported by NSERC i n d i v i d u a l o p e r a t i n g grant number 3462 t o Dr. J.M. T a y l o r . a r n  MATERIALS AND METHODS I examined both f o s s i l and Recent s k u l l s o f Ochotona zlpina, 0.princeps and 0. collaris from the mammal c o l l e c t i o n s o f American Museum o f N a t u r a l H i s t o r y (New Y o r k ) , Cowan V e r t e b r a t e Museum (Vancouver), Museum o f Comparative Zoology ( H a r v a r d ) , National Museums o f Canada (Ottawa), Puget Sound Museum of Natural H i s t o r y (Tacoma) and the Roys! O n t a r i o Museum (Toronto). A t o t a l o f 232 Recent a d u l t s k u l l s was used. Sample s i z e s ranged from 12 to 166. I omitted j u v e n i l e s to reduce problems o f m o r p h o l o g i c a l v a r i a t i o n due to age. A specimen was d e s i g n a t e d as a j u v e n i l e i f any 2 o f the f o l l o w i n g c o n d i t i o n s were met: 1) c r a n i a l sutures were not o s s i f i e d ; 2) p a r i e t a l s were very t h i n , almost t r a n s l u c e n t ; 3) teeth had not c o m p l e t e l y erupted or showed l i t t l e s i g n s o f wear; 4) the specimen was l i s t e d as a j u v e n i l e by the c o l l e c t o r . In a d d i t i o n , I examined 233 f o s s i l specimens from the Old Crow B a s i n i n the Yukon, 76 o f which were the same specimens p r e v i o u s l y d e s c r i b e d by Harington (1977). T h i s f o s s i l m a t e r i a l was e x c l u s i v e l y mandibular and i n no case was a mandible complete. I excluded specimens from the data m a t r i x i f the t e e t h showed very l i t t l e s i g n s o f wear under the assumption t h a t these were from j u v e n i l e a n i m a l s . I took a maximum of 42 measurements on each s k u l l using d i a l c a l i p e r s r e a d i n g to 0.05 mm. T w e n t y - f i v e of these measurements were taken on t h e cranium ( F i g . 2) and 17 on the mandible ( F i g . 3 ) .  75  374  F i g u r e 2.  1.  Diagrammatic r e p r e s e n t a t i o n o f measurements taken on the cranium [0. princeps, NMC 1086).  Cranium Basal l e n g t h : (BASLEN)  From the a n t e r i o r edge of the p r e m a x i l l a e to the a n t e r i o r m o s t p o i n t on the lower border o f the foramen magnum ( F i g . 2(B) J-Q) G r e a t e s t l e n g t h o f the s k u l l : From the a n t e r i o r m o s t part o f the (GRTLEN) rostrum ( e x c l u d i n g t e e t h ) to the p o s t e r i o r m o s t p o i n t o f the s k u l l ( F i g . 2(A) A-F) Zygomatic w i d t h : G r e a t e s t d i s t a n c e between the o u t e r margins o f (ZYGWID) the zygomatic arches ( F i g . 2(A) D-H) B r a i n c a s e breadth: G r e a t e s t width across the b r a i n c a s e p o s t e r i o r t o (BRNBRD) the zygomatic arches ( F i g . 2(A) E-I) Least i n t e r o r b i t a l breadth: Least d i s t a n c e d o r s a l l y between o r b i t s (LIO) ( F i g . 2(A) C-G) Diastema: From* p o s t e r i o r m o s t margin o f the a l v e o l u s o f I to the (DIASTM) a n t e r i o r m o s t margin o f the a l v e o l u s o f P ( F i g . 2(B) K-L) M a x i l l a r y tooth row: Length from the a n t e r i o r m o s t margin o f the a l v e o l u s (MAXTRL) o f P to the p o s t e r i o r m o s t margin o f the a l v e o l u s o f M 1  2  2  76  2  375.  Palatal length: From a n t e r i o r edge o f p r e m a x i l l a e to a n t e r i o r m o s t (PALLEN) p o i n t on p o s t e r i o r edge o f p l a t e ( F i g . 2(B) J-N) Palatal width: Width o f p a l a t e between the p o s t e r i o r m o s t p o i n t s o f (PALWID) the a l v e o l i o f P" ( F i g . 2(B) M) Nasal l e n g t h : From a n t e r i o r m o s t p o i n t o f nasal bones t o the (NSLLEN) p o s t e r i o r m o s t p o i n t ( F i g . 2(A) A-B) Bulla length: Length from p o s t e r i o r m o s t p r o j e c t i o n o f the b u l l a (BULLEN) t o t h e a n t e r i o r m o s t p o i n t ( F i g . 2(B) P-R) B u l l a w i d t h : . G r e a t e s t width o f the b u l l a ( F i g . 2(B) S-T) IBULWID) 2.  Mandible Length: (MANLEN) Depth 1: (MANDP1) Depth 2: (MANDP2) Depth 3: (MANDP3) Width: (MANWID) Tooth row: (MNTRLN) Diastema: (MNDIAS)  From s u p e r i o r a l v e o l a r margin o f I 2 to p o s t e r i o r m o s t p o i n t o f the a n g u l a r process ( F i g . 