A NUMERICAL REVISION OF THE GENUS OCHOTONA (LAGOMORPHA:MAMMALIA) AND AN EXAMINATION OF ITS PHYLOGENETIC RELATIONSHIPS by MARLA LYNN WESTON Honours B . S c , C a r l e t o n U n i v e r s i t y , 1975 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA February , 1982 (c) Mar ia Lynn Weston, 1982 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head o f my department or by h i s o r her r e p r e s e n t a t i v e s . I t i s understood t h a t copying o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be allowed without my w r i t t e n p e r m i s s i o n . Department of ^aOJ-O^Y The U n i v e r s i t y of B r i t i s h Columbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 Date S^eA /?, SS>8*2 DE-6 (2/79) As a smal l token of my g r a t i t u d e for t h e i r unending p a t i e n c e , support and unders tanding , I . d e d i c a t e t h i s t h e s i s to my parent s , Wi lhe lmina C. Weston and Leonard A. Weston ABSTRACT The genus Ochotona i s r e v i s e d u s i n g n u m e r i c a l t e c h n i q u e s on 42 c r a n i o m e t r i c measurements. As a r e s u l t of t h i s r e v i s i o n 18 e x t a n t s p e c i e s a re r e c o g n i z e d : 0. a l p i n a , 0. c o l l a r i s , 0. c u r z o n i a e , 0. d a u r i c a , 0. e r y t h r o t i s , 0. kamensis, 0. k o s l o w i , 0. l a d a c e n s i s , 0. lama, 0. m a c r o t i s , 0. p a l l a s i , 0. p r i n c e p s , 0. p u s i l l a , 0. r o y l e i , 0. r u f e s c e n s , 0. r u t i l a , 0. t h i b e t a n a and 0. th o m a s i . A d e s c r i p t i o n i s g i v e n f o r each s p e c i e s as w e l l as i t s o r i g i n a l r e f e r e n c e , synonymies, u n i v a r i a t e s t a t i s t i c s f o r the 42 c r a n i o m e t r i c measurements and a g e n e r a l d e s c r i p t i o n of the a n i m a l and i t s h a b i t a t . A s k u l l r e p r e s e n t a t i v e of each s p e c i e s and maps o u t l i n i n g g e n e r a l ranges are a l s o p r e s e n t e d . R e s u l t s of l i n e a r d i s c r i m i n a n t f u n c t i o n a n a l y s e s i n d i c a t e an a f f i n i t y of s p e c i e s from s i m i l a r h a b i t a t s . P h y l o g e n e t i c r e l a t i o n s h i p s among s p e c i e s are d i s c u s s e d , and a cladogram i s p r e s e n t e d . Changes i n o v e r a l l s i z e dominate the cladogram, w i t h s m a l l s i z e a p p e a r i n g t o be the p l e s i o m o r p h i c s t a t e . Some f o s s i l o c h o t o n i d groups a r e a l s o examined, a l t h o u g h the measurement s e t s used were g r e a t l y reduced due t o the fragmentary n a t u r e of the f o s s i l m a t e r i a l . The reduced measurement s e t s do not appear t o be d i a g n o s t i c of taxonomic d i f f e r e n c e s , but they do appear t o be r e f l e c t i v e of h a b i t a t d i f f e r e n c e s . As a r e s u l t , the o c h o t o n i d s may prove to be u s e f u l i v i n d i c a t o r s of paleoenvironments. Range r e d u c t i o n due to the i n f l u e n c e of c l i m a t e and competition i s a l s o d i s c u s s e d , as i s the trend toward an o v e r a l l i n c r e a s e in body s i z e . V TABLE OF CONTENTS DEDICATION i i ABSTRACT i i i LIST OF TABLES v i i LIST OF FIGURES v i i i LIST OF PLATES x ACKNOWLEDGEMENTS x i PREFACE . . . 1 PART I INTRODUCTION 4 HISTORICAL REVIEW 6 C l a s s i f i c a t i o n Above the Species L e v e l 6 The Species 8 Problematic Taxa 13 Phylogenetic H i s t o r y 16 MATERIALS AND METHODS- 17 General Methods 17 1. C o l l e c t i o n s , ...17 2. Mensural Methods .18 3. Geographic Groups and Complexes 19 S t a t i s t i c a l Methods 23 1 . General 23 2. M i s s i n g V a r i a b l e s and O u t l i e r s 28 3. Sexual Dimorphism 29 I n d i v i d u a l Assessment and Sample S i z e 30 1. I n d i v i d u a l Assessment 30 2 . Sample Siz e . . 31 Subspecies . . 32 Spec i e s 34 INDIVIDUAL ASSESSMENT: RESULTS 37 An Example 37 SPECIES CONCEPT 50 SUBSPECIES AND THE PROBLEMATIC TAXA GROUPS RESULTS AND DISCUSSION 54 The Subspecies 54 The Problematic Taxa : 61 1. The A l p i n a Complex 61 A. Comparison of 0. a l p i n a and 0. hyperborea .... 61 B. O. a l p i n a vs. O. p r i n c e p s and 0. c o l l a r i s ... 69 2. 0. curzoniae and 0. d a u r i c a 73 3. 0. rut i l a and O. e r y t h r o t i s ( i n c l u d i n g 0. glover i ) 7 9 4- 9.' l a m a t 0- mac r o t i s and 0. r o y l e i 85 5. 0. for r e s t i , 0. osgoodi and 0. cansus 92 SYSTEMATIC DESCRIPTIONS 103 I n t r o d u c t i o n 103 D e s c r i p t i o n s 104 Ochotona a l p i n a - ' 1 05 Ochotona c o l l a r i s 111 Ochotona curzon iae .116 Ochotona daur i c a 123 Ochotona e r y t h r o t i s 128 v i Ochotona kamensis 133 Ochotona koslowi 140 Ochotona l a d a c e n s i s 146 Ochotona lama '..153 Ochotona macrotis 159 Ochotona p a l l a s i ..166 Ochotona p r i n c e p s ..172 Ochotona p u s i l l a 180 Ochotona r o y l e i 185 Ochotona ruf escens 191 Ochotona r u t i l a 196 Ochotona t h i b e t a n a 201 Ochotona thomasi 207 ALL SPECIES 213 Phylogenetic A n a l y s i s 224 1 . R e s u l t s 224 2. I n t e r p r e t a t i o n 235 SUMMARY 250 PART II INTRODUCTION 252 FOSSIL HISTORY 254 MATERIALS AND METHODS .258 C o l l e c t i o n s 258 L o c a l i t i e s 259 General Methods 263 S t a t i s t i c a l Methods 265 1 . U n i v a r i a t e 265 2. M u l t i v a r i a t e 267 RESULTS 270 U n i v a r i a t e R e s u l t s 270 1. D e s c r i p t i v e S t a t i s t i c s 270 2 . A l l o m e t r y . 274 M u l t i v a r i a t e R e s u l t s 282 1 . Yukon F o s s i l s 282 2. L i t t l e Box E l d e r and E n g l i s h F o s s i l s 286 3. F o s s i l Combination Sets 290 4. Recent Species 295 5. F o s s i l and Recent Specimens 305 DISCUSSION 309 Mor p h o l o g i c a l V a r i a b i l i t y 309 Paleoecology 311 Increase In S i z e 316 E x t i n c t i o n 318 SUMMARY 320 GENERAL SUMMARY AND CONCLUSIONS 322 FUTURE STUDIES 325 LITERATURE CITED 328 APPENDIX I 346 APPENDIX II 364 APPENDIX III 37 1 PLATES 388 LIST OF TABLES v i i I. A comparison of the 5 most recent r e v i s i o n s of the genus Ochotona 11 I I . L i s t of measurements taken on the s k u l l 19 I I I . L i s t of Geographic Complexes 23 IV. Character loadings for PCA's on subspecies of 0. p r i n c e p s and on 0. a l p i n a and 0. hyperborea 57 V. Character loadings f o r PCA's on 0. curzon iae and 0. d a u r i c a and on 0. e r y t h r o t i s , 0. g l o v e r i and 0. r u t i l a 76 VI. Character loadings f o r PCA's on 0. lama, 0. macrotis and 0. r o y l e i and on 0. t h i b e t a n a , 2- r o y l e i and 0. p u s i l l a group 88 V I I . U n i v a r i a t e s t a t i s t i c s f o r 0. a l p i n a 109 V I I I . U n i v a r i a t e s t a t i s t i c s f o r 0. c o l l a r i s ...114 IX. U n i v a r i a t e s t a t i s t i c s f o r 0. curzon iae ......x. ... 1 1 9 X. U n i v a r i a t e s t a t i s t i c s f o r 0. daur i c a 127 XI. U n i v a r i a t e s t a t i s t i c s f o r 0. e r y t h r o t i s 131 X I I . U n i v a r i a t e s t a t i s t i c s f o r 0. kamensis 136 X I I I . U n i v a r i a t e s t a t i s t i c s f o r 0. koslowi 143 XIV. U n i v a r i a t e s t a t i s t i c s f o r 0. l a d a c e n s i s 149 XV. U n i v a r i a t e s t a t i s t i c s f o r 0. lama 156 XVI. U n i v a r i a t e s t a t i s t i c s for 0. macrotis 163 XVII. U n i v a r i a t e s t a t i s t i c s f o r 0. p a l l a s i 170 XVIII. U n i v a r i a t e s t a t i s t i c s f o r 0. p r i n c e p s .....178 XIX. U n i v a r i a t e s t a t i s t i c s f o r 0. pusi11a 183 XX. U n i v a r i a t e s t a t i s t i c s f o r 0. r o y l e i 189 XXI. U n i v a r i a t e s t a t i s t i c s for'O. rufescens 195 XXII. U n i v a r i a t e s t a t i s t i c s f o r 0. r u t i l a 199 XXIII. U n i v a r i a t e s t a t i s t i c s f o r 0. t h i b e t a n a 205 XXIV. U n i v a r i a t e s t a t i s t i c s f o r 0. thomasi 210 XXV. Summary of d i s c r i m i n a n t f u n c t i o n r e s u l t s 214 XXVI. Character c o e f f i c i e n t s f o r DFA on Old World s p e c i e s ' means 218 XXVII. Character c o e f f i c i e n t s f o r DFA on a l l s p e c i e s ' means 225 XXVIII. L i s t of Yukon f o s s i l c o l l e c t i o n s i t e s 262 XXIX. L i s t of measurements taken on the mandible 264 XXX. U n i v a r i a t e s t a t i s t i c s for the f o s s i l groups 271 XXXI. Character l o a d i n g s f o r a PCA on the Yukon f o s s i l s 285 XXXII. Character loadings for PCA's on LBEC and GTDC specimens 290 XXXIII. Character loadings for a PCA on f o s s i l combination set 1 ....293 XXXIV. Character loadings f o r a PCA on Recent s p e c i e s subset 1 302 XXXV. C a l c u l a t e d d i s c r i m i n a n t f u n c t i o n s f o r Recent s p e c i e s .306 XXXVI. Assignment of f o s s i l specimens to h a b i t a t groups 307 v i i i LIST OF FIGURES .1 . Ranges of the Recent s p e c i e s 10 2. Geographic Groups 22 3. Ranges of the f i v e subspecies of 0. p r i n c e p s 34 4. C o l l e c t i o n s i t e of ROM 74761 and 74763 39 5. UPGMA c l u s t e r a n a l y s i s on Geographic Group 2A.2 .... 41 6. 3-D PCA p r o j e c t i o n of Group 2A.2 43 7. 3-D PCA p r o j e c t i o n of 0. r o y l e i , 0. daur i c a , 0. curzoniae and ROM 74761, 74763 46 8. P r o j e c t i o n on f i r s t two c a n o n i c a l v a r i a t e s of 0. r o y l e i , 0. daur i c a , 0. c u r z o n i a e and ROM 74761 , 74763 48 9. 3-D PCA P r o j e c t i o n of the F i v e Subspecies of 0. pr inceps 56 10. P r o j e c t i o n on f i r s t two c a n o n i c a l v a r i a t e s of the F i v e Subspecies of 0. pr inceps 59 11. P r o j e c t i o n on f i r s t two c a n o n i c a l v a r i a t e s of Geographic Complex 2 ... 63 12. 3-D PCA p r o j e c t i o n of 0. a l p i n a and 0. hyperborea .. 67 13. P r o j e c t i o n on f i r s t two c a n o n i c a l v a r i a t e s of 0. a l p i n a , 0. hyperborea and 0. pr inceps 71 14. 3-D PCA p r o j e c t i o n of 0. c u r z o n i a e and 0. daur i c a .. 75 15. Histogram on the f i r s t c a n o n i c a l v a r i a t e f o r 0. c u r z o n i a e and 0. daur i c a 78 16. 3-D PCA p r o j e c t i o n of 0. e r y t h r o t i s (plus 0 . g l o v e r i ) and 0. r u t i l a • 81 17. Histogram on the f i r s t c a n o n i c a l v a r i a t e f o r 0. e r y t h r o t i s (plus 0. g l o v e r i ) and 0. r u t i l a 84 18. 3-D PCA p r o j e c t i o n of 0^ lama, 0^ macrotis and 0. r o y l e i 87 19. P r o j e c t i o n on f i r s t two c a n o n i c a l v a r i a t e s of 0. lama, 0. macrotis and 0. r o y l e i 90 20. 3-D PCA p r o j e c t i o n of 0. f o r r e s t i , 0. osgoodi, 0. cansus, 0. r o y l e i , 0. pus i l i a and 0. t h i b e t a n a 95 21. Histogram on the f i r s t c a n o n i c a l v a r i a t e f o r 0. f o r r e s t i , 0. osgoodi, 0. cansus, 0. r o y l e i , 0. pusi 11a and 0. t h i b e t a n a 97 22. Histogram on the f i r s t c a n o n i c a l v a r i a t e f o r 0. r o y l e i and 0. t h i b e t a n a ...100 23. Approximate d i s t r i b u t i o n of 0. a l p i n a 108 24. Approximate d i s t r i b u t i o n of 0. c o l l a r i s 113 25. Approximate d i s t r i b u t i o n of 0. curzoniae 118 26. Diagram of the s k u l l of 0. curzon i a e . TT ..121 27. Approximate d i s t r i b u t i o n of 0. daur i c a 125 28. Approximate d i s t r i b u t i o n of 0. e r y t h r o t i s 130 29. Approximate d i s t r i b u t i o n of 0. kamensis 135 30. Diagram of the s k u l l of 0. kamensis 138 31. Approximate d i s t r i b u t i o n of 0. koslowi 142 32. Diagram of the s k u l l of 0. koslowi 145 33. Approximate d i s t r i b u t i o n of 0. l a d a c e n s i s 148. 34. Diagram of the s k u l l of 0. l a d a c e n s i s 151 i x 35. Approximate d i s t r i b u t i o n of 0 . lama 155 36. Diagram of the s k u l l of 0. lama 158 37. Approximate d i s t r i b u t i o n of 0. macrot i s 161 38. Diagram of the s k u l l of 0 . macrot i s 165 39. Approximate d i s t r i b u t i o n of 0 . p a l l a s i 168 40. Approximate d i s t r i b u t i o n of 0 . pr inceps 177 41. Approximate d i s t r i b u t i o n of 0 . pusi11a 182 42. Approximate d i s t r i b u t i o n of 0 . r o y l e i 187 43. Approximate d i s t r i b u t i o n of 0 . rufescens 193 44. Approximate d i s t r i b u t i o n of 0 . r u t i l a 198 45. Approximate d i s t r i b u t i o n of 0 . th ibe tana 204 46. Approximate d i s t r i b u t i o n of 0. thomasi 209 47. Diagram of the s k u l l of 0 . thomasi . . . 2 1 2 48. P r o j e c t i o n of group means of the Old World spec ies along the f i r s t three c a n o n i c a l v a r i a t e s 220 49. P r o j e c t i o n of group means of a l l spec ies a long the f i r s t three c a n o n i c a l v a r i a t e s 223 50. Phy logenet i c r e l a t i o n s h i p s of the 1 8 extant spec ie s 227 51. A map of GRTLEN and ZYGWID on the cladogram of F igure 50 230 52. Minimum spanning t ree for the 18 extant spec ies . . . . 2 3 4 . 53. H y p o t h e t i c a l range of an 0 . p u s i l l a - l i k e form d u r i n g the end of the P l i o c e n e .240 54. Hypothet ic range dur ing the P r a e t i g l i a n 242 55. P o s s i b l e v i c a r i a n c e of the ochotonids d u r i n g the V i l l a f r a n c h i a n 244 56. H y p o t h e t i c a l p a t t e r n of spec ies dur ing the end of the Wiscons in 248 57. Approximate p o s i t i o n of the s i x f o s s i l c o l l e c t i o n s i t e s 261 58. B i v a r i a t e charac te r p l o t s for the Yukon f o s s i l s . . . . 2 7 6 59. B i v a r i a t e charac te r p l o t s for the Yukon f o s s i l s and the two North American species 279 60. B i v a r i a t e charac te r p l o t s for the nine Recent spec ies 281 61. 3-D PCA p r o j e c t i o n of the Yukon f o s s i l s .284 62. 3-D PCA p r o j e c t i o n of the L i t t l e Box E l d e r Cave f o s s i l s and the Great Doward Cave f o s s i l s . . . . . . . . . 2 8 8 63. 3-D PCA p r o j e c t i o n of f o s s i l subset 1 and the Recent > spec ies means 292 64. 3-D PCA p r o j e c t i o n of Recent spec ies subset 1 . . . . . . . 2 9 8 65. 3-D PCA p r o j e c t i o n of spec ies groups from Recent spec ies subset 1 300 X LIST OF PLATES I . Photograph of Ochotona a l p i n a 390 I I . Photograph of Ochotona c o l l a r i s 392 I I I . Photograph of Ochotona daur i c a 394 IV. Photograph of Ochotona e r y t h r o t i s 396 V. Photograph of Ochotona p a l l a s i 398 VI . Photograph of Ochotona pr inceps . 400 V I I . Photograph of Ochotona p u s i l l a 402 V I I I . Photograph of Ochotona r o y l e i 404 IX. Photograph of Ochotona rufescens 406 X. Photograph of Ochotona r u t i l a 408 XI. Photograph of Ochotona t h i b e t a n a 410 x i ACKNOWLEDGEMENTS The present study would not have been p o s s i b l e without the c o o p e r a t i o n , encouragement and he lp of many people . I am e s p e c i a l l y g r a t e f u l to the f o l l o w i n g persons for g r a n t i n g me permis s ion to study the specimens i n t h e i r care (a key to museums a b b r e v i a t i o n s i s g iven in both ' M a t e r i a l and Methods' s e c t i o n s ) : Dr . S. Anderson and Mr. P. G o l d s t e i n , AMNH; D r . G. Corbet (Recent mammals) and D r . A S u t c l i f f e ( f o s s i l mammals), BM; D r . J G u i l d a y , CM; Ms. M. E. Rutzmoser, MCZ; D r . R. Angermann, MN; D r . 0. Rossol imo, MS; D r . S. Van Z y l l de Jong, D. Campbell (Recent mammals) and D r . C R . Harington ( f o s s i l mammals), NMC; D r . M. Johnson, PSM; D r . R . L . Pe ter son , ROM; D r . J . Van Couver ing , UCM; D r . C. Ray, USNM; and D r . I . M . Gromov, ZM. In a d d i t i o n , D r . B . F . Beebe loaned me specimens of f o s s i l Ochotona which were c o l l e c t e d under the auspices of the Northern Yukon Research Programme i n coopera t ion w i t h the N a t i o n a l Museums of Canada. Throughout almost the e n t i r e p e r i o d of t h i s s tudy, D r . J . Mary Tay lor served as my research s u p e r v i s o r . Her support , encouragement and pa t ience through e a r l y d r a f t s of the manuscript are g r e a t l y a p p r e c i a t e d . I am a l s o g r a t e f u l to D r s . L a r k i n , Matthews, Shack le ton , W i l l i a m s and F i s h e r for s e r v i n g on my committee and o f f e r i n g many u s e f u l suggest ions on the manuscr ipt . A s p e c i a l note of g r a t i t u d e to Dr . F i s h e r for s t e p p i n g in and s e r v i n g as my s u p e r v i s o r pro tempore in the absence of Dr. T a y l o r . I would l i k e to thank the s t a f f of Woodward L i b r a r y f o r t h e i r a i d i n uncovering many of the o r i g i n a l r e f e r e n c e s f o r each of the s p e c i e s , and the s t a f f of the Map L i b r a r y f o r h e l p i n g to f i n d some of the more obscure l o c a l i t i e s . Natasha Abramson ( Z o o l o g i c a l Museum, Leningrad) very k i n d l y v e r i f i e d a l l the Russian r e f e r e n c e s and made my t r i p to the Z o o l o g i c a l Museum p a r t i c u l a r l y rewarding by a c t i n g as my t r a n s l a t o r . My g r a t i t u d e to her i s immeasurable. I am a l s o g r a t e f u l to Dr. A Gureev ( Z o o l o g i c a l Museum, Leningrad) f o r s o l v i n g the problem of the o r i g i n a l r e f e r e n c e for 0. kamensis and f o r h i s i n t e r e s t in my work. The numerical aspect of t h i s study only began to take shape a f t e r the many hours Dr. D. W i l l i a m s spent i n t r o d u c i n g me to m u l t i v a r i a t e s t a t i s t i c s . H is help with the uncountable l i t t l e and b i g problems along the way i s deeply a p p r e c i a t e d . I a l s o b e n e f i t e d g r e a t l y from d i s c u s s i o n s on numerical techniques with Drs. P.H.A. Sneath ( U n i v e r s i t y of L e i c e s t e r ) , R.R. Sokal (State Univ. Of N.Y. At Stony Brook); P.A. L a r k i n and J . McNeil ( B i o s y s t e m a t i c s Research I n s t i t u t e ) . Dr. D.R. Brooks opened the world of c l a d i s t i c s to me with enormous and i n f e c t i o u s enthusiasm. His support and w i l l i n g n e s s to d i s c u s s a l l manner of t o p i c s i s g r a t e f u l l y acknowledged. Drs. A.T. Smith (Arizona S t a t e ) , R.M. M i t c h e l l ( O f f i c e of Endangered S p e c i e s ) , C.R. Harington ( N a t i o n a l Museums of Canada) and D.M. Shackleton c o n t r i b u t e d g r e a t l y to almost a l l aspects of t h i s study. Dr. Smith helped with p r e l i m i n a r y range maps and g r a c i o u s l y p r o v i d e d c o p i e s of h i s unpublished manuscripts. Dr. M i t c h e l l a l s o provided c o p i e s of h i s unpublished notes and manuscripts, and the wealth of h i s experience with Asian ochotonids provided f o r many i n t e r e s t i n g d i s c u s s i o n s . Dr. Harington not only gave me my f i r s t job working with f o s s i l s , but h i s unending support and encouragement s i n c e that time p l a c e me forever i n h i s debt. Dr. Shackleton very generously prepared a l l of the p l a t e s from the poor photographs I had taken. For h i s understanding and support, I am exceedingly g r a t e f u l . I would l i k e to thank Drs. A.W. Vogl and A. Peacock f o r t h e i r h elp with some of the e a r l y photographs and f o r t r y i n g to i n i t i a t e me i n t o the mysteries of photography. Ms. P. Druikker-Brammell served as my i n s p i r a t i o n throughout a l l the f i g u r e p r e p a r a t i o n . Her c o n s t r u c t i v e c r i t i c i s m s and l i t t l e h e l p f u l h i n t s r e s u l t e d in major improvements. My h e a r t f e l t thanks to a l l my f r i e n d s and f e l l o w graduate students who so of t e n and p a t i e n t l y lended a sympathetic ear as wel l as t h e i r h elp in times of need. Among these, I would p a r t i c u l a r l y l i k e to thank the l a t e L i l a J e l e t s k y f o r h e l p i n g me with some e a r l y f i e l d work and f o r t r a n s l a t i n g s e v e r a l Russian papers. I would a l s o l i k e t o thank Sarah Smith f o r sh a r i n g her e x t r a o r d i n a r y e d i t o r i a l s k i l l s and f o r a l l her kindness throughout t h i s study. F i n a l l y , . I am very g r a t e f u l to George Spence who wrote the basic program to p r o j e c t p o i n t s i n t o t h r e e -dimensions and typed in the bulk of t h i s t h e s i s . His pat i e n c e and understanding made the d i f f i c u l t times e a s i e r to bear. T h i s r e s e a r c h was supported in part by an NSERC grant (number 3462) to Dr. J . Mary T a y l o r . 1 PREFACE The genus Ochotona, which i s the sole extant r e p r e s e n t a t i v e of the family Ochotonidae, i s a monophyletic group of c l o s e l y r e l a t e d s p e c i e s , whose nearest r e l a t i v e s are the r a b b i t s and the hares. Members of t h i s group are commonly r e f e r r e d to as 'pikas', but are a l s o known under many other names such as cony, rock r a b b i t , l i t t l e squeaker, mousehare e t c . , the names v a r y i n g with the s p e c i e s and the l o c a l i t y . Pikas are c u r r e n t l y found throughout A s i a and p a r t s of Europe and North America, a range which i s much reduced from a P l e i s t o c e n e maximum, when they extended a l l across A s i a , Europe, Great B r i t a i n and North America. Within t h e i r range they are found i n a d i v e r s i t y of h a b i t a t s and e l e v a t i o n s , but are only r a r e l y found commensal with humans. In s p i t e of t h e i r d i v e r s i t y of h a b i t a t s and e l e v a t i o n s , the pikas are a m o r p h o l o g i c a l l y c o n s e r v a t i v e group, v a r y i n g l i t t l e between s p e c i e s , but demonstrating c o n s i d e r a b l e i n t r a s p e c i f i c v a r i a t i o n . My i n t e r e s t i n p i k a s grew out of a f a s c i n a t i o n with the s i z e v a r i a b i l i t y e x h i b i t e d i n the f o s s i l forms. The f o s s i l s I i n i t i a l l y examined had been c o l l e c t e d from the Old Crow region in the Yukon T e r r i t o r y . They ranged from a small animal, approximately the s i z e of the modern pikas found i n the Yukon today, to a 'giant' form, which was almost twice the s i z e of the modern . p i k a s . As I spent more time examining these f o s s i l s , as 2 w e l l as f o s s i l s from other l o c a l i t i e s , I became i n c r e a s i n g l y impressed by t h e i r degree of morphological v a r i a b i l i t y . I was i n t e r e s t e d i n how t h i s compared with the Recent forms and so, for comparative purposes, I began an examination of Recent ochotonids. U n w i t t i n g l y I had opened a Pandora's box. A l t o g e t h e r , 63 subspecies, 77 s p e c i e s , 4 su p r a s p e c i e s , 1 subgenus, and 6 a l t e r n a t e genera have been d e s c r i b e d f o r the extant ochotonids in the almost 300 years s i n c e the name Ochotona was f i r s t proposed by Link in 1795. As I became more in v o l v e d with the extant forms and t h e i r taxonomic problems, i t became apparent that a new approach was e s s e n t i a l to e v a l u a t i n g the s y s t e m a t i c s of t h i s problematic genus, as t r a d i t i o n a l methods g e n e r a l l y have been inadequate. I decided that numerical techniques would s u i t t h i s purpose admirably for two reasons. F i r s t , these techniques permit a gre a t e r d e t e c t i o n of f i n e d i f f e r e n c e s due to t h e i r q u a n t i t a t i v e nature, and second, advantages of o b j e c t i v i t y and r e p e a t a b i l i t y would make the r e s u l t s more d i r e c t l y comparable to the f o s s i l forms. T h i s l e d me to begin a r e v i s i o n of the genus Ochotona. The completed numerical r e v i s i o n forms the major p o r t i o n of t h i s study and i s presented i n 'Part I ' . I t was my aim in t h i s s e c t i o n to e f f e c t not only a r e v i s i o n of the genus, but a l s o to examine some of the p h y l e t i c i n t e r r e l a t i o n s h i p s of the s p e c i e s . In a d d i t i o n , I hoped that by determining the ease with which the sp e c i e s c o u l d be d e l i m i t e d , I c o u l d o b t a i n an i n d i c a t i o n of i n t e r - versus i n t r a s p e c i f i c v a r i a b i l i t y . In the second part of t h i s study, Part I I , I encompassed both f o s s i l and Recent forms, again using numerical techniques, but on a reduced c h a r a c t e r set as 3 n e c e s s i t a t e d by the fragmentary nature of the f o s s i l m a t e r i a l . My o b j e c t i v e in t h i s s e c t i o n was to examine fur ther morpho log i ca l v a r i a b i l i t y w i t h i n the ochotonids , w i t h s p e c i a l emphasis on s i z e v a r i a b i l i t y in the f o s s i l forms and a comparison of f o s s i l and Recent m a t e r i a l . 4 INTRODUCTION The p i k a s , which comprise the genus Ochotona, are the sole Recent r e p r e s e n t a t i v e s of the f a m i l y Ochotonidae (order Lagomorpha). Pikas are d i s t r i b u t e d d i s c o n t i n u o u s l y along the west coast of North America and throughout much of A s i a and the O r i e n t . They occupy a wide v a r i e t y of h a b i t a t s , such as d e s e r t s , steppes, f o r e s t s and t a l u s , and they are found at e l e v a t i o n s ranging from sea l e v e l along the coast of B r i t i s h Columbia (Cowan and Guiguet,1965) to 6130 m in the Himalayas (Thomas and Hinton,1922; Smith,1981 a ) . In s p i t e of the wide d i v e r s i t y of h a b i t a t and range, pikas form a remarkably homogeneous group. As Corbet(1978:66) s t a t e s , Ochotona ' i s a very d i f f i c u l t genus for the taxonomist, with rather small d i f f e r e n c e s between species and c o n s i d e r a b l e g e o g r a p h i c a l and seasonal d i f f e r e n c e s w i t h i n s p e c i e s . . . . ' The number of species arid subspecies recognized w i t h i n the genus Ochotona v a r i e s enormously in the l i t e r a t u r e , no doubt as a consequence of t h e i r morphological s i m i l a r i t y . In a l l , approximately 77 s p e c i e s and 63 subspecies have been d e s c r i b e d as extant members of t h i s genus. Both s p e c i e s and subspecies have been d e f i n e d p r i m a r i l y on v a r i a t i o n s i n the s i z e and shape of the s k u l l , and a l l r e v i s i o n s have g e n e r a l l y r e l i e d on these c h a r a c t e r s . The l a s t comprehensive r e v i s i o n of the genus Ochotona was 5 produced in 1964 by Gureev, who based h i s reassessment on a t r a d i t i o n a l , phenetic approach. At the time of Gureev's r e v i s i o n , s y s t ematics was undergoing s i g n i f i c a n t changes and numerical techniques in taxonomy were j u s t beginning t h e i r near e x p o n e n t i a l growth. The i n c r e a s i n g predominance of numerical methods was no doubt r e l a t e d to the i n c r e a s i n g s o p h i s t i c a t i o n and a v a i l a b i l i t y of computer software. The c u r r e n t widespread use of numerical techniques r e f l e c t s the numerous advantages of these methods, such as o b j e c t i v i t y and r e p e a t a b i l i t y . Because of t h e i r q u a n t i t a t i v e nature,they a l s o permit a g r e a t e r d i s c r i m i n a t i o n along the spectrum of taxonomic d i f f e r e n c e s , and are p a r t i c u l a r l y s u i t a b l e t o taxa, such as Ochotona, which have a high degree of o v e r a l l s i m i l a r i t y (Sneath and S o k a l , l 9 7 3 ) . The primary o b j e c t i v e of t h i s study i s to re-examine the c l a s s i f i c a t i o n of s p e cies w i t h i n the genus Ochotona using numerical techniques. I chose to base the re-examination on c r a n i a l . c h a r a c t e r s so that my r e s u l t s would be d i r e c t l y comparable with past works. Because numerical methods have the advantage of r e p e a t a b i l i t y , the r e s u l t s of t h i s study may a l s o serve as a g e n e r a l foundation f o r any f u t u r e taxonomic works on the genus Ochotona. 6 HISTORICAL REVIEW C l a s s i f i c a t i o n Above The Species L e v e l The p i k a s and t h e i r r e l a t i v e s , the r a b b i t s and hares, were g e n e r a l l y c o n s i d e r e d to be members of the order Rodentia u n t i l they were f o r m a l l y separated from t h i s order i n t o the order Lagomorpha in 1912 by G i d l e y . G i d l e y based h i s s e p a r a t i o n on d i f f e r e n c e s in the d e n t a l formulae, p a r t i c u l a r l y the i n c i s o r s , as w e l l as on d i f f e r e n c e s in the p a l a t e , g l e n o i d f o s s a , s t r u c t u r e of the caecum, a n t e r o - p o s t e r i o r motion of the elbow-j o i n t , f u s i o n of the t i b i a and f i b u l a , and the f i b u l a r - c a l c a n e a l a r t i c u l a t i o n . G r a d u a l l y , G i d l e y ' s p o i n t of view of the o r d i n a l independence of the Lagomorpha became more widely adopted as more d i s t i n c t i v e f e a t u r e s were recognized (Wood,1957). The rodents are no longer c o n s i d e r e d to be even c l o s e r e l a t i v e s of the lagomorphs (Dawson,1967). Rather, many other groups are viewed as c l o s e r , such as the t r i c o d o n t s (Gidley,1906; E h r i k , l 9 2 6 ) , the c o n d y l a r t h s (Wood,1957), the zalambdodont i n s e c t i v o r e s (Russell,1960), and the a n a g a l i d s (Van V a l e n , l 9 6 4 ) . The f a m i l y Ochotonidae i s c l e a r l y d e f i n e d . I t i s r e a d i l y d i s t i n g u i s h a b l e from i t s c l o s e s t r e l a t i v e , the Leporidae, on the b a s i s of numerous c h a r a c t e r i s t i c s , such as the absence of p o s t o r b i t a l processes, d i f f e r e n c e s i n the rostrum, the i n t e r o r b i t a l r e g i o n , the p a l a t e , the ascending ramus of the 7 mandible, and replacement of the f e n e s t r a t i o n of the m a x i l l a r y bone by a s i n g l e l a r g e opening. S o v i e t authors, e.g. Ognev(l940) , Argiropulo(1948), Gureev(l964) and Kuznetsov(1965), c a l l t h i s f a m i l y Lagomyidae, based on the genus Lagomys of Cuvier(1800). Th i s generic name i s a j u n i o r homonym of Lagomys, Storr,l780 (a synonym of Marmota) and thus the family name Lagomyidae i s i n v a l i d , a c c o r d i n g to a r t i c l e 39 of the ' I n t e r n a t i o n a l Code' (Corbet,1978). Although only one extant genus, Ochotona, i s recognized w i t h i n the fa m i l y Ochotonidae, as many as f i v e other genera have been proposed. These a d d i t i o n a l genera are: P i ka (Lacepede,1799), Lagomys (Cuv ier,1800), Ogot oma (Gray,1867), Conotha (Lyon,1904) and T i b e t o l a g u s (Argiropulo,1948). These genera g r a d u a l l y have become synonomized with Ochotona, although in some cases they have been used as subgeneric names. D i v i s i o n of Ochotona i n t o groups or subgenera has been common, but without general agreement among taxonomists even though almost a l l have based t h e i r d i v i s i o n s on the same c h a r a c t e r i s t i c s , i . e . v a r i a t i o n s in the p a l a t a l and i n c i s i v e foramina. Recently, Corbet(l978) and Weston et al.(l98l) have r e j e c t e d these groupings and subgenera on the grounds that p a l a t a l and i n c i s i v e foramina are too h i g h l y v a r i a b l e to be u s e f u l as a supra-s p e c i f i c d i s t i n g u i s h i n g f e a t u r e . 8 The Species The d i f f i c u l t i e s in d e l i m i t i n g species are enormous because of the homogeneity of forms.. Regard les s , numerous species and subspecies have been proposed, a l though in many cases t h e i r s ta tus remain moot. Species ranges over l ap g r e a t l y (F igure 1) , w i t h nine of the c u r r e n t l y recognized species d e s c r i b e d from the Qingha i -Xizang (T ibet ) P l a t eau and f i v e from Mt . Everes t a l o n e . These areas of h igh c o n c e n t r a t i o n s of species have tended to be i n a c c e s s i b l e on both phys iographic and p o l i t i c a l grounds. As a r e s u l t , a l l taxonomic treatments of Ochotona ( i n c l u d i n g t h i s one) have been plagued by the lack of adequate c o l l e c t i o n s . Although the problems are numerous, and probably because of them, the genus Ochotona has been the subject of many r e v i s i o n s . A comparison of the f i v e most recent r e v i s i o n s i s g iven in Table I . I t i s important to note that the r e v i s i o n by Gureev(l964) i s to some- extent based on the one by A r g i r o p u l o ( 1 9 4 8 ) , C o r b e t ' s (1978) r e v i s i o n i s based almost e n t i r e l y on G u r e e v ' s , and the r e v i s i o n by Weston et a l . ( l 9 8 l ) r e f l e c t s the p r e l i m i n a r y r e s u l t s of the present s tudy. Although the t o t a l number of spec ies does not d i f f e r a p p r e c i a b l y among these f i v e r e v i s i o n s , the a c t u a l species compos i t ion does. Only nine species of a p o s s i b l e 26 remain constant throughout a l l r e v i s i o n s . The remaining 17 species are e i t h e r p laced in synonomy w i t h other s p e c i e s , or are species which were named a f t e r a g iven r e v i s i o n was complete . 9 Figure 1. Approximate ranges of the 18 extant species recognized in t h i s s tudy . 2 0" 6 0 ' 1 0 0 ' 1 4 0 ' 1 8 0 ' 6 0 —7 7~ "T * r -e o - 140 ' 18 0* 1 4 0 ' O. a I p i n a O. c o 11 a r i s O. c u r z o n i a e O. d a u r i c a O. e r y t h r o t i s O. k a m e n s i s O. k o s I o w i O. l a d a c e n s i s O. I a m a O. m a c r o t i s O. p a l l a s i O. p r i n c e p s 0 a 0 OOi O. p u s i 11 a O. r o y I e i O. r u f e s c e n s O. r u t i I a 0 . t h i b e t a n a O. t h o m a s i Arglropulo (1948) ( 15 species) E1 Ierman and Morrison-Scott {1951) ( 1 2 specles) Gureev (19641 ( 15 spec i es ) Corbet (1978) (14 specles) Weston et a l . ( 198 1 ) . ( 18 spec 1es) 1 . 0. a 1 p 1 na + 0. hyperborea + 0. c o ) l a r l s + 0. pr1nceps 0 . a 1 p 1 na 0. alpina + 0. c o l l a r Is + 0. pr1nceps 0 . a 1 p 1 na + 0. hyperborea + 0. co11ar1s + 0. prInceps 0. + a 1 p 1 na 0. hyperborea 2. (see 0. alpina) (see 0. a 1p1na) (see 0. alpina) 0. col 1ar1s 3 . 