UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Semi-metrics on the normal states of a W*-algebra Promislow, S. David 1970

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1970_A1 P67.pdf [ 5.61MB ]
Metadata
JSON: 831-1.0080513.json
JSON-LD: 831-1.0080513-ld.json
RDF/XML (Pretty): 831-1.0080513-rdf.xml
RDF/JSON: 831-1.0080513-rdf.json
Turtle: 831-1.0080513-turtle.txt
N-Triples: 831-1.0080513-rdf-ntriples.txt
Original Record: 831-1.0080513-source.json
Full Text
831-1.0080513-fulltext.txt
Citation
831-1.0080513.ris

Full Text

SEMI-METRICS ON THE NORMAL STATES OF A W*-ALGEBRA by ' S. DAVID PR.OMISLOW B. Comm., U n i v e r s i t y of Manitoba, i 9 6 0 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n the Department •v of MATHEMATICS We accept t h i s t h e s i s as conforming to the r e q u i r e d standard The U n i v e r s i t y of B r i t i s h Columbia . • March 1970 In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the r equ i r emen t s f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I ag ree tha t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree tha p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y pu rposes may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d tha t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l owed w i t hou t my w r i t t e n p e r m i s s i o n . Department o f M A T H EM A T J^S The U n i v e r s i t y o f B r i t i s h Co lumbia Vancouver 8, Canada Date W f r C H 1910 i i . Supervisor: D. C. Bures <• ABSTRACT i In t h i s thesis we investigate certain semi-metrics defined on the normal states of a W -algebra and t h e i r ap-p l i c a t i o n s to i n f i n i t e tensor products. This extends the work of Bures, who defined a metric d on the set of normal states'by taking d(n,v) = i n f [||x-y||) , where the infimum i s taken over a l l vectors x. and y which induce the states and v respectively r e l a t i v e to any representation of the 1 algebra .as a- von-Neumann algebra. He then made use of t h i s metric i n obtaining a c l a s s i f i c a t i o n of the various incomplete tensor products of a family of semi-f i n i t e W -algebras, up to a natural type of equivalence known as product isomorphism. By removing the semi-finiteness r e s t r i c t i o n form Bures' "product formula", which delates the distance under d between.two f i n i t e product states to the distances between t h e i r components, we obtain t h i s tensor product c l a s s i f i c a t i o n f o r f a milies of a r b i t r a r y W -algebras. Moreover we extend the product formula to apply to the case of i n f i n i t e product states. * For any subgroup G of the -automorphism group * G of a W -algebra, we define the semi-metric d on the set of normal states by: d (n,v) = i n f [d(u ,v ) : a,(3 € Gl ; where V.a i s defined by u a(A) = .»j(a(A)) . We show the s i g n i f i c a n c e i i i . o f d i n c l a s s i f y i n g i n c o m p l e t e t e n s o r p r o d u c t s up t o weak p r o d u c t isomorphism, a n a t u r a l weakening of t h e concept o f p r o d u c t isomorphism. I n t h e case o f t e n s o r p r o d u c t s of s e m i - f i n i t e f a c t o r s , we o b t a i n e x p l i c i t c r i t e r i a f o r such a c l a s s i f i c a t i o n by c a l c u l a t i n g d ( g , v ) i n terms o f t h e Radon-Nikodym d e r i v a t i v e s o f the s t a t e s . I n the course o f t h i s c a l c u l a t i o n we i n t r o d u c e a concept of c o m p a t i b i l i t y w h i c h y i e l d s some o t h e r r e s u l t s P about d and d . Two s e l f - a d j o i n t o p e r a t o r s S and T are s a i d t o be c o m p a t i b l e , i f ' g i v e n any r e a l numbers a and £ , e i t h e r E ( a ) <. F((3) or F ( 0 ) _< E ( a ) ; where ( E ( x ) l , ( F ( \ ) } , a r e t h e s p e c t r a l r e s o l u t i o n s o f S,T , r e s p e c t i v e l y . We o b t a i n some m i s c e l l a n e o u s r e s u l t s c o n c e r n i n g t h i s concept. TABLE OP CONTENTS PAGE INTRODUCTION 1 HISTORICAL NOTE ON INFINITE TENSOR PRODUCTS j 4 CHAPTER 0. PRELIMINARIES.. ON W*-ALGEBRAS 11 CHAPTER I . THE. METRIC d 26 1. B a s i c p r o p e r t i e s o f d and p ' ...26 •2. The p r o d u c t f o r m u l a f o r p 29 CHAPTER I I . THE SEMI-METRICS d G 34 p c 3. D e f i n i t i o n of d and . p 34 4. An i n e q u a l i t y 36 5. Monotone f u n c t i o n s 40 6. D i s t r i b u t i o n f u n c t i o n s and a 44 •7. C o m p a t i b i l i t y .'. 56 • v 8. C a l c u l a t i o n o f p f o r s e m i - f i n i t e f a c t o r s .'.68 CHAPTER..III. APPLICATIONS TO INFINITE TENSOR PRODUCTS ..80 1 9. Isomorphisms o f p r o d u c t s : D e f i n i t i o n s 80 10. Main ; r e s u l t s on st e n s o r p r o d u c t s 83 BIBLIOGRAPHY • 95 ACKNOWLEDGEMENT I am gratef u l to Dr. Donald C. Bures who suggested the topic of t h i s t h e s i s , and who provided valuable assistance and. encouragement throughout i t s preparation. ^ •:: s l \ t INTRODUCTION In [3] Bures defined a metric d on the set of a l l normal states of a W -algebra G by taking d(ii,v) = i n f (||x-yl|3 i where the infimum i s taken over a l l vectors x and y inducing the states \A and v respectively r e l a -t i v e to any representation of 0 as a von Neumann algebra. In t h i s thesis we .generalize t h i s d e f i n i t i o n by defining, for any subgroup G of the group of -automorphisms of G , a semi-metric d G , given by d G(|i,v) = i n f ( d ( u a , v P ) : a,fi e G} , where V*a(A) = ^i(a(A)) . In p a r t i c u l a r we are interested i n the case where G i s either the group of a l l -automorphisms, or the group of inner automorphisms, i n which case d G i s denoted by d or cf respectively. G We then investigate certain aspects of d and d with 'a view towards applications to i n f i n i t e tensor products. We f i r s t prove the "product formula", / P(H 1 ® \x2 , \>1 ® v 2 ) = pC|i1,v1). p(|a 2,v 2) for normal states and of G-^  and and v 2 of . Gg where G^ and G 2 are a r b i t r a r y W -algebras. Here 1 2 p(y,v) =-^[d(^,v)] . (See Theorem 2.4 below). This extends the r e s u l t of [3] where t h i s formula i s proved under the assumption that G-, and G 9 are semi-finite. As a major application of t h i s r e s u l t we can complete the c l a s s i f i c a t i o n of the incomplete tensor products of von' Neumann [12] up to product isomorphism [4]. In f a c t i n the notation of [4] we have that ® (G ,u..) i s product i s o -i e l 1 2 morphic to ® (C,,v.) i f and. only i f E [d(u.,v.)] < » . i e i 1 1 i e l In the notation of [12] the equivalent statement i s that ® (G.,x ) i s product isomorphic to ® (G.,,y.) i f . and only i e l 1 1 i e l 1 1 • i f the states and induced by the vectors' x^ and y^ respectively s a t i s f y the above condition^ In connection with t h i s r e s u l t we extend the pro-duct formula to apply to the case of i n f i n i t e product states. In Theorem 10.8 below we indicate the sign i f i c a n c e of d i n the c l a s s i f i c a t i o n of incomplete tensor products » up to weak product isomorphism. This type of isomorphism (see D e f i n i t i o n 9.1 below) i s a natural weakening of the con-cept of product isomorrlhism. For a countable family ( G ^ ) ^ e j of W -algebras, ® (G^,u.) and ® (G.,v.) are weakly pro-i e l 1 1 i € l 1 1 2 , duct isomorphic i f and only i f £ [ c f(Li.,v. )] < » i e l 1 1 In the case where each G^ i s a semi-finite fac-tor we make thi s a more e x p l i c i t c r i t e r i a by c a l c u l a t i n g d i n terms of the Radon-Nikodym derivatives of the states (see Theorem 8.6 below). In the course of thi s c a l c u l a t i o n we introduce a concept of compatibility which y i e l d s some other r e s u l t s concerning v d . Suppose that S i s an a r b i t r a r y set and that f and g are any r e a l valued functions on S . We can c a l l f and g compatible i f f o r any pair x,y e S , f (x) j< f ( y ) implies g(x) _< g(y) . We extend t h i s idea to define compatibility between two s e l f - a d j o i n t operators on a H i l b e r t space. We then define two states on a semi-finite factor to be compatible i f t h e i r Radon-Nikodym derivatives are compatible. We show that f o r a fac t o r of type I or 1 1 ^ . -compatibility minimizes the distance between two states, i n the sense that d(|i,v) = d(u,v) whenever u and v are compatible. Moreover we show that for t h i s class of factors d * d . Following t h i s introduction i s a h i s t o r i c a l note on i n f i n i t e tensor products. We indicate there i n more d e t a i l the Connection between some of the problems considered i n th i s thesis and the previous work i n t h i s subject. In Chapter 0 we review some basic r e s u l t s on von < Neumann and W -algebras and introduce some notation and terminology. The main references f o r t h i s material are [5] and [ 9 ] . I t should be noted that reference [5] i s f o r the second e d i t i o n of Dixmier's book. HISTORICAL NOTE ON INFINITE TENSOR PRODUCTS The theory of tensor products of von Neumann alge-bras was originated by von Neumann, f i r s t f or the case of a f i n i t e family of algebras i n [ 9 ] , and then f o r the case of an i n f i n i t e family i n [12]. Consider f i r s t the case where we have von Neumann . algebras G-^  and G 2 acting on H i l b e r t spaces H-^  and H 2 respectively. The usual vector space tensor product of H^ •and H 2 can be completed, by means of the inner products on the respective ,spaces, to another H i l b e r t space. This space i s known a s i t h e H i l b e r t space tensor product of H^ . and H 2 and usually denoted by H^ ® H 2 . Then we can form a -algebra G Q , generated by elements A-^  ® A 2 where A^ e G^ and A 2 e G 2 , with the usual b i l i n e a r re-l a t i o n s , and with m u l t i p l i c a t i o n and involution .defined by •" (A-j^  ® A 2) (B1 ® B 2) = A ^ ® A 2B 2 (A-^  ® A 2 ) * = A^ ® A 2 ; . G ', i s then a , -algebra tensor product of the -algebras G^ and G 2 . The representations of G-^  on H-^  and G 2 on H 2 ^Induce.in a natural way a representation of GQ 1 on H.^  ® H 2 , and the von\ Neumann algebra generated by t h i s representation of G0; i s known as the tensor product of G-^  and G 2 .• Next, suppose we have an i n f i n i t e family of von Neumann algebras ( ^ i ) i e j acting on H i l b e r t spaces ( ^ i ) i € i In [12], von,Neumann extends the construction i n the f i n i t e case to produce a H i l b e r t space known as the t o t a l tensor product of the family (H. ) and denoted by ® (H. ) Again we can construct G Q , a -algebra tensor product of the family (G i) , and represent G Q on ® (H.^ ) to obtain a von Neumann algebra, known as the t o t a l tensor pro-duct of the family (G^ .) . This t o t a l tensor product how-ever f a i l s to possess many of the properties which are en-joyed by the f i n i t e tensor product. For example: the t o t a l tensor product of'factors i s not i t s e l f a factor; the t o t a l tensor product of a family of f u l l operator rings i s not i t s e l f a f u l l operator ring ; the usual associativety laws for tensor products f a i l to hold; the algebra does not act on a separable space e^en i i f each H/ i s separable and I i s countable. A remedy f o r this' s i t u a t i o n i s provided by the decomposition of von ( Neumann. He showed that ® (H^) s p l i t s up into a d i r e c t sum of orthogonal subspaces each of which i s invariant for the algebra G Q . These subspaces are known as incomplete tensor'products for the family (H i) and the von, Neumann algebras generated by G Q on each of these subspaces are known as incomplete tensor products of the family (G i) . I t i s the incomplete tensor pro-ducts which appear to be the proper generalization of the f i n i t e tensor product. 6. Each incomplete space i s completely determined by choosing a family of unit vectors (x i) with x i € H i . If (x^) and (y i) are two such fa m i l i e s s a t i s f y i n g £ | l - (x.|y.)| < » they determine the same incomplete • i e l 1 1 space and therefore the same algebra (More d e t a i l s are given i n Chapter 0). Consequently, i n the f i n i t e case there i s only one incomplete tensor product algebra which coincides with the tensor product mentioned above. In the i n f i n i t e case however there are many such algebras, and a basic prob-lem i s to determine the relationships between them. Much of the theory can be s i m p l i f i e d by removing consideration of the underlying H i l b e r t spaces. Misonou showed i n [7] that for a f i n i t e family-of von Neumann alge-bras the r e s u l t i n g tensor product was independent, as an algebra, of the p a r t i c u l a r representations of the given family. One could then' speak of a W -tensor product of a f i n i t e family of W -algebras. Nakamuru i n [11] and Takesaki i n [19] gave space-free d e f i n i t i o n s of the f i n i t e tensor product i n cer t a i n s p e c i a l cases. Takeda i n [17] construc-ted a W -tensor product of an i n f i n i t e family of W -alge-bras by using inductive l i m i t s . Bures i n [4] gave a general d e f i n i t i o n f o r the W -tensor product of an a r b i t r a r y family of W -algebras and showed how to obtain the W -analogue of von Neumann's incomplete tensor products, c a l l e d l o c a l tensor products, by using f a m i l i e s of states i n place of f a m i l i e s of vectors. Let (G..)., T be a family of W -algebras. For every family ( ^ i ) ^ 6 j where i s a normal state on G i one obtains a l o c a l tensor product of the family (G^) , denoted by ® (G. ) . A fundamental problem i s then to i e l 1 1 determine when two such f a m i l i e s of states produce tensor products which are e s s e n t i a l l y the same ( i . e . product isomor-phic). The solution, obtained p a r t i a l l y i n [3] and completed i n t h i s t h e sis, shows that t h i s happens i f and only i f the re spective components of the fa m i l i e s are s u f f i c i e n t l y "close to each other". The metric d i s used to make t h i s idea precise. When we apply t h i s r e s u l t to von Neumann algebras we see that an incomplete tensor product does not r e a l l y de-pend on the family of vectors determining i t , but rather on the family of states induced by these vectors. This explains von Neumann's consideration of weak equivalence, ([12] def. . 