Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Some computations of the homology of real grassmannian manifolds Jungkind, Stefan Jörg 1979

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1979_A6_7 J96.pdf [ 3.22MB ]
Metadata
JSON: 831-1.0079494.json
JSON-LD: 831-1.0079494-ld.json
RDF/XML (Pretty): 831-1.0079494-rdf.xml
RDF/JSON: 831-1.0079494-rdf.json
Turtle: 831-1.0079494-turtle.txt
N-Triples: 831-1.0079494-rdf-ntriples.txt
Original Record: 831-1.0079494-source.json
Full Text
831-1.0079494-fulltext.txt
Citation
831-1.0079494.ris

Full Text

9i< SOME COMPUTATIONS OF THE HOMOLOGY OF REAL GRASSMANNIAN MANIFOLDS by STEFAN JORG JUNGKIND B . S c , The U n i v e r s i t y o f A l b e r t a , 1977 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Mathematics) We accept t h i s t h e s i s as conforming t o the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA September 1979 © Stefan Jorg Jungkind, 1979 In presenting t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree that permission f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s r e p r e s e n t a t i v e s . I t i s understood that copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n permission. Department n f Hg^it^aj-'ics The U n i v e r s i t y of B r i t i s h Columbia 207.5 Wesbrook Place Vancouver, Canada V6T 1W5 Date : - 6 B P 7 5 - 5 1 1 E A b s t r a c t When computing the homology of Grassmannian manifolds, the f i r s t step i s u s u a l l y t o look a t the Schubert c e l l decomposition, and the ch a i n complex a s s o c i a t e d w i t h i t . In the complex case and the r e a l unoriented case with Z^ c o e f f i c i e n t s the a d d i t i v e s t r u c t u r e i s obtained immediately ( i . e . , generated by the homology c l a s s e s represented by the Schubert c e l l s ) because the boundary map i s t r i v i a l . In the r e a l unoriented case ( w i t h Z^ c o e f f i c i e n t s ) and the r e a l o r i e n t e d case, f i n d i n g the a d d i t i v e s t r u c t u r e i s more complicated s i n c e the boundary map i s n o n t r i v i a l . In t h i s paper, t h i s boundary map i s computed by c e l l o r i e n t a t i o n comparisons, us i n g graph coordinates where the c e l l s are l i n e a r , to s i m p l i f y the comparisons. The i n t e g r a l homology groups f o r some low dimensional o r i e n t e d and unoriented Grassmannians are determined d i r e c t l y from the chain complex ( w i t h the boundary map as computed). The i n t e g r a l cohomology r i n g s t r u c t u r e f o r complex Grassmannians has been completely determined mainly u s i n g Schubert c e l l i n t e r s e c t i o n s (what i s known as Schubert Calculus).. In t h i s paper, a method u s i n g Schubert c e l l i n t e r s e c t i o n s to describe the Z^ cohomology r i n g s t r u c t u r e of the r e a l Grassmannians i s sketched. The r e s u l t s are i d e n t i c a l to those f o r the complex Grassmannians ( w i t h c o e f f i c i e n t s ) , but the n o t a t i o n used f o r the cohomology generators i s not the usu a l one. I t i n d i c a t e s t h a t the products are t o a c e r t a i n degree independent of the Grassmannian. i i i TABLE OF CONTENTS Page Abstract i i Table o f Contents i i i L i s t o f Tables i v L i s t of Figures v Acknowledgement v i In t r o d u c t i o n 1 PART I - DEFINITIONS AND NOTATION 3 Grassmannian Manifolds and Mappings between Them 3 Schubert C e l l s and Schubert V a r i e t i e s . . . 