0. curzoniae (see 0. daurlca) 0. curzoniae 0 . curzon1ae 9-curzon1ae 4. 0. daurIca 0. daurlca 0. daurlca 0. daurlca Q daurIca + 0. curzoniae 5. 0. erythrot1s (see 0. rut tla) 0. erythrot1s + 0. g1 over 1 0 . erythrot1s + 0. glovert 0. + erythrot1s 0. qlo v e r l 6. 0. forrest1 (see 0. pusl11a) (see 0. thibetana) (see 0. r o y l e t ) (see 0. r o y l e l ) 7. 0. qloverl (see 0. rut 11a) (see 0. erythrot is) (see 0. e r y t h r o t i s ) (s ee 0. e r y t h r o t i s ) 8. (see 0. alpina) 0. hyperborea (see 0. a 1p1na1 (see 0. alpina) (see 0. alpina) 9. 0. kamens1s • • 0. kamensis 0. kamensIs kamens1s 10. 0. koslowt 0. koslowl 0. koslowl 0. koslowl koslowl 11. 0. 1adacens1s 0. 1adacens1s 0 . 1adacens1s 0. 1adacensIs ° 1adacensIs 12. ** * * ** (see 0. r o y l e l ) Q. lama 13. (see 0. r o y l e l ) 0. macroti s (see 0. roy1e1) (see 0. r o y l e i ) 0. macrotIs 14. (see 0. royleI) (see 0. r o y l e i ) 0. nepalens 1s (see 0. r o y l e i ) Table I. A comparison of the f i v e most recent revisions of the genus Ochotona. * out of the bounds of the rev i s i o n , i.e. r e v i s i o n confined to c e r t a i n geographic area * * not treated 12 13 Problematic Taxa F i f t e e n s p e c i e s form the core of the c o n t r o v e r s y regarding t h i s genus. These s p e c i e s are numbers 1 to 8,12,13,16,18,20,21 and 26 (Table I) and form f i v e groups of problematic taxa. The f i r s t of these i n c l u d e s 0. a l p i n a , 0. hyperborea, 0. c o l l a r i s and 0. pr inceps• A l l four of these s p e c i e s have been combined i n t o a s i n g l e s p e c i e s (Argiropulo,1948; Gureev,1964; Corbet,1978 ), d i v i d e d i n t o three s p e c i e s (Broadbrooks,1965; Youngman,1975; Smith,1981 a;Weston et a1.,1981) or d e s c r i b e d as four separate s p e c i e s (Ellerman and Morrison-Scott,1951; M i t c h e l l , 1 9 8 0 ) . One aspect of t h i s debate i s whether or not the two North American forms, 0. c o l l a r i s and 0. pr inceps, are c o n s p e c i f i c s and i f so, whether they should be combined with the Asian species 0. a l p i n a I (Weston,1981) found a l l three to be d i s t i n c t i v e but suggested t h a t , because they were probably c l o s e l y r e l a t e d , the term 'Ochotona a l p i n a complex' c o u l d be a p p l i e d at a supra-s p e c i f i c l e v e l . The s t a t u s of 0. hyperborea remains moot. The second problematic group i s represented by the s p e c i e s 0. curzoniae and O. daur i c a . Although these two taxa are g e n e r a l l y c onsidered separate s p e c i e s , t h e i r s i m i l a r i t y has been noted (see Argiropulo,1948; Gureev,1964). Ellerman and Morrison-Scott (1951) combined these two s p e c i e s in 0. daur i c a on the b a s i s that the d i f f e r e n c e s between 0. curzon iae and 0. daur i c a d i d not appear to be g r e a t e r than those w i t h i n a s i n g l e s p e c i e s , such as 0. r u f e s c e n s . 0. e r y t h r o t i s , 0. g l o v e r i and 0. r u t i l a form the t h i r d group of d i f f i c u l t taxa. Each of these taxa has been given 1 4 s p e c i f i c s t a t u s (Thomas,1922; Allen,1938; Argiropulo,1948), synonymized with 0. r u t i l a (Ellerman and Morrison-Scott,1951), or, most commonly, recognized as two s p e c i e s , 0. r u t i l a and 0. e r y t h r o t i s ( i n c l u d i n g 0. g l o v e r i ) (eg. Bonhote,1904b; Tate, 1947; Gureev,l964; Corbet,1978; Weston et - a l . , 1 9 8 1 ) . 0. e r y t h r o t i s and 0. g l o v e r i have been g e n e r a l l y separated on the b a s i s of s i z e and c o l o r but t h e i r c l o s e r e l a t i o n s h i p i s always noted. For example, Argiropulo(1948) s t a t e s that although the s t a t u s of 0. g l o v e r i (which he c o n s i d e r s a separate s p e c i e s ) i s u n c l e a r , i t i s very c l o s e to 0. e r y t h r o t i s . The d i v i s i o n between 0. e r y t h r o t i s and 0. r u t i l a i s most o f t e n based on s i g n i f i c a n t d i f f e r e n c e s in s k u l l shape as we l l as c o l o r a t i o n . The f o u r t h problematic group c o n t a i n s the three s p e c i e s 0. lama, 0. macrotis and 0. r o y l e i . 0. lama i s a r e l a t i v e l y r e c e n t l y d e s c r i b e d s p e c i e s ( M i t c h e l l and Punzo,l975) and thus has not been i n c l u d e d i n most of the r e v i s i o n s . Corbet(l978) t e n t a t i v e l y p l a c e d 0. lama i n O. r o y l e i , but was unable to examine any of the m a t e r i a l . 0. macrotis has been the source of more d i f f i c u l t i e s , but i t i s g e n e r a l l y separated from 0. r o y l e i on the b a s i s of o v e r a l l s i z e , c o l o r a t i o n , and p a r t i c u l a r l y the dimensions of the ear. Roberts(1977) s t r o n g l y d i s a g r e e s with the use of ear dimension as a d i s t i n g u i s h i n g f e a t u r e and suggests that 0. macrotis i s at best a subspecies of 0. r o y l e i . Roberts d i d not compare the s k u l l s of these two taxa, but n e i t h e r Gureev(l964) nor Kuznetsov(1965) who d i d , were able to detect any s i g n i f i c a n t c r a n i a l d i f f e r e n c e s between 0. macrot i s and 0. r o y l e i . The f i f t h and f i n a l group i s perhaps the most complex of 1 5 a l l . It i s composed of the taxa 0. f o r r e s t i , 0. cansus and 0. .thibetana. 0. f o r r e s t i has been co n s i d e r e d a separate s p e c i e s (Allen,1938; Argiropulo,1948), assigned to 0. t h i b e t a n a ( Gureev,1964; Feng and Kao,l974), assigned to 0. r o y l e i (Corbet,1978), and assigned to 0. pusi11a (Ellerman and Morrison-Scott,1951). 0. f o r r e s t i i s a l s o c o n s i d e r e d to be s i m i l a r to another taxon, 0. osgoodi (Anthony,1941). 0. osgoodi, l i k e 0. f o r r e s t i , has been synonymized with 0. pusi11a (Ellerman and Morrison-Scott,1951), and 0. t h i b e t a n a (Corbet,1978), while Anthony (1941), who o r i g i n a l l y d e s c r i b e d t h i s form, c o n s i d e r e d i t to be a separate s p e c i e s l i n k e d to 0. f o r r e s t i . The synonomies of both 0. f o r r e s t i and 0. osgoodi with the v a r i o u s species have been based on numerous c h a r a c t e r i s t i c s , but p r i m a r i l y s i z e and c o l o r a t i o n . 0. cansus was f i r s t d e s c r i b e d by Lyon in 1907. He s t a t e d that the the s k u l l of 0. cansus i s g e n e r a l l y s m a l l e r than that of 0. t h i b e t a n a , e s p e c i a l l y i n the zygomatic width and the a u d i t o r y b u l l a e . Feng and Kao (1974) a l s o c o n s i d e r 0. cansus s p e c i f i c a l l y d i s t i n c t although most authors, i n c l u d i n g A l l e n ( l 9 3 8 ) , Ognev(l940), A r g i r o p u l o ( 1 9 4 8 ) , Ellerman and Morrison-Scott(1951), Gureev(1964) and Corbet(1978), a s s i g n i t s u b s p e c i f i c s t a t u s w i t h i n Q. t h i b e t a n a . 1 6 Phylogenet i c H i s t o r y Although most a l l taxonomic treatments of Ochotona have been based s t r i c t l y on phenotypic c h a r a c t e r i s t i c s , Vorontsov and I v a n i t s k a y a (1973) examined the karyotypes of 12 forms, nine spec ies and three subspec ies . On the bas i s of t h e i r r e s u l t s , they d i v i d e the nine spec ies i n t o four s u p e r s p e c i f i c groups. They suggest that these four groups are in v a r i o u s stages of e v o l u t i o n a r y development and propose a scenar io to account for the d i f f e r e n c e s i n these s tages . Vorontsov and Ivan i t skaya g e n e r a l l y l i n k s p e c i a t i o n w i t h i n the ochotonids and the development of the four s u p e r s p e c i f i c groups to i s o l a t i o n of p o p u l a t i o n s by g l a c i a t i o n s . Al though they examined only nine s p e c i e s , t h e i r s has been the most comprehensive examination of phy logenet i c p r o p i n q u i t i e s of the extant spec ies w i t h i n the genus Ochotona. MATERIALS AND METHODS General Methods 1 . C o l l e c t i o n s Specimens used in t h i s study are from the f o l l o w i n g i n s t i t u t i o n s : American Museum of Na t u r a l H i s t o r y , New York (AMNH); B r i t i s h Museum (Natural H i s t o r y ) , London (BM); Cowan V e r t e b r a t e Museum, U n i v e r s i t y of B r i t i s h Columbia, Vancouver (CVM); Museum of Comparative Zoology, Harvard C o l l e g e , Cambridge (MCZ); Museum fuer Naturkunde, an der Humbolt zu B e r l i n (MN); Moscow State U n i v e r s i t y Z o o l o g i c a l Museum, Moscow (MS); N a t i o n a l Museum of N a t u r a l Science, N a t i o n a l Museum of Canada, Ottawa (NMC); Puget Sound Museum of N a t u r a l H i s t o r y , Puget Sound, Tacoma (PSM); Royal O n t a r i o Museum, Toronto (ROM); United S t a t e s N a t i o n a l Museum, Smithsonian I n s t i t u t i o n , Washington (USNM); Z o o l o g i c a l Museum of the Academy of Sciences, Leningrad (ZM). A complete l i s t of the 772 specimens examined and t h e i r l o c a l i t i e s i s given in Appendix I. A l s o i n c l u d e d are the 17 type specimens examined (9 hol o t y p e s , 2 l e c t o t y p e s and 6 paratypes) which are i n d i c a t e d by a 'T' in Appendix I. 18 2. Mensural Methods A maximum of forty-two s k u l l measurements (Table II) was taken on each specimen using d i a l c a l i p e r s reading to the nearest 0.05 mm. A complete d e s c r i p t i o n and diagrammatic r e p r e s e n t a t i o n of these measurements i s given i n Weston (1.98-1) (see Appendix I I I ) . Specimens were d i v i d e d i n t o a d u l t and j u v e n i l e c a t e g o r i e s f o l l o w i n g Weston (1981). J u v e n i l e s were d e l e t e d from the data base in order to reduce problems of morphological v a r i a t i o n . Specimens were a l s o excluded i f more than four of the p o s s i b l e 42 measurements were m i s s i n g . S k u l l s with up to four missing measurements were r e t a i n e d to i n c r e a s e sample s i z e ; p r e l i m i n a r y analyses i n d i c a t e d that up to four measurements c o u l d be r e p l a c e d with estimates without s i g n i f i c a n t l y a f f e c t i n g the numerical r e s u l t s . A f t e r the e x c l u s i o n of a l l j u v e n i l e specimens (n=42) and a l l specimens with more than four missing measurements (n=269), 478 specimens remained to form the general data base which was then used in a l l numerical a n a l y s e s . 3. Geographic Groups and Complexes The general data base was subdivided i n t o primary and secondary data s e t s . A l l specimens l a c k i n g l o c a l i t y i n f o r m a t i o n , with only very general l o c a l i t y i n f o r m a t i o n (eg 'USSR'), or with an obscure, u n v e r i f i a b l e l o c a l i t y were assigned to the secondary data set(n=36). A l s o , specimens which were apparently c o l l e c t e d C r a n i a l M e a s u r e m e n t s A b b r e y i a t i o n s M a n d i b l e M e a s u r e m e n t s A b b r e v 1 a t i o n s 1 . B a s a l l e n g t h B A S L E N 2 G . M a n d i b l e l e n g t h M A N L E N 2 . G r e a t e s t l e n g t h G R T L E N 2 7 . M a n d i b l e d e p t h 1 M A N D P 1 3 . Z y g o m a t i c w i d t h Z Y G W I D 2 8 . M a n d i b l e d e p t h 2 M A N D P 2 4 . B r a i n c a s e b r e a d t h B R N B R D 2 9 . M a n d i b l e d e p t h 3 M A N D P 3 5 . L e a s t i n t e r o r b i t a l w i d t h L . I . 0 3 0 . M a n d i b l e w i d t h M A N W I D G . D i a s t e m a D I AST M 31 . M a n d i b l e t o o t h r o w l e n g t h M N T R L N 7 . M a x i l l a r y t o o t h r o w l e n g t h M A X T R L - 3 2 . D i a s t e m a M N D I A S 8 . P a l a t a l w i d t h P A L W I D 3 3 . P 3 1 e n g t h M P 3 L E N 9 . P a l a t a l l e n g t h P A L L E N 34 . P 3 w 1 d t h M P 3 W I D 1 0 . N a s a l l e n g t h N S L L E N 3 5 . P 4 w i d t h M P 4 L E N 1 1 . B u i l a l e n g t h B U L L E N 3 G . P 4 w i d t h M P 4 W I D 12 . B u i l a w i d t h B U L W I D 3 7 . M1 1 e n g t h M M 1 L E N 13 . I 1 w i d t h I 1WID 3 8 . M1 w i d t h M M 1 W I D 14 . I 1 1 e n g t h I 1 L E N 3 9 . M2 1 e n g t h M M 2 L E N 1 5 . I » w i d t h I 2 W I D 4 0 . M2 w i d t h M M 2 W I D 16 . P ' l e n g t h P 2 L E N 4 1 . M3 1 e n g t h M M 3 L E N 17 . P* w i d t h P 2 W I 0 4 2 : M3 w i d t h M M 3 W I D 18 . P ' 1 e n g t h P 3 L E N 19 . P 1 w i d t h P 3 W 1 D 2 0 . P ' 1 e n g t h P 4 L E N 2 1 . P ' w i d t h P 4 W I D 2 2 . M 1 1 e n g t h M 1 L E N 2 3 . M 1 w i d t h M 1 W I D 2 4 . M ' l e n g t h M 2 L E N 2 5 . M ' w i d t h M 2 W I D T a b l e I I . M e a s u r e m e n t s t a k e n o n t h e s k u l l s o f s p e c i m e n s o f O c h o t o n a . a l o n g w i t h t h e i r c o r r e s p o n d i n g a b b r e v i a t i o n s a n d r e f e r e n c e n u m b e r s . 20 we l l o u t s i d e the known range f o r that species were included in the secondary data set (n=l9). As a r e s u l t , the primary data set c o n s i s t e d of only those specimens with complete l o c a l i t y i n f o r m a t i o n and which f e l l approximately w i t h i n that s p e c i e s ' known range. The primary data set was sub d i v i d e d i n t o geographic groups (Figure 2), in order to provide s m a l l , e a s i l y manipulated subsets i n which geographic v a r i a t i o n was minimized. These groups were d e l i m i t e d on the b a s i s of s p e c i e s and subspecies composition, t a k i n g i n t o c o n s i d e r a t i o n geographic boundaries such as mountain ranges, r i v e r s , or d e s e r t s . When i t became necessary to increase sample s i z e , or more commonly, to compare problematic s p e c i e s or subspecies, the groups were then combined i n t o o v e r l a p p i n g geographic complexes (Table I I I ) . S t a t i s t i c a l Methods 1. General A l l measurements, in both the primary and secondary data s e t s , were transformed to t h e i r l o g a r i t h m i c e q u i v a l e n t s to reduce the e f f e c t of o v e r a l l s k u l l s i z e and to make the data more n e a r l y normal in d i s t r i b u t i o n (Eldredge,1972; Neff and Marcus, 1980). These l o g a r i t h m i c data were used i n a l l analyses except where otherwise noted. The f i v e major- types of analyses used in t h i s study are: an unweighted, pair-group a r i t h m e t i c average (UPGMA) c l u s t e r a n a l y s i s (NT-SYS; Rohlf, Kishpaugh and K i r k , 1968); a p r i n c i p a l gure 2. The range of the Old World species d i v i d e d i n t o geographic groups. 23 Geographic Complex Geographic Groups 1 1+6A+6B+6C 2 1+2A+2A.1+2A.2+2A2+3+2A.3+2B 3 2A+2A.1+2A.2+2A2.3+2A.3+2B 4 2A+2A.1+2A.2+2A2.3+2A.3+2B+5 5 2A+2A.1+2A.2+2A2.3+2A.3+2B+3+3.4+4 6 2A+2A.1+5+6A 7 1+2B+3+6C 8 2A.2+2A2.3+2A.3+2B+3+3.4+4 Table I I I . Combinations of geographic groups (see F igure 2) i n t o geographic complexes. 24 component a n a l y s i s (PCA) (using NT-SYS); a l i n e a r d i s c r i m i n a n t f u n c t i o n a n a l y s i s (DFA) (BMDP7M; Dixon, 1977); the c o n s t r u c t i o n of a minimum spanning t r e e (MST) (using NT-SYS); and the c o n s t r u c t i o n of a Wagner t r e e (WAGNER; F a r r i s , 1970). R e s u l t s of the f i r s t three analyses were checked by.running the same data through another, but s i m i l a r , program. The ' C l u s t e r on Cases' program BMDP2M (Dixon,1977) was used to check the r e s u l t s of the UPGMA c l u s t e r r o u t i n e i n the NT-SYS package. The program BMD4M, method o p t i o n PCA (Dixon, 1977), provided f o r a comparison of PCA r e s u l t s , and the d i s c i m i n a n t program SPSS:DISCRIMINANT (Nie et a l . , 1975) was used to check the r e s u l t s of the program BMDP7M. The c o m p l e x i t i e s of numerical techniques are w e l l d e s c r i b e d in the l i t e r a t u r e (see Sneath and Sokal, 1.973; Morrison, 1 976; Neff and Marcus, 1980), however, some of the assumptions and aims of these techniques, as they r e l a t e to the present study should, perhaps, be r e i t e r a t e d . To begin with, the c l u s t e r a n a l y s i s and the PCA are s i m i l a r in that n e i t h e r r e q u i r e s establishment of a p r i o r i groups. Thus, these two analyses are u s e f u l i n cases where the r e l a t i o n s h i p s between i n d i v i d u a l s , rather than groups, are of i n t e r e s t . An important d i f f e r e n c e between PCA and c l u s t e r analyses i s that PCA i s not a c l u s t e r i n g technique; that i s , i t does not f i n d groups i n i n i t i a l l y u n c l u s t e r e d data. Rather, a PCA i s an o r d i n a t i o n technique and a l l d i v i s i o n s of group a s s o c i a t i o n s based on the r e s u l t s of a PCA are p u r e l y ad hoc. The component scores r e s u l t i n g from the PCA may be p r o j e c t e d to obta i n a m u l t i d i m e n s i o n a l p e r s p e c t i v e . To produce these p e r s p e c t i v e p l o t s f o r the present study, I 25 p r o j e c t e d i n d i v i d u a l scores onto the f i r s t three p r i n c i p a l components using a small F o r t r a n program in c o n j u n c t i o n with the U n i v e r s i t y of B r i t i s h Columbia's i n t e g r a t e d graphics (*IG) scheme. T h i s combination permitted p e r s p e c t i v e r o t a t i o n s of the three-dimensional p l o t s on a v i s u a l d i s p l a y t e r m i n a l (VDT) u n t i l a reasonably c l e a r ( i . e . with a minimum of o v e r l a p p i n g p o i n t s ) p l o t was produced. Hard c o p i e s of these p l o t s were then obtained using a 'Houston Instruments Complot' p l o t t e r . As long as the use of a PCA i s pu r e l y d e s c r i p t i v e , as i t i s here, no assumptions about the data matrix and m u l t i v a r i a t e n o r m a l i t y are necessary (Harris,1975, Neff and Smith, 1978). C l u s t e r analyses do not r e q u i r e assumptions about the data matrix e i t h e r , but t h e i r s u i t a b i l i t y to express anything but simple, c a t e g o r i c a l p a t t e r n s of d i f f e r e n t i a t i o n i s d o u b t f u l (Gould and Johnston, 1972; Sneath and .Sokal,1973; Sokal, 1973; Thorpe, 1976). Both the c l u s t e r a n a l y s i s and the PCA were performed on c o r r e l a t i o n m a t r i c e s . T h i s type of matrix was chosen because the product-moment c o r r e l a t i o n c o e f f i c i e n t emphasizes shape over s i z e in e s t i m a t i n g the s i m i l a r i t y between two OTU's ( o p e r a t i o n a l taxonomic u n i t s ) (Boyce, 1964; Rohlf and Sokal, 1965; Sneath and Sokal,1973). DFA i s , however, based on s e v e r a l assumptions. OTU's must be ass i g n e d membership to a p r i o r i groups and these groups are assumed to be m u l t i v a r i a t e l y normally d i s t r i b u t e d . A l s o assumed i s that the d i s p e r s i o n matrices of the groups or taxa are homogeneous, i . e . that the groups (or ' c l u s t e r s ' ; see Sneath and Sokal,1973:404) a l l have much the same s i z e , shape and o r i e n t a t i o n i n phenetic space. T h i s assumption r e l a t e s to the 26 sample s i z e and i s d i s c u s s e d i n a l a t e r s e c t i o n . An aim of a DFA i s to produce a l i n e a r f u n c t i o n of c h a r a c t e r s such that as many as p o s s i b l e of the OTU's in one taxon have high values f o r t h i s f u n c t i o n and as many p o s s i b l e of another have low v a l u e s . In t h i s way, the f u n c t i o n can serve as a much b e t t e r d i s c i m i n a t o r of the two taxa than does any s i n g l e c h a r a c t e r (Sneath and Sokal,1973). These f u n c t i o n s may then be used to c l a s s i f y new i n d i v i d u a l s to the a p r i o r i groups, i d e a l l y with minimal error.. The power of the d i s c r i m i n a n t f u n c t i o n s can be t e s t e d by three general techniques. The f i r s t of these i s the ' c l a s s i f i c a t i o n matrix (or t a b l e ) ' technique (Morrison,1976). T h i s method uses a l l 'n' i n d i v i d u a l s to c a l c u l a t e the d i s c r i m i n a n t f u n c t i o n s and then c l a s s i f i e s these same 'n' i n d i v i d u a l s i n t o the a p r i o r i groups using these f u n c t i o n s . An upward b i a s commonly occurs in c l a s s i f i c a t i o n t a b l e s c o n s t r u c t e d in t h i s manner (see Frank et al.,1965). In order to avoid t h i s b i a s , the d i s c r i m i n a n t f u n c t i o n s can a l s o be used to a s s i g n new i n d i v i d u a l s of known a f f i n i t y to the a p r i o r i groups. There are two b a s i c methods of accomplishing t h i s . One i s the c r o s s -v a l i d a t i o n technique ( M o s t e l l e r and Tukey, 1977), where the sample i s randomly s p l i t i n t o two groups; one sample i s used to c a l c u l a t e the f u n c t i o n s while the second i s used to t e s t them. The second method i s o f t e n c a l l e d a j a c k k n i f e procedure ( B i s s e l l and Ferguson, 1975; Van Valen, 1978). It i s v i r t u a l l y i d e n t i c a l to the c r o s s - v a l i d a t i o n technique but the d i f f e r e n c e i s that the s i n g l e i n d i v i d u a l being assessed i s l e f t out of the i n i t i a l c a l c u l a t i o n s . (For a more comprehensive treatment of these l a s t 27 two methods see Neff and Marcus, 1980:31-34). Wherever sample s i z e s of specimens of Ochotona pe r m i t t e d , a l l of the above methods were used to t e s t the d i s c r i m i n a n t f u n c t i o n s . The scores on the c a n o n i c a l v a r i a t e s produced by the DFA permit a v i s u a l assessment of p o i n t s s i m i l a r to that of the PCA. A l l DFA's were based on s i m i l a r i t y m a t rices composed of c o r r e l a t i o n c o e f f i c i e n t s . The minimum spanning t r e e (MST), or the ' s h o r t e s t spanning t r e e ' of Sneath and Sokal (1973:255-256), i s c l o s e l y r e l a t e d to a s i n g l e l i n k a g e c l u s t e r a n a l y s i s in which the OTU's are l i n k e d together using a s h o r t e s t connected t r e e based on some s i m i l a r i t y or d i s s i m i l a r i t y matrix (Gower and Ross, 1969; H a r t i g a n , 1977; Neff and Marcus, 1980). A Wagner t r e e i s s i m i l a r to a MST i n that in i t s u n d i r e c t e d or unrooted form (a Wagner network) i t i s an MST which has a d d i t i o n a l ' h y p o t h e t i c a l taxonomic u n i t s ' (HTU's) p l a c e d between the OTU's (Neff and Marcus, 1980). The Wagner tre e (or network) i s most f r e q u e n t l y d e r i v e d from the c l a d i s t i c a l g o r i t h m of Camin and Sokal(l965) or the g e n e r a l i z a t i o n of F a r r i s ( 1 9 7 0 ) . The Wagner t r e e forms a part of the body of analyses c a l l e d numerical c l a d i s t i c s , which has p h y l o g e n e t i c r e c o n s t r u c t i o n as one of i t s major g o a l s . T h i s type of t r e e r e q u i r e s reasonably d i s c r e t e c h a r a c t e r s which d i f f e r among at l e a s t some of the OTU's of the study. To t h i s end, means of the raw data f o r each c h a r a c t e r f o r each s p e c i e s were used to represent a given s p e c i e s . For comparative purposes, a second Wagner tre e was c a l c u l a t e d using the l o g a r i t h m i c e q u i v a l e n t s of the i n d i v i d u a l s p e c i e s ' means. The Wagner t r e e may be rooted by s e l e c t i n g the OTU which i s 28 c o n s i d e r e d to have r e t a i n e d the a n c e s t r a l s t a t e . Within the extant s p e c i e s of the genus Ochotona, 0. pusi11a i s c o n s i d e r e d to have the most p r i m i t i v e karyotype (Vorontsov and I v a n i t s k a y a , 1973) and i t i s the f i r s t to appear in the f o s s i l r ecord (Sych, 1980; Part I I ) . T h e r e f o r e , 0. p u s i l l a was deemed to be the . most pl e s i o m o r p h i c of the extant s p e c i e s , and was s e l e c t e d to form the r o o t . The Wagner t r e e was based on.a Manhattan d i s t a n c e matrix while the MST was based on a Mahalanobis (D 2) d i s t a n c e matrix. A l l numerical analyses w i t h i n t h i s study were c a r r i e d out on an Amdahl 470 V/8 computer at the U n i v e r s i t y of B r i t i s h Columbia. 2. M i s s i n g V a r i a b l e s and O u t l i e r s T h i s study i s based p r i m a r i l y on m u l t i v a r i a t e techniques,, and with few exceptions these techniques r e q u i r e the assumption of a complete data matrix, i . e . no missing measurements. In order to have access to the f u l l range -of these techniques, m i s s i n g values were estimated to complete the matrix ( for other a l t e r n a t i v e s , see Sneath and Sokal,1973:178-182; Morrison,1976:120-124; Neff and Marcus, 1980:39-41). The program BMDPAM (Dixon,1977) pro v i d e s s e v e r a l methods f o r e s t i m a t i n g missing data v a l u e s . I chose the method that estimates missing values from a r e g r e s s i o n on the one or two most h i g h l y c o r r e l a t e d v a r i a b l e s . The r e g r e s s i o n s were c a l c u l a t e d over a l l s p e c i e s , not w i t h i n each s p e c i e s , i n order to reduce b i a s in the e s t i m a t e s . These estimates were then i n c o r p o r a t e d i n t o the d a t a ' base (both primary and secondary data sets) and a l l analyses 29 were performed on t h i s r e v i s e d matrix. The program BMDPAM a l s o produces a general data d e s c i p t i o n along with estimates of missing data. The data d e s c r i p t i o n aspect of the program was used to t e s t for mensural o u t l i e r s and keypunch e r r o r s . Extreme e r r o r s , e i t h e r mensural or keypunch, were i d e n t i f i e d by s p e c i f y i n g broad l i m i t s (maximum and minimum values) f o r each v a r i a b l e . The program flagged a l l measurements o u t s i d e t h i s range. In a d d i t i o n , the program was run on sp e c i e s and subspecies groups i d e n t i f i e d in previous r e v i s i o n s . By examining the r e s u l t a n t standard d e v i a t i o n s and c o e f f i c i e n t s of v a r i a t i o n , some of the l e s s f l a g r a n t o u t l i e r s were de t e c t e d . When p o s s i b l e , I re-examined a l l specimens that were o u t l i e r s by mensural e r r o r , and c o r r e c t e d them before proceeding with any a n a l y s i s . 3. Sexual Dimorphism No s i g n i f i c a n t sexual dimorphism was dete c t e d f o r the s k u l l s of three s p e c i e s of Ochotona, 0. pr inceps, 0. c o l l a r i s and 0. a l p i n a , using a m u l t i v a r i a t e a n a l y s i s of v a r i a n c e (MANOVA) (see Weston, 1981). An e q u i v a l e n t t e s t run on the Old World s p e c i e s y i e l d e d s i m i l a r r e s u l t s , suggesting that there are g e n e r a l l y no d i f f e r e n c e s between the s k u l l s of male and female p i k a s . The sexes were t h e r e f o r e pooled in order to in c r e a s e sample s i z e . 30 I n d i v i d u a l Assessment and Sample S i z e 1. I n d i v i d u a l Assessment H i s t o r i c a l confus ion among spec ies and subspecies (see ' H i s t o r i c a l Review') made a re-examinat ion of each specimen's s p e c i f i c or s u b s p e c i f i c d e s i g n a t i o n i m p e r a t i v e . Genoways and Choate (1972) and Thorpe (1973, 1979) among others used c l u s t e r a n a l y s i s on i n d i v i d u a l s to detect s p e c i f i c a f f i n i t i e s and homogeneous groups, whi l e R i s i n g (1972), Moulton (1973) and Rohwer and K i l g o r e (1973) used PCA to t h i s same end. I used a combinat ion of both of these techniques p lus a DFA to t e s t each i n d i v i d u a l . As n e i t h e r the PCA nor the c l u s t e r r e q u i r e s any a p r i o r i judgement about groups, these two techniques were used i n i t i a l l y to determine an i n d i v i d u a l ' s probable taxon a s s o c i a t i o n . Because i t seemed most l i k e l y that i f a specimen were m i s - i d e n t i f i e d i t would be ass igned to another taxon i n the same area , I f i r s t t e s t ed for taxon a s s o c i a t i o n w i t h i n the appropia te geographic group and then geographic complex(es ) . The r e s u l t a n t p o s s i b l e a s s o c i a t i o n was fur ther t e s t ed by e n t e r i n g the specimen i n t o a DFA as an unknown to be c l a s s i f i e d , w i t h the re l evant taxa forming the a pr i o r i groups. I f the r e s u l t s of the PCA and the c l u s t e r a n a l y s i s for both the geographic group and complex(es) i n d i c a t e d a s trong group membership, then the DFA step was omit ted i n order to save computer t i m e . Specimens from the secondary data set were analysed only at the more encompassing geographic complex stage due to t h e i r lack of p r e c i s e l o c a l i t y i n f o r m a t i o n . A l l of the secondary data set 31 specimens were entered i n t o a DFA regard le s s of the r e s u l t s of the PCA and c l u s t e r a n a l y s i s . These specimens were then incorpora ted i n t o the appropr i a te taxa w i t h i n the primary data set i n order to maximize sample s i z e . 2. Sample S ize Sample s i z e s for the species and subspecies v a r i e d enormously. Although problems of sample s i z e a f f e c t e d a l l analyses to some degree, they had the greates t p o t e n t i a l e f f e c t on the DFA.. When sample s i z e s are unequal in a DFA, the assumption of homogeneous d i s p e r s i o n matr ices of the groups i s v i o l a t e d and thus s t a t i s t i c a l in ferences may be i n v a l i d a t e d . (For a more complete d e s c r i p t i o n of DFA and the e f f e c t of sample s i z e see Sneath and Sokal ,1973 :404 ; Neff and Marcus, 1980:148). In order to minimize the problems of unequal sample s i z e , I reduced the t o t a l number w i t h i n each taxon to a common sample s i z e b a s e l i n e by randomly o m i t t i n g i n d i v i d u a l s from those taxa which had sample s i z e s greater than that of the b a s e l i n e . The b a s e l i n e represented the smal le s t sample s i z e , to a minimum value of 10, of any taxon w i t h i n a g iven group of taxa entered i n t o the DFA. The a n a l y s i s was then run s e r i a l l y wi th new, randomly chosen i n d i v i d u a l s r epre sen t ing the l a r g e r taxa u n t i l a l l i n d i v i d u a l s were i n c l u d e d . 32 Subspec i e s A p e r s p e c t i v e on v a r i a t i o n at the s u b s p e c i f i c l e v e l was gained by choosing f i v e subspecies of 0. p r i n c e p s for which good samples were a v a i l a b l e and which had a maximal east-west range (Figure 3). These f i v e subspecies, 0. p_. brunnescens , 0. p_. cuppes, 0. p. fen i sex, 0. p. l u t e s c e n s and 0. p_. p r i n c e p s , were entered i n t o a PCA, an UPGMA c l u s t e r a n a l y s i s based on the p r i n c i p a l component scores, and then a DFA using the ' c l a s s i f i c a t i o n t a b l e ' method, the j a c k k n i f e procedure and the c r o s s - v a l i d a t i o n technique. These same b a s i c a n a l y t i c a l techniques were subsequently a p p l i e d at the s p e c i e s l e v e l i n order that the r e s u l t s f o r each l e v e l would be d i r e c t l y comparable. Species The 15 s p e c i e s , forming the f i v e problematic groups d e s c r i b e d e a r l i e r (see H i s t o r i c a l Review), were f i r s t examined s e p a r a t e l y and in d e t a i l before being combined with the remaining s p e c i e s f o r f u r t h e r assessment. PCA and c l u s t e r analyses were used i n i t i a l l y to formulate hypotheses regarding i n t e r - and i n t r a s p e c i f i c r e l a t i o n s h i p s and then these hypotheses were t e s t e d through the use of a DFA. Only those r e s u l t s , however, which had a d i r e c t bearing on the subsequent taxonomic d e c i s i o n s w i l l be reported in the i n t e r e s t of s i m p l i f i c a t i o n and b r e v i t y . 33 F igure 3. Ranges of f i v e subspecies of 0 . pr inceps in Canada. 35 A l l DFA's performed a t the s p e c i e s l e v e l were s e r i a l l y run w i t h e q u a l i z e d sample s i z e s . For the DFA on the Old World s p e c i e s , 22 data s u b s e t s were c r e a t e d i n which i n d i v i d u a l s from l a r g e t a x a were randomly i n c l u d e d u n t i l a l l s p e c i e s were a p p r o x i m a t e l y of e q u a l s i z e . The 22 s u b s e t s r e p r e s e n t s the t o t a l number of s u b s e t s n e c e s s a r y f o r the i n c l u s i o n of a l l i n d i v i d u a l s . An a d d i t i o n a l summarizing DFA was performed on a l l i n d i v i d u a l s ( i . e . no ommissions and t h e r e f o r e unequal sample s i z e s ) of the Old World s p e c i e s . E q u a l i z a t i o n of sample s i z e f o r DFA runs on a l l s p e c i e s was c o m p l i c a t e d by the r e l a t i v e l y l a r g e s i z e of 0. p r i n c e p s (n=225). A p p r o p r i a t e numbers of i n d i v i d u a l s of 0. p r i n c e p s were randomly i n c l u d e d i n the 22 d a t a s u b s e t s d e s c r i b e d above, a l t h o u g h u l t i m a t e l y not a l l i n d i v i d u a l s were i n c l u d e d . It-seemed u n l i k e l y t h a t any new i n f o r m a t i o n would be g a i n e d from a d d i t i o n a l runs i n which the r e m a i n i n g i n d i v i d u a l s of 0. p r i n c e p s would be i n c l u d e d , and so no e x t r a data s u b s e t s were c r e a t e d . Two summarizing DFA's runs were a l s o performed: one u s i n g a maximum of 25 i n d i v i d u a l s f o r each taxon (the 0. pr i n c e p s group b e i n g composed of f i v e i n d i v i d u a l s randomly chosen from each of the f i v e s u b s p e c i e s d e s c r i b e d e a r l i e r ) and one u s i n g a l l i n d i v i d u a l s . G e n e r a l i n t e r s p e c i f i c r e l a t i o n s h i p s , as d e f i n e d by the DFA, were e l u c i d a t e d by p l o t t i n g the s c o r e s of the f i r s t t h r e e c a n o n i c a l v a r i a t e s e v a l u a t e d at the group means. These p l o t s were o b t a i n e d u s i n g the same method as t h a t d e s c r i b e d for' the p r i n c i p a l component p l o t s . I n t e r s p e c i f i c r e l a t i o n s h i p s were then f u r t h e r examined by u s i n g a Wagner t r e e (or cladogram) and a MST 36 as estimates of phylogeny. 