Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Steady state self-consistent model for pulsar magnetospheres Leahy, Denis Alan 1976

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1976_A6_7 L39_8.pdf [ 3.25MB ]
Metadata
JSON: 831-1.0093766.json
JSON-LD: 831-1.0093766-ld.json
RDF/XML (Pretty): 831-1.0093766-rdf.xml
RDF/JSON: 831-1.0093766-rdf.json
Turtle: 831-1.0093766-turtle.txt
N-Triples: 831-1.0093766-rdf-ntriples.txt
Original Record: 831-1.0093766-source.json
Full Text
831-1.0093766-fulltext.txt
Citation
831-1.0093766.ris

Full Text

c-1 A STEADY STATE SELF-CONSISTENT MODEL FOR PULSAR MAGNETOSPHERES by DENIS ALAN LEAHY B.A.Sc., U n i v e r s i t y of Waterloo, 1975 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS tROR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OR GRADUATE STUDIES Department of Physics We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA September,1976 (c) Denis Alan Leahy, 1976 In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r ag ree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g of t h i s t h e s i s f o r s c h o l a r l y pu rpo se s may be g r a n t e d by the Head of my Department or by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t copying or pub l i ca t ion of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Depa r tment The U n i v e r s i t y o f B r i t i s h Co l umb i a 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 Date O C T . -6 , r37<b ABSTRACT A steady s t a t e s e l f - c o n s i s t e n t model f o r a p u l s a r magnetosphere i s developed. I t i s shown that the c e n t r a l neutron s t a r o f a p u l s a r should possess a magnetosphere. In the f i r s t approximation, the i n e r t i a of the magnetospheric p a r t i c l e s i s n e g l e c t e d . Steady s t a t e c o r o t a t i n g models are developed t o c a l c u l a t e the s t r u c t u r e of the magnetosphere f o r the axisymmetric case and the case of the a r b i -t r a r i l y o r i e n t e d d i p o l e . Two r e s u l t s are t h a t charge d e n s i t y i s p r o p o r t i o n a l t o the z component of the magnetic f i e l d and t h a t the z component of the magnetic f i e l d vanishes at the l i g h t c y l i n d e r . The l i g h t c y l i n d e r i s where the c o r o t a t i o n v e l o c i t y reaches the speed of l i g h t . The p u l s a r s p i n a x i s i s a l i g n e d w i t h the z a x i s . I l l u s t r a t i o n s o f the f i e l d s are presented f o r the cases of magnetic d i p o l e a x i s p a r a l l e l and p e r p e n d i c u l a r t o the s p i n a x i s . Next these models are a l t e r e d t o take i n t o account the non-zero mass of the p a r t i c l e s i n the magnetosphere. An e x t r a e l e c t r i c f i e l d i s r e q u i r e d t o h o l d the p a r t i c l e s i n c o r o t a t i o n . Charge se p a r a t i o n i s assumed. The f o l l o w i n g r e s u l t s are found: 1) F i e l d l i n e s which p r e v i o u s l y were h o r i z o n t a l i n s i d e the l i g h t c y l i n d e r , now have a cusp i n them where they were h o r i z o n t a l . T his cusp inc r e a s e s i n s i z e as i t s l o c a t i o n approaches the l i g h t c y l i n d e r . 2) F i e l d l i n e s no longer are h o r i z o n t a l at the l i g h t c y l i n d e r but e r t i c a l , and d i v i d e i n t o two groups those w i t h p o s i t i v e B^ ( c a r r y i n g negative charge) and those w i t h negative ( c a r r y i n g p o s i t i v e charge). We next cease t o r e q u i r e t h a t the p a r t i c l e s be f i x e d i n the c o r o t a t i n g frame. F i r s t the s i n g l e p a r t i c l e motion i s c a l c u l a t e d f o r a r b i t r a r y f i e l d s assuming small v e l o c i t i e s i n the r o t a t i n g frame. We f i n d that the motion can be separated i n t o a slow d r i f t along streamlines(which very n e a r l y f o l l o w magnetic f i e l d l i n e s ) and a s p i r a l i n g about these s t r e a m l i n e s . The energy i s conserved, and can be separated i n t o a l o n g i t u d i n a l and a t r a n s v e r s e energy a s s o c i a t e d w i t h the two types of motion. The t r a n s v e r s e energy d i v i d e d by the frequency of s p i r a l i n g i s an a d i a b a t i c i n v a r i a n t . For the axisymmetric case, a model i s developed from which the f i e l d s , charge d e n s i t y , and v e l o c i t i e s can be computed. With a r e s t r i c t i o n on the boundary c o n d i t i o n s , an a n a l y t i c a l model i s o u t l i n e d f o r the case of a r b i t r a r y magnetic m u l t i p o l e s . TABLE OF CONTENTS i i i . page L i s t of Tables i v . L i s t of Figures v. Acknowledgement v i . I n t r o d u c t i o n 1. Magnetosphere Ex i s t e n c e 3. The Force Free Assumption 6. The Axisymmetric ForceFree Magnetosphere 7. Covariant Formulation 12. The Force Free Magnetic P o t e n t i a l 14. R e l a x a t i o n of the Force Free Assumption 23. R e l a x a t i o n of C o r o t a t i o n 28. S i n g l e P a r t i c l e Motion 29. C o l l e c t i v e Motion 31. Axisymmetric Case 34. The General Case 37. D i s c u s s i o n 42. B i b l i o g r a p h y . 44. Appendix 1 46. Appendix 2 49. Appendix 3 51. Appendix 4 56. LIST OF TABLES  page * lO.Table I. Numerical E v a l u a t i o n of V ( x , y ) , Where V(x,y)=(u/Tft (n/c)V(x,y) * 18.Table 2. Numerical E v a l u a t i o n of x (x,y), Where 2 * <XC x>y) = 0J/7r) (n/<0 X Cx,y) coscb V . LIST OF FIGURES  page • 10. F i g . 1. Magnetic F i e l d L i n e s , Axisymmetric Force Free Case 11. F i g . 2. E l e c t r i c F i e l d L i n e s , Axisymmetric Force Free Case 11.Fig. 3. Charge Density, Axisymmetric Force Free Case 18. F i g . 4. Lines of Constant Magnetic P o t e n t i a l , x , Axisymmetric . _ Force Free Case 19. F i g . 5. Lines o f Constant Magnetic P o t e n t i a l ^ , m=l Force Free Case 20. F i g . 6. E l e c t r i c F i e l d L i n e s , m=l Force Free Case 21. F i g . 7. Magnetic F i e l d L i n e s , m=l Force Free Case 22. F i g . 8. Charge D e n s i t y , m=l Force Free Case 27.Fig. 9. Magnetic F i e l d Lines For The Axisymmetric C o r o t a t i o n Case With I n e r t i a 33.Fig. 10. Streaming and C o r o t a t i n g 'Dead' Zones: Axisymmetric Case v i . ACKNOWLEDGEMENT I am indebted t o Dr. M. H. L. Pryce, who has supervised my t h e s i s work. In a d d i t i o n to p r o v i d i n g the t o p i c of t h i s t h e s i s , he has guided my research to enable me to produce t h i s work. I would l i k e to thank Dr. Pryce f o r h i s h e l p , f o r many u s e f u l d i s c u s s i o n s , and e s p e c i a l l y '"-''.for appendix 4 , which i s based on h i s work. 1. INTRODUCTION Pulsars are astronomical objects which r e g u l a r l y give put r a d i o pulses w i t h a p e r i o d , which v a r i e s from p u l s a r t o p u l s a r , of about a second. The pulses have v a r i a b l e amplitude but a p r e c i s e p e r i o d . Over 100 p u l s a r s are now catalogued, w i t h p e r i o d s ranging from 33 m i l l i s e c o n d s to 4 seconds. D. t e r Haar* summarizes the o b s e r v a t i o n a l r e s u l t s . « The f i r s t p u l s a r was discovered l a t e i n 1967 by Hewisti et a l at Cambridge. They used a new r a d i o telescope b u i l t to study s c i n t i l l a t i o n s , c a u s e d by plasma clouds i n the s o l a r wind,of r a d i o sources of small angular size.>-Since.-the--time -scale of the s c i n -t i l l a t i o n s i s a f r a c t i o n of a second, the instrument was i d e a l f o r r e c o r d i n g p u l s a r s i g n a l s . Some ideas about p u l s a r s are f i r m l y e s t a b l i s h e d . Because o f the short p e r i o d and i t s slow increase w i t h the passage of time due to l o s s of energy, a r o t a t i n g neutron s t a r i s most c e r t a i n l y the c e n t r a l o b j e c t . I t s rotational energy i s coupled to i t s sur-roundings by a huge magnetic f i e l d , having a value at the surface of 12 Bs - 10 Gauss. The reason f o r the p u l s a t i o n i s the asymmetry introduced by non-alignment of the magnetic d i p o l e and s p i n axes. A coherent emission process i s necessary f o r the intense r a d i o emission. However, the emission mechanism and the s t r u c t u r e o f the magnetic f i e l d s and of matter surrounding the neutron s t a r i s p o o r l y understood. Many d i f f e r e n t t h e o r e t i c a l models have been proposed but no c o n c l u s i v e model has yet emerged. In the f o l l o w i n g work, a p a r t i c u l a r , s e l f - c o n s i s t e n t , steady-s t a t e model f o r the p u l s a r magnetosphere i s presented. The emission mechanism i s not considered here. 3. MAGNETOSPHERE EXISTENCE .The neutron s t a r i s a r o t a t i n g , conducting body and thus w i l l have an i n t e r i o r e l e c t r i c f i e l d : (1) FT=-V7C x if where V<=PJ-<$ i n c y l i n d r i c a l p o l a r c o o r d i n a t e s u n i t v e c t o r s ) centred on the neutron s t a r , w i t h the z-axis along the r o t a t i o n a x i s • Q i s ' the angular frequency of r o t a t i o n . For an e x t e r i o r d i p o l e magnetic f i e l d , an i n t e r i o r f i e l d i s 2" w i t h B q a constant. Thus from (1) one ob t a i n s : (2) E*=-(arB_/c) £ Th i s can be obtained from the i n t e r i o r e l e c t r o s t a t i c p o t e n t i a l (3) -$ =ftr 2B o/2c + $ Q $o a constant, by E=-V$ . For a t y p i c a l p u l s a r B q i s of the order 12 of 10 gauss, the r a d i u s R i s approximately 7 to 10 k i l o m e t e r s and ft i s of the order of 20 sec *. This gives a p o t e n t i a l d i f f e r e n c e 2 17 between poles and equator of A$ =fi R Bq/2C- 10 v o l t s . More preciselyA<J> = 3.1K10 B 1 2 R 6 /P v o l t s , where B 1 2 = B q /10 gauss, R^=R/10^cm and P-2v/Q i s the p e r i o d of r o t a t i o n . E a r l y p u l s a r models assumed a vacuum surrounding the magnetic neutron s t a r . The e x t e r i o r f i e l d i n t h i s case is' given by s o l v i n g 2 Laplace's equation: V $=0, and f i t t i n g t h i s s o l u t i o n to the boundary c o n d i t i o n s a t the neutron s t a r s u r f a c e . The t a n g e n t i a l component of E i s continuous across the su r f a c e . In s p h e r i c a l p o l a r coordinates i t i s , from (2) : -+ (4) = -(ffcB /c) s i n 6 cos 9 9 ' tan v o . One obtains f o r the e x t e r i o r e l e c t r o s t a t i c p o t e n t i a l (5) _(B_m 5/3cr 3) P 2(cos9)+ (C QR+W 3B Q/3c) 1/r where ^ s t n e second Legendre polynomial and C Q i s a constant. T h i s r e s u l t s i n a s u r f a c e charge on the neutron s t a r ^ due-to the d i s c o n t i n u i t y i n the normal component of the e l e c t r i c f i e l d , o f : (6) a =-(B « R/4uc)(5cos 26 -3)/2 +(C 0R +^R 3B q/3C)/4^R 2 The second term vanishes i f the net charge on the neutron s t a r i s . zero( Q= C QR+QR B o/3c ). The r e s u l t i n g e l e c t r i c field(Q=0) i s : (7) £=-v$ = - ( B o ^ 5 / c r 4 ) P (cos6) r -(B o«t^/2cr 4) sin26 6 The magnitude of the surface component p a r a l l e l to the magnetic f i e l d B i s 10 (8) R/c- 6x10 B 1 2 R 6 / P volts/cm To understand what e f f e c t t h i s enormous e l e c t r i c f i e l d would have on the surface m a t e r i a l of the neutron s t a r , one must examine other f a c t o r s . The g r a v i t a t i o n a l f i e l d on a neutron s t a r i s l a r g e . The- a t t r a c t i v e f o r c e at the surface i s : (9) F g= 1 . 6 x l 0 " 1 3 M/R 6 2 dynes f o r an e l e c t r o n mass(M i s the neutron s t a r mass i n s o l a r mass u n i t s ) and correspondingly greater f o r i o n s ( about 10^ times, assuming n u c l e i near Fe*'*'). The r a t i o of electromagnetic to g r a v i -t a t i o n a l f o r c e i s : (10) eE/F = 7 . 5 X 1 0 1 1 B 1 0R. 3/PM g 12. 6 4 Thus g r a v i t a t i o n a l b i n d i n g i s i n s i g n i f i c a n t . I t has been shown 56 12 that Fe n u c l e i i n a magnetic f i e l d of 2*10 Gauss w i l l form an a n i s o t r o p i c , very t i g h t l y - b o u n d l a t t i c e w i t h a b i n d i n g energy of 14 kev per i o n and e =750 eV per e l e c t r o n . L a t t i c e spacing i s of the order of 10 cm. To remove ions r e q u i r e s a f i e l d o f (11) E * e j / Z e l = 5 x l O 1 1 v o l t s / c m The nuclear charge,Z, of F e i > b i s 2 6 ,and 1 i s the l a t t i c e spacing. Compare t h i s t o the maximum e l e c t r i c f i e l d a v a i l a b l e , c a l c u l a t e d f o r vacuum i n equation (3). Probably only the f a s t e s t p u l s a r (the Crab p u l s a r , w i t h P=.033 sec) w i l l be able to p u l l ions from i t s s u r f a ce. E l e c t r o n s are removed more e a s i l y than ions but the d e t a i l s have not yet been c a l c u l a t e d . In any case, i t i s assumed tha t a source of charged p a r t i c l e s f o r the magnetosphere e x i s t s and serves to reduce the huge value of i n (8) .A p o s s i b l e source i s the r e g i o n oivtside the magnetosphere. More l i k e l y , p a r t i c l e s trapped i n the magnetosphere during the formation of the p u l s a r i n a supernova e x p l o s i o n , so t h a t a huge E«S never develops. THE FORCE FREE ASSUMPTION 6. Another ' f o r c e ' enters the problem. Due to the enormous r o t a t i n g magnetic f i e l d and the p r o p e n s i t y of charged p a r t i c l e s to f o l l o w f i e l d l i n e s , an i n e r t i a l f o r c e due to the a c c e l e r a t i o n of the p a r t i c l e s a r i s e s . For a p a r t i c l e i n c o r o t a t i o n w i t h the c e n t r a l neutron s t a r at d i s t a n c e from the a x i s r , the energy i s v.mc , wi t h : (12) Y ( j ) = ( l - n 2 r 2 / c 2 ) - J s T h i s becomes s i n g u l a r at the ' l i g h t c y l i n d e r ' where the c o r o t a t i o n v e l o c i t y i l r i s the speed o f l i g h t c. The magnetic energy d e n s i t y i s 2 2 2 much grea t e r than J^THC : .-•> B /8ir >>Y^mc , except f o r very c l o s e 2 2 to r. =c/H . For an e l e c t r o n these are equal f o r B /8ffmc = 5 2 6 2x10 B, , where B, i s B i n u n i t s of 10 gauss. Thus fir i s very D O n e a r l y c at t h i s p o i n t . Estimates f o r B at the l i g h t c y l i n d e r ( f r o m energy l o s s by a r a d i a t i o n d i p o l e ) vary from lO^gauss f o r the Crab p u l s a r downwards. The f o r c e f r e e assumption i s : (13) E+v/c XB =0 i . e . that the electromagnetic f o r c e s on a p a r t i c l e v a n i s h . We neglect non-electromagnetic f o r c e s and assume zero mass p a r t i c l e s . T h i s i s a good approximation everywhere i n the magnetosphere ( which i s here considered as being l i m i t e d to the r e g i o n between the neutron s t a r and the l i g h t c y l i n d e r ) except very near the l i g h t c y l i n d e r . t 7. THE AXISYMMETRIC FORCE FREE MAGNETOSPHERE The b a s i c equations are t h e f o r c e f r e e assumption (13), and Maxwell's equations: (14) V- t=0 Vx £=0 VX&=4IT/C J V»l:=4irp Note t h a t because o n l y steady s t a t e (3/3t - -fi3/3<{> i n the s t a t i o n a r y . r e f e r e n c e frame) i s being c o n s i d e r e d , i n combination w i t h a x i a l symmetry (3/3<j>=0) , Maxwell's equations take the form ( 1 4 ) , i . e . 3/3t=0. In a d d i t i o n we assume o n l y t o r o i d a l p a r t i c l e v e l o c i t i e s and t h a t the v e l o c i t t a o f a l l p a r t i c l e s at one p o i n t are the same (15) v=w(r,z)r <j> The c u r r e n t i s g i v e n by (16) j=pv . C y l i n d r i c a l c o o r d i n a t e s are used. Since VxE=0,one w r i t e s E=-W o r : (17) E r=-8V/3r E z=-3V/3z V«B=0 gi v e s 3 ( r B z ) / 3 z +3 ( r B r ) / 3 r =D . Thus one can d e f i n e i> by: (18) B =l/r 3*/3z B z = ~ 1 / r ^ / 9 r The f l u x through a c i r c l e p e r p e n d i c u l a r t o , and cen t r e d on the z-axis i s t*it = B z 2irr dr = -2ir f^dii /3r d r =-2n^(R,z)-\|>(0,z The f l u x through the s i d e s o f a c y l i n d e r about the z- a x i s from z=0 t o z=Z i s f'0;• B 2irr dz = 2n^)(r,Z)-if) ( r , 0 ) ) . Thus the stream f u n c t i o n ty i s d i r e c t l y r e l a t e d t o the magnetic f l u x . Using(17)§(18)i .equation(13)has'components -3V/3r -(cor/c}|l/r^i|//3r)=0 and -3V/3z 4>r/c)(-|/r)(3'|»/3z) =0 . Therefore one has: (19) . 3V/3r = (-co/c) 3*/3r 3V/3z = (-to/c) 3^/3z 8. From (19) one gets -3 2V/3r3z =3/3z(w/c 3ijj/3r) =3/3r(w/c 3*/3z) or ato/az 3ij./3r - 3co/3r3if)/3z =0 . But t h i s i s j u s t the Jacobian J(u)>tjO;r,z) = 0 J so that w i s a f u n c t i o n of-ty . Now, one has: (20) vi|> 't = 3^/3r (1/r) 8i(;/3z + 3tj,/3z (-1/r) 3i^/3r =0 so t h a t i|> and thus toa re constants along f i e l d l i n e s . S i n c e the f i e l d l i n e s o r i g i n a t e iri the neutron s t a r which i s - r i g i d l y r o t a t i n g at angular frequency ft, we must have to=ft everywhere. I.e. the magnetosphere r i g i d l y corotates with the neutron s t a r . From (19) we have: (21) V=(-ft/c) * From the inhomogeneous Maxwell's equations (14) one gets: (22) Vx $ = (3B r /8 z -3Bz/6 r)= - <£/ft)(l/r)( 32V/ 3z 2 + 3/3r((l/r)3 V/3r)) = (4TT/C) j = (4 ir/c) pQrdJ (23) v-E^  -A^ (-1/r) 3/3r(r3V/3r) -3 2V/3z 2 = 4irp E l i m i n a t i n g p gives a d i f f e r e n t i a l equation f o r V: (24) ( l - Q 2 r 2 / c 2 ) ( 3 2 V ^ r 2 + 3 2 V / 9 z 2 ) - g / r ) ( l + f ? r 2 / c 2 ) &V/3r =0 The s o l u t i o n of t h i s equation i s obtained • i n appendix 1. The r e s u l t i s : (25) V(r,z) = ( o / c ) V u ) _ " x ( l - f t 2 r 2 / c 2 ) / X ( l ) e i a r f e / c dx wherep i s the magnetic d i p o l e moment of.the neutron s t a r and r*/c ) i s given i n appendix 1. The boundary conditions assumed were a d i p o l e magnetic f i e l d at. the o r i g i n , and" f i n i t e f i e l d s at the l i g h t c y l i n d e r . For each value of ( r , z ) , the s e r i e s s o l u t i o n f o r x.was'evaluated using a hand c a l c u l a t o r and p e n c i l , to 3 f i g u r e s o f accuracy, f o r 5 values of a. The i n t e g r a t i o n i n (25) was then c a r r i e d out using Simpson's Rule f o r numerical i n t e g r a t i o n . The c a l c u l a t i o n r e s u l t s a r e presented i n t a b l e 1. Magnetic f i e l d l i n e s are p a r a l l e l to l i n e s o f constant V and e l e c t r i c f i e l d l i n e s p e r p e n d i c u l a r t o l i n e s o f constant V. F i g u r e s 1,2 and 3 i l l u s t r a t e the magnetic and e l e c t r i c f i e l d s •and the charge d e n s i t y . As x>1 i . e . as one approaches the l i g h t c y l i n d e r ^ v ^ l - f l r /c- approaches zero so t h a t X(v) approaches a constant p l u s terms of second degree and higher i n v (see appendix 1 ) . Thus: B z=-(l/r)3i{)/9r =-(1/r)(dv/dr)3^/3v approaches zero. I.e. f i e l d l i n e s approach the l i g h t c y l i n d e r h o r i z o n t a l l y . A l s o from the f a c t t h a t X(v) i n v o l v e s o n l y even powers of a, one sees t h a t B = l / r 3v^ z i s zero at z=0. T h i s r e s u l t s i n a n u l l p o i n t i n the magnetic f i e l d ' at z=0,r=c/Q (see f i g u r e 1 ) . The charge d e n s i t y can be computed from (23)^using (24)to e l i m i n a t e the second d e r i v a t i v e o f V, Using the d e f i n i t i o n o f ikf.18), the r e s u l t i s : (26) 4 up — (-2 jD/c) Y 2 B z Thus p j the charge d e n s i t y ^ i s d i r e c t l y p r o p o r t i o n a l t o the z component of the magnetic f i e l d . 