6.1.1), since the vectors e x. and x always induce the "same state. The c r i t e r i a which we- develop for weak product isomorphism can be i l l u s t r a t e d by looking at countable ten-sor products of type I factors. This i s a s i t u a t i o n which has been considered by many authors, [1], [2], [8], [13], [16] • and [18]. In p a r t i c u l a r we can extend the re s u l t s discussed i n ([12] Chapt. VII) concerning tensor products of l 2 factors. Let G be a fi x e d I 2 factor represented on a two dimensional H i l b e r t space H . F i x any orthonormal basis ,(x,y) i n H . L e t iu x and ur denote the states on G 8 induced by the vectors x and' y respectively, and f o r each - i < a < 1 - l e t uu = auu + (1-a) uu . Let P be the <- c t x y set of a l l sequences of. numbers belonging to the i n t e r v a l [-£ i ] , arid for f = (a-^cxg. .. ) e F l e t 3"F denote the tensor product ® (G. ,to ) > ' where Gi = G f o r 1=1,2,... 1 a i 1 a l l i . Then every countable tensor product of 1^ fac-tors i s weakly product isomorphic to f o r some f e F If f = (a i) and g = 6 F , 3"f and 3" are weakly product isomorphic i f and only i f they are product isomor-phic, which occurs i f and only i f E [ (VaT - + Ul-a, i = l . .- yr^ )2] < « . • Next, consider the more general case. Suppose that G i s a fa c t o r of type I , n < » , with trace T •, i n normalized so that, i t s value on a minimal projection = 1 It i s well known that any state u on G i s given by u.(A) = T(SAS) where St' is, a unique p o s i t i v e element of G . I f S and T are two p o s i t i v e elements of G we l e t n a(S,T) = T. a.b. where a, > a 0 . .. > a are the eigen-values of S , and b i 2 . ^2 ' *' — ^n a r e t h e e iSenvalues of T ( i n both cases counted' with respective m u t i p l i c i t i e s ) . Now suppose we have a family ( G s ) . _ n 0 where 1 1 — JL y « • • « G i i s a factor of type ' I , 1 < n i < « . Let X = the set of a l l sequences ('S-^Sg. . . ) where S I i s a p o s i t i v e operator i n G^ such that the sum of the squares of i t s eigenvalues (counted with respective m u t i p l i c i t i e s ) = 1 .. Then,'by the remark above there is_..a 1-1 correspondence ^between f a m i l i e s of states where i s a 9. . normal state on G^ , and the elements of X . We define an equivalence r e l a t i o n ~ on X by s e t t i n g S = (S-^Sg...) • 09 ~ T = (T-,To...) i f and only i f E [l-o(S.,T.] < » . Then . . i * l 1 x '• i t turns out that the l o c a l tensor products determined by S and T are weakly product isomorphic i f and only i f S ~ T . Using t h i s approach we can rephrase the r e s u l t s of [2], [8], [16] . and [18], concerning the type of the f a c -tor which arises from the tensor product.of f i n i t e type I fac t o r s , i n the following form. The ~ equivalence classes pf X which produce a semi-finite factor are p r e c i s e l y those which contain a se-quence consisting of scalar m u l t i p l i e s of projections. The • v unique equivalence class f o r which these projections are a l l equal to the i d e n t i t y producesthe h y p e r f i n i t e 11^ factor ' P . The unique equivalence class f o r which these projec-tions are a l l minimal produces the I factor. A l l the r e s t produce P ® I , a factor of type II It follows then that each of the ~ equivalent classes which does not contain a sequence of scalar multiples of projections produces a type I I I fa c t o r , and no two of these are weakly product isomorphic. However there may be some that are a l g e b r a i c a l l y isomorphic. ( D e f i n i t i o n 9.1 below). The problem of determining c r i t e r i a f o r algebraic isomorphism i s a much more d i f f i c u l t one. Powers i n [1J>] considered e s s e n t i a l l y those tensor products of I 0 factors given i n our notation above by 3 ,^ where f i s a constant sequence. He showed that f o r d i f f e r e n t choices of the constant the ten-sor products are a l l non-algebraically isomorphic and . thereby produced an uncountable family of non-isomorphic type III factors. His r e s u l t s have been extensively generalized by Araki and Woods i n [ l ] . I f we take i n f i n i t e tensor products of Abelian a l -gebras the problem reduces to the study of i n f i n i t e product measure spaces. Suppose we have a family (G^) where each i s an abelian von Neumann algebra and therefore can be considered as L * ( n ^ ) f o r a suitable measure space 0^ The t o t a l tensor product of t h i s family i s just Lw(fi) where fl i s the i n f i n i t e product measure space of the . Sup-pose 0 = (X,IB,H ) i . Then the set X s p l i t s up into a union of subsets (X ) which are e s s e n t i a l l y d i s j o i n t ( i . e . H(X a n Xp) = 0 f o r a ^ P) > and each of which corresponds to a product isomorphism class of incomplete tensor products. In t h i s case, the c r i t e r i a f o r product isomorphism i n terms of the. metric d was shown i n [33 to y i e l d the Kakutani theorem on i n f i n i t e product measures [63. 11. ' •/".'''..'• '. '.CHAPTER 0 PRELIMINARIES ON W*-Algebras • • von-Neumann Algebras. Let H be a H i l b e r t space over the complex numbers with norm, || || , and inner product, (|) . In addition to the usual norm topology on H we have the weak topology, whereby a net of vectors ( x a ) converges to a vector x i f (x |y) converges to (x|y) f o r a l l y € H . This induces Ct j on the set of a l l bounded l i n e a r operators on H the weak operator topology whereby a net of operators (A ) converges to the operator A i f (A x) converges weakly to Ax -:' f o r v a a l l x € H ' ;• An algebra G of bounded l i n e a r operators on H i s c a l l e d a von >, Neumann algebra on H i f ';. (a) The i d e n t i t y operator 1 e G i (b) G i s s e l f adjoint ( i . e . A e G implies that i t s adjoint A e G .) (c) G i s closed i n the weak operator topology. P a r t i c u l a r examples of von Neumann algebras are £(H) , the set of a l l bounded l i n e a r operators on H and (j; (H) , the^set of a l l scalar multiples of the i d e n t i t y opera-tor. v For an a r b i t r a r y subset , § of x(H) , the commu-1 12. tant of § , denoted by §' , i s defined as (T e £(H) : TS = ST f o r a l l S e S} . The fundamental double commutant theorem of von'Neumann states that a s e l f - a d j o i n t algebra G with i d e n t i t y i s a von,'Neumann algebra i f and only i f G = G " . For any subset § of £(H) and any x e H , ' [Sx] w i l l ' , denote the norm closed l i n e a r span of (Sx : S e S} . If G i s a von Neumann algebra on H , then [G'X] € G" = G . (We w i l l follow throughout the convention employed i n the sentence above of using the same symbol f o r a subspace and for the orthogonal projection onto that subspace whenever the meaning i s clear from the context.) The following i s a well known and important r e s u l t . » Lemma 0.1 . Let G and H be H i l b e r t spaces and l e t G be a von Neumann algebra on H . Suppose <j> i s a 1-1 algebra homomorphism of (F into X(G) s a t i s f y i n g (|>(A ) = (<j>(A))* f o r a l l A e G , and d>( 1) = 1 . Then (}>(G) i s a von;Neumann algebra on G .. Proof. See e.g. ([53 Chapt. 1 , § 4 , Cor. 2 ) . / W -algebras By a -algebra we mean a li n e a r associative alge-bra G over with i d e n t i t y (always denoted by 1 ) , which possesses an involution; that i s a,map from G to i t s e l f , sending ;'-A.7 into /A , which s a t i s f i e s f o r a l l A,B € G and a. (XA + B) = XA + B , (X denotes complex •5 conjugation). b. A <= A , c. (AB) = B A By a homomorphism from G to © where . G and B are -algebras we w i l l always mean an algebra homomorphism a •X- # s a t i s f y i n g a ( l ) = 1 , and a(A ) = (a(A)) f o r a l l A e G . * * A -algebra G i s ca l l e d a W -algebra i f f o r some Hil b e r t space H there i s a 1-1 homomorphism <j> from G. into the -algebra £(H) so that 4>(G) i s a von Neumann algebra on H . By a representation of a W -algebra G we w i l l always mean a homomorphism d) s a t i s f y i n g the above conditions. Consider now a fi x e d W -algebra G * I f H and ^ are sub -algebras of G which are them-selves W -algebras, Lemma1 0.1 shows that B fl 3 i s a W -alge-bra. Consequently,for any subset § of G we may speak of the W -algebra generated by S .. ; s An element A e G i s called • a. s e l f - a d j o i n t i f A =/A* , , b.' a projection i f A i s s e l f adjoint and • ' ' A 2 = A 3 • ,:c/ p o s i t i v e i f A = B B f o r some B € G , . di -• a p a r t i a l isometry i f A,A i s a projec-tiori (neccessarily AA i s also a pro-j e c t i o n )i e. a unitary i f A A = AA = 1 ; .j Two projections E and F are said to •'( - •• • • . . . ' • ' ' ' ( be orthogonal i f EP ? 0 It i s e a s i l y v e r i f i e d that any representation of G takes elements of the various types mentioned into opera-• i tors of the same type i n the usual sense. We w i l l denote the set of a l l p o s i t i v e elements of G. by G + .We w i l l denote by _< the usual p a r t i a l order defined on the set of s e l f adjoint elements of G whereby A _< B i f B - A € G + . Any-element A of G + has a xonique + h square root € G which we denote by A E From the well known polar decomposition theorem any A e G can be;written as U|A| , where | A | e G + ' and t U i s a p a r t i a l isometry e G s a t i s f y i n g AU U = A . We w i l l denote by Aut(G) > the group of a l l auto-morphisms of G and by *' Int(G) the subgroup of a l l a e Aut(G) f o r which there exists some unitary U € G s a t i s f y i n g a(A) = UAU* for a l l A e G Any representation of G induces a norm on G ; , -(the usual operator norm) which makes i t into a Banach alge-bra. It i s easy to v e r i f y that t h i s norm i s independent of the p a r t i c u l a r representation and we may speak uniquely of the norm of an element A 5 which we denote by ||A|| For any projection E e G we l e t Gg = (A e G : A = EAE] . ^ Then G-c i s - a *-algebra with i d e n t i t y E . * Moreover Gg i s a W -algebra since any representation <J> of G on a H i l b e r t space H induces a representation of 15. G E as a von-Neumann algebra on,the subspace <f)(E) ([.5] Chapt. 1, §2, Prop. 1). States and Traces . A l i n e a r f u n c t i o n a l y on a W -algebra G i s cal l e d a state i f | j ( A ) J> 0 f o r a l l A e G + and u ( l ) = 1 . It follows that n ( A ) i s r e a l f o r any s e l f adjoint A . Moreover |i i s automatically bounded (considering G as a Banach space) with ||u|l = 1 A state n i s said to be f a i t h f u l i f M(A)' > 0 for a l l non-zero A € G + . It i s said to be normal i f for any upwardly directed set ( A Q ) of s e l f adjoint elements with l e a s t upper bound A , ( i ( A ) = sup{ | j(A a)3 We w i l l deal e x c l u s i v e l y with normal states and w i l l denote by Eg the set orf a l l normal states of G A trace on G i s a mapping T from G + to the closed i n t e r v a l [0,«] s a t i s f y i n g "(a) T(kA + B) = k T ( A ) + T ( B ) , f o r a l l k _> 0 and A,B e G + /(we define 0-<»> = 0 ). (b) T ( U A U * ) = T (A) , f o r a l l unitary U € G and a l l A € G + We define a trace to be f a i t h f u l or normal i n an analogous way to the d e f i n i t i o n f o r states. We^say that a trace T i s f i n i t e ; i f T ( A ) < » f o r a l l A e G + , semi-finite i f f o r every non-zero S e G + there exists T _< S such that ( o < T ( T ) < « . 16. We say that the algebra G Is f i n i t e (semi-flnlte) . i f f o r every non-zero T € G + there i s a normal f i n i t e (semi-f i n i t e ) trace T on G such that 0 < T(T) . D e f i n i t i o n 0.2 Let H be a l i n e a r f u n c t i o n a l on G : . For any o e Aut(G) we define a f u n c t i o n a l \xa by Li°(A) = u(a(A)) , f o r a l l A e G For any T e G we define a f u n c t i o n a l |a^ , by U T(A) = n(TAT*) , f o r a l l A e G Lemma 0.5 Let (i 6 E G , a e Aut(G) , and T e G with U (TT*) = 1 . Then\ \xa and | i T € y J Q and 1 a (T) Proof. Obvious calculations. For any trace., T on G we define i n an analogous way the mappings T A and T t /from G + to [0,»] „ If T  i s normal then T q i s also a normal trace for a l l a € Aut(G) If T i s normal and i f S e G i s such that T(SS .) = 1 then T s i s f i n i t e valued and may be extended by l i n e a r i t y to a normal state of G , which we w i l l denote also by TC In p a r t i c u l a r for a f i n i t e - t r a c e T with T(1) = 1 we can take S = 1 /. The r e s u l t i n g state (denoted simply by T ) has the property.that 17. T ( A B ) = T ( B A ) , f o r a l l A,B e G . . ' . ' \ - V \ \ For any state y> on G we have the ine q u a l i t y * (0.1) |M(AB) I < M ( A A " ) ^ | i ( B * B ) * , for a l l A , B e G , i which we obtain by applying the Cauchy-Schwartz inequality to the p o s i t i v e conjugate b i l i n e a r form, ( A , B ) - u ( B A ) We use th i s to prove some fa c t s about a f i n i t e trace. i * Lemma 0.4. Let G be a W -algebra with a f i n i t e trace T . Let A e. G and l e t E be a projection i n G . Then (a) T ( | A | ) = max ( | T ( A V ) | : V a p a r t i a l isometry e GI such that A W * = A ] . ,._ (b) | T ( E A ) | < | lA | | T ( E ) . Proof. (a) Let A =TU|A| be the polar decomposition of . A Then f o r any V s a t i s f y i n g the stated conditions we obtain from (0.1) |T(AV)| = |T(U|A|* \A\*V[ < [T(U|A|U*)3* [T(V*|A|V)]* [T(|A|U*U)]* [T(|-A|W*)]* = T|A| . • . Then taking V = U we obtain N |T(AU )| -..T(U|A|U ) = T(|A|) ' (b). Using (0.1) and the f a c t that EA*AE _< HA*A|| E :. we have 'V: ... ' |T(EA)| = |T(E2A) I = |T(EAE) I . ' < [T(EA*AE)]* [T(E.)]