3(A) A-F) Depth o f mandible taken at midpoint o f mandibular symphysis ( F i g . 3(A) E-J) Depth o f mandible taken at P„ ( F i g . 3(A) D-I) Depth o f mandible taken p o s t e r i o r to M ( F i g . 3(A) B-H) Maximum width o f mandible taken p e r p e n d i c u l a r to mandible depth 3 ( F i g . 3(A) C-G) Length from the a n t e r i o r edge o f the a l v e o l u s o f P t o p o s t e r i o r edge o f a l v e o l u s o f M ( F i g . 3(B) L-M) From p o s t e r i o r m o s t margin o f the a l v e o l u s o f I i to a n t e r i o r m o s t margin o f the a l v e o l u s o f P ( F i g . 3(B) K-L) 3  s  3  3  Dentition Length and width o f f i r s t upper i n c i s o r : The g r e a t e s t l e n g t h (I1LEN) ( a n t e r o p o s t e r i o r diameter) and width o f I taken (I1W1D) at the a l v e o l u s Width o f second upper i n c i s o r : G r e a t e s t width o f I 2 taken at the (I2WID) alveolus Length and width o f cheek t e e t h : Maximal measurement o f l e n g t h *(P2-4LEN/WID) ( a n t e r o p o s t e r i o r diameter) and width ( b u c c o - 1 i n g u a l *(M1-2LEN/WID) diameter) f o r each i n d i v i d u a l tooth taken approximately *(MP3-4LEN/WID) 1 mm below the o c c l u s a l s u r f a c e , o r i e n t i n g the *(MM1-3LEN/WID) o c c l u s a l s u r f a c e p a r a l l e l to the jaws o f the c a l i p e r s ( F i g . 3(C) N-0, P-U, e t c . ) 1  * P M r e f e r t o c r a n i a l measurements. MP, MM r e f e r t o mandibular measurements. In some cases s k u l l s belonged to p i k a s o f unknown sex and t h e r e f o r e i t was necessary t o determine whether these specimens c o u l d be pooled with those o f known sex and thus i n c r e a s e the sample s i z e . To a s s e s s sexual dimorphism I a p p l i e d a 1-way, males a g a i n s t f e m a l e s , m u l t i v a r i a t e a n a l y s i s o f v a r i a n c e (MANOVA) t o each s p e c i e s i n d i v i d u a l l y and t o a l l 3 s p e c i e s together.  77  3 7 6  A m u l t i v a r i a t e a n a l y s i s o f v a r i a n c e was f u r t h e r used t o d e t e c t c h a r a c t e r v a r i a t i o n among t h e 3 taxa u s i n g Recent specimens o n l y . 0. alpina was compared f i r s t w i t h 0.princeps then w i t h 0.collaris, and 0. collaris and 0.princeps were compared s e p a r a t e l y . These t e s t s were f o l l o w e d by a stepwise d i s c r i m i n a n t analyses ( a f t e r Morrison 1976) as was deemed a p p r o p r i a t e based on the r e s u l t s o f the MANOVA. For a " b e t t e r v i s u a l understanding o f the r e l a t i o n s h i p s among t h e 3 t a x a , p o i n t s were p r o j e c t e d i n t o orthogonal c a n o n i c a l v a r i a t e space. Group means were then c l u s t e r e d u s i n g an unweighted p a i r group method (UPGMA) based on t h e i r Mahalanobis d i s t a n c e , D. In almost a l l c a s e s , m u l t i v a r i a t e s t a t i s t i c s r e q u i r e complete data m a t r i c e s f o r computational purposes. The h i g h l y fragmentary s t a t e o f the f o s s i l m a t e r i a l p r o v i d e d o n l y incomplete data m a t r i c e s and so most o f these techniques were i n a p p l i c a b l e . As a r e s u l t , I f i r s t compared Recent and f o s s i l specimens u s i n g a Model I u n i v a r i a t e a n a l y s i s o f v a r i a n c e (ANOVA) f o r each i n d i v i d u a l mandible measurement. Based on the r e s u l t s o f t h i s t e s t , I then performed a Duncan's m u l t i p l e range t e s t ( a f t e r Z a r 1974) on each measurement as a p p r o p r i a t e . RESULTS Sexual  Dimorphism  Although t h e r e a r e c o n f l i c t i n g r e p o r t s r e g a r d i n g sexual dimorphism i n the f a m i l y Leporidae ( e . g . Baker e t a l . 