10. TABLE I NUMERICAL EVALUATION OF V*(x,y) ,WHERE V(x,y)=M/« V (: ?\ 0 0.25 0.5 O.75 1.0 0 singular 6.0 h.3' 3-2 2.9 0.25 0 6.0 2.9 2.5 1.8 0.5 0 - 0 . 2 0.8 1.2 1-7 1.0 o- 0.5 0.1 -0.1 . -0.1 FIGURE 1 MAGNETIC FIELD LINES ; AXISYMMETRIC FORCE FREE CASE y 1.0—4 0.75«* 0.25 f 9 ' i r-" 0 0.25 0.5 0.75 FIGURE 2: ELECTRIC FIELD LI-NES, AXISYIMBTRIC FORCE FREB CASS y • I. •2*, x I 1.0 0.75-0.5— 0.25— 0— / locus of zero charges^ (B z =0) - A • ^++ + + / ! 0 8 I • f .0.25 . 0.5 O.75 FIGURE 3: CHARGE DENSITY, MISYt-METRIC FCRCE FREE CASE fi 1.0 12. COVARIANT FORMULATION So f a r we have considered only the axisymmetric s i t u a t i o n . In t h a t case a l l f i e l d q u a n t i t i e s are time independent. For the more general case of non-aligned s p i n and magnetic d i p o l e axes, or the existence of higher order m u l t i p o l e s , time independence i s i n v a l i d a t e d , except i n the re f e r e n c e frame c o r o t a t i n g w i t h the neutron s t a r . However t h i s frame i s n o n - i n e r t i a l and even becomes s i n g u l a r at the l i g h t c y l i n d e r . In order t o express the equations i n t h e i r c o r r e c t form we use the c o v a r i a n t formalism of general r e l a t i v i t y . 'We work i n the coordinate system r o t a t i n g at the angular fx v e l o c i t y of the p u l s a r u s i n g c y l i n d r i c a l coordinates x = ( t , z , r , <f>) . The no n - r o t a t i n g coordinates are: c a r t e s i a n x =(f,x,y,z) ; and c y l i n d r i c a l x - ( t , z , r , <f^). Thus <j)^= <H-ftt • The met r i c i s then =c 2 (dt) 2 -(dx) 2 -(dy) 2 -5 % e d x (dz)2 a, 3dx =c 2 (dt) 2 -(d z) 2 - (dr) 2 - (rd*. ) 2 = (c 2-n 2 r 2 ) (dt ) 2 - (dz) 2 -(dr) 2 (rd<j>)2- 'flrclMt Thus o n e has: c 2 - f t V 0 0 -ft r 2 (27) g = ag 0 0 -1 0 0 -1 0 0 -ftr2 0 0 - r 2 and i t s inverse: (28) _a3 g o o -n/c' - 1 0 0 1/c 0 0 0 - 1 0 -pVc 2 0 0 fi2/c2-l/r2=-l/^2r2) J The Einstein summation convention has been used. Greek indices range from 0 to 3, Latin indices from 1 to.3. The f i e l d variables F^ v are expressed i n terms of the f i e l d E and B i n the stationary frame, in appendix 2. The covariant **a current density has the components, in an i n e r t i a l frame, J:= (p,^) and satisfies the equation of continuity (conservation of charge): (29) The comma(semicolon) denotes ordinary(covariant) differentiation Maxwell's equations are then: (30) F ^ J ^ T T / C ) ^ J a ; =0 a e a y v X F ,=0 uv X (31) (30) can also be written: (32) (WcX-gljV =((-g)V),v 2 2 where g=determinant g = -c r for the metric (27). aB 14. THE FORCE FREE MAGNETIC POTENTIAL 1 3 We now assume c o r o t a t i o n so that the current i n . t h e r o t a t i n g ' f r a m e i s zero: J =0. This assumption has some j u s t i f i c a t i o n : 1) i t holds i n the axisymmetric case, of which t h i s i s a g e n e r a l i z a t i o n t 2) A h i g h l y conducting magnetosphere w i l l have the magnetic f l u x f r o z e n i n t o i t , thus w i l l be dragged by the f i e l d . The f i e l d i s so lar g e that i t w i l l be locked i n t o c o r o t a t i o n . Since;we have time independence i n the r o t a t i n g frame (the steady s t a t e assumption), (32) reads: (33) ( r F k l ) 5 1 =0 k l klm Since F i s an antisymmetric t e n s o r , w r i t e rF = E A m- Then (33)becomes A ,,-A,, =0 so th a t A i s d e r i v a b l e from a p o t e n t i a l : A =X,m Thus we have: m 1 1 m • r m . 111 (34) F k l = ^ l m ( l / r ) X , m X i s c a l l e d the magnetic p o t e n t i a l . Now we use the f o r c e f r e e assumption, i . e . the LOrentz f o r c e a f on each p a r t i c l e vanishes: f =^/cj F v au v=0 where u i s the p a r t i c l e ' s v e l o c i t y . As pu i s J t h i s g i v e s : v v 6 . ctv (35) F J v =0 We use t h e metric (27) to r e l a t e J to J v : J ^ r g v ^ 0 , so th a t we have: v ° (36) J _ = ( c 2 - f t 2 r 2 ) J 0 J x=J 2=0 J 3=-Or 2J° One gets from (35): ( F a 0 ( c 2 - ^ 2 r 2 ) -P0^ r 2)J°=0 or s i n c e J°= p(in the r e s t frame) • i s not i d e n t i c a l l y zero, we have: r-zi-i caOro 2,, 2 2 2 ^ c a 3 u 2 , 2-. 2_«3 (37) F u =^ pr / ( c -QT ) J F =\ftr /c JY^F The c o v a r i a n t form of (35): F j V J V =0 g i v e s : (38) F ^ O Thus the homogeneous Maxwell's equations are just: <39> • F 1 2 ' 3 + F 2 3 ' l + F 3 r 2 = 0 ct 3 We know F in terms of x from (34) and (37). To get the desired equation for X from (39) use: W V g i « g j s F a B The results are: (41) f 1 2 = f 1 2 o 2^10 2^13 -ff.2 2, 2» 2 ... 2r13 2 2r13 F = ^ r F +r F =l(fi r /c )y, +l)r F = r y. F. „ 2„20 2„23 r„2 2.2-, 2 2^23 2 2r23 F 2 3=^r F + r. F =[(fi r /c JY^ +l)r F = r F Thus (39) becomes ( ( / r ) x , 3 ) , 3 + ( n ^ X ) 1), 1+(r Y J X . ^ . J ^ or: (42) ' S^/a? 2 +r 2Y ( ) ) 2(9 2x/3z 2 +8 2 X/3r 2) +y 2 (2y 2 - l ) 3 X /3 r =0 The solution to this equation is obtained in appendix 3 for a dipole magnetic f i e l d ,with axis oriented at angle 9 Q with respect to the rotation axis(z-axis) , at the neutron star. The second boundary condition was the requirement of f i n i t e fields at the light cylinder. No attempt was made in matching the solution within the magnetosphere to an outgoing wave solution in the region outside the magnetosphere. This is a p e s s i b i l i t y for further study. The magnetic potential obtained for the stated boundary conditions i s : (43) X (z,r,9)<„R o(v)e i a>* * ( e * + e " * O ^ e ^ d x = - ^ ( P / c ) 2 { c o s V " > / ^ b ) ) % /a V ^ e ^ d x .' + sin ecosfr/"Jj/(~c )\zk J9. ^ v n + 2 e i x y d a } where R Q(v) and R^(v) are given e x p l i c i t l y in appendix 3: by equations (23)5(31) and (23)5(36) respectively, where v=l-fi 2 r 2 / c 2 , y=« z/c • Vi is the magnetic dipole moment of the neutron star. 16. From F U V , i n terms of E andB i n the s t a t i o n a r y frame from appendix 2, we have: • (44) E ^ r / c ^ 2 3x/ 9r r/c) y^ 2 3 X/ & =0 (45) B = Y^ 23x / a z B =Y^ 23x/3r B 4/rJ3x/3* (44)gives E"*Vx=0 : l i n e s of constant X are e l e c t r i c f i e l d l i n e s . A lso i n the r,z plane^B i s p r o p o r t i o n a l to V x . The charge d e n s i t y p can be c a l c u l a t e d u s i n g : d / d r ( r 2 y ^ 2 ) = 2ry^ to get: (46) 4up=V-E= (-l/r]3/3r{(f2r 2/c)Y ( j ) 23 X/3z)+3/3z((f2r/c) Y ( ) ) 23x/3r) = (-2fi/c) Y 43 X/3z .= -(2Q/c)y^hz Thus the r e l a t i o n betweenp and B found f o r the axisymmetric case(26) i s s t i l l v a l i d i n the more general case. In f i g u r e 4 are shown l i n e s of constant X f o r the a x i -symmetric case . Note t h a t these are orthogonal to l i n e s of constant if), the stream f u n c t i o n , as given i n f i g u r e 2. For the m=l case, a d i p o l e o r i e n t e d at 90° w i t h respect to the r o t a t i o n a x i s , see f i g u r e 5. The e l e c t r i c and magnetic f i e l d s and charge d e n s i t y i n the plane c o n t a i n i n g both;:rotation and d i p o l e axes, are shown i n f i g u r e s 6,7 and 8. The e l e c t r i c f i e l d i s b a s i c a l l y a quadrupole f i e l d . :.As one approaches the l i g h t c y l i n d e r ,v approaches 0. Thus from (43) we have: (47) X+ ( - y / ^ ( n / c ) 2 v 2 c o s < i . r j ^ i a y / ( Z cj) da Using (40) and r3/3r=2(v-l) 3/3v : one o b t a i n s : (48) E+ -fr/Mc)5 4 ( v - l ) c o s 9 / 0 ° i e : L a y / ( i : c )) da -(u/TTXoyc)3(r-v)\ c o s 9 / 1 | a 9 i a y / ( I c j da Also from (44)5(45) ,as v-*0, one has B ->--E and B -*E . E and B ' v ' z .. r r z r z . t are zero at the l i j h t cylinder. Thus at the light cylinder where Ezchanges sign (see figure 6), there i s a null in the electric and magnetic fi e l d s . The null follows two circles parallel to the equatorial plane, since the ^ dependence i s contained entirely in the coscb term of (47) . Some estimates of the order of magnitude of the various quantities can now be given. The magnetic dipole moment of the neutron star i s roughly B S R ~ 10 esu for Bj= 10 gauss, R=10 cm. From (44J $ (45) we have , for regions intermediate between the neutron star and the light cylinder: E= (QAO^lO^su* 10 5volts/cm forft=30 sec'} Then we have B= E= 10 Gauss, and p= (ft/c)B- 10 esu- 10 electronic charges per cm3. TABLE I I : NUMERICAL EVALUATION OF 'X(x,y), WHERE X ( x , y ) ^ A ) W c ) 2 X ( x , y ) cos* c 0 0.25 0.5 0.75 1.0 0 s i n g u l a r -50 -11 -1.8 0 jt/8 0 -11 -5.2 -1.2 0 «/h 0 6.0 -0.1 -0.2 p" it/2 0 25 k.o 0.6 0 I I 1 I •• I 0 0.25 0.5 0.75 1-0 FIGURE 5 : LINES OF CONSTANT X. FORCE FREE m=l CASE FIGURE 6: ELECTRIC FIELD LINES, FORCE FREE m=l CASE 22. l'.O 1.0 + + + • + + + + + + 0 1.0 + -1.0 FIGURE 8: CHARGE DSIISITY, FORCE FREE m=l CASE 23. RELAXATION OF THE FORCE FREE ASSUMPTION Up u n t i l now a l l e f f e c t s of a f i n i t e p a r t i c l e mass have been ignored because of the presence of huge electromagnetic f i e l d s . To maintain c o r o t a t i o n net electromagnetic f o r c e on the p a r t i c l e s i s necessary. This means the charge to mass r a t i o of a l l p a r t i c l e s i n any a r b i t r a r i l y small volume must be the same. Thus we assume charge s e p a r a t i o n and the i d e n t i t y of a l l p a r t i c l e s at a given p o i n t i n the magnetosphere. In r o t a t i n g c y l i n d r i c a l coordinates the Lagrangian f o r s i n g l e p a r t i c l e motion i s : (49) L=-mc2/y . - (q/c) (A^+A^+A3<p +A Q) where *=d/dt- m and q are the mass and charge of the p a r t i c l e . We d e f i n e (50) y = c ( c 2 - r i r 2 - z 2 - f 2 - 2ftr 2cp- r 2<p 2 )~^ 2 Since L does not e x p l i c i t l y depend on time(assuming t h a t the c o v a r i a n t f o u r p o t e n t i a l A^ i s time independent i n the r o t a t i n g frame), the energy H i s conserved: (51) H= (3L/3 x 1 ) x 1 - L = m ( ( c 2 - f t 2 r 2 ) - n r 2 < f )+ti/c) A Q The Lagrangian equations of motion are: (52) d/dt (Ymz) = ( q / c ) F l a x a 2 ct * d/dt (ymf) -• ymr(Q+$) =(q/c)F2 ax d/dt ( Ymr 2(<£+n)). = ( q / c ) F 3 a x a 3 ct * C o r o t a t i o n has: z=f=<£=0. Using F = 9A /9x - 9A„/9x .