* < ||A*A||* [T(E)]* [T(E)]* = ||A||T(E) . We next consider r e l a t i o n s h i p s between states and vectors. If \x e T,^ and d) i s a representation of G on a H i l b e r t space H, we say that a vector x e H induces  U r e l a t i v e to cj> I f u ( A ) = (<J)(A)x|x) , for a l l A e G . D e f i n i t i o n 0.5. Let ( H j ^ i e i b e a n y nonvoid family of ele-ments of T,n . We define i ( x i ) i € ] [ ] : d) i s a represen- . tat ion of G ,on a H i l b e r t space H and (x^) "' i s a family of vectors i n H such that x^ induces r e l a -t£ve._tb (J)--for a l l i e 1} , This set i s never empty (see e.g. the proof i n [5] of Th. 1, Chapt. 1, §4). / . Lemma 0.6. Let \A c T,^ and l e t <j> be any representation of G . Suppose [d),x] e Q(u) .. Then [<f>,y] e Q(u) i f and only i f y = u'x f o r some p a r t i a l isometry u ' i n ( d ) ( G ) ) ' such that U'*U'x = x . Proof. Suppose y = U'x - f o r such a U' . Then if or any A e G . • : ' - \ " (<l>(A)y|y) = (<|>(A)U ;x|U'x) -.'(•.(.A)U**u'x|x) -. (*(A)x|x) = u(A) Therefore [<j>,y] e Q(u) . Conversely, i f both x and y induce u i t i s a well known r e s u l t that we can define an isometry from the subspace [<}>(G)x] to the subspace [<}>(G)y] by taking U { ( <KA )X ) = <f>(\A)'y and extending to the closure (see [5]j Chapt. 1, §4, Lemma 3). Extending .U-£ to an operator U' on the whole space by s e t t i n g U' = 0 on the orthogonal complement of [<j)(G.)x] gives us the desired p a r t i a l isome-try. I f M € E G the support of ^ i s defined to be the smallest projection E of G f o r which u ( l - E) = ;0- . By the normality of u the support always exists. The following i s a well! known r e s u l t (see [5] p. 58). Lemma 0.7. Let |U> e £ G . For any [<l>,x] e Q(^) , the support of \x = 4>-1 [(<j)(G))'x] . . , v Factors A W -algebra G i s ca l l e d a factor i f i t s center ( i . e . ; {T e G : TA = AT f o r a l l A e G} ) consists only of , scalar multiples of the id e n t i t y . A factor G can be e f f e c t i v e l y analyzed by looking at i t s set of projections. Two projections E and F are said to be equivalent, written E ~,F , i f f o r some p a r t i a l isometry U e^G i E = U U - and F = UU •. We say that E ^ F i f E ~ G for some G < F . While these d e f i n i t i o n s can be made for any W -algebra, factors have the important property that for any two projections E and F either E ^ F or F ^ E . A projection E i s said to be f i n i t e i f E ~ F and F _< E imply that F = E . A projection which i s not f i n i t e i s said to be i n f i n i t e . A factor i s said to be of type I i f i t contains a minimal non-zero projection. Any such factor i s isomorphic to the algebra of 1 a l l bounded l i n e a r operators on some H i l -l bert space and we then say i t i s of type I where n i s the dimension of the space. A fa c t o r with no minimal projection i s said to be of type; a. H-^ •» i f the i d e n t i t y i s f i n i t e , b. II , i f the i d e n t i t y i s i n f i n i t e but some CO non-zero projection i s f i n i t e , c. I l l !, i f a l l non-zero projections are i n f i n i t e . Factors of type I', II, and II are semi-finite. 1 CO In f a c t they each have a semi-finite trace, which i s unique up to a p o s i t i v e scalar multiple,' and which i s normal and f a i t h f u l . The only trace on a type III factor i s that which takes value » on a l l non-zero p o s i t i v e elements. If E i s a projection i n a semi-finite f a c t o r G , then G E i s a semi-finite factor. G E i s f i n i t e i f and only i f E i s a finite'.projection and t h i s occurs i f and only i f the trace of E i s f i n i t e . It follows that the f i n i t e factors are those of type I , n a f i n i t e c a r d i -n a l , and of type I I 1 . A factor of type I I , i s said to be hy p e r f i n i t e X 1  i f ; i t i s generated by an increasing sequence of subalgebras ( G i ^ i = l 2 • where G^ i s a factor of type I i < . Any .21. two hyp e r f i n i t e 11^ factors are isomorphic./ ([5], Chapt. 3, §7, Th. 2). • ' ; \ Tensor Products of von Neumann algebras Let I be an a r b i t r a r y indexing set and l e t ( G i ) i e I be a family of von1 Neumann algebras acting on the Hi l b e r t spaces ( H i ) i € j A family of vectors ( x ^ with x± e H i i s c a l l e d a C -sequence i f ' £ |l-||x. ||| < » . An equivalence r e l a t i o n ° i e l 1 i s defined on the set of a l l C 0-sequences by taking ( x ^ equivalent to (y.) i f f £ | l - ( x . | y . ) | < » . : ' i e l 1 1 Let (x^) be a C 0-sequence and l e t r be i t s equivalence c l a s s . \ For each (y.) e r we l e t ® (y.) 1 i e l 1 denote the multi-anti l i n e a r mapping'from T to $ /defined voy v ® ( y 1 ) [ ( z i ) ] = T T ( y 1 | z 1 ) „ , f o r a l l (z ± ) e r . i e l •-. " i e l These mappings generate a l i n e a r subset H Q of the space of a l l multi-anti l i n e a r functionals on r , and H be-o comes a pre-Hilbert space by defi n i n g (®(y.» ) |&>(z. )) = | 1 (y.. |z.\,) 1 1 i e l 1 1 and extending t h i s inner product to a l l of H Q by l i n e a r i t y . The completion of H Q i s known as the tensor product of the family (H^)^ with respect to the C 0-sequence (x.^) and denoted by « (H., ,x. ) ••. -A" "^'"'-'-v 22. An orthonormal basis f o r ® (H.,x.) can be i € l chosen i n the following manner. F i r s t note that we can assume that ||x^ || = 1 f o r a l l i since replacing each . x^ by .'x^/llx^||' y i e l d s an equivalent C Q-sequence. For' 'each i e l , l e t ( x i ) j € j ( i ) t e a n orthonormal basis for which includes x^ . Then the set of a l l elements of the form ® (y.) where f o r each i € I y. = x^ f o r • i e l 1 1 1 some j € J ( i ) , and for a l l but a f i n i t e number of i € I y^ i n p a r t i c u l a r = x^ , constitutes an orthonormal basis for ® (H. , x. ) . This shows that ® (H. ,'x. ) i s se-i e l 1 1 i € l 1 1 parable i f each H i i s separable and I i s countable. , , Now, for, any k e I and . A k € G k we define the • i . operator A f c on (U^,X^) by taking * \ ( ® ( y ± ) ) = ® (y[) w n e r e " ^ 1 = ^1 l f 1 + k A^ i s then extended to the whole space by l i n e a r i t y and continuity. ' Let G be the von Neumann algebra on ® (H^,x^) generated by {A^ : i e I and A^ e G i l . Then the tensor product of the family , (G^) with respect to the C Q-sequence (x.) , denoted by <59 ' (C,*x.) , Is defined to be the von-i e l 1 1 Neumann algebra G. . , together with the i n j e c t i o n s of each G 1 into G given by A. .-• X . . ' . :; .:\/ f . ' . . • . 1 •'• 23. Note that i f (x^) and (y^) are equivalent : C 0-sequences i t follows immediately from the d e f i n i t i o n s that 1 (H i,x j L) = <S5 (H 1,y 1) and ® (G 1,x i) = ® (G^y.^ . Complete d e t a i l s and proofs of t h i s material can he found i n [12] or [2]. Products and Tensor Products of W -algebras Let I be an a r b i t r a r y indexing set and l e t , t. ( G i ) l € j be a family of W -algebras. : A product f o r t h i s family i s an object (ct^)^ €j) * where G i s a W,-algebra, and f o r each i e l i s a \ 1-1 homomorphism1 from G.» into G s a t i s f y i n g . "' (a) a i ( G 1 ) and aj(Gj) commute pointwise f o r v;i" i + j • .' (b) {a^G^ t ' : i e l ] generates G as a W - a l -gebra. .:. We say that the products (G, (a^)) and (ft, (3^)) si are product isomorphic i f -there exists-an isomorphism <j> from ,G onto B such that (f>a^  =/P^ f o r a l l i e l ; We l e t A = A ( ( G i ) ) denote the set of a l l f a m i l i e s where e £ for a l l i e l . 7 jWe say that n i s a product state of the product (G, (a., )) *•> i f u i s a normal, state of G such th&i f o r some •ii ( F f . . o 1 ( A 1 ) . ) ^ T T M A . ) , ieF 1 1 ieF . • 24. •for a l l f i n i t e subsets F of I and a l l A^ e G^ • We w i l l denote such a |i by ® (u. ) . I t follows from the norma- \ i e l l i t y of u that i f ® ((i, ) exists i t i s unique. i e l D e f i n i t i o n 0.8. For any e A we define a product, ® (G . ,u. ) , as follows. For each i e l choose [c|>.,x. ] i e l 1 1 i 1 1 € Q(u.) . Then ® (G . ,u 1 ) i s defined to be the algebra .; i e l ® (<j). (G. ),x.,)-' with i n j e c t i o n s a. given by i e l 1 1 1 x = T]TA7T f o r a l l A± e G± . I t i s shown i n [3] or [4] that ® ( G . , u 1 ) i s unique up to i e l product isomorphism. In [4] a purely algebraic d e f i n i t i o n of ® (G.,u.) I ' i e l 1 1 i s given. * I t i s easy to see that the product state ® (y.) i e l 1 exists on ® (G.,,u.,) In f a c t i n the construction above i e l 1 1 i t i s induced by the vector ® ' (x.) • • i e l 1 Following the usage i n [4] we w i l l r e f e r to these products, constructed from' an element of A , as l o c a l ten-sor products. / Suppose that the indexing set I i s f i n i t e . For ease i n notation l e t I = {1,2} . Then a l l l o c a l tensor pro-cucts of a given family are product isomorphic and we may speak of a unique tensor product (G^a-^ag)) °f the family (G^Gg) . ^It i s usual to denote G by G^ & G 2 and the element a-j^A-^) a 2 ( A 2 ) by'' -A^  ® A 2 . Every element (y^,^ 2) of A determines a product state, denoted by ^1 ® w 2 ' •• 25. ' Lemma 0.9. Let G and a be W -algebras, and l e t u e £ ( and v e rfi . Then f o r a l l S e G + and T € i B + with u(SS*) - v(TT*) - 1 * V)(S*T) = H v T Proof. Choose any A e G and B e B . . Then (U ® v) (S®T) [A » B] = (u ® v)[(S ® T) (A ® B) (S ® T)*] = (w « v)[(SAS*) £ (TAT*)] = u(SAS*) v(TAT*) = U s(A)v T(B) ' ^  U g ® v T [A ® B] The lemma.now follows from the uniqueness property of pro-•t> duct states. 26. CHAPTER I THE METRIC d 1. Basic properties of d and p The quantities d and p were Introduced i n [ 3 ] . In t h i s section we review some basic properties. * D e f i n i t i o n 1.1. - Let G be a W -algebra and l e t u and v € t~ . We define. G V 'd(u,v) = i n f {||x-y|i : [4>,(x,y)] € Q(n,v)} , ' P(u,v) = sup {|(x|y)| : [(j>,(x,y)] e Q(u,v)} . • i I t i s proved i n [-3]' that d . i s a metric on and that d and p are connected j by the formula ( 1 . 1 ) • [ d ( u , v ) ] 2 = ' 2 [ 1 - P ( L I , V ) ] - : . The number d(u,v) can vary from 0 to J2 . To' gain some insight into the d e f i n i t i o n we can consider the extreme cases. •.'••! Lemma 1.2. ' ; (a) d(|i,v) = 0 ' i f and only i f u = v . \ (b) d(n,v) « i f and only i f the support of u. and the support of v are orthogonal. Proof. (a) This follows from the f a c t that d i s a metric. (b) Let E = the support of u , F = the support of v and supposethat FE = 0 . Choose any [<t>,(x,yy] e QXu,v) Since ||o>(E)x||2 = n ( l ) = ||x||2 , we have that <|>(E)x = x and s i m i l a r l y <|>(F)y = y . Then 1 (x|y) =j= (<j>(E)x|o>(F)y) = (o)(FE)x|y) = 0.' Therefore p(u,v) = 0 . and from (1.1) we have that d(u,v) = 72* . v Conversely suppose that d(ui,v) = . Then p(u,v) = 0 . Choose any ' [<|>, (x,y) ] e Q(u>v) . For any unitary U' i n ( < | > ( G ) ) ' ' Lemma 0 .6 shows that [$£\j'x3y)] e Q(u,v) and therefore 0\</| (U'x|y) | _< p(u,v) = 0 . We have then that (A'x|y) = 0 f o r a l l A' e (<J>(G))"' by wr i t i n g each such element as a li n e a r combination of unitaries. By Lemma 0 . 7 , y i s orthogonal to a dense subset of the sub-space 4>(E) and therefore <|>(E)y = 0 j . Then, <j>(E)A'y A'd)(E)y = N0 , fo r a l l " A ' e (d)(G))' , and by Lemma 0.7 again d)(E) <j>(F) =.0 ; . Since <j) i s a . ; i - l mapping we have that EF = 0 .'• . ,' • v 28. Lemma 1.3 Let G be a W -algebra and l e t u*v and Then (a) For any 0 <_ a <_ 1 , d(u.', ( l-a)u + av j , _<-'VSa (b) |p(u),u) - p(uu,v)| < J2 d(u,v) Proof. (a) Let u' denote the state (l-a)(i + av Choose any t<j>*(x,y)] e Q(M>,V) . A d i r e c t c a l c u l a t i o n shows 'that [$ © (j), (-/1-a x e ,/a x , ./I-a x e y)] e Q(u,u') . Here <J) © (j) denotes the d i r e c t sum representation of <J> with i t s e l f on the space H• © H where H i s the underlying : space of (J> . We have then d(w,M ; ) WJT^a x © Ja x - "yi=a x © Ja y|| \ = Va ||0 © (x-y)|| ± J2a (b) Using (1.1) and the backwards t r i a n g l e Inequa-l i t y , f o r d we obtain, -2 2 |p(«J,u) - p(iu,v)| = ^|[d(u),u)] - [d(uu,v)] | / = i(d(«J*u) + d(uj,v)) |d(«j,u) - d(uj,v) | < VS d(u,v) :2. The product formula for p In t h i s section we w i l l prove i n general the pro-duct formula f o r p which was obtained i n ([3], Theorem 2. 5),: for semi-finite algebras. We do t h i s by means of Lemma 2.1 which i s simi l a r i n statement and proof to ([3], Lemma 1.6). .However by dealing with only one element of G we are able to avoid the use of a trace. * 4 Lemma 2.1. Let G be a W -algebra, LA e and l e t T e G 2 be such that LA(T ) '= 1 . Then, P ( U , U T ) = H(T) I i Proof. Choose any [<|>,(x,y)] e Q(u,u T ) . A d i r e c t c a l -c u lation shows that [(f), (x,d)(T)x) ] e Q(u,(j^,) ., Therefore,, v (2.1) P ( H , H T ) > |(x|4.(T)x| = u(T) . On the other hand, since y and <})(T)x induce the same state r e l a t i v e to d) , Lemma 0.6 shows that y = U/<J>(T)x fo r some p a r t i a l isometry U' i n (4>(G))' . Therefore |(.x|y)| = |(x|u'o>;(T)x| - .|(U' + ( T)*xK ( T)*x)| •I' < |i<J>(T)*x||2 - li(T) Taking the supremum over a l l - [<j>, (x,y) ] Q(LI,V) we obtain 30. p ( | i i M T ) < H(T) . This formula and (2.1) complete the proof. In the remainder of t h i s section we consider two W -algebras G^ and G 2 and t h e i r tensor product G^ ® G 2 We also consider states _ and € and u 2 and v 2 € E G . We want to prove the following product formula for p . (2.2) P d ^ ® u 2 !, v x ® v 2 ) = p f w - ^ v ^ - p f n ^ V g ) Lemma 2.2. Let j = 1 or 2 . Suppose that Uj = ( v j ) T f o r some T\j € Gj . Then (2.2) holds. Proof. From Lemma 6.9, U x ® W2 = ( ^ 1 ^ ® ^ V2^T 2 = ( v l ®-^T ^ - S'Tg. and by sucessive applications of. Lemma 2.1 0 P(U 1 ® (J 2 , v 1 -.® v 2 ) = v a ® v 2 ® T 2) =,v 1(T 1) v 2 ( T 2 ) = p(u 1,v 1) p(u 2,v 2) . Lemma 2.5. For any 6 such that 0 <_ 6 £ 1 l e t vj = (1-6)vj + , 6Wj :'V where j = 1 or 2 . Then d(v^ ® v 2 ,.-..vj ® V 2) <, 2756 .. . . . . Proof. By the tria n g l e inequality, d ( v 1 ® v 2 , • v£ ® > V g ) _< dCvjL ® V g , v 1 ® v 2 ) - + d'(v-j_ ® v£ * v-[ V g ) From Lemma 1.3 (a), ' • ' .. . . d ( v 1 ® V g , s>1 ® V g ) = d ( v x ® vg , [ (1-6 )v1 ® V g + 6( v± e* Ug) ]) S i m i l a r l y , ^(V^ ® Ivg » "v-{ ® V g ) < , which completes the proof. - We now remove the r e s t r i c t i o n s of Lemma 2 .3 Theorem 2 .4 . The product formula ( 2 . 