1978, Sobocinska-Janasza 1981) t h e r e a r e no data as t o i t s e x i s t e n c e w i t h i n t h e o c h o t o n i d s . A MANOVA on s k u l l c h a r a c t e r s measured f o r t h i s study i n d i c a t e s that the s k u l l s o f males and females, w i t h i n each s p e c i e s and among a l l 3 s p e c i e s , do not d i f f e r (P<0.0001 ). T h e r e f o r e , f o r a l l the f o l l o w i n g t e s t s , the sexes were pooled and t h e s k u l l s o f a d u l t s o f unknown sex were i n c l u d e d . RECENT MATERIAL  0.princeps  vs  0.collaris  A MANOVA t e s t i n d i c a t e d t h a t t h e r e a r e d i f f e r e n c e s between t h e s k u l l s o f Recent O.princevs and 0.collaris (F approximation o f the l i k e l i h o o d r a t i o = 17.3523, df = 42 & 165, P<0.0001). T h e r e f o r e a stepwise d i s c r i m i n a n t a n a l y s i s was a p p r o p r i a t e . That a n a l y s i s provided a means f o r weighting c h a r a c t e r s , i n t h i s case the 42 s k u l l measurements, such t h a t as many i n d i v i d u a l s , o r o p e r a t i o n a l taxonomic u n i t s ( O T U ' s ) , o f 1 taxon have high values f o r a l i n e a r f u n c t i o n o f these c h a r a c t e r s and as many as p o s s i b l e o f another have low v a l u e s . In t h i s way the l i n e a r c h a r a c t e r f u n c t i o n can serve as a much b e t t e r d i s c r i m i n a n t o f the 2 t a x a than w i l l any 1 c h a r a c t e r s i n g l y . The measured c h a r a c t e r s e t i s almost always reduced t o a s m a l l e r s e t and the f u n c t i o n i s such t h a t i t has maximal v a r i a n c e between groups r e l a t i v e t o the pooled v a r i a n c e w i t h i n groups (Sneath and Sokal 1973). The f u n c t i o n s c a l c u l a t e d by a stepwise d i s c r i m i n a n t a n a l y s i s a p p l i e d t o O.pHnceps and 0.collaris (Table 1 ) , were used t o c l a s s i f y 2 s e p a r a t e  data m a t r i c e s . The f i r s t m a t r i x c o n s i s t e d o f those specimens which had been used 1n the o r i g i n a l c a l c u l a t i o n s o f d i s c r i m i n a n t f u n c t i o n s , and t h e second o f new i n d i v i d u a l s o f known a f f i n i t y . Specimens from t h e f i r s t matrix were c l a s s i f i e d c o r r e c t l y {a posteriori) 9 8 * o f t h e time ( T a b l e 2a) and those o f the second m a t r i x were c l a s s i f i e d c o r r e c t l y i n 9 U o f t h e cases (Table 2 b ) . The high p e r c e n t o f i n d i v i d u a l s c l a s s i f i e d c o r r e c t l y suggests t h a t t h e f u n c t i o n s a r e e f f e c t i v e i n d i s c r i m i n a t i n g between 0.collaris and 0.princeps.  T a b l e 1.  Classification  f u n c t i o n s produced by a stepwise  discriminant  analysis.  ZYGWID DIASTM ALVLEN NASALL P2-LEN P3-LEN P4-WID Ml-WID MANDP3 MP3-LN MP4-LN MM1-LN MM1-WD MM3-WD  0.alpina  vs O.princevs and  O.princeps  O.collaris  60.27 -13.18 1.42 -13.79 20.56 6.10 - 6.27 53.72 -19.30 - 3.59 -13.95 73.82 29.89 60.19  63.62 - 9.14 10.06 -17.84 31.27 - 5.78 -21.69 41.95 -25.68 -37.56 - 0.88 83.72 46.21 42.20  0.collaris  A m u l t i v a r i a t e a n a l y s i s o f v a r i a n c e d e t e c t e d d i f f e r e n c e s between 0.alpina and O.princevs (F approximation o f t h e l i k e l i h o o d r a t i o n = 4.0697, d f = 42 and 176, P < 0.0001 ) and between O.alpina and O.collaris (F approximation = 16.8346, d f = 42 and 176, P < 0.0001). A subsequent stepwise d i s c r i m i n a n t a n a l y s i s produced c l a s s i f i c a t i o n f u n c t i o n s ( T a b l e 3) which c l a s s i f i e d , a posteriori, 95% o f t h e cases c o r r e c t l y and 85% o f new i n d i v i d u a l s c o r r e c t l y ( T a b l e 4 ) . The p o i n t s were p r o j e c t e d i n t o orthogonal c a n o n i c a l v a r i a t e space ( F i g . 4) w i t h t h e 2 c a n o n i c a l axes accounting f o r 83 and 27 percent o f t h e t o t a l d i s p e r s i o n r e s p e c t i v e l y . O.collaris is separated from o.princeps, p r i m a r i l y a l o n g t h e f i r s t a x i s and from O.alpina along both a x e s , w h i l e O.princevs and O.alpina a r e l a r g e l y d i f f e r e n t i a t e d o n l y along t h e second a x i s . The r e l a t i v e c o n t r i b u t i o n s o f measured c h a r a c t e r s t o each o f t h e c a n o n i c a l v a r i a b l e s i s i n d i c a t e d by t h e c o e f f i c i e n t s  379  T a b l e 2. a.  