6 Graph Coordinates and Chain Complexes f o r the Grassmannians . . 10 PART I I - ADDITIVE HOMOLOGY STRUCTURE 15 General Theory f o r C e l l Complexes 15 Determining the Incidence Number f o r the Boundary Map f o r C(G, ) 17 l k, n Some Low Dimensional Examples 25 Tables of Homology Groups o f the Grassmannians 33 PART I I I - HOMOLOGY AND COHOMOLOGY PRODUCTS 37 The General I n t e r s e c t i o n Theory To Be Used 37 Simple I n t e r s e c t i o n s i n G, and the Poincare D u a l i t y Map . . 38 K 5 n Complicated I n t e r s e c t i o n s and the General Formula 48 References 57 i v L i s t o f Tables I . The Boundary Map i n C(G) . . 27 I V I I . Homology Groups f o r G . 34 I I I . Low Dimensional Homology Groups f o r G 35 IV. Homology f o r the unoriented Grassmannians 36 V L i s t of Figures 1. ( R e f e r r i n g to Example 2.4.) 17 2. ( R e f e r r i n g t o the proof of P r o p o s i t i o n 2.8.) 21 v i Acknowledgement I wish to express thanks to my supervisor Professor Mark Goresky for his help with the material presented, and also to Professors Kee Y. Lam and Jim C a r r e l l for t h e i r additional aid i n research. This paper was written while on a scholarship from the National Research Council of Canada. 1 I n t r o d u c t i o n A l o t i s known about the homology of the Grassmannian manifolds i n g e n e r a l ; e.g., from C h a r a c t e r i s t i c Classes (see [1]) or us i n g a l g e b r a i c geometric methods (see [3] and [4]) and u s u a l l y the Schubert c e l l decomposition i s used. However, there do not seem to be r e a d i l y a v a i l a b l e answers to such questions as: a) Given a f i n i t e dimensional o r i e n t e d or unoriented r e a l Grassmannian, what i s the r - t h homology group? b) Given two cocycles i n such a Grassmannian, what i s t h e i r cup product? This paper i s concerned w i t h developing computational methods, using the geometry of the Schubert c e l l decomposition, by which e x p l i c i t answers to the above can be determined. In Part I I , (a) i s t a c k l e d by c o n s t r u c t i n g two U n i v e r s a l chain complexes a r i s i n g from the Schubert c e l l decomposition of the U n i v e r s a l o r i e n t e d ( r e a l ) Grassmannian and the U n i v e r s a l unoriented Grassmannian. (The main po i n t i s t o compute the boundary maps.) From these complexes, the i n t e g r a l homology groups of some of the f i n i t e Grassmannians and, i n low dimensions, f o r the i n f i n i t e Gras smannians are c a l c u l a t e d . T h e o r e t i c a l l y , i t should be p o s s i b l e t o determine a l l the homology groups f o r a l l the r e a l Grassmannians ( o r i e n t e d and unoriented) from the formulas given f o r the boundary maps, but the amount of c a l c u l a t i o n r e q u i r e d increases r a p i d l y i n the higher dimensions (above 6 f o r i n s t a n c e ) . However, by l o o k i n g at the lower dimensions, i t may be p o s s i b l e to detect p a t t e r n s and make conjectures which could be proved by other means, e.g., c h a r a c t e r i s t i c c l a s s e s . On the 2 other hand, comparing what i s known about c h a r a c t e r i s t i c c l a s s e s w i t h what i s obtained here may y i e l d f u r t h e r i n f o r m a t i o n about the c h a r a c t e r i s t i