2 ) holds i n general. ^ 2 Proof. Given any «' such that 0 < e < 1 , l e t 6 = c T"4T Let V j = ( l - 6 ) v j + 6Mj .3 where j = 1 or 2 . Then f o r n > 7j » Uj(A) < 'n V j (A) ; f o r a l l A e G j . From Sakai's Radon-Nikodym Theorem . ( [ 5 ] , Chapt. 1, §4, Th; 5 ) , , (2.3) N U j = ( v j ) T ', fo r some N T^ e G"J . -..-j;:-, y , ^ • . • .• , . : ... ./• ,'.. 32. , For ease i n notation l e t • i. . i-V" a = P ( w i 9 u 2 ' v l ® v 2 ^ V r; - b = P ( u 1 , v 1 ) , • • • y ; c = p ( u 2 , v 2 ) , i-,'.. and l e t a 7 , b' and c' be defined s i m i l a r l y ! w i t h re-p l a c i n g V j . We want to show that (a-bc) = 0" . From Lemmas 1.3, 2.1, 2.3 and formula (2.3) we have • l ' v 1 ' • • • • • . ' • 1 ' • •;r' • '/ (a'-b'c') = o) / ' -' |a-a'| < 46* |'b-b'| < 26* ; y and |c-c/| < 26* . " i • • • 1 Then, since 6 , b i and c are a l l _< 1 we have . .|a-bc| = | (a-bc) - (a'-b'c'-) | ' •; " . t' ' • . . - r l y j < I a-a' I + I b c - b ' c ' l , :; x < . '''"•'•_<• |a-a'| + b|c-c'| + c|b-b,'j + |b-b'||c-c'| _< 2[6*(2+b+c) +2b] < 26*(4+b+c) 1 126* < c y. Since c was chosen a r b i t r a r i l y we conclude that (a-bc) = 0 . ^ Remark 2.5 We can of course define d and p f o r any p o s i -t i v e normal l i n e a r functionals as was done i n [3], instead of r e s t r i c t i n g the d e f i n i t i o n to states. Since a vector x i n -duces a functional-/ji i f and only i f the vector k x induces ku. , we have that p(ku,v) = k* p(u,v) f o r a l l k Oi . 33. •Moreover \x ® v i s defined f o r functionals and the mapping , i • ( M J V ) to u ® v i s b i l i n e a r . I t follows from these remarks \ that the product formula w i l l s t i l l hold f o r p o s i t i v e normal l i n e a r functionals. •v-/ 34, • • • ' v • CHAPTER II .' THE SEMI-METRICS d G 3. Def i n i t i o n s of d u and p" D e f i n i t i o n 3.1. Let G be a W -algebra and l e t G be any subgroup of Aut(G) . For any u and v € EQ we de-f i n e V ! .. dG(M,v) = i n f {d(na,vP) : a,p e G} , , P G ( M , V ) = sup {p(u a,v P) : a , 0 e G} . . .., From (1.1) we obtain (3.1) [ d G ( u , v ) ] 2 = £ [ l - p ^ ( u , v ) ] • < ; Lemma 3.2. ^ (a) d G(^i,v) = i n f {d(u,v a) : a e G} (b) p G(u,v) =sup{p( u, v a) : a e G} Proof. Let\ a e G . For any [<j> ,(x,y)] e Q(u,v) <j>a i s a l -so a representation of G and a d i r e c t c a l c u l a t i o n shows [4>a,(x,y)] e Q(|i a,v a). Therefore d(u a,v a) < ||x-y|| and tak-ing the infimum over a l l elements of Q(uiv) we obtain 35. N d ( M a , v a ) < d(u,v) ; Then replacing \i and v by | i a and v a r e s p e c t i v e l y and _1 replacing a by a we have A • d ( n a,v a) = d((a,v) , f o r a l l a € G . Therefore d(y a,v^) = d(u,v^ a ) which proves the lemma. c It follows e a s i l y that f o r a l l G , d i s a semi-metric on E~ . * ' " ^Notation. I f G = a l l o f Aut(G)_ we w i l l l e t p and d denote p.. and d respectively. , ; '•_ ^ !>. . I f G =jIht(iG) we w i l l l e t .*p and' cf denote p G 'and d respectively. •v V • / .4. An Inequality. In t h i s section we prove a matrix in e q u a l i t y which c i s a fundamental r e s u l t f o r the c a l c u l a t i o n of d . Notation. For any integer n l e t R denote the r e a l vec-n | tor space consisting of. a l l sequences a = (a^,a 2,...a n) of r e a l numbers. We l e t D* = [a e R n : &1 > a . for i < J • and a j L 2 0 f o r a l l i} Note that D* i s closed under addition, and m u l t i p l i c a t i o n by a non-negative scalar. For a p o s i t i v e integer r _< n , l e t 6 denote ' i the element a of\ with a^ = l , l X i _ < r ; a ^ = 6 r r < i _< n . Then any element of D* can be written as a 'linear combination of 16 ' s with non-negative c o e f f i c i e n t s . In f a c t f o r a e D + '; ~ n Z ( a = Jx { a i " a i + l } 6 i + V n • . . . ' • / f r . F i n a l l y we l e t M C<|) denote the set of a l l n by n matrices k = (k^j) over the complex numbers. Definition;4. 1. :" For a,b e D + and k' € M (<£:) we define . n n\ 1 , n T k ( a , b ) ' = - i , j = i a i b J k i J ' Lemma 4.2. Let c be an element of R such that c. > o . •> . . n i — f o r 1 < i < n , and l e t . : k € MN{$) be such that' f o r a l l r with 1 < r < n r Then f o r a l l a.b, e D + n n (4.1) |T R(a,b)| < i 2 i a i b i c 1 _ 4 . Proof. Let a,a,b ,D e D n and l e t X be a p o s i t i v e number. Suppose that (4.1) holds f o r the pai r s (a,b) and (a,b) Then |T.(Xa+a,b) | = | Z (Xa+a), b,k | ':y^- y fa:; { i , j=i 1 J 1 J - ' f a < X|T R(*,b)| + |T k(a,b)| / .;- < x J x ¥ 1 = 1 + J x a i V i , n _ = T, (Xa+a).b,c. i = l 1 1 1 Therefore (4.1) holds f o r ((xa+a),b) . S i m i l a r l y , i f (4.1) holds for (a,b) and (a,"b") i t w i l l hold f o r (a,(b+xl))) . I t follows then, from the remarks above concerning that i t i s s u f f i c i e n t to prove (4.1) f o r a = 6 r and b = 6 g . Moreoyer by the symmetry of the conditions on k we may as-sume that, r < s We have i n t h i s case; 38." „ •" r s r s \ |T k(a,b)| = | £ T k | < £ | £ k. . | . : K i = l j=l 1 J i = l j=l 1 J • n < £ c. = £ a.b.c. , ~ }=1 1 i = l 1 1 1 and the lemma i s proved. \ Theorem 4.3. Let G be a W -algebra with a f i n i t e trace T . Let S and T be elements of G + such that : n S = £ a i E i » where a = (a 1,a 2...a n) e and the E ^ s i = l n are mutually orthogonal projections i n G ; T = £ b . F . , i = l 1 1 . with s i m i l a r conditions; and T(E^ ) = T ( F 1 ) for i = 1 , 2 , ...n We w i l l denote t h i s common value by c^ . Then, for any V e G with ||v|| < 1 | T ( S T V ) I < £ a.b.c. . - 1 = 1 1 1 x Proof. n Therefore STV = £ a,b,E,F,V i , j = l 1 0 1 J n T ( S T V ) = £ a ^ j k ^ ^ j : /where k ^ = r ( E ± F j V ) . The r e s u l t w i l l now follow from Lemma 4.'2 a f t e r we v e r i f y the appropriate conditions on ^(k. ..j . Choose any. 1 j< r < n r • • .• J r :... Since £ F, i s a projection, || £ F-.V|| < 1 . . Then, using ' j = l J ^ - ;V j=l J ~ ' • ' •Lemma 0 . 4(b) ; I.r. k VI = |T[E ( £ F.V)] I j=i 1 J 1 j=i 3 < T(E )!| £ F v|| '"'<: c. : i . 1 j=i 4 . - 1 • 39.; ..Similarly, since T ^ E J F J V ) = T ( P JV E j . ) we have r I; E k. . 1=1 1 J 5. Monotone Functions , , Notation Let R + denote the non-negative r e a l numbers and -let ( R + ) ' = (R + U +») • Let M = the set of a l l functions f from ( R + ) ' : to (R +) ' such that x _< y implies f (x) > f (y) . D e f i n i t i o n 5.1. For any • f € M we define a function •%)•''. on ( R + ) ' by " • • 7(a) = i n f [x €'(R +)' : f ( x ) < a) (Note that inf{^} = +« , sup{/zJ] = 0 ) The following f a c t s .about 7 - are either well known or e a s i l y v e r i f i e d ; " • Lemma 5.2 (a) 7 e M a"nd moreover i t i s r i g h t continuous ( i . e . f ( i n f (S)) = sup(f(S)) , f o r a l l S c (R +) '. ) X (b) 7(a) = x , i f and only i f ( i ) f o r every y < x , f ( y ) > a ( i i ) f o r every/ y > x , f ( y ) _< a (c) Let k e R + . Then g(x) = kf(x) f o r a l l x implies g(x) -= f ( ^ ) for a l l k' x f ( x ) = f ( f ) f o r a 1 1 x implies g(x) = k7(x) for a l l x (d) Let ( f - L n o be a sequence of functions i n M such that f, < f . f o r i < j } . : Define f on ( R + ) ' by f ( x ) = s u p ( f n ( x ) ) . Then, " . •! ' \';;->;;^f:€.:M and (Tn)f 7 . : , ' • 41. (e) Let cf> be a continuous function defined on , the i n t e r v a l [a,b] and l e t f € M be f i n i t e valued on t h i s V i n t e r v a l . Then the S t i e l t j e s i n t e g r a l <KX) df(x) = ,f(b). J a J <• +(7(o))da. . • f ( a ) We need ah extension of (e) to improper integralsi' Lemma 5.3 Let be a continuous function on R + such that (j>(xj >Z0' f o r a l l x and c}>(.0) = 0 . Let f e M be such that f(x) < » f o r x > '0; and f(x) -• 0 as x —•» <» Then ' • - J; cj»(x)df(x) = f f ( 7(a))da . J o J 0.'- - ... » -! ([ denotes lim f| } and i s allowed to take the value +» )* Q m-~ J 1 , n-»oo n Proof. Let f + ( 0) = sup (f(x) : x e (R +) '} and n o t e ' f i r s t that, y e f + ( 0) implies by Lemma 5.2(b) that f ( y ) = .0. > and therefore that <J>("f(y).) = cj)( 0) = 0 . Then using Lemma . 5.2(d) • '', , , m - J c|>(x)df(x) = - . l i m (f <f)(x)df(x)) /• V0 ! m~« J 1 ' .:-n-*« n •'' f ( - ) • ' ' • • f + ( 0 ) ;:- : = lim (J n i(T( a))da = f '" 4>(T(a))da • v m-» f(m) . i ,^  ' J,0 -; ;;• " > • . . • • " , . ' ' ' 0'* . . . : \ - ; ^>fv' .:•>':,••••' i. , ' 'L :V;- ' "v; The main r e s u l t of t h i s section i s the following. \[ V Theorem 5.4. Let <{> be any continuous function from R + x R + ; :• > ;to R + . Let f , g and h e M be such that f o r a l l . x,y e R + . . i . h(cj>(x,y)) e [f(x),g(y)] . (We l e t [,a,b] denote the closed i n t e r v a l with end-points a and b even i f a > b ). Then f o r a l l . a € ( R + ) ' such that 7(a) and g(a) e R + I h(a).= <J)(7(a)/g(a)) . v — '•" i '••' : Proof. Let 7(a)* = x and g(a) = y . Given any e > 0. choose, by the continuity of <|> , 6 > 0 so that ;(5..l) d>(x-6„y-6) 2 <t>(x,y)-c • (5 .2) cj)(x+6,y+6) _< 4>(x,y)+s : v '. ,' By our hypothesis . h(<j>(x-6,y-6)) e [f (x-6 ), g(y-6) ] and from Lemma 5.2(b) both' f(x-6) and g(y-6) are > a . Using (5. l)^we' obtain . • ; '"•;.[. . (5 .3 ) h(<|>(x,y)-e). _> h(<J)(x-6,y-6 )) > a \; 43. Prom Lemma 5 .2(b) again both f(x+ 6 ) and g(y+6) are _< a and using ( 5 . 2 ) we obtain s i m i l a r l y that . . ( 5 . 4 ) h(<j>(x,y)+e ) _< a From ( 5 . 3 ) , ( 5 . 4 ) and the other d i r e c t i o n of Lemma 5 .2(b) we have TT(a) = <|>(x,y) = <f>(f(a),g(a)) . • X 6 . D i s t r i b u t i o n Functions and q ,•['" j . • ' •• • v .Spectral Resolutions. Let A be a s e l f - a d j o i n t operator (not necessarily bounded) oh a H i l b e r t space H . Let J}^ denote the domain of A . (For terminology concerning unbounded operators refer to [20], ) By a spectral resolution of A we w i l l always mean the unique; family of projections i n H , ( E ( x ) } , X a r e a l number, which s a t i s f i e s the following properties: ' " ' I i - - 1. X <. u; implies E ( x ) < E ( u ) ;•• 2. U,E(X!) = i • , 0,E(X).= 0 ; •• - '. t , , ' ' A. \^  K . . • . 3- E ( x ) commutes with any operator i n £(H) which commutes with A : r , |'/ 4. 0 X > X E(X) = E ( X Q ) , for« a l l X Q j ' ' . , 5. • For -oo < x _< u'' < +» , x e E ( y ) - E(Xi); . implies that x. e J&A and if-,||x||= 1 , x < (Ax|x) < u ".. • ' - • " " ' \ '.'.'J Integrable Operators and Radon-* Nikodym Derivatives. <• Suppose that G i s a von Neumann algebra on a H i l b e r t space H . An operator S on H:' (not necessarily bounded) i s said to be; af f i l a t e d with G, , written/ S n G , i f ' -U S U = S ' f o r every/unitary U e G' • If S i s i n f a c t bounded and everywhere defined, the double' commutaht theorem shows that S n G..; i f and only i f S e G > V For any1 s e l f - a d j o i n t S with spectral resolution (E(\)} , i t is, easy to see that,'. S'n C. i f and only i f 'E ( x ) e G f o r a l l r e a l X . .. \ Now suppose that T i s a semi-finite, f a i t h f u l , normal trace on G Let \7\ = [A e G;: T (A A ) < «} . It i s shown i n ([5] Chapt. 1, §6, Prop. 1) that 7\ i s a two-sided. 2 i d e a l of G and that the i d e a l 7h = 7\ consists precisely, of those elements of . G which are f i n i t e l i n e a r combinations of p o s i t i v e elements of f i n i t e trace. Then T can be extended by l i n e a r i t y to a l i n e a r functional T' on 7!\ . It .satisfies (6.1) T '(ST) = T '(.TS) , for a l l S,T e 71, . We can define an inner product, on 7} by taking . (s|T) = T '(T S) and t h i s produces a norm on 71 given by . '[ \\S\\2 = . [ T ' ( S * S ) ] * - .;. , I t i s shown i n [[5]* Chapt. 1, §6, Th. 8) that we can also define ' a norm on' TJi. by v • ;'.' 1 ! % = T'(|SD . : In [15.], Segal defines two subclasses of the operators; a f f i l i a t e d with G which are 'known as square integrable and integrable, with respect to T , and which contain 71 and 7f[ respectively. Moreover he extends, T' to a'functional on the class of integrable operators. These classes can be considered as completions of .71 • and 7h with respect to the above mentioned .norms. We summarize a few basic facts, that, we need i n the following lemma., Proofs can be found i n [15]. .' Lemma 6.1 • \ '' (a) Let S be a po s i t i v e s e l f - a d j o i n t integrable -\ . .operator with spectral resolution ( E ( X ) } "... Then . v , -; - ( i ) > ( i - E ( x ) ) < « , for \ > o , ' • ( i i ) T'(S) X d T ( 1 - E ( \ ) ) < » . 1 (b) Let S be a p o s i t i v e s e l f - a d j o i n t square-integrable operator with spectral r e s o l u t i o n ( E ( x ) } . Then ( i ) T ( 1 - E ( \ ) ) < « for X > 0 , i ( i i ) S 2 i s integrable and T ' ( S 2 ) =-f X 2 d T ( 1 - E ( X ) ) ' < 0 The key r e s u l t which we need i s the following theorem of Segal ( [ 1 5 ] , Thebrem 1 4 . 1 ) . It i s a generalization of both the Radon-Nikodym theorem i n measure theory and of a we l l known r e s u l t concerning X(H) . Lemma 6.2. Let G be a von Neumann algebra with a semi-f i n i t e , f a i t h f u l , normal trace x , and l e t u e. £_ . Then . •<•;• there exists a unique square integrable, p o s i t i v e s e l f - a d j o i n t operator S such that u ( A ) = T '(S. 2A) , for a l l A e G . 2 The operator S i s commonly known as the Radon-Nikodym derivative of y with'respect to T . We w i l l denote thi s by wr i t i n g ;; x ' w = T s .. ".' • . Note that i f S e G > formula ( 6 . 1 ) shows that t h i s agrees with our notation of Chapter 0.''