37 INDIVIDUAL ASSESSMENT: RESULTS An Example The i d e n t i f i c a t i o n of each specimen was checked i n order to confirm or c o r r e c t i t s taxonomic d e s i g n a t i o n . Some specimens were assi g n e d to new taxa as a r e s u l t of t h i s a c t i o n (they are marked with an a s t e r i s k i n Appendix I ) , and the procedure i n v o l v e d i n r e a s s i g n i n g two of the specimens p r o v i d e s an example of techniques which were g e n e r a l l y used i n a l l i n d i v i d u a l assessments. Two specimens, ROM 74761 and 74763, c o l l e c t e d from the same l o c a l i t y (Mustang d i s t r i c t of Nepal), were i d e n t i f i e d as 9.' daur i c a by the c o l l e c t o r . Nepal i s w e l l o u t s i d e the known range for 0. daur i c a as s p e c i f i e d by Corbet(1978), Orr (1977) and Ellerman and Morrison-Scott(1951) ( F i g u r e 4). In a UPGMA c l u s t e r a n a l y s i s run on the geographic group (GRP2A.2) which i n c l u d e d these specimens, specimen #74763 showed some a f f i n i t i e s to 0. curzon iae while specimen #74761 was more s i m i l a r to 0. r o y l e i (Figure 5). P l o t s based on the scores on the f i r s t three p r i n c i p a l components, obtained from a PCA run on these same data, i m p l i e s a c l o s e r a f f i n i t y of the specimens to 0. curzon iae than to 0. r o y l e i ( F i gure 6). Another PCA was run on Geographic. Complex 2 in order that specimens of 0. daur i c a would be i n c l u d e d . A p l o t of the scores oh the f i r s t p r i n c i p a l 38 F igure 4. Range of 0. daur i c a and the l o c a t i o n of the c o l l e c t i o n s i t e of the specimens ROM 74761 and ROM 74763. gure 5. UPGMA c l u s t e r a n a l y s i s on Geographic group 2A.2. See t e x t for e x p l a n a t i o n . 0.020 I 22.3241 74763 74761 74721 74697 74744 74737 74739 74738 25.3214 74659 O: c u r z o n i a e ? ? ? ? O. r o y I e i O. r o y I e i O. m a c r o t i s O. I a m a O. I a m a O. I a m a O. c u r z o n i a e O. r o y I e i ure 6. R e l a t i v e p o s i t i o n s of the specimens of Geographic group 2A.2 in a p r o j e c t i o n on the f i r s t three p r i n c i p a l components. The f i r s t a x i s represents 46%, the second 18% and the t h i r d ( v e r t i c a l ) represents 11% of the t o t a l v a r i a t i o n . Dashed l i n e s separate s p e c i e s . Open c i r c l e = 0 . lama Open square = Specimens ROM 74761 &•74763 Open t r i a n g l e = 0 . curzon iae Closed square = 0 . macrot i s A s t e r i s k = 0 . r o y l e i 43 P C I 44 components for 0 . r o y l e i , 0 . daur i c a and 0 . curzoniae o n l y , i s i n c o n c l u s i v e (F igure 7 ) . I t does appear from the p l o t , however, that 0 . . r o y l e i i s d i s t i n c t i v e and that the two specimens in ques t ion f a l l w i t h i n a swarm of 0 . curzoniae and 0 . daur i c a specimens. A DFA run w i t h 0 . c u r z o n i a e , 0 . daur i ca and 0 . r o y l e i as the a p r i o r i groups and the two ROM specimens entered as unknowns, c l a s s i f i e d both specimens as 0 . c u r z o n i a e . A p l o t of the f i r s t two c a n o n i c a l v a r i a t e s (F igure 8 ) , a l s o i n d i c a t e s the s i m i l a r i t y of the specimens to 0 . c u r z o n i a e . Subsequent to complet ing t h i s procedure , the c o l l e c t o r of the ROM specimens (Dr. R. M. M i t c h e l l ) , confirmed that they were indeed members of 0 . curzon i a e , not 0 . daur i c a . He had c a l l e d them 0. daur i c a a f t e r E l lerman and M o r r i s o n - S c o t t ' s <1951) c l a s s i f i c a t i o n which i n c l u d e d 0 . curzon iae as a subspecies of 0 . daur i c a . The purpose of the i n d i v i d u a l assessments was only to v e r i f y the i d e n t i f i c a t i o n of each specimen without judgement as to the h i e r a r c h y of the taxon under c o n s i d e r a t i o n . The bulk of t h i s study i s , however, concerned w i t h the assignment of a taxon to e i t h e r a s p e c i f i c or s u b s p e c i f i c category and so a b r i e f examination of the species concept and i t s use in t h i s study seems warranted. 45 F igure 7. R e l a t i v e p o s i t i o n s of the specimens of 0 . r o y l e i , 0 . daur i c a , 0 . curzoniae and the specimens ROM 74761 and ROM 74763 i n a p r o j e c t i o n on the f i r s t three p r i n c i p a l components. Open c i r c l e = 0 . r o y l e i Open square = 0 . d a u r i c a Open t r i a n g l e = 0 . curzoniae Closed square = Specimens ROM 74761 & 74763 46 gure 8. a) P r o j e c t i o n of the specimens of 0 . r o y l e i , 0 . daur i c a , 0 . curzoniae and the specimens ROM 74761 and ROM 74763 along the f i r s t two c a n o n i c a l v a r i a t e s . The f i r s t a x i s represents 86% and the second 14% of the t o t a l v a r i a t i o n . Open symbols represent i n d i v i d u a l s , c l o s e d symbols are group means. Open c i r c l e = 0 . daur i c a Open square = 0. curzoniae Open t r i a n g l e = 0 . r o y l e i Open s t a r = ROM 74761 & 74763 b) Character c o e f f i c i e n t s for the f i r s t two c a n o n i c a l v a r i a t e s . For a key to the re ference numbers see Table II . Canonical variable I I _ i _ o i > > > 'o o o o o oo 008 8 0 o * R -o o • o °o8 o o 50 SPECIES CONCEPT One of the most p e r p l e x i n g problems in taxonomy i s that of d e f i n i n g a s p e c i e s . Numerous spec ies concepts, have been proposed but none has achieved u n i v e r s a l acceptance. Perhaps the two most wide ly used are the b i o l o g i c a l species concept and a p h e n e t i c , or m o r p h o l o g i c a l , concept . Mayr, who i s the foremost advocate of the b i o l o g i c a l species concept , de f ines b i o l o g i c a l species as. compr i s ing 'groups of i n t e r b r e e d i n g n a t u r a l popu la t ions that are r e p r o d u c t i v e l y i s o l a t e d from other such groups' (1969:26) . Thi s concept has. been the subject of much c r i t i c i s m . Sokal and C r o v e l l o (1970), in a d e t a i l e d examination of the b i o l o g i c a l spec ies concept , conclude that i t i s impreci se in i t s f o rmula t ion and i n p r a c t i c e i s n o n - o p e r a t i o n a l . They s ta te that one must e v e n t u a l l y r e s o r t to phenet ic procedures to a r r i v e at d e c i s i o n s on the s ta tus of the p o p u l a t i o n s , which in turn do not meet the d e f i n i t i o n as s t a t e d . Lewin (1981) notes that for almost a l l of the m i l l i o n s of organisms on E a r t h , we s t i l l have l i t t l e or no in format ion on s p e c i f i c i n t e r f e r t i 1 i t y and thus we are u l t i m a t e l y forced to r e l y on morpholog ica l or b iochemica l charac te r s for d i s t i n g u i s h i n g s p e c i e s . Blackwelder (1962) and Sokal (1962) observe that the employment of the b i o l o g i c a l spec ies concept can lead to unwarranted i m p l i c a t i o n s about reproduct ive r e l a t i o n s h i p s of spec ies which have been descr ibed by c o n v e n t i o n a l c r i t e r i a . 51. The p h e n e t i c , or m o r p h o l o g i c a l , species of c o n v e n t i o n a l taxonomy c o n s i s t e n t l y emerges as both p r a c t i c a l and wide ly a p p l i c a b l e . Thi s type of spec ies i s perhaps the one most commonly employed by taxonomists working on the p l an t and animal kingdoms (Davis and Heywood, 1963; B l ackwelder , 1967; M i t c h e n e r , 1970; Sneath and Soka l , 1973 ) . Thi s concept , too , i s not without i t s problems, e s p e c i a l l y w i t h i n t r a d i t i o n a l taxonomy where the r e c o g n i t i o n and d e l i m i t a t i o n of spec ies f r e q u e n t l y have been s u b j e c t i v e , a r b i t r a r y procedures . The use of numerica l techniques has somewhat a l l e v i a t e d the . sub jec t ivenes s of t r a d i t i o n a l methods by q u a n t i f y i n g the procedures of spec i e s ' i d e n t i f i c a t i o n and thus making them g e n e r a l l y more e x p l i c i t . Sneath and Soka l ( l973) note that a phenet ic spec ies d e f i n i t i o n can r e s u l t from the c o n s i d e r a t i o n of two p r i n c i p a l a l t e r n a t i v e s . Species may be regarded as ' (a ) the smal le s t (most homogeneous) c l u s t e r that can be recognized upon some given c r i t e r i a as being d i s t i n c t from other c l u s t e r s , or (b) a phenet ic group of a g iven d i v e r s i t y somewhat below the subgenus ca tegory , whether or not i t conta ins d i s t i n c t s u b c l u s t e r s ' (p. 365). Sneath and Sokal s t a te that no matter what the concept , the meanings of the term ' s p e c i e s ' have always been c l o s e r to the f i r s t a l t e r n a t i v e , a l though in p r a c t i c e , i f the a l t e r n a t i v e s c l a s h s e r i o u s l y the second i s u s u a l l y chosen. For the purposes of t h i s s tudy , I f e l t that a phenet ic species d e f i n i t i o n , such as that g iven above, was the more a p p l i c a b l e as not only have a l l the ochotonid species been def ined on morpholog ica l c h a r a c t e r s , but there i s v i r t u a l l y no in format ion on s p e c i f i c i n t e r f e r t i l i t y for the p i k a s . As a 52 r e s u l t of the morpholog ica l homogeneity of the ochotonids , i t seems d e s i r a b l e to temper species d e l i m i t a t i o n s w i t h a l l a v a i l a b l e in format ion on h a b i t a t , behav ior , karyotype , f o s s i l h i s t o r y e t c . , thereby p r o v i d i n g what I hope may a l s o approximate the b i o l o g i c a l s p e c i e s . The problems of subspecies d e s i g n a t i o n are perhaps even more d i f f i c u l t than that of s p e c i e s . Many authors , such as Wi l son and Brown (1953) and Burt (1954), have suggested the complete abandonment of the f o r m a l l y a p p l i e d t r i n o m i a l s for subspecies^ In t h i s r e v i s i o n , I have l i m i t e d my examination of the subspecies w i t h i n the genus Ochotona to those that have d i r e c t bear ing on the spec ies q u e s t i o n . I do, however, l i s t a l l a v a i l a b l e s u b s p e c i f i c names and synonomies when the r e v i s e d c l a s s i f i c a t i o n i s g i v e n . D e f i n i n g the boundary between a subspecies (assuming i t s ex i s t ence ) and a spec ies i s fraught w i t h d i f f i c u l t i e s . P imenta l (1959) has advocated the use of some predetermined percentages of non-over lap and there are a p l e t h o r a of other suggest ions in the l i t e r a t u r e . For t h i s s tudy, I have adopted a v a r i a t i o n of P i m e n t a l ' s t echnique . I assume that the degree of i n t r a s p e c i f i c o v e r l a p e x h i b i t e d by a reasonably well-known species., such as 0 . pr inceps , i s t y p i c a l for the ochotonids and thus de f ines the s u b s p e c i f i c l e v e l . Al though other spec ies may not e x h i b i t the same degree of i n t r a s p e c i f i c v a r i a t i o n as 0. pr inceps , i f the K luge-Ker foot phenomenon (see Kluge and K e r f o o t , 1973; S o k a l , 1976 and P i e r c e and M i t t o n , 1979), which suggests that i n t e r p o p u l a t i o n charac ter d i f f e r e n t i a t i o n i s p o s i t i v e l y c o r r e l a t e d wi th i n t r a p o p u l a t i o n v a r i a b i l i t y for the same 53 c h a r a c t e r s , i s expanded to the i n t e r s p e c i f i c and i n t r a s p e c i f i c cases , the r e s u l t s for 0. pr inceps perhaps can be cons idered to form a reasonable b a s e l i n e for d i f f e r e n t i a t i n g between species and subspecies w i t h i n the o c h o t o n i d s . 54 SUBSPECIES AND THE PROBLEMATIC TAXA GROUPS RESULTS AND DISCUSSION The Subspecies A p l o t of the scores on the f i r s t three p r i n c i p a l components from the a n a l y s i s of 25 members of each of the f i v e subspecies of 0. pr inceps, r e v e a l s that there g e n e r a l l y i s very l i t t l e s e p a r a t i o n among taxa (Figure 9). O. p_. l u t e s c e n s shows some divergence from the remaining forms along the f i r s t p r i n c i p a l component and 0. p_. f e n i s e x i s p a r t i a l l y i s o l a t e d along the t h i r d p r i n c i p a l component. The r e s t , however, e x h i b i t l i t t l e d i f f e r e n t i a t i o n (see Table IVa f o r the l o a d i n g s of the f i r s t three p r i n c i p a l components). A DFA run on these same data c o r r e c t l y c l a s s i f i e d 88.8% of the i n d i v i d u a l s using a ' c l a s s i f i c a t i o n matrix or t a b l e ' procedure and 77.6% of the j a c k k n i f e d i n d i v i d u a l s , but the f u n c t i o n s c l a s s i f i e d only 68% of the new i n d i v i d u a l s c o r r e c t l y . A p l o t of the scores f o r the f i r s t two c a n o n i c a l v a r i a t e s taken from t h i s DFA, reconfirms the high degree of o v e r l a p among the subspecies (Figure 10a). (The c o n t r i b u t i o n of i n d i v i d u a l c h a r a c t e r s to the c a n o n i c a l v a r i a t e s i s dep i c t e d g r a p h i c a l l y i n Figu r e 10b.) The r e s u l t s of the PCA and the DFA imply a high degree of morphological o v e r l a p among the subspecies of -0. pr inceps. The ure 9 . R e l a t i v e p o s i t i o n s of specimens of the f i v e subspecies of 0 . p r inceps i n a p r o j e c t i o n on the f i r s t three p r i n c i p a l components from two p e r s p e c t i v e s . The f i r s t a x i s represents 4 3 % , the second 8% and the t h i r d ( v e r t i c a l ) represents 5% of the t o t a l v a r i a t i o n . = 0 . pr inceps fen i sex = 0 . pr inceps cuppes = 0 . p r i n c e p s brunnescens = 0 . pr inceps pr inceps = 0 . pr inceps lu tescens Open c i r c l e Open square Open t r i a n g l e Closed c i r c l e Closed square a . Subspecies of 0. princeps b. 0. alpina and 0. hyperborea i (see Fig.9) (see F1g: 12) PC I PC II PC I l l PC I PC II PC III BASLEN 0 .870 -0.342 0 .089 • 0 .913 -0 .358 0.008 GRTLEN 0 .860 -0.396 0 .049 0 .928 -0 .321 -0.034 ZYGWID 0 .741 -0.351 0 .090 0 .925 -0 .211 -0.205 BRNBRD 0 .248 -0.280 -0 . 154 0 . 880 -0 .087 -0.280 L.I.0. -0 . 147 -0.186 -o . 274 0 .218 0 .398 -0.771 DIASTM 0 . 752 -0.375 0 .029 0 .862 -0 . 333 -0.004 MAXTRL 0 .832 0.068 0 .242 0 .936 -0 .231 0.069 PALWID 0 838 -0.310 0 053 0 939 -0 073 0.038 PALLEN 0 571 -0.317 0 080 0 831 -0 119 0.035 NSLLEN 0 743 -0.366 0 113 0 582 -0 430 0.093 BULLEN 0 522 -0.428 -0 109 0 708 -0 258 -0.247 BULWID 0 499 -0.432 -0 432 0 839 -0 158 -0.220 I 1 LEN 0 599 0. 162 -0 005 0 793 0 170 0. 102 I 1 Wig 0 625 -0.010 -0 031 0 846 -o 279 -0.076 12 WID 0 557 0.250 0 140 0 266 0 497 -0.238 P2 LEN 0 544 0. 376 0 275 0 662 0 335 0. 168 P2 WID 0 691 0.211 0 338 0 893 -0 132 0. 136 P3 LEN 0 530 -0.014 -0 076 0 649 0 291 0.217 P3 WID 0 667 0. 294 0 109 0 882 0 018 O. 139 P4 LEN 0 739 0. 242 0 034 O 836 0 221 0.281 P4 WID 0 679 0.328 0 1 17 0 858 0 139 0.070 M1 LEN 0 739 0.290 0 166 0 788 0 397 0.065 M1 WID 0 485 0.381 -0 020 0 833 0 123 -0.213 M2 LEN 0 703 0.296 0 067 0 828 0 143 0.061 M2 WID 0 561 0. 352 0 046 0 726 0 185 -0.034 MANLEN 0 731 0.371 0 086 0 921 -o 305 -0.062 MANDP1 0 482 -0.188 0 381 0 857 -0 301 -0.130 MANDP2 0 762 -0.146 0 180 0 881 -0 235 -0.067 MANDP3 0 679 -0.108 0 324 0 864 -0 215 0.067 MANWID 0. 550 -0.119 -0 087 0. 816 o 076 -0.001 MNTRLN 0. 745 0. 137 -0 027 0. 787 -0. 140 -0.103 MNDIAS 0. 538 -0.501 -0. 016 0. 796 -0. 244 -0.026 MP3LEN 0. 691 0. 226 -0. 063 0. 854 -0. 088 0. 179 MP3WID 0. 732 0. 285 -0. 070 0. 899 0. 091 0. 146 MP4LEN 0. 671 0. 100 -0. 173 0. 763 0. 356 0.206 MP4WID 0. 778 0. 167 -0. 279 0. 897 0. 113 0.033 MM 1LEN 0. 452 0.048 -0. 672 0. 701 0. 450 0.033 MM 1WID 0. 752 0. 296 -0. 320 0. 900 0. 082 0.014 MM2LEN 0. 437 -0.039 -0. 600 0. 633 0. 486 -0.102 MM2WID 0. 776 0.238 -0. 265 0. 905 0. 179 -0.018 MM3LEN 0. 461 0. 224 -0. 173 0. 360 0. 674 -0.111 MM3WID 0. 686 0. 108 -0. 210 0. 719 0. 385 0.049 Table IV. Character loadings on the f i r s t three pri n c i p a l components. 58 Figure 10. a) P r o j e c t i o n of the specimens of the f i v e subspecies of . 0. p r inceps a long the f i r s t two c a n o n i c a l v a r i a t e s . The f i r s t a x i s represents 46% and the second 24% of the t o t a l v a r i a t i o n . Group means are i n d i c a t e d by the f i r s t l e t t e r of each subspecies ' name. Open c i r c l e Open square Open t r i a n g l e Closed c i r c l e Closed square O. O. 0 . 0 . 0 . p r inceps pr inceps pr inceps pr inceps pr inceps feni sex brunnescens lu te scens pr inceps cuppes b) Character c o e f f i c i e n t s for v a r i a t e s . For a key to the I I . the f i r s t two reference numbers c a n o n i c a l see Table Canonical variable I I b _ i _ 8 JL_ ro O _l_ o _ l > > • f t • 8 > .'O* o o . 8 0 B ° O n • CO 61 d e l i m i t a t i o n of s p e c i e s and subspecies based on these r e s u l t s i s admittedly an a r b i t r a r y one, but one can only hope t h a t , with the i n c l u s i o n of a l l a v a i l a b l e i n f o r m a t i o n on h a b i t a t and behavior e t c . , the d e s i g n a t i o n s w i l l become l e s s a r b i t r a r y and more c l o s e l y r e f l e c t the s i t u a t i o n found i n nature. D e f i n i n g an approximate numerical framework for the s e p a r a t i o n of species and subspecies does, however, make the process more e x p l i c i t and r e p e a t a b l e . The Problematic Taxa 1. The A l p i n a Complex A) Comparison of 0. a l p i n a and 0. hyperborea A p l o t of the scores on the f i r s t two c a n o n i c a l v a r i a t e s , r e s u l t i n g from a DFA run on Geographic Complex 1, r e v e a l s a high degree of o v e r l a p between 0. a l p i n a and 0. hyperborea, with 0. daur i c a and 0. p a l l a s i forming d i s c r e t e groups (Figure 11a). The f i r s t two c a n o n i c a l v a r i a t e s account for 74% and 21% of the t o t a l v a r i a t i o n , r e s p e c t i v e l y , and the v a r i a b l e subset loadings fo r the v a r i a t e s are presented g r a p h i c a l l y in F i g u r e 11b. The 95% frequency e l l i p s e s around the mean of each s p e c i e s , as c a l c u l a t e d using the procedure given i n Sokal and Rohlf, 1969:527-531, i s a l s o given in F i g u r e 11a. Again, the o v e r l a p of 0. a l p i n a and 0. hyperborea i s emphasized but the o r i e n t a t i o n s of the major axes d i f f e r somewhat, l a r g e l y with respect to CVII. C a n o n i c a l v a r i a t e I I has a l a r g e s i z e component (heavy loadings on GRTLEN and BRNBRD), which i n d i c a t e s a s i z e d i f f e r e n c e between ure 1 1 . a) P r o j e c t i o n of the specimens of Geographic Complex 2 a long the f i r s t two c a n o n i c a l v a r i a t e s . The f i r s t a x i s represents 53% and the second 19% of the t o t a l v a r i a t i o n . S o l i d l i n e w i t h i n e l l i p s e i s the major a x i s , dashed l i n e i s the minor a x i s . Open symbols represent i n d i v i d u a l s , c l o s e d symbols are group means. Open c i r c l e = 0 . p a l l a s i Open square =2* hyperborea Open t r i a n g l e = 0 . a l p i n a Apex down t r i a n g l e = 0 . daur i c a b) Character c o e f f i c i e n t s for the f i r s t two c a n o n i c a l v a r i a t e s . For a key to the reference numbers see Table II . Canonical variable I I _L_ 65 0. a l p i n a and 0. hyperborea. T h i s s i z e d i f f e r e n c e i s not, however, evident when the data s e t s f o r only these two species are subjected to a PCA and the r e s u l t i n g scores are p r o j e c t e d along the f i r s t three p r i n c i p a l components (Figure 12). From the v a r i a b l e l o a d i n g s given i n . Table IVb, the f i r s t p r i n c i p a l component seems to be c o r r e l a t e d with the s i z e of the i n d i v i d u a l , as a l l the lo a d i n g s are of the same sign and are s i m i l a r i n magnitude (Neff and Marcus, 1980). 0. a l p i n a and 0. hyperborea intermix f r e e l y along t h i s s i z e a x i s as w e l l as along the remaining two,, which are g e n e r a l l y i n d i c a t i v e of shape. That no major d i v i s i o n i s apparent along any of the three axes, suggests that a rudimentary s i z e d i f f e r e n c e may be present, but i s only evident when a p r i o r i knowledge, such as that r e q u i r e d by a d i s c r i m i n a n t a n a l y s i s , i s superimposed. 0. a l p i n a and 0. hyperborea are g e n e r a l l y , and sometimes only ( e.g. Vinogradov, 1933), separated on the b a s i s of o v e r a l l s i z e (see Ognev,1940:28 f o r a t a b l e of s i z e d i f f e r e n c e s ) . The above r e s u l t s i n d i c a t e that t h i s c r i t e r i o n does not appear to be v a l i d i n s e p a r a t i n g these two taxa. Ognev (1940:28) s t a t e s that, in a d d i t i o n to s i z e , the r o s t r a l s t r u c t u r e i n p a r t i c u l a r w i l l 'always determine the sp e c i e s of a specimen'. He notes that the rostrum of 0. hyperborea i s short and that a comparison of the d i s t a n c e between 'the inner margins of the a l v e o l i of the l a s t upper molar i s about equal to the l e n g t h of the upper diastema ' ( i b i d . ) in 0. hyperborea, while in 0. a l p i n a the d i s t a n c e i s much longe r . Ognev's 'distance between the inner margins of the a l v e o l i of the l a s t upper molar' i s approximately equal to the measurement I took of . p a l a t a l width ( P A L W I D ), although I gure 12. R e l a t i v e p o s i t i o n s of specimens of 0 . a l p i n a and 0. hyperborea i n a p r o j e c t i o n on the f i r s t three p r i n c i p a l components from two p e r s p e c t i v e s . The f i r s t a x i s represents 64%, the second 8% and the t h i r d ( v e r t i c a l ) represents 3% of the t o t a l v a r i a t i o n . Dashed l i n e surroundes specimens of 0. a l p i n a n i t i d a . Open square = 0. hyperborea Open t r i a n g l e = 0. a l p i n a 67 68 measured t h i s d i s t a n c e between the l a s t upper premolars. Since the upper t o o t h rows tend to converge a n t e r i o r l y (see P l a t e I ) , t h i s i s probably an underestimate of- Ognev's ' d i s t a n c e ' , but i t does not a f f e c t a comparison of the r a t i o s between the two s p e c i e s . The mean p a l a t a l width and the mean len g t h of the diastema are 7.16 mm and 9.94 mm, r e s p e c t i v e l y , for 0. hyperborea and thus the r a t i o of mean p a l a t a l width to mean diastama i s 1.4 f o r t h i s s p e c i e s . These measurements f o r 0. a l p i n a are 7.88 mm and 11.55 mm, r e s p e c t i v e l y , with a r a t i o of 1.5. Thus the d i f f e r e n c e between the r e l a t i v e mean r o s t r a l l e ngth of these two taxa i s s l i g h t . When c o n s i d e r i n g the i n d i v i d u a l specimens, the r a t i o s l a r g e l y o v e r l a p : 0. hyperborea 1.1-1.6 and 0. a l p i n a = 1.1-1.7. As a r e s u l t , I view t h i s c r i t e r i o n to be u n r e l i a b l e i n d i s t i n g u i s h i n g these taxa. Since the r e s u l t s of the DFA and the PCA a l s o d i d not d i s t i n g u i s h between 0. a l p i n a and 0. hyperborea with any greater success than they d i d the subspecies of 0. pr inceps, I chose to lump these two taxa f o l l o w i n g A r g i r o p u l o ( 1 9 4 8 ) , Gureev(l964) and Corbet(1978). The lack of adequate m a t e r i a l for these taxa and the 'subspecies' composing them complicates a l l d e c i s i o n s regarding t h e i r h i e r a r c h i a l d e s i g n a t i o n s . 0. a l p i n a and 0. hyperborea may represent n o n - i n t e r b r e e d i n g extremes of a c l i n e and be r e l a t e d through a s e r i e s of t r a n s i t i o n a l s p e c i e s or subspecies. T h e r e f o r e , when examined as a whole, they o v e r l a p e x t e n s i v e l y and present a con f u s i n g p i c t u r e . As more specimens and e c o l o g i c a l i n f o r m a t i o n become a v a i l a b l e , the a c t u a l s t a t u s of these two taxa should e v e n t u a l l y be r e s o l v e d . Although 0. a l p i n a and .0. hyperborea do not d i f f e r 69 a p p r e c i a b l y i n s i z e , the subspecies n i t ida i s r e a d i l y d i s t i n g u i s h e d by t h i s c r i t e r i o n . The swarm of p o i n t s i n d i c a t e d by dashed l i n e i n F i g u r e 12 i s separated from the remaining p o i n t s along the f i r s t p r i n c i p a l component, the s i z e component. T h i s swarm i s composed of l a r g e specimens from the A l t a i Mountain region of the USSR and nearby T i b e t , the geographic area forming the range of 0. a. n i t idaand the southernmost part of that of 0. a l p i n a . The degree of i s o l a t i o n of t h i s one s u b s p e c i f i c form f u r t h e r emphasizes the p o s s i b i l i t y of a c l i n a l v a r i a t i o n between 0. a l p i n a and 0. hyperborea. B) 0. a l p i n a vs. 0. princeps and 0. c o l l a r i s S i g n i f i c a n t d i f f e r e n c e s between the Asian s p e c i e s 0. a l p i n a and the North American s p e c i e s , 0. pr inceps and 0. c o l l a r i s , have p r e v i o u s l y been found (Weston, 1981). In that study, 0. a l p i n a and 0. hyperborea were regarded as separate species and so the North American forms were compared with an 0. a l p i n a which excluded specimens of 0. hyperborea. A re-examination of these s p e c i e s , with the i n c l u s i o n of 0. hyperborea in 0. a l p i n a , y i e l d s the same ba s i c r e s u l t s as p r e v i o u s l y , with the exception that a p l o t of the scores of the f i r s t two c a n o n i c a l v a r i a t e s now suggests s l i g h t l y more o v e r l a p between sp e c i e s (Figure 13). A MANOVA s e r i a l l y run on a l l three s p e c i e s , again detected s i g n i f i c a n t d i f f e r e n c e s at a p r o b a b i l i t y of 0.0001. S p e c i f i c s t a t u s f o r a l l three species in a l l subsequent a n a l y s i s was thus my most a p p r o p r i a t e c h o i c e . 70 Figure 13. a) P r o j e c t i o n of the specimens of 0 . a l p i n a , 0 . pr inceps and 0 . c o l l a r i s a long the f i r s t two c a n o n i c a l v a r i a t e s . The f i r s t a x i s represents 61% and the second 39% of the t o t a l v a r i a t i o n . Open symbols represent i n d i v i d u a l s , c l o s e d symbols are group means. b) Character c o e f f i c i e n t s for the f i r s t two c a n o n i c a l v a r i a t e s . For a key to the re ference numbers see Table II . Open c i r c l e Open square Open t r i a n g l e = 0 . pr inceps = O. a l p i n a = 0 . c o l l a r i s Canonical variable I CO — i _ to b o b _1_ o _1_ cn b O > > 8 o > o o O OO ° 8 • o o o > 8 o > > 8 . a a • • • • B cn b 72 4 I I 21 33 I 73 2. 0. curzon iae and 0. daur i c a Al though the ranges of these two species do not over l ap (see F igure 1 and the range maps i n F igures 25 and 2 7 ) , they appear to be m o r p h o l o g i c a l l y s i m i l a r . A p l o t of the scores on the f i r s t three p r i n c i p a l components i n d i c a t e s a separa t ion between these two taxa only a long the t h i r d p r i n c i p a l component (F igure 14). The charac ter load ings on these components (Table Va) i m p l i e s that the main d i f f e r e n c e s between the taxa are the shape of the b u l l a (BULLEN and BULWID) and the a n t e r i o r depth of the mandible (MANDP1). These d i f f e r e n c e s are a l s o r e f l e c t e d i n a h i s togram of the s i n g l e c a n o n i c a l v a r i a t e d e r i v e d from a DFA based on these same data (F igure 15). The c a l c u l a t e d d i s c r i m i n a n t funct ions c o r r e c t l y c l a s s i f i e d 97.9% of the same i n d i v i d u a l s ( c l a s s i f i c a t i o n m a t r i x ) , 95.8% -of i n d i v i d u a l s i n the j a c k k n i f e procedure , and 92% of new i n d i v i d u a l s . In a l l cases , a l l the specimens of 0. daur i c a were c l a s s i f i e d c o r r e c t l y and only specimens of 0. curzon iae were i n c o r r e c t l y c l a s s i f i e d . Thi s i s demonstrated g r a p h i c a l l y in F igure 15, where two specimens of 0. curzon iae from the Mekong R i v e r bas in were s p u r i o u s l y a l i g n e d w i t h 0 . daur i c a . The m i s c l a s s i f i c a t i o n of i n d i v i d u a l s of 0. curzon iae probably i n d i c a t e s a greater degree of i n t r a s p e c i f i c v a r i a b l y in t h i s spec ies than in 0. daur i c a . H i s t o r i c a l l y , 0. daur i c a and 0. curzoniae have been d i s t i n g u i s h e d mainly on the ba s i s of h a b i t a t ( M i t c h e l l , 1980) and on c o l o r a t i o n of the pelage (Bonhote, 1904b; A r g i r o p u l o ,1948 M i t c h e l l , 1980). Past workers ( e . g . Bonhote, 1904b; 74 F igure 14. R e l a t i v e p o s i t i o n s of the specimens of 0 . curzoniae and 0 . daur i ca in a p r o j e c t i o n on the f i r s t three p r i n c i p a l components. The f i r s t a x i s represents 55%, the second 7% and the t h i r d ( v e r t i c a l ) represents 6% of the t o t a l v a r i a t i o n . Dashed l i n e i n d i c a t e s main grouping of 0 . curzoniae specimens. Open square Open t r i a n g l e = 0 . daur i c a = 0 . curzoniae a . 0. curzoniae and 0 . daurica b. 0. er y t h r o t i s , 0. gloveri and (see Fig.14) 0. r u t i l a [see Fig . 16) PC I PC II PC I l l PC I PC II PC I l l BASLEN 0 .893 -0 .314 0 .073 • 0 .936 -0 .296 0 .095 GRTLEN 0 .889 -0 .328 0 . 133 0 .771 -o .373 0 .068 ZYGWID 0 . 775 -0 372 0 .200 0 .833 -0 . 398 0 .049 BRNBRD 0 .654 -0 311 -0 .364 0 . 784 -o .434 -0 .079 L.I.0. -0 .380 0 219 0 . 155 -0 . 321 -0 .654 -0 .084 DIASTM 0 747 -0 415 0 . 195 0 .896 -0 .144 0 . 160 MAXTRL 0 798 0 027 0 .003 0 944 -0 066 0 199 PALWID 0 818 0 049 0 051 0 934 O 162 -o 1 16 PALLEN 0 745 -0 293 -0 015 0 770 0 156 0 035 NSLLEN 0 874 -0 315 -0 136 0 924 -0 184 0 194 BULLEN 0 662 -0 223 -0 553 0 702 -0 384 0 082 BULWID 0 543 -0 173 -0 656 0 856 -0 416 -0 002 I 1 LEN 0 712 0 365 -0 232 0 724 0 458 0 078 I 1 WID 0 787 0 156 0 194 0 722 -0 326 0 378 12 WID 0 522 0 058 -0 457 0 577 0 484 -0 358 P2 LEN 0 458 0 107 -0 087 0 076 0 786 -0 300 P2 WID 0 747 0 276 0 253 0 661 0 482 0 367 P3 LEN 0 754 0 206 0 160 0 847 0 330 -0 084 P3 WID 0 797 0 063 0 192 0 793 0 31 1 0 399 P4 LEN 0 833 0 233 0 108 0 896 0 301 0 077 P4 WID 0 810 0 244 . 0 102 0 834 0 053 0 390 M1 LEN 0 823 0 297 -0 135 0 837 0 149 -0 269 M1 WID 0 747 -0 050 0 055 0 828 -0 166 -0 028 M2 LEN 0 845 0 095 0 222 0 880 0 21 1 -0 024 M2 WID 0 727 0 053 0 052 0 854 0 156 -0 053 MANLEN 0 823 -0 433 0 146 0 909 -0 344 -0 019 MANDP1 0 278 -0 118 -0 531 0 779 -0 339 -0 356 MANDP2 0 829 -0 273 0 085 0 881 -0 231 -0 1 1 1 MANDP3 0 731 -0 150 •• 0 045 0 803 -0 244 -0 351 MANWID 0. 586 0. 032 0 014 0 806 -0 177 -0 332 MNTRLN 0. 870 0. 012 0 214 0 964 -0 165 -0 019 MNDIAS 0. 657 -0. 586 0 055 0 867 -0 028 0 097 MP3LEN 0. 760 0. 218 0 124 0. 778 0 215 0 443 MP3WID 0. 854 0. 087 0 063 0. 901 0 165 0 270 MP4LEN 0. 776 0. 312 -o 008 0. 883 0. 279 0 •1 19 MP4WID 0. 813 0. 148 -o. 005 0. 947 0. 063 0. 151 MM 1LEN 0. 747 0. 321 -0. 205 0. 812 -0. 152 -0. 31 1 MM1WID 0. 831 0. 1 17 -0. 127 0. 903 0. 028 -0. 2 16 MM2LEN . 0. 690 0. 335 -0. 355 0. 482 -0. 029 -0. 582 MM2WID 0. 875 0. 137 -o. 008 0. 891 0. 006 -0. 146 MM3LEN 0. 446 0. 485 -0. 206 0. 729 0. 405 -0. 393 MM3WID 0. 707 0. 161 0. 394 0. 812 0. 410 -0. 129 Table V. Character loadings on the f i r s t three p r i n c i p a l components g.ure 15. a) Histogram of the scores of specimens of 0 . curzoniae and 0 . daur i c a on the s i n g l e c a n o n i c a l v a r i a t e . b) Inset i s the hi s togram of the charac te r c o e f f i c i e n t s on the s i n g l e c a n o n i c a l v a r i a t e . Numbers a s s o c i a t e d wi th each bar correspond to the charac te r reference numbers of Table I I . D o o d CO u u u u u , p o o o o ^ OOOOO b o o o o p OOOOO, o C\J CM CM l o o o o o o q CM DOOOOOO o I* * • i — i — i — i — i — i — r CD CO CO T -Aouenbaj j 79 Argiropulo,1948) have commented on the resemblance between the s k u l l s of these two taxa and t h i s s i m i l a r i t y i s a l s o apparent in my r e s u l t s . In s p i t e of the c r a n i a l s i m i l a r i t i e s between 0. d a u r i c a and 0. c u r z o n i a e , the numerical r e s u l t s d i d not suggest as great a degree of taxonomic o v e r l a p as that e x h i b i t e d by 0. a l p i n a and 0. hyperborea or by the subspecies of 0. p r i n c e p s . T h i s , along with the i n f o r m a t i o n on the d i f f e r e n c e s in h a b i t a t and c o l o r a t i o n , l e d me to r e t a i n s p e c i f i c s t a t u s f o r both 0. daur i c a and 0. curzon iae f o r a l l subsequent a n a l y s i s . 3. 