(52) reads 0= 3A Q/9z -Ymrft2= (-q/c) 9A Q/9r 0= 3A /3<f> Thus apart from a t r i v i a l ' c o n s t a n t we have: (53) A q= (-mc2/q) ( c 2 - ^ ^ 2 ) ^ = C-c/q) m c 2 ^ . This provides the • necessary electromagnetic f i e l d to h o l d the p a r t i c l e s i n c o r o t a t i o n . 4 24, The previous force free models involving the stream function ^(axisymmetric case) and the magnetic potential x c a n n o w be modified. For the former case write: (54) A = ((-c/q)mc 2/ Y,, 0,0,^.1 y <p so that B is given by (18) and E by (17) when m=0 (see appendix 2 Ci R for the relation between F and E § B). Using g from (28) one exp gets: (55) F 0 1= ( - l / c 2 ) F 0 1 + ^ / c 2 ) F 3 1 <Q / c 2 ) 9 ^ / o Z F 0 2=(-l/c 2)F 0 2 +Cn/c^ 3 2 = ( . c / q ^ j i 2 r / c 2 ) Y ^ / c 2 ) 8 * / 3 r 03 12 F =0 F = F 1 2=0 F 2 3 = ( f i / c 2 ) F 2 0 + C l / r 2 Y ( j ) 2 ) F 2 3 = C-mcfi/q^ 2r/c 2) Y ^ Y ^ r 2 ) 3,J,/3r F 3 1 = ( o y c 2 ) F 0 ± + ( l / r 2 Y ^ 3 1 =(l/r 2 Y # 2)3*/3z Thus Maxwell's equations: v (56) (4T!r/c)jy=(r F y v ) , . with J^=p and J*=0 (corotation) read: (57) y =0: (4Trr/c)p=3/3z((ox/c2) 3i|)/3z) + 3/3r(fnr/c2) 3IJJ/3r-<c/q)fmft2r2/c2) Y^ ) p=3: 0=3/3z((l/ Y^ 2r) 31i)/3z) + 3/3r((mcoy q)(fi 2 r 2/c 2) Y^/ Y^ 2r) 3^/3r) These give, respectively, the equations for \JJ and p when inertia is included. When the mass m is zero, these reduce to (23) and (24), using (21).. To find the solution to (57) write: (58) ty =tyh + ty^ where ty^ is the solution to the homogeneous equation(m=0) as given by (21)and (25). Since the inhomogeneous term is a function of r 2 2 2 2t alone, we have: d/dr((l/ Y r) d ty^/dr +(mc9/q^fl r /c^Y^O . Setting the constant of integration to 0,we get; 4JjP={-mcfyqXfi2r2/c2)rY,3 25. =(-mcfi/q)r( YJ-Y^). With d/dr( y^)=ny^n+2ii2?:/c2 we o b t a i n : (59) V(-m cVq)(Y^l/Y^) For the magnetic p o t e n t i a l , F1-1 are known from (34) i n terms of X but F ^ are not. Wc c a l c u l a t e F ^ as f o l l o w s : F 0 1 4 l / c 2 ) F ( ) 1 < n / c 2 ) F 3 1 = 0 ^ / c 2 j ( n r 2 F 0 1 + r 2 F 3 1 ) g i v e s F 0 1 = Y fcr/c2j 3 X / 8 r S i m i l a r l y F 0 2= - Y ^ c / q ^ m ^ r / c 2 ) Y ^ frr/c2) 3 X/9z) and F° 3=0 are found. The only Maxwell's equation that.changes i s f o r u=0, i n (56): (4Trr/c)p=-mn 2(r/qc)Y ( i ) 3(Y (j ) 2-l) - (P/c2) 2 r Y ( ( ) 4 3 X/3z The equation f o r x g i v e n by the V=3 equation o f (56) i s unchanged so t h a t F1-* are unchanged. Thus o n l y P and F^ 1 are m o d i f i e d . However, r e f e r i n g to appendix 2, one sees that both E and B are • a l t e r e d . In both cases, f o r ^  and X , one has the r e s u l t : (60) . 4Trp(qc/ft)Y^ - m c ^ (Y^ 2 + l ) -2qB z •'The l e f t hand s i d e of (60) i s never negative (Pq>Q) . Thus we have 2 2qB^ <-mcftY(j) (Y^ +1) < 0 so tha t q and B^ are always of op p o s i t e sign.Thus one has |B z >(mcft/2| q|) Y^ ( Y ^ + l ) . In t h i s model q may have d i f f e r e n t v a l u e s i n d i f f e r e n t r e g i o n s . F i e l d l i n e s along which q does not change s i g n clo not have a change i n the s i g n o f IV . I f q changes s i g n , B^ must change d i s c o n t i n u o u s l y , r e s u l t i n g i n a cusp i n the f i e l d l i n e . Since P=0 at the p o i n t o f change o f q , ( 6 0 ) y i e l d s (61) LZz= cft(m 2/2q 2 - m ^ q ^ ( Y ^ 2 + l ) For a change from e l e c t r o n s t o protons i n the i n t e r m e d i a t e magneto-sphere, one'has : AB^~ cft(m p+m e)/e~ 2* 10~ 3gauss ( f o r ft-20 s e c " 1 ) . 26. Thus the cusp i n the f i e l d l i n e s i s n e g l i g i b l e u n t i l one gets c l o s e to the l i g h t c y l i n d e r . From (61) and the estimate of B - - 3 3 3 on page 17 : B^/B^ 10 y /10 . This i s of the order o f u n i t y 6 2 wheny^-10 . At t h i s p o i n t the p a r t i c l e energy,Y^roc > exceeds the magnetic energy d e n s i t y . C o r o t a t i o n i s no longer v a l i d , so t h i s model i s no longer v a l i d . N e g l e c t i n g the f a c t t h a t the mode i s no longer p h y s i c a l f o r such l a r g e values of y ^ j t h e change i n f i e l d l i n e s . i s i l l u s t r a t e d i n f i g u r e 9 f o r the axisymmetric case. Compare t h i s : t o f i g u r e 1. Now the f i e l d l i n e s are not h o r i z o n t a l at the l i g h t c y l i n d e r but v e r t i c a l and thus do not penetrate the l i g h t c y l i n d e r . 27. FIGURE 9: MAGNETIC FIELD LITISS FCR MISTOMETRIC CCROTATION CASE WITH INERTIA RELAXATION OF COROTATION 28. I f one no longer assumes c o r o t a t i o n , what p a r t i c l e motions can occur and how w i l l the f i e l d s be a l t e r e d ? To answer t h i s question one procedes as f o l l o w s : C a l c u l a t e the s i n g l e p a r t i c l e motion i n an a r b i t r a r i l y given f i e l d assuming small departures from c o r o t a t i o n . I.e. p a r t i c l e v e l o c i t i e s i n the r o t a t i n g frame are assumed to be of order e where e<<l. Next make assumptions which give the c o l l e c t i v e motion i n terms of the s i n g l e p a r t i c l e motion and use t h i s to c a l c u l a t e a l t e r e d f i e l d s . The a l t e r e d f i e l d s can be used to r e c a l c u l a t e the s i n g l e p a r t i c l e motion. ' One repeats t h i s procedure u n t i l the d e s i r e d accuracy of r e s u l t s i n orders of e i s a t t a i n e d . The model i s then s e l f - c o n s i s t e n t to that order. 29. SINGLE PARTICLE MOTION For s i n g l e p a r t i c l e motion we assume the f i e l d s are such that c o r o t a t i o n i s p o s s i b l e .I.e. we imagine that a l l the p a r t i c l e s except the t e s t p a r t i c l e i n question are i n c o r o t a t i o n . Then by 2 (53) we have (q/c)A Q= -mc /y^ s i n c e a l l p a r t i c l e s at any p a r t i c u l a r p l a c e i n the magnetosphere are i d e n t i c a l , w i t h mass m and charge q. We now w r i t e the s i n g l e p a r t i c l e Lagrangian (49): 2 2 (62) L= -mc ly +mc /y -(q/c) (A 1 z+ A 2f+ A^) = (m/2XY 9(z 2+ * V Y ^ r V ^ q / c ) A ^ q / c j A ^ 2 -((q/c) A^- my^1- ft)<J>+ terms cubic i n the v e l o c i t i e s Since we are assuming the v e l o c i t i e s are of order e, e<<l, we keep terms t o second order and w r i t e L . i n the form: (63) L=%( Ax 2+ By 2+ C z 2 ) - S^x- <J>2y- * z 3 2 where (x,y,z) = (z ,r ,<j>), A=B=mY(j), C=mY^ r , $ 1=^/c)A ] L, $ 2=^/c)A 2, 2 and $3=^/c) A^- my^r Lagrangians of t h i s form are t r e a t e d i n appendix 4. The main r e s u l t s a r e : 1) The motion c o n s i s t s of a slow d r i f t tangent to s t r e a m l i n e s , s p e c i f i e d by dx/X = dy/Y. = dz/Z where: (64) X= Cq/c)rBz ^ Y ^ Y ^ l ) Y=(q/c\rB r Z ^ q / c ^ and a s p i r a l i n g motion around these s t r e a m l i n e s . 2) The energy E i s conserved. 3) The energy can be separated i n t o a l o n g i t u d i n a l energy 2 a s s o c i a t e d w i t h the d r i f t — % P J l ' , and a t r a n s v e r s e energy assoc-30. i a t e d w i t h the s p i r a l i n g — Noo . 4) An a d i a b a t i c i n v a r i a n t e x i s t s f o r the motion, namely M= * N a a /IM> the t r a n s v e r s e energy d i v i d e d by the angular frequency of the s p i r a l i n g . t P, J2jN and a are d e f i n e d by equations (8), (9), (10), and (16) 2 o f appendix 4. E s s e n t i a l l y , %P£ i s the l o n g i t u d i n a l k i n e t i c * 2 * 2 2 2*2 ^ energy- h^Y^t z H+ r u+ r <£M ) and Naa i s the t r a n s v e r s e k i n e t i c . 