•;,.;; ' V x X s : : " : ' X . ' ' i.,, . . . ' . • y i . Remark. In the above d e f i n i t i o n s and r e s u l t s we considered a von Neumann algebra G on a H i l b e r t space. However a square integrable, p o s i t i v e s e l f - a d j o i n t operator can be • V i viewed as simply an abstract spectral resolution; that i s a family of projections i n G s a t i s f y i n g the appropriate conditions, a l l of which r e l a t e only to the algebra G i t -s e l f and the trace. Accordingly we can apply these r e s u l t s to a W" -algebra G without regard to any p a r t i c u l a r repre-s e n t a t i o n of G . D i s t r i b u t i o n Functions • ' D e f i n i t i o n 6.3. Let G be a von Neumann algebra and l e t T be a f a i t h f u l , normal semi-finite trace on G . For any po s i t i v e s e l f - a d j o i n t AnG we define the function f ^ on (R + V by . ••; ' f A ( X ) = T(1-E (X)/) , for 0 _< X < » f A(») = 0 . where (E ( x ) } i s the spectral resolution of A . f A of course depends on the 'trace T; . We^call f A the d i s t r i b u t i o n function of A with respect to T , by analogy to the p r o b a b i l i t y d e f i n i t i o n . Note that the d e f i n i t i o n above i s preferable to taking the increasing function, . X - T ( E ( X ) ) , since i f A i s square 48> integrable f" A i s f i n i t e valued, except perhaps at 0 . Obviously, i n the notation of Section 5> f A i s a ri g h t continuous function e M and we can form the function 7 A • ,•• Lemma 6.4. Let A be a p o s i t i v e s e l f - a d j o i n t operator i n G, and l e t ( A ^ n - i 2 be a sequence of mutually com-muting elements of G + such that (1) A± < Aj for 1 < j ( i i ) A = sup ( A j n Then, Proof. Let {E ( x ) } be the spe c t r a l r e s o l u t i o n of A and n v n l e t (E (x)} be the spe c t r a l r e s o l u t i o n of A . ( I t i s not hard to v e r i f y that E n ( iX ) jrE ( x ) f o r a l l X . Therefore (1-E n ( x ) ) t (l-E ( x ) ) . By the normality of T , we have that f o r " a l l X > 0 f - ( X ) = T( l-E n (x)) '1> T(1-E(X)) = f A ( x ) . Lemma 6.5 Let T e G + and l e t P be a projection i n G such that ,TP = T . Let T' and T' denote the r e s t r i c t i o n s of T and T r e s p e c t i v e l y to the algebra G p . Then f^, , computed with respect to the algebra G p and trace T' i s equal to f ^ computed with respect to T . P r o o f L e t (E(x)} be the sp e c t r a l r e s o l u t i o n of T.- '. Then the spectral r e s o l u t i o n of T' as an operator on the Hil b e r t space P i s { E ' ( x ) } where E ' ( X ) = E ( x)P f o r a l l X . Now f o r any unit vector x i n l - E ( x ) , (Tx|x) > X .: For any.unit vector x i n 1-P , (Tx|x) = (TPx|x) = 0 . . This shows that ( l - E ( X ) ) flV(l-P) =0 t or l - E ( x ) < P for a l l X > 0 . Then for any X > 0 , . f T > ( X ) = T ' ( P - E ( X ) P ) = t ' ( P ( l - E ( x ) ) - = T ( P ( 1 - E ( X ) ) = T ( 1 - E ( X ) ) = f T ( X ) , and by r i g h t continuity frp/(0) = f T ( 0 ) . i ' ' • • . D e f i n i t i o n s of q ' De f i n i t i o n o. 6. Let G be a W -algebra and T a normal v semi-finite trace on G . For any p o s i t i v e s e l f adjoint operators S and T a f f i l i a t e d with G and square i n t e -grable with respect to T we define o(S,T) = J o 7 s(x) 7 T(x) dx . By Lemma 5.'3> and Lemma' 6.1(b) we have . that "f g and Trp' are square integrable functions on [0,»)" . Therefore_-.q(S,T) i s always < » . ' ' . Note that ; a depends on the trace T . When G i s a factor we can eliminate t h i s dependence by defi n i n g o .for states.'/ .. ;'•/;.•; 50." ' ... IJDefinition 6.7. Let G be a factor and l e t u. and v e E^ . Suppose that for some semi-finite trace T on G , u = TI'V" V and v = Tip . We then define / cj(ia,v) = a(S,T.) computed with respect to T To j u s t i f y t h i s d e f i n i t i o n we need to show that i t i s independent of the p a r t i c u l a r trace chosen. Let T' be another semi-finite trace on G . Since G i s a fa c t o r , T' = kT , f o r some k > 0 , and i t follows that u = Ts//jyj^ p If; the spectral r e s o l u t i o n of S i s ( E ( X ) } the : s p e c t r a l r e s o l u t i o n of /S/Vk" i s e a s i l y seen to be { E ' ( \ ) } where E " ( \ ) = E(^/k\) f o r a l l \ . Letti n g primed symbols .denote calculation^ with respect to r' we have Prom Lemma 5 .2(c) / , . . • ./; ' . ••' ; "' ' T s / J z M ~ p s & After a s i m i l a r c a l c u l a t i o n for v we obtain /• a ' ( u , v ) = o'(S/JZ , TA/k") V ; i 3 ' : 0 = 7s'(!y); t T ( y ) dy - a(S,T) = ,a( U,v) . •-. .1,-.•C,— St. • • 5i. • D e f i n i t i o n 6 .8 . Let G be a factor with a semi-finite . — — — — — — — — — — : I ' • '•. -trace T . We l e t ".-\ : • v ; \ • . ' " •-. • • \ • ; r ; ' ; C P(G) = {a € Aut(G) : T° = T} ; (Note that P(G) i s obviously independent of any p a r t i c u l a r trace). Now l e t G be any subgroup of Aut(G) . Let % be . the homomorphism from G onto the m u l t i p l i c a t i v e group of .. p o s i t i v e r e a l numbers defined by f(a) = k i f T a = k T . The kernel of 4 • i s obviously G 0 P(G) . ' Then G/G fl P(G) can be i d e n t i f i e d as a subgroup of the m u l t i p l i c a t i v e group . of reals which we denote by r(G) . D e f i n i t i o n 6 .9 . Let G be a factor with a semi-finite . 4 trace T , l e t G be a subgroup of Aut(G) , and l e t y. and v e . Suppose that u. = Trp . - 1 . 'k . . We define, v >v r « • , ' ; ' - a k ( u , v ) = J% \ 7 g(x) 7 T(kx) dx , f o r a l l k > 0 , . .'. ;. a G ( u,v) = sup (a k ( u,v) 1 :/k e r(G)} As above we can show that a i s independent of the :• '\ p a r t i c u l a r trace. :• y'.'.-) The motivation for these d e f i n i t i o n s i s shown by ' • the following. ., ' Lemma 6 .10 . Let v € £~ = T m for some T e G + and some 1 G • JL semi-finite trace T .. Let a e Aut(G) with T° = kj . Then V o{\X,\>a) = a k ( u , v ) . . . Proof. By lemma 0.3, v a = ( T ^ ) 0 = T a = kT n , (ot~ (T)), ( a ^ T ) ) . = T . - i . L e t T = J^(a (T)) . I f T has s p e c t r a l ^ ( a " 1 ( T ) ) r e s o l u t i o n (E(X)} , T' has s p e c t r a l r e s o l u t i o n (E ' ( x ) } where E ' ( x )V ; =..a_1(\A/K)) f o r a l l X • / Then f T / ( \ ) = T(1 - a^iEiX/JZ)) = -£<ra(l - cf^EfxA/E) ) . = -| f T ( \ A / k ) ! By lemma 5.2(c), ^ / ( X ) = 7k f " ( k x ) , f o r a l l X and the' lemma f o l l o w s from the d e f i n i t i o n s of a and a k  Remark 6.11. I f G 1$ a f a c t o r of type I or II-j^ , P(G) = Aut(G) . So f o r any G c A u t ( c ) , r ( G ) = {1}' and : G G o = a . The purpose of d e f i n i n g o i s t h e r e f o r e t o d e a l w i t h f a c t o r s of type I I where t h i s i s not the case. An example of Suzuki p. 188) shows t h a t i f G = P ® I v where P i s the h y p e r f i n i t e 1 ^ factor, then r ( A u t ( G ) ) = the e n t i r e group of m u l t i p l i c a t i v e r e a l numbers. The same r e a s o n i n g employed i n t h i s example shows t h a t i f G = fil ® I 00 f o r a 11^ f a c t o r ft then r ( A u t ( G ) ) = the fundamental group of 0 . (See [10] Theorem V I I I f o r the d e f i n i t i o n of funda-mental group"). In the r e s t of t h i s s e c t i o n we w i l l c o n s i d e r a f i -n i t e f a c t o r G w i t h normalized t r a c e T [ ( i . e . T(1) =1 ). 53.' We want to develop some continuity properties of a \ • . i The following i s a well known r e s u l t . (See [9] . \ lemma 14.22). Xemma 6.12. Let E and P be projections i n G with T(E) < T( F) . Then (1-E) n F + 0 . The next lemma i s e s s e n t i a l l y proved i n ([91 Lemma 15.21). Lemma 6.13. Consider any representation of G . For any ; A e G + and 0 _< a _< « , .(6.2) f.(a) = inf(sup{(Ax|x) : ||x|| = 1 , Ex = x)) H ,E -as E runs over the projections of G with T(1-E ) _< G . ! - • Proof. I f a = »' both sides of (6 .2 ) are e a s i l y seen to be 0 , so assume a < » . Let "f^(a) = b and l e t the ri g h t side of (6.2) = b* • . Let [E(\)} be the spectral ' o / . resol u t i o n of A . Choose any b' and b" with b' < b <,b" Then <r(l-E(b')) = f A ( b ' ) > a by Lemma 5.2(b) . So; f o r : any projection E with T(1-E) _< a, (l-E(b')) fl E ^ 0 by • ; ••Lemma 6.12. Therefore E contains a unit vector x such that (Ax|x) > b' . I t follows that b Q > b' . On the other hand, T(l-E(b")) = f A ( b " ) _< a by •-. Lemma 5.2(b). So for any unit vector i n E(b") , (Ax|x) _< b". . I t follows that b Q _< b" . Since b' and; b'' were chosen a r i b i t a r i l y we have, that b Q = b . : ; Lemma 6.14. Let G be a f i n i t e factor.. Suppose that S,s',T and T' e G s a t i s f y ||S-S' I! < 6 , UT-T* II < 6 , where 0 < 6 < 1 . Then . |o(S,T) - a(S',T')| < 6(|lS|| + ||T|| + 1) , >[ where a i s calculated with respect to the normalized trace T Proof. Note f i r s t that since T(1) = 1 , f o r any A e G + f A _< 1 , and therefore 7 A(a) = 0 f o r a l l a > 1 . There fore the integral! i n the d e f i n i t i o n of_ a can be taken over the i n t e r v a l [ 0 , 1 ] . . Since fg(!|S||) = fT(||T||) = 0 we have • (6.3.) f s ( a ) < ||S|| , 7 T(a) < ||T|| , for 0 < a < ' Now consider any representation of G. and any unit vector x Then-. |(Sx|x) - (s'x| x) | = . |^  (S-S' )x 1 x) | _< |1S-S' || /j 6 . From Lemma 6.13 we can conclude (6.4:)' | 7 s(a ) -7 s/(a )J < 6 and JT T(a)-T T* (a) | < 6 , f o r 0 < Using (6.3) and (6.4) we. have f o r a l l a > 0 55. | f g ( a ) f T ( a ) - f s , ( a ) T T , ( a ) | . < 7 s(a) |7T(.a)-7T, (a) | + 7 T(a) |7 s(a)-7 g, (a) | + | f s ( a ) - f s / ( a ) | | f T ( a ) - f T ( a < 6 ( | | S | | + ||T|| +. 6.) < 6 ( | | S H + ||T|| + 1) . Therefore !a(S,T) - a ( s',T)| < J- |7g(a)7T(a) ~"7g, (a)7 T, (a) |da < 6 ( | | S | | + ||T|| + 1) . v <r 1 56. 7. C o m p a t i b i l i t y , .'• . D e f i n i t i o n 7.1. L e t S and T be s e l f - a d j o i n t o p e r a t o r s (not n e c e s s a r i l y bounded) on a H i l b e r t space H . Suppose t h a t (E(X)} i s the s p e c t r a l r e s o l u t i o n o f S •, and {P(\')} i s t h e s p e c t r a l r e s o l u t i o n o f T We say that' S and T ar e c o m p a t i b l e , i f g i v e n any o r d e r e d p a i r (a,|3) o f r e a l num-b e r s e i t h e r ( l ) or (2) h o l d s : • • (1) E(cx) < P(f3) , ( 2 ) ' F(f3) < E ( a ) . . Remarks. I t i s not ; h a r d t o v e r i f y t h a t the above d e f i n i t i o n .-remains unchanged i j f we use l e f t c o n t i n u o u s s p e c t r a l r e s o l u -. t i o n s i n p l a c e o f r i g h t c o n t i n u o u s ones. Note t h a t i f S and T a r e c o m p a t i b l e t h e y ob-v i o u s l y commute w i t h each 5 o t h e r . -The main r e s u l t o f c o m p a t i b i l i t y w h i c h we need i s " t h e f o l l o w i n g . .-• • / •. Theorem 7.2. L e t G be a von-../Neumann'" a l g e b r a w i t h a n o r m a l , s e m i - f i n i t e t r a c e T . L e t S ' and T, e G + be c o m p a t i b l e , 2 p and s a t i s f y T ( S ) < <* , T ( T ) <. *> . Then f o r 0 < a <_ « , f S T ( a ) ' .= f g ( a ) 7 T ( a ) P r o o f . We a p p l y Theorem 5 . 4 , t a k i n g <j)(x,y) = xy ., I t r e -mains to v e r i f y the conditions of that theorem. Let ( E ( x ) } ( F ( X ) } , and ( G ( x ) } be the spectral resolutions of S , T , and ST respectively. Since the operators a l l commute with each other any two of these spectral projections w i l l commute. Let ( a , B ) be any ordered pair of non-negative r e a l numbers. /• • • Case 1. Assume that E(a) _< F ( B ) For any unit vector x i n E(a) S^x € E ( a ) _< F ( B ) , which shows that (STx|x) =' (TS^x|S^x) < P(Sx|x) < a B . For any unit vector y i n 1 - G ( q B ) . * (STy|y) > aB . *' ' ' This shows that E ( a ) ( l - G(aB)) = 0 , so (7.1) .(1 - G(aB)) jC (1 - E ( a ) ) . S i m i l a r l y , we see that f o r any unit vector x e (1 - F ( B ) ) _< (1 - E ( a ) ) , we have (STx|x) > a B , and we obtain (7.2). . V . / (1 - G(aB)) 2 . (il - F ( B ) ) . From (7.1) and (7,;2) we obtain by the p o s i t i v i t y of T that f T ( S ) < f g T ( a P ) < f s ( a ) Case 2. Assume that E(a) j£ F ( B ) By compatibility we must have F ( 8 ) •<_ E(a) and arguing as above we obtain ' I • • ' ' •' . f s ( a ) < fg T(aP) < f T 0 ) . We have then that i n any event,-for a l l non-negative a and B f S T ( a i 3 ) e [ f s ( a ) ,. f T ( B ) J . . j , ' \ 2 '2 Now we note from Lemma 6.1 that since T ( S ) and T ( T ) are f i n i t e , "fg and . 7 T are f i n i t e valued except perhaps at 0 . We apply Theorem 5l.'4 to complete the proof. / Corollary 7 . 3 . If S and T € C + are compatible, a n d / 2 p s a t i s f y T ( S ) < » , T ( T ) < » , then \:'. . ' T ( S T ) = o (S,T) . Proof. Prom Lemma 6.1(a), Lemma 5.3, and Theorem 7.2, •CO X T ( S T ) = 7 S T ( a ) d a = o ( S,T) . . Remark. As a further a p p l i c a t i o n of Theorem 5.4 we may 59. o b t a i n t h a t f ( S + T ) = 7 g + 7 T f o r c o m p a t i b l e S and T , • by t a k i n g <}>(x,y) = x + y and p r o c e e d i n g as i n Theorem 7.2. S i m i l a r l y , t a k i n g (f>(x,y) = kx y i e l d s f k g = k7g f o r k > 0 , ( a r e s u l t w h i c h we e s t a b l i s h e d p r e v i o u s l y i n the remark f o l -l o w i n g D e f i n i t i o n 6.7). D e f i n i t i o n 7 . 4 . L e t G be a W - a l g e b r a . An element A e G w i l l be c a l l e d s i m p l e , i f i t can be w r i t t e n as a f i n i t e l i n e a r c o m b i n a t i o n o f m u t u a l l y o r t h o g o n a l p r o j e c t i o n s € G . Remark. L e t A be s i m p l e and s e l f - a d j o i n t . Then n A = E c.E, , f o r some r e a l numbers ( c . ) and m u t u a l l y 1=1 1 1 1 , , n o r t h o g o n a l , non-zero p r o j e c t i o n s (E. ) w i t h T, E. = 1 . 1 • i = l 1 '•(We can always o b t a i n t h e l a t t e r c o n d i t i o n by i n s e r t i n g i f n e c e s s a r y an a p p r o p r i a t e p r o j e c t i o n w i t h 0 c o e f f i c i e n t . ) v I t i s easy t o see t h a t t h e s p e c t r a l - r e s o l u t i o n ( E ( \ ) } /of A i s g i v e n by (7-3) E(X) = E E . , the sum,taken over a l l j such t h a t u " ' a n d ' i t ' f o l l o w s .that,*'; ' (7.4) 1 - E ( \ ) = E E. , the sum t a k e n over a l l j such t h a t 6o. Theorem 7 . 5 . Let S and T be simple, s e l f - a d j o i n t elements # V of a W -algebra G . Then S and T are compatible i f and. \ only i f there exist. ( i ) a set of non-zero, mutually orthogonal projec-m tions i n G (G. ), n 0 m . with £ G, = 1 ; x x — x ^ £ - j . * « m * ^ x t i . ' ( i i ) non-increasing sequences of r e a l numbers, (c , , c 0 . . . c ) and (d,,d 0...d ) : 1 2 m m m m such that = £ c.G. and T = £ d.G. i = l 1 1 i = l 1 1 Proof. Suppose.that S and T are of the above form. From ( 7 . f 4 ) , any non-zero, spectral projection of either S . ;v. • . •  m . or T i s = E G . f o r some k such that 1 '< k < m . Ob-. i=k 1 . ~ ~ • viously S and . T< are compatible. Conversely, suppose that S and T are compatible, n k Let S = E a.E. , T'= E b .F . , where (E.) and (F .) are 1=1 1 1 j t i J J 1 J sets of non-zero, mutually orthogonal projections with sum >'= 1 For any i , j , ^ = E ^ j i s a projection and, ' S = t a ^ and T = E b j G ^ Deleting those G.. = 0 and suitably renumbering the remain-ing ones, we obtain . m m S =. E c.G. and T = E d.G. , X i=l' i = l where; ( i ) ' 2 m i s a s e t of non-zero mutually orthogonal projections with sum = 1 , ( i i ) c 1 > c 0. . . > c m .,' ( .