c c l a s s e s , e.g., which Schubert c e l l s correspond t o a given c h a r a c t e r i s t i c c l a s s . Homology f o r a r b i t r a r y Schubert v a r i e t i e s can be determined from the chain complexes a l s o , and some examples are given. Question (b) i s completely solved i n i n t e g r a l homology f o r the complex Grassmannians i n [3] (pages 1072-1073), and the ZQ-cohomology r i n g f o r the i n f i n i t e unoriented Grassmannians i s known ([1] page 83 and [5] page 52) and some of the f i n i t e unoriented Grassmannians ([5] page 51). In Part I I I i t i s i n d i c a t e d , using i n t e r s e c t i o n products, t h a t the formulas i n [3] f o r the complex case are v a l i d a l s o i n Z^ cohomology f o r the r e a l unoriented case. The Z^ cohomology products i n the unoriented Schubert v a r i e t i e s can be determined a l s o , u s i n g the induced map i n cohomology of t h e i r embeddings i n Grassmannians. The i n t e r s e c t i o n methods used are a f i r s t step i n f i n d i n g products i n i n t e g r a l cohomology of o r i e n t e d and unoriented Grassmannians, but t h i s i s a much more complicated problem (mainly because of signs) and w i l l not be looked at i n t h i s paper. 3 PART I - DEFINITIONS AND NOTATION Grassmannian Manifolds and Mappings Between Them 1.1 D e f i n i t i o n : i ) The r e a l unoriented f i n i t e Grassmannian G, i s the k, n set of k dimensional planes through the o r i g i n ( c a l l them k-planes) i n k+n R , with topology given as follows: Let V be the set of ordered k-tuples of l i n e a r l y independent vectors i n R^ + n. V, i s an open subset of j ^ x ( n + k ) a n j - t n u s i n h e r i t s k, n i t s topology. Define an equivalence r e l a t i o n ~ on V, as A ~ B K , n (where A and B are k x (k + n) matrices) i f there i s a l i n e a r transformation of the row space of A onto i t s e l f which maps the rows of A to the rows of B ( i . e . , A ~ B i f they have the same row space). G, = the quotient of V by defines the topology f o r G i i ) The r e a l oriented f i n i t e Grassmannian G. i s the set of k, n k+n oriented k-planes (through the o r i g i n ) i n R with topology given as follows. Define an equivalence r e l a t i o n on V as above except that the l i n e a r transformation must have p o s i t i v e determinant. G = the quotient of V by *a defines the topology f o r G K,n K,n K j n k+n 1.2 Notation: i ) A representation f o r a k-plane P i n R i s a k x (k + n) matrix A having row space P. k+n i i ) A representation f o r an oriented k-plane P i n R i s as above, with the a d d i t i o n a l condition that the o r i e n t a t i o n determined by the ordered row vectors of A coincides with the o r i e n t a t i o n of P. 4 1.3 Remarks: i ) G, i s always o r i e n t a b l e , but G, i s not i n general k, n k, n (from [2] only i f k + n i s even). i i ) There i s an i n v o l u t i o n T on G, which takes an o r i e n t e d k, n plane P t o the same plane w i t h opposite o r i e n t a t i o n . Notation: C a l l T the a n t i p o d a l map, and i f Q = T(P) say t h a t Q i s a n t i p o d a l t o P. ( I n G. = S , T i s the usu a l a n t i p o d a l map.) l ,n i i i ) There i s a double covering \|r : G G, which takes an K j n K 5 ri o r i e n t e d plane P t o the same plane P w i t h o r i e n t a t i o n ignored (\|c i d e n t i f i e s a n