- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Coherent state path integral for the harmonic oscillator...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Coherent state path integral for the harmonic oscillator and a spin particle in a constant magnetic field Bergeron, Mario
Abstract
The definition and formulas for the harmonic oscillator coherent states and spin coherent states are reviewed in detail. The path integral formalism is also reviewed with its relation and the partition function of a sytem is also reviewed. The harmonic oscillator coherent state path integral is evaluated exactly at the discrete level, and its relation with various regularizations is established. The use of harmonic oscillator coherent states and spin coherent states for the computation of the path integral for a particle of spin s put in a magnetic field is caried out in several ways, and a careful analysis of infinitesimal terms (in 1/N where TV is the number of time slices) is done explicitly. The theory of the magnetic monopole and its relation with the spin system are explained, and the equivalence of these two system is established up to infinitesimal order by the introduction of an exterior interaction to the monopole. This gives a new representation of a coherent state path integral in terms of a more familiar Feynman path integral. The coefficient of the topological term in the spin system appears explicitly without ambiguity, as being 2s.
Item Metadata
Title |
Coherent state path integral for the harmonic oscillator and a spin particle in a constant magnetic field
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1989
|
Description |
The definition and formulas for the harmonic oscillator coherent states and spin coherent states are reviewed in detail. The path integral formalism is also reviewed with its relation and the partition function of a sytem is also reviewed. The harmonic oscillator coherent state path integral is evaluated exactly at the discrete level, and its relation with various regularizations is established. The use of harmonic oscillator coherent states and spin coherent states for the computation of the path integral for a particle of spin s put in a magnetic field is caried out in several ways, and a careful analysis of infinitesimal terms (in 1/N where TV is the number of time slices) is done explicitly. The theory of the magnetic monopole and its relation with the spin system are explained, and the equivalence of these two system is established up to infinitesimal order by the introduction of an exterior interaction to the monopole. This gives a new representation of a coherent state path integral in terms of a more familiar Feynman path integral. The coefficient of the topological term in the spin system appears explicitly without ambiguity, as being 2s.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-08-14
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0085046
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.