^ i i + l 3 hen This of course is. a f a m i l i a r procedure which can be applied whenever S and T commute. We want to show now that the compatibility implies that the d^'s are non-decreasing. Suppose t h i s i s not the case. Then for some i , d^ < d i + ^ and necessarily, c^ > . Choose 'numbers c and d such that d i < d < and c^ > c > c.j_+l' ' ' L e t tE(^)3 and (F(X)} be the spectral resolutions of S and T re-spectively. From ( 7 . 3 ) and ( 7 . 4 ) , we obtain !G. < F(d) n (1 - E(c)) , I Gi+1 i E ( C ) 0 ( 1 " P ( 4 ) ) '• •t» Since G i and are both .non-zero, we necessarily /have E(c) F(d) and F(d) j^'.E(c) a contradiction to .the compatibility. Therefore, we must have l i — d i + l ? ^ o r 1 = l ^ 2 ^ • • • m " " l and the theorem i s prove d. .We now need some lemmas concerning the comparison of projections i n a factor. In the proofs we use several standard*results which can be found i n ([93 Chapters VI and • > . . . > . 62. Lemma 7.6. Let E and H be projections i n a factor such •'j that H i s i n f i n i t e and E _< H . Then either E ~ H or H-E ~ H Proof. Suppose E ^ H - E . Then H-E must be i n f i n i t e , f o r i f not, E would be f i n i t e and then H would be f i n i t e . Therefore H-E = P + Q where H-E ~ P ~ Q . Then H = E . + H-E-^P + Q = H-E , and i t follows that H ~ H-E . If E-^H-E ., .then H - E ^ E and we obtain simi-l a r l y that H ~ E '. D e f i n i t i o n 7.7. Let H be a projection i n a W -algebra G . i If E and • P are1 projections of G contained i n H we say . . . \ that E-: ~;F- , i f '• E ~ F and H-E ~ H-F . We say that • • ( H ) E . F ,. i f E < P ~ Q < F , for some P and . Q . (H)-' ~ (H)t, Lemma 7.8. Let E i F , and H be projections i n a factor G such that E < H and F'< H '. Then either E ^ F , or. P ,<~~ E . ; (H) ' (H) Proof. If H i s f i n i t e , i t i s a well known r e s u l t that ~ i s the same as ~ , and we are done. So assume H i s (H) i n f i n i t e . By symmetry we may assume that f o r some P^ , E ~ F 1 < F . N I f H-E ~ H-F 1 we are done. • If not, H-E and H-F-L cannot both be . ~ H . From Lemma 7.6, either E or F^ i s ~ H and necessarily E ~ F ~ H . B y symmetry again we may assume that for some G. , H-E ~ G _< H-F . T Then. H-G contains F and must be equivalent to H . There^ fore, F < H-G ~ E , which shows that F E (H) (H) Corollary 7.9* Assuming the conditions of Lemma 7.8, there e x i s t s a unitary U e G such that: (a) U GU = G for a l l projections G <_ 1-H ; (b) Either ( i ) U*FU _< E or ( i i ) U*PU > E holds. (cf. [5], Chapt. I l l , §2, Prop. 6.) Proof. We can suppose by Lemma 7.8 that E F . Then, . (H) E < P ~ Q < F for some P and Q. . . . Let V and W be pa r t i a l , isometries: i n G. s a t i s f y i n g V V = P , W = Q ', • W*W = H-P , W*W =|H-Q . Then, U = V + W + 1-H i s a . unitary i n G which s a t i s f i e s (a) and (b) ( i i ) . Theorem 7.10. Let S and T be s e l f - a d j o i n t , simple elements of a factor G . Then, there exists a unitary U e G such that \S and U TU are compatible. m. / Proof. Let S = £ a,E, and T = £ b.F. , where (E, ) and' -~ :. k=l K K 1=1 1 1 K (F^) are sets of non-zero,, mutually orthogonal projections ".with ; sum -= 1 and a ^ C a 2^ . .. < a m„. and b^ < b 2 .. . < b p .. . .. ., We define the'pro jec.tions , 64. Then any spectral projection of S = E ^ ^ for some i = 0,1, , ...m . We define i n a similar way the projections ,, j = 0,1,...p , corresponding to T . Now, l e t A = {0,1,.. .m} B = {0,1,...p} , and order the set A x B lexico g r a p h i c a l l y . If S and T are not already compatible there must exis t i some ( i , j ) ,In A x B such that (*) E ^ ^ P^ J ) and. p ( j ) .| E ( i ) . Let ( i Q * J 0 ) b e t n e least such element. Obviously i > 0 and j Q > :0 .-Then E - { F ° , so obviously ; ( i Q ) .. ( J 0 - l ) • , E jf.P . j This implies by the minimality of ( i Q , J 0 ) '.that • • • • • (7.5) P U ! ° - J > < K ( i ° ; S i m i l a r l y we obtain (7.6) E ° . < F ° Case 1. Suppose E <_ F Let . E' = E - F ° , and l e t H = 1 - F ° o From (7.5), E'. i s a projection contained i n H . /'Gb-o viously F. x< H •. Choose a unitary U e G which s a t i s f i e s the - conditions of Corollary 7-9 for E'.. , F . and H . •:. .'. . ,.,,' " 1 o Jo • -' 1 65. v. Consider the element T = U TU , and the corresponding projections, P' = U*F, U , and F'(J) = i F' w . Let . . K * k=l K '"(*'••)• denote the statement (*) above with F ^ ^ replaced by p'(J) . ' From the conclusions of Corollary 7.9 ,we have that F ( J ) _ F ' ( j ) for j < j Q ; and that either . (a) . F' . < E.' , i n which case Jo . o or (b) E^ • \< P'. , i n which case o j Jo (Jo*-1) , ,<<U E = F + Ef .<_ F' ° . o So (*') does not hold for ( i Q , J O 0 • Now consider any ( i , j ) < ( i 0 ^ J 0 ) • • ^  (a) If j < j Q , .F' (J) = p(J) , and by the mini-mality of ( 1 0 * J 0 ) >(*') does not hold f o r ( i , j ) . ~ (b) If j = j Q , -we must have i _< i Q - l > and. m ( i 0-l) ( j Q - i ) ( V 1 ) (1) So again, (*/ )^ does not hold for ( i , j ) •'. ( i D - l ) ( J - l ) Case 2. Suppose E | F , • ( V 1 ) ( V 1 ) By the minimality of ( i 0 * J 0 ) > we have F _< E We can then argue i n a s i m i l a r manner to Case 1, using (7 .6) i n place of (7.5). In any event we can f i n d a unitary U € G such that when we replace T by U TU , the number of pairs ( i , j ) for which (*) holds i s s t r i c t l y decreased. The theo-rem then follows e a s i l y by induction. Example 7.11. Theorem 7.10 w i l l not hold i n general i f S and T are hot simple. Let M be the von Neumann alge-bra consisting of L w[0,1] acting on L [0,1] by multiplica-tion. Let G be any free, ergodic, measure preserving group of transformations of [0,1] and l e t G be the factor constructed from M and G i n the standard manner (see [9], Chapter XII). * For any bounded measurable function h on [0,1] we l e t T^ denote .the corresponding element of G . There i s a f a i t h f u l trace T on G , which s a t i s f i e s (7.7) " ,, T ( T h ) = I * 1 h(x)dx . , o Iri p a r t i c u l a r consider the;functions f and g defined by . ' ; • L e t t i n g x denote t h e c h a r a c t e r i s t i c f u n c t i o n o f a s e t we have f o r 0 _< X £ 1 , the s p e c t r a l p r o j e c t i o n E ( x ) of T, t h e s p e c t r a l p r o j e c t i o n F ( x ) , o f T and E ( X ) = F ( x ) = 1 f o r X > 1 E ( x ) = F ( x ) = Q f o r X < 0 . A p p l i n g [ l . l ) s we see t h a t f o r any u n i t a r y U e G (7.8) T ( U * F ( X ) U ) = ' T ( E ( X ) ) 3 < X < + » . C o n s e q u e n t l y , i f t h e r e e x i s t e d a u n i t a r y U such * • ' I t h a t U T U and T y were c o m p a t i b l e , we would have f r o m . y (7.8) and the f a c t t h a t T i s f a i t h f u l , U * F ( x ) U = E ( x ) 3 f o r 0 < X < + • . By the u n i q u e n e s s o f t h e s p e c t r a l r e s o l u t i o n we would have t h a t * U T g U = T ^ and t h e r e f o r e t h a t / t h e von Neumann a l g e b r a s genera-t e d by T f and T are u n i t a r i l y e q u i v a l e n t . But t h i s i s a c o n t r a d i c t i o n , s i n c e T f g e n e r a t e s { T ^ : h € L w[0,1]} w h i c h i s i" ; maximal a b e l i a n , w h i l e T '• g e n e r a t e s { T n : h e L W[0,1] , and h ( x ) = h ( l - x ) } w h i c h i s n o t maximal a b e l i a n . T * [ o , x ] ' = T x([0 , X/2] U [ l - X/2,1]^ 68. G 8... C a l c u l a t i o n o f p f o r s e m i - f i n i t e f a c t o r s . The c a l c u l a t i o n s f o r p made i n t h i s s e c t i o n w i l l be based on the f o l l o w i n g r e s u l t f o r p p r o v e d I n [ 3 ] . Lemma 8.1 1 ( [ 3 L Prop. 2.3),. L e t G be a W - a l g e b r a w i t h a n o r m a l f i n i t e t r a c e T . L e t y and v e be such t h a t y = Tg and v = T t f o r some S and T € G + . Then P(u,v) = T ( | S T | ) . f We want t o t a l k about the t y p e o f s t a t e s used i n the 'i above lemma, so we (make t h e f o l l o w i n g d e f i n i t i o n . • \ • D e f i n i t i o n 8 . 2 . L e t G be a W - a l g e b r a w i t h a n o r m a l , semi-f i n i t e t r a c e . T . An element y.. o f Z Q w i l l be c a l l e d e l e m e n t a r y w i t h r e s p e c t t o T , i f y, = T G f o r some S e G + such that.. T(E ' ) < » , where E i s t h e range p r o j e c t i o n o f S I n t h e r e m a i n d e r o f t h i s s e c t i o n G w i l l always be a f a c t o r and we can speak o f e l e m e n t a r y s t a t e s w i t h o u t r e g a r d t o T . " , • . • ' • / ' . • Lemma' 8 . 3 . L e t G be a f i n i t e ; f a c t o r w i t h n o r m a l i z e d t r a c e T and l e t SX and T be s i m p l e elements o f ; G . Then, f o r any V e G w i t h ||v|!'_< . l'; 'y ' / '•-•u. '': '•' R ' |T(STV) I,•< d ( S , T ) . Proof. By Theorem 7.10, choose a unitary U € G so that S * m ' * and U TU are compatible. Let S = £ c.G. and U TU = ' i = l m E d.G. be the representations given by Theorem 7.5. Let i = l 1 1 ' -.gj_. J= TCGJ^) . By the unitary invariance of T and Corollary 7.3, . 1 • a ( S , T ) = o ( S , U T U ) = T ( S U T U . ) < m = E c i d . g 1 . 1=1 1 The lemma now follows e a s i l y from Theorem 4.3. Lemma 8.4. Let G; be a factor with a f i n i t e trace T . . Let u. and v be Elements of EQ. such that ti = T g and v = T t for some S and T € G. . Then: (a) p(y,v) <_ d"(u,v) , and equality holds i f ^  S and T are compatiblej (b) Given any e > 0 , there exists a e,Int(G) . such that p(U,v a) > a(u,v) - e . . Proof. We can assume that T(1) = 1 Choose any e with . 0 < e.< 1 ' • • L e t r =-(||s|| + ||T|| + 1) i A It follows immedi-ately frpm the^spectral theorem that the simple elements of G+1 are norm dense i n G + . T h e r e f o r e , we can choose simple elements, • S ' and T' of G + such that Ils-s'll < h > llT-T/" <'e 70. Prom Lemma 6.14, (8.1) | a ( S , T ) - o ( S ' , T ' ) | < e/2 , and a similar type of ca l c u l a t i o n shows that | S T - S ' T ' || < e/2 . For any V e G with' ', ||v|! <\ we have I S T V •- . S ' T ' V I ! _< H S T - S ' T ' ||||vl| < e/2 , and since the state T has norm 1 , v ( 8- 2| |- 1 T | ( \ S T V ) J ^ J T ( S ' T J V ) | " 1.'^  " I T ( S T V - ) . . - T ( S ' T ' V ) | . • " : s s - • v- • ':= | T ( S T V - S ' T ' V ) I; : . ""' / < e/2 .- ' "•"'" From (8.1), (8.2), and Lemma 8.3, TISTV).|< |T(S'T'V) I + e/2 < a{S',T') + e/2 < a(S,T) + e 7 1 Then.from Lemma 0."4(a) and Lemma 8 . ' l , •• • p(u,v) = T | ST | < o(S,T) +. e = o(M,v) +. e S i n c e e was chosen a r b i t r a r i l y , • : p(u,v) < o(H,v) . I f S and T a r e c o m p a t i b l e t h e e q u a l i t y f o l l o w s d i r e c t l y f r o m C o r o l l a r y 7 . 3 . T h i s p r o v e s ( a ) . By Theorem 7 . 1 0 , choose a u n i t a r y U e G such t h a t S and U T U a r e c o m p a t i b l e . C a l c u l a t i n g as i n ( 8 . 2 ) we.can show ( 8 . 3 ) JT(SU*T.U)| > |T(S'U*T'U)| - e/2 L e t . a be the i n n e r automorphism i n d u c e d by U . Then. v° = T * . From ( 8 . 1 ) , ( 8 . 2 ) , Lemma 0 . 4 ( a ) , C o r o l l a r y u T U ; 7 . 3 , and Lemma 8 . 1 , p ( n , v a ) = T( | S U * T U | ) 2 | T ( S U * T U ) | ' :' \ -2 | T ( S ' U * T ' U ) I - e/2 - = .a(S',T' ) - e/2 > a ( S , T ) - e % •/;.->'../\ = a(u,v) - e ; ; ... w h i c h p r o v e s ( b ) . ; / ; 72. Lemma 8.5. L e t G be a s e m i - f i n i t e f a c t o r and l e t u. and v be e l e m e n t a r y s t a t e s of J.^ . Then, (a) and (b) o f Lemma 8.4 h o l d . P r o o f . Suppose \A = T g , v = T t where S and T € G + L e t E and .F be t h e range p r o j e c t i o n s of S and T r e - • s p e c t i v e l y . S i n c e E and F a r e f i n i t e i t i s a w e l l known r e s u l t t h a t the p r o j e c t i o n G = E U F i s f i n i t e (see [9] Lemma 7-35). L e t y,' and v' denote t h e r e s t r i c t i o n s o f U and v r e s p e c t i v e l y t o the f i n i t e f a c t o r G Q . L e t . a ' be any i n n e r automorphism of G^, . We extend a' t o an i n -ner automorphism a-, of G as f o l l o w s . I f the u n i t a r y U i n Gr, i n d u c e s a'' , we t a k e a as the i n n e r automorphism I i n d u c e d by t h e u n i t a r y U + C :(1 - G ) . Then ( v ' ) a i s the r e s t r i c t i o n of v a t o G Q . Moreover, •, / .• v A ( G ) = v ( a ( G ) ) = v ( G ) = T ( S G S ) = T ( S 2 ) = u ( l ) = 1 , and s i m i l a r l y u ( G ) = 1 . From ([3] Prop. 1.10), •'" / • P ( y , v a ' ) = P ( u ' , ( v ' ) a ' ) . and t a k i n g a ' = the, i d e n t i t y , automorphism^ ..• ' • '•; V • • : :.;;v •<;••:"•) • /. ; P(W,V) =. ,'p(u',v') F i n a l l y , we see from Lemma' 6.5 t h a t a(u,v) = a(u'»v') The lemma now follows d i r e c t l y from Lemma 8.4. Theorem 8.6. • Let G be a semi-finite factor and l e t G be a subgroup of Aut(G) which contains Int(G) .' Then, f o r any u, v e £ Q p G(u,v) = a G(ti,v) • We f i r s t prove the r e s u l t i n a spec i a l case. Lemma 8.7- Theorem 8.6 holds i f u and v are elementary.: Proof. Choose any a e G . Then obviously i s also elementary. From Lemmas*58. 5 and 6.10 we see that P(u,v a) < a(u,v a) < a G(u,v) . Then from Lemma 3 . 2 . , (8.4) ' p G(u,v) < a G(u,v) . Now choose any e > 0 Let k € r(G) be such that a'k(y, v) > o (u,v) - e/2 ',- and choose f3 e G so that T = kT for any trace T on G/.. 'Applying Lemma 8.5, there exists ye. Int(c) such that ...•, :>X.:'.'