t i p o d a l p o i n t s ) . Note: ( i i ) and ( i i i ) show t h a t G i s a Z bundle over G. 1.4 Mappings between the Grassmannians: The n o t a t i o n used here w i l l be used throughout the paper. i ) For i 5 p, e. w i l l denote the i - t h standard b a s i s v e c t o r I of R P. i i ) Define f : R P •+ R q f o r p - q by j ( e \ ) = , 1 5 i 5 p. For p = k + n and q = k + n' (n' > n ) , j induces embeddings j : G •+ G by j ( P ) = the k-plane j ( P ) i n R , and j : G G , by j ( o r i e n t e d plane P) = the plane j ( P ) i n J ( P ) i n R^ + n w i t h o r i e n t a t i o n induced by the o r i e n t a t i o n o f P. i i i ) Define 1 : R P -+ R q, p > q, by l ( e . ) = e l q-p+i 1 5 i < p. For p = k + n and q = k' + n (k' > k ) , 1 induces embeddings 1 : G, -*• G , n ^ G k ' , n b y 1 ( P ) = t h e k ' ~ P l a n e i n R k' + n spanned by k el» • • • > ekt_ k a n d 1(P) 5 and 1 : G, -»• G, , by 1 ( o r i e n t e d plane P) = the k'-plane i n + n spanned by e-^ , . . . , e]<'_k a n c* i ( P ) , with o r i e n t a t i o n determined by the o r i e n t a t i o n of <e~^ , . . . , !_]<•> fo l l o w e d by the o r i e n t a t i o n of 1(P) induced by the o r i e n t a t i o n of P. Note: i f k' > k and n' > n then the diagrams G k , n 1 >Gk,n' 1 1 I G k ' , n ~ — * G k ' , n and G k , n 7~* G k , n ' T commute. i v ) For each k, n there are homeomorphisms | : G]< n Gn,k t a k i n g a plane P t o i t s orthogonal complement „— . Dk+n P i n R and G\,^n -+ Gn.^ t a k i n g an o r i e n t e d plane P t o i t s orthogonal complement P"1* o r i e n t e d so that the product o r i e n t a t i o n on P x p"*~ coi n c i d e s w i t h the standard o r i e n t a t i o n on R^ + n, 1.5 D e f i n i t i o n : i ) The i n f i n i t e unoriented Grassmannian i s the union l i m i t ( v i a the embeddings j : G^ ^ n -> > n i ) as n -> °° of G^ n . i i ) The i n f i n i t e o r i e n t e d Grassmannian G^ i s the union l i m i t ( v i a the embeddings j ) as n -+ °° of G^ n . Note: These l i m i t s e x i s t since f o r n S 5 i i j , the diagrams 6 k,n j > V v S s s s ^ a n d Gk,n±—* G k , n 2 ,k,n commute. 3 k , n i ^ ^ k , n 9 By the note f o l l o w i n g 1.4 ( i i i ) above, the embeddings 1 and 1 induce embeddings 1 : G k ~" G k ' a n d 1 : G v ~* G k ' f o r k 5 k'. I t i s easy t o see that here a l s o the d i a grams and 1 V * G i < commute f o r k 5 k^ < k 2 Thus the f o l l o w i n g d e f i n i t i o n s are v a l i d : i i i ) The u n i v e r s a l unoriented Grassmannian G i s the union l i m i t as k -+ °° of G k . i v ) The u n i v e r s a l o r i e n t e d Grassmannian G i s the union l i m i t as k ->• °° of G k . \ Schubert C e l l s and Schubert V a r i e t i e s 1.6 D e f i n i t i o n : i ) A Schubert symbol CT i s a k-tuple of i n t e g e r s (o-j, . . . , CTk) such t h a t 0 5 CT1 5 . . . 5 o-k . The "dimension" of CT I S I Cr| = CT1 + . . . + 0"k . i i ) Given a Schubert symbol cr such t h a t a k 5 n, define the Schubert " c e l l " eQ i n G k > n to be the set of k-planes P i n s a t i s f y i n g the f o l l o w i n g c o n d i t i o n s ( c a l l e d the Schubert condit ,k+n 1 0 n s 7 ass o c i a t e d w i t h CT): dimension of P fl 3(R°^ + 1) = i and dimension of P fl 3(R C T^" + 1 = i - 1 f o r i = 1, . . . , k. Notation: FG i s the k-plane <eCT +^, . . . , e C T which l i e s i n e C T . Remark: The v a l i d i t y of the terms "dimensions" and " c e l l " above w i l l be shown below. 