2 • 2 2 2 • 2 energy- ^ Y ^ t ZjJ- r A+ r y^ <J>^) . The s u b s c r i p t s r e f e r t o motion p a r a l l e l t o , and p e r p e n d i c u l a r to s t r e a m l i n e s . •I COLLECTIVE MOTION 3 1 * If,instead of allowing just one particle to move,one allows a l l to move,then the fields will be altered. In the formalism of the single particle treatment this can be taken into account since the four potential, except for A q , was- not assumed to be of a particular form. Thus one on l y needs t o all o w f o r a different A o. We write: (65) A q= (-c/q>c 2/Y 9 + A Q This modifies the Lagrangian L and thus the energy, which becomes: (66) E = %P*2 + Cq/c) A Q (for M=0) 2 Thus one sees that A is second order in e since both E and 1 o 2 are of order e (see (67) below). To determine the fields we must make assumptions about how the currents derive from the single particle motion. Since we have steady state*all particles which move along a given streamline must be of the same type. The Coulomb interaction between streaming particles results in no spiraling motion (M=0) and ensures that a l l particles along the same streamline have the same energy E. If M were not zero, collisions would occur between particles on neighboring streamlines which damp out the transverse motion. Thus we have convection current only: j=pv or: (67) J =p(l,x,y,z) = p(l, JtX, £Y, 11 ) using (16) of appendix 4(with c=0). X,Y,Z are given by (64). The equation of continuity (yJ^),^ =0 reads: (68) y(P*X),x + (yP*Y),y + y (p£Z) , z = 0 32. From the d e f i n i t i o n (2) o f appendix 4,one has the i d e n t i t y (corresponding to v-ko) : x y + Z = 0., thus (68) becomes: (69) X(p£y), x + Y(P£y), y + Z ( P * / ) , Z = 0 Therefore P£y i s constant along the streamlines s p e c i f i e d by dx/X = dy/Y = dz/Z . We w r i t e : (70) p£y =(c 2/4Ttq) K where K i s constant along a s t r e a m l i n e , the v a l u e of which i s determined by the boundary c o n d i t i o n s . Write p = P Q + P J where PQ i s zero order ..in e and p ^ i n c l u d e s a l l higher orders. (70) •gives £ t o f i r s t order i n e as a f u n c t i o n of p o s i t i o n along a s t r e a m l i n e s i n c e p ^ i s known from the c o r o t a t i o n case as given by (60). Maxwell's equations(56) w r i t t e n out are: (71) ( r F ? 1 ) ^ =(4Trr/c) J V = (4Trrp/c)(l, *X, £Y, IZ) = (4Trrp/c, Cc/q)KX, fc/q) KY, Cc/q) KZ) Equation (70) r e q u i r e s t h a t K and £ be zero along a s t r e a m l i n e where p changes s i g n . In steady s t a t e , and w i t h charge s e p a r a t i o n , no streaming can occur along any s t r e a m l i n e along which the charge changes s i g n . From (60) p Q changes s i g n , to a good approx-imation except very near the l i g h t c y l i n d e r , when B z changes s i g n . Thus the p u l s a r must have a c o r o t a t i n g 'dead' zone, where no streaming occurs, which very n e a r l y c o i n c i d e s w i t h the r e g i o n c o n t a i n i n g f i e l d l i n e s which go h o r i z o n t a l i n s i d e the l i g h t c y l i n d e r . This s i t u a t i o n i s i l l u s t r a t e d f o r the axisymmetric case i n f i g u r e 10. 33. FIGURE 10. Streaming and C o r o t a t i n g 'Dead' Zones  Axisymmetric Case LEGEND -- C o r o t a t i o n Region 1 Streaming Region v 0 1 Note: the s i g n of charge i s i n d i c a t e d by + and - above. 34. AX I: SYMMETRIC CASE Write (72): A^= (fc-c/ql mc2/y^, 0, 0,* ) + ( A Q, A j , A 2 , Ap so t h a t the zero order p a r t i s i d e n t i c a l t o (54) . The • terms higher order i n e are contained i n the second set o f b r a c k e t s . For a x i a l symmetry the p a r t i a l d e r i v a t i v e of any q u a n t i t y , w i t h r e s p e c t t o 9 , i s zero. Thus A 1 and A 2 always appear i n the combination 8A ] L/3r - 3A 2/3z = F j 2 = . Now from (64) we have: (73) X= Q-q/c) (3A 3/3r +3i|//3r ) + nSlry ( Y ^ + l ) " Y=(q/c)(3A 3/3z +3i|>/3z) Z= Cq/c) B^ F a 3=3A a/3x 3 -3A e/3x a i s c a l c u l a t e d from (72) and F a 3 c a n be found u s i n g g from (28). The r e s u l t i s : (74) F 0 1 = ( - l / c 2 ) 3 A 0 / 3 z + (Q/c 2) (3<J//3 z + 3A 3/3z) . 02 ? 9 9 9 F = ( - l / c ) 3 A Q / 3 r - (c/q^mQ r/ c .) y +(«/c ) (3^/3r + 3A 3/3r) F 2 3 = (-mcA/q^r/c^Y - ( ^ / c 2 j 3 A Q / 3 r 4/Y^ V ^ ^ r +3A 3/3r) F 3 1=(fi/c 2)3A 0/3z + ( l / Y ( J ) 2 r 2 ) ( 3 ^ / 3 z + 3A 3/3z) The zero order p a r t s o f (74) are i d e n t i c a l t o (55), as necessary f o r c o n s i s t e n c y . Maxwell's equations equations (56) w i t h JV g i v e n by (67) a r e : (75) y = 0: (4irr/c> (pQ+p j)=3/3 z (C-r/c 2) 3A Q/3 z^r/c2) (3^/3 z+9A 3/3 z)) +9 /3 r ((-r/c 2) 9 A Q/3 r - t / q X m f 2 2 r 2 / c 2 ) Y^ - ^ r / c ^ / S r+3 A 3/3r ) ) (76) v=l: (4irr/t) (pQ+P^ftX = 9/9r (rB^) (77) p=2: (4irr/c) (P Q + P J R Y = -3/3z (rB^) (78) u =3: (4rrr/c) (p Q+p ^ = 3 /3 z(C2r/c 2) 3A Q/3 Z-^/Y^ 2r) (3^/3 z+3 Aj/3 z) ) +3 /3 i ( ( c m n / q ) ^ 2 r 2 / c 2 J Y^ -$r'/c 2) 9 A Q/9 r+fr/y^ 2 i ) ( 3 * / 3 r+9 Aj/3 z) ) 35. The zero order p a r t s o f (75) and (78) are the same as (57) and g i v e ^and p Q . " Using (70) and (73), (76) and (77) have f i r s t order p a r t s : ( c / q U 3/3r ( ( - q / c ) * + n t f r ^ ) = 3/3 r (rB^) (c/q)K 3/3r ((q/c) = -3/3 z (r B^) .We d e f i n e : (79 ) = ty-(c™n/q)r2Y^ so t h a t these equations become: (80) K 3/3x X t|>' = -3/3X 1 (rB^) w i t h ( x 1 ,x 2) = ( r , z ) . . Thus we have the f o l l o w i n g r e l a t i o n among K,^1, and B^: (81 j K = -d(rB^Vd*« Note t h a t K,^', andrB^ are a l l constant along s t r e a m l i n e s ( a c t u a l l y the s u r f a c e s dx/X = dy/Y f o r t h i s case o f a x i a l symmetry). From (81) i t i s seen t h a t i n r e g i o n s where streaming does not occur (K=0), rB^ i s constant .everywhere.^/ A Q i s known from the energy equation (66) t o second order s i n c e A i s known to f i r s t order i n e f r o m (70). From (78) we'can c a l c u l a t t o second order: (82) l l / v f o 3 2 / 3 z 2 A 3 + 3 / 3 r ( ( l / Y 4 ) 2 r ) 3 A 3 / 9 r ) = K B ( { ) ^ / c 2 ) V 2 A 0 2 where V i s the L a p l a c i a n operator i n c y l i n d r i c a l c o o r d i n a t e s . (75 ) g i v e s t o second o r d e r : 36. (83) (4Trr/c)p1=«:/c2)V2(nA3-A{)) In summary:The zero order q u a n t i t i e s ^and are given by (57). The f i r s t order q u a n t i t i e s K,£,.and are given by boundary c o n d i t i o n s , (70), and (81) r e s p e c t i v e l y . . The second order q u a n t i t i e s A n,A_, and p 1 are given by (66),(82), and (83). THE GENERAL CASE 37. The magnetic p o t e n t i a l x cannot be used i n the case where streaming c u r r e n t s occur s i n c e the d e f i n i t i o n (34), when i n s e r t e d i n Maxwell's equations (56), i m p l i e s zero current J 1 . However t h i s problem can be handled i n the f o l l o w i n g manner. We assume a z,<\> dependence of the form e 1 U , where u=kz+mc|> (m an i n t e g e r , k a r e a l number). From Maxwell's equations(71) we have: (84) K ( r F 1 J ) = (c/q)K(K X+ K , Y + K Z) Thi s i s i d e n t i c a l l y zero, from (69). We have,from the assumption concerning the z,<j> dependence : 3/3z=k3/3u and 3/3<j>=m3/3u so t h a t (84) becomes: (85) 0=K, i(rF 1 ; i) ,j=3K/3u 3/3r ( k r F 1 2 - m r F 2 3 ) -3K/3r 3/3u ( k r F 1 2 - m r F 2 3 ) = J(K, k r F 1 2 - m r F 2 3 5 r,u ) 1 2 - 2 3 I.e.. the Jacobian of K and krF -mrF w i t h respect t o the v a r i a b l e s r a n d u vanishes. Thus the Jacobian of the general stream f u n c t i o n A a l s o vanishes, where A i s defined by: (86) KkA= n i r F 2 3 - k r F 1 2 Since K i s constant along streamlines dx/X = dy/Y = dz/Z , A i s a l s o constant along streamlir.es. With a z,9 dependence of e 1 U the s o l u t i o n s w i l l be h e l i c a l waves. To get a p h y s i c a l l y acceptable s o l u t i o n , s o l u t i o n s of d i f f e r e n t k and ni must be superposable through F o u r i e r a n a l y s i s . In t h i s way the t o t a l s o l u t i o n can f i t the boundary c o n d i t i o n s . Thus Maxwell's equations (71) must be l i n e a r . This i s t u r n r e q u i r e s K to be constant or at 38. l e a s t piecewise constant i n d i f f e r e n t regions of the p u l s a r mag-netosphere.e.g. K=0 f o r the c o r o t a t i n g dead zone and K = K q (a constant) o u t s i d e the c o r o t a t i n g dead zone. We r e s t r i c t K to be piecewise constant f o r the c a l c u l a t i o n o f A. In the f o l l o w i n g the lower case l e t t e r s r e f e r to Fourier components of the f i e l d s : (87) F a e(z,r,<(,) = z c o s ^ c j , ) / 0 0 C-(k) f a 3 ( r ) e l k z d k Note that (86) i s no longer v a l i d but i n s t e a d we have: (88) K k X = m r f 2 3 - k r f 1 2 ct 8 ot 8 Now f and f . ., us i n g A Afrom (65) and g from (28),, a r e : Ctp u (89) f 0 1 = i k i 0 f 0 2 = d a Q / d r -tfncft 2r/q} y ^ ( k ) f o z = i ^ 0 (90) £ =b f 2 3 = r b z f 3 1 = r b r r u l _ / ; i , /„2N - ./ n /_2 >^ ,-03 .-- , 2 2 (91) f U H ^ / O v ( f t / c ) f 3 1 •• f = " i m i 0 / c 2 r ^ f too 4/c 2;. 