0. r u t i l a and 0. e r y t h r o t i s ( i n c l u d i n g 0. g l o v e r i ) A p l o t of the scores on the f i r s t three p r i n c i p a l components obtained from a PCA, based on specimens of 0. e r y t h r o t i s (plus 0. g l o v e r i ) and 0. r u t i l a , i s given in F i g u r e 16. T h i s p l o t r e v e a l s a s e p a r a t i o n between 0. r u t i l a and 0. e r y t h r o t i s mainly along the second p r i n c i p a l component and s l i g h t l y along the f i r s t . Character l o a d i n g s of the f i r s t three p r i n c i p a l components i n d i c a t e that PCI i s l a r g e l y a s i z e v e c t o r while PCI I, a shape v e c t o r , has high l o a d i n g s on P2LEN and LIO (Table Vb). T h i s suggests that although 0. " r u t i l a i s s l i g h t l y l a r g e r o v e r a l l than 0. e r y t h r o t i s, the g r e a t e s t d i f f e r e n c e s l i e in the l e n g t h of the second upper premolar and i n the l e a s t i n t e r o r b i t a l width. The s i n g l e specimen of 0. r u t i l a that f a l l s among the 0. e r y t h r o t i s i n d i v i d u a l s in the p l o t , i s a small ( ? j u v e n i l e ) specimen from a i s o l a t e d l o c a l i t y in Ladak and thus i s probably not t y p i c a l of 0. r u t i l a . The DFA c l e a r l y separates a l l i n d i v i d u a l s of 0. r u t i l a and 80 Figure 16. R e l a t i v e p o s i t i o n s of the specimens of 0 . e r y t h r o t i s (p lus g l o v e r i ) and 0 . r u t i l a i n a p r o j e c t i o n on the f i r s t three p r i n c i p a l components.. The f i r s t a x i s represents 64%, the second 12% and the. t h i r d ( v e r t i c a l ) represents 6% of the t o t a l v a r i a t i o n . Dashed l i n e s g e n e r a l l y separate 0. r u t i l a and 0 . e r y t h r o t i s (p lus 0 . g l o v e r i ) . Open c i r c l e Open square Open t r i a n g l e 0 . r u t i l a 0 . g l o v e r i 0 . e r y t h r o t i s 81 82 0. e r y t h r o t i s along the s i n g l e c a n o n i c a l v a r i a t e (Figure 17a). From the histogram of c o e f f i c i e n t s (Figure 17b) 0. r u t i l a i s d i s c r i m i n a t e d from 0. e r y t h r o t i s on the b a s i s of BRNBRD, MANDP3 and three teeth measurements, with P2LEN being the only c h a r a c t e r a l s o used as a. d i s t i n g u i s h i n g f e a t u r e by the PCA. In a l l cases, specimens were c o r r e c t l y c l a s s i f i e d 100% of the time and with p o s t e r i o r p r o b a b i l i t i e s of <0.990. Within the histogram given in. F i g u r e 17a, two specimens of 0. e r y t h r o t i s are somewhat i s o l a t e d from the r e s t . The right-hand specimen belongs to 0. g l o v e r i and the l e f t - h a n d i s the l e c t o t y p e f o r 0. e r y t h r o t i s . The apparent d i s s i m i l a r i t y of the l e c t o t y p e to the m a j o r i t y of the 0. e r y t h r o t i s specimens suggests that t h i s specimen may represent a s t r u c t u r a l l y abberant i n d i v i d u a l . 0. r u t i l a and 0. e r y t h r o t i s have been p r e v i o u s l y separated by c r a n i a l d i f f e r e n c e s as w e l l as by d i f f e r e n c e s in pelage c o l o r a t i o n . The r e l a t i v e l y narrow s k u l l of 0. e r y t h r o t i s has been used to d i s t i n g u i s h i t from 0. r u t i l a by Buechner (1890), Bonhote (1904b) and Tate (1947). My r e s u l t s from the DFA support t h i s d i s t i n c t i o n , but only to the extent to which the narrowness of the s k u l l may be d e s c r i b e d by the width of the b r a i n c a s e . Ognev(l940) provides some q u a l i t a t i v e d i f f e r e n c e s between the s k u l l s and the pelage c o l o r a t i o n of 0. r u t i l a and 0. e r y t h r o t i s which may warrant f u r t h e r examinations. G e n e r a l l y , these two taxa appear to be d i s t i n c t i v e , and so I have r e t a i n e d 0. r u t i l a and 0. e r y t h r o t i s as separate s p e c i e s . 0. g l o v e r i was i n c l u d e d i n the a n a l y s i s as a subspecies of 0. e r y t h r o t i s, f o l l o w i n g Corbet(1978), Gureev(1964), and Ellerman and M o r r i s o n - S c o t t ( 1 9 5 1 ) , among ot h e r s . In both the PCA 83 Figure 17. a) Histogram of the scores of specimens of 0 . e r y t h r o t i s (p lus g l o v e r i ) and 0 . r u t i l a on the s i n g l e c a n o n i c a l v a r i a t e . b) Inset i s the his togram of the charac ter c o e f f i c i e n t s on t h e . s i n g l e c a n o n i c a l v a r i a t e . Numbers a s s o c i a t e d w i t h each bar correspond to the charac te r reference numbers of Table II . 84 E3 i — i — r o co to O 0) d o Aouanbajj CO 85 (Figure 16) and the DFA (Figure 17), specimens of 0. g l o v e r i intermixed with those of 0. e r y t h r o t i s , thus supporting i t s assignment as a subspecies of the l a t t e r . 4. 0. lama, 0. macrotis and 0. r o y l e i In a p l o t of the scores of the f i r s t three p r i n c i p a l components from a PCA on 0. lama, 0. macrotis and 0. r o y l e i , . 0. lama forms a d i s t i n c t swarm while 0. macrotis and 0. r o y l e i o v e r l a p to some degree (Figure 18). The c h a r a c t e r l o a d i n g s on these f i r s t three components (Table V i a ) again i n d i c a t e that PCI i s a s i z e v e c t o r while PC's II and III are more 'shape' v e c t o r s with heavy l o a d i n g s on BULWID, MNDIAS, MP3WID and I1WID, MANDP2, MP3LEN, r e s p e c t i v e l y . 0. lama i s separated from both 0. macrotis and 0. r o y l e i along a l l three axes, while the major d i v i s i o n between 0. r o y l e i and 0. macrot i s i s along the f i r s t two axes. Although there i s an obvious o v e r l a p between 0. macrotis and 0. r o y l e i , the taxa s t i l l maintain a degree of i n t e g r i t y . The two o u t l i e r specimens, one 0. macrotis and one 0. r o y l e i , represent very s m a l l , and p o s s i b l y , j u v e n i l e animals. A DFA run on these same data c l a s s i f i e d 100% of the i n d i v i d u a l s c o r r e c t l y , with p o s t e r i o r p r o b a b i l i t i e s of >0.995. A p l o t of the f i r s t two c a n o n i c a l v a r i a t e s r e i t e r a t e s the d i s t i n c t i v e nature of 0. lama, while 0. macrotis and 0. r o y l e i again show some degree of a s s o c i a t i o n , p a r t i c u l a r l y in the p a r t i a l o v e r l a p of the 95% conf i d e n c e e l l i p s e s f o r the mean (Figure 19). These two taxa do, however, remain as reasonably i n t e g r a l u n i t s and the p r i n c i p a l axes of t h e i r r e s p e c t i v e 86 F igure 18. R e l a t i v e p o s i t i o n s of the specimens of 0 . lama, 0 . macrot i s and 0. r o y l e i i n a p r o j e c t i o n on the f i r s t three p r i n c i p a l components. The f i r s t a x i s represents 48 %, the second 17% and the t h i r d ( v e r t i c a l ) represents 7% of the t o t a l v a r i a t i o n . Dashed l i n e i n d i c a t e s 0 . lama specimens. Open c i r c l e Open square Open t r i a n g l e = 0 . macrot i s = 0 . r o y l e i = 0 . lama PC I a . 0. lama, 0 roylei and b. 0. f o r r e s t i , 0. osgoodi. 0. cansus, 0. roy1e1, 0. pus i l i a 0. macrotis (see Fig.18) and 0. thibetana (see Fig . 20) PC I PC II PC I l l PC I PC II PC 111 BASLEN 0 .770 -o 521 0 038 0 .942 -0 .210 -0 016 GRTLEN 0 .796 -0 529 0 067 0 954 -0 215 -0 064 ZYGWID 0 615 -0 509 0 437 0 889 -0 395 -0 077 BRNBRD 0 552 -0 487 0 079 0 855 -0 342 -o 078 L.I.0. 0 112 -0 375 -0 137 0 424 -0 440 -0 217 DIASTM 0 803 -0 489 -0 067 O 919 -0 1 13 -0 044 MAXTRL 0 620 -0 265 0 024 0 996 -0 207 0 010 PALLEN 0 929 -0 086 -0 083 0 964 0 078 -0 008 PALWID 0 688 0 091 0 347 0 399 -0 145 -0 008 NSLLEN 0 687 -0 597 -0 107 0 928 -0 239 -0 067 BULLEN 0 491 -0 545 -0 230 0 683 -0 480 0 249 BULWID 0 468 -0 668 -0 208 0 865 -0 384 Q ,100 I 1 LEN 0 519 0 586 0 258 0 665 0 512 -o" 178 11 WID 0 519 0 164 0 660 0 906 -0 046 -0 044 12 WID 0 498 0 703 0 112 0 418 0 721 . 0 252 P2 LEN 0 540 0 483 -0 093 0 405 0 637 -0 312 P2 WID 0 760 0 349 -0 127 0 659 0 588 -0 228 P3 LEN 0 738 0 185 -0 492 0 678 0 532 0 201 P3 WID 0 797 -0 271 -0 24 1 0 922 0 154 -0 033 P4 LEN 0 874 0 320 -0 209 0 905 0 280 0 1 14 P4 WID 0 741 0 038 -0 021 0 888 0 140 0 193 M1 LEN 0 781 0 492 -0 035 0 930 0 143 0 063 M1 WID 0 724 -0 025 0 166 0 899 0 005 0 1 16 M2 LEN 0 849 0 1 17 -0 107 0 950 0 04 1 0 076 M2 WID 0 745 -0 168 0 341 0 919 -0 146 0 067 MANLEN 0 692 -0 663 0 083 0 943 -0 259 -0 057 MANDP1 0 488 0 225 0 602 0 890 -0 1 10 -0 121 MANDP2 0 738 -0 504 0 025 0 940 -0 248 -0 038 MANDP3 0 760 -0 356 -o 160 0 898 -0 146 0 079 MANWID 0 444 0 385 0 445 0 833 -0 126 -0 21 1 MNTRLN 0 833 -0 109 -0 127 0 945 -0 230 -0 003 MNDIAS 0 606 -0 61 1 0 007 0 828 -0 248 -0 069 MP3LEN 0 580 0 352 -o 530 0 624 0 590 -0 290 MP3WID 0 669 0 601 -0 095 0 786 0 430 -0 156 MP4LEN 0 74 1 0 494 -0 175 0 85 1 0 294 -0 005 MP4WID 0 879 0 21 1 0 013 0 945 0 180 0 032 MM 1LEN 0. 734 0 301 0 022 0. 897 -0 068 0 055 MM 1WID 0. 874 0. 278 0. 208 0. 962 0 082 0 081 MM2LEN 0. 613 0. 356 -0. 348 0. 872 0 012 0 206 MM2WID 0. 729 0. 307 0. 276 0. 960 0 04 1 0 161 MM3LEN 0. 377 0. 560 -0. 342 0. 181 0 324 0. 829 MM3WID 0. 797 0. 231 -0. 020 0. 813 0. 351 -0. 204 Table VI. Character loadings on the f i r s t three p r i n c i p a l components. CO CO gure 19. a) P r o j e c t i o n of the specimens of 0 . lama, 0 . macrot i s and 0 . r o y l e i along the f i r s t two c a n o n i c a l v a r i a t e s . The f i r s t a x i s represents 72% and the second 28% of the t o t a l v a r i a t i o n . S o l i d l i n e w i t h i n e l l i p s e i s the major a x i s , dashed l i n e i s the minor a x i s . Open symbols represent i n d i v i d u a l s , c lo sed symbols are group means. Open c i r c l e = 0 . r o y l e i Open square = 0 . lama Open t r i a n g l e = 0 . macrot i s b) Character c o e f f i c i e n t s for the f i r s t two c a n o n i c a l v a r i a t e s . For a key to the reference numbers see Table II . Canonical variable I I 92 confidence e l l i p s e s are p e r p e n d i c u l a r to each other, suggesting d i f f e r e n t angles of v a r i a t i o n . The h i e r a r c h i a l s t a t u s of 0. macrotis with respect to 0. r o y l e i has long been the source of much disagreement. 0. macrotis i s g e n e r a l l y separated from 0. r o y l e i on the b a s i s of o v e r a l l ear s i z e (Ellerman and Morrison-Scott,1951) although 0. r o y l e i , i n some p a r t s of i t s d i s t r i b u t i o n , a pparently a t t a i n s an ear s i z e e q u i v a l e n t to that of 0. macrotis (Gureev,1964; Roberts, 1977). H a b i t a t d i f f e r e n c e s ( M i t c h e l l , pers.comm.) and d i f f e r e n c e s in v o c a l i z a t i o n (Kawamichi, 1971a) .between these two taxa, however, have been noted. These rep o r t e d d i f f e r e n c e s , i n a d d i t i o n to the r e l a t i v e d i s t i n c t i v e n e s s of the s k u l l s as e x h i b i t e d by my r e s u l t s , l e d me to r e t a i n both 0. r o y l e i and 0.•macrotis as separate s p e c i e s . 0. lama was assigned to 0. r o y l e i by Corbet(l978) only on the b a s i s of o v e r l a p p i n g ranges, as he d i d not examine any specimens. The r e s u l t s of the PCA and the DFA s t r o n g l y suggest 0. lama i s a d i s t i n c t i v e s p e c i es which i s not l i k e l y to be confused with e i t h e r 0. r o y l e i or 0. mac r o t i s . Therefore, I r e t a i n e d s p e c i f i c s t a t u s f o r t h i s taxon. 5. 0. f o r r e s t i , 0. osgoodi and 0. cansus These three taxa have been the source of c o n s i d e r a b l e c o n f u s i o n , e s p e c i a l l y with respect to t h e i r r e l a t i o n s h i p s with 0. r o y l e i , 0. p u s i l l a and 0. th i b e t a n a (see H i s t o r i c a l Review). A p l o t of the scores on the f i r s t three p r i n c i p a l components, d e r i v e d from a PCA run on a l l s i x of these taxa, r e v e a l s the 93 presence of two general groups (Figure 20). These two groups, r o y l e i and thibetana-pusi11a, which are d i v i d e d mainly along the f i r s t two axes, serve to separate a l l specimens of 0. r o y l e i from the remaining forms. Within the t h i b e t a n a - p u s i l l a group, 0. t h i b e t a n a g e n e r a l l y i n t e r m i n g l e s with 0. f o r r e s t i , 0. osgoodi and 0. cansus, while 0. p u s i l l a i s s t r o n g l y i s o l a t e d from other group members along PCIII (see Table VIb f o r c h a r a c t e r l o a d i n g s ) . The apparent d i s c r e t e n e s s of 0. pusi11a, i t s ge o g r a p h i c a l i s o l a t i o n from the other taxa and, i n p a r t i c u l a r , i t s sample s i z e , l e d me to omit i t from a l l f u r t h e r a n a l y s i s in t h i s s e c t i o n . The two o u t l i e r specimens represented i n the lower l e f t - h a n d corner of Fig u r e 20, one belonging to 0. thibetana and one to 0. r o y l e i , had both o r i g i n a l l y been coded as ' p o s s i b l e s u b - a d u l t s ' , and are by f a r the s m a l l e s t i n d i v i d u a l s f o r each group. A DFA performed on a data set c o n s i s t i n g of 0. cansus, 0. f o r r e s t i , 0. osgoodi, 0. t h i b e t a n a and 0. r o y l e i , with the l a t t e r two taxa forming the a p r i o r i groups, c o r r e c t l y c l a s s i f i e d a l l members of the a p r i o r i groups, and assigned a l l i n d i v i d u a l s of 0. f o r r e s t i , 0. osgoodi and 0. cansus to 0. t h i b e t a n a ( p o s t e r i o r p r o b a b i l i t i e s = 1.000). A histogram of the scores on the s i n g l e c a n o n i c a l v a r i a t e (Figure 21a), produced as a r e s u l t of the DFA, r e i t e r a t e s the s e p a r a t i o n between 0. r o y l e i and the remaining taxa. The s i m i l a r i t y of 0. t h i b e t a n a , 0. osgoodi and 0. f o r r e s t i i s c l e a r l y i n d i c a t e d , with 0. cansus forming a d i s t i n c t i v e subgroup. The high l o a d i n g on the BRNBRD (see F i g u r e 21b) suggests a p o s s i b l e s i z e d i f f e r e n c e between 0. thibetana and 0. cansus, at l e a s t with 94 F igure 20. R e l a t i v e p o s i t i o n s of the specimens of 0 . f o r r e s t i , 0 . o sgoodi , 0 . cansus, 0 . r o y l e i , 0 . p u s i l l a and 0 . th ibe tana in a p r o j e c t i o n on the f i r s t three p r i n c i p a l components. The f i r s t a x i s represents 71%, the second 10% and the t h i r d ( v e r t i c a l ) represents 4% of the t o t a l v a r i a t i o n . Dashed l i n e s separate O. r o y l e i and 0 . p u s i l l a from the remaining t a x a . Open c i r c l e Open square Open t r i a n g l e Closed c i r c l e Closed square Halved box 0 . 2-0 . 0. 0-0 . th ibe tana cansus r o y l e i f o r r e s t i osgoodi p u s i l l a 96 F i g u r e 21. a) Histogram of the scores of specimens of 0. f o r r e s t i , 0. osgoodi, 0. cansus, 0. r o y l e i and 0. t h i b e t a n a on the s i n g l e c a n o n i c a l v a r i a t e . 0. r o y l e i and 0. th i b e t a n a formed the a p r i o r i groups. b) Inset i s the histogram of the c h a r a c t e r c o e f f i c i e n t s on the s i n g l e c a n o n i c a l v a r i a t e . Numbers a s s o c i a t e d with each bar correspond to the c h a r a c t e r r e f e r e n c e numbers of . Table I I . 98 respect to s k u l l width. The i n c l u s i o n of the three taxa, 0. f o r r e s t i , 0. osgoodi and 0. cansus, i n 0. t h i b e t a n a in another DFA, y i e l d e d a histogram that more s t r o n g l y separated 0. t h i b e t a n a from 0. r o y l e i (D 2 = 96.3 vs. D 2 = 62.7 i n the previous DFA) (Figure 22a). The d i s c r i m i n a n t f u n c t i o n s again c l a s s i f i e d a l l i n d i v i d u a l s i n t o t h e i r a p p r o p r i a t e groups with p o s t e r i o r p r o b a b i l i t i e s of 1.000. O. cansus no longer formed a d i s t i n c t i v e subgroup in t h i s a n a l y s i s , but was intermixed with specimens of 0. t h i b e t a n a , 0. f o r r e s t i and 0. osgoodi. In h i s o r i g i n a l d e s c r i p t i o n of 0. f o r r e s t i , Thomas (1923) noted i t s morphological and h a b i t a t s i m i l a r i t y to 0. t h i b e t a n a . He d i s t i n g u i s h e d 0. f o r r e s t i from 0. t h i b e t a n a mainly on the b a s i s of s i z e . T h i s s i z e d i f f e r e n c e was a l s o v o i c e d by A l l e n (1938) who noted f u r t h e r d i s t i n c t i o n s i n the pelage. Argiropulo(1948) a l s o commented on d i f f e r e n c e s i n the pelages and reconfirmed the s i m i l a r i t y of 0. f o r r e s t i to 0. t h i b e t a n a . The i n c l u s i o n of 0. f o r r e s t i i n s e v e r a l s p e c i e s by v a r i o u s authors has g e n e r a l l y not been based on q u a n t i t a t i v e data. For example, Corbet (1978:68) a s s i g n s 0. f o r r e s t i to 0. r o y l e i only on the o b s e r v a t i o n t h a t , 'Examination of the type s t r o n g l y suggests that i t as a small race of 0. r o y l e i . My access to a very small sample of 0. f o r r e s t i a l s o p r e c l u d e d a s u b s t a n t i v e r e s o l u t i o n of the s t a t u s of t h i s taxon, although i t s a f f i n i t i e s to 0. t h i b e t a n a are marked. The s i z e d i f f e r e n c e between these two taxa i s r e f l e c t e d in both the PCA and the DFA, but due to the smallness of the sample, i t i s d i f f i c u l t to say i f t h i s i s t y p i c a l . Assignment of 0. f o r r e s t i to e i t h e r 0. r o y l e i or gure 22. a) Histogram of the scores of specimens of 0 . f o r r e s t i , 0 . o sgoodi , 0 . cansus , 0 . r o y l e i and 0 . th ibe tana on the s i n g l e c a n o n i c a l v a r i a t e . 0 . r o y l e i and 0 . th ibe tana (wi th 0 . f o r r e s t i , 0 . osgoodi and 0 . cansus inc luded) formed the a p r i o r i groups. b) Inset i s the histogram of the charac ter c o e f f i c i e n t s on the s i n g l e c a n o n i c a l v a r i a t e . Numbers a s s o c i a t e d w i t h each bar correspond to the charac te r reference numbers of Table I I . 100 101 0. p u s i l l a , however, i s q u e s t i o n a b l e and, unless a d d i t i o n a l i n f o r m a t i o n to the c o n t r a r y becomes a v a i l a b l e , my r e s u l t s suggest that t h i s taxon i s more a p p r o p r i a t e l y regarded as a subspecies of 0. t h i b e t a n a . I, t h e r e f o r e , i n c l u d e d the specimen of 0. f o r r e s t i in 0. thibetana f o r a l l subsequent a n a l y s i s . The taxonomic assignment of 0. osgoodi i s l e s s d i f f i c u l t than that of 0. f o r r e s t i . Most authors c o n s i d e r 0. osgoodi a subspecies of 0. t h i b e t a n a , although Ellerman and Morrison-S c o t t ( l 9 5 l ) p r o v i s i o n a l l y a s s i g n t h i s taxon to 0. p u s i l l a . The s i m i l a r i t y between 0. osgoodi and 0. t h i b e t a n a i s c l e a r from my r e s u l t s f o r both the PCA and the DFA, and so I i n c l u d e d the specimens of 0. osgoodi w i t h i n the data set f o r 0. t h i b e t a n a . Feng and Kao (1974) t r e a t 0. cansus as a separate s p e c i e s d i s t i n c t from'0. t h i b e t a n a (see H i s t o r i c a l Review) and suggest that these taxa may be d i s t i n g u i s h e d by d i f f e r e n c e s in the zygomatic width of the s k u l l s . My r e s u l t s p a r t i a l l y support t h i s s uggestion. The DFA performed on the data sets f o r 0. thibetana ( i n c l u d i n g 0. f o r r e s t i , 0. osgoodi and 0. cansus) and 0. r o y l e i , had the highest c o e f f i c i e n t weighting on ZYGWID (Figure 22b), but the poorest s e p a r a t i o n of 0. cansus. 0. cansus, on the other hand, was e f f e c t i v e l y separated from 0. t h i b e t a n a , 0. f o r r e s t i and 0. osgoodi when i t was entered i n t o the DFA as an unknown (Figure 21a). The c o e f f i c i e n t s f o r that a n a l y s i s (Figure 21b) i n d i c a t e that the b r a i n c a s e breadth c o u l d prove to be more u s e f u l in d i s t i n g u i s h i n g 0. cansus from 0. t h i b e t a n a . A f t e r examining an e x t e n s i v e s e r i e s of 0. cansus in the Peking N a t u r a l H i s t o r y Museum in the Peoples 'Republic of China, Dr. R.M. M i t c h e l l (pers.comm.) viewed 0. cansus as p o s s i b l y only a race 1 02 of 0.. t h i b e t a n a and noted that specimens l a b e l l e d as a d u l t 0. cansus were probably j u v e n i l e 0. t h i b e t a n a . . I n a d d i t i o n , he f e l t that the minor d i f f e r e n c e s between h a b i t a t s and pelages of these two taxa d i d not warrant a s p e c i e s d e s i g n a t i o n f o r 0. cansus. My r e s u l t s are l e s s c l e a r . 0. cansus forms a d i s t i n c t i v e subgroup in both the PCA's and i n one of the DFA's (see F i g u r e 21) while i n t e r m i x i n g i n the other DFA (see Fig u r e 22). I decided to i n c l u d e 0. cansus as a p r o v i s i o n a l subspecies of 0. t h i b e t a n a for a l l subsequent analyses a f t e r t a k i n g i n t o c o n s i d e r a t i o n M i t c h e l l ' s e x t e n s i v e experience and my own c o n f l i c t i n g r e s u l t s . More work and a d d i t i o n a l samples w i l l be necessary, however, before t h i s p r o v i s i o n a l assignment may e v e n t u a l l y be confirmed. 103 SYSTEMATIC DESCRIPTIONS I n t r o d u c t i o n Thi s s e c t i o n provides the systematic treatment for each species I recognize as a r e s u l t of t h i s s tudy. W i t h i n the l i s t of synonomies, the name of a subsequent user of a s c i e n t i f i c name i s separated from i t by a c o l o n , f o l l o w i n g A r t i c l e 5 1 ( i ) of the ' I n t e r n a t i o n a l Code of Z o o l o g i c a l Nomenclature' (as g iven i n M a y r , l 9 6 9 ) . D i s t r i b u t i o n a l ranges are based on a c o m p i l a t i o n of the l i t e r a t u r e and l o c a l i t y in format ion from the specimens used in t h i s s tudy . In the s e c t i o n under 'Genera l d e s c r i p t i o n s ' , in fo rmat ion on summer and winter pelages has been d e r i v e d from the works g e n e r a l l y l i s t e d a f t e r the d e s c r i p t i o n and i s augmented, whereever p o s s i b l e , by my own notes . D e s c r i p t i o n s of s k u l l s are my own, but a l l were compared wi th the l i t e r a t u r e whenever f e a s i b l e . Hab i t a t d e s c r i p t i o n s are based on pub l i shed l i t e r a t u r e , e s p e c i a l l y that of S m i t h(1 9 81 a ) . The taxonomic notes are s e l f - e x p l a n a t o r y . 1 04 D e s c r i p t i o n s Genus Ochotona L ink Ochotona L ink ,1795 :74 (ho lo type : Ochotona minor L ink = Lepus ogotona P a l l a s = Lepus dauuricus P a l l a s ) P i k a Lacepede, 1-799:9 ( h o l o t y p e : P i k a a l p i n u s = Lepus a l p i n u s P a l l a s ) Lagomys C u v i e r , 1 8 0 0 : t a b l . I . (ho lo type : Lepus a l p i n u s ) Ogotoma Gray,1867:220 (ho lo type : Oqotoma P a l l a s i i = Lagomys ogotoma C u v i e r , Lepus ogotoma P a l l a s ) Abra Gray and Gray,1863:11 ( h o l o t y p e : Lagomys curzoniae Hodgson) [preoccupied by Abra Lamarck,1818 ( M o l l u s c a ) ] Abrana Strand,1928:59 (no type) Conothoa Lyon,1904:438 ( h o l o t y p e : Ochotona r o y l i i O g i l b y ) T ibe to l agus A r g i r o p u l o , 1 9 4 8 : 1 2 8 (ho lo type : 0 . kos lowi Buechner) 1 05 Ochotona a l p i n a ( P a l l a s ) ( A l t a i or A l p i n e pika) Ochotona a l p i n a a l p i n a ( P a l l a s ) Lepus a l p i n u s Pallas,1773:701 (type l o c a l i t y : T i g e r e t s k i Range, A l t a i Mts., S i b e r i a , USSR) Lagomys a t e r Eversmann,1842:3 Ochotona a l p i n a hyperborea ( P a l l a s ) Lepus hyperboreus Pallas,1811:152 Lagomys hyperboreus var normalis Schrenk,1858:148 Lagomys l i t o r a l i s Peters,1882:95 Ochotona kolymensis Allen,1903:154 Ochotona a l p i n a f erruginea- (Schrenk) Lagomys hyperboreus var f e r r u g i n e a Schrenk,1858:148 Ochotona hyperborea turuchanensis Naumov,1934:78 Ochotona a l p i n a c i n e r e o f u s c a (Schrenk) Lagomys hyperboreus var c i n e r e o - f u s c a Schrenk,1858:148 Ochotona a l p i n a scorodumovi Skalon,1935:85 Ochotona a l p i n a c i n e r e o f l a v a (Schrenk) Lagomys hyperborea var c i n e r e o - f l a v a Schrenk,1858:148 Ochotona a l p i n a mantchurica Thomas Ochotona hyperborea mantchur i c a Thomas,1909:504 Ochotona a l p i n a n i t i d a H o l l i s t e r Ochotona n i t i d a H o l l i s t e r , 1 9 1 2 a : 4 Ochotona a l p i n a coreana A l l e n and Andrews Ochotona coreanus A l l e n and Andrews,1913:409 Ochotona a l p i n a s v a t o s h i Turov Ochotona s v a t o s h i Turov , 1 924 : 1.1 0 Ochotona a l p i n a u r a l e n s i s F l e r o v Ochotona hyperborea u r a l e n s i s Flerov,1927 :139 Ochotona a l p i n a argentata Howell Ochotona a l p i n a argentata Howell,1928:116 106 Ochotona a l p i n a yesoensis K i s h i d a Ochotona yesoensi s K i s h i d a , 1 9 3 0 : 4 6 [= yezoens i s ] (El lerman and Mor r i son-Scot t , 1 95 1 : sen io.r synonym of convexa K i s h i d a , 1 930; i n i i k a i i K i s h i d a , 1 930 ; k i n u t a K i s h i d a , 1 930; kobayashi i K i s h i d a , 1 9 3 0 ; ornata K i s h i d a , 1 9 3 0 ; rufa K i s h i d a , 1 9 3 0 ; sadaki i K i s h i d a , 1 9 3 0 ; a l l nom. nud. ) Ochotona ornata K i sh ida ,1930 :372 Ochotona a l p i n a yoshi k u r a i K i s h i d a Ochotona y o s h i k u r a i K i sh ida ,1932 :150 ( = yochi k u r a i , v o s h i k u r a i ) Ochotona a l p i n a chanqica Ognev Ochotona a l p i n a chanqica Ognev,1940:33 D i s t r i b u t i o n : Ura l , Sayan and A l t a i Mountains, . Mongolia and the USSR; Northern Kansu, Northern N i n g s i a and nor th-eas t C h i n a ; ?Korea; S a k h a l i n ; Hokkaido, Japan. Range map i s g iven i n F igure 23. General d e s c r i p t i o n : O. a l p i n a v a r i e s g r e a t l y in s i z e and c o l o r . In summer the pelage , depending on subspec ies , ranges from rus t to brown or l i g h t brown ru fous , In w i n t e r , the c o l o r s vary from a dark rust to brown or gray . ( A r g i r o p u l o , 1 9 4 8 ; M i t c h e l l , 1 9 8 0 ) The s i z e of the s k u l l i s h i g h l y v a r i a b l e . The i n t e r o r b i t a l reg ion i s f l a t t e n e d and broad. No fenestrae are present in the f r o n t a l and the s k u l l p r o f i l e i s g e n e r a l l y f l a t . U n i v a r i a t e s t a t i s t i c s for the s k u l l are given in Table V I I . The s k u l l i s dep ic ted in P l a t e I . H a b i t a t : • O. a l p i n a i s a r o c k - d w e l l i n g species (Kawamichi,1969,1971b; Naumov,!974; Zevegmid,1975), but i t 1 07 Figure 23. Approximate d i s t r i b u t i o n of 0 . a l p i n a . Closed c i r c l e i n d i c a t e s type l o c a l i t y . 108 1 Character Mean Standard . devlatIon CoeffIclent a' v a r l a t I o n i Minimum MaxImum Basal length 34 64 3 65 10 55% 28 35 43.20 Greatest length 40 84 4 19 10 27% 34 50 52.20 Zygomatic width 20 13 1 54 7 67% 18 15 24 . 20 Bra Incase breadth 16 31 1 09 6 67% 14 20 19.60 Least Inter o r b i t a l width 4 76 0 50 10 39% 3 00 5.95 Diastema 9 32 1 52 16 36% 6 95 15.50 Maxill a r y tooth row length 7 51 0 7 1 9 48% 6 50 9 . 25 Pal a t a l width 14 94 1 82 12 20% 1 1 75 21 .05 Pal a t a l length 6 92 0 65 9 4 4% 5 80 9.30 Nasal length 12 30 1 58 12 8 7% 7 50 15.60 Bui la length 10 56 0 97 9 19% 8 60 13.80 Bui l a width 9 27 0 86 9 33% 7 60 1 1 . 40 11 width 0 99 0 14 14 00% 0 70 1 . 35 11 length 1 64 0 19 1 1 89% 1 30 2. 15 12 width 0 55 0 12 22 15% 0 30 0.90 P2 length 0 66 0 1 1 17 32% 0 50 1 .00 P2 width 1 29 0 19 14 42% 0 95 1 .95 P3 length 1 09 0 14 12 79% 0 85 1 . 40 P3 width 2 26 0 26 1 1 30% 1 85 3.00 P4 length 1 34 0 13 9 65% 1 10 1 .65 P4 width 2 37 0 25 10 4 8% 1 95 3. 10 HI length 1 26 0 13 10 4 2% 1 05 1 .60 Ml width 2 29 0 21 9 01% 1 95 2.85 M2 length 1 31 0 13 10 16% 1 10 1 .60 M2 width 2 1 1 0 23 10 78% 1 70 2.95 Mandible length 26 IB 2 80 10 70% 22 65 34 .60 Mandible depth 1 2 67 0 43 16 09% 2 10 4.20 Mandible depth 2 5 17 0 64 12 4 2% 4 30 7 . 10 Mandible depth 3 4 55 0 58 12 66% 3 70 6 40 Mandible width 2 58 0 27 10 60% 2 00 3.50 Mandible tooth row length 7 18 0 77 10 78% 4 60 8 .90 Mandible diastema 5 60 0 87 15 59% 4 35 8 . 20 MPS length 1 32 0 16 12 36% 1 00 1 . 70 MP3 width 1 28 0 16 12 4 7% 1 OO 1 .65 MP4 length 1 45 0 14 9 98% 1 20 1 . 75 MP4 width 1 60 0 17 10 6 1% 1 25 2 .05 MM 1 length 1 55 0 17 1 I 03% 1 20 2 .00 MM 1 width 1 59 0 17 10 73% 1 20 2 .00 MM2 length 1 54 0 16 10 3 1% 1 25 1 95 MM2 width 1 52 0 16 10 6 3% 1 20 1 .90 MM3 length 0 64 0 10 16 4 1% 0 40 0.90 MM3 width 1 1 1 0 13 1 1 52% 0 90 1 . 55 Table VII. Univariate s t a t i s t i c s for the measurements of 0. a 1p1na. (ave. n * 29) 1 10 i s a l s o known to l i v e i n moss covered scree (Ognev,1940; Khmelevskaya,1961; Naumov,1974) and i n burrows under t r e e roots (Louskashkin,1970; Naumov,1974). Taxonomic notes: Ellerman and Morrison-Scott(1951) and Ognev(l940) t r e a t 0. a l p i n a and 0. hyperborea as separate s p e c i e s , while A r g i r o p u l o ( 1 9 4 8 ) , Gureev(l964) and Corbet(!978) c o n s i d e r them c o n s p e c i f i c . A r g i r o p u l o ( 1 9 4 8 ) , Gureev(l964) and C o r b e t d 978) a l s o i n c l u d e the North American forms, 0. pr inceps and 0. c o l l a r i s, in 0. a l p i n a . Previous r e s u l t s (see Weston,1981), i n d i c a t e that 0. c o l l a r i s and O. pr inceps. are s t a t i s t i c a l l y d i s t i n c t from each other and 0. a l p i n a . 111 Ochotona c o l l a r i s (Nelson) ( C o l l a r e d p i ka) Lagomys c o l l a r i s Nelson,1863:117 (type l o c a l i t y : Near head of Tanana R i v e r , Alaska) [Ochotona] c o l l a r i s : Trouessart,1897:648 D i s t r i b u t i o n : A laska, the Yukon T e r r i t o r y , the Northwest T e r r i t o r i e s and northern B r i t i s h Columbia. Range map i s given in F i g u r e 24. General d e s c r i p t i o n : The pelage of 0. c o l l a r i s i s a dark g r a y i s h c o l o r d o r s a l l y becoming grayer on the s i d e s . G r a y i s h patches on the nape and shoulders forms an i n d i s t i n c t c o l l a r , and the underparts are creamy white. Summer and winter pelages of t h i s northern s p e c i e s are apparently the same (Cowan and Guiguet,1965; Youngman,1975; Ha l l , 1 9 8 1 ) . The s k u l l i s of medium to l a r g e s i z e and r e l a t i v e l y broad. The i n t e r o r b i t a l region i s broad and f l a t , and there are no f e n e s t r a e in the f r o n t a l s . The s k u l l i s s i m i l a r to that of 0. pr inceps, but d i f f e r s mainly in s i z e of the t e e t h . U n i v a r i a t e s t a t i s t i c s f o r the s k u l l are given in Table V I I I . The s k u l l i s d e p i c t e d i n P l a t e I I . H a b i t a t : The c o l l a r e d p i k a i s c o n f i n e d to t a l u s or to p i l e s of broken rock (Smith,1981 a ) , although a specimen has been c o l l e c t e d from the shore of Cultus Bay, Kluane Lake (Yukon), which had a burrow j u s t below water l e v e l under gure 24 . . Approximate d i s t r i b u t i o n of 0 . c o l l a r i s . Closed c i r c l e i n d i c a t e s type l o c a l i t y . 1 1 3 Character Mean Standard dev1 a tIon Coef fIc1ent of var1 a tIon Mini mum MaxImum Basal length 36 63 1 99 5 44% 30 00 39.40 Greatest length 43 06 ? 15 5 00% 36 00 45.60 Zygomatic width 2 1 68 0 R2 3 BOX 19 15 23 . 20 Bra Incase breadth 17 27 0 54 3 14% 15 70 1R . 20 Least I n t e r o r b l t a l width 5 60 0 30 5 27% 4 80 6.35 Diastema 10 28 0 75 7 34V. 7 60 1 1 .60 Maxill a r y tooth row length 8 16 0 43 5 30V. 7 00 9.05 Pal a t a l width 16 97 1 10 6 497. 13 50 19.00 Pal a t a l length 7 53 0 37 4 90V. 6 35 8.20 Nasal length 12 56 0 99 7 86% 9 25 13 . 45 Bu11 a 1ength 1 1 54 0 66 5 76% 9 50 13.00 Bui la width 10 09 0 55 5 4 1% 8 50 1 1 . 25 11 width 1 79 0 12 6 55% 1 50 2.00 11 length I 10 0 12 10 62% 0 80 1 . 50 12 width 0 62 0 06 10 23% 0 40 0. 80 P2 length 0 72 0 07 9 90% 0 55 0.90 P2 width 1 22 0 15 1 1 91% 0 90 1 .55 P3 length 1 15 0 13 1 1 54% 0 85 1 . 55 P3 width 2 29 0 15 6 76% 1 90 2 .60 P4 length 1 45 0 12 8 56% 1 10 I . 70 P4 width 2 40 0 15 6 39% 2 .00 2 .65 Ml length 1 43 0 09 6 28% 1 25 1 .60 Ml width 2 39 0 13 5 37% 2 15 2 . 70 M2 length 1 50 0 10 6 63% 1 20 1 . 80 M2 width 2 19 0 13 5 78% 1 95 2.40 Mandible length 27 37 1 36 4 97% 23 20 29 . 80 Mandible depth 1 2 7 1 0 22 8 08% 2 10 3 . 10 Mandible depth 2 5 55 0 36 6 49% 4 60 6 . 10 Mandible depth 3 4 57 0 37 8 01% 3 40 5. 10 Mandible width 2 85 0 27 9 34% 2 05 3 40 Mandible tootri row length 7 78 0 30 3 82% 7 05 8 . 40 Mandible diastema 6 09 0 48 7 80% 4 75 7.05 MP3 length 1 32 0 07 5 17% 1 20 1 50 MPS width 1 38 0 I 1 7 68% 1 20 1 .60 MP4 length 1 68 0 1 1 6 4 3% 1 40 1 . 95 MP4 width 1 70 0 12 7 15% 1 40 1 .95 MM 1 length 1 83 0 1 1 6 12% 1 50 2 .05 MM 1 width 1 77 0 1 1 6 22% 1 50 2 .00 MM2 length 1 83 0 12 6 3 1% 1 50 2 05 MM2 width 1 69 0 10 5 85% 1 45 1 . 90 MM3 length 0 76 0 19 24 53% 0 60 1 .80 MM3 width 1 15 0 08 6 99% 0 80 1 . 30 Table v i l l . Univariate s t a t i s t i c s for the measurements of 0. co11ar 1 s. (ave. n = 48) 1 15 150 mm willows i n grass and h o r s e t a i l (H.Tinker as c i t e d i n Youngman,1975). Taxonomic notes: Broadbrooks(1965) and Youngman(1975) co n s i d e r 0. p r i n c e p s and 0. c o l l a r i s to be c o n s p e c i f i c . Gureev(l964) and Corbet(l978) i n c l u d e 0. c o l l a r i s (and 0. pr inceps) i n 0. a l p i n a . Previous s t a t i s t i c a l e v a l u a t i o n of these taxa (see Weston,1981) s t r o n g l y suggests that 0. c o l l a r i s , O. p r i n c e p s and 0. a l p i n a are s p e c i f i c a l l y d i s t i n c t . 1 16 Ochotona curzon iae (Hodgson) ( B l a c k - l i p p e d p ika ) Ochotona curzoniae curzon iae (Hodgson) Lagomys curzoniae Hodgson,1858:207 (type l o c a l i t y : Chumbi V a l l e y in extreme southern T i b e t ) Ochotona curzoniae melanostoma (Buechner) Lagomys melanostoma Buechner ,1890 :p i .22 f i g s . 2 - 3 Ochotona curzoniae seiana (Thomas) Ochotona curzon iae se iana Thomas,1922:189 D i s t r i b u t i o n : East I r a n , east Nepa l ; S i k k i m , I n d i a ; east T ibe t and east T s i n g h a i , C h i n a . Range map i s g iven in F igure 25. Genera l d e s c r i p t i o n : Th i s spec ies i s sandy-brown d o r s a l l y and n e a r l y white v e n t r a l l y . Dor sa l h a i r s are g e n e r a l l y b l a c k -t ipped and a rus t patch occurs behind each ea r . The so le s of the feet are covered w i t h long h a i r s which conceal the toe pads. Some subspec ies , such as melanostoma and se i ana , have a black muzzle and c h i n (Guenther,1875; Bonhote,1904b; Thomas,1922; A r g i r o p u l o , 1 9 4 8 ; M i t c h e l l , 1 9 8 0 ) . The s k u l l i s of medium s i z e and sharp ly e leva ted in the f r o n t a l a rea . The i n t e r o r b i t a l reg ion i s moderately narrow and no fenestrae are present in the f r o n t a l s . The tympanic b u l l a e are of moderate s i z e . U n i v a r i a t e s t a t i s t i c s for the s k u l l are g iven in Table IX . The s k u l l i s dep i c ted in F igure 26. 