1.7 Theorem: Let k > 0 and n > 0 be given. i ) For any Schubert symbol cr = (cr^, . . . , cr^ 5 n ) , the set eQ c n i s an open c e l l of dimension |cr| . i i ) The c o l l e c t i o n of a l l such e gives G v a c e l l complex s t r u c t u r e . p f : see [1] Se c t i o n 6. ( i ) i s proved i n 1.19. 1.8 P r o p o s i t i o n : For e C T a Schubert c e l l i n G^ n , ^~ (eQ) i s a p a i r of a n t i p o d a l open c e l l s i n G^ n , each homeomorphic under \Jr t o e C T . pf: In ge n e r a l , i f f : X -> Y i s a double covering and A c Y i s c o n t r a c t i b l e , then f (A) i s a p a i r of d i s j o i n t sets each homeomorphic under f t o A. The p r o p o s i t i o n then f o l l o w s from the f a c t t h a t e C T i s an open c e l l and thus c o n t r a c t i b l e , and th a t \|/ i d e n t i f i e s a n t i p o d a l p o i n t s , + -1 Notation: Let e C T denote the h a l f of \|r (e C T) c o n t a i n i n g the plane P C T w i t h o r i e n t a t i o n <^<j^+±> < • < » ^ a^+k-* a n c^ e o ~ denote the other h a l f ( T ( e C T + ) ) . 1.9 C o r o l l a r y : Let k > 0 and n > 0 be given. The c o l l e c t i o n of open c e l l s e C T + and e C T where CT runs over a l l Schubert symbols of the form (cr-p • • • , 5 n) gives n a c e l l complex s t r u c t u r e . p f : By 1.8, the c e l l s t r u c t u r e f o r G^ n given i n 1.7 p u l l s back v i a \|r t o a c e l l s t r u c t u r e f o r G^ n made up of the c e l l s e ( J , e C T~ f o r a l l appropriate Schubert symbols. 1.10 Claim: With the above c e l l s t r u c t u r e s f o r G^ n and G k j n , the maps _ L , j , 1, JL, j , 1, T and ^ are c e l l u l a r . Their a c t i o n s on c e l l s are _ l i e C T ) = e C T, where o^' = the number of j s . t . O j 2: i j ( e C T ) = e C T considered as a c e l l i n G^ n i l ( e C T ) = e C T i where o' = ( 0 , 0, . . . , 0, , a^, . . . , o^) k' - T j ( e C T + ) = e C T + , i ( e a + ) = e£, j ( e a " ) = e a " and l ( e a " ) = e a t > f o r a' as above T(e C T +) = e C T", i ( e C T + ) = ^ ( e ^ ) e CT J L ( e C T + ) = e j , or ea, from above, depending on cr. The statements about j , j , 1, 1, T and are e a s i l y v e r i f i e d from the d e f i n i t i o n s . The statements about J_ and _L are not so easy t o v e r i f y — o n e way i s to go t o graph c o o r d i n a t e s — b u t s i n c e they are not used i n any important way, they w i l l not be proved here. 1.11 Remark: By 1.10, the c e l l s t r u c t u r e s f o r Gj,,^ and n y i e l d i n the union l i m i t CW-complex s t r u c t u r e s f o r G^ and G^ which i n t u r n y i e l d CW-complex s t r u c t u r e s f o r G and G. (The CW p r o p e r t i e s are easy t o check, e.g., t i l page 79.) 1.12 D e f i n i t i o n : Let CT = (cr^, . . . , cr^ - n ) , a Schubert symbol, be given. i ) The unoriented Schubert v a r i e t y 2(a) i n n i s the clos u r e of e C T i n G^ n . i i ) The o r i e n t e d Schubert v a r i e t y 2(a) i n G^ n i s ^_1(°,(cr)) = the c l o s u r e of e C T + U e C T~ i n G^ n . 1.13 Remark: i ) 2(a) i n G k i s the set of k-planes P i n R k + n s a t i s f y i n g the c o n d i t i o n s dimension of P fl j ( R 1 ) - i i = 1, . . . , k and 2(a) i n G^ n i s the set of o r i e n t e d k-planes i n R s a t i s f y i n g the same c o n d i t i o n s . i i ) i f n' > n then B(n, n, . . . , n) i n G^ n t = j C G ^ ^ ) * M rv rv rv and °.