C l a s s i f i c a t i o n m a t r i c e s f o r O.princeps and  C l a s s i f i c a t i o n m a t r i x based on an a posteriori  0.princeps 0. princeps 0. .  collaris  0.  collaris  classification.  Total n  Percent Correct  156  4  160  97.5  1  47  48  97.9  '  C l a s s i f i c a t i o n matrix  Total Percent 97.6  based on the c l a s s i f i c a t i o n o f new i n d i v i d u a l s .  0.princeps  0.collaris  Total n  0. princeps  5  1  6  0.  0  5  5  collaris  0.collaris.  Percent Correct 83.3 •  Total Percent 91.0  100.0  i n T a b l e 5. The measurements MP3LEN, 12WID and MM1LEN a r e most important t o the s e p a r a t i o n along c a n o n i c a l v a r i a b l e I and s e p a r a t i o n along c a n o n i c a l v a r i a b l e II i s most i n f l u e n c e d by 12WID, M2LEN and P2WID. In e i t h e r c a s e , measurements of i n d i v i d u a l teeth a r e o f g r e a t e s t importance i n d i f f e r e n t i a t i n g between groups. T a b l e 3.  C l a s s i f i c a t i o n f u n c t i o n s produced by a stepwise analysis.  discriminant  O.alpina  O.princeps  O.collaris  7.09 52.38 39.49 -11.85 -64.39 14.16 -21.45 30.51 50.43 - 3.40 - 5.57 40.26 -46.20 117.76  5.22 56.74 43.38 -10.79 -39.51 - 6.70 -15.95 19.69 72.54 -10.40 - 2.44 33.62 -36.10 117.28  BASLEN L.1.0. MAXTRL NSLLEN I2WID P2WID P4WID Ml WID M2LEN MAMDP1 MAKDP3 MP3LEN MP41WN MM1LEN  7.69 60.13 51.40 -15.23 -65.22 - 0.34 -28.03 7.55 77.96 -10.46 - 7.78 0.72 -25.01 134.28  81  •  0. piping  A 0. colloris O 0. princeps  o •o OO  o  cP°  cP CO -  *0  U  o o°  CANONICAL VARIATE I F i g u r e 4.  P l o t of i n d i v i d u a l p o i n t s i n c a n o n i c a l v a r i a t e s p a c e . S o l i d symbols r e p r e s e n t group means.  The group means were c l u s t e r e d using an unweighted p a i r group method o f a n a l y s i s (UPGMA) based on Mahalanobis d i s t a n c e , D. The r e s u l t i n g phenogram ( F i g . 5) suggests t h a t 0.alpina and 0.princeps are more s i m i l a r to each other than e i t h e r i s t o 0.collaris, which i s a l s o somewhat r e f l e c t e d in F i g . 4. FOSSIL MATERIAL The f o s s i l m a t e r i a l I examined appeared to f a l l i n t o 3 broad s i z e groups or c l a s s e s . Some o f the f o s s i l specimens were extremely l a r g e and were placed i n t o a s i z e category designated C l a s s III. The next s i z e group, C l a s s II, c o n s i s t e d of specimens which were approximately 10% l a r g e r than Recent 0.princeps or 0.collaris. The f i n a l s i z e c l a s s , C l a s s I, c o n t a i n e d f o s s i l s approximately e q u i v a l e n t i n s i z e to Recent specimens. Means, standard d e v i a t i o n s and observed ranges f o r the 3 s i z e c l a s s e s are g i v e n i n T a b l e 6. The s i z e c l a s s e s o f f o s s i l s were f i r s t compared with the Recent s p e c i e s 0.alpina, 0.collaris and Q.princeps over each mandibular measurement u s i n g a Model I ANOVA. In each case the F was s i g n i f i c a n t (P<C.05) i n f e r r i n g t h a t the taxa were not a l l drawn from the same p o p u l a t i o n . The r e s u l t s of the Duncan's m u l t i p l e range t e s t (Table 7) were i n c o n c l u s i v e ,  381  p o s s i b l y as a r e s u l t o f g r e a t l y unequal sample s i z e s , but do suggest some trends. G e n e r a l l y , f o s s i l s appeared t o be more s i m i l a r t o other f o s s i l s and Recent s p e c i e s more s i m i l a r t o other Recent s p e c i e s than f o s s i l s a r e t o Recent s p e c i e s . There were, however, some i n d i c a t i o n s o f s i m i l a r i t i e s between the C l a s s I f o s s i l s and the Recent s p e c i e s when c o n s i d e r i n g measurements MANDP1, MNDIAS, MM3LEN and MM3WID. T a b l e 4.  C l a s s i f i c a t i o n .matrices f o r 0.alpina,  0.collaris  C l a s s i f i c a t i o n matrix based on an a posteriori  a.  0.alpina  0. princeps  0.collaris  and O.princevs.  classification Total n  Percent Correct  10  0  0  10  100.0  O.princevs  6  120  2  128  93.8  0.  0  0  42  • 42  100.0  0. alpina  collaris b.  