1 1 7 Figure 25. Approximate d i s t r i b u t i o n of 0 . c u r z o n i a e . Closed c i r c l e i n d i c a t e s type l o c a l i t y . 118 Character Mean Standard dev1 at 1 on Coef fIclent of varlatIon Minimum Max 1 mum Basal length 35 19 1 44 4 09*/ 33 29 37.90 Greatest length 4 1 94 1 49 3 56V. 39 90 44 . 50 Zygomatic width 20 99 0 78 3 72% 20 00 22 .50 Bra Incase breadth 15 54 0 43 2 78% 15 00 16 . 24 Least Interorbital width 3 78 0 35 9 20% 3 35 4 . 30 Diastema 9 23 0 56 6 08% 8 40 10.60. Maxillary tooth row length 8 10 0 56 6 88% 6 50 8 65 Pa l a t a l width 14 74 0 60 4 09% 13 70 15.60 Pa l a t a l length 7 01 0 22 3 12% 6 75 7 .40 Nasal length 13 78 0 56 4 07% 12 60 14 .60 Bui la length 10 74 0 64 5 95% 9 90 1 1 .80 Bui la width 8 9t 0 60 6 78% 8 00 10.20 11 width 0 96 0 09 9 17% 0 85 1.15 11 length 1 87 0 07 3 51% 1 80 2 .00 12 width 0 55 0 27 48 88% 0 40 1 . 20 P2 length 0 72 0 07 9 06% 0 65 0.90 P2 width 1 48 0 1 1 7 55% 1 30 1 . 70 P3 length 1 25 0 1 1 8 4 6% 1 15 1 .50 P3 width 2 57 0 18 6 85% 2 25 2 . 90 P4 length 1 43 0 09 6 37% 1 30 1 .60 P4 width 2 74 0 17 6 24% 2 55 3 . 20 Ml length 1 40 0 06 4 17% 1 30 1 . 50 Ml width 2 56 0 13 4 92% 2 40 2 . 70 M2 length 1 55 0 06 3 77% 1 45 1 .60 M2 width 2 37 0 2 1 8 79% 2 OO 2 . 70 Mandible length 27 26 1 07 3 92% 25 80 29.50 Mandible depth 1 2 66 0 18 6 70% 2 25 2 .85 Mandible depth 2 6 10 0 22 3 68% 5 80 6.40 Mandible depth 3 5 25 0 33 6 28% 4 70 5.80 Mandible width 2 64 0 2 1 7 89% 2 20 2 .90 Mandible tooth row length 7 97 0 21 2 59% 7 65 8 . 30 Mandible diastema 5 36 0 31 5 78% 4 90 5.80 MPS length 1 54 0 08 5 33% 1 40 1 .70 MP3 width 1 32 0 08 6 33% 1 25 1 .50 MP4 length 1 65 0 10 6 20% 1 45 1 .85 MP4 width 1 72 0 08 4 53% 1 60 1 .90 MM 1 length 1 67 0 10 6 17% 1 50 1 .85 MM1 width 1 76 0 06 3 40% 1 70 1 .90 MM2 length 1 67 0 10 5 7 7% 1 50 1 . 85 MM2 width 1 70 o 07 3 85% 1 60 1 . 80 MM3 length 0 65 0 06 9 60% 0 60 0.75 MMS width 1 25 0 09 7 55% 1 15 1 .50 Table IX. Univariate s t a t i s t i c s for the measurements of 0. curzoniae. (ave. n » 12) 1 20 F igure 26. Diagram of the s k u l l of 0. c u r z o n i a e . (Drawn from a photograph of ZM 50195 Tcranium) and BM. 77-3438 (mandible)) 121 * 1 22 H a b i t a t : M i t c h e l l ( 1 9 8 0 ) notes that 0 . curzon iae i n h a b i t s h igh a l p i n e desert regions where i t commonly burrows i n the soft ground on dry f l o o d p l a i n s . He fur ther s t a te s that i t i s seldom found below 4500m. Taxonomic notes : Thi s taxon i s i n c l u d e d i n 0 . daur i c a by E l lerman and M o r r i s o n - S c o t t ( 1 9 5 1 ) , a l though recognized as a d i s t i n c t species by A r g i r o p u l o ( 1 9 4 8 ) , Gureev(l964) and Corbet (1978) . Bonhote(1904b) found few d i s t i n g u i s h i n g features between melanostoma and O. curzon iae except that the former i s s l i g h t l y l a r g e r than the l a t t e r . E l lerman and Morr i son-Scot t (1951) a s s ign the subspecies seiana to O. d a u r i c a . Thomas(1922:189), however, i n h i s o r i g i n a l d e s c r i p t i o n of t h i s subspec ies , s t a t e s that ' the genera l c h a r a c t e r i s t i c s [are] very l i k e those of true c u r z o n i a e ' . Corbet ( l978) a l s o as s igns se iana to 0. curzoniae f o l l o w i n g an examination of the h o l o t y p e . 1 23 Ochotona daur i c a ( P a l l a s ) (Daurian pika) Ochotona daur i c a d a u r i c a ( P a l l a s ) Lepus dauuricus Pallas,1776:692 (type l o c a l i t y : K u l u s u t a i , Onon R i v e r , eastern S i b e r i a , USSR) Lepus ogotona Pallas,1778:p!2, p i . 4 a , f i g . 1 6 Lagomys d a u r i c u s : Buechner,1890:Emendation Ochotona daur i c a b e d f o r d i Thomas Ochotona b e d f o r d i Thomas,1908a:45 (Thomas,1908b:981) Ochotona daur i c a a l t a i n a Thomas Ochotona dauurica a l t a i n a Thomas,1911 a:761 Ochotona daur i c a annectens M i l l e r Ochotona annectens Miller,1911:54 Ochotona daur i c a mursaevi Bannikov Ochotona daur i c a mursaevi Bannikov,1951:56 D i s t r i b u t i o n : Steppes of C e n t r a l A s i a from the A l t a i Mountains to Shensi, China, and to south S i b e r i a east of Lake B a i k a l . Range map i s given i n Figure 27. General d e s c r i p t i o n : In summer the d o r s a l c o l o r a t i o n of 0. daur i c a ranges from p a l e , y e l l o w i s h , straw-gray to d u l l e r , d e e p e r , straw-gray. The f l a n k s are l i g h t with a y e l l o w i s h t i n g e and the b e l l y i s pure white. Do r s a l h a i r s are t i p p e d with gray. In winter, the d o r s a l c o l o r i s p a l e r and grayer, but s t i l l with a y e l l o w i s h t i n g e g i v i n g an o v e r a l l appearance of pale sandy-buff. In c o n t r a s t to. 0. curzon i a e , there i s no r u s t - c o l o r e d patch behind each ear. (Bonhote,1904b; Thomas,1911 a; Allen,1938; Ognev,1940; 1 24 Figure 27. Approximate d i s t r i b u t i o n of 0 . daur i c a . Closed c i r c l e i n d i c a t e s type l o c a l i t y . 1 26 A r g i r o p u l o , 1 9 4 8 ; Feng,1973; M i t c h e l l , 1 9 8 0 ) The s k u l l i s cf medium s i z e and i s s l i g h t l y e l eva ted i n the f r o n t a l a rea . The i n t e r o r b i t a l reg ion i s r e l a t i v e l y narrow, and in o l d specimens there are two weakly marked converging c r e s t s i n the c e n t r a l part of the i n t e r o r b i t a l r e g i o n . No f r o n t a l . fenestrae are present and the tympanic b u l l a e are l a r g e . U n i v a r i a t e s t a t i s t i c s for the s k u l l are g iven i n Table X. The s k u l l i s dep ic ted i n P l a t e I I I . H a b i t a t : 0 . daur i ca i s found in open c o u n t r y , h igh p l a t e a u s , deser t s and steppes ( A l l e n , 1 9 3 8 ; Loukashkin ,1940 ; Ognev,1940; Zevegmid,1975; M i t c h e l l , 1 9 8 0 ; Smith,1981 a ) . Ognev(l940) quotes A . N . Formozov when n o t i n g that t h i s p i k a sometimes s e t t l e s i n damp or low p laces where the burrows become complete ly f looded dur ing r i s e s in the water table ' . O. daur i ca g e n e r a l l y avoids rocky h a b i t a t s ( M i t c h e l l , 1 9 8 0 ) and i s the c h a r a c t e r i s t i c p ika of the Gobi d e s e r t . In areas where i t over laps w i t h 0. p a l l a s i , 0 . daur i c a i s found i n the long s t i f f grasses of the v a l l e y bottoms whi l e 0 . p a l l a s i remains i n the s l i d e rock on the s ides of h i l l s or canyons ( A l l e n , 1 9 3 8 ) . Taxonomic . n o t e s : E l lerman and Morr i son-Scot t (1951) inc lude 0 . curzoniae i n 0 . daur i ca a long w i t h the forms melanostoma and se i a n a . See 'Taxonomic notes ' for 0 . c u r z o n i a e . Character Mean Standard devlatIon Coef f I c l e n t of varlatIon Minimum Max 1 mum Basal length 34 .79 2 44 7 .01% 29 .50 39 80 Greatest length 40 97 2 52 6 . 14% 34 .90 45.75 Zygomatic width 20 47 0 80 3 89% IB .65 22 90 Bra Incase breadth 15 75 0 55 3 49% 14 . 45 17 .00 Least Inter o r b i t a l width 3 70 0 42 1 1 29% 2 .70 4 .55 01astema 8 96 0 66 7 34% 7 .60 10 40 Maxill a r y tooth row length 7 91 0 59 7 45% 6 60 9 . 55 Palatal width 14 85 1 20 8 08% 1 1 85 16.50 Palatal length 6 83 0 4 1 6 06% 5 80 7 75 Nasal length 13 78 1 19 a 6 2% 1 1 45 16 OO Bui la length 1 1 34 0 98 8 64% 8 80 13.60 Bui la width 9 62 0 5 1 5 33% 8 50 10. 70 I 1 width 1 03 0 15 14 80% 0 70 1 . 30 11 length 1 68 0 17 10 15% 1 10 1 .90 12 width 0 58 0 23 39 59% 0 20 1 .05 P2 length 0 7 1 0 13 17 91% 0 50 1 .00 P2 width 1 36 0 16 1 1 76% 1 05 . 1 65 P3 length 1 IB 0 13 1 1 07% 0 B5 1 . 45 P3 width 2 46 0 23 9 4 7% 2 00 2 .95 P4 length 1 4 1 0 14 9 99% 1 05 1 .70 P4 width 2 63 0 IB 6 95% 2 20 2 . 95 Ml length 1 4 1 0 13 9 04% 1 10 1 .65 Ml width 2 53 0 2 1 8 39% 2 10 3.25 M2 length 1 49 0 1 1 7 37% 1 25 1 . 70 M2 width 2 29 0 18 7 85% 1 90 2 . 70 Mandible length 26 7 1 1 50 5 62% 23 40 30. 25 Mandible depth 1 2 81 0 18 6 49% 2 40 3 . 30 Mandible depth 2 5 94 0 4 1 6 89% 5 10 6.95 Mandible depth 3 5 19 0 34 6 60% 4 40 5 . 85 Mandible width 2 56 0 20 7 70% 2 15 3.05 Mandible tooth row length 7 74 0 4 1 5 26% 6 70 8 . 30 Mandible diastema 5 32 0 4 1 7 7 2% 4 60 6 . 50 MP3 length 1 50 0 14 9 55% 1 20 1 . 70 MP3 width 1 32 0 12 9 4 3% 1 05 1 .55 MP4 length 1 61 0 14 8 69% 1 05 1 . 85 MP4 width I 69 o 12 7 26% 1 35 1 90 MM 1 length 1 68 0 17 10 34% 1 35 1 . 95 MM 1 width 1 77 0. 14 7 76% 1 40 1 .95 MM2 length 1 70 0. 16 9 4 1% 1 30 2 . 10 MM2 width 1 69 0. 12 7 12% 1 40 1 . 90 MM3 length 0 68 0. 13 19. 38% 0 40 0. 90 MM3 width 1 15 0 09 7 . 78% 0 90 t . 30 Table X. Univariate s t a t i s t i c s for the measurements of 0. daurIca. (ave. n = 38) 1 28 Ochotona e r y t h r o t i s (Buechner) (Chinese red pika) Ochotona e r y t h r o t i s e r y t h r o t i s (Buechner) Lagomys e r y t h r o t i s Buechner,1890:165; pi.21,24; f i g s . 1 - 6 (type l o c a l i t y : Burchan-Budda, Eastern T i b e t ) Ochotona e r y t h r o t i s g l o v e r i Thomas Ochotona g l o v e r i Thomas,1922:190 Ochotona e r y t h r o t i s bookei A l l e n Ochotona e r y t h r o t i s bookei Allen,1937:341 Ochotona e r y t h r o t i s v u l p i n a Howell Ochotona e r y t h r o t i s v u l p i n a Howell,1928:117 D i s t r i b u t i o n : East T s i n g h a i , South Kansu, north Szechwan, China. Range map i s given i n F i g u r e 28. General d e s c r i p t i o n : The summer pelage of 0. e r y t h r o t i s i s a b r i g h t , uniform r u s t y - r e d c o l o r on the dorsum. V e n t r a l l y , the chest i s r e d d i s h and the b e l l y white. In winter, 0. e r y t h r o t i s i s a drab gray both d o r s a l l y and v e n t r a l l y . The subspecies, g l o v e r i , i s very s i m i l i a r in c o l o r a t i o n but g e n e r a l l y darker (Allen,1938; Argiropulo,1948; M i t c h e l l , 1 9 8 0 ) . The s k u l l i s of medium le n g t h and i s s l i g h t l y arched. Fenestrae are present in the f r o n t a l s and the i n t e r o r b i t a l region i s broad. U n i v a r i a t e s t a t i s t i c s f o r the s k u l l are given i n Table XI. The s k u l l i s d e p i c t e d in P l a t e IV. 1 29 F igure 28. Approximate d i s t r i b u t i o n of 0 . e r y t h r o t i s . C losed c i r c l e i n d i c a t e s type l o c a l i t y . 130 , - , I _ J 2 > » 1 L 1 1 6 0' BO' 12 0' Character Mean Standard devla 11 on Coef fIc1ent of varlatIon Minimum Max 1 mum Basal length 37 .57 2 48 6 59% 32 70 40.30 Greatest length 43 . 94 4 83 10 98-/. 33 60 47 . 75 Zygomatic width 22 . 48 0 80 3 56% 2 1 10 23.40 Bralncase breadth 17.95 0 47 2 63"/. 17 20 18.50 Least I n t e r o r b i t a l width 5 .93 0 42 7 05% 5 10 6 . 40 Diastema 10. BS 0 89 8 2 3% 9 40 12.25 Maxill a r y tooth row length 8 . 30 0 58 6 94% 7 15 8.90 Palatal width 16 85 1 1 1 6 60% 15 30 19 . 10 Palatal length 7 62 0 37 4 87% 7 05 8 . 20 Nasal length 14 . 82 1 31 8 8 1% 12 40 16. 15 Bu11 a 1ength 10. 56 0 95 9 04% 9 20 12 .05 Bui la width 9. 34 0 7 1 7 60% 8 10 tO. 05 11 width 1 .01 0 12 1 1 73% 0 80 1 . 15 11 length 1 . 74 0 18 10 29% 1 40 1 .90 12 width 0.51 0 16 30 30% 0 30 0.80 P2 length 0.77 0 1 1 13 79% 0 60 0.90 P2 width 1 . 32 0 15 1 1 05% 1 00 1 . 50 P3 length 1 . 19 0 13 10 60% 1 00 1 . 40 P3 width 2.41 0 32 13 4 7% 1 75 2.75 P4 length 1 . 38 0 17 12 53% 1 10 1 .60 P4 width 2 .67 0 33 12 26% 2 05 3 .05 Ml length 1 .42 0 14 9 78% 1 30 1 .65 Ml width 2 60 0 21 8 09% 2 30 2 . 90 M2 length 1 .47 0 13 8 69% 1 30 1 .70 M2 width 2.41 0 18 7 65% 2 20 2 . 70 Mandible length 29.04 1 68 5 79% 25 80 31 . 30 Mandible depth 1 2.91 0 17 5 93% 2 60 3.20 Mandible depth 2 5.97 0 43 7 17% 5 30 6.45 Mandible depth 3 5 .05 0 33 6 50% 4 50 5.50 Mandible width 2.56 0 13 5 08% 2 40 2.70 Mandible tooth row length 8 . 19 0 46 5 62% 7 40 8 . 70 Mandible diastema 6 . 52 0 52 8 03% 5 60 7 . 40 MPS length 1 . 58 0 20 12 75% 1 20 1 .90 MP3 width 1 . 36 0 18 13 28% 1 00 1 .60 MP4 length 1 .57 0 23 14 55% 1 20 1 . 90 MP4 width 1 .69 0 18 10 94% 1 35 1 . 90 MM 1 length 1 73 0 08 4 35% 1 60 1 . 85 MM 1 width 1 . 79 0 13 7 2 1% 1 70 2 .05 MM2 length 1 . 73 0 12 6 7 2% 1 50 1 . 90 MM2 width 17 1 0 15 8 92% 1 55 2.00 MM3 length 0.62 0 12 18 64% 0 50 O. 90 MM3 width 1 .23 0 13 10 40% 1 10 1 . 50 Table XI. Univariate s t a t i s t i c s for the measurements of 0. erythrot13. (ave. n = B) 1 32 H a b i t a t : L i t t l e i s known about the h a b i t a t of t h i s s p e c i e s , but i t i s thought be a r o c k - d w e l l i n g form ( M i t c h e l l , 1980) . A l l e n ( l 9 3 8 ) notes that i n Kansu i t i s common and there i t i s c o n f i n e d almost e x c l u s i v e l y to the high a l p i n e zone from 10,000 f t (approx. 3,050 m) upward. Taxonomic notes: T h i s species i s i n c l u d e d i n O. r u t i l a by Ellerman and Morrison-Scott(1951), although they q u e s t i o n t h i s assignment. They a l s o t e n t a t i v e l y r e f e r the taxa b r o o k e i , g l o v e r i and v u l p i n a to O. r u t i l a , but t h i s i s no doubt due to t h e i r i n c l u s i o n of O. e r y t h r o t i s in 0. r u t i l a . 133 Ochotona kamensis A r g i r o p u l o (Kam pika) Ochotona kamensis Argiropulo,1948:126 (Not 1941, see 'Taxonomic notes"5-) (type l o c a l i t y : Kam, East T i b e t ) D i s t r i b u t i o n : Known only from Kam, west Szechwan and east T i b e t , China. P o s s i b l y a l s o found in the v i c i n i t y of the head waters of the Blue River i n the Mekong area. Range map i s given in F i g u r e 29. General d e s c r i p t i o n : The d o r s a l c o l o r a t i o n of 0. kamensis i n the summer i s brownish, while i n the winter i t i s of a l i g h t gray c o l o r . In both summer and winter pelages the ears are a b r i l l i a n t r ust c o l o r (Argiropulo,1948). The s k u l l i s l a r g e and arched. The nasals are r e l a t i v e l y long and the i n t e r o r b i t a l region i s moderately narrow. Fenestrae are present i n the f r o n t a l s and the tympanic b u l l a e are r e l a t i v e l y s m a l l . U n i v a r i a t e s t a t i s t i c s f o r the s k u l l are given in Table X I I . The s k u l l i s d e p i c t e d i n Figu r e 30. H a b i t a t : No info r m a t i o n i s a v a i l a b l e on the h a b i t a t of t h i s s p e c i e s . Taxonomic notes: The 1941 date c i t e d f o r 0. kamensis in A r g i r o p u l o ' s 1948 paper r e f e r s to an unpublished 1 34 Figure 29. Approximate d i s t r i b u t i o n of 0 . kamensis. Closed c i r c l e i n d i c a t e s type l o c a l i t y . Character Mean Standard dev1 a t1 on Coef f Ic I ent of var1 at 1 on Minimum MaxImum Basal length 39 05 2 64 6 75% 36 15 4 1 30 Greatest length 47 67 2 GO 5 46% 45 60 50 55 Zygomatic width 23 23 0 40 1 74% 22 80 23 60 Bralncase breadth 18 78 0 28 1 4 7% 18 50 19 05 Least I n t e r o r b i t a l width 5 27 0 12 2 19% 5 20 5 40 Diastema 1 1 55 1 00 8 65% 10 70 12 65 Maxillary tooth row length 8 85 0 40 4 49% 8 55 9 30 Pa l a t a l width 17 53 0 80 4 5 7% 16 70 18 30 Palatal length 7 SB 0 70 B B9% 7 20 8 60 Nasal length 16 14 2 16 13 39% 14 03 18 35 Bui la length 10 22 0 28 2 69% 9 90 10 40 Bui l a width 9 68 0 89 9 24% 8 65 10 20 11 width 1 07 0 08 7 16% 1 00 1 15 11 length 1 BO 0 15 8 33% I 65 I 95 12 width 0 62 0 OB 12 39% 0 55 0 70 P2 length 0 75 0 09 1 1 55% 0 70 0 85 P2 width 1 53 0 24 15 4 1% 1 35 1 80 P3 length I 22 O 03 2 37% 1 20 I 25 P3 width 2 62 0 70 7 7 2% 2 50 2 85 P4 length 1 45 0 15 10 34% 1 30 1 60 P4 width 2 70 0 20 7 4 1% 2 50 2 90 Ml length 1 45 0 13 9 12% 1 30 1 55 Ml width 2 70 0 05 1 85% 2 65 2 75 M2 length 1 58 0 06 3 65% 1 55 1 65 M2 width 2 53 0 12 4 56% 2 40 2 60 Mandible length 30 60 1 60 5 24% 29 65 32 45 Mandible depth 1 2 88 0 19 6 57% 2 75 3 10 Mandible depth 2 6 30 0 17 2 75% 6 20 6 50 Mandible depth 3 5 32 0 56 10 49% 4 90 5 95 Mandible width 2 75 0 17 6 30% 2 55 2 85 Mandible tooth row length 8 37 0 60 7 23% 7 90 9 05 Mandible diastema 7 07 0 38 5 36% 6 80 7 50 MPS length 1 78 0 10 5 84% 1 70 1 90 MP3 width 1 45 0 15 10 34% 1 30 1 60 MP4 length 1 55 0 18 1 I 63% 1 35 1 70 MP4 width I 75 0 09 4 95% 1 70 1 85 MM 1 length 1 68 0 13 7 48% 1 55 1 80 MM 1 width 1 87 0 06 3 09% 1 80 1 90 MM2 length 1 68 0 24 14 04% 1 50 1 95 MM2 width I 78 0 03 1 62% I 75 1 80 MM3 length 0 65 0 05 7 69% 0 60 O 70 MM3 width 1 37 0 08 5 59% I 30 1 45 Table XTI. Univariate s t a t i s t i c s for the measurements of 0. kamens1s. (n * 3) 1 37 F i g u r e 30. Diagram of the s k u l l of 0 . kamensis. (Drawn from a photograph of the holotype ZM 454861 139 manuscript. The 1948 paper ( p u b l i s h e d a f t e r A r g i r o p u l o ' s death) i s an abridged v e r s i o n of the 1941 manuscript and c o n s t i t u t e s the f i r s t p u b l i c a t i o n t h i s s p e c i e s ' name and d e s c r i p t i o n (Gureev, pers.comm.). 1 40 Ochotona koslowi (Bonhote) (Koslov's pika) Lagomys koslowi Buechner,1894:187 , pi.23 and 24; f i g s . 3 and 13-17 (type locality.-Guldsha V a l l e y , 14,000 f t , Northern T i b e t ) D i s t r i b u t i o n : South Sinkiang and northern T i b e t , China. Range map i s given in Fig u r e 31. General d e s c r i p t i o n : No i n f o r m a t i o n i s a v a i l a b l e on the summer and winter pelages, but the. c o l o r a t i o n i s g e n e r a l l y d e s c r i b e d as a uniform pale buff t i n g e d with vinaceous and e n t i r e l y white or yellow v e n t r a l l y (Bonhote,1904b; Feng,1973). The s k u l l i s l a r g e and s t r o n g l y arched. The i n t e r o r b i t a l region i s very narrow and the n a s a l s r e l a t i v e l y long. There are no f e n e s t r a e i n the f r o n t a l s . U n i v a r i a t e s t a t i s t i c s f o r the s k u l l are given in Table X I I I . The s k u l l i s d e p i c t e d i n Fi g u r e 32. H a b i t a t : No info r m a t i o n i s a v a i l a b l e on the h a b i t a t of t h i s s p e c i e s . Taxonomic notes: 0. koslowi has u s u a l l y been regarded as a d i s t i n c t i v e s p e c i e s and, on the b a s i s of t h i s d i s t i n c t i v e n e s s , Argiropulo(1948) proposed the subgenus • T i b e t o l a g u s f o r t h i s s p e c i e s alone. 141 F igure 31. Approximate d i s t r i b u t i o n c i r c l e i n d i c a t e s type l o c a l i t y . of 0 . k o s l o w i . Closed 142 143 r > i c i n c > i r - c j ) O i D O - i n i 0 n n o a v S L O C ) f ^ c N c o o a O i n O i n o O i T O O O O O O O i r O O O n rT «- — ^ — ,^ ~- _ ^ ~ C N C l C N r i — C C * ? • n co ID n cn ic - • CM (N — ( N C N C N O -c o r > * o u > * » n e c i n i n q « > e G c o r - * ^ r - ^ • O 6 - O O - ' - r* — f- t N W (N O ' • O O n if n B - I P O O ' : ir.» OnCfiOtttf ^ e c ^ n a ) 0 i O i f ) i c r ) t f i r > i n i r i — i n i c i n N m e n r i ' - c ' i i f i ' - o j ' — 0 ^ e c O r - - C f i - - u : r ; r ; n — - - o - O O - O O C C - r - -n n - O O O O O O - O O O O O O O O O O C O O O O f ^ O O O O O O O O O O O O O O O O O i n ^ i i ) v p n e n e n t r J r o o n o O a > c o i n u i < c r - - r ^ £ X c T> a X 2 0 £ « L. £ £ — £ £ O B & L. O £ £ c - L 0 0 O l £ £ *- a* * £ L C r 0)- CO © a oi *-C 0 o> > * c c -o ft - n c (C L 8) -— in ^ E (C — — — > u a — « c — *- E c — C O «C IC 0 IT) V) *c e — — to a ai (D (C 0> i-j •v — »t r& t. CV D L E £ 0) - £ £ £ £ £ •* 0>«- *- (fi C Q 0 C C 0! a* o> - o — - -o - T> £ £ £ £ £ £ £ £ £ *- £ a oi 0 0 0' a> a> Oi O) Oi Ol *- C *-c "O c c c TJ c ri £ £ £ £ £ £ £ 0' 0' Oi 0> - Oi -3 * 3 > — 3 •D "D T> t) -o c c c c c c c n CN N D R E (0 ID ra U TJ 01 .* (/I in in c — ... d) m 0 0 ra ra ro l_ ,— t> E u ,_ ra ra ra ro •~ E Q in 10 c c in in di ro ... Q u ro ±> in 01 t. m in •— 01 ro U ro — d> u E c > -•- 0 ~- •— 0 3 3 sz r L. o i_ c 1_ *-' +J Q o Ol Ol O l O l O l Ol o l Ol o l o l o l O l O l n 29 12 38 8 3 2 10 3 15 30 1 15 8 9 17 5 225 48 a ) C i a s s i f 1 c a t i o n m a t r i x 7 1% 92% 92% 88% 100% 100% 100% 100% 90% 90% 1 oo% 97% 75% 89% 100% 100% 60% 96% b ( J a c k k n i f e d c1 a s s i f I c a t I o n 6 1% 88% 91% 69% 0% 40% 1 oo% 1 oo% 90% 87% - 94% 57% 89% 100% 90% 56% 96% c)C1 a s s 1f1 c a t 1 on of new 1nd1v1dua1s 52% 73% 80% - - - - 84% 80% - 83% - - 97% - 55% 83% T a b l e XXV. Summary of the c l a s s i f i c a t i o n r e s u l t s of DFA's run on e q u a l i z e d data s e t s , s p e c i e s and over a l l i n d i v i d u a l s (see text f o r a d d i t i o n a l e x p l a n a t i o n ) . on a maximum of 25 i n d i v i d u a l s per 215 success with which the c a l c u l a t e d f u n c t i o n s were able to d i s c r i m i n a t e these s p e c i e s suggests that these four taxa are reasonably d i s c r e t e and, t h e r e f o r e , may be d i s t i n g u i s h e d from each other and the remaining taxa with r e l a t i v e c e r t a i n t y . For the m a j o r i t y of s p e c i e s , 0. curzon i a e , 0. daur i c a , 0. macr o t i s , 0. r o y l e i , 0. c o l l a r i s , 0. p a l l a s i and 0. r u t i l a , an average of grea t e r than 80% of i n d i v i d u a l s were c l a s s i f i e d c o r r e c t l y . T h i s suggests that these species were a l s o e f f e c t i v e l y d i s c r i m i n a t e d . I n c o r r e c t l y c l a s s i f i e d specimens of any one of these s p e c i e s were g e n e r a l l y • e i t h e r assigned to a spe c i e s with which the f i r s t s p e c i e s has been h i s t o r i c a l l y confused ( i . e . from the same problematic taxa group - see H i s t o r i c a l Review), or to a taxon that i s found in a s i m i l a r h a b i t a t - t y p e . For example, m i s c l a s s i f i e d specimens of 0. curzoniae were most commonly assigned to 0. d a u r i c a , and those of 0. daur i c a to 0. c u r z o n i a e . T h i s a l s o i s true in the case of 0. mac rot i s and 0. r o y l e i , although a few specimens of 0. macroti s were pl a c e d with 0. pr inceps, another o b l i g a t e rock-d w e l l e r . I n d i v i d u a l s of 0. c o l l a r i s that were m i s i d e n t i f i e d were always assigned to 0. p r i n c e p s , but the i n t e g r i t y of 0. c o l l a r i s was l a r g e l y maintained. M i s c l a s s i f i e d specimens of 0. r u t i l a were assigned randomly to' a l l but the four s p e c i e s which had been most e f f e c t i v e l y d i s c r i m i n a t e d , i . e . 0. l a d a c e n s i s , 0. lama , 0. thibetana and 0. thomasi. Specimens of 0. a l p i n a , 0. pr inceps, 0. e r y t h r o t i s and 0. rufescens were c o r r e c t l y c l a s s i f i e d i n approximately 60% of the t r i a l s , i n d i c a t i n g that the c a l c u l a t e d d i s c r i m i n a n t f u n c t i o n s were not as e f f e c t i v e f o r these four s p e c i e s . The 216 assignment of the m i s c l a s s i f i e d i n d i v i d u a l s g e n e r a l l y fo l lowed a p a t t e r n s i m i l a r to that de sc r ibed above. I n c o r r e c t l y c l a s s i f i e d i n d i v i d u a l s of 0. a l p i n a were most commonly ass igned to 0. p r inceps when the l a t t e r was inc luded as a t e s t group. . When 0. p r inceps was not i n c l u d e d , m i s i d e n t i f i e d specimens were p laced w i t h any of the remaining taxa except those i n i t i a l four that had been w e l l d i s c r i m i n a t e d . D i f f e r e n c e s i n the number of m i s c l a s s i f i e d i n d i v i d u a l s of 0. a l p i n a were n e g l i g i b l e whether or not 0. p r inceps was i n c l u d e d in the data s e t . 0. a l p i n a t h e r e f o r e appears to be a r e l a t i v e l y heterogeneous species wi th s i m i l a r elements to a great number of spec ie s , e s p e c i a l l y those that are o b l i g a t e r o c k - d w e l l e r s . 0. pr inceps a l so appears to be a heterogeneous form. M i s c l a s s i f i c a t i o n s of t h i s species were commonly ass igned to 0. c o l l a r i s , w i t h the remainder of the s p u r i o u s l y a l i g n e d i n d i v i d u a l s s c a t t e r e d almost e q u a l l y among the o b l i g a t e r o c k - d w e l l e r s 0. a l p i n a , 0. macrot i s and 0. r o y l e i , among o t h e r s . I n c o r r e c t l y c l a s s i f i e d specimens of 0. e r y t h r o t i s were c o n s i s t a n t i y ass igned to 0. kamensis and never to 0. r u t i l a , which supports the view that O. e r y t h r o t i s a n d 0. rut i l a are not c o n s p e c i f i c . Specimens of 0. rufescens that were not c l a s s i f i e d c o r r e c t l y were always ass igned to other steppe-d w e l l e r s , p a r t i c u l a r l y to 0. p a l l a s i and l e s s f r e q u e n t l y to 0. pusi11a. The l a s t three spec ies are the most d i f f i c u l t to assess . These s p e c i e s , 0. kamensis, 0. kos lowi and 0. p u s i l l a , are a l l represented by very smal l sample s i z e s , that of 0. pusi11a being so smal l as to make any i n t e r p r e t a t i o n v i r t u a l l y i m p o s s i b l e . N e i t h e r 0. kos lowi nor 0. kamensis were e f f e c t i v e l y 217 d i s c r i m i n a t e d although i t i s d i f f i c u l t to determine whether the problem l i e s with the species or with the low sample s i z e . With minor except i o n s , m i s c l a s s i f i e d specimens of 0. kamensis were assigned to 0. e r y t h r o t i s , i n d i c a t i n g a strong s i m i l a r i t y between these two s p e c i e s , e s p e c i a l l y c o n s i d e r i n g that most m i s i d e n t i f e d s p e cies of 0. e r y t h r o t i s were assigned to 0. kamensis. New i n f o r m a t i o n and m a t e r i a l may allow t h e i r r e c o g n i t i o n as c o n s p e c i f i c s or at l e a s t as very c l o s e r e l a t i v e s . The a f f i n i t y of s p e c i e s from s i m i l a r h a b i t a t s emerges as a constant theme throughout'the r e s u l t s of the DFAs and i s c l e a r l y shown in p l o t s of the f i r s t three c a n o n i c a l v a r i a t e s evaluated at group means ( c o e f f i c i e n t s f o r the c a n o n i c a l v a r i a t e s are given in Table XXVI). Using only the Old World s p e c i e s as the data matrix f o r the DFA, the three-dimensional p l o t i n d i c a t e s four main groups (Figure 48). The f i r s t group ( I ) , which c o n s i s t s of 0. p u s i l l a , 0. curzon iae and 0. daur i c a , are the true s t e p p e - d w e l l e r s , while the second group ( I I ) , c o n t a i n s the o b l i g a t e r o c k - d w e l l e r s , 0. a l p i n a , 0. macrotis, 0. r o y l e i , 0. r u t i l a and 0. e r y t h r o t i s . No h a b i t a t i n f o r m a t i o n i s a v a i l a b l e fo r 0. kamensis but, on the b a s i s of these r e s u l t s , i t may w e l l be a rock-dweller a l s o . The t h i r d group ( I I I ) , i s formed by the s p e c i e s which appear to be intermediate between o b l i g a t e rock-d w e l l e r s and true s t e p p e - d w e l l e r s . T h i s i s the case f o r both 0. p a l l a s i and 0. r u f e s c e n s , but no h a b i t a t i n f o r m a t i o n i s a v a i l a b l e f o r e i t h e r 0. l a d a c e n s i s or 0. koslowi. The a s s o c i a t i o n of 0. l a d a c e n s i s and 0. koslowi with 0. p a l l a s i and 0. rufescens suggests that these f i r s t two s p e c i e s are a l s o intermediate forms. The p r o x i m i t y of 0. koslowi to the steppe-Character CV I CV II CV I I I BASLEN -55.24 -8.95 -3.35 ZYGWID 64.90 -1 .55 -23.49 BRNBRD -16.71 -34.37 13.58 • L . I . 0 . -13.24 1 2.68 -2.60 DIASTM -4.26 29.51 -19.71 PALLEN 12.71 0.54 -45.43 BULLEN 14.73 -6.27 13.15 BULWID 5.09 -5 .49 12.50 MANDP3 1 1 .88 -15.56 -6.84 MNTRLN 19.35 -4.61 -27.54 MP3LEN - 7 . 32 -13.73 -27.36 MP3WID -5.95 9.65 17.87 Table XXVI . Character c o e f f i c i e n t s for the f i r s t three c a n o n i c a l v a r i a t e s for the group means of the Old World species only (see F igure 49) . 219 F i g u r e 48. P r o j e c t i o n of group means' of the Old World s p e c i e s along the f i r s t three c a n o n i c a l v a r i a t e s from two p e r s p e c t i v e s . The f i r s t a x i s accounts for 37%, the second for 32% and the t h i r d ( v e r t i c a l ) f o r 12% of the t o t a l v a r i a t i o n . F i r s t three or four l e t t e r s of each species name i s given above i t s p r o j e c t e d group mean. See text fo r a d d i t i o n a l e x p l a n a t i o n . 220 221 d w e l l e r s group ( I ) i n F i g u r e 48 l e a d s t o the s p e c u l a t i o n t h a t t h i s s p e c i e s might i n h a b i t more s t e p p e - l i k e environments than does 0. l a d a c e n s i s , which i s nea r e r t o the r o c k - d w e l l e r s group ( I I ) . The r e m a i n i n g s p e c i e s , 0. lama, 0. t h i b e t a n a and 0. thomasi form a. ve r y l o o s e f o u r t h group ( I V ) , but do not appear t o share a f e a t u r e of common h a b i t a t . 0. lama i n h a b i t s open a l p i n e d e s e r t s where i t burrows, under l a r g e i s o l a t e d r o c k s and i t i s the o n l y s p e c i e s t o be found i n t h i s type of environment ( M i t c h e l l and Punzo, 1975; M i t c h e l l , 1980). 0. t h i b e t a n a i s a l s o unique i n t h a t i t appears t o be the o n l y h i g h a l t i t u d e f o r e s t -d w e l l e r among the e x t a n t o c h o t o n i d s ( A l l e n , 1938; Anthony,1941). 0. thomasi i s d i f f i c u l t t o a s s e s s because no h a b i t a t i n f o r m a t i o n i s a v a i l a b l e f o r t h i s s p e c i e s and i t s i s o l a t i o n from a l l the ot h e r t a x a i n F i g u r e 48 makes even s p e c u l a t i o n d i f f i c u l t . I t i s p o s s i b l e t h a t 0. thomasi i s found i n a h a b i t a t s i m i l a r t o 0. lama or 0. t h i b e t a n a but t h e r e i s no ev i d e n c e t o support an assignment t o e i t h e r . When 25 members of each of the two N o r t h American s p e c i e s , 0. p r i n c e p s and 0. c o l l a r i s , were i n c l u d e d w i t h the O l d World s p e c i e s i n the DFA, a p r o j e c t i o n of the s c o r e s of the group means of the f i r s t t h r e e c a n o n i c a l v a r i a t e s y i e l d e d a t h r e e -d i m e n s i o n a l p l o t t h a t c o n t i n u e d t o s e p a r a t e the s p e c i e s a c c o r d i n g t o h a b i t a t type ( F i g u r e 4 9 ) . Both the N o r t h American s p e c i e s are o b l i g a t e r o c k - d w e l l e r s and they f e l l s e c u r e l y w i t h i n Group I I , the o b l i g a t e r o c k - d w e l l e r group of the p r e v i o u s a n a l y s i s . T h i s p r o v i d e s f u r t h e r s u pport to the h y p o t h e s i s t h a t these groups are r e l a t e d t o h a b i t a t t y p e . 222 F igure 49. P r o j e c t i o n of group means of a l l spec ies a long the f i r s t three c a n o n i c a l v a r i a t e s from two p e r s p e c t i v e s . The f i r s t a x i s accounts for 35%, the second for 32% and the t h i r d ( v e r t i c a l ) for 13% of the t o t a l v a r i a t i o n . F i r s t three or four l e t t e r s of each species name i s g iven above i t s p r o j e c t e d group mean. See tex t for a d d i t i o n a l explanat i o n . 223 224 The c o e f f i c i e n t s for the canonical variates (Table XXVII) are very similar to those for the Old World species (Table XXVI), but with a few additions and some s h i f t i n g in emphasis. The variables BRNBRD, DIASTM, MP3LEN, PALLEN, LIO and MP3WID, a l l contribute heavily to the f i r s t canonical variate. A l l of the habitat grouping of species are separated along this variate, especially Groups II and III, the obligate rock-dwellers and the intermediate forms. BASLEN and ZYGWID weight, heavily on the second canonical variate and the true steppe-dwellers (Group I) are isolated from both the rock-dwellers (Group II) and the majority of the intermediate forms (Group III) along t h i s axis. The t h i r d canonical variate, with i t s heavy weighting on PALLEN, appears to be more useful for within-group separation rather than among-group separation. The re l a t i v e functional importance of a l l of the aforementioned characters to the dif f e r e n t habitat groups is unknown, but may provide an interesting basis for future studies. Phylogenetic Analysis 1. Results The cladogram (or Wagner tree) given in Figure 50 was constructed on the basis of shared apomorphies and represents the most parsimonious tree for the species when using raw data means. Consistency ratios for this type of analysis are indicators of the f i d e l i t y of the characters to the cladogram and the degree of convergence. The value of these ratios range Character CV I CV II CV I I I BASLEN 7.58 -57.09 9.54 ZYGWID 0.60 65.84 1 3.45 BRNBRD -22.85 -11.34 13.07 L.I.O. • -15.52 -13.09 4.22 DIASTM -22.36 -0.25 20.88 PALLEN 1 5.73 10.14 -41.48 BULLEN 0.71 14.50 -23.49 BULWID 4.16 6.25 -6.27 11 WID 3.91 -0.26 -2.04 MANDP1 1 .77 3.42 -5 .43 MANDP3 19.10 8.83 10.63 MNTRLN 5.26 16.31 16.97 MP3LEN 19.90 -9.12 21 .69 MP3WID -14.46 -3.76 -13.73 Table X X V I I . Character c o e f f i c i e n t s for the f i r s t three c a n o n i c a l v a r i a t e s for the group means of a l l spec ies (see F igure 50) . 