(n, n, . . . , n) i n n ' = j ( G ] < ) n ) . i i i ) i f k' 2: k then °.(0, 0 0 , n, n, n) i n k times G k i j n i s l ( G k n ) and 8 ( 0 , . . . , 0, n, n, . . . , n) i n G^, n i s ~ ~ k times K G k , n ) -i v ) Suppose k' > k and n' ^  n. then j : G\,^n Gy-^i induces a homeomorphism between 2(a) i n n and S2(CT) i n G^ n i and 1 : G^ n ->• G^i n induces a homeomorphism between &(o~) i n G^ n and Q(o') i n G^t n where cr' = (v0, 0, . . . , (3, o1, a^, . . . , o^). k T - k S i m i l a r l y i n the o r i e n t e d case. 1.14 Claim: Let CT = ( c ^ , . . . , cr k 5 n ) and CT' = ( c ^ ' , . . . , CT^' 5 n) be given. Then 2(a) c S(CT') i n G v _ «=» CT- 5 CT. ' V i and 2(a) c 2(a') i n G v „ » CT- 5 CT-' V i . p f : Using 1.13 ( i ) : Suppose CT and cr' are Schubert symbols as above and CTi - °i' V i . Then P € 2(a) CT.+i => dimension of P fl j ( R ) > i V i 10 cr!+i ^ a.+i ^ a!+i => dimension of P fl ](R 1 ) > i V i , s i n c e j ( R 1 ) c J(R 1 ). Thus P € 2 ( a ' ) , i . e . , f o r a i 5 a i ' V i , P € 2(a) =» P € ffi(af) or 2(a) c 2(a<). Suppose a and a' are Schubert symbols as i n the c l a i m , and CT^ > <J2_^1 f o r some i ^ . Then P € e^ c 2(a) „ a,«rt+in-l =» dimension of P fl j ( R i 0 u ) = i _ - 1 => dimension of P D j ( R 0 U ) 5 i Q - 1, s i n c e j ( R 0 ) c j ( R 1 0 u ) . Thus P i 2 ( a ' ) , i . e . , P € eQ c 2(a) =» P ? 2 ( a ' ) , or 2(a) <Z 2(a»). The same arguments work f o r . t h e o r i e n t e d case. 1.15 Remark: We can consider a l l the Schubert v a r i e t i e s as f i n i t e dimensional subcomplexes o f the u n i v e r s a l complexes G or G, since the i n c l u s i o n maps j , j , 1 and 1 are homeomorphisms on any Schubert v a r i e t y . The i n c l u s i o n s between the Schubert v a r i e t i e s can be shown by a diagram which i s c a l l e d the Hasse diagram. The diagram i s v a l i d f o r both o r i e n t e d and unoriented Grassmannians. Diagram 1.16 shows a l l Schubert v a r i e t i e s l y i n g i n G^ ^ up to dimension 8. Note the h o r i z o n t a l s y m m e t r y — i t r e f l e c t s the map J_ c e l l w i s e There i s a l s o a v e r t i c a l symmetry—the other h a l f of the diagram f o r Schubert v a r i e t i e s i n G^ ^ can be obtained by r e f l e c t i n g across dimension 8. This comes from Poincare D u a l i t y . Graph Coordinates and Chain Complexes f o r the Grassmannians 1.17 D e f i n i t i o n : Graph coordinates f o r G^ n . F i x the standard b a s i s on R k' n. Let P be a k-plane i n R k' n. Define the graph coordinates centred at P as f o l l o w s : l e t P"*~ be the orthogonal complement of P i n R n + k 11 12 and h : P x P*- -»• R k + n the isomorphism h(v, w) = v + w (vector a d d i t i o n ) Define cpp : R k X n fa Hom(P, P1") -* G k > n by <Pp(f : P •+ P 1) = h ( g r a p h ( f ) ) , a k-plane i n R k + n i ) This g i v e s the graph coordinates centred at P f o r G k n . i i ) I f P i s an o r i e n t e d plane, define ( P p : R k x n G k j n as above, g i v i n g <pp(f : P -> P 1) the o r i e n t a t i o n induced by the o r i e n t a t i o n of P v i a the isomorphisms P & graph(f) ^ h ( g r a p h ( f ) ) . This gives the graph coordinates centred at P f o r G k j n . 