C l a s s i f i c a t i o n matrix based on the  0. a Ipina  0. princeps  0.  95  c l a s s i f i c a t i o n of new i n d i v i d u a l s .  collaris  Total n  Percent Correct  2  0  0  2  100.0  0.princeps  3  27  2  12  84.4  0.  0  1  5  6  83.3  0.alpina  o z <  U J  collaris  3-  O. alpina  Total Percent  O. princeps  Total Percent  85  O. collaris  </>  Q  CO  o <  < X  F<i g u r e 5.  Phenogram o f group means based on Mahalanobis  d i s t a n c e , D.  83  Table 5 .  Coefficients f o r canonical  variables.  Canonical Variable I BASLEN L.I.O. MAXTRL MSLLEN I2WID P2WID P4WID Ml WID M2LEN MANDP1 MAN DP 3 MP3LEN MP4LEN MM1LEN  -0.57387 -0;84547 -1.94757 1.05219 5.93514 -1.34828 2.83919 2.98922 -1.47939 0.07178 1.25008 7.91546 ' -2.73153 -4.05758  Canonical  Variable II  0.44702 -1.38898 -1.42554 -0.13851 -6.23259 5.79810 -1.13838 3.58524 -6.59968 2.02791 -0.70555 3.15642 -3.33901 -0.49953  DISCUSSION The r e s u l t s of the s t a t i s t i c a l a n a l y s i s c l e a r l y i n d i c a t e d that d i f f e r e n c e s e x i s t among the s k u l l s of O.princeps, 0.collaris and 0.alpina. These appear p r i m a r i l y due t o v a r i a t i o n s i n t o o t h morphology. Measurements of i n d i v i d u a l t e e t h appear prominently i n t h e c l a s s i f i c a t i o n f u n c t i o n s presented i n Tables 2 and 4, as well as p l a y i n g a major r o l e i n the s e p a r a t i o n of the taxa i n c a n o n i c a l v a r i a t e space as seen i n F i g . 4. It i s not s u r p r i s i n g t h a t t o o t h morphology should be so important i n s e p a r a t i n g the taxa because, as Dawson (1967) n o t e d , except f o r morphology of the t e e t h ( p a r t i c u l a r l y o f P and P ) the lagomorph r e c o r d shows r e l a t i v e l y few f e a t u r e s to d i f f e r e n t i a t e g e n e r i c and lower l e v e l s . 2  3  The s i z e v a r i a t i o n e x h i b i t e d by the f o s s i l s from the Old Crow Basin along with the very large specimen d e s c r i b e d by G u t h r i e and Matthews (1971) i n d i c a t e d t h a t during t h e P l e i s t o c e n e pikas were m o r p h o l o g i c a l l y more variable. G u t h r i e (1973) provided evidence t h a t 0.collaris, considered a member of the a l p i n e f a u n a , had spread i n t o the lowlands of c e n t r a l A l a s k a d u r i n g the l a t e P l e i s t o c e n e and occupied a d r i e r , more s t e p p e - l i k e environment than now p r e v a i l s t h e r e . Harington (1977) suggests that s h i f t s of h a b i t a t such as those d e s c r i b e d by G u t h r i e c o u l d be l a r g e l y r e s p o n s i b l e f o r the v a r i a t i o n s i n s i z e observed in the f o s s i l ochotonids from Alaska and the Yukon. He p o s t u l a t e d t h a t the very l a r g e ochotonids occupied a r e l a t i v e l y r i c h steppe g r a s s l a n d h a b i t a t i n e a s t e r n B e r i n g i a during the e a r l y t o middle P l e i s t o c e n e and t h e i r l a r g e s i z e may be a t t r i b u t a b l e to access to more abundant lowland f o r a g e . As with many other mammals, these l a r g e ochotonids became e x t i n c t sometime d u r i n g the l a t e P l e i s t o c e n e while s m a l l e r p i k a s , such as those r e p r e s e n t e d by the C l a s s I f o s s i l s , continued  Table 6.  Means, standard d e v i a t i o n s and observed range f o r the 3 s i z e Class I  MEASUREMENT  n  MANDP1  6  MANDP2  42  MANDP3  52  MANWID  54  MNTRLN  15  MNDIAS  3  MP3LEN  13  MP3WID  13  MP4LEN  36  MP4WID  36  MM1LEN  50  MM1WID  52  MM2LEN  58  MM2WID  58  MM3LEN  37  MM3WID  37  x + s (OR) 3.29 (2.55 6.43 (4.20 5.64 (4.00 3.30 (2.45 8.87 (6.45 6.25 (5.15 1.82 (1.20 1.54 (1.20 1.81 (1.50 1.89 (1.50 1.96 (1.40 1.94 (1.40 1.98 (1.45 1.90 (1.35 0.90 (0.70 1.46 (1.05  C l a s s II  Fossils  + 0.57 - 3.90) ± 0.84 - 8.00 ± 0.59 - 6.85) ± 0.31 - 3.95) ± 0.89 - 9.85) ± 1.24 - 7.60) ± 0.32 - 2.50) ± 0.21 - 1.90) + 0.16 - 2.05) + 0.17 - 2.20) + 0.25 - 2.75) ± 0.24 - 2.80) ± 0.21 - 3.00) ±0.20 - 2.70) ±0.90 - 1 .10) ±0.14 - 1.65)  x + s (OR)  6  3.99 ± 0.40 (3.60 - 4.70) 7.14 ± 0.48 (6.30 - 8.05) 6.16 ± 0.41 (5.50 - 7.05) 3.55 ± 0.24 (3.00 - 4.00) 9.42 ± 0.35 (8.85 - 9.90) 6.93 ± 0.46 (6.60 - 7.25) 1.97 ± 0.28 (1.65 - 2.35) 1.68 ± 0.07 (1.55 - 1.75) 1 .95 ± 0.10 (1 .80 - 2.20) 2.03 ± 0.11 (1.70 - 2.25) 2.12 ± 0 . 