2 2.6 Figure 50. Phylogenet i c r e l a t i o n s h i p among the 18 extant species forming the genus Ochotona• Hab i t a t type for each species i s g iven in parentheses below the spec ies name, (rck) = o b l i g a t e r o c k - d w e l l e r ; (stp) = s t e p p e - d w e l l e r ; ( i n t ) = intermedia te between rock and steppe; ( for ) f o r e s t - d w e l l e r ; (des) = a l p i n e d e s e r t - d w e l l e r . O. pusilla (stp) O. t h i b e t a n a (for) O.thomasi (?) O. I a m a (des) O. a I p i n a (rck) O. cu rzon iae (stp) O. d a u r i c a (stp) O. m a c r o t i s (rck) O. r o y I e i (rck) O. p r inceps (rck) O. c o 11 a r i s (rck) O. e r y t h r o t i s (rck) O. p a 11 a s i (int) O. ru fe scens (int) 0. k o s I o w i (int) O. kamensis (rck) O. l adacens i s (int) O. rutila ( r c k ) 228 from 0 to 1, w i t h the higher va lues i n d i c a t i n g b e t t e r f i t and l e s s convergence (Kluge and F a r r i s , 1 9 6 9 ) . The cons i s t ency r a t i o s for the cladogram given here range from 0.29 to 0 .96, w i t h 81% greater than 0.50 and 12% greater than 0 .80 . Th i s suggests a g e n e r a l l y good f i t of the c h a r a c t e r s to the cladogram and a r e l a t i v e l y smal l degree of convergence. The goodness of f i t s t a t i s t i c ( d e v i a t i o n r a t i o ) a l s o ranges from 0 to 1, but here the lower va lues i n d i c a t e a b e t t e r f i t ( F a r r i s , Kluge and Eckhard t ,1970 ) . The d e v i a t i o n r a t i o for the cladogram of t h i s study i s 0 .20, which f u r t h e r supports the good f i t of the charac te r s to the cladogram. The dominant apomorphic • ' c h a r a c t e r ' of the cladogram appears to be one of increased s i z e . This can be i l l u s t r a t e d by mapping a l eng th ( e . g . GRTLEN) and a width ( e . g . ZYGWID) measurement on the cladogram (F igure 5 1 ) . Examination of the mapped r e s u l t s revea l s that both of the measurements g e n e r a l l y increase as the stem progresses upward. The most notable except ion i s that of the O. th ibe tana - 0 . thomasi s i s t e r groups in which there i s a decrease in both measurements. The remaining 40 measurements a l s o e x h i b i t a genera l t rend towards increase in s i z e ( u s u a l l y w i t h the except ion of the 0. th ibe tana 0. thomasi s i s t e r group) , a l though not always w i t h such cons i s t ency as the measurements GRTLEN and ZYGWID. There does not appear to be any evidence of s i z e changes w i t h h a b i t a t type or geographica l l o c a l i t y , so the dominant phylogenet i c r e l a t i o n s h i p of changes in o v e r a l l s i z e i s apparent ly not e a s i l y a t t r i b u t a b l e to a s i n g l e f a c t o r . The changes in s i z e appear to be g e n e r a l l y monotonic ra ther than a l l o m e t r i c , as .the cladogram 229 Figure 51. A map of GRTLEN and ZYGWID on the cladogram of F igure 50. Synaptomies for GRTLEN are preceded w i t h a ' G ' , whi l e those for ZYGWID are preceded by a ' Z ' . The percent change i n GRTLEN i s g iven i n parenthes i s f o l l o w i n g the synaptomies. Species groups are based on the percent change and h a b i t a t type - see t ex t for e x p l a n a t i o n . O. p u s i 11 a (stp) O. t h i b e t a n a (for) N cr O. thomas i (?) - °> O. I a m a (des) O. a I p i n a (rck) O. cu rzon i ae (stp) roN O. d a u r i c a » (stp) O. m a c r o t i s (rck) < O. r o y I e i (rck) N F? N -* CO a> . D .G . 1953. The Miocene and P l e i s t o c e n e Lagomorpha of East A f r i c a . B r i t i s h Museum (Nat. H i s t . ) F o s s i l Mammals A f r i c a , 6 :1-30 . Mathews, J . V . 1974. Quaternary environments at Cape DEcei t (Seward P e n i n s u l a , A l a s k a ) : E v o l u t i o n of a tundra ecosystem. G e o l . Soc. Amer. B u l l . , 85:1353-1384. M a t s c h i e , P. 1907. Wis s . Ergebn. Exped. F i l c h n e r to C h i n a , 10: . 2 1 4 . Mayr, E . 1969. P r i n c i p l e s of Systematic Zoology. M c G r a w - H i l l Book C o . , New York, 428pp. Merr iam, C . H . 1889. D e s c r i p t i o n s of fourteen new species and one new genus of North American mammals. N . Amer. Fauna, 2:1. M i l l e r , A . H . 1936. An i s o l a t e d colony of grey-headed p ika in Nevada. J . Mammal., 17:174-175. M i l l e r , G .S . 1911. Four new Chinese mammals. P r o c . B i o l . Soc. Wash. , 24:53-55. Mi lne-edwards , A. 1872. Nouv. A r c h . Mus. N . H . P a r i s 7, B u l l . : 1 -304. (not seen) M i t c h e l l , R .M. 1977. Accounts of Nepalese mammals and a n a l y s i s of the h o s t - e c t o p a r a s i t e data by computer t echniques , unpubl i shed Ph .D . t h e s i s , Iowa State U n i v e r s i t y . 576pp. M i t c h e l l , R .M. 1980. The Ochotona (Lagomorpha: Ochotonidae) of A s i a . Proceedings of Symposium on Qinghai-Xizang (T ibet ) P l a t e a u , (page number u n s p e c i f i e d ) M i t c h e l l , R . M . , and F .Punzo . 1975. Ochotona lama sp. n . (Lagormorpha: Ochotonidae) . A new p ika from the Tibetan h ighlands of Nepa l . Mammalia, 39:419-422. M i t c h e n e r , C D . 1970. Diverse approaches to s y s t e m a t i c s . E v o l . B i o l . , 4 :1-38 . M o r r i s o n , D . F . 1976. M u l t i v a r i a t e S t a t i s t i c a l Methods. 2nd Ed . M c G r a w - H i l l Book C o . , New York , 415pp. M o s t e l l e r , F . , and J .W. Tukey. 1977. Data a n a l y s i s and r e g r e s s i o n . Reading, Massachuset t s : Addison-Wesley Moul ton , T . P . 1973. P r i n c i p a l s components a n a l y s i s of v a r i a t i o n i n form w i t h i n Oncaea con i fera G i e s b r e c h t , 1891, a species of Copepod (Crustacae) S y s t . Z o o l . , 22:141-156. Naumov, N . P . 1934. The mammalian fauna of the Tungus D i s t r i c t . A b s t r . Works z o o l . I n s t . Moscow State U n i v . (not seen) 339 Naumov, R . L . 1974. Ecology of Ochotona a l p i n a i n the West Sayan. Z o o l . Zh. , 5_3: 1524-1529. N e f f , N . A . , and G . R . S m i t h . 1978. M u l t i v a r i a t e a n a l y s i s of h y b r i d f i s h e s . S y s t . Z o o l . , 28:176-196. Ne f f , N . A . , and L . F . Marcus. 1980. A survey of m u l t i v a r i a t e s methods for s y s t e m a t i c s . New York : p r i v a t e l y p u b l i s h e d . 243pp. Ne l son , E.W. 1893. D e s c r i p t i o n of a new species of Lagomys from A l a s k a . P r o c . B i o l . Soc. Wash., 8:117-120. N i e , N . H . , C . H . H u l l , K. S t e inbrenner , and D . H . Bent . 1975. SPSS. S t a t i s t i c a l Package for the Soc i a l Sc i ence s . 2nd Ed . M c G r a w - H i l l Book C o . , New York, 675pp. O g i l b y , W.M. 1839. Memoir on the mammalogy of th Himalayas , p . l v i - l x x i v I_n J . F . R o y l e . I l l u s t r a t i o n s of the botany and other branches of the n a t u r a l h i s t o r y of the Himalayan Mounta ins , and of the f l o r a of Cashmere. Repr in t E d i t i o n (1970) Today and Tomorrow's P r i n t e r s and P u b l i s h e r s . New D e l h i . 468pp. Ognev, S . I . 1940. Mammals of the USSR and adjacent c o u n t r i e s (mammals of eas tern Europe and Northern A s i a . V o l . 4: Rodents. Moscow ( T r a n s l a t e d : I s r a e l Program for S c i e n t i f i c T r a n s l a t i o n s , Jerusa lem, - o r i g i n a l in Russian) O r r , R .T . The L i t t l e - K n o w n P i ka . M a c M i l l i a n P u b l i s h i n g Co. I n c . , New York , 144pp. Osgood, W.H. 1913. A new name for Ochotona minima. P r o c . B i o l . Soc. Wash., 26 :80. Osgood, W.H. 1932. Mammals of the K e l l y - R o o s e v e l t s and Delacour A s i a t i c E x p e d i t i o n s . F i e l d museum P u b l . Z o o l . , 18:193. P a k i z h , V . I . Some data on the ecology of Ochotona p u s s i l a i n northeast Kazakhstan i n respect to change of i t s range. Z o o l . Z h . , 48:1214-1220. P a l l a s , P . S . 1768. D e s c r i p t i o L e p o r i s p u s i l l i . Novi commemt. Acad. P e t r o p o l . T . , 13:531-538. P a l l a s , P . S . 1769. Nov. Comm. S c i . P e t r o p . , J_8:531. (not seen) P a l l a s , P . S . 1771. Reise durch verschieden Provinzen des Russichen R e i c h s , S t . Pe te r sburg . T h e i l 1. (not seen) P a l l a s , P . S . 1773. Reise durch verschieden Provinzen des Russichen Re ichs , S t . Pe te r sburg . T h e i l 2. (not seen) 340 P a l l a s , P . S . 1776. Reise durch verschieden Provinzen des Russichen Re ichs , S t . Pe te r sburg . T h e i l 3. (not seen) P a l l a s , P . S . 1778. Novae Species Quadrupedum e G l i r i u m Ord ine . E r l a n g e n . (not seen) P a l l a s , P . S . 1811. B e r i c h t e ueber d ie Zoographia R o s s o - A s i a t i c a von P a l l a s abges ta t te t .an d i e K a i s e r l . I. Akad. der Wissenschaften zu S t . P e t e r s b u r g , (not seen) P a r k e r , R . R . , and P . A . L a r k i n . 1959. A concept of growth in f i s h e s . J . F i s h . Res. Bd. C a n . , 16:721-745. P e t e r s , W. 1882. S . B . ' G e s . Nat . F r . B e r l i n 95:55 (not seen) P i d o p l i t s h k a , I . G . 1938. A survey of p a l e o n t o l o g i c a l f i n d s 1917 to 1937. Part I . Mat . Study f o s s i l Fauna U . K . R . S . S . R . K i e v , J _ : 9 7 - 1 7 4 . P i e r c e , B . A . , and J . B . M i t t o n . 1979. A r e l a t i o n s h i p of genet ic v a r i a t i o n w i t h i n and among p o p u l a t i o n s : An extens ion of the K luge-Ker foot phenomenon. S y s t . Z o o l . , 28 :63-70. P i m e n t a l , R . A . 1959. Mendelian i n f r a s p e c i f i c divergence l e v e l s and t h e i r a n a l y s i s . S y s t . Z o o l . , 18:363-373. Puget, A. 1976. The Afghan p i k a : Ochotona rufescens rufescens (Mamm. Lagomorpha). B u l l . Soc. Z o o l . . F r a n c e , 101 : 203-208. R i c h a r d s o n , J . 1828. Short charac te r s of a few Quadrupeds p rocur red on Capt . F r a n k l i n ' s l a t e E x p e d i t i o n . The Z o o l o g i c a l J o u r n a l , 3_:516-520. R i s i n g , J . D . 1970. M o r p h o l o g i c a l v a r i a t i o n and e v o l u t i o n in some North American o r i o l e s . Sy s t . Z o o l . , 19:315-351. Rober t s , T . J . 1977 The Mammals of P a k i s t a n . Ernest Benn L t d . , London, 361pp. R o h l f , F . J . and R.R. S o k a l . 1965. C o e f f i c i e n t s of c o r r e l a t i o n and d i s t ance in numerica l taxonomy. U n i v . Kansas S c i . B u l l . , £ 5 : 3 - 2 7 . R o h l f , F . J . 1974. NT-SYS Numerical Taxonomy system of m u l t i v a r i a t e s t a t i s t i c a l programs. The State U n i v e r s i t y of N . Y . at Stony Brook, Stony Brook, N . Y . (page number u n s p e c i f i e d ) Rohwer, S . A . , and D . J . K i l g o r e . 1973. In te rbreed ing i n the a r i d -land foxes , Vulpes ve lox and V . m a c r o t i s . S y s t . Z o o l . , 22: 157-165. 341 Rosen, D . E . 1978. V i c a r i a n t pa t te rns and h i s t o r i c a l exp lana t ion in biogeography. S y s t . Z o o l . , 27:159-188. R u s s e l l , L . S . 1960. The d e n t i t i o n of r a b b i t s and or igen of the Lagomorpha. B u l l . n a t . Mus. C a n . , 166:41-45. Schrenk 1858. Amurland I , p.148 (not seen) ' S c l o s s e r , M. 1924. T e r t i a r y v e r t e b r a t e s from Mongo l i a . P a l e o n t . S i n i c a , s e r . C , J_:1-132. Sengor', . A . M . C . 1981. Symposium on Qinghai-Xizang (T ibet ) P l a teau - B e i j i n g (Pek ing ) , C h i n a . EOS Am. Geophys ica l Union , T r a n s . , 62:601-603. S e v e r t z o f f , N . A . 1873. Fauna of Turkes tan . Nachr. Ges. M o s c , 8: 1-157. Sher, A . V . 1973. Mammals and the Ber ing land dur ing the Late Cenozo ic : p u z z l i n g problems and some ways to so lve them., pp.49-56 I_n R .Ye . G i t t e r m a n , A . I . K o z l o v s k y , V . L . Kont r imav ichus , Y u . A . Motchanov, O.M. P e t r o v , F . B . Chern javsky , A . V . Sher and B . A . Yert sev (eds . ) The Ber ing Land Br idge and i t s Role for the H i s t o r y of H o l a r c t i c F l o r a s and Faunas i n the Late Cenozoic ( A b s t r a c t s ) . Acad. S c i . USSR, Fa r -Eas te rn S c i . C e n t r e . Khabarovsk. S h o t w e l l , J . A . 1956. Hemphil ian mammalian assemblage from nor theas te rn Oregon. G e o l . Soc. Amer. B u l l . , 67:717-738• S imionescu, I . 1930. Les v e r t b r e s P l i o c e n e s de Malustene (Roumanie). Acad. Romana P u b l . Fond. V a r . Adamachi, 9 :1-69 . Skalon 1938. B u l l . A n t i - P l a g u e Organis E. S i b e r i a 1:85-87 (not seen) S k i n n e r , M . F . , a n d O.C. K e i s o n . 1947. The f o s s i l Bison of Alaska and p r e l i m i n a r y r e v i s i o n of the genus. B u l l . Amer. Mus. Nat . H i s t . , 8_9: 127-256. Smirov. P . K . 1974. B i o t o p i c d i s t r i b u t i o n and t e r r i t o r i a l r e l a t i o n s h i p s of the steppe nd the P a l l a ' s p ikas in the sympatic zone of t h e i r ranges. B y u l l . Mosk. Obshch. I s p y t a t . P r i r o d y O t d . B i o l . , 75:72-80. Smith , A . T . 1974a. The d i s t r i b u t i o n and d i s p r e s a l of p i k a s : Consequences of i n s u l a r p o p u a l t i o n s t r u c t u r e s . Eco logy , 55: 1112-1119. Smith , A . T . 1974b. The d i s t r i b u t i o n and d i s p e r s a l of p i k a s : In f luences of behavior and c l i m a t e . Ecology , 55:1368-1376. 342 Smith , A . T . 1981 a . P o p u l a t i o n dynamics of p ikas (genus Ochotona ) . p.311-324 In: K.Myers and C.D.MacInnes (eds . ! P r o c . World Lagomorph Conf. Guelph, Ont. 1979. U . Guelph, ( i n press) Smith , A . T . 1981b. T e r r i t o r i a l i t y and s o c i a l behavior of Ochotona pr inceps . p.572-586 I_n: K.Myers and C.D.MacInnes (eds.) P r o c . World Lagomorph Conf. Guelph, Ont. 1979. U . Guelph, ( i n press.) Sneath, P . H . A . and S o k a l , R .R. 1973. Numerical Taxonomy. W.H. Freeman and Company, San F r a n c i s c o , 573pp. S o k a l , R.R. 1962. Typology and e m p i r i c i s m i n taxonomy. J . Theor. B i o l . , 3:230-267. S o k a l , R.R. 1973. The spec ies problem r e c o n s i d e r e d . Sy s t . Z o o l . , 22:360-374. S o k a l , R .R. 1976. The Kluge-Ker foot phenomenon reexamined. Amer. N a t . , 110:1077-1091. S o k a l , R . R . , and F . J . R o h l f . 1969. B iometry . The p r i n c i p l e s and pract i ce of s t a t i s t ies i n b i o l o g i c a l r e s e a r c h . W.H. Freeman and C o . , San F r a n c i s c o , 776pp. S o k a l , R . R . , and T . J . C r o v e l l o . 1970. The b i o l o g i c a l spec ies concept : a c r i t i c a l e v a l u a t i o n . Amer. N a t . , 104:127-153. S t a n l e y , S .M. 1973. An e x p l a n a t i o n for Cope's r u l e . E v o l u t i o n , 27 :1-26. S t o r r , G . C . C . 1780. Prodromus Method! Mammalium. (not seen) S t r and , E . 1928. M i s c e l l a n e a nomencla tor ica z o o l o g i c a et p a l a e o n t o l o g i c a . A r c h . Naturesch . B e r l i n 92A, 8_:59-6l,75. S u t c l i f f e , A . J . , and K. K o w a l s k i . 1976. P l e i s t o c e n e rodents of the B r i t i s h I s l e s . B r i t i s h Museum (Nat. H i s t . ) , B u l l . , 27: 35-147. Sych, L . 1980. Lagomorpha (Mammalia) from the P l i o c e n e and E a r l y P l e i s t o c e n e of Po land . F o l i a Quatern . , 51:57-64. Tate , G . H . H . 1947. Mammals of Eas tern A s i a . M a c M i l l i a n P u b l i s h i n g Co. I n c . , New York , 366pp. T a y l o r , D.W. 1965. The study of P l e i s t o c e n e non-marine mol lusks i n North America , p.597-611 In H . E . Wright and D.G. Frey (eds.) The Quaternary of the U n i t e d States P r i n c e t o n U n i v . Pre s s , P r i n c e t o n , N . J . 922pp. 343 T e i l h a r d de C h a r d i n , P., and C.C. Young. 1931. F o s s i l mammals from the l a t e C e nozoic of n o r t h e r n C h i n a . P a l a e o n t o l o g i a S i n i c a Ser. C., 9:1-67. Thomas, 0. 1908a. Mammals c o l l e c t e d i n the p r o v i n c e of S h a n - s i and S h e n - s i , N o r t h e r n C h i n a . A b s t r . P r o c . Z o o l . Soc. London,, 63:44-45. Thomas, 0. 1908b. On mammals from the p r o v i n c e of Shan-si and S h e n - s i , N o r t h e r n C h i n a . P r o c . Z o o l . Soc. London, 1908:963-983 . Thomas, 0. 1909. A c o l l e c t i o n of Mammals from N o r t h e r n and C e n t r a l Manchuria.Ann. Mag. N.H., s e r i e s 8, 4:500-505. Thomas, 0. 191 l a . New Mammals from C e n t r a l and Western A s i a , m o s t l y c o l l e c t e d by Mr. Douglas C a r r u t h e r s . Ann. Mag. N.H., ser i e s 8, 8 : 758. Thomas, 0. 1911b. New r o d e n t s from Sze-chwan c o l l e c t e d by Capt. F.M. B a i l e y . Ann. Mag. N.H., s e r i e s 8, 8:727-729. Thomas, O. 1911c. Mammals c o l l e c t e d i n Southern S h e n - s i , C e n t r a l C h i n a . A b s t r . P r o c . Z o o l . Soc. London, 95:26-27. Thomas, 0. 1911d. On mammals from Southen S h e n - s i , C e n t r a l C h i n a . P r o c . Z o o l . Soc. London, 1911:687-695. Thomas, 0. 1912a. On mammals from C e n t r a l A s i a , c o l l e c t e d by Mr. Douglas C a r r u t h e r s . Ann. Mag. N.H., s e r i e s 8, 9:391-408. Thomas, O. 1912b. On a c o l l e c t i o n of s m a l l Mammals from the T s i n - L i n g M ountains, C e n t r a l C h i n a , p r e s e n t e d by Mr. G. Fenwick Owen to the N a t i o n a l Museum. Ann. Mag. N.H., s e r i e s 8, J_0:395. Thomas, 0. 1914. On s m a l l mammals from D j a r k e n t , C e n t r a l A s i a . Ann. Mag. N.H., s e r i e s 8, 13:563-573. Thomas, 0. 1920. Some new mammals from B a l u c h i s t a n and n o r t h -west I n d i a . J . Bombay Nat. H i s t . S o c , 26:933-938. Thomas, 0. 1922. On some new forms of Ochotona. Ann. Mag. N.H., s e r i e s 9, 9:187-193. Thomas, 0. 1923. On Mammals from the L i - K i a n g Range, Yunnan, b e i n g a. f u r t h e r o b t a i n e d by Mr. George F o r e s t . Ann. Mag. N.H., s e r i e s 9, n_:655-663. Thomas, 0. 1924. A new p i k a from the A l t a i . Ann. Mag. N.H., s e r i e s 9, L 3 : 1 6 3 ~ 1 6 4 -344 Thomas, 0., and M.A.C. H i n t o n . 1922. The mammals of the 1921 Mt. E v e r e s t E x p e d i t i o n . Ann. Mag. N.H., s e r i e s 9, 9:178-186. Thorpe, R.S. 1973. I n t r a s p e c i f i c v a r i a t i o n of the r i n g e d snake N a t r i x n a t r i x ( 1 . ) . u n p u b l i s h e d Ph.D. t h e s i s , C o u n c i l f o r N a t i o n a l Academics Awards. Thorpe, R.S. 1976. B i o m e t r i c a n a l y s i s of g e o g r a p h i c v a r i a t i o n and r a c i a l a f f i n i t i e s . B i o l . Rev., 5,1 :407-452. Thorpe, R.S. 1979. M u l t i v a r i a t e a n a l y s i s of the p o p u l a t i o n s y s t e m a t i c s of the r i n g e d snake Na t r i x n a t r i x ( ? ) . P r o c . Roy. Soc. E d i n . , 788:1-62. T o b i e n , H. 1935. Ueber d i e p l e i s t o z a e n e n and p o s t p l e i s t o z a e n e n P r o l a g u s - formen K o r s i k a s und S a r d i n i e n s . Ber. n a t u r f . Ges. F r e i b u r g , 3_4:253-344. T r o u e s s a r t , 1897. C a t a l o g u s mammaliam, tarn v i v e n t i u m quam f o s s i l i u m . B e r l i n , 2nd ed., 664pp. Turov, S. 1924. Sur l a faune des V e r t e b r e s du L i t t o r a l N.E. du l a c B a i k a l . C R . Acad. S c i . , L e n i n g r a d : 109-112 Van V a l e n , L. 1969. Lat e P l e i s t o c e n e E x t i n c t i o n s . P r o c . N o r t h Am. P a l e o n t . C o n v e n t i o n : 469-485 Van V a l e n , L. 1973. A p o s s i b l e o r i g i n f o r r a b b i t s . E v o l u t i o n , J_8 :484-49l . Van V a l e n , L. 1978 The s t a t i s t i c s of v a r i a t i o n . E v o l u t i o n a r y Theory, 4:33-43. V i n o g r a d o v , B.S. 1933. M l e k p i t a y u s h c h i e SSR (Mamma1s of the USSR). Trudy Z o o l . I n s t . Akad. Nauk SSR, L e n i n g r a d . 87pp. V i n o g r a d o v , B.S., and A . I . A r g i r o p u l o . 1941. Fauna of the USSR, mammals. Key t o Rodents. Z o o l . I n s t . Acad. S c i . USSR Moscow-Leningrad. 241pp. ( T r a n s l a t e d : I s r a e l Program f o r S c i e n t i f i c T r a n s l a t i o n s , J e r u s a l e m , 1968 - o r i g i n a l i n Ru s s i a n ) Von der Meulen, A . J . 1978. M i c r o t u s and Pitymys ( A r v i c o l i d a e ) from Cumberland Cave, M a r y l a n d , w i t h a comparison of some New and O l d World s p e c i e s . Ann. C a r n e g i e Mus., 47:101-145. V o r o n t s o v , N.N., and E.Yu. I v a n i t s k a y a . 1973. Comparative k a r y o l o g y of N o r t h P a l a e a r c t i c p i k a s ' (Ochotona, Ochotonidae, Lagomorpha) C a r y o l o g i a , 26:213-223. Waterhouse 1848. Nat. H i s t . Mammalia 2:17. (not seen) 345 Weston, M.L. 1981. The Ochotona a l p i n a complex: a s t a t i s t i c a l r e - e v a l u a t i o n , pp. 74-90 I_n: K.Myers and C.D.MacInnes (eds.) P r o c . World Lagomorph Conf. Guelph, Ont. 1979. U. Guelph, ( i n p r e s s ) Weston, M.L., R.M. M i t c h e l l , and A.T. Sm i t h . 1981. F a m i l y Ochotonidae - Order Lagomorpha. I_n J.H. H o n a c k i , K.E. Kinman and J.W. Koeppl (eds.) Mammal i an Spec i e s of the World. Assoc. S y s t . C o l l . , Mus.. N.H., Kansas, ( i n p r e s s ) W i l s o n , E.O., and W.L. Brown. 1953. The s u b s p e c i e s c o n c e p t . S y s t . Z o o l . , 2:97-1 11. Wood, A.E. 1957 What, i f a n y t h i n g , i s a r a b b i t ? E v o l u t i o n , 11: 417-425. Youngman, P.M. 1975. Mammals of the Yukon T e r r i t o r y , Canada. N a t l . Mus. Nat. S c i . (Ottawa) P u b l . Z o o l . ( 1 0 ) . 192pp. Zar, J.H. 1974. B r o s t a t i s t i c a l A n a l y s i s. P r e n t i c e - H a l l , I n c . Englewood C l i f f s , N.J., 620pp. Zevegmid, D. 1975. B i o l o g y of p i k a s (Ochotonidae) i n the Mongolian P e o p l e ' s R e p u b l i c . M i t t . Z o o l . Mus. B e r l . , 51:41 -53 . Z i m i n a , R.P.. 1962. The e c o l o g y of Ochotona m a c r o t i s Guenther d w e l l i n g i n the a r e a of T e r s k y - A l u t a u mountain range. B y u l l . Mosk. Obshch. I s p y t a t . P r i r o d y Otd. B i o l . :5—12 346 APPENDIX I LIST OF RECENT SPECIMENS I.D. # . Museum L o c a l i t y 0. a l p i n a 0. a l p i n a a l p i n a 23293 MCZ S i b e r i a , A l t a i , Bakhtarma R. (Group 1) 178808 AMNH USSR, E. Ka z a k h s t a n , Karagay D i s t . , Katon (Group 1) 7611 CVM A l t a i (Group 1) 0. a l p i n a a r g e n t a t a T240726 USNM C h i n a : 15 mi NNW N i n g h s i a , N o r t h e r n Kansu (Group 2B) 0. a l p i n a c i n e r e o f u s c a 14246 MCZ S i b e r i a , 50 mi. s. of I r k u t s k (Group 1) 23967 T r a n s b a i k a l i a near B a l z i n o (Group 1) 25962 Amur P r o v i n c e , J a b l o n o i Range (Group 1) 1474 MN F e l i u m , K l ( L e s s e r ) Hsingan (Wald) (Group 1) 1475 F e l i u m , K l ( L e s s e r ) Hsingan (Wald) (Group 1) 1476 F e l i u m , K l ( L e s s e r ) Hsingan (Wald) (Group 1) 0. a l p i n a coreana 34051 AMNH Pochong, Korea (Group 6C) 34049 Pochong., Korea (Group 6C) 0. a l p i n a hyperborea 45640 AMNH 45 mi. ne of Urga, M o n g o l i a (Group 1) 45644 45 mi. ne of Urga, M o n g o l i a (Group 1) 45646 45 mi. ne of Urga, M o n g o l i a (Group 1) 45650 45 mi. ne of Urga, M o n g o l i a (Group 1) 45651 45 mi. ne of Urga, M o n g o l i a (Group 1) 87105 S i b e r i a : S r e t e n s k , T r a n s b a i k a l i a (Group 1) .11376 MCZ East S i b e r i a : Emma Harbor (Group 6B) S-13310 MS Kureyka R i v e r (Group 6A) S-14828 Tunguska R i v e r (Group 6A) S-88995 P o l a r U r a l s (Group 6A) S-88997 P o l a r U r a l s (Group 6A) S-88998 P o l a r U r a l s (Group 6A) S-89001 P o l a r U r a l s (Group 6A) S-89003 P o l a r U r a l s (Group 6A) S-89004 P o l a r U r a l s (Group 6A) T16107 ZM R i v e r Soch.(Group 6A) 16110 R i v e r Soch (Group 6A) 1481 MN Kenho, e r r Dsingan 1483 Kenho, e r r Dsingan 1484 Kenho, e r r Dsingan 1485 Kenho, e r r Dsingan 347 1487 1488 1489 1490 1492 1 1 387 23448 23449 15271 1 5274 1 5275 . • , a l p i n a 4561 3 4561 5 45622 45627 45628 45629 45630 45632 45634 45635 45636 45638 45639 23447 178820 . a l p i n a 1 4232 14234 14237 1 4246 34548 1 4244 1 4245 0. a l p i n a 27 1 72 T49776 T49777 49778 T20220 20221 T25009 88357 91041 91043 91 057 91 060 S-40461 S-40464 S-40477 S-46696 S-46697 0 MCZ MCZ 9 km von Kenho e r r Dsingan Kenho, e r r Dsingan Kenho, e r r Dsingan Kenho, e r r Dsingan East S i b e r i a , Emma 45 mi ne of Urga, 45 mi ne N i s c h n i j , N i s c h n i j , N i s c h n i j , mantchur i c a AMNH Harbor (Group 6B) Mo n g o l i a (Group 1) of Urga, M o n g o l i a (Group 1) Kolymsk (Group 6A) Kolymsk (Group 6A) Kolymsk, S i b e r i a (Group 6A) (Group (Group (Group (Group (Group (Group (Group (Group (Group (Group (Group (Group (Group (Group , Lena R 45 mi ne of Urga, M o n g o l i a 45 mi ne of Urga, M o n g o l i a 45 mi ne of Urga, M o n g o l i a 45 mi ne of Urga, M o n g o l i a 45 mi ne of Urga, M o n g o l i a 45 mi ne of Urga, M o n g o l i a 45 mi ne of Urga, M o n g o l i a 45 mi ne of Urga, M o n g o l i a 45 mi ne of Urga, M o n g o l i a 45 mi ne of Urga, M o n g o l i a 45 mi ne of Urga, M o n g o l i a 45 mi ne of Urga, M o n g o l i a 45 mi ne of Urga, M o n g o l i a 45 mi ne of Urga, M o n g o l i a USSR: Kyusyar, Lower Course n . i t i d a MCZ R i g h t Bank (Group 1) S i b e r i a , A l t a i , Dapucha S i b e r i a , A l t a i , Dapucha S i b e r i a , A l t a i , Dapucha S i b e r i a , A l t a i , T c k e y a n - B u r g a z i Pass S i b e r i a , A l t a i , Dapucha S i b e r i a , A l t a i , T c k e y a n - B u r g a z i Pass S i b e r i a , A l t a i , T c k e y a n - B u r g a z i Pass s v a t o s h i MCZ ZM S i b e r i a , B a r u s i n g e b i r g e (Group 1) near T a r b a g a t a y , USSR (Group 1) near T a r b a g a t a y , USSR (Group 1) near T a r b a g a t a y , USSR (Group 1) Hangayn Nuru, USSR (Group 1) Hangayn Nuru, USSR (Group 1) near T a r b a g a t a y , USSR (Group 1) MS U e l e n , USSR (Group T U e l e n , USSR (Group 1 U e l e n , USSR (Group 1 U e l e n , USSR (Group 1 U e l e n , USSR (Group 1 K r o n o t s k i y Penn, USSR (Group 1) K r o n o t s k i y Penn, USSR (Group 1) K r o n o t s k i y Penn, USSR (Group 1) Deep Bay, USSR (Group 1) Deep Bay, USSR (Group 1) 348 a l p i n a y e s o e n s i s 34716 NMC Japan: Hokkaido I s . , K a r i b e t s u , 800m (Group 6 34717 Japan: Hokkaido I s . , K a r i b e t s u , 800m (Group 6 34718 Japan: Hokkaido I s . , K a r i b e t s u , 700m (Group 6 0. c o l l a r i s T36297 USNM Approx. 200 mi. S of F t . Yukon, Near head of Tanana R i v e r , A l a s k a 17802 NMC Rose R i v e r , C anol Rd. M i . 95 31165 L i t t l e Hyland R., 128 mi. n. Watson L., 5000' 35317 K e e l e L. , 63 31'N 130 28'W, 4000' 17829 Rose R i v e r , Canol Rd. M i . 95 17824 Rose R i v e r , C anol Rd. M i . 95 17328 Teepee Lake 35322 K e e l e L., 63 31 ' N .130 28'W, 4200' . 35325 K e e l e L., 63 31'N 130 28'W, 4300' 31168 138 mi. n. Watson L. & 5 mi. e... L i t t l e H yland R., 6000' 31166 138 mi. n. Watson L. .£ 5 mi., e. L i t t l e Hyland R., 6000' 35319 K e e l e L., 63 31'N 130 28'W, 4000' 31164 L i t t l e Hyland R., 128 mi. n. Watson L., 4000' 35329 K e e l e L., 63 3 l ' N 130 28'W, 5200' 31163 L i t t l e Hyland R., 128 mi. n. Watson L., 4000' 31167 138 mi. n. Watson L. & 5 mi. e. L i t t l e H yland R., 6000' 31173 O g i l v i e Mts., 48 mi. ne. Dawson, 4000' 35330 K e e l e L., 63 3 1 ' N 130 28'W, 5200' 35321 K e e l e L., 63 3 l ' N 130 28'W, 4700' 35320 K e e l e L., 63 3 l ' N 130 28'W, 4700' 35323 K e e l e L., 63 3 1 ' N 130 28'W, 2820' 35324 K e e l e L., 63 3 l ' N 130 28'W, 4300' 17830 Rose R i v e r , C anol Rd. M i . 95 17831 Rose R i v e r , C anol Rd. M i . 95 17869 Rose R i v e r , Canol Rd. M i . 95 31161 Haekel H i l l , 8 mi. nw. W h i t e h o r s e , 4800' 40318 F i s h h o o k , 61 45'N 149 15'W 40314 F i s h h o o k , 61 45'N 149 15*W 40313 F i s h h o o k , 61 45'N 149 15'W 40315 F i s h h o o k , 61 45'N 149 15'W 40317 F i s h h o o k , 61 45'N 149 15'W 40312 F i s h h o o k , 61 45'N 149 15'W 40316 F i s h h o o k , 61 45'N 149 15'W 40311 F i s h h o o k , 61 45'N 149 15'W 40303 D e n a l i Hwy. e. of M a c l a r e n , 63 08'N 146 30'W 40304 D e n a l i Hwy. near M a c l a r e n , 63 08'N 146 15'W 40305 D e n a l i Hwy. near M a c l a r e n , 63 08'N 146 15'W 40306 D e n a l i Hwy. near M a c l a r e n , 63 08'N 146 15'W 40307 D e n a l i Hwy. near M a c l a r e n , 63 08'N 146 15'W 40302 D e n a l i Hwy.- e. of M a c l a r e n , 63 08'N 146 30'W 349 40308 Lucky Shot, 61 47'N 149 20'W 40309 Lucky Shot, '-61 47'N 149 20'W 40310 Lucky Shot, 61 47'N 149 20*W 30653 M i . 32, D e n a l i Hwy, 4000' 30654 M i . 32, D e n a l i Hwy, 4000' 30655 M i . 32, D e n a l i Hwy, 4000' 5639 A l a s k a , C h i t i n a R., H u b r i c k ' s Camp 5640 A l a s k a , C h i t i n a R., H u b r i c k ' s Camp 5634 A l a s k a , C h i t i n a R., H u b r i c k ' s Camp 30649 Y.T., M i . 11 Canol r d . , 5500' 2190 Y.T., near T e s l i n Lake 30651 A l a s k a , I s a b e l P a s s , M i . 206, Ri c h a r d s o n Hwy., 5000' 30650 A l a s k a , I s a b e l P a s s , M i . 206, R i c h a r d s o n Hwy., 5000' 30652 A l a s k a , I s a b e l Pass, M i . 206, Ri c h a r d s o n Hwy., 5000' 5075 PSM T a l k e e t n a Mts., A r c h a n g e l C r . 5076 T a l k e e t n a Mts., A r c h a n g e l C r . 5077 T a l k e e t n a Mts., A r c h a n g e l C r . 5078 T a l k e e t n a Mts., A r c h a n g e l C r . 5079 T a l k e e t n a Mts., A r c h a n g e l C r . 5080 T a l k e e t n a Mts., A r c h a n g e l C r . 5081 T a l k e e t n a Mts., A r c h a n g e l C r . 1397 1 Mt. M c K i n l e y N a t l Park 13972 Mt. M c K i n l e y N a t l Park 13973 Mt. M c K i n l e y N a t l Park 0. c u r z o n i a e 223241 BM T i n g r i , T i b e t (Group 2A-2) 253214 f o o t of Donka L a . , Mt E v e r e s t Comm, 16000' (Group 2A=2) 773438 China (no i n f o ) 773439 C h i n a : T s i n g - h a i , T i e n t s i n (Group 2B) 1783 ZM Koko Nor (Group 2B) W2741 Koko Nor (Group 2B) 50193 Toso'Nor (Group 2B) 50195 Toso Nor (Group 2B) 2710 Kansu (Group 2B) 2715 T i b e t (Group 2B) 2719 T i b e t (Group 2B) 50202 Mekong R i v e r B a s i n (Group 3-4) *74761 ROM Lho Chhoga, T i b e t , n. of Mustang, 12500' 29 12.00'N 038 57.00'E (Group 2A-2) *74763 ROM Lho Chhoga, T i b e t , n. of Mustang, 12500' 29 12.00'N 038 57.00'E (Group 2A-2) 0. daur i c a 23454 MCZ M o n g o l i a , 20 mi sw of Urga (Group 1) 23456 M o n g o l i a , E. A l t a i , A r t s a Bogdo, 6500' (Group 350 56859 AMNH Kweihua, Cheng, S h a n s i , M o n g o l i a (Group 1) 58876 M o n g o l i a , Gun B u r t e , 6800' (Group 1) 58878 M o n g o l i a , Gun B u r t e , 6800' (Group 1) 58879 Gun B u r t e , 6800' (Group 1) 58882 M o n g o l i a , S a i n Nain Khan, 8000' (Group 1) 58884 M o n g o l i a , S a i n Nain Khan, 8000' (Group 1) 58885 M o n g o l i a , S a i n Nain Khan, 8000' (Group 1) 58887 M o n g o l i a , S a i n Nain Khan, 8000' (Group 1) 58888 M o n g o l i a , S a i n Nain Khan, 8000' (Group 1) 58898 Gun B u r t e , 6800' (Group 1) 58906 Gun B u r t e , 6800' (Group 1) 59715 M o n g o l i a , Ussuk (Group 1) 59716 M o n g o l i a , Ussuk (Group 1) 59719 M o n g o l i a , 20 mi sw Urga (Group 1) 59725 M o n g o l i a , 20 mi sw Urga (Group 1) 59726 M o n g o l i a , 20 mi sw Urga (Group 1) 59727 M o n g o l i a , 20 mi sw Urga (Group 1) 59729 M o n g o l i a , T u r i n (Group 1) 59730 M o n g o l i a , 30 mi ne Tze Tzen Wang (Group 1) 59731 M o n g o l i a , 30 mi ne Tze Tzen Wang (Group 1) 59732 M o n g o l i a , 30 mi ne Tze Tzen Wang (Group 1) 59734 M o n g o l i a , 30 mi ne Tze Tzen Wang (Group 1) 59735 M o n g o l i a , Tze Tzen Wang (Group 1) 59745 M o n g o l i a , S a i n Noin Khan, 8000' (Group 1) 59746 M o n g o l i a , S a i n Noin Khan, 8000' (Group 1) 59747 M o n g o l i a , S a i n Noin Khan, 8000' (Group 1) 59748 M o n g o l i a , S a i n Noin Khan, 8000' (Group 1) 59750 M o n g o l i a , S a i n Noin Khan, 8000' (Group 1) 59790 M o n g o l i a , A n t s a Bogdo, E . . A l t a i Mts. 6000' (Group 1) 59792 M o n g o l i a , Antsa Bogdo, 6000' (Group 1) 59793 M o n g o l i a , Antou Bogdo, E. A l t a i Mts. 6000' (Group 1) 178806 USSR: Buryat Mongol, v i c i n i t y of Kyakhta (Group 1) 7421 CVM Touva, USSR (Group 1) 23452 MCZ M o n g o l i a , T u r i n (Group 1) 23289 S i b e r i a , T r a n s b a i k a l i a , C h i t a - M a n c h u r i a R a i l w a y , S o k t n i S t a t i o n (Group 1) 23453 M o n g o l i a , 20 mi sw of Urga (Group 1) S-63158 MS Touva, USSR (Group 1) S-63171 Touva, USSR (Group 1) S-63181 Touva, USSR (Group"1) S-63194 Touva, USSR (Group 1) S-63201 Touva, USSR (Group 1) S-63208 Touva, USSR (Group 1) S-63565 Touva, USSR (Group 1) S-63585 Touva, USSR (Group 1) S-63588 Touva, USSR (Group 1) S-63589 Touva, USSR (Group 1) 1463 MN M a n c h o u l i , M o n g o l i a (Group 1) 1465 M a n c h o u l i , M o n g o l i a (Group 1) 1468 D a l a i - n o r , M o n g o l i a (Group 1) 1469 D a l a i - n o r , M o n g o l i a (Group 1) 351 0. e r y t h r o t i s T1 553 T1 554 240724 240725 ZM USNM Kansu (Group 2B) Burchan Budda (Group 2B) C h i n a : Kansu, 35 mi w S i n i n g (Group 2B) Ch i n a : Kansu, 35 mi w S i n i n g (Group 2B) 0. e r y t h r o t i s g l o v e r i 7587 7588 7591 175140 MCZ W. "Szechuan, Rama-la Pass (Group 3) W. Szechuan, Na-chu-kan (Group 3) W. Szechuan, Na-chu-kar (Group 3) USNM W. Szechuan, Nachu Kar, 12000' (Group 3) 0. kamensis T45486 50342 50343 ZM T i b e t (Group 2A-3) T i b e t (Group 2A-3) T i b e t (Group 2A-3) O'... k o s l o w i 972274 BM T i b e t (Group 2A-3) 971212 W. T i b e t (Group 2A-3) 0. l a d a c e n s i s 91159 BM T u r k e s t a n (Group 2A) 911510 T u r k e s t a n (Group 2A) 911511 T u r k e s t a n (Group 2A) 1012235 S u t l e j R i v e r (Group 2A-1) 207445 T i b e t (Group 2A-3) 79619 l o c a l i t y unknown 364124 Dakpo Karpo V a l l e y , E. Ladak (Group 2A-1) 364125 Dakpo Karpo V a l l e y , E. Ladak (Group 2A-1) 876128 Ladak (?Sadak) (Group 2A-1) 4139 ZM l o c a l i t y unknown 0. lama T74737 ROM Lu p r a , Mustang P r o v . , 12000' 28 48.00'N 083 47.00'E (Group 2A-2) T74738 L u p r a , Mustang P r o v . , 12000' 28 48.00'N 083 47.00'E (Group 2A-2) T74739 T h i n i , 3 mi e Jomoson, Mustang.Prov., 10000' 28 46.00'N 083 48.00'E (Group 2A-2) 352 0. m a c r o t i s 176278 AMNH Pamir, T a d j i k i s t a n (Group 2A) 83445 I n d i a : Kashmir, Marsemik P. (Group 2A-1) 74744 ROM M u k t i n a t h , Mustang P r o v . , 11750' 28 48.00'N 083 52.00'E (Group 2A-2) 176159 USNM B a l t i s t a n , Basha V l y , 12000' (Group 2A-1) 176162 B a l t i s t a n , Basha V l y , 12000' (Group 2A-1) 176165 B a l t i s t a n , Basha V l y , 12000' (Group 2A--1 ) 176166 B a l t i s t a n , Basha V l y , 12000' (Group 2 A -1) 176168 B a l t i s t a n , Basha V l y (Group 2A-1) 176170 B a l t i s t a n , Basha V l y (Group 2A-1) 176171 B a l t i s t a n , Basha V l y (Group 2A-1) 176173 B a l t i s t a n , Basha V l y (Group 2A-1) .176174 B a l t i s t a n , Basha V l y (Group 2A-1) 198656 Kashmir: Ladak, Durgu, 13000' (Group 2A-1) 198659 Kashmir: Ladak, Durgu (Group 2A-1) 198664 Kashmir: Ladak, Durgu (Group 2A-1) 0. p a l l a s i 23457 MCZ M o n g o l i a , A r t s a Bogdo, E. A l t a i Mts, 6500' (Group 1) 23458 M o n g o l i a , A r t s a Bogdo, E. A l t a i Mts, 6500' (Group 1) 23459 M o n g o l i a , 40 mi sw Tze Tzen Wang (Group 1) 23460 M o n g o l i a , Gun B u r t e , 6800' (Group 1) 23966 M o n g o l i a , R J u i n - g o c (Group 1) 58877 AMNH M o n g o l i a , Gun B u r t e , 6800' (Group 1) 58883 M o n g o l i a , Gun B u r t e , 8000' (Group 1) 58893 M o n g o l i a , Gun B u r t e , 6800' (Group 1) 58895 M o n g o l i a , Gun B u r t e , 6800' (Group 1) 58899 M o n g o l i a , Gun B u r t e , 6800' (Group 1) 58902 M o n g o l i a , Gun B u r t e , 6800' (Group 1) 58903 M o n g o l i a , Gun B u r t e , 6800' (Group 1) 58905 M o n g o l i a , Gun B u r t e , 6800' (Group 1) 58907 M o n g o l i a , Gun B u r t e , 6800' (Group 1) 58910 M o n g o l i a , Ussuk, 6800' (Group 1 )• 58911 M o n g o l i a , Ussuk (Group 1) 58912 M o n g o l i a , Ussuk (Group 1) 59713 M o n g o l i a , Ussuk (Group 1) 59714 . M o n g o l i a , Ussuk (Group 1) 59739 M o n g o l i a , A r t s a Bogdo, 6500' (Group 1) 59743 M o n g o l i a , Tze Tzen Wang (Group 1) 59744 M o n g o l i a , 40 mi sw Tze Tzen Wang (Group 1) 59779 M o n g o l i a , A r t s a Bogdo, E. A l t a i Mts, 6000' (Group 1) 59781 M o n g o l i a , A r t s a Bogdo, E. A l t a i Mts (Group 1.) 