1.18 Remark: In the graph coordinates centred at P a , there i s a n a t u r a l choice of isomorphism Hom(PCT, P C T ) R as f o l l o w s . Give P^ the ordered b a s i s { ea^+l' ®cr2+2» • • • » ^ o"k+k} a n d § i v e PQ- t n e ordered b a s i s of the remaining b a s i s vectors i n R k + n ( i n i n c r e a s i n g order a l s o ) . Let f : P C T ->• P C T correspond t o the matrix of f i n the above bases. Then w i t h t h i s correspondence, the map <PCT (= <Pp ) : R G k n (or G k n ) i s given by A = ( a ^ j ) -> the k-plane w i t h r e p r e s e n t a t i o n (see 1.2) a l l a12 ' ' ' a l a 1 1 a l o 1 + l • • • a i a 2 0 a l o 2 + l • • • a l o " k 0 a i c k + l • • • a l n  a21 a22 • • • a 2 o 1 0 a 2 o 2 + l • • • a 2 c r 2 1 a 2 a 2 + l • • • a 2 o k 0 a2o" k +l • • • a 2 n • • • * • 0 • • • • • l * k l a k 2 ' • ' a k a k 0 a k a k + l • • • a k a 2 0 a k o 2 + l • • • a k o k 1 ^ o ^ + l • • • a k n 13 and (P C T(R k > < n) i s the set of planes having such a r e p r e s e n t a t i o n . (The above i s v a l i d f o r G k n a l s o . ) Notation: C a l l c p a ( R k x n ) U 0 i n G k j n and U C T + i n G k ? n . Give R the ordered b a s i s { A ^ , A 1 2» • • • » A l n , A21, . . . , A k n } where A^j = matrix w i t h 1 i n i j t n p o s i t i o n and zeros everywhere e l s e . 1.19 Claim: Let o = (o^ , . . . , o"k _ n) be a Schubert symbol. Then i ) e C T c Uct i n Gk^n and cpQ (eQ) i s the plane » A-lnr. > A ? 1 , A00, . . . , A- , A„. , . . < A A 11' 12' * " * ' "l 0"^' "21' n22' ' * • » "202' "31' * * * » i n R above. kxn A k l ' • ' • ' A k o k > C a l l t h i s plane L^ . i i ) In G k > n , e C T c TJCT and cp~ ( e a + ) i s the same plane L Q pf: I t i s easy t o see th a t a plane P € G k n e C T » i t has a r e p r e s e n t a t i o n of the form i s i n 1 0 0 * 'CT 1 +1' column . 0 0 0 . * 1 0 0 * . " 0 column 0 0 0 0 1 0 0 * 0 0 . , * 1 column <=» P = <pCT(A) f o r some matrix A = ( a i j ) such that a j_ j = 0 f o r i > CTJ_ + i + 1 . This proves part ( i ) . Part ( i i ) i s proved the same way, no t i n g that P a l i e s i n e ^ . 14 1.20 D e f i n i t i o n : Let CT = (cr^, . . . , 5 n) be a Schubert symbol. Define the o r i e n t a t i o n of eQ i n G k n and e a i n G^ n t o be t h a t induced by L C T , where L C T i s given the o r i e n t a t i o n determined by the ordered b a s i s vectors which span i t . Carry over the o r i e n t a t i o n of t o e C T~ v i a T. 1.21 Remark: i ) We now have c e l l s t r u c t u r e s of o r i e n t e d c e l l s f o r G k n and G k ? n . i i ) The maps j , j , 1 and 1 ( a l s o and T) a l l preserve the c e l l o r i e n t a t i o n s , so t h a t these c e l l o r i e n t a t i o n s induce c e l l o r i e n t a t i o n s i n G^ , G^ , G and G. 1.22 D e f i n i t i o n : i ) Define the graded group C ( G k > n ) as C r(Gj < n ) = the f r e e a b e l i a n group generated by the Schubert c e l l s e C T i n G^ n of dimension r . Define C(G k) and C(G) s i m i l a r l y . i i ) Define the graded group C ( G k ? n ) as the f r e e a b e l i a n group generated by a l l the Schubert c e l l s e C T + and e C T~ i n n of dimension r . Define C(G k) and C(G) s i m i l a r l y . Remark: These graded groups are the b a s i s of chain complexes f o r the Grassmannians a r i s i n g from the o r i e n t e d c e l l decompositions. 