2 3 f 0 2<-l/c 2;d£ 0/dr -(mft 2r/cq)Y d )5(k) -$/ 2)fr (92) f l 2 = f 1 2 f 3 1 4 f i k / c 2 ) a 0 ^ / r 2 Y ( { ) 2 ) f 3 1 f 2 3 = ( . f j / c 2 ; d a 0 / d r - ^ f t 3 r / c q ) Y ( { ) 6 ( k ) 4/r2y*)f23 where 6(k) i s the D i r a c d e l t a f u n c t i o n . W r i t i n g out the components o f Maxwell's equations (71) ,using (64) , we get: (93) u=l: d / d r ( r f 1 2 ) + imrf 1 3=K(f 2 3<cmft/q)d/dr(r 2Y ( j )) «(k)) 21 23 u=2 i k r f +imrf = K f 3 ^ u=3 i k r f 3 1 + d / d r ( r f 2 3 ) = K f J 2 From the y=2 equation one has: (94) f 3 1 = i k X Combining.the u=l and u =3 equ a t i o n s , one o b t a i n s : K(mf 1 2+kf 2 3)+Kk(cmfyq >)d/dr(r 2Y (j 1) <$(k)=d/dr ( k r f 1 2 + m r f 3 2 ) = -Kkd X/dr . «• , From (88) and (91) one f i n d s : Kk^=(m/Y^ 2r)f 2 3-<mrft/c 2)di 0/dr-<mma 3r 2/cq)Y ( j )5(k) - k r f 1 2 39. Using the previous two r e l a t i o n s , one o b t a i n s : (95) f =(-Kk 2Mmk/Y 6 2r)dA/dr-(mknr/c 2)da /dr^cm^mk/q)Y, 6 (k) ) (96) f 2 3-(Kkm X - k 2 r d X / d r ^ n 2 f t r / c 2 ) da 0 /dr-^irfVq) (m 2(Y ( j ) + l / Y ( j ) ) - k 2 r 2 Y ( j ) ( Y ( j ) 2 + l ) ) 6 ( k ) ) H k 2 r + m 2 / ( Y ^ r ) ) Thus (94), (95) , and (96) g i v e f „ i n terms o f Xand a^. To o b t a i n the d i f f e r e n t i a l equation f o r X, take the u = 3 component i n (93) and s u b s t i t u t e f o r f , f , and f 1 0 . We d e f i n e : (97) t, =k2r\2+m2 The d i f f e r e n t i a l equation f o r X i s : '(98) k 2 d/di((r/S) dX/dr)+k 2((Kr/C) Y ^ i U k / C ) Y^*+K)-1/Y^ 2 r ) ' =-d/dr ( ( fJr/c 2 Xk 2r 2 Y 4 ) 2/C)d£ 0/dr) -{Cmkr/Cj vfar/c2) d a Q / d r . - ^ r / c 2 ) S 0 + ^ / q ) 6 ( k ) ( d / d < ( m 2 / ^ ) ( Y ^ - l / Y ^ V / O Y ^ f Y ^ + l ) ) J$2x/c2)y^(y2+l)^Y^T/K)y*) For the f o r c e f r e e case(aQ=0,m=0) the r i g h t hand s i d e o f (98) vanishes to g i v e the e c u a t i o n f o r the f o r c e f r e e stream f u n c t i o n . Write ^ - ^ o + ^ i where i s zero order i n the streaming v e l o c i t i e s and ^ i n c l u d e s a l l other o r d e r s . The zero order p a r t o f (98) i s : (99) d/dr((k 2r/ c ) dX Q/dr ) - $ < 2 /Y ( | ) 2r)X 0 = cmfi Y ( { ) 46(k ) (5c 2r 2/qrC 2J (iH% ( l ^ 2 ) ^ 2 ^ ( 1 - Y ^ 2 ) ) For the axisymmetric case(m=0) (99) becomes: (100) d/di((l/ rY ( j ) V x ( )/dr)--k 2X 0 /Y ( j ) 2r^cmn/qr)2Y ( { )(l - Y ( { ) 2)6(k) The F o u r i e r transform of t h i s i s not the same as the equation . f o r i|> (57), but i s the same as the equation f o r i> ' = (-cm^/q) r Y^+S' (from ( 7 9 ) ) . . We have: d / d i { ( l / r 2 Y ^ 2 ) d/dr ((-cm^/q) r 2 Y ^ y ) = 3 3 •: (-m^  /cq) rY^ (Y 9 - 1 ) . When t h i s i s added t o the r i g h t hand s i d e of (57) one gets the equation f o r 4": (101) V ^ C l/rY^ 2) W'/tW/yfo 9V/9z2<cm^/q) 2Y<f| (1-Y^ 2) 40. T h i s i s j u s t the F o u r i e r transform of (100). This r e s u l t i s c o n s i s -t e n t s i n c e i t i s and not ij>which i s constant along s t r e a m l i n e s . The f i r s t order p a r t of (98) i s : (102) d / d r f t k ^ / O d A j d r ^ - O ^ / Y ^ r ) A 1 = (-2KkirY^ 2/0((crafi/q) <5(k) Y <^ k^^/cV This gives X=AQ+ X l U P t o s e c o n c ^ order i n the streaming v e l o c i t i e s , The u=0 equation o f (71) can be w r i t t e n , u s i n g (91), as: (4irr/c) (p0+p 1)=(c/c 2r)£ ( f(Y 4 ) 2/c 2)d/dr(r d^ / d r ) - ( m a 2 r / c q ) y^ 3 ( Y ^ + l ) 6 (k) 2 2 2 2 - _ •*§x /c Kf 1 2 - ^ Q / c ) y ( j ) f 2 3 where p Q and p j are the F o u r i e r com-ponents o f p Q.andpj. The zero order p a r t of t h i s equation i s : (103) 4T r rp 0/c=(-ft/c) T ( f ) 2r((mcft/q)Y ( ( )( Y^ 2+l)6(k) + 2b z) • The F o u r i e r transform of t h i s i s i d e n t i c a l t o (60) ,as necessary f o r consistency. The remainder i s : (104) 4 1 r r p 1/c=(l/c 2;((?a 0/r ) - Y ( j ) 2d/dr(r d i Q / d r ) Hft/e2) Y ^ r 2 ^ T h i s has f i r s t order and second order order p a r t s , i n c o n t r a s t to the axisymmetric case. This i s because b^ now has a zero order p a r t , a^ i s s t i l l second order ,as given by the F o u r i e r transform of (66). The f i e l d components given by (94), (95),(96) have zero order p a r t s : (105) h w = f u 0 .4mk/c)(dX0/dr ^ m f y q^Y ^ C k ) ) r b r 0 = f 3 1 0 = i k X 0 r b z 0 = f 2 3 0 ^ -k^^OY^dXQ /dr^mJVq^Y^raCk) . ( m ^ - l / Y ^ ) 2 2 2 -k r Y^(Y^ +1)) 41. The f i r s t order p a r t s o f the F o u r i e r components of the f i e l d s are given by: (106) b + 1= - K k ^ Y ^ / C - t m k / ^ d A j / d r r b r l = i k X x r b z l = ia£ry2XQ/^ - ( k ^ V / ^ d X ^ d r One can c a l c u l a t e the magnetic f l u x through a v e r t i c a l s l i c e , width rA<j>, o f a c y l i n d e r w i t h a x i s c o i n c i d i n g w i t h the s p i n a x i s ( z - a x i s ) , extending from z=0 t o Z = Z Q . - : . T h i s i s : z z (107) rA<j>/00 B rdz =A<|,/00 F 3 1 d z =A(f»(A(z0,r,<j»)-A(0,r,<|))) -a simple r e s u l t . I f one i n t e g r a t e s over <j>, t h i s w i l l v a n i s h except f o r the m=0 case, f o r which one obtains the same r e s u l t as f o r the stream f u n c t i o n if>: 2iTjfi ( z Q , r ) - A (0,r)) From the F o u r i e r transform (87) and the formulae f o r f „ i n Ctp terms of Xand a^ i t i s p o s s i b l e t o c a l c u l a t e a l l the f i e l d s . To c a l c u l a t e X^ f o r a s p e c i f i c set of boundary c o n d i t i o n s there are two approaches: i ) C a l c u l a t e the s e r i e s s o l u t i o n to (100), and compute s e r i e s f o r ^°ZQ>^TQ>^^Q• Match these to the F o u r i e r transforms of the f i e l d s at the neutron s t a r t o get C-(k) . i i ) Use the r e s u l t (107) and c a l c u l a t e the c y l i n d r i c a l s l i c e f l u x near the neutron s t a r ( e . g . f o r an obli q u e d i p o l e f i e l d ) . Then d i f f e r e n t i a t e w i t h respect to <f> t o get A(z,r,<f>) at the boundary, Inverse F o u r i e r t r a n s -form to get X at the boundary. Match t h i s to the s e r i e s s o l u t i o n t o (100) to determine C^(k). The f i r s t procedure i s s i m i l a r t o tha t used i n s o l v i n g e x p l i c i t l y the axisymmetric f o r c e f r e e c o r o t a t i o n case f o r a d i p o l e f i e l d at the neutron, s t a r , i n appendix 1. 42. D I S C U S S I O N A f t e r arguing f o r the existence o f a magnetosphere we s t a r t e d h i t h a simple but r e s t r i c t i v e model u t i l i z i n g the stream f u n c t i o n IJJ. T h i s was generalized t o f i t any boundary f i e l d at the neutron s t a r v i a the magnetic p o t e n t i a l x Next the f o r c e f r e e assumption was r e l a x e d , ivjVich had the e f f e c t of a l t e r i n g the f i e l d s to hold the p a r t i c l e s in c o r o t a t i o n . F i n a l l y the p a r t i c l e s were allowed to move. The type o f motion th a t occurs was c a l c u l a t e d 'as1.was i t s r e s u l t i n g e f f e c t on the f i e l d s . The two major assumptions are: 1) the model i s steady state(time independence i n the r o t a t i n g frame); 2) p a r t i c l e motions are small departures from c o r o t a t i o n . .The f i r s t assumption seems . q u i t e reasonable. However some p u l s a r models, most notably those i n v o l v i n g some type of r e l a x a t i o n o s c i l l a t i o n to explain the emissions, such as the spark gap model of Ruderman and Sutherland 4, abandon assumption 1) e n t i r e l y . In any case, keeping 1) i s reasonable i n order to c a l c u l a t e the conditions under which non-steady processes occur. The second assumption i s on l e s s s o l i d f o o t i n g . I t i s q u i t e reason-able well within the l i g h t c y l i n d e r , but as one approaches regions where i s very large, the p h y s i c a l s i t u a t i o n i s ' u n c l e a r . Many other processes become important. Others have proposed a shock f r o n t near the l i g h t c y l i n d e r . Associated with 2 ) i s the assumption of charge separation, which follows n a t u r a l l y from the steady 9 s t a t e c o r o t a t i o n case. Again some authors assume countering views. 43. The l a s t models presented here, a l l o w slow p a r t i c l e motions. The c o n t i n u i t y equation gives r i s e to the parameter K which i s constant along a s t r e a m l i n e . Except f o r the axisym-metric case; K i s f u r t h e r r e s t r i c t e d t o be piecewise constant. K must be known before one can proceed w i t h the c a l c u l a t i o n o f a model. It i s determined by the c o n d i t i o n s at the neutron s t a r sur-f a c e . Since one knows the p o s t i o n of the streamlines from the zero order c a l c u l a t i o n , K i s - then known everywhere i n s i d e the l i g h t c y l i n d e r . From (64),(67) and(70) we have: KCB^cmn/q^CY^.+l), B r, B ^ ^ P / O (z,*,*) The zero order charge d e n s i t y and f i e l d s are known. The physi c s of the emission process enters the problem i n determining the i n i t i a l v e l o c i t i e s and thus K. If the neutron s t a r has a uniform surface and a pure d i p o l e f i e l d , the surface p r o p e r t i e s and thus K should be a function only of the angle from the d i p o l e a x i s . P r e c i s e l y what t h i s f u n c t i o n i s depends on a knowledge of the phy s i c of the s u r f a c e , which i s outside the scope of t h i s i n v e s t i g a t i o n . The r e s t r i c t i o n f o ttatise a, piecewise constant K f o r the case of the general stream f u n c t i o n A ,may or may not be an unreasonable approximation to the a c t u a l p h y s i c a l s i t u a t i o n . 44. BIBLIOGRAPHY 1. t e r Haar D, Pulsars,'Phys .Rep .3_, no . 2,57-126, (1972) 2. Ruderman M, P u l s a r s : S t r u c t u r e S Dynamics,A.R.A.A., 427-476(1972) 3. G o l d r e i c h P § J u l i a n PulsarEiectrodynamics,Ap.J,157_,869-880(1969 4. Ruderman M § Sutherland P,Theory of P u l s a r s : P o l a r Gaps, Sparks and Coherent Microwave Radiation,Ap.J.,196,51-72,(1975) 5. Arfken G, Mathematical Methods f o r P h y s i c i s t s , Academic Press 1970 (2nd e d i t i o n ) 6. G o l d s t e i n H, C l a s s i c a l Mechanics, Addison Wesley 1965(7th p r i n t i n g ) 7. P r o t t e r M § Morrey C, Modern Mathematical A n a l y s i s , Addison Wesley 1970 8. Ardavan H, Magnetosphere Shock D i s c o n t i n u i t i e s i n Pu l s a r s . I . ' A n a l y s i s of the I n e r t i a l E f f e c t s at the Lig h t Cylinder,Ap.J,203,226-232(1976) 9. Henriksen R § Rayburn D, Hot Pu l s a r Magnetospheres, M.N.R.A.S., 166, 409-424,(1974) 10. Henriksen R § Norton J , Obiique R o t a t i n g P u l s a r Magnetospheres With Wave Zones, Ap.J,201,719-728,(1975) • 11.. Mestel L, P u l s a r Magnetosphere, Nat .Phys.Sci. ,233,149-152, (1971) 12. M i c h e l F, Ro t a t i n g Magnetosphere: A Simple R e l a t i v i . s t i c Model, Ap.J,180, 207-225,(1973) 13. Cohen J § Rosenblum A, Pu l s a r Magnetosphere, Astr.SSpace S c i . , 6,130-136,(1972) 45. 