59783 M o n g o l i a , A r t s a Bogdo, E. A l t a i Mts, 6000' (Group 1) 59784 M o n g o l i a , A r t s a Bogdo, E. A l t a i Mts, 6800' (Group 1) 59785 M o n g o l i a , A r t s a Bogdo, E. A l t a i Mts, 6000' (Group 1) 353 59791 M o n g o l i a , A r t s a Bogdo, E. A l t a i Mts, 6000' (Group 1) 60404 K h o l o b o l c h i Nor, M o n g o l i a 19887 ZM K a r k a r a l i n s k (Group 2A) 29339 Karaganda (Group 2A) 36833 Karaganda (Group 2A) 36834 Karaganda (Group 2A) 36835 Karaganda (Group 2A) 36836 Karaganda (Group 2A) 60327 Karaganda (Group 2A) 60328 Karaganda (Group 2A) 60329 Karaganda (Group 2A) 60330 Karaganda (Group 2A) 0. pr i n c e p s O. p r i n c e p s p r i n c e p s 1584 CVM Wataton Lake, A l t a . 1587 Tonquin V a l l e y , A l t a . 1589 Maynard Pass, J a s p e r , A l t a . 1590 Maynard Pass, J a s p e r , A l t a . 1591 Tonquin V a l l e y , J a s p e r Park, A l t a . 1592 Tonquin V a l l e y , J a s p e r Park, A l t a . 1593 Tonquin V a l l e y , J a s p e r - P a r k , A l t a . 1594 Tonquin V a l l e y , J a s p e r Park, A l t a . 1600 Yellowhead P a s s , A l t a . 1602 M e d i c i n e Lake, J a s p e r 1603 Waterton Lakes Park 1605 Tonquin V a l l e y , J a s p e r Park, A l t a . 1607 Thompson Pass, A l t a . 2173 E m i g r a n t s Mtn., J a s p e r Park, A l t a . 2174 E m i g r a n t s Mtn., J a s p e r Park, A l t a . 4018 K i n b a s k e t Lake, B.C. 4019 K i n b a s k e t Lake, B.C. 4020 S u l l i v a n R., near K i n b a s k e t L., B.C. 4021 S u l l i v a n R., near K i n b a s k e t L., B.C. 10781 NMC J a s p e r , A l t a . 10784 J a s p e r , A l t a . 10798 J a s p e r , A l t a . 10813 J a s p e r , A l t a . 10814 J a s p e r , A l t a . 10816 J a s p e r , A l t a . 10817 J a s p e r , A l t a . 18770 M i e t t e R i v e r , J a s p e r Park 23786 Valemount, B.C., 52 50'N 119 16'W 16854 A l t a . : w. s i d e of Snake I n d i a n R., J a s p e r P ark, 6000' 53564 ROM Deer Creek, M i s s o u l a Co., Montana O. p r i n c e p s b r o o k s i T69275 USNM Sicamous, B.C. 5948 NMC Shuswap Lake 5949 Shuswap Lake 5947 Shuswap Lake 4025 Robbin's Range • 154 Sicamous, B.C. 155 Sicamous, B.C. 156 Sicamous, B.C. 157 Sicamous, B.C. 158 Sicamous, B.C. 159 Sicamous, B.C. 160 Sicamous, B.C. 161 Sicamous, B.C. 162 Sicamous, B.C. 163 Sicamous, B.C. 164 Sicamous, B.C. 165 Sicamous, B.C. 166 Sicamous, B.C. 167 Sicamous, B.C. 168 Sicamous, B.C. 1 69 Sicamous, B.C. 170 Sicamous, B.C. 153 Sicamous, B.C. 0. p r i n c e p s brunnescens T227259 USNM USA: Washington, K i t t i t a Co. 440 CVM B l a c k Mtn., N. Vancouver 441 B l a c k Mtn., N. Vancouver 336 B l a c k Mtn., N. Vancouver 335 B l a c k Mtn., N. Vancouver 334 A l t a Lake 339 A l t a Lake 478 A l t a Lake 479 A l t a Lake 340 A l t a Lake, Mons 442 A l t a Lake 443 A l t a Lake 444 A l t a Lake 445 A l t a Lake 446 A l t a Lake 447 A l t a Lake 448 A l t a Lake 449 A l t a Lake 450 A l t a Lake 451 A l t a Lake 452 A l t a Lake 453 A l t a Lake , 454 A l t a Lake 455 A l t a Lake 456 A l t a Lake 457 A l t a Lake 458 A l t a Lake 459 A l t a Lake 460 A l t a Lake 461 A l t a Lake 462 A l t a Lake 463 A l t a Lake 464 A l t a Lake 465 A l t a Lake 466 A l t a Lake 355 467 A l t a Lake 468 A l t a Lake 469 A l t a Lake 470 A l t a Lake 471 A l t a Lake 472 A l t a Lake 473 A l t a Lake 474 A l t a Lake 475 A l t a Lake 476 A l t a Lake 477 A l t a Lake 480 A l t a Lake 481 A l t a Lake 482 A l t a Lake 483 A l t a Lake 1797 A l t a Lake 504 A l t a Lake 1084 A l t a Lake 1085 A l t a Lake 1086 A l t a Lake 1087 A l t a Lake 5911 . A l t a Lake 5912 London Mtn., A l t a Lake 5913 London Mtn., A l t a Lake 5915 Sproat Mtn., A l t a Lake 5916 Sproat Mtn., A l t a Lake 5917 Sproat Mtn., A l t a Lake 5918 A l t a Lake 5 9 1 9 A l t a Lake 5920 A l t a Lake 5921 A l t a Lake 5922 A l t a Lake 5923 A l t a Lake 5924 A l t a Lake 5925 A l t a Lake 5926 A l t a Lake 5927 A l t a Lake 5928 A l t a Lake 5929 A l t a Lake 5930 A l t a Lake 5931 A l t a Lake 5932 A l t a Lake 5933 A l t a Lake 5934 Alpha Lake 5935 Alp h a Lake 5936 N i t a Lake 5937 N i t a Lake 5938 N i t a Lake 5939 B l a c k Mtn., Vancouver 5940 B l a c k Mtn., W h y t e c l i f f e 1798 A l t a Lake 1799 A l t a Lake 3619 B l a c k Tusk Meadows, G a r i b a l d i 4024 Hope 5914 Sproat Mtn., Mons, B.C. 338 Mons 3216 M y r t l e Lake, W e l l s Gray Park 81 08 1/2 m i l e n., Spuzzum 8939 Hope 8940 A l t a Lake 8941 A l t a Lake 8942 Brandy Wine F a l l s , G a r i b a l d i 8944 Brandy Wine F a l l s , G a r i b a l d i 8945 Outram L., 11 m i l e s e. of Hope 8946 Cutram L., 11 m i l e s e. of Hope 1 0096 PSM Mt. R a n i e r N a t l P a rk, Wash. 1 0321 C r y s t a l Mtn., P i e r c e Co., Wash. 1 1 035 Green R. wat e r s h e d , K i n g Co., Wash. 1 1 965 C o w l i t z Co., Wash. 1 1 966 C o w l i t z Co., Wash. 558 Chinook P a s s , Wash. 560 Chinook P a s s , Wash. 610 Mt. R a n i e r , Sunset Park, Wash. 61 1 Mt. R a n i e r , Sunset Park, Wash. 612 Mt. R a n i e r , Sunset Park, Wash. 41 86 Goat Ridge, Lewis Co., Wash. 4187 Goat Ridge, Lewis Co., Wash. 5953 P i e r c e Co., Wash. 7952 S p i r i t L., 3 mi w on Hwy, Skamania 5954 P i e r c e Co., Wash. 7953 F i s h L., L i n n Co., Ore. 7954 F i s h L., L i n n Co., Ore. 7955 F i s h L., L i n n Co., Ore. 7956 F i s h L., L i n n Co., Ore. 7957 S a l t Creek F a l l s , Lane Co., Ore. 1 1 970 Lane Co., Ore. 1 0361 Multnomah Co., Ore. 1 0362 Multnomah Co., Ore. 19122 L i n n co., Ore. 19123 L i n n co., Ore. 1 91 24 L i n n co., Ore. 1 91 25 L i n n co., Ore. 7951 N i t a Lake, B.C. p r i n c e p s cinnamomea 9329 PSM S e v i e r Co., Utah 9330 S e v i e r Co., Utah 9331 S e v i e r Co., Utah O. p r i n c e p s cuppes 2802 CVM M i l e 18, H o p e - P r i n c e t o n Hwy. 5908 Monashee D i v i s i o n , Gold Range 5909 Monashee Pass 5910 Mt. R e v e l s t o k e Park 4021 Monashee 4022 F a l l s Creek, Monashee Range 2924 Monashee Pass 2925 Monashee Pass 2926 Monashee Pass 2927 Monashee Pass 2928 Monashee Pass 2935 Phoenix 357 2936 Phoenix 1576 Toby Creek 1578 Toby Creek 1579 Toby Creek 1580 Toby Creek 1581 Toby Creek 1594 Toby Creek 1595 Toby Creek 1596 Toby Creek 1610 Toby Creek 1611 Toby Creek 1612 Toby Creek 4023 Sugar Lake 10005 R o s s l a n d , B.C. 10012 R o s s l a n d , B.C. 10015 R o s s l a n d , B.C. 10120 R o s s l a n d , B.C. 10126 Nr. Green Mtns. 29081 ROM Osoyoos D i s c . , B.C. 22980 Balsam L., R e v e l s t o k e , B.C. 29068 Osoyoos D i s t . , B.C., Monashee D i v i d e 29069 Osoyoos D i s t . , B.C., Monashee D i v i d e 29070 Osoyoos D i s t . , B.C., Monashee D i v i d e 29071 Osoyoos D i s t . , B.C., Monashee D i v i d e 29072 Similkameen D i s t . , B.C., Cascade Mtn., 20 m i l e s w. R o s s l a n d 29074 Kootenay D i s t . , B.C., G l a c i e r 29075 Kootenay D i s t . , B.C., G l a c i e r 29076 Similkameen D i s t . , B.C., Phoenix 29077 Osoyoos D i s t . , B.C., Monashee Pass 29078 Osoyoos D i s t . , B.C., Monashee Pass 29079 Osoyoos D i s t . , B.C., Monashee D i v i d e 29080 Osoyoos D i s t . , B.C., Monashee D i v i d e 1575 CVM Toby C r . , B.C. . 1577 Toby C r . , B.C. 1582 Toby C r . , B.C. 1 583 Toby C r . , B.C. 1597 Toby C r . , B.C., w. of Invermere 2924 Monashee Pass , B.C. 2925 Monashee Pass , B.C. 2926 Monashee Pass , B.C. 2927 Monashee Pass , B.C. 1576 Toby C r . , B.C. 1595 Toby C r . , w of Invermere, B.C. 1596 Toby C r . , w. of Invermere, B.C. 1613 Toby C r . , B.C. 1614 Toby C r . , B.C. 4023 Sugar Lake, B.C. 5908 Monashee D i v i d e , G o l d Range, B.C. 5909 Monashee Pass, B.C 1560 PSM Sherman Pass, F e r r y CO., Wash. 3775 G r a n i t e P a s s , Coeur D'Alene Co. 3776 G r a n i t e P a s s , Coeur D'Alene Co. 3777 G r a n i t e Pass, Coeur D'Alene Co. 3778 G r a n i t e P a s s , Coeur D'Alene Co. 3779 G r a n i t e Pass, Coeur D'Alene Co. 358 4190 G r a n i t e Pass, P e n o l O r e i l l e Co., Wash. 4191 G r a n i t e Pass, P e n o l O r e i l l e Co., Wash. 0. pr i n c e p s f e n i sex 29065 ROM Y a l e D i s t . , B.C., Tulameen Rd., Tulameen, 20 m i l e s n. of Coalmont 29066 Y a l e D i s t . , B.C., Tulameen Rd. 29067 Y a l e D i s t . , B.C., Tulameen Rd. 29068 Y a l e D i s t . , B.C., Tulameen Rd. 29069 Y a l e D i s t . , B.C., Tulameen Rd. 15741 NMC B.C.: Rainbow Mts., Mt. B r i l l i a n t , Mackenzie V a l l e y , 5500' 16544 B.C.: K i m s q u i t , mouth of Dean R. 16561 B.C.: K i m s q u i t , mouth of Dean R., 1000' 16667 B.C.: Rainbow Mts., Mt. B r i l l i a n t 16669 B.C.: Rainbow Mts., Mt. B r i l l i a n t 16673 B.C.: Rainbow Mts., Mt. B r i l l i a n t 16682 B.C.: Rainbow Mts., Mt. B r i l l i a n t 2929 CVM Manning Pa r k , B.C. 2930 Manning Park, B.C. 2931 Manning Park, B.C. 2932 Manning Pa r k , B.C. 2934 Manning Park,. B.C. 3542 Ashnola R i v e r , B.C., 2500' 3543 C a t h e d r a l Lake, B.C., 7000' 5942 Head Texas Creek, L i l o o e t , B.C. 5943 Head Texas Creek, L i l o o e t , B.C. 5944 Head Texas Creek, L i l o o e t , B.C. 5945 Head Texas Creek, L i l o o e t , B.C. 5946 Head Texas Creek, L i l o o e t , B.C. 16668 NMC Rainbow Mts., Mt. B r i l l i a n t , B.C. 16738 K i m s q u i t , mouth of Dean R., B.C. 16761 K i m s q u i t , mouth of Dean R., B.C. 16768 K i m s q u i t , mouth of Dean R., B.C. 16662 NMC Rainbow Mts., Mt. B r i l l i a n t , B.C., 5000' 16751 K i m s q u i t , mouth of Dean R., B.C. 2147 PSM Ta b l e Mtn., K i t t i t a s Co., Wash. 2148 Table Mtn., K i t t i t a s Co., Wash. 5620 Okanagan a r e a , 6 mi. Creek, B.C. 5621 Okanagan a r e a , 6 mi. Creek, B.C. 5622 Okanagan a r e a , 6 mi. Creek, B.C. 5623 Okanagan a r e a , 6 mi. Creek", B.C. 5624 Okanagan a r e a , 6 mi. Creek, B.C. 5625 Okanagan a r e a , 6 mi. Creek, B.C. 5626 Okanagan a r e a , 6 mi. Creek, B.C. 5627 Okanagan a r e a , 6 mi. Creek, B.C. 8724 M i s s i o n R i d g e , Chelan Co., Wash. 9552 R a t t l e s n a k e C r . , Yakima Co., Wash 0. p r i n c e p s fumosa 11967 PSM J e f f e r s o n Co. 11968 J e f f e r s o n Co. 11969 J e f f e r s o n Co. 11964 J e f f e r s o n Co. 11965 J e f f e r s o n Co. 14503 Lane Co. 359 16646 Lane Co. 16647 L i n n Co. 16648 L i n n Co. 11921 L i n n Co. 5300' 11922 L i n n Co. 5300' 11923 L i n n Co. 5300' O. p r i n c e p s h o w e l l i 31356 ROM 40 mi. w. of Salmon, Idaho Co., Idaho, 0. p r i n c e p s lemhi 3922 PSM E. Ketchem, B l a i n e Co., I d . 3923 E. Ketchem, B l a i n e Co., I d . 3924 E. Ketchem, B l a i n e Co., I d . 7956 Salmon R i v e r Mtns., Lemhi Co., I d . 7957 Salmon R i v e r Mtns., Lemhi Co., I d . 7958 Salmon R i v e r Mtns., Lemhi Co., I d . 7959 Salmon R i v e r Mtns., Lemhi Co., I d . O. pr i n c e p s l u t e s c e n s T108650 USNM A l b e r t a , B a n f f , nr.Mt. I n g l e s m a l d i e 950 CVM Mt. Stephen, F i e l d , B.C. 951 Mt. Stephen, F i e l d , B.C. 952 Mt. Stephen, F i e l d , B.C. 953 Mt. Stephen, F i e l d , B.C. 954 Mt. Stephen, F i e l d , B.C. 955 Mt. Stephen, F i e l d , B.C. 956 Mt. Stephen, F i e l d , B.C. 957 Mt. Stephen, F i e l d , B.C. 2175 Panther R i v e r , B a n f f , A l t a . 5950 B a n f f , A l t a . 22989 ROM M e d i c i n e L., J a s p e r Park, A l t a . 22985 M e d i c i n e L., J a s p e r Park, A l t a . 22982 Mt. Carthew, Waterton L., A l t a . 22981 C r a n d e l l , Waterton L., A l t a . 22411 Coleman, A l t a . , V i c a r y W. Mt. Coleman, 7200' 22410 Mt. Coleman, 7200' 22409 Mt. Coleman, 7200' 22408 Mt. Coleman, 7200' 22407 Mt. Coleman, 7200' 22405 Mt. Coleman, 7200' 22404 Coleman, A l t a . , 7200' 22423 Coleman, A l t a . , Ma B u t t e , 7100' 22422 Coleman, A l t a . , Ma B u t t e , 7100' 22391 Coleman, A l t a . , Ma B u t t e Mtn., 7100' 22390 V i c a r y W. Mt. Coleman, A l t a . , 7400* 22389 Coleman, A l t a . , V i c a r y W. Mtn., 7400' 22383 Coleman, A l t a . , V i c a r y W. Mtn., 7400' 22382 Coleman, A l t a . , V i c a r y W. Mtn., 6350' 22416 Coleman, A l t a . , V i c a r y W. Mt. Coleman, 7200' 22414 Coleman, A l t a . , V i c a r y W. Mt. Coleman, 7200' 22413 Coleman, A l t a . , 7200' 22412 Coleman, A l t a . , V i c a r y W. Mt. Coleman, 7200' 22983 Bow Summit, Banff Park, A l t a . , 6900' 22984 Bow Summit, Banff Park, A l t a . , 6900' • 22988 Mummy L., Ba n f f Park, A l t a . , 7100' 360 22990 Moraine L., Banff Park, A l t a . , 6200' 22990 Pharaoh L., Ba n f f Park, A l t a . , 7000' 261191 Pharaoh L.; Banff Park, A l t a . , 7000' 0. p r i n c e p s s a x a t l i s 9345 PSM E g g l e s t o n Lake, D e l t a Co., C o l . 19656 ROM C o l o r a d o , 4 mi. w. Alma, Park Co., 1200' 0. p r i n c e p s t a y l o r i 7956 PSM Hart Mtn., Lake Co., Ore. 0. p r i n c e p s 3221 CVM M y r t l e L., W e l l s Gray Park 3222 M y r t l e L., W e l l s Gray Park 3223 M y r t l e L., W e l l s Gray Park 3216 M y r t l e L., W e l l s Gray Park 3218 Mt. H u n t l e y , W e l l s Gray Park 3217 Mt. H u n t l e y , W e l l s Gray Park 8110 No l o c a t i o n O. p u s i l l a 176280 AMNH W. K a z a k s t a n , V i l l . P e t r o v , 90 km N. U r a l s k . (Group 6A) 7419 CVM K a z a k s t a n , USSR (Group 6A) O. r o y l e i 14762 MCZ I n d i a : Kahkan V a l l e y , nw F.P. (Group 2A-1) 28606 AMNH I n d i a : Khurbu Sadak Rd. (Group 2A-1) 29012 T u l l i a n , Kashmir (Group 2A-1) 29013 T u l l i a n , Kashmir (Group 2A-1) 34859 no l o c a t i o n 54629 I n d i a : B u r z i l V a l l e y , 10800' (Group 2A-1) 87075 T i b e t : Bhaga V a l l e y , 10500' (Group 2A-3) 87076 T i b e t : Kimlung L a h o u l , 15100' 59712 T i b e t (Group 2a-2) 171154 I n d i a : Kumauni Bedang 171148 I n d i a : Kumauni Bedang 171155 I n d i a : Garhwal 171150 I n d i a : Kumauni Bedang 111318 I n d i a : Kumauni Bedang 74657 ROM T h a r i P a t i ( U r i n g Ghyang), S i n d u Prov. 28 01.00'N 085 30.00'E (Group 2A-2) 74659 Gosainkund Lakes, Nuwakot P r o v . , 13750' 28 03.00'N 085 25.00'E (Group 2A-2) 74697 Maharigaon, 10 mi ne Jumla, Jumla Prov., 10375', 29 21.00'-N 82 23.00'E (Group 2A-2) 74721 Dhukphu, Sindu P r o v . , 13100' 28 06.00'N 085 35.00'E (Group 2A-2) 90887 MN S i k k i m 90891 I n d i a 361 90892 I n d i a - S i k k i m 14769 PSM N e p a l : Newakot D i s t r i c t 14770 N e p a l : Newakot D i s t r i c t 14771 N e p a l : Newakot D i s t r i c t 14772 N e p a l : Newakot D i s t r i c t r o y l e i 28608 28609 2861 0 2861 1 87073 87074 201217 201218 201 220. 326337 326340 333333 wardi AMNH USNM Tamr i a , K o l o h o r Yemhau, T u l l i a n T i b e t : T i b e t : Kashmi r Kashmi r Kashmi r W. Pak 9500 W. Pak 9500 W. P a k i Kashmir, I n d i a (Group 2A-1) , Kashmir, I n d i a (Group 2A-1) Kashmir, I n d i a (Group 2A-1) , Kashmir (Group 2A-1) B a r a l a c h a Pass (s s i d e ) , 13500' (Group Bhaga V a l l e y , 10500' (Group 2A-3) , Dandwar, 9000' (Group 2A-1) , Dandwar, 9000' (Group 2A-1) , Dandwar, 9000' (Group 2A-1) Sta n : Hazara D i s t . L a l a z a r 4 mi (Group 2A-1) s t a n : Hazara D i s t . L a l a z a r 4 mi e (Group 2A-1) s t a n : Hazara D i s t . Naran (Group 2A-1) r u f e s c e n s 176279 217305 27640 51174 51 175 51176 AMNH AMNH MN Turkmenia: Chandyr D i s t . w Kopet-Dagh (Group 5) K a r a - K a l a P a k i s t a n : (w) Khardoug Pass Kopet-Dagh by Kopet-Dagh by Kopet-Dagh by B a l u c h i s t a n , Urak (Group 5) , Ladak, T i b e t (Group 2A-1) Aschchabad, d i r e c t i o n F i r j u s a ( Aschchabad, d i r e c t i o n F i r j u s a ( Aschchabad, d i r e c t i o n F i r j u s a ( . r u f e s c e n s r e g i n a 29564 MCZ T u r k i s t a n : Kopet Dagh (Group 5) 32650 MCZ T r a n s c a s p i a : Karpet-Dagh Mts. (Group 5) 97803 AMNH Tu r k m e n i s t a n : Kopet-Dagh Mts., K a r a - R o l i n s k R e g i o n , Tchandyr (Group 5) 206565 USSR: Turkmen, Kopet-Dagh (Group 5) r u t i l a 28605 176281 S-15108 S-45855 S-60601 S-64874 S-64877 S-64878 AMNH MS T i b e t : Durgh v i e Sadak (Group 2A-3) USSR: T a d j i k i s t a n , G i s s a r Range, Tschanderkye Lake (Group 2A) K i r g i z s k i j Range (Group 2A) Pamir (Group 2A) K i r g i z s k i j Range (Group 2A) Alama A t a (Group 2A) Alama Ata (Group 2A) Alama Ata (Group 2A) • 362 S-64957 Alama Ata (Group 2A) 0. t h i b e t a n a 7599 56851 * 1 1345 * 11322 * 11327 * 1 1319 *11344 * 11342 * 11321 '*11347 * 11341 •*11338 *11348 * 1 1 33 1 * 11339 MCZ AMNH W. Szechuan, L i a n g Hokow (Group 3) Ch i u Fung S l o p e , 8000' (Group 3) W. W. W. W. W. W. •w. W. W. W. W. W. W. Szechuan Szechuan Szechuan Szechuan Szechuan Szechuan Szechuan Szechuan Szechuan Szechuan Szechuan Szechuan Szechuan L i a n g Range L i a n g Range L i a n g Range L i a n g Range L i a n g Range L i a n g Range L i a n g Range L i a n g Range L i a n g Range L i a n g Range L i a n g Range L i a n g Range L i a n g Range (Group 3) (Group 3) (Group 3) (Group 3) (Group 3) (Group 3) (Group 3) (Group 3) (Group 3) (Group 3) (Group 3) (Group 3) (Group 3) 0. t h i b e t a n a t h i b e t a n a 7592 MCZ C h i n a : W. Szechuan, T a - c h i a o (Group 3) 7593 C h i n a : W. Szechuan, Ta - c h i a o (Group 3) 7600 C h i n a : W. Szechuan, T a - c h i a o , Shoo-o-lo (Group 3) 0. t h i b e t a n a cansa 27554 AMNH C h i n a : T a i p a s h i a n g , Shensi (Group 3) 27555 C h i n a : T a i p a s h i a n g , Shensi (Group 3) 27556 C h i n a : T a i p a s h i a n g , Shensi (Group 3) 27557 C h i n a : T a i p a s h i a n g , Shensi (Group 3) 27558 C h i n a : T a i p a s h i a n g , Shensi (Group 3) 27559 C h i n a : T a i p a s h i a n g , Shensi (Group 3) 27560 C h i n a : T a i p a s h i a n g , Shensi (Group 3) 60406 AMNH Kansu, 10' sw of Archuen (Group 2B) 60407 Kansu, 10' sw of Archuen (Group 2B) 60408 Kansu, 10' sw of Archuen (Group 2B) 60411 Kansu, 10' sw of Chouiu (Group 2B) 60412 Kansu, 10' sw of Chouiu (Group 2B) 84262 C h i n a : mountains 10 mi w of Archuen (Group 2B 24456 MCZ Kansu, 10' s of Archuen (Group 2B) 0. t h i b e t a n a f o r r e s t i 44000 AMNH C h i n a : Yun-nan P r o v . , L i c h i a n g (Group 3) 0. t h i b e t a n a huangensis 56855 AMNH C h i n a : T a i P a i Shen, S h e n s i , 1000' (Group 3) 56856 M o n g o l i a : H a l t T a i P a i Shan, S h e n s i , 10000' (Group 3) 56857 C h i n a : T a i P a i Shen, S h e n s i , 1000' (Group 3) 363 56858 M o n g o l i a : H a l t T a i P a i Shan, S h e n s i , 10000' (Group 3) 23446 MCZ C h i n a : Shensi T a i P a i Shah, 10000' (Group 3) 0. t h i b e t a n a osgoodi 15465 AMNH Burma: road t o C h i m e l i P a s s , 10000' (Group 4) 15466 Burma: road t o C h i m e l i P a s s , 10000' (Group 4) 0. thomasi 2746 ZM T39956 50322 773440 BM 773441 no l o c a l i t y A l a k Nor (Group 2B) A l a k Nor (Group 2B) C h i n a : Kwang-tai (Group 3) C h i n a : T s i n g - h a i (Group 2B) 364 APPENDIX I_I LIST OF FOSSIL SPECIMENS I.D. # Museum L o c a l i t y 0. p r i n c e p s 1 40588 UCM L i t t l e Box E l d e r Cave, Wyoming 2 23506 L i t t l e Box E l d e r Cave, Wyoming 3 23505 L i t t l e Box E l d e r Cave, Wyoming 4 24673 L i t t l e Box E l d e r Cave, Wyomi ng 5 24674 L i t t l e Box E l d e r Cave, Wyomi ng 6 2291 0 L i t t l e Box E l d e r Cave, Wyomi ng 22913 L i t t l e Box E l d e r Cave, Wyoming 7 2291 7 L i t t l e Box E l d e r Cave, Wyoming 22918 L i t t l e Box E l d e r Cave, Wyoming 8 22919 L i t t l e Box E l d e r Cave, Wyomi ng 22920 L i t t l e Box E l d e r Cave, Wyomi ng 9 22921 L i t t l e Box E l d e r Cave, Wyoming 1 0 22925 L i t t l e Box E l d e r Cave, Wyoming 1 1 22926 L i t t l e Box E l d e r Cave, Wyoming 22928 L i t t l e Box E l d e r Cave, Wyoming 1 2 22930 L i t t l e Box E l d e r Cave, Wyomi ng 13 22931 L i t t l e Box E l d e r Cave, Wyomi ng 22932 L i t t l e Box E l d e r Cave, Wyoming 22933 L i t t l e Box E l d e r Cave, Wyoming 1 4 22934 L i t t l e Box E l d e r Cave, Wyoming 1 5 22935 L i t t l e Box E l d e r Cave, Wyoming 22936 L i t t l e Box E l d e r Cave, Wyomi ng 1 6 22937 L i t t l e Box E l d e r Cave, Wyoming 1 7 22938 L i t t l e Box E l d e r Cave, Wyoming 18 22939 L i t t l e Box E l d e r Cave, Wyomi ng 1 9 22940 L i t t l e Box E l d e r Cave, Wyoming 20 22942 L i t t l e Box E l d e r Cave, Wyomi ng 21 22943 L i t t l e Box E l d e r Cave, Wyoming 22 22944 L i t t l e Box E l d e r Cave, Wyoming 23 22946 L i t t l e Box E l d e r Cave, Wyoming 24 22947 L i t t l e Box E l d e r Cave, Wyoming 25 22948 L i t t l e Box E l d e r Cave, Wyoming 22949 L i t t l e Box E l d e r Cave, Wyoming 26 22950 L i t t l e Box E l d e r Cave, Wyoming 27 22951 L i t t l e Box E l d e r Cave, Wyoming 28 22953 L i t t l e Box E l d e r Cave, Wyoming 29 22954 L i t t l e Box E l d e r Cave, Wyoming 22955 L i t t l e Box E l d e r Cave, Wyomi ng 30 22958 L i t t l e Box E l d e r Cave, Wyomi ng 3 1 22960 L i t t l e Box E l d e r ' Cave, Wyomi ng 32 22962 L i t t l e Box E l d e r Cave, Wyomi ng 33 22963 L i t t l e Box E l d e r Cave, Wyoming 34 22965" L i t t l e Box E l d e r Cave, Wyoming 365 35 22967 L i t t l e Box E l d e r Cave, Wyoming 36 22969 L i t t l e Box E l d e r Cave, Wyoming 37 22970 L i t t l e Box E l d e r Cave, Wyoming 38 22971 L i t t l e Box E l d e r Cave, Wyoming 39 22972 L i t t l e Box E l d e r Cave, Wyoming 40 22973 L i t t l e Box E l d e r Cave, Wyoming 41 22976 L i t t l e Box E l d e r Cave, Wyomi ng 42 22977 L i t t l e Box E l d e r Cave, Wyoming 43 22978 L i t t l e Box E l d e r Cave, Wyoming 44 22979 L i t t l e Box E l d e r Cave, Wyoming 4 5 22984 L i t t l e Box E l d e r Cave , Wyoming 46 22990 L i t t l e Box E l d e r Cave, Wyoming 40545 UCM L i t t l e Box E l d e r Cave, Wyomi ng 40546 L i t t l e Box E l d e r Cave, Wyoming 40547 L i t t l e Box E l d e r Cave, Wyomi ng 40548 L i t t l e Box E l d e r Cave, Wyoming 40549 L i t t l e Box E l d e r Cave, Wyoming 40550 L i t t l e Box E l d e r Cave, Wyoming 40553 ' L i t t l e Box E l d e r Cave, Wyomi ng 40556 L i t t l e Box E l d e r Cave, Wyoming 47 40559 L i t t l e Box E l d e r Cave, Wyoming 40560 L i t t l e Box E l d e r Cave, Wyoming 40561 L i t t l e Box E l d e r Cave, Wyoming 40562 L i t t l e Box E l d e r Cave, Wyoming 40563 L i t t l e Box E l d e r Cave, Wyoming 40564 L i t t l e Box E l d e r Cave, Wyoming 40565 L i t t l e Box E l d e r Cave, Wyoming 40567 : L i t t l e Box E l d e r Cave, Wyoming 48 40568 L i t t l e Box E l d e r Cave, Wyoming 40569 L i t t l e Box E l d e r Cave, Wyoming 40570 L i t t l e Box E l d e r Cave, Wyoming 40571 L i t t l e Box E l d e r Cave, Wyoming 40573 L i t t l e Box E l d e r Cave, Wyoming 40574 L i t t l e Box E l d e r Cave, Wyoming 40575 L i t t l e Box E l d e r Cave, Wyoming 40576 L i t t l e Box "Elder Cave, Wyomi ng 40577 L i t t l e Box E l d e r Cave, Wyomi ng 40578 L i t t l e Box E l d e r Cave, Wyoming 40580 L i t t l e Box E l d e r Cave, Wyoming 40585 L i t t l e Box E l d e r Cave, Wyoming 2291 4 L i t t l e Box E l d e r Cave, Wyomi ng 22927 L i t t l e Box E l d e r Cave, Wyomi ng 22952 L i t t l e Box E l d e r Cave, Wyoming 22957 L i t t l e Box E l d e r Cave, Wyomi ng 22968 L i t t l e Box E l d e r Cave, Wyoming 22975 L i t t l e Box E l d e r Cave, Wyoming 22985 L i t t l e Box E l d e r Cave, Wyomi ng 22989 L i t t l e Box E l d e r Cave, Wyoming 0. p u s i 1 1 a 1 12666 BM Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i r e , 101 2000 Great Doward'. Cave, Wye V a l l e y , H e r e f o r d s h i r e , 102 2001 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i r e , 103 2003 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i r e , 366 2 2004 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 3 2005 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 4 2006 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 5 2007 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i r e 6 2008 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 7 2009 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 8 201 0 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 9 201 1 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 10 201 2 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i r e 1 1 2013 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 1 04 2014 Great Doward Cave, Wye V a l l e y , ' H e r e f o r d s h i re 1 2 201 5 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 1 3 201 6 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i r e 1 4 2017 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 1 05 2018 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 1 5 201 9 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 1 6 2020 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 1 7 2021 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 18 2022 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 1 9 2023 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 20 202 4 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 21 2025 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 22 2026 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 23 2027 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 24 2028 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 2 5 2029 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 26 2030 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 27 2031 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 28 2032 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 29 2033 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 30 2034 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 31 2035 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 32 2036 Great Doward Cave, Wye V a l l e y , Here f o r d s h i re 33 2037 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 34 2038 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 35 2039 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 36 2040 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 37 2041 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 38 2042 G r e a t Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 39 2043 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 40 2044 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 41 2045 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 42 2046 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 2047 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 43 2048 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 2049 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 44 2050 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i r e 45 2051 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 46 2052 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 47 2053 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 48 2054 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 49 2055 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 50 2056 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 51 2057 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 52 2058 Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 53 2059' Great Doward Cave, Wye V a l l e y , H e r e f o r d s h i re 367 54 2060 Great 55 2061 Great 56 2062 Great 57 2063 Great 58 2064 Great 59 2065 Great 60 2066 Great 61 2067 Great 62 2068 Great 63 2069 Great 64 2070 Great 65 2071 Great 66 2072 Great 67 2073 Great 2074 Great 68 2075 Great 69 2076 Great 70 2077 Great 71 2078 Great 2079 Great 72 2080 Great 73 2081 Great 74 2082 Great 75 2083 Great 76 2084 Great 84 2085 Great 85 2086 Great 96 2087 Great 86 2088 Great 97 2089 Great 98 2090 Great 99 2091 Great 87 2092 Great 2093 Great 88 2094 Great 89 M36486a Great 90 M36486b Great 91 M36486C Great 92 M36486d Great 93 M7770 Great 94 M7770a Great 95 M7770b Great 77 M7772a Great 78 M7772b Great 79 M7772c Great 80 M7772d Great 81 M7772e Great 82 M7772f Great 83 M7772g Great 100 1 5086 Great Doward Cave, Wye V a l l e y , Doward Cave, Wye V a l l e y , Doward Cave, Wye V a l l e y , Doward Cave, Wye V a l l e y , Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y Doward Cave, Wye V a l l e y H e r e f o r d s h i re, H e r e f o r d s h i re, H e r e f o r d s h i r e , H e r e f o r d s h i re, H e r e f o r d s h i re, H e r e f o r d s h i re, H e r e f o r d s h i r e , H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i r e H e r e f o r d s h i re H e r e f o r d s h i r e H e r e f o r d s h i r e H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i r e H e r e f o r d s h i r e H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i r e H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i r e H e r e f o r d s h i r e H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re H e r e f o r d s h i re 49764 MN 497391 497392 O b e r f r a n k e n , W. Germany O b e r f r a n k e n , W.. Germany O b e r f r a n k e n , W. Germany 368 497393 O b e r f r a n k e n , W. Germany 497394 Oberf ranken ,• W. Germany 497395 O b e r f r a n k e n , W. Germany 49740 O b e r f r a n k e n , W. Germany 497151 O b e r f r a n k e n , W. Germany 497152 O b e r f r a n k e n , W. Germany 24290 CM Rapp's Cave, G r e e n b r i a r Co., W. V i r g i n i a 12671 CM U r a l Mtns., M i d d l e R u s s i a , USSR GROM1 ZM M i d d l e R u s s i a , USSR GROM2 M i d d l e R u s s i a , USSR GROM3 M i d d l e R u s s i a , USSR GROM4 M i d d l e R u s s i a , USSR 0. c o l l a r i s C l a s s I f o s s i l s 3300 NMC O ld Crow R i v e r B a s i n , Loc 11A 24893 Old Crow R i v e r B a s i n , Loc 11A 24895 O l d Crow R i v e r B a s i n , Loc 11A 18776 O l d Crow R i v e r B a s i n , Loc 20 28853 Old Crow R i v e r B a s i n , Loc 22 31472 Old Crow R i v e r B a s i n , Loc 22 18636 Old Crow R i v e r B a s i n , Loc 27 18637 O l d Crow R i v e r B a s i n , Loc 27 18646 O l d Crow R i v e r B a s i n , Loc 27 28709 O l d Crow R i v e r B a s i n , Loc 27 31353 Old Crow R i v e r B a s i n , Loc 27 31362 O l d Crow R i v e r B a s i n , Loc 27 31371 O l d Crow R i v e r B a s i n , Loc 27 22052 O l d Crow R i v e r B a s i n , Loc 27W 22061 O l d Crow R i v e r B a s i n , Loc 27W 22135 Old Crow R i v e r B a s i n , Loc 27W 22140 Old Crow R i v e r B a s i n , Loc 27W 22174 Old Crow R i v e r B a s i n , Loc 27W 22189 Old Crow R i v e r B a s i n , Loc 27W 22193 O l d Crow R i v e r B a s i n , Loc 27W 22208 Old Crow R i v e r B a s i n , Loc 27W 22215 O l d Crow R i v e r B a s i n , Loc 27W 22241 Old Crow R i v e r B a s i n , Loc 27W 22242 O l d Crow R i v e r B a s i n , Loc 27W 22247 O l d Crow R i v e r B a s i n , Loc 27W 22256 O l d Crow R i v e r B a s i n , Loc 27W 22264 O l d Crow R i v e r B a s i n , Loc 27W 22267 Old Crow R i v e r B a s i n , Loc 27W 22268 O l d Crow R i v e r B a s i n , Loc 27W 22279 Old Crow R i v e r B a s i n , Loc 27W 369 25277 Old Crow R i v e r B a s i n , Loc 27W 25284 Ol d Crow R i v e r B a s i n , Loc 27W 25291 Old Crow R i v e r Bas i n , Loc 27W 25303" O l d Crow R i v e r B a s i n , Loc 27W 2531 3 Ol d Crow R i v e r B a s i n , Loc 27W 31404 Ol d Crow R i v e r B a s i n , Loc 27W 31 408 Old Crow R i v e r B a s i n , Loc 2 7W 31 426 Old Crow R i v e r B a s i n , Loc 27W 1 5633 Ol d Crow R i v e r B a s i n , Loc 28 1 571 3 Ol d Crow R i v e r B a s i n , Loc 28 1 8368 Ol d Crow R i v e r B a s i n , Loc 29 18559 Old Crow R i v e r B a s i n , Loc 29 18563 Old Crow R i v e r B a s i n , Loc 29 1 5830 Ol d Crow R i v e r B a s i n , Loc 44 1 5831 Old Crow R i v e r B a s i n , Loc 44 1 5832 Ol d Crow R i v e r B a s i n , Loc 44 1 5833 Ol d Crow R i v e r B a s i n , Loc 44 1 5834 Old Crow R i v e r B a s i n , Loc • 44 15835 Old Crow R i v e r B a s i n , Loc 44 1 5836 Old Crow R i v e r B a s i n , Loc 44 1 9241 Ol d Crow R i v e r B a s i n , Loc 44 20740 Ol d Crow R i v e r Bas i n , Loc 44 25487 Ol d Crow R i v e r B a s i n , Loc 44 32218 Old Crow R i v e r B a s i n , L O C 44 32219 Ol d Crow R i v e r B a s i n , Loc 44 32535 Ol d Crow R i v e r B a s i n , Loc 44 32537 Ol d Crow R i v e r Bas i n , Loc 44 32538 Ol d Crow R i v e r Bas i n , Loc 44 32539 Ol d Crow R i v e r B a s i n , Loc 44 32621 Ol d Crow R i v e r B a s i n , Loc 44 32623 Ol d Crow R i v e r B a s i n , Loc 44 32625 Ol d Crow R i v e r B a s i n , Loc 44 32626 O l d Crow R i v e r Bas i n , Loc 44 32627 Ol d Crow R i v e r B a s i n , Loc 44 24790 Old Crow R i v e r B a s i n , Loc 45 24792 Ol d Crow R i v e r B a s i n , Loc 45 28666 Old Crow R i v e r B a s i n , Loc 1 37 31213 O l d Crow R i v e r B a s i n , Loc 1 55 C l a s s I I f o s s i l s 45 NMC Old Crow R i v e r B a s i n , Loc 1 1 A 1 8224 Old Crow R i v e r B a s i n , Loc 1 1 A 24741 Old Crow R i v e r B a s i n , Loc 1 1 A 31 489 Ol d Crow R i v e r Bas i n , Loc 20 24673 Old Crow R i v e r B a s i n , Loc 22 25053 Old Crow R i v e r B a s i n , Loc 22 18269 Ol d Crow R i v e r Bas i n , Loc 27 18635 Old Crow R i v e r B a s i n , Loc 27 28700 Ol d Crow R i v e r B a s i n , Loc 27 28733 Ol d Crow R i v e r B a s i n , Loc 27 22161 . O l d Crow R i v e r Bas i n, Loc 27W 221 62 Ol d Crow R i v e r B a s i n , Loc 27W 22163 • Old Crow R i v e r B a s i n , Loc 27W 22166 Old Crow R i v e r B a s i n , Loc 27W 22167 Old Crow R i v e r B a s i n , Loc 27W 22205 Ol d Crow R i v e r B a s i n , Loc 27W 22231 O l d Crow R i v e r B a s i n , Loc 27W 22240 Ol d Crow R i v e r B a s i n , Loc 27W 22245 Ol d Crow R i v e r B a s i n , Loc 2 7W 22265 O l d Crow R i v e r B a s i n , Loc 27W 22266 Old Crow R i v e r Bas i n, Loc 27W 22276 Ol d Crow R i v e r B a s i n , Loc 27W 18568 Ol d Crow R i v e r B a s i n , Loc 29 1 5835 Ol d Crow R i v e r B a s i n , Loc 44 25488 Old Crow R i v e r B a s i n , Loc 44 25489 Ol d Crow R i v e r B a s i n , Loc 44 3221 7 Ol d Crow R i v e r B a s i n , Loc 44 32533 Ol d Crow R i v e r B a s i n , Loc 44 32534 Old Crow R i v e r B a s i n , Loc 44 32536 Old Crow R i v e r B a s i n , Loc 44 32622 Ol d Crow R i v e r B a s i n , Loc 44 32624 Ol d Crow R i v e r B a s i n , Loc 44 28649 Ol d Crow R i v e r B a s i n , Loc 65 28768 Ol d Crow R i v e r B a s i n , Loc 1 04 31235 O l d Crow R i v e r B a s i n , Loc 1 55 C l a s s I I I f o s s i l s 645 NMC Old Crow R i v e r B a s i n , Loc 11A 9484 O l d Crow R i v e r B a s i n , Loc 11A 24380 Old Crow R i v e r B a s i n , Loc 11A 16817 O l d Crow R i v e r B a s i n , Loc 14N 371 APPENDIX 3 THE OCHOTONA ALPINA COMPLEX: A STATISTICAL RE-EVALUATION MARIA L. WESTON, Zoology Department, University of British Columbia, 2075 Wesbrook Mall, Vancouver, B.C. Canada V6T 1W5 Abstract: The taxonomic statuses of Ochotona alpina, 0.collaris and 0. princeps are reviewed and, using craniometric data taken on fossil and Recent specimens, are stat is t ica l ly re-evaluated. All 3 species are distinctive, although alpina appears to be morphologically more similar to princeps than i t is to collaris. Speciation of the 3 taxa is probably the result of isolation due to glaciation, and i t is suggested that al l 3 species are descendent from a common ancestor. The term 'Ochotona alpina complex' appears best applied at a super-specific level to denote the propinquity of these 3 species. The genus Ochotona consists of approximately 14 species of pikas (see Smith 1981). The variations in total number of species contained within the genus has been largely affected by differing methods of handling 3 species in particular, Ochotona alpina, 0.collaris and 0.princeps. These have been combined, into a single species (Gureev 1964, Corbet 1978), divided into 2 species (Broadbrooks 1965, Youngman 1975) and described as 3 separate species (Ellerman and Morrison-Scott 1951). Both 0.collaris and 0.princeps are North American forms (Fig. 1). 