1 2 1.90 - 2.40 2.07 ± 0.12 (1.80 - 2.35) 2.10 ± 0 . 1 3 (1.80 - 2.35) 2.01 ± 0 . 1 6 (1 .85 - 2.30) 0.97 ± 0 . 1 0 (0.80 - 1 .10) 1.52 ± 0 . 1 5 (1.25 - 1.90)  29 30 10 2 6 6 27 27 31 32 31 31 24 24  fossils. C l a s s III  Fossils  n  31  c l a s s e s of  Fossils  n  x + s (OR)  3  10.48 ± 0.52 (9.90 ± 10.90) 8.28 - 1.37 (6.55 - 9.90) 4.39 ± 0.62 (3.50 - 5.00)  5 6  2 2. 4 5 6 6 5 5  2.53 ± 0.04 (2.50 - 2.55) 2.73 ± 0 . 0 4 (2.70 - 2.75) 2.93 ± 0 . 1 6 (2.70 - 3.05) 2.67 ± 0 . 3 4 (2.10 - 3.00) 2.66 ± 0 . 3 9 (2.10 - 3.05) 2.53 ± 0 . 3 5 (2.00 - 2.90) 1.04 ± 0 . 1 4 (0.90 - 1.25) 1.78 ± 0 . 2 0 (1.55 - 2.00)  co co co  to t h r i v e . In North A m e r i c a , G u t h r i e (1973) a t t r i b u t e d t h e s e p a r a t i o n o f 0.collaris and o.princeps t o i s o l a t i o n d u r i n g the Wisconsin g l a c i a t i o n , w i t h 1 p o p u l a t i o n s u r v i v i n g w i t h i n the Alaskan Refugium and 1 t o the south of the major i c e s h e e t . Youngman (1975) combined 0.collaris and O.princeps i n t o a s i n g l e s p e c i e s based l a r g e l y upon a comparison i n v o l v i n g 9 c r a n i a l c h a r a c t e r s . A l i s t o f these c h a r a c t e r s along w i t h those chosen as best d i s c r i m i n a t o r s by t h e stepwise d i s c r i m i n a n t a n a l y s i s i s i n T a b l e 8. There are o n l y 3 c h a r a c t e r s i n common between Youngman's l i s t and t h e one produced s t a t i s t i c a l l y . Most n o t a b l y absent from Youngman's c h a r a c t e r s e t are measurements o f i n d i v i d u a l t e e t h , which c o u l d p o s s i b l y e x p l a i n why he was unable t o d e t e c t d i f f e r e n c e s between t h e 2 t a x a . In a d d i t i o n t o m o r p h o l o g i c a l e v i d e n c e , Kawamichi (these proceedings) has observed b e h a v i o u r a l d i f f e r e n c e s between 0 and 0.collaris. He found t h a t v a r i o u s l o c a l p o p u l a t i o n s o f O.princeps possess a long c a l l , while t h i s c h a r a c t e r i s t i c i s absent i n 0.collaris. Kawamichi suggests t h a t 0. collaris and O.princeps should be regarded as separate s p e c i e s and on t h e b a s i s o f my r e s u l t s , I s t r o n g l y c o n c u r . The A s i a n 0.alpina i s more d i f f i c u l t t o c o n s i d e r because i t s taxonomic p o s i t i o n w i t h r e g a r d t o other A s i a n s p e c i e s remains moot (see Corbet 1978, Smith, these p r o c e e d i n g s ) , e s p e c i a l l y s i n c e t h e r e i s a p a u c i t y of f o s s i l material. My r e s u l t s suggest that 0.alpina i s d i s t i n c t from both 0.collaris and O.princeps, although F i g s . 4 and 5 i n d i c a t e t h a t 0.alpina i s m o r p h o l o g i c a l l y more s i m i l a r t o O.princeps than i t i s t o ~0.collaris. This i s p a r t i c u l a r l y i n t e r e s t i n g when c o n s i d e r i n g t h e r e l a t i v e geographic p o s i t i o n s o f the 3 s p e c i e s (see F i g . 1 ) . 0.collaris is geographically i n t e r m e d i a t e between the o t h e r 2 s p e c i e s but c r a n i o m e t r i c a l l y i s the most dissimilar. One e x p l a n a t i o n f o r t h i s c o u l d be a separate i n v a s i o n from A s i a or c h a r a c t e r d i s p l a c e m e n t , o r perhaps b o t h . The Old Crow f o s s i l s , which were found near 0.collaris' p r e s e n t range, show some s i m i l a r i t i e s t o a l l 3 s p e c i e s (Table 8) and perhaps r e p r e s e n t an i n t e r m e d i a t e form. If t h i s i s indeed the c a s e , then c h a r a c t e r displacement would appear t o be a more l i k e l y e x p l a n a t i o n f o r the pronounced d i f f e r e n c e o f 0.collaris than would a separate i n v a s i o n . Taking t h i s i n t o a c c o u n t , a common a n c e s t o r f o r a l l 3 s p e c i e s seems l i k e l y with 0.alpina being i s o l a t e d from the North American forms by the c l o