14. Mestel L, Force-Free P u l s a r Magnetospheres, Astr.§Space S c i . , 24,289-298,(1973) 15. Okamoto I, Force-Free P u l s a r Magnetosphere I,M.N.R.A.S.,167, 457-474, (1974) 16. Scharlemann E 5 Wagoner R, A l i g n e d R o t a t i n g Magnetospheres I General A n a l y s i s , Ap.J,182, 951-960,(1973) APPENDIX 1 ( l - n 2 r 2 / C 2 ) 0 2 V / 8 r 2 + 9 2 V / 9 z 2 ) - ( 1 / r ) ( l + n 2 r 2 / c 2 ) 9 V / 9 r = 0 (1) Since t h i s equation i s separable i n r and V(r,z)=X(x) Y(y) we write: where x=9x/c, y=ftz/c. Separation of va r i a b l e s gives: (2) (l/Y)d 2Y/dy 2= -a= (1/X)((1/x)(1+x 2)/(1-x 2) dX/dx -d 2X/dx 2) (3) v= e i o r y • Writing d/dx = ', one has (4) X " -(1/x) ( l + x 2 ) / ( l - x 2 ) . X' - a 2 X= 0 •(4) has regular singular points at x=0,l, and" .. The boundary conditions we use are: 1) The magnetic f i e l d at the neutron star i s a dipole f i e l d aligned with the spin axis. 2) The f i e l d s at the l i g h t c y l i n d e r are f i n i t e . From(21)of the main text we have V(x,z) = -(n/c)i|j(x,z) has the same behaviour as x,z-+0,as the stream function f o r a dipole f i e l d . In c y l i n d r i c a l coordinates the dip o l e f i e l d i s : C5). B r = 3 y r z / ( r 2 + z 2 ) 3 / 2 ^ = y ( 2 z 2 - r 2 ) / ( r 2 + z 2 ) 5 / 2 can be obtained from the stream function: ^dipole= V / C r 2 + z 2 ) 3 / 2 = . ( f i M / c ) x 2 / ( x 2 + y 2 ) 3 / 2 Thus we have: dipole as x,y-K). We 47. We need the Fourier transform: F ( ( 1 i / 2 ) } s x / ( x 2 + y 2 ) 3 / 2 ) = -d/dx ( K Q (<*)) = a K ^ C K ) Here KQ, K 1 are the f i r s t and second Hankel functions. Thus we have: (j/c) 2 vpc (2 7 r )^ F ( x / ( x 2 + y 2 ) 3 / 2 ) = ( f/c) 22 ux aKj ( CK) We have: Kj+Cl/cx) + (c*/2) log(c#:/2)as x-*0. Thus one obtains: C o / c ) 2 ( u ^ ( l + ( o 2 x 2 / 2 ) l o g ( a x / 2 ) +• ••) + (£/C)VTT as x*0. The series f o r the two independent solutions to (4) were computed: (7) X(x)=A(cOX 0(x) +B( a)X 1(x) At the o r i g i n these series.have the values: X0(0)=0, X1(0)=1 From (7) we then have: 08) B= ( f/c) 2 y/ TT A i s l e f t undetermined. Both solutions diverge as one approaches the l i g h t c y l i n d e r , so the requirement of f i n i t e f i e l d s at x=l cannot be applied i n any simple manner. We consider the behaviour of X(x) near the l i g h t c y l i n d e r using the v a r i a b l e v: . (9) v=l-x 2 We have the r e l a t i o n s : (JO) dv=-2xdx l+x2=2-v d/dx = -2x d/dv d 2/dx 2 = -2d/dv + 4(l-v) d 2 / d v 2 With these (4) becomes (with d/dv='): (11) (v-v 2)X +(l-v)X -(a /2) 2vX =0 We writeX(v) =E a v n + ^ .(il") then becomes: ( 1 2 ) • 1 v n + B - 1 ( ( n + 3 ) 2 a n - ( n ^ - l ) 2 a n _ 1 - ( a / 2 ) 2 a n _ 2 ) =0 48. The i n J i c i a l equation(n=0) i s 3^=0. Since i t has a double root the second s o l u t i o n i s (9X/38) _ = X ( v ) l o g ( v ) + r e g u l a r s e r i e s , 3-u where X(v) i s the s o l u t i o n f o r 6=0. T h i s second s o l u t i o n i s divergent at the l i g h t cylinder(v->0) . Thus we only need to consider the. •Mie s o l u t i o n , X ( v ) . The r e c u r s i o n r e l a t i o n f o r the c o e f f i c i e n t s a^, from (16), i s : (13) a n = ( ( n - l ) 2 a n _ r ( a / 2 ) 2 a n _ 2 ) / n 2 Taking a^=l we have: V ( r , z) = A: (a )X (v) e i a y d a =/" (A(a ) X Q (x) + (ft/c) 2 (y /TT ) X j (x) ) e i a y d a By F o u r i e r transforming t h i s r e l a t i o n , we o b t a i n : (14) C(a)X(v)= A ( a ) X 0 ( x ) + (ft/c) 2(M / i T)X 1(x) f o r a l l a and x. For x=0 (v=l),(18) g i v e s : (15) C(a) = (n/c) 2(y /TT ) 1/X(1) Thus • the e x p l i c i t s o l u t i o n f o r V ( r , z ) i s : (16) V ( r , z ) = (n/c ) 2 ( y/7r)/^(X(l-Q 2r 2/c 2)/X(l)) e i a f i z / c da Note t h a t we could have set x to zero i n the equation f o l l o w i n g (13), then performed the F o u r i e r transform to get (15) d i r e c t l y , without any refe r e n c e to the s o l u t i o n s Xn(.x) and X 1 (x) . 49. APPENDIX 2 The Physical Meaning of F yv In non-rotating cartesian coordinates xa=(t,x,y,z) , the f i e l d quantities , for Gaussian units, are: 0 E /c X E /c y E /c z (1) ? y v = -E /c X 0 B z -B y -E /c y -B z • 0 i B X -E /c z B y -B X 0 In transforming to cylindrical(stationary) coordinates: x^(t,z,r,9 0) , $ a B = £ a / # ^ 6/35c V F y V is used have We «. -0 A0 t=x =x -3 A l z=x =x -1 A2 ,A3. KI . ,A3, x=x =x. cos(x ) y=x sm(x ) and x =(x +x ) 2 9r/ 9^=x/r=cos 9, A3 ^ x = tan (x /x ) 0 3r/ Sy=y/r=sin9 0 99 0/Sx=9/9x(tan" 1(y/x)) = -y/(x2+y2)= - s i n 9 Q /r 9 < f , 0 / 9 y = COSI^Q /r : Thus one has: (2) 5 x a / 3 x y = 1 0 0 0 0 0 COS 9n 0 0 s i n 9 n 0 1 0 -sin9 Q/r -cOS9 Q/r 0 Using (2) one can now calculate 1^ in cylindrical coordinat from (1). The result i s : . es (3) 0 E /c z E r/c V c -E /c z 0 - B r / r -E r/c 0 B /r z B r/r -B /r z 0 . 50. where: E =E cos<J> +E sind> r x y B =B cosd> +B s i n * r x y r The change to r o t a t i n g c y l i n d r i c a l coordinates i s simply ac complished by u s i n g : d>=d>0-ftt t o o b t a i n the d e r i v a t i v e s : E =-E sind) +E cosi> <p x r y Y B( j ) = - B xsin<{. +EycosiJ> 1 0 0 0 14) 3 x ^ 3 ^ = 0 1- 0 0 0 . 0 1 0 -n 0 0 1 Using (3) and (4) we c a l c u l a t e F y v : F ^ V = ( 3 x y / 3 r ) ( 3 x V / 3 ^ ) r 0 E /c z E /c r y c r (5) F a p= -E /c z 0 \ UE /c-B / r z r -E r/c " B* 0 ftE /c+B / r r' z' - ~Vcr B -QE — r - z r c -B -HE -z — r r c 0 Note that E and B are q u a n t i t i e s as measured i n the s t a t i o n a r y frame. Using g ^ from(27) 0 f the main t e x t , one gets: 0 -cE +ftrB z r -cE -ftrB r z -crE, cE -ftrB z r 0 N -rB„ A. cE +ftrB r z 0 rB z crE^ L * rB r -rB z 0 51 APPENDIX 3 S e r i e s S o l u t i o n of: 3 V 3 9 2 + r 2 Y ^ 2 ( 3 2 x / 9 r 2 + 3 2 x / ? z 2 ) + Y ( J ) 2(2Y ( j ) 2-l) 9x/9r = 0 The 9 and z dependences caf* be separated by w r i t i n g x a s : (1) X (z,r,9) = e i a y e i m * R ( x ) •with x=fir/c, y=Qz/c. m i s an i n t e g e r , anda i s . a r e a l number. For R , w i t h d/dx= 1 , one obtains the equation: (2) x 2 ( l - x 2 ) R " + x ( l + x 2 ) R , - C m 2 ( l - x 2 ) + a 2 x 2 ) ( l - x 2 ) R = 0 2 2 2 where 2y^ -l=(l=x ) / ( l - x ) has been used. Before s o l v i n g (2) f o r R(x),.w e c o n s i d e r t h e problem of matching t o an o b l i q u e magnetic d i p o l e f i e l d at the o r i g i n . As z,r-K) 'X. approaches To c a l c u l a t e X ^ ^ p o l e w e must know what F i s - i n the r o t a t i n g c o o r d i n a t e s . From appendix 2. we have: F 1 ^ ( l / r ) X , 3 = B F " = C l / r ) x , 1 = f i E r / c + B z / r F 3 1 = ( l / r ) X , 2 = - f i E z / c + B r / r As r+0 we have: (3) X ) 1 - B z X , 2 - B r x, 3=rB^ The f i e l d o f a d i p o l e , i n coordinates z ^ r ' , ^ ' w i t h z' a l i g n e d w i t h the magnetic a x i s , i s given by -the equations: B z I = p ( 2 z . 2 - r . 2 ) / ( z . 2 + r . 2 ) 5 / 2 = 9 X d . p o l e / 3 z ' B r . = 3 u r ' z ' / C z - 2 + r ' 2 ) 5 / 2 = 3 X d i p o l e / 3 r ' These .are s a t i s f i e d by the magnetic p o t e n t i a l : ( 4 ) X d i p o l e = - y z , / ( r ' 2 + z , 2 ) 3 / 2 • The diagram next page, i l l u s t r a t e s the r e l a t i o n between 52. One has the r e l a t i o n s : c a r t e s i a n coordinates (x,y,z) and ( x ^ y ' j Z ' ) , and c y l i n d r i c a l coord-i n a t e s (z,r,<j>) and ( z ' , r ' , 9 ' } - T h e -primed coordinates are r e l a t e d t o the unprimed coordinates by a r o t a t i o n of 6 Q about the y a x i s . z' = z cos6 Q+r cos<j)Sine o ,2 ,2 2 2 r ' +z' =r +z 2 2 3/2 C 5 ) x d i p o l e = _ y ( : z c O s e 0 + r c o s < f ' s : L n 9 0 ) / ( : r + z J From the s e p a r a t i o n of v a r i a b l e s " "(1) ,we have (6) x(z,r , 9 ) = J e ^ / j c n r / c ) e i a Q z / c da We i n v e r t t h i s to get: (7) R(x) = ( l / 4 ^ 2 ) / ^d^fjy e " 1 0 " ^ 0 ^ x(cy/n,cx/n,$) As x.approaches zero, one has X + X d i p o l e . -Thus, from(5) , the i n t e g r a l i n (7) i s non-zero only f o r m=0,l,-l. m=0: R Q (x) + (y/2Tr) (R/c) 2cos0 o£dy e~iay(-y/ ( x 2 + y 2 ) 3 / 2 ) Here we use i n t e g r a t i o n by p a r t s The i n t e g r a l i s . t h e n : /y i a ydci/CxV)%> = iaAxV)-* e'lay dy This i s j u s t ia(2*)h times the F o u r i e r transform of (x 2+y 2) which i s (2/7r^K Q(ax) . Thus we have: (8) R 0(x)-^CM/TT)Cfi/c) 2cos0 0 i a K 0 ( a x ) " l as x->-0 •-(v/ir) (ft/c) icxlog(ax) ) where K (ax)+-log(ax) as x-K) has been used. 53. Now, the i n t e g r a l ' i n a>is j u s t TT . The i n t e g r a l i n y i s found d i r e c t l y from appendix 1 tc; be 2 ^ (ax). As x+0 , we have K 1( ax)->(l/ax) + (ax/2)log(ax/2) Thus one demands that (9) R ± 1 ( X H - ( v / 2 T T ) ( f t / c ) 2 s i n e 0 ( l / x + (ax 2/2) log (ax/2) ) as x-*0 The so l u t i o n s R(x) were found as s e r i e s about x=0 (two f o r 2 2 m =0, two f o r m =1). However, as i n appendix 1, the boundary condition at the neutron star determines the c o e f f i c i e n t of only one s o l u t i o n of each p a i r . We s h a l l now consider the behaviour near t h e " l i g h t c y l i n d e r 2 using the v a r i a b l e v=l-x (see appendix 1,equations (9 )5(10) ) . Writing d/dv=* ,(2) becomes: (10) v(l-v) 2R+(v-l)R-((m/2) 2+(a/2) 2(l-v))vR=0 0 0 n+3 Writing R(v)=£a v .