0.collaris is found in portions of Alaska, the Yukon, the Northwest Territories and northernmost British Columbia, and 0.princeps ranges throughout southern British Columbia and discontinuously along the west coast of the United States. Fossil remains have been reported from various caves across the United States. These caves include Owl and Jaguar Caves in Idaho (Guilday 1969, Guilday and Adam 1967, Kurten and Anderson 1972) and Trout and Rapps Caves in West Virginia (Guilday 1971). Very l i t t l e taxonomic work has been done on these specimens although Guilday (pers. comm. 1978) is beginning to re-examine much of this material and tentatively assigns the specimens to 0.princeps. Harington, in 1977, working under the assumption that there is only 1 extant species of Ochotona in North America {princeps), examined 77 fossil pika specimens from the Old Crow Basin in the Yukon. He referred 75 of these specimens to 0.princeps and the remaining 2 to an extinct species O.uhartoni. In 1973, Guthrie described a mummified pika carcass found in a gravel dr i f t near Fairbanks, Alaska and noted that i t was similar to 0. collaris. The Asian species 0.alpina, taken in i ts broadest sense (cf Kawamichi 1981), has a very extensive range throughout much of northeastern Asia (Fig. 1). Unfortunately, virtually no information is available on the fossil record of this species and further research is needed in that area. In 1965 Broadbrooks proposed that since the northern and southern Recent populations of North American pikas resembled each other so closely in morphology, behaviour and habitat, they should be viewed as a single species. Youngman (1975) suggested that 0.collaris be given subspecific status as 0.princeps collaris. Gureev (1964) and Corbet (1978) not only considered the 2 North American populations conspecific, but included them with 0. alpina, forming what may be termed as 'Ochotona alpina complex'. 73 372 Corbet noted however that Ochotona ' i s a very d i f f i c u l t genus fo r the taxonomist with rather small d i f ferences between s p e c i e s . . . ' (Corbet 1978:66). Figure 1. Approximate ranges of Ochotona alpina, Ochotona collaris and Ochotona princeps based on Ellerman and Morrison-Scott (1951), Grzimek (1975), Orr (1977), Kawamichi (1981), Hall and Kelson (1959) and F e i s t and McCourt (1973). Although the status of these 3 species remains moot, a trend toward the s i m p l i f i c a t i o n o f the genus i s ev ident . In almost a l l cases, taxonomic decis ions regarding the species have been based mainly on sku l l c h a r a c t e r i s t i c s . Genera l ly , descr ipt ions have been verbal with Youngman (1975) and Harington (1977) presenting a few simple s t a t i s t i c s . The purpose of t h i s study i s , t o re-evaluate the re la t ionsh ips between the 3 forms using craniometric data gathered on both f o s s i l and recent specimens. Sneath and Sokal (1973) note that being q u a n t i t a t i v e , numerical 74 373 methods provide greater d i sc r iminat ion along the spectrum of taxonomic d i f f e rences , and a l so have the advantages o f r epea tab i l i t y and o b j e c t i v i t y . These methods are, as a r e s u l t , more sens i t i ve in de l imi t ing taxa, an important cons iderat ion when deal ing with a genus in which d i f ferences between species are smal l . Acknowledgements: \ a r n indebted to Drs. D. Wil l iams and S.S. Le f o r t h e i r s t a t i s t i c a l he lp, to Veronica Brown for pa t ien t l y typing various vers ions o f the text and to Sarah Smith f o r her many he lp fu l suggestions on improving the manuscript. For the loan of specimens or f o r permission to study material i n t h e i r care, I would l i k e to thank the curators of the mammalogy and vertebrate paleontology co l l e c t i on s of the National Museums of Canada (Ottawa), the American Museum of Natural History (New York) , Museum o f Comparative Zoology (Harvard), Puget Sound Museum of Natural H is tory (Tacoma), Cowan Vertebrate Museum (Vancouver), and the Royal Ontario Museum (Toronto). This study was pr imar i ly supported by NSERC ind iv idua l operating grant number 3462 to Dr. J.M. Tay l o r . MATERIALS AND METHODS I examined both f o s s i l and Recent sku l l s o f Ochotona zlpina, 0.princeps and 0. collaris from the mammal c o l l e c t i o n s of American Museum of Natural H is tory (New York), Cowan Vertebrate Museum (Vancouver), Museum of Comparative Zoology (Harvard), National Museums of Canada (Ottawa), Puget Sound Museum of Natural History (Tacoma) and the Roys! Ontario Museum (Toronto). A to ta l o f 232 Recent adult sku l l s was used. Sample s izes ranged from 12 to 166. I omitted juveni les to reduce problems of morphological v a r i a t i on due to age. A specimen was designated as a juven i le i f any 2 of the fo l lowing condit ions were met: 1) c r an i a l sutures were not o s s i f i e d ; 2) pa r i e t a l s were very t h i n , almost t rans lucent ; 3) teeth had not completely erupted or showed l i t t l e signs o f wear; 4) the specimen was l i s t e d as a juven i le by the c o l l e c t o r . In add i t i on , I examined 233 f o s s i l specimens from the Old Crow Basin in the Yukon, 76 of which were the same specimens previously described by Harington (1977). This f o s s i l material was exc lus ive ly mandibular and in no case was a mandible complete. I excluded specimens from the data matrix i f the teeth showed very l i t t l e signs of wear under the assumption that these were from juven i l e animals. I took a maximum of 42 measurements on each sku l l using d i a l c a l i pe r s reading to 0.05 mm. Twenty-f ive of these measurements were taken on the cranium ( F i g . 2) and 17 on the mandible ( F i g . 3 ) . 75 374 Figure 2. Diagrammatic representation of measurements taken on the cranium [0. princeps, NMC 1086). 1. Cranium Basal length: From the anter ior edge of the premaxil lae to the (BASLEN) anteriormost point on the lower border of the foramen magnum (F i g . 2(B) J-Q) Greatest length of the s k u l l : From the anteriormost part of the (GRTLEN) rostrum (excluding teeth) to the posteriormost point of the skul l ( F i g . 2(A) A-F) Zygomatic width: Greatest distance between the outer margins of (ZYGWID) the zygomatic arches ( F i g . 2(A) D-H) Braincase breadth: Greatest width across the braincase pos ter io r to (BRNBRD) the zygomatic arches (F i g . 2(A) E-I) Least i n te ro rb i t a l breadth: Least distance dorsa l l y between o rb i t s (LIO) ( F i g . 2(A) C-G) Diastema: From* posteriormost margin of the alveolus of I1 to the (DIASTM) anteriormost margin o f the a lveolus of P 2 ( F i g . 2(B) K-L) Maxi l lary tooth row: Length from the anteriormost margin of the a lveolus (MAXTRL) of P 2 to the posteriormost margin of the a lveolus of M2 76 375. Palatal length: From a n t e r i o r edge of premaxi l lae to anteriormost (PALLEN) point on pos ter io r edge of p l a te ( F i g . 2(B) J-N) Palata l width: Width o f pa late between the posteriormost points o f (PALWID) the a l v e o l i o f P" ( F i g . 2(B) M) Nasal length: From anteriormost point of nasal bones to the (NSLLEN) posteriormost point (F i g . 2(A) A-B) Bul la length: Length from posteriormost p ro jec t ion of the b u l l a (BULLEN) to the anteriormost point ( F i g . 2(B) P-R) Bul la width:. Greatest width o f the bu l la ( F i g . 2(B) S-T) IBULWID) 2. Mandible Length: (MANLEN) Depth 1: (MANDP1) Depth 2: (MANDP2) Depth 3: (MANDP3) Width: (MANWID) Tooth row: (MNTRLN) Diastema: (MNDIAS) Dent i t ion From superior a l veo la r margin of I 2 to posteriormost point o f the angular process ( F i g . 3(A) A-F) Depth of mandible taken at midpoint o f mandibular symphysis ( F i g . 3(A) E-J) Depth o f mandible taken at P„ ( F i g . 3(A) D-I) Depth o f mandible taken poster ior to M 3 ( F i g . 3(A) B-H) Maximum width of mandible taken perpendicular to mandible depth 3 ( F i g . 3(A) C-G) Length from the anter io r edge of the a lveolus of P s to pos ter io r edge of a lveolus of M3 ( F i g . 3(B) L-M) From posteriormost margin of the alveolus of I i to anteriormost margin of the alveolus of P 3 ( F i g . 3(B) K-L) Length and width of f i r s t upper i nc i so r : The greatest length (I1LEN) (anteroposter ior diameter) and width of I1 taken (I1W1D) at the a lveo lus Width of second upper i n c i s o r : Greatest width of I 2 taken at the (I2WID) a lveolus Length and width of cheek teeth: Maximal measurement of length *(P2-4LEN/WID) (anteroposter ior diameter) and width (bucco-1ingual *(M1-2LEN/WID) diameter) f o r each ind iv idua l tooth taken approximately *(MP3-4LEN/WID) 1 mm below the occ lusa l sur face, o r ien t ing the *(MM1-3LEN/WID) occ lusa l surface p a r a l l e l to the jaws of the c a l i pe r s (F i g . 3(C) N-0, P-U, etc.) * P M r e f e r to c ran ia l measurements. MP, MM re fe r to mandibular measurements. In some cases sku l l s belonged to pikas of unknown sex and therefore i t was necessary to determine whether these specimens could be pooled with those of known sex and thus increase the sample s i z e . To assess sexual dimorphism I appl ied a 1-way, males against females, mu l t i var ia te ana lys i s o f variance (MANOVA) to each species i nd i v idua l l y and to a l l 3 species together. 77 3 7 6 A mu l t i va r i a te analys is o f variance was fu r ther used to detect character var i a t ion among the 3 taxa using Recent specimens only. 0. alpina was compared f i r s t with 0.princeps then with 0.collaris, and 0. collaris and 0.princeps were compared separate ly . These tes ts were fol lowed by a stepwise d iscr iminant analyses ( a f te r Morrison 1976) as was deemed appropriate based on the resu l t s of the MANOVA. For a "be t te r v i sua l understanding o f the re la t ionsh ips among the 3 taxa, points were projected into orthogonal canonical var ia te space. Group means were then c lus tered using an unweighted pa i r group method (UPGMA) based on t h e i r Mahalanobis d i s tance, D. In almost a l l cases, mu l t i va r i a te s t a t i s t i c s require complete data matrices for computational purposes. The highly fragmentary s tate o f the f o s s i l material provided only incomplete data matrices and so most of these techniques were inapp l i cab le . As a r e s u l t , I f i r s t compared Recent and f o s s i l specimens using a Model I un ivar ia te ana lys i s o f variance (ANOVA) for each ind iv idua l mandible measurement. Based on the resu l t s of th i s t e s t , I then performed a Duncan's mul t ip le range te s t ( a f te r Zar 1974) on each measurement as appropriate. RESULTS Sexual Dimorphism Although there are c o n f l i c t i n g reports regarding sexual dimorphism in the family Leporidae (e.g. Baker et a l . 1978, Sobocinska-Janasza 1981) there are no data as to i t s existence within the ochotonids. A MANOVA on sku l l characters measured f o r this study ind icates that the sku l l s o f males and females, wi th in each species and among a l l 3 spec ies , do not d i f f e r (P<0.0001 ). Therefore, for a l l the fo l lowing t e s t s , the sexes were pooled and the sku l l s o f adults o f unknown sex were inc luded. RECENT MATERIAL 0.princeps vs 0.collaris A MANOVA te s t ind icated that there are d i f ferences between the sku l l s o f Recent O.princevs and 0.collaris (F approximation of the l i k e l i h o o d r a t i o = 17.3523, df = 42 & 165, P<0.0001). Therefore a stepwise d iscr iminant analys is was appropriate. That ana lys i s provided a means for weighting characters , in th i s case the 42 sku l l measurements, such that as many i n d i v i d u a l s , or operational taxonomic units (OTU's), of 1 taxon have high values f o r a l i n e a r funct ion of these characters and as many as poss ib le of another have low values. In th i s way the l i n e a r character funct ion can serve as a much better discr iminant o f the 2 taxa than w i l l any 1 character s ing ly . The measured character set i s almost always reduced to a smal ler set and the function i s such that i t has maximal variance between groups r e l a t i v e to the pooled variance with in groups (Sneath and Sokal 1973). The functions ca lcu la ted by a stepwise d iscr iminant analys is appl ied to O.pHnceps and 0.collaris (Table 1), were used to c l a s s i f y 2 separate data matr ices. The f i r s t matrix cons isted of those specimens which had been used 1n the o r i g i na l ca l cu la t ions of d iscr iminant funct ions , and the second of new ind iv idua l s of known a f f i n i t y . Specimens from the f i r s t matrix were c l a s s i f i e d co r rec t l y {a posteriori) 98* of the time (Table 2a) and those o f the second matrix were c l a s s i f i e d c o r r e c t l y in 9 U of the cases (Table 2b). The high percent of ind iv idua l s c l a s s i f i e d c o r r e c t l y suggests that the functions are e f f e c t i v e in d i sc r iminat ing between 0.collaris and 0.princeps. Table 1. C l a s s i f i c a t i o n funct ions produced by a stepwise d iscr iminant ana ly s i s . 0.alpina vs O.princevs and 0.collaris A mul t i va r i a te analys is of variance detected d i f fe rences between 0.alpina and O.princevs (F approximation o f the l i k e l i h o o d ra t ion = 4.0697, df = 42 and 176, P < 0.0001 ) and between O.alpina and O.collaris (F approximation = 16.8346, df = 42 and 176, P < 0.0001). A subsequent stepwise discr iminant ana lys i s produced c l a s s i f i c a t i o n funct ions (Table 3) which c l a s s i f i e d , a posteriori, 95% of the cases c o r r e c t l y and 85% o f new ind iv idua l s c o r r e c t l y (Table 4). The points were projected into orthogonal canonical var ia te space ( F i g . 4) with the 2 canonical axes accounting f o r 83 and 27 percent of the t o t a l d i spers ion re spec t i ve l y . O.collaris i s separated from o.princeps, p r imar i ly along the f i r s t axis and from O.alpina along both axes, while O.princevs and O.alpina are large ly d i f f e r e n t i a t e d only along the second ax i s . The r e l a t i v e contr ibut ions of measured characters to each of the canonical var iab les i s indicated by the c o e f f i c i e n t s O.princeps O.collaris ZYGWID DIASTM ALVLEN NASALL P2-LEN P3-LEN P4-WID Ml-WID MANDP3 MP3-LN MP4-LN MM1-LN MM1-WD MM3-WD 60.27 -13.18 1.42 -13.79 20.56 6.10 - 6.27 53.72 -19.30 - 3.59 -13.95 73.82 29.89 60.19 63.62 - 9.14 10.06 -17.84 31.27 - 5.78 -21.69 41.95 -25.68 -37.56 - 0.88 83.72 46.21 42.20 3 7 9 Table 2. C l a s s i f i c a t i o n matrices f o r O.princeps and 0.collaris. a. C l a s s i f i c a t i o n matrix based on an a posteriori c l a s s i f i c a t i o n . 0.princeps 0. collaris Tota l Percent Total n Correct Percent 0. princeps 156 4 160 97.5 97.6 0. collaris ' 1 47 48 97.9 . C l a s s i f i c a t i o n matrix based on the c l a s s i f i c a t i o n of new ind i v i dua l s . 0.princeps 0.collaris Total Percent Tota l n Correct Percent 0. princeps 5 1 6 83.3 91.0 0. collaris 0 5 5 • 100.0 in Table 5. The measurements MP3LEN, 12WID and MM1LEN are most important to the separation along canonical var iab le I and separation along canonical var iab le II i s most inf luenced by 12WID, M2LEN and P2WID. In e i ther case, measurements of i nd iv idua l teeth are of greatest importance in d i f f e r e n t i a t i n g between groups. Table 3. C l a s s i f i c a t i o n functions produced by a stepwise discr iminant ana ly s i s . O.alpina O.princeps O.collaris BASLEN 7.09 5.22 7.69 L.1.0. 52.38 56.74 60.13 MAXTRL 39.49 43.38 51.40 NSLLEN -11.85 -10.79 -15.23 I2WID -64.39 -39.51 -65.22 P2WID 14.16 - 6.70 - 0.34 P4WID -21.45 -15.95 -28.03 Ml WID 30.51 19.69 7.55 M2LEN 50.43 72.54 77.96 MAMDP1 - 3.40 -10.40 -10.46 MAKDP3 - 5.57 - 2.44 - 7.78 MP3LEN 40.26 33.62 0.72 MP41WN -46.20 -36.10 -25.01 MM1LEN 117.76 117.28 134.28 81 • 0. piping A 0. colloris O 0. princeps o o • o OO c P ° - U *0 cP CO o o ° CANONICAL VARIATE I Figure 4. P lot of ind iv idua l points in canonical va r i a te space. So l id symbols represent group means. The group means were c lustered using an unweighted pa i r group method of ana lys i s (UPGMA) based on Mahalanobis d i s tance, D. The re su l t i ng phenogram (F i g . 5) suggests that 0.alpina and 0.princeps are more s im i l a r to each other than e i ther i s to 0.collaris, which is a l so somewhat re f l e c ted in F i g . 4. FOSSIL MATERIAL The f o s s i l materia l I examined appeared to f a l l into 3 broad s i ze groups or c las ses . Some of the f o s s i l specimens were extremely large and were placed into a s i ze category designated Class III. The next s ize group, Class II, consisted of specimens which were approximately 10% larger than Recent 0.princeps or 0.collaris. The f i n a l s i ze c l a s s , Class I, contained f o s s i l s approximately equivalent in s ize to Recent specimens. Means, standard deviat ions and observed ranges f o r the 3 s ize classes are given in Table 6. The s i ze c lasses of f o s s i l s were f i r s t compared with the Recent species 0.alpina, 0.collaris and Q.princeps over each mandibular measurement using a Model I ANOVA. In each case the F was s i gn i f i c an t (P Q CO o < < X < O. alpina O. princeps O. collaris Figure 5. Phenogram of group means based on Mahalanobis d is tance, D. 83 Table 5 . Coe f f i c ien t s f o r canonical va r i ab le s . Canonical Var iable Canonical Var iab le I II BASLEN -0.57387 0.44702 L.I.O. -0;84547 -1.38898 MAXTRL -1.94757 -1.42554 MSLLEN 1.05219 -0.13851 I2WID 5.93514 -6.23259 P2WID -1.34828 5.79810 P4WID 2.83919 -1.13838 Ml WID 2.98922 3.58524 M2LEN -1.47939 -6.59968 MANDP1 0.07178 2.02791 MAN DP 3 1.25008 -0.70555 MP3LEN 7.91546 ' 3.15642 MP4LEN -2.73153 -3.33901 MM1LEN -4.05758 -0.49953 DISCUSSION The re su l t s of the s t a t i s t i c a l analys is c l e a r l y indicated that d i f ferences ex i s t among the sku l l s of O.princeps, 0.collaris and 0.alpina. These appear pr imar i ly due to var ia t ions in tooth morphology. Measurements of ind iv idua l teeth appear prominently in the c l a s s i f i c a t i o n funct ions presented in Tables 2 and 4, as well as playing a major ro l e in the separation of the taxa in canonical var ia te space as seen in F i g . 4. It is not surpr i s ing that tooth morphology should be so important in separating the taxa because, as Dawson (1967) noted, except for morphology of the teeth ( p a r t i c u l a r l y of P 2 and P 3 ) the lagomorph record shows r e l a t i v e l y few features to d i f f e r e n t i a t e generic and lower l e v e l s . The s ize var ia t ion exhib i ted by the f o s s i l s from the Old Crow Basin along with the very large specimen described by Guthrie and Matthews (1971) indicated that during the Ple is tocene pikas were morphological ly more va r i ab le . Guthrie (1973) provided evidence that 0.collaris, considered a member of the alpine fauna, had spread into the lowlands of centra l Alaska during the late Pleistocene and occupied a d r i e r , more s teppe- l ike environment than now preva i l s there. Harington (1977) suggests that sh i f t s of habitat such as those described by Guthrie could be la rge ly responsible fo r the var iat ions in s ize observed in the f o s s i l ochotonids from Alaska and the Yukon. He postulated that the very large ochotonids occupied a r e l a t i v e l y r i ch steppe grassland habitat in eastern Beringia during the ear ly to middle P le istocene and t h e i r large s ize may be a t t r i bu tab le to access to more abundant lowland forage. As with many other mammals, these large ochotonids became ext inct sometime during the la te Pleistocene while smaller p ikas, such as those represented by the Class I f o s s i l s , continued Table 6. Means, standard deviat ions and observed range for the 3 s i z e c lasses of f o s s i l s . Class I Foss i l s Class II Fos s i l s Class III Fos s i l s MEASUREMENT n x + s n x + s n x + s (OR) (OR) (OR) MANDP1 6 3.29 + 0.57 6 3.99 ± 0.40 -(2.55 - 3.90) (3.60 - 4.70) 3 10.48 ± 0.52 MANDP2 42 6.43 ± 0.84 31 7.14 ± 0.48 (9.90 ± 10.90) (4.20 - 8.00 (6.30 - 8.05) 5 8.28 - 1.37 MANDP3 52 5.64 ± 0.59 29 6.16 ± 0.41 (6.55 - 9.90) (4.00 - 6.85) (5.50 - 7.05) 6 4.39 ± 0.62 MANWID 54 3.30 ± 0.31 30 3.55 ± 0.24 (3.50 - 5.00) (2.45 - 3.95) (3.00 - 4.00) MNTRLN 15 8.87 ± 0.89 10 9.42 ± 0.35 -(6.45 - 9.85) (8.85 - 9.90) MNDIAS 3 6.25 ± 1.24 2 6.93 ± 0.46 -(5.15 - 7.60) (6.60 - 7.25) MP3LEN 13 1.82 ± 0.32 6 1.97 ± 0.28 -(1.20 - 2.50) (1.65 - 2.35) MP3WID 13 1.54 ± 0.21 6 1.68 ± 0.07 -(1.20 - 1.90) (1.55 - 1.75) MP4LEN 36 1.81 + 0.16 27 1 .95 ± 0.10 2 2.53 ± 0.04 (1.50 - 2.05) (1 .80 - 2.20) (2.50 - 2.55) MP4WID 36 1.89 + 0.17 27 2.03 ± 0.11 2. 2.73 ± 0 . 0 4 (1.50 - 2.20) (1.70 - 2.25) (2.70 - 2.75) MM1LEN 50 1.96 + 0.25 31 2.12 ± 0 . 1 2 4 2.93 ± 0 . 1 6 (1.40 - 2.75) 1.90 - 2.40 (2.70 - 3.05) MM1WID 52 1.94 ± 0.24 32 2.07 ± 0.12 5 2.67 ± 0 . 3 4 (1.40 - 2.80) (1.80 - 2.35) (2.10 - 3.00) MM2LEN 58 1.98 ± 0.21 31 2.10 ± 0 . 1 3 6 2.66 ± 0 . 3 9 (1.45 - 3.00) (1.80 - 2.35) (2.10 - 3.05) MM2WID 58 1.90 ± 0 . 2 0 31 2.01 ± 0 . 1 6 6 2.53 ± 0 . 3 5 (1.35 - 2.70) (1 .85 - 2.30) (2.00 - 2.90) MM3LEN 37 0.90 ± 0 . 9 0 24 0.97 ± 0 . 1 0 5 1.04 ± 0 . 1 4 (0.70 - 1 .10) (0.80 - 1 .10) (0.90 - 1.25) MM3WID 37 1.46 ± 0 . 1 4 24 1.52 ± 0 . 1 5 5 1.78 ± 0 . 2 0 (1.05 - 1.65) (1.25 - 1.90) (1.55 - 2.00) co co co to t h r i v e . In North America, Guthrie (1973) a t t r ibuted the separation of 0.collaris and o.princeps to i s o l a t i o n during the Wisconsin g l a c i a t i o n , with 1 population surv iv ing within the Alaskan Refugium and 1 to the south of the major ice sheet. Youngman (1975) combined 0.collaris and O.princeps into a s ing le species based large ly upon a comparison involv ing 9 c ran i a l characters . A l i s t of these characters along with those chosen as best d i scr iminators by the stepwise d iscr iminant ana lys i s i s in Table 8. There are only 3 characters in common between Youngman's l i s t and the one produced s t a t i s t i c a l l y . Most notably absent from Youngman's character set are measurements of ind iv idua l t e e t h , which could poss ib ly expla in why he was unable to detect d i f fe rences between the 2 taxa. In addit ion to morphological evidence, Kawamichi (these proceedings) has observed behavioural d i f fe rences between 0 and 0.collaris. He found that various l o ca l populations of O.princeps possess a long c a l l , while th i s c h a r a c t e r i s t i c i s absent in 0.collaris. Kawamichi suggests that 0. collaris and O.princeps should be regarded as separate species and on the basis of my r e s u l t s , I s t rong ly concur. The Asian 0.alpina i s more d i f f i c u l t to consider because i t s taxonomic po s i t i on with regard to other Asian species remains moot (see Corbet 1978, Smith, these proceedings), e spec i a l l y s ince there i s a paucity of f o s s i l mater i a l . My resu l t s suggest that 0.alpina i s d i s t i n c t from both 0.collaris and O.princeps, although F ig s . 4 and 5 ind icate that 0.alpina i s morphological ly more s im i l a r to O.princeps than i t i s to ~0.collaris. This i s p a r t i c u l a r l y in teres t ing when consider ing the r e l a t i v e geographic pos i t ions of the 3 species (see F i g . 1). 0.collaris is geographical ly intermediate between the other 2 species but c ran iometr i ca l l y i s the most d i s s i m i l a r . One explanation f o r th i s could be a separate invasion from Asia or character displacement, or perhaps both. The Old Crow f o s s i l s , which were found near 0.collaris' present range, show some s i m i l a r i t i e s to a l l 3 species (Table 8) and perhaps represent an intermediate form. If th i s i s indeed the case, then character displacement would appear to be a more l i k e l y explanation f o r the pronounced d i f fe rence of 0.collaris than would a separate invas ion. Taking th i s in to account, a common ancestor f o r a l l 3 species seems l i k e l y with 0.alpina being i so l a ted from the North American forms by the c losure of the Bering Land Bridge. Ident i fy ing a common ancestor i s at best specu lat ive. Vorontosov and Ivanitskaya (1973) have indicated a c lo se re l a t i onsh ip between the centra l Asian 0.pusilla and the 2 North American species based on chromosome number. A centra l Asian center of or i g in does appear l i k e l y and has been noted in other mammalian species such as the mountain sheep., Ovis sp. (Geist 1971). The actual r e l a t i on sh ip among these 3 species w i l l probably only be f u l l y r ea l i zed when f o s s i l c o l l e c t i o n s are expanded and a rev i s i on of the e n t i r e genus Cjhotona has been completed. However, based on the re su l t s of th i s study, I fee l that 0.alpina, 0.collaris and O.princeps are probably separate and good spec ies , although a re l a t i onsh ip may ex i s t at the superspec i f i c Table 7. Results of a Duncan's Mul t ip le Range test performed on 0.alpina, 0.collaris, O.princepn find the 3 f o s s i l s i ze c las ses . Measurement Homogenous Subsets MANDP1 (0.alpina, Class I Fo s s i l s ) MANDP2 (0. alpina,O.princeps) (0.alpina,0.collaris) MANDP3 (0.alpina,O.princeps) MAHWID ' (0.alpina,0.princeps,0.collaris) MNTRLN (0.aIpina, 0.princeps) (0. alpina,0.collaris) MNDIAS (0.alpina,0.collari8,ZUss I Fos s i l s ) (C la s s I Fossl l s .O.pr ineepsHCIass I Fo s s i l s ,C l a s s II Fo s s i l s ) MP3LEN (0.alpina,O.princeps) MP3WID (0.alpina,O.princeps) (0.alpina,0.collaris) MP4LEN No homogenous subsets MP4WID (0.alpina,O.princeps)(0.alpina,0.collaris) MM1LEN (0. alpina, 0 .princv.pa ,0. collaris) MM1WID (0. alpina, O.princepn, O.cbllaris) MM2LEN (0.alpina,0.princeps,0.collaris) MM2WID (0.alpina,0.princeps,0.collaris) MM3LEN (O.alpina.o.princeps,0.collaris. Class I Fo s s i l s , Class III FosslIs;(0.alpina,a\ 1 f o s s i l groups; MM3W1D (0.aIpina,O.princepn) (0. alpina,0.col laria) CO ca (SI l e v e l . Perhaps the term 'Ochotona alpina complex' w i l l provide a useful frame of reference in i den t i f y ing a species group of common ancestry. Table 8. Comparison of characters Characters chosen by Youngman (1975:56) Characters chosen by stepwise d iscr iminant ana lys i s GRTLEN 1 MANDP3 ZYGWD P4WID BRNBRD DIASTM L.I.O. •NSLLEN PALWID •ZYGWID NSLLEN MP3LEN MAXTRL •MAXTRL BULLEN2 MP4LEN BULWID2 P3LEN MIWID MM3WID MM1WID P2LEN MM1LEN L i s ted by Youngman as 'Occ ip i to -nasa l l eng th ' . 2 Youngman re fe r s to the to ta l s ize of the bu l l ae . For comparative purposes I assigned length and width components. LITERATURE CITED BAKER, A . J . , R.L. PETERSON, J . L . EGER.and T.H. MANNING. 1978. S t a t i s t i c a l ana lys i s of geographic va r i a t i on in the sku l l of the a r c t i c hare (Levus arcticus). Can. J . Zoo l . 56:2067-2082. BR0ADBR00KS, H.E. 1965. Ecology and d i s t r i b u t i o n of the pikas of Washington and Alaska. Amer. M i d i . Nat. 73:299-335. CORBET, G.B. 1978. The mammals of the Pa learc t i c region: a taxonomic review. B r i t i s h Museum (Natural History) and Cornel l Un ivers i ty Press. London and I th ica . 314 pp. DAWSON, M.R. 1967. Lagomorph h i s tory and the s t ra t i g raph ic record. Pp. 287-316 In: C. Te ichert and E.L. Yochelson (Eds). Essays in paleontology and strat igraphy (R.C. Moore commemorative volume). Dept. Geol. Univ. Kansas Special Pub!. 2. 626 pp. ELLERMAN, J.R.,and T.C.S. MORRISON-SCOTT. 1951. 2nd ed. Checkl i s t of Pa laearc t i c and Indian mammals, 1758-1946. B r i t i s h Museum (Natural H i s to ry ) . London. 716 pp. FEIST, J.D.,and K.H. McCOURT. 1973. A northern range extension f o r the pika in the Northwest T e r r i t o r i e s . Can. F i e l d Nat. 87:317-318. GEIST, V. 1971. Mountain Sheep. A study in behavior and evo lut ion . The Univ. o f Chicago Press. Chicago and London. 383 pp. GRZIMEK, H.C.B. 1975. Family: pikas. Pp. 457-462. Jr.: Grzimek's Animal L i f e Encyclopedia: Mammals III. Vol . 12. Van Nostrand Reinhold Co. N.Y. GUILDAY, J . E . 1969. Small mammal remains from the Wasden S i te (Owl Cave), Bonnevi l le Co., Idaho. Tebiwa 12:47-62. . 1971. The Ple istocene h i s tory of the Appalachian mammal fauna. Pp.233-262. In : 'P .C. Holt (Ed. ) , with the ass istance of R.A. Paterson and J .P . Hubbard. The d i s t r i b u t i o n a l h i s to ry of the b iota of the southern Appalachians. Part III Vertebrates. Res. Div. Monogr. 4, V i r g i n i a Polytechnic Inst, and State Un iv . , Blacksburg, V i r g i n i a . , and E.K. ADAM. 1967. Small mammal remains from Jaguar Cave, Lemhi County Idaho. Tebiwa 10:26-35. GUTHRIE, R.D. 1973. Mummified pika (Ochotona) carcass and dung pe l l e t s from Pleistocene deposits in i n t e r i o r Alaska. J . Mammal. 54:970-971. , and J.V. MATTHEWS, JR. 1971. The Cape Deceit Fauna - ear ly P le istocene mammalian assemblage from the Alaskan A r c t i c . Quaternary Res. 1 :474-510. GUREEV, A.A. 1964. Fauna of the USSR, Mammals. Vo l . 3, Part 10, Lagomorpha. Moscow. HALL, E.R., and K.R. KELSON. 1959. Mammals of North America. Ronald Press. New York. 2 vo ls . 1083 pp. HARINGTON, C R . 1977. P le is tocene mammals of the Yukon T e r r i t o r y . PhD t h e s i s , Un ivers i ty of A l b e r t a , Edmonton, A l b e r t a , 1052 p p . KAWAMICHI, T. 1981. Voca l i sat ions of Ochotona as a taxonomic character. Pp. 324-339. In: K. Myers and C D . Maclnnes (Eds). World Lagomorph Conf., Guelph, Ont. 1979. KURTEN, B., and E. ANDERSON. 1972. The sediments and fauna of Jaguar Cave: II - The Fauna. Tebiwa 15:21-46. MORRISON, D.F. 1976. Mu l t i va r i a te s t a t i s t i c a l methods. McGraw H i l l Book Co., New York. 415 pp. ORR, R.T. 1977. The l i t t l e known pika. MacMillan Publ ishing Co., New York, 144 pp. SMITH, A.T. 1981. Population dynamics of pikas (Ochozzr.a). Pp.572-586. In: K. Myers and C D . Maclnnes (Eds.). Proc. World Lagomorph Conf., Guelph, Ontar io, 1979. SNEATH, P.H.A., and R.R. SOKAL. 1973. Numerical taxonomy. W.H. Freeman and Co. San Franc i sco, 575 pp. SOBOCINSKA-JANASZA, J . 1981. Sex dimorphisms in cer ta in bone elements of the European hare (lepus europaeus Pa l las (187S) ). Pp. 239. In: K. Myers and C D . Maclnnes (Eds.). Proc. World Lagomorph Conf., Guelph, Ontario. 1979. YOUNGMAN, P.M. 1975. Mammals of the Yukon T e r r i t o r y , Canada. Nat l . Mus. Nat. S c i . (Ottawa). Publ. Zool. 10. 192pp. VORONTSOV, N.N., and E. YU. IVANITSKAYA. 1973. Comparative karyology of north pa laearc t i c pikas (Ochotona, Ochotonidae, Lagc~orpha). Caryologia 26: 213-223. ZAR, J .H. 1974. B i o s t a t i s t i c a l ana lys i s . P r e n t i c e - H a l l , Inc. Englewood C l i f f s , N.J. 620 pp. 89 PLATES 389 P l a t e I . Photograph of 0. a l p i n a (MCZ 23293) 391 P l a t e I I . Photograph of 0. c o l l a r i s (NMC 40305) 39Z 393 P l a t e I I I . Photograph of 0. d a u r i c a (AMNH 58898) 39y 395 P l a t e IV. Photograph of 0. e r y t h r o t i s (MCZ 7591) 397 P l a t e V. Photograph of 0. p a l l a s i (AMNH 58899) 399 P l a t e V I . Photograph of 0. p r i n c e p s (CVM 1600) 401 P l a t e V I I . Photograph of 0. p u s i l l a (AMNH 176280) 403 P l a t e V I I I . Photograph of 0. r o y l e i (AMNH 59712) 405 P l a t e IX. Photograph of 0. r u f e s c e n s (AMNH 97803) 407 P l a t e X. Photograph of 0. r u t i l a (AMNH 27640) 409 P l a t e X I . Photograph of 0. t h i b e t a n a (MCZ 7592)