s u r e o f the Bering Land B r i d g e . I d e n t i f y i n g a common ancestor i s a t best speculative. Vorontosov and I v a n i t s k a y a (1973) have i n d i c a t e d a c l o s e r e l a t i o n s h i p between the c e n t r a l Asian 0.pusilla and t h e 2 North American s p e c i e s based on chromosome number. A c e n t r a l A s i a n c e n t e r o f o r i g i n does appear l i k e l y and has been noted i n other mammalian s p e c i e s such as t h e mountain sheep., Ovis s p . ( G e i s t 1971). The a c t u a l r e l a t i o n s h i p among these 3 s p e c i e s w i l l probably o n l y be f u l l y r e a l i z e d when f o s s i l c o l l e c t i o n s are expanded and a r e v i s i o n o f the e n t i r e genus Cjhotona has been completed. However, based on the r e s u l t s of t h i s s t u d y , I f e e l t h a t 0.alpina, 0.collaris and O.princeps a r e probably separate and good s p e c i e s , although a r e l a t i o n s h i p may e x i s t a t t h e s u p e r s p e c i f i c  T a b l e 7.  R e s u l t s o f a Duncan's M u l t i p l e Range t e s t performed on 0.alpina, find the 3 f o s s i l s i z e c l a s s e s .  (0.alpina,  MANDP1  Class  I  Fossils)  (0. alpina,O.princeps)  MANDP2  (0.alpina,0.collaris)  (0.alpina,O.princeps)  MANDP3  '  (0.alpina,0.princeps,0.collaris) (0.aIpina,  MNTRLN MNDIAS  (0.alpina,0.collari8,ZUss  0.princeps)  I Fossils)(Class  (0.  alpina,0.collaris)  I Fossl l s . O . p r i n e e p s H C I a s s  (0.alpina,O.princeps)  MP3WID  II  Fossils)  (0.alpina,0.collaris)  MP4LEN  No homogenous subsets  MP4WID  (0.alpina,O.princeps)(0.alpina,0.collaris)  MM1LEN  (0. alpina,  0 .princv.pa ,0.  MM1WID  (0. alpina,  O.princepn,  MM2LEN  (0.alpina,0.princeps,0.collaris)  MM2WID  (0.alpina,0.princeps,0.collaris)  MM3W1D  I Fossils,Class  (0.alpina,O.princeps)  MP3LEN  MM3LEN  O.princepn  Homogenous Subsets  Measurement  MAHWID  0.collaris,  (O.alpina.o.princeps,0.collaris.  Class  I F o s s i l s , Class  (0.aIpina,O.princepn)  collaris) O.cbllaris)  III  FosslIs;(0.alpina,a\  (0. alpina,0.col  1 fossil  groups;  laria)  CO  ca  (SI  level. Perhaps the term 'Ochotona alpina complex' w i l l provide a u s e f u l frame of r e f e r e n c e i n i d e n t i f y i n g a s p e c i e s group of common a n c e s t r y .  T a b l e 8.  Comparison of c h a r a c t e r s  Characters chosen by Youngman (1975:56)  GRTLEN ZYGWD BRNBRD L.I.O. PALWID NSLLEN MAXTRL BULLEN BULWID  C h a r a c t e r s chosen by stepwise d i s c r i m i n a n t a n a l y s i s  MANDP3 P4WID DIASTM •NSLLEN •ZYGWID MP3LEN •MAXTRL MP4LEN P3LEN MIWID MM3WID MM1WID P2LEN MM1LEN  1  2  2  L i s t e d by Youngman as 2  'Occipito-nasal  length'.  Youngman r e f e r s to the t o t a l s i z e of the b u l l a e . For comparative purposes I assigned l e n g t h and width components.  LITERATURE  CITED  BAKER, A . J . , R.L. PETERSON, J . L . EGER.and T . H . MANNING. 1978. S t a t i s t i c a l a n a l y s i s of geographic v a r i a t i o n i n the s k u l l of the a r c t i c hare (Levus arcticus). Can. J . Z o o l . 56:2067-2082. BR0ADBR00KS, H.E. 1965. Ecology and d i s t r i b u t i o n of the pikas of Washington and A l a s k a . Amer. M i d i . Nat. 73:299-335. CORBET, G.B. 1978. The mammals of the P a l e a r c t i c r e g i o n : a taxonomic review. B r i t i s h Museum ( N a t u r a l H i s t o r y ) and C o r n e l l U n i v e r s i t y P r e s s . London and I t h i c a . 314 pp. DAWSON, M.R. 1967. Lagomorph h i s t o r y and the s t r a t i g r a p h i c r e c o r d . Pp. 287-316 In: C. T e i c h e r t and E.L. Yochelson ( E d s ) . Essays in p a l e o n t o l o g y and s t r a t i g r a p h y (R.C. Moore commemorative volume). Dept. G e o l . Univ. Kansas S p e c i a l Pub!. 2. 626 pp. ELLERMAN, J . R . , a n d T . C . S . MORRISON-SCOTT. 1951. 2nd ed. C h e c k l i s t of P a l a e a r c t i c and Indian mammals, 1758-1946. B r i t i s h Museum (Natural H i s t o r y ) . London. 716 pp. FEIST, J . D . , a n d K.H. McCOURT. 1973. A northern range extension f o r the pika i n the Northwest T e r r i t o r i e s . Can. F i e l d Nat. 87:317-318.  