(18) becomes: rv n f (11) f v n + 6 ~ 1 ( ( a / 2 ) 2 a T i _ + ((n +3-2)(n +3-3)-(a/2) 2-(m/2) 2)a r» 1 1 - 0 -(n+S-1) (2n+2B-5)a j+Cn+6) (n+3-2)a n)=0 The i n d i c i a l equation i s B(8-2)=0 , so that 8=0,2.. For 8=0 a l = 0 ' a 2 , a 3 e t c ' d i v e r 8 e - Thus we set a Q=3b so that (9R/8B)^ i s a l s o a s o l u t i o n . But we have: co n (.12) ( 3V3B ) B = 0 = : R m ( v ) log(v) + E b n v " Here R. (v) i s the solution.for.3=2, as fol l o w s : m (13) R (v)=fa v n + 2 m ' 5 nm With a n m = ( ( n + l ) ( 2 n - l ) a n l + ( ( a / 2 ) 2 + ( m / 2 ) 2 - n ( n - l ) ) a n 2 - ( a / 2 ) 2 a n 3 )*/n.(n + 2)) n-2 54, Both s e r i e s are f i n i t e as v goes to zero. From appendix 2, we have: F =E /c r Using t h i s and (37) from the main t e x t , we have: E r=- (f2r 2/e 2) Y (j ) 2F 23=--(«r/c) Y ^ x / 3z = - (Or/c) Y ^ i a W c ) x Since we assume th a t E^ i s w e l l behaved as ftr/c approaches u n i t y , X must approach zero as one approaches the l i g h t c y l i n d e r ( v = 0 ) . Thus the s o l u t i o n (12) i s r e j e c t e d . We are l e f t w i t h , f o r m=0: (14) R 0 ( v ) = a 0 0 ( v 2 + ( 2 / 3 ) v 3 + ( l / 8 ) ( ( a / 2 ) 2 + 4 ) v 4 + • • • ) and, f o r m=±l: (15) R 1 ( v ) = a 0 1 ( v 2 + ( 2 / 3 ) v 3 + ( l / 8 ) ( ( a / 2 ) 2 + ( 1 7 / 4 ) ) v 4 + - - - ) da The magnetic p o t e n t i a l x i s given by: (16) X ( v , y ) = / ; R 0 ( v ) e ^ d a + ( e i * + e - i * ) £ R ^ e 1 ^ w i t h RQ and R^ from (13) as given i n ( 1 4 ) 5 ( 1 5 ) . A l s o we have X"*Xj • i - as x,y ->0 A d i p o l e " , • •, • i_ - i a u .. , - i a u +i<j> , . . . . , , By m u l t i p l y i n g by e , -Uand e e .. a n d - i n t e g r a t i n g over y and <f> one ge t s , f o r x->-0(v->-l) : (17) R Q(v+l)+ - ( y / T r ) ( f 2 / c ) 2 c o s 6 o i a l o g ( x ) (18>:Rj(v*l>»- - ( y A ) ( R / c ) 2 s i n 9 o (1/x) R e c a l l x d/dx=2(v-l)d/dv ((10) i n appendix 1) so th a t (17) i s : (19) 2(v-l)d/dv R 0 ( v + 1 > - (y /TT) (fl/c) 2cos6 i a Write the q u a n t i t y on the l e f t hand s i d e as the s e r i e s : a n r Z b v" with h ~2(n+l)a </ann -2(n+2)a /ann a are the 00$ n n v ' n-1 00 v 1 n 00 n c o e f f i c i e n t s of RQ(V) as given by ( 1 3 ) . Then as v * l , we have: (20) a 0 ( )|b n= - ( y / 7 r ) ( f i / c ) 2 c o s 6 Q i a Thi s determines the c o e f f i c i e n t of R r t ( v ) , s i n c e b are known. 0 1 ' n 55. To determine the c o e f f i c i e n t of Rj(v) from (18), we solve the d i f f e r e n t i a l equation f o r W(v). We d e f i n e : (21) W(v)=xR 1(v) = ( l - v ) i s R ( v ) W(v) w i l l be f i n i t e as x-K). With R 1(v) = ( l - v ) 2W(v), we have: Rj =(1-V)_5SW + JS(1-V)" 3 / 2 W RJ =(l-v) _ J 2W + ( l - v ) " 3 / 2 W +(3/4) ( l - v ) " 5 / 2 W Thus (10) (With m=l) becomes,upon m u l t i p l y i n g by (1-v) 2: (22) v(l-v)W-(l-v)W-(V(a 2/4)v)W=0 0 0 n+8 W r i t i n g W=ar.1Ec v , c n = l , (22) becomes: 01 » n 0 (23) v n + 6 " 1 ( - ( a 2 / 4 ) c N _ 2 - ( J S + ( n + e - ^ ( n + 6 - 3 ) ) c n _ 1 + ( n + 6 ) ( n + 8 - 2 ) c n ) = 0 The i n d i c i a l equation i s 6(B-2)=0. The 8=0 s o l u t i o n i s r e j e c t e d s i n c e as v-*-0, R (and thus W) must; approach zero.' We are l e f t w i t h : (24) W(v)=a 0 1Zc nv n w i t h c n = ( ( ( n + l ) ( n - l . ) + % ) c n _ 1 + ( a V 4 ) c n _ 2 ) T((n+2)n) and CQ=1 As x->0, from (18) and (21) we get: ( 2 5 ) a 0 l K =-^/ i r)Cn/c) 2sin8 0 Here a m i s the c o e f f i c i e n t of R 1 ( v ) . Now x>as given i n (16) , i s completely determined : S i . APPENDIX 4 » We consider the Lagrangian: (1) L=^(Ax 2+By 2+Cz 2) + 01x+$2y+<I>3z Here A,B,C/!^ >*2»*3 a r e f u n c t i o n s o f x,y,z but not e x p l i c i t l y o f t or the v e l o c i t i e s . We .define: (2) X=8*3/Dy -9$ 2/8z and c y c l i c a l l y f o r Y and Z. Then the Lagrange equations o f motion a r e : (3) d/dt(Ax)=Zy-Yz + i i ( A , x x 2 + B , x y 2 + C , x z 2 ) d/dt(By)=Xz-Z* + l 2 ( A , y x 2 + B , y y 2 + C , y z 2 ) d/dt(Cz)=Yx-Xy +3i(A, zx 2+B, zy 2+C, zz 2) w i t h A,x=8A/8x e t c . The Hamiltonian energy f u n c t i o n i s constant: (4) E=MAx 2+By 2+Cz 2) s i n c e L i s not e x p l i c i t l y a f u n c t i o n o f time. The equations (3) have x=y=z=0 as a p o s s i b l e s o l u t i o n , f o r a r b i t r a r y x,y,z. We are l o o k i n g f o r sm a l l d e v i a t i o n s from these p a r t i c u l a r motions. I f the q u a n t i t i e s A,B,C,X,Y and Z were constant, then the motion would be a s u p e r p o s i t i o n of s o l u t i o n s of normal mode type, each o f which has a time dependence o f the form e~ l t 0 t. The c h a r a c t e r i s t i c f r e q uencies are given by itoA Z -Y (5) determinant -Z iuB X ' = 0 Y -X iwC or (6) w(ABCu)2-AX2- 2 2 BY -CZ )=0 The root w=0 corresponds to uniform motion w i t h the v e l o c i t i e s (x,y,z) • p r o p o r t i o n a l t o (X,Y,Z) . The other r o o t s correspond to tr a n s v e r s e e l l i p t i c a l motion. 57, to= ( (AX 2+BY 2+CZ 2)/AEC) J 5 One sees that A,B,C,X,Y and Z, which are functions of •: p o s i t i o n , w i l l vary to f i r s t order i n the v e l o c i t i e s . They vary slowly, due to the uniform motion, and rapi.dly.with frequency w , due to the o s c i l l a t i n g motion. We d e f i n e : (7) Thus the roo t s o f (6) are 0,± w. With t h i s value f o r u, we wr i t e the matrix equation f o r the amplitudes o f the transvei-se motion K Z -Y (8) -Z . iwB X Y -X iwC =0 T h i s has n o n - t r i v i a l s o l u t i o n s (£,n>c) which are determined up to a n - a r b i t r a r y complex m u l t i p l y i n g f a c t o r . We s h a l l use the v e c t o r s : (X,Y,Z), (£ ,n ,0 and (£*,ri*^ , as a ba s i s f o r d e s c r i b i n g the general motion. We introduce the d e f i n i t i o n s (9) AX 2+BY 2+CZ 2=P •k *k * (10) AU +Bnri =N (11) 7 u dt = X M u l t i p l y i n g (8) on the l e f t by (X,Y,Z) and (£,n,r.), we have: (12) AX5+BYn+CZC=0 (13) 2 2 2 A£ +Bn +CC =0 From (8) , we can express any one of£,n,r, i n terms of another: C=-A((XZ-itoBY)/(BY 2+CZ 2)) 5 and c y c l i c r e l a t i o n s Thus we can express N, from (10), as a f u n c t i o n of only one of £,n>C and one complex conjugate quantity £,n,r.. Inverting these r e l a t i o n s g i v e s : St. (14) «*=(1/A -X2/P)N/2 and cyclic relations (15) £*n=(-iwCZ-XY)N/2P and cyclic relations We now express the velocity vectors as a superposition of the instantaneous normal modes. These have a real amplitude SL describi the longitudinal component and a complex amplitude amplitude o* representing the e l l i p t i c a l component, as follows: (16) x=£X+o5e~ l x+o*£*e l x " . —iv * * iv y=£Y+ane A+a n e A z=£Z+a!;e"lx+a*?*e:LX The factor e~ Aincorporates the rapid time dependence of the traiisvers e l l i p t i c a l motion. These equations can be inverted to give £ and ain terms of the • velocity components. The results are: (17) ?l= AXx+BYy+CZz (18) Nae-1*=Ac;*x+Bn*y+(:c*z Using (16), the energy (4) is given by: (19) . E=%P£2+Noa* This shows that the particle energy i s unambiguously expressible as the sum of a longitudinal partf^PJi') and a transverse part(Noo ). We can obtain the equation of motion for £ anda by different-iating (17) and (IP.), using the equations of motion (3),and then using (16) to express the results in terms of % and o. The results are expressions for I and 6 which contain slowly varying terms, plus oscillating terms proportional to e ~ l x , e " 2 l x . In considering 59. the " a d i a b a t i c " aspects of the motion the o s c i l l a t i n g terms can be ne g l e c t e d , to second order i n the v e l o c i t i e s . When one i n t e g r a t e s over many c y c l e s the f i r s t order p a r t s of the o s c i l l a t i n g terms v a n i s h , whereas the f i r s t order p a r t s o f the s l o w l y v a r y i n g terms do not. The s l o w l y va'rying terms o n l y c o n t a i n £,n, orC as a product * * * w i t h one of £ ,n , or X, . (14)5(15) are used to e l i m i n a t e these terms. The r e s u l t of the c a l c u l a t i o n f o r & i s w r i t t e n : (20) PJ--Js.i 2(X3/8x +Y3/3y +Z3/3z)P * -Noa (X3/3x +Y3/3y +Z3/3z)logu) + o s c i l l a t i n g terms The r a t e of change of any f i e l d q u a n t i t y , a l o n g the path o f a p a r t i c l e , i s gi v e n by a p p l y i n g the operator: d/dt = x3/3x + y3/3y + z3/3z The p a r t i c l e ' s v e l o c i t i e s , x,y,z, are given e x p l i c i t l y by (16). When we average over s e v e r a l c y c l e s , t h i s operator becomes, t o f i r s t order: *(X3/3x + Y3/3y + Z3/3z ) Thus from (20), we can w r i t e , f o r a p a r t i c l e moving along a stream-l i n e : P£d£ +%l2dP +No*od(logu>) =0 or (21) d(%P£ 2) + Nac*d(logu>) = 0 From (19) and the constancy o f E, t h i s y i e i d s : * * * d(No o)=Na od(logu) o r d(log(No o/u))=0 , i . e . * (22) Na a/w =M M i s a constant. T h i s r e s u l t i s a g e n e r a l i z a t i o n of a r e s u l t f a m i l i a r i n many asp e c t s , of p a r t i c l e motions i n a magnetic f i e l d . Namely , the magnetic moment i s an a d i a b a t i c i n v a r i a n t . Combining (19) and (20) g i v e s : (23) P42=2(E-Mw) in the a d i a b a t i c l i m i t . . • 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0093766/manifest

Comment

Related Items