.'" '; • ';•:./;•. ••• '•' • 74 (8.5) ' P ( U , V P y ) > o ( u , v 3 ) - e/2 = o k ( y , v ) . - e/2 r > a (n,v) - « . S i n c e Int(G.) c G , we have t h a t ^ e G , and t h e lemma f o l l o w s f r o m (8.4) and (8.5). Remark 8.8. The d e f i n i t i o n f o r a ( y , v ) can o b v i o u s l y be made f o r any p o s i t i v e , n o r m a l , l i n e a r f u n c t i o n a l s as w e l l as f o r s t a t e s . I f a s t a t e u = T c , the f u n c t i o n a l ky = T .  S JXS f o r any p o s i t i v e k , and we have seen t h a t "F = »/K T C o n s e q u e n t l y , f o r any p o s i t i v e k and r , a ( k y > r v ) = Jkr a ( y , v ) • I n Remark 2.5 we n o t e d t h a t p ( k y , r v ) = Jkr p ( y , v ) • I t f o l l o w s t h a t Lemma 8.7 h o l d s f o r p o s i t i v e , n o r m a l , l i n e a r f u n c t i o n a l s , and we w i l l a p p l y i t i n t h i s - f o r m i n the f o l l o w i n g p r o o f . P r o o f of-Theorem 8.6. i , . ' , •• / • L e t T be a s e m i - f i n i t e t r a c e on G. w h i c h we keep f i x e d t h r o u g h o u t the p r o o f . "Suppose t h a t u = and v = T t . L e t {E(x)} be the s p e c t r a l r e s o l u t i o n o f S . F o r any i n t e g e r n > 1 l e t P n,- ( E ( n ) - E(i)) , and l e t S = SP . S i n c e S i s s q u a r e , i n t e g r a b l e , . P i s a f i n i t e n n : -a ... , " n p r o j e c t i o n and S n i s a bounded p o s i t i v e o p e r a t o r w i t h f i n i t e range. We d e f i n e the f u n c t i o n a l u n = u p • . Then un = T S n n so i t i s el e m e n t a r y . S i n c e SnT S , we o b t a i n by Lemmas 5.2(d) and 6.4 t h a t '"' ' '•• (8.6) TSJ 7 S . A n a l o g o u s l y , we d e f i n e p r o j e c t i o n s , o p e r a t o r s T r f , and e l e m e n t a r y f u n c t i o n a l s v n c o r r e s p o n d i n g t o v . We. o b t a i n (8.7) fT t V ' n .From Lemmas 6.1 and 5.3 we have (8.8) T ( S 2 ) = f ' (T (a ) ) 2 d a , and T ( S 2 ) = J " ( 7 q ( a ) ) 2 d a Now u s i n g (8.6) - (8.8) and the monotone convergence theorem ; . ; u ( P N ) = T ( S 2 ) t T ( S 2 ) . = u ( i ) = I . / : v ( Q n ) \: 1 . r - : . a ( | i n , v n ) = a ( S n , T n ) / | a(S,T) = o(u,v) . S i m i l a r l y a k ( u n , v r i ) ^.•a k(u,v) f o r a l l k > 0 and t h e r e f o r e o G ( u n , v n ) T a G ( u , v ) . Then g i v e n any e > 0 we can Choose an i n t e g e r - m so t h a t |i(P m) > 1 - (YQ)2 /and v C Q j > 1 - ( ~ ) 2 , and (8 .9 ) a G (M m,v m) > o(u,v). - | . Let a be any element of G . Then • • " V I ( v n , ) a = ( v f o ^ ) a = ^  - 1 »J by Lemma 0. ; , ( V .'•(-a'1(01n)) . :. • and v a ( a - 1 ( Q m ) ) = v ( Q j > 1 - ( ^ ) 2 . We can then apply ([3] Prop. 1 . 9(c)) to obtain \ - . ; -,. . . . . |p(u,v a) - P ( ^ v m ) | <_ c/2 , fo r a l l a e G : , " » and therefore, ' • ' (8 .10) |p G(u,v) - P G ( % > ^ m ) l < « / 2 .. ' • " ' '' / Lemma 8 . 7 , applied to the elementary functionals u vand v gives •' ( 8 - 1 1 ) = P G ( l V v m ) > ^ G ( u l n , v m ) . From formulas^ (8 .9) - (8 .11) we have |p G(u,v) - a G ( u , v ) | < e and since e was chosen a r b i t r a r i l y the proof i s completed.' D e f i n i t i o n 8.Q. Let G be a semi-finite factor and l e t u and. v e T^r ~. We say that > u .and v are compatible,^ • ' v. ••• • 7 7 . i f f or some semi-finite trace T on G » u = T G and v = T T where S and T are compatible operators. Lemma 8 . 1 0 . Suppose that p. and v € are compatible. Then p(u,v) = a(p-,v) . Proof. This follows d i r e c t l y from Lemma 8 . 4 ( a ) i f the Radon-Nikodym derivatives of u and v € G . For the general case we can employ the same type of approximation procedure used i n proving Theorem 8 . 6 . Theorem 8 . 1 1 . Let G be a factor of type I or of type 1 1 ^ . Then, f o r any u arid v 6 E Q : • ' * Proof. Immediate from Theorem 8 . 6 , Lemma 8 . 1 0 'and formula Example 8 . 1 2 . Consider the algebra G = £(H) where H i s separable. Let T be the trace on G , normalized so that i t s value = 1 on minimal projections. Let S be a p o s i t i v e , Hilbert-Schmidt operator ( i . e . T(S ) < » ). It i s we l l known (a) (b) d(ji,v\) = V2[ l - o ( n , v j I f p. and v)} are compatible, d(u,v) = d(p.,v) ( 3 . 1 ) . that S = i n the sense of strong convergence, where (a.) i s a non-increasing sequence of p o s i t i v e r e a l 78 numbers such that E (a.) < « , and ( E . ) i s a sequence' of non-zero, mutually orthogonal, minimal projections such that I E 1 = 1 . Morever the sequence (a.) i s uniquely 1=1 determined by S . Let ( E ( x ) } be the spectral resolution of S - . We can apply (7-4) to see that . j k 1 - E ( X ) = E E ^ , where k i s such that a k > X _> a k + 1 . It follows that f ( x ) = the number of a^'s > X '. Therefore, i f X > a n + 1 , f ( x ) < n ; and i f X _< a n + 1 , f(X) _> n + 1 • 1* follows from Lemma "5,2(b) that 7(n+r) = a n + ^ > where n i s any non-negative integer and' 0 <, r < 1 es oa Then, i f S = E a.E., and T = E b.F., are two such opera- ' I •• i = l . . i = l 1 1 . tors we have '\i at a(S,T) = E a.b, .' i = l 1 1 -v-'M A similar r e s u l t of course holds when H Is f i n i t e dimensional. Since any state y On G = T g f o r some H i l b e r t - . V v + •''-"'". Schmidt S e G N » t h i s gives us an immediate c a l c u l a t i o n ' . formula for d(u,v) i n the case of a type I factor. • : •' ; '. . 79.. Example 8 .13 . L e t G. be a s e m i - f i n i t e f a c t o r w i t h t r a c e T . F o r any p r o j e c t i o n E € G such t h a t T ( E ) = a < « , we can e a s i l y v e r i f y t h a t f E = / X [ o a) ^ ^ d e n o t i n g the c h a r a c t e r i s t i c f u n c t i o n o f a s e t ) . T h e r e f o r e , i f E and F a r e any two p r o j e c t i o n s e G such t h a t a = T ( E ) < T ( F ) = 3 < » , we have a(E,F) = a . Now i f we c o n s i d e r the s t a t e s u = l / a ( T E ) and v = 1 / B ( T F ) , we have from Theorem 8 .6 and Remark 8.8 t h a t s • " 1 • V p(u,v) = ;o (u,v) = 1/Ja& (o'(E , P ) ) -. = T O T P = 7 T ( E ) / T ( F ) . . ' Note t h a t i f a/B e r ( A u t ( G ) ) 1 , the same.type o f c a l c u l a t i o n shows t h a t p(u,v) = 1 . Of cour s e t h i s i s e v i d e n t ,' imme-d i a t e l y s i n c e we can i n t h i s case f i n d an automorphism s e n d i n g F onto E and t h e r e f o r e v onto u . _ •?: ' CHAPTER I I I ; ; . APPLICATIONS TO INFINITE TENSOR PRODUCTS . 9. Isomorphisms of Products; Defi n i t i o n s. D e f i n i t i o n 9.1. Let (G,(c^)) and ( f l , ^ ) ) be two pro-ducts for the family of W -algebras ( G i ) i € i • W e s a v that they are: (a) product isomorphic, If there .exists an isomorphism (}> from G onto 6 s a t i s f y i n g <j)ai = 8^ f o r a l l i e l In such a case we w i l l write (G, (a^).) ~ (©-, (6^)) ; •> (b) weakly product isomorphic, i f there exists an isomorphism d) from G onto 0 s a t i s f y i n g <|)(ai(Gi)) = S i(G i) f o r a l l i e l ; (c) permutably product isomorphic, i f there exists an i s o - ; morphism dp from G onto fj.' and a permutation ir of I , • / s a t i s f y i n g <|»(ai(G1).) = P T( i')(G i r( i)) f o r a 1 1 1 6 1 > ( l n other words they are weakly product isomorphic after a rear- . rangement of the G^'s ); (d) a l g e b r a i c a l l y isomorphic i f there exists an isomorphism from G onto B I t i s obvious that:- (a) - (b) - (c) - (d) , and i t i s not hard to show.';that, a l l implications are s t r i c t . Remark 9.2. Note t h a t i f (G, (oj.')). and • (fi»(^))' a r e wea k l y p r o d u c t i s o m o r p h i c , we can d e f i n e automorphisms^ <p^  of f o r each' i e I by '. . ; $±(A±) = P5 L 1<|)a 1(A 1) , f o r a l l A ± 6 G^ We. t h e n have . <J>a£ = , o r i n o t h e r words t h e diagram ' x • • 1 V-v ^ i i s commutative f o r ( a l l i e l . A s i m i l a r ^ r e s u l t o f cours e h o l d s f o r p e r m u t a b l e •product isomorphisms. ! ... • . / Remark ' 9 - 3 . I t f o l l o w s i m m e d i a t e l y from the d e f i n i t i o n s t h a t r a p r o d u c t isomorphism p r e s e r v e s p r o d u c t s t a t e s . That ' i s , i f v e = .^(v.^) f o r the p r o d u c t (iB, (P^)') ». and i f <f> i s a p r o d u c t isomorphism f/om ( G , ( a ^ ) ) o n t o t h e n = ^ ( v ^ f o r .the. p r o d u c t .'; (G, ( c ^ ) ) . I f <j> i s i n * s t e a d a.-we,ak- p r o d u c t ^isomorphism,'^ v-'' = :• ®j( v^-J'-.' f o r the .'.<j>^ ', . d e f i n e d i n Remark 9.2. •/'['•'i-:':: . '••.'•••.• ••• •«'•' / (G,(a,d),)) ~ ® ( G ^ u / ) . i . 1 1 i e l 1 1 : * i 1  Proof. For each i e l choose [^^x^] e Q(u^ ) . Let •.^•%i^v ft be the von-Neumann algebra ®(R i,x^) where = ^(G^) . ..; !' : i > •" .Then obviously [ \ [ r i d)7 1 , x i ] e QCu^) , and since • d)^ i s an auto-morphism, = ^ < t ) ^ 1 ( G i ) . So by the d e f i n i t i o n of ® ( G I > U I ) there exists an isomorphism is from G onto ft s a t i s f y i n g . •I •*. :.1 . M i \i<a1(A1) = i(fid)~1(Ai) , for a l l i e l - and A^ e G^ . Then, tya^^) = " ^ j ^ A ± ) = • i ( A i ) . f o r a 1 1-. 1 € 1 and'• Aj^ e G^ , which by; the d e f i n i t i o n of ® ( G I , U I ) proves the • ! i lemma. ; ' -SS;; . . • •' " A\ V ' - . • ' ' -;}>'. Lemma 9- 5. ^ (G - ^ U J ) and ® (GJ,V^) are weakly product S$' ;- •' i e l v ,' i e l 1 1 isomorphic, i f and only i f there exists for each i e 1' , an automorphism d> of G., such that ® ( G 1 } u J ' and ® (G^v., ) •' i e l i e l 1 . 1 .• "/';••};. are product isomorphic. Vs.••..•'. • • • ' ' / • ' s "'• •//• Proof. ..This follows immediately from Lemma 9-4 and Remark 9.2. N v. ••• 10. Main Results on Tensor Products. . . 1 • • \ In t h i s section we apply the product formula for'.5 •p which we obtained In Section 2 to develop necessary and s u f f i c i e n t conditions f o r two l o c a l tensor products of a . given family of W -algebras to be product isomorphic. The same r e s u l t was proved i n ([3], Theorem 4.1) under the assump-tions that the algebras are semi-finite, and i t was shown to be a non-commutative extension of Kakutani's Theorem on i n f i -n i t e product measures [6]. The only need of the semi-finiteness r e s t r i c t i o n was i n invoking the product formula for p , and ^  as we have i n Theorem 2.4 removed t h i s r e s t r i c t i o n , we can appeal d i r e c t l y t o i [ 3 ] for a proof of t h i s present r e s u l t . : We w i l l however present a complete proof here, s i m p l i f y i n g part of i t , and at the same extending the product formula f o r -p to the case of an i n f i n i t e number of factors,. F i n a l l y we obtain necessary and s u f f i c i e n t conditions of a similar nature for two. l o c a l tensor products to be weakly product isomorphic . and to be permutably product isomorphic. • / ' ' . D e f i n i t i o n 10.1. Let (G,(a i)) be a product for the family • ( G ^ ) i € l . Let (|> be any representation of G on a H i l b e r t space H . Let u e . For any non-void subset J of , i!' we define: ••' ' ; • ' ' ' v .<' ;: G x.= the . W -algebra generated by {aj,(A1) ; , i e J , J--' • . . A i € G i } ' A - / ' ^ (j) = the r e s t r i c t i o n cj> to '. G:-: :!:: 1 ' U J = the r e s t r i c t i o n of \ to, GJ• Lemma 0.1 shows t h a t d) J i s i n f a c t a r e p r e s e n t a t i o n o f G J on H Lemma 10.2. Suppose (G,(a.,)) ~ ® (G.*,|i.) • L e t u. he " ~ 1 i e l 1 1 the element of -2 G = ® (y. ) and l e t v be any element o f i e l '^EG. . Then t h e r e e x i s t s some s u b s e t J o f I w i t h a f i n i t e compliment such t h a t p ( y J j V ^ ) > 0 . P r o o f . Suppose t o the c o n t r a r y t h a t p ( y J , v J) = 0 f o r a l l Ji c I w i t h f i n i t e compliments. F o r any J c I ' l e t E^ denote t h e s u p p o r t o f '. J 1  ;v ' , and l e t E denote t h e s u p p o r t o f v .. • We can c o n s i d e r each G^ as a von Neumann a l g e b r a on a H i l b e r t space H^ w i t h a v e c t o r x^ i n H^ i n d u c i n g y. ', and G as a von Neumann a l g e b r a on H = ® (H. ,x. ) . ; .  1 v . i e l 1 1 -Choose an o r t h o n o r m a l b a s i s , . f o r H -as d e s c r i b e d i n Chapter 0. L e t x' be any element o f t h i s b a s i s . R e c a l l t h a t t h e r e e x i s t s a ^ s u b s e t J = J ( x ' ) r o f I , w i t h f i n i t e compliment, such t h a t x' = • ® , ( x i ) , where x' = x. f o r a l l i e J . i e l 1 7 1 1 S i n c e ® (x . ) i n d u c e s y on G i t I s o b v i o u s t h a t x' i e l . • i i n d u c e s y ^ on G^ . Then, by our assum p t i o n and Lemma 1.2 the s u p p o r t o f y i s o r t h o g o n a l i n G t o E . T h e r e f o r e , ||EJx'||2 = y J ( E J ) = 0 . S i n c e v ( E J ) = v J ( E J ) ; = 1 , E J 2. E N and we must.have Ex' = 0 ... . S i n c e t h i s i s t r u e f o r a l l x' i n , some o r t h o n o r m a l b a s i s o f H we have E. = 0 , and t h e r e f o r e y = 0 , w h i c h i s a c o n t r a d i c t i o n t o t h e f a c t t h a t u i s a s t a t e . • '.;>-'' Remark 10.3. We next r e c a l l some elementary f a c t s about I n f i n i t e products of numbers. - I f ( r j . ) i e-~I " i S a f a m i l y of p o s i t i v e numbers, we say that TTr., converges i f C' >. j lim (TTr.) as F runs over the f i n i t e subsets of I . exi s t s F i e l as a p o s i t i v e number r . We then define TTr;., = r . : • i e l 1 • ; . .Suppose . (rj_)j_e;r/' i s family of non-negative numbers with at l e a s t one r. = 0 We then say that TTr; converges \ . .... i e l 1 ' _ '; i f there are-only a f i n i t e number of zero factors and a f t e r deleting.these the'resulting family of p o s i t i v e numbers con- . verges ' a s above. In t h i s case we define TTr, = 0 . I t ; i e l follows from these (definitions that TTr, converges i f and ' j i e I - ' . : '.-M-only i f E | l - r . | l < » . i t i s easy to v e r i f y that i f i e l 1 • TTr. - r and TT s. = s then I I ( r . s . ) = rs i e l 1 i e l 1 i e l - 1 1 . • ':; We now consider the following s i t u a t i o n ; the no-ta t i o n w i l l remain f i x e d f o r the remainder of t h i s section. Let I be an a r b i t r a r y indexing set and.let ( G i ) i e i b e a -family of W -algebras . Let^ (Mj.)i ej_ 8 1 1 ( 1 (vi)iei» b e t w o elements of A[(G i)] . As a notational convenience we w i l l l e t ®'.; denote ® ( s i m i l a r l y f o r E and "\~\ j.: -i e l ' 1 • , Lemma 10.4. . The following conditions on (u.) and (v..) are equivalent: G i , n 2 . ; 09 (a) E[d x ( u i , v i ) ] . < X (b) E [ l - p i ( u i , V 1 ) l - < « ', (c) T T P i ( u i 5 - v i ) . converges] for any subgroups G^ . of A u t ( G 1 ) . Proof: Immediate'from (3.1) and Remark 10.3. ! Theorem 10.5. Suppose that v = ® ( ) exists as a product state on fl^G^y.