GEIST, V. 1971. Mountain Sheep. A study i n b e h a v i o r and e v o l u t i o n . The Univ. o f Chicago P r e s s . Chicago and London. 383 pp. GRZIMEK, H.C.B. 1975. F a m i l y : p i k a s . Pp. 457-462. Jr.: G r z i m e k ' s Animal L i f e E n c y c l o p e d i a : Mammals III. V o l . 12. Van Nostrand Reinhold Co. N.Y. GUILDAY, J . E . 1969. Small mammal remains from the Wasden S i t e (Owl C a v e ) , B o n n e v i l l e C o . , Idaho. Tebiwa 12:47-62. . 1971. The P l e i s t o c e n e h i s t o r y o f the Appalachian mammal fauna. Pp.233-262. I n : ' P . C . H o l t ( E d . ) , with the a s s i s t a n c e o f R.A. Paterson and J . P . Hubbard. The d i s t r i b u t i o n a l h i s t o r y of the b i o t a o f the southern A p p a l a c h i a n s . Part III Vertebrates. Res. Div. Monogr. 4 , V i r g i n i a P o l y t e c h n i c I n s t , and S t a t e U n i v . , B l a c k s b u r g , V i r g i n i a . , and E.K. ADAM. 1967. Small mammal remains from Jaguar Cave, Lemhi County Idaho. Tebiwa 10:26-35. GUTHRIE, R.D. 1973. Mummified p i k a (Ochotona) c a r c a s s and dung p e l l e t s from Pleistocene deposits in i n t e r i o r Alaska. J . Mammal. 54:970-971. , and J . V . MATTHEWS, JR. 1971. The Cape Deceit Fauna - e a r l y P l e i s t o c e n e mammalian assemblage from the Alaskan A r c t i c . Quaternary Res. 1 :474-510. GUREEV, A.A. 1964. Fauna o f the USSR, Mammals. V o l . 3, Part 10, Lagomorpha. Moscow. HALL, E.R., and K.R. KELSON. 1959. Mammals o f North America. Ronald P r e s s . New York. 2 v o l s . 1083 pp. HARINGTON, C R . 1977. P l e i s t o c e n e mammals o f the Yukon T e r r i t o r y . PhD t h e s i s , U n i v e r s i t y o f A l b e r t a , Edmonton, A l b e r t a , 1052 p p . KAWAMICHI, T. 1981. V o c a l i s a t i o n s o f Ochotona as a taxonomic c h a r a c t e r . Pp. 324-339. In: K. Myers and C D . Maclnnes (Eds). World Lagomorph C o n f . , Guelph, Ont. 1979. KURTEN, B., and E. ANDERSON. 1972. The sediments and fauna o f Jaguar Cave: II - The Fauna. Tebiwa 15:21-46. MORRISON, D.F. 1976. M u l t i v a r i a t e s t a t i s t i c a l methods. McGraw H i l l Book C o . , New York. 415 pp. ORR, R.T. 1977. The l i t t l e known p i k a . MacMillan P u b l i s h i n g C o . , New York, 144 pp. SMITH, A . T . 1981. P o p u l a t i o n dynamics o f p i k a s (Ochozzr.a). Pp.572-586. In: K. Myers and C D . Maclnnes ( E d s . ) . P r o c . World Lagomorph C o n f . , Guelph, O n t a r i o , 1979. SNEATH, P.H.A., and R.R. SOKAL. 1973. Numerical taxonomy. W.H. Freeman and Co. San F r a n c i s c o , 575 pp. SOBOCINSKA-JANASZA, J . 1981. Sex dimorphisms i n c e r t a i n bone elements o f the European hare (lepus europaeus P a l l a s (187S) ). Pp. 239. In: K. Myers and C D . Maclnnes ( E d s . ) . P r o c . World Lagomorph C o n f . , Guelph, O n t a r i o . 1979. YOUNGMAN, P.M. 1975. Mammals o f the Yukon T e r r i t o r y , Canada. N a t l . Mus. Nat. S c i . (Ottawa). P u b l . Z o o l . 10. 192pp. VORONTSOV, N.N., and E. YU. IVANITSKAYA. 1973. Comparative karyology o f north p a l a e a r c t i c p i k a s (Ochotona, Ochotonidae, Lagc~orpha). C a r y o l o g i a 26: 213-223. ZAR, J . H . 1974. B i o s t a t i s t i c a l a n a l y s i s . P r e n t i c e - H a l l , Inc. Englewood C l i f f s , N.J. 620 pp.  89  PLATES  389  Plate  I . P h o t o g r a p h of 0.  alpina  (MCZ  23293)  391  Plate  II.  P h o t o g r a p h of 0. c o l l a r i s  (NMC 40305)  39Z  393  Plate III.  P h o t o g r a p h of 0. d a u r i c a  (AMNH 58898)  39y  395  P l a t e IV.  P h o t o g r a p h of 0.  erythrotis  (MCZ  7591)  397  P l a t e V. P h o t o g r a p h of 0. p a l l a s i  (AMNH 58899)  399  P l a t e V I . P h o t o g r a p h of 0. p r i n c e p s  (CVM 1600)  401  Plate VII.  P h o t o g r a p h of 0. p u s i l l a  (AMNH 176280)  403  Plate VIII.  P h o t o g r a p h of 0. r o y l e i  (AMNH 59712)  405  Plate  I X . P h o t o g r a p h of 0. r u f e s c e n s  (AMNH 97803)  407  P l a t e X. P h o t o g r a p h of 0. r u t i l a  (AMNH 27640)  409  Plate XI.  P h o t o g r a p h of 0. t h i b e t a n a  (MCZ 7592)  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share