^) . Let y = ^(UJ^) . Then p ( l l , v ) ^["^(u^^v^^) , a convergent product. Proof. Suppose ( G , ( a ^ ) ) ~ ®(G i,y j L) . We consider y i and v as elements of E . • Choose any [<Mx,y)] e Q(y,v) and l e t F be any f i n i t e subset of I • . A d i r e c t calcula-t i o n shows that [<|> „', (x,y) j , e Q(y ,v ) and therefore F F i ' p(u,^v ) _> l ( x l y ) l • Taking the supremum over a l l elements of Q(y,v) we obtain ' • . (10.1) p ( u P , v F ) > p(u,v) . " F F It i s obvious that y = ® (y. ) and v = ® (v., ) on ieF 1 ieF 1 •pi ® ( G J ) = G i . Therefore, by Theorem 2.4, which extends ieF 1 < . yS-y from two to any f i n i t e number of factors', by an obvious i n -duction and standard associ'atlvety arguments> (10.'2) P ( U F , V F ) ^ T T p ^ i V i ) .;^f'V By (10.1) and (10.2), (10.3) p(w,v) < i n f {TTp^., ) : P a f i n i t e subset of 1} ~, ieF 1 1 Now by Lemma 10.2, choose a subset J of I with f i n i t e com-pliment such that p(u J, v J) .>; 0, . By applying the above ar-gument to the algebra G1^ , we obtain from (10.3) that (10.4) i n f { I 1 p(u,,v,) : F a f i n i t e subset of J} > 0 ieF Let J'.= {i e I : ' p ( u i , v j L ) > 0} . By (10.4), J c j ' , so j ' has f i n i t e compliment. Moreover j ' - J i s f i n i t e i 1 so (10.4) holds with J replaced by J'- ; Then, since the value o f p i s always 1 ' , lim ( T T p ( u v )) = i n f ( T T . p C u ^ V i ) ) , F ieF 1 1 p' ieF' where F , F' runs over the' f i n i t e subsets of i ' , j ' re-spectively. Therefore | |p(u^,v^) converges and we may write (10.3) as / ' ' '.V (10.5) P(u,v) < [ \ P ( U ± , V ± ) . We now prove the other d i r e c t i o n . Let k be any po s i t i v e number < 1 . Choose any sequence (k f i) of posi -t i v e numbers < 1 so that 1 X k = k , Let I = f i e I : n=l n ° d(u i,v i) > 0} . T h e convergence of | |p(u 1,v i) and Lemma 88. 10.4 show that I i s at most countable. Let y be an i n -f e c t i o n from I Q into the p o s i t i v e integers. Define a f unc-. • ti o n g on I by {1 , for i e I - I Q \ ( i ) > f o r 1 6 Xo ' Then choose, f o r each i e l , an element [ $ , ( x , y ) ] of Q ( u I 3 V I ) s a t i s f y i n g | ( x i | y i ) | > g(i)[p(u±,y±)} . This i s : c e r t a i n l y possible by the d e f i n i t i o n of p and the f a c t that i e I - I Q implies that u i = v j _ • By multiplying the vec-tors by suitable scalars i f necessary we can assume th a t . 1 (10.6) ( x i l y i ) 2 g ( i ) [ p ( u 1 3 v i ) ] , f o r a l l i e l " v. It i s easy to see thatTTg(i) converges and that i t s value i s 2 TT k n = k • Therefore, (10.6) shows that "^(x^^ j y 1 ) n=l • converges and that ': • / ( 1 0 . 7 ) TT , ( x i l y i ) I'kCTTpd^iVi)]; y for a l l i e I . ,We have then that E [ l - (x^|y^)j] converges, which shows that fo r the family of H i l b e r t spaces (H^) , where Is the underlying space of dp^ , (x^) and (y^) are equivalent C Q-sequences. Therefore, the vectors x = ®(x^) and y = ®(y i) are elements of H = .^H^x.^) which induce the states y and v respectively. Then-using ( 1 0 . 7 ) , 8 9 . P ( u * v ) > | ( ® ( x 1 ) | « ( y i ) j = | | ( x i | y 1 ) > k [ ^ p ( u l V i ) J . Since k was chosen a r b i t r a r i l y we have that p(u,v) 2]Tp(Hi*vi) > f o r a 1 1 i e l The above formula and 10.5 complete the proof. Corollary 10.6 ( [3] Lemma 3.6) Suppose that E [ d ( u i * v i ) ] <•» . Then ®(G 1,v i) and ®(G^,u^) are product isomorphic. . Proof. In the second part of the proof of Theorem 10 .5 2 the convergence of E[d(y^,v^)] was a j l that was necessary to produce the H i l b e r t sp:ace H = ®(H^,x^) = ®(H^,y^) , and the tensor product ®(<|>^(G^),x^) = ®(<^(6i)* vi) which i s pro-duct isomorphic to both S^G^u^) and ^ G ^ v ^ ) . . The corol-l a r y follows immediately. ' • ' / • ' ' We now w i l l state the three main theorems of t h i s section and then give the proofs. Theorem 10 .7 . The following •conditions "bh>;.(u.) and r(vV)> are equivalent: . " ' ' / p (a) E [ d ( u i , v 1 ) ] 2 .< • ; ,V xi • ' (b) ®(G^,U^) and (gi(G^,v^) are product isomorphic; 90. ( c ) ®(v^) e x i s t s as a p r o d u c t s t a t e o f ®(G^,y^) . Moreover, i f any o f t h e s e c o n d i t i o n s h o l d we have p(^(\i±), ®(v±)) =JXp(ui,v1) , a conve r g e n t p r o d u c t . • I Theorem 10.8. The f o l l o w i n g c o n d i t i o n s on (u.^) and ( v i ) are e q u i v a l e n t : (a) E [ d ( u i , v i ) ] < » , and f o r a l l but a c o u n t a b l e number o f i e l the infimum i n the d e f i n i t i o n o f d i s a t t a i n e d ; (b) &(G^,u.j_) and ^ ( G ^ j v ^ ) a r e w e a k l y p r o d u c t . isomorphic;... ( c ) There e x i s t automorphisms (j)^ o f G 1 such t h a t ta <%(v^ ) e x i s t s as a| p r o d u c t s t a t e o f (g^G^,^) . ! I Theorem 10.9- The f o l l o w i n g c o n d i t i o n s on ( u i ) and (v^,) are e q u i v a l e n t ; (a) F o r some p e r m u t a t i o n ir o f I , E(d ( u i.jv' 7 r^ ij) ] < » , and f o r a l l but a c o u n t a b l e number o f i e l t h e i n f i - ' mum i n the. d e f i n i t i o n o f d i s a t t a i n e d ; (b) ®(G i , u i ) and ,®(G i,v i) a r e ; p e r m u t a b l y p r o d u c t i s o m o r p h i c ; , •„-' ; >' ( c ) F o r some p e r m u t a t i o n TT o f I , t h e r e e x i s t • ta isomorphisms ^ of G i onto ^ ( i ) such t h a t , ^ ( v ^ ^ ^ ) e x i s t s as a p r o d u c t s t a t e o f (S^G^u^) . v P r o o f o f Thedrem 10.7. By Theorem 10.5 and Lemma 10.4, ( c ) i m p l i e s ( a ) . By C o r o l l a r y 10.6, (a) i m p l i e s ( b ) . I t i s im-mediate t h a t (b) i m p l i e s ( c ) (see Remark 9-3). The l a s t s t a t e -m e n t . i s immediate from Theorem 10. 5. . '• • 91. P r o o f o f Theorem 10.8. Suppose t h a t (a) h o l d s . L e t I Q be the s u b s e t o f I f o r w h i c h the infimum i s n o t a t t a i n e d i n d(u^,y^) , and t h e r e f o r e by (3.1) the supremum i s n o t a t t a i n e d i n p(u^jV^) . By h y p o t h e s i s , t h e r e i s an i n j e c t i o n "y from I Q i n t o t he p o s i t i v e i n t e g e r s . D e f i n e a f u n c t i o n g on I by 0 , f o r i e T - I 0 g ( l ) l / 2 Y ( i ) , f o r i e l ' . o By Lemma 3.2,, we can choose ' automorphisms <j)^  o f G^ such t h a t • " ! . • i ta ~ (10.8) p ( w 1 , v i i ) > p ( u i , v i ) - g ( i ) . , Now s i n c e V. g ( i ) < 1 , and s i n c e £[ 1 - p(u 1,v j,)] < » by the h y p o t h e s i s and Lemma 10.4, we o b t a i n from (10.8) t h a t 4), • (10.9) S[-l - p ( u i J v i 1 ) ] < Z [ l / - p ( u i , v i ) ] + £ g ( i ) < • . Then from Lemma.10.4 a g a i n , . •• Vi • • '• \ ' ' '' "• ' , • . . ta o • (10.10) : -; . E [ d ( U i , V i 1 ) ] S < « . .... ." •• ,n ' '.' 'xy-•';;.;|; • • r V f | ; : ' . • ' C o n v e r s e l y , suppose,:there e x i s t automorphisms <j>. of • v ? ' • ~ '•' • <}>. • L G. such t h a t . (10.10) holds..' • S i n c e d(u.,v.,) < d ( y . , v . 1 ) we have . ' : : ' 2 E [ d ( u i , v i ) 3 < » > and moreover, f o r a l l but a . c o u n t a b l e number o f i e I we .• , must have d(u^,v^) = d ( ^ i , v i ) = 0. . So (a) i s e q u i v a l e n t . t o the statement t h a t (10.10) h o l d s f o r some automorphisms 4^  o f G^ . R e p l a c i n g (b) w i t h t h e e q u i v a l e n t ^ statement g i v e n by Lemma 9.5, we can a p p l y Theorem 10.7 t o ( y . ) and (Vj_ ) t o prove Theorem 10.8. P r o o f of Theorem 10.9• T h i s f o l l o w s i n an o b v i o u s manner from Theorem 10.8. Lemma 10.10. Suppose t h a t f o r each, i e I , i s a f a c t o r of type I. o r type 11^, and t h a t y^ and . are c o m p a t i b l e s t a t e s . Then ®(G.£,Mi) and ^ ( G ^ v ^ ) are w e a k l y p r o d u c t i s o m o r p h i c i f and o n l y i f t h e y a re p r o d u c t i s o m o r p h i c . P r o o f . Immediate f r o m Theorems 10.7, Theorem 10.8, and Theo-r rem 8.11. Example 10.11. L e t G be a I g f a c t o r w i t h n o r m a l i z e d t r a c e T , and l e t E and F be two o r t h o g o n a l p r o j e c t i o n s i n G. .. Suppose t h a t G^ = G . f o r a l l i e l . U s i n g Example 8;12 and the' theorems of t h i s s e c t i o n we can e a s i l y o b t a i n t h e f o l l o w i n g . - •• ,(a) L e _ t \l± = 2 T E a n d v i = 2 TF f o r a l l i ' . e ^ I Then <5?(Gi>yi) and $>(G.^,v^) • a r e n o t p r o d u c t i s o m o r p h i c b u t t h e y a r e w e a k l y p r o d u c t i s o m o r p h i c . •; ' ::': , : (b) Let I be the p o s i t i v e integers. Suppose that: 2T e ., f o r i odd T 3 for i even ; v i = w ( i + l ) ' f o r . a 1 1 1 € 1 5 Then ^(G^Uj.) and <^(Gi,vi) are not weakly product isomor-phic but they are permutably product isomorphic. Example 10.12. Let G be.a factor of type Iy with nor-malized trace T ,| and l e t uj. be a factor of type I 2 with normalized trace T^ ' . Let E be a minimal projection i n a Then G = A3 ® (ft ® fl . . Define, the states u and v on G by, - ;: u - ( 2 ^ ) « ( 2 ^ ) ® T' = ^ ( E ^ 1 } . v = (2T e) ® T' = 2 T ( E ^ 1 } . Let G i = G 3 Uj, = u and v.^  = v for a l l I e l . By Example b.13, p(u,v) = V £ , s o ^ ( G ^ , ^ ) and ®(G 1,v i) are not weakly (and therefore i n t h i s case not permutably) product •isomorphic' However there ex i s t "refinements" of each of these tensor^products which are permutably product isomorphic. Therefore they are a l g e b r a i c a l l y isomorphic. In f a c t , sup-pose I i s countable. Using standard associativety arguments, '.'•we can f i n d i n each case c o u n t a b l e d i s j o i n t s u b s e t s J and . V '.<• : K w i t h . J u K = I so t h a t t h e r e s u l t i n g a l g e b r a ; , . ;\ . = [ ® ( I B , T ' ) ] [®((S,2T4) ] ' ,• whi c h by s t a n d a r d r e s u l t s on type \ ' J K h ;• :;f V:1:'^ -' (see [2] e.g. .),-.=\P ® I where P i s the hyper-finite' I I r V / . V.-; f a c t o r . , ' J . ' . ' ' '• Example 10.13. The p r o d u c t f o r m u l a does n o t h o l d f o r p . '•As a t r i v i a l example, l e t y and v be any two s t a t e s of a W - a l g e b r a C such t h a t p ( y , v ) < 1 . Then on .G ® G , p(u ® v , v ® u) = 1 . But p(y, v) p(-v,u) < 1 . . . . I t i s easy t o show however t h a t we always have -p ( u 1 u 2 > v x ® v 2 ) 2 P ( W 1 > V 1 ) P ( U 2 , v 2 ) . . . T h i s i s a u s e f u l f a c t , s i n c e i t shows t h a t i n c e r t a i n c a ses ; we may be a b l e t o deduce t h e a l g e b r a i c isomorphism o f two non-.;,.;:?'. w e a k l y p r o d u c t i s o m o r p h i c t e n s o r p r o d u c t s by p a r t i t i o n i n g I ;,;.'. . i n t o d i s j o i n t s u b s e t s and computing t h e d i s t a n c e d .between the r e s u l t i n g p r o d u c t s t a t e s on the. r e s p e c t i v e p i e c e s . • ' • .; , . 95 BIBLIOGRAPHY ' . [1].' H. A r a k i and E.J. Woods, A c l a s s i f i c a t i o n of f a c t o r s , ; Publ. RIMS., Kyoto Univ. S e r i e s A, 3(1968), 51-130. [2] . D. Bures, C e r t a i n f a c t o r s constructed as i n f i n i t e tensor, products, Composito Math., 15(1963), 196-191. f2] D. Bures, An extension of Kakutani's theorem on i n f i n i t e product measures t o the tensor product of s e m i - f i n i t e W -algebras, Trans. Amer. Math. Soc. 135(1969), 199-212. D. Bures, Tensor.products of W -algebras, P a c i f i c Jour-n a l of Mathematics 27(1968), 13-37. [5] J. Dixmier, Les algebres d'operateurs dans l'espace h i l b e r t i e n , second e d i t i o n , G a u t h i e r - V i l l a r s , P a r i s , 1969; [6] S. Kakutani, On equivalence of i n f i n i t e product measures, Ann. of Math. 49(1948), 214-226. I T J Y. Misonou, On the d i r e c t prodtact of W -algebras,. To-hoku Math. J. 6(1954), 189-204. [8] C.C.'Moore, I n v a r i a n t measures on product spaces, P r o c ' . F i f t h B e r k e l y Sympos. Math. S t a t , and Prob. 1967. / [9] F. Murray and J. von-Neumann, On r i n g s of operators I , • A n n . of Math. 37(1936), 116-229. . [10] F. Murray and J. von-Neumann, On r i n g s of operators IV, . Ann. of Math. 44(1943),. 716-808. [11] M. Nakamura, On the d i r e c t product of f i n i t e f a c t o r s , Tohoku Math. J. 6(1954');, .205-207. N . • - • '. 9 6 f a : )[12] J . v o n : N e u m a n n , O n i n f i n i t e d i r e c t p r o d u c t s , C o m p o s i t o . \ / . ' " ' M a t h . 6(1938), 1-77. • .'. [13] R . T . P o w e r s , R e p r e s e n t a t i o n s o f u n i f o r m l y h y p e r f i n i t e . a l g e b r a s a n d t h e i r a s s o c i a t e d r i n g s , A n n . o f M a t h . 86(1967), 138-171. .'• [l4] N . S u z k i , A u t o m o r p h i s m s o f W - a l g e b r a s l e a v i n g t h e c e n t e r e l e m e n t w i s e i n v a r i a n t , T o h o k u M a t h . J . 7(1955), 186-191. [15] I . E . S e g a l , A n o n - c o m m u t a t i v e e x t e n s i o n o f a b s t r a c t i n t e g r a t i o n , A n n . o f M a t h . 57(1953), 4 0 1 - 4 5 7 . • '. [16] E . S t o r m e r , S y m m e t r i c s t a t e s o f i n f i n i t e t e n s o r p r o d u c t s V o f C - a l g e b r a s , J o u r n a l o f F u n c t i o n a l A n a l y s i s 3(1969), 4 8 - 6 8 . • • / [ 1 7 ] Z . T a k e d a , I n d u c t i v e l i m i t a n d i n f i n i t e d i r e c t p r o d u c t o f o p e r a t o r a l g e b r a s , T o h o k u M a t h . J . 7(1955) 67-86..''! [18] 0 . T a k e n o u c h i , . O n t y p e c l a s s i f i c a t i o n o f f a c t o r s c o n -s t r u c t e d a s i n f i n i t e t e n s o r p r o d u c t s , P u b l . R I M S , , ' . J K y o t o U n i v . S e r i e s A , 4(1968), 467-482. r l * [ 1 9 J M . T a k e s a k i , O n t h e d i r e c t p r o d u c t o f . W - f a c t o r s , T o h o k u M a t h . J . 10(1958), 116-119. [20] F . R i e s z a n d B . S z - N a g y / F u n c t i o n a l - A n a l y s i s , U n g a r , . : r : ' '• y N e w Y o r k , 1955. ' . * V ' ^ 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0080513/manifest

Comment

Related Items