15 PART I I - ADDITIVE HOMOLOGY STRUCTURE In t h i s s e c t i o n , the a d d i t i v e s t r u c t u r e o f the i n t e g r a l homology of G^ n and G^ n w i l l be s t u d i e d by computing d i r e c t l y from c e l l o r i e n t a t i o n s the boundary homomorphism . d f o r the chain complex (G^ n ; Z) a r i s i n g from the Schubert c e l l decomposition. The formula f o r d (Theorem 2.9) i s the main r e s u l t aimed f o r , and then some low dimensional homology groups f o r Gj,. n and G^ . n are derived. General Theory f o r C e l l Complexes In g e n e r a l , given a CW-complex K together w i t h an o r i e n t a t i o n f o r each c e l l i n K, there i s a homomorphism d : C 1(K; Z) ^•C1~"''(K; Z) making C i n t o a chain complex so t h a t the homology of ( C , d) ® G i s H A(K, G) f o r any group G. (This can be done, f o r example, by t r i a n g u l a t i n g K so that the c l o s u r e of each c e l l i s a f i n i t e subcomplex, and using s i m p l i c i a l methods t o define d, see [6].) 2.1 D e f i n i t i o n : Let K be a CW-complex w i t h o r i e n t e d c e l l s , and d the r e s u l t i n g boundary homomorphism. For e Q and e^ c e l l s of dimension r and r - 1 r e s p e c t i v e l y , define the incidence number [e^, e R] t o be the e p - c o e f f i c i e n t of de a • a • For the o r i e n t e d Grassmannians, the only p o s s i b i l i t i e s w i l l be [ ea> e p l = 0 o r ±1> which the f o l l o w i n g f a c t s w i l l take care of: 16 2.2 Let K be a CW-complex of dimension n and e a , ep o r i e n t e d c e l l s of dimension r and r - 1 r e s p e c t i v e l y . i ) I f e Q D ep = 0 then [ e Q , ep] = 0 i i ) I f there i s an open set U i n k and a homeomorphism <p : ( R n , H +, L) •* (U, e a fl U, ep fl U) where H + i s a l i n e a r r - h a l f space and L a l i n e a r r - l space bounding H +, then r [ e a , e p ] < 1, i f the o r i e n t a t i o n of H + induced by e a c o i n c i d e s w i t h the o r i e n t a t i o n of L induced by e^ followed by the normal of L i n H -1 otherwise. i i i ) Let e a l s o be an o r i e n t e d c e l l of dimension r , and suppose there i s a homeomorphism <p : ( R n , H +, H", L) •+ (U, e a fl U, e y n U, e p fl U) where L i s a l i n e a r r - l space and H = H + U L U H~ i s a l i n e a r r space. Give H + and H- o r i e n t a t i o n s induced by e a and e r e s p e c t i v e l y , Then [ e Q , ep] = [e^, ep] i f there i s a change of o r i e n t a t i o n across L i n H • t e Y ' e p l otherwise These f a c t s w i l l not be proved here, but can be checked by going to a s i m p l i c i a l d e f i n i t i o n of d (see, f o r example, 6 ). 2.3 I f k and k' are CW-complexes with o r i e n t e d c e l l s , and f : k -+• k' i s a c e l l u l a r continuous map t a k i n g r c e l l s t o r c e l l s p r e s e r v i n g o r i e n t a t i o n s , then f induces a chain map f # : C i ( k ) •+ C i(k') V i - ( i . e . , f # o d = d ° f # ) and i f f i s s u r j e c t i v e or i n j e c t i v e then so i s f g . This i s a very weak form of the n a t u r a l i t y of the chain complex q ( k ) Determining the Incidence Number f o r the Boundary Map f o r C-(G V ) The manner i n which the general theory i s a p p l i e d t o G, i s K ,n best explained by an example. 2.4 Example: The boundary map i n C^(G 2 '• Rather than use the c e l l o r i e n t a t i o n s given i n 1.20, i t i s convenient t o define the o r i e n t a t i o n s as we proceed. Consider the graph coordinates centred at p ( Q o ) ' w h e r e ^(0 0) a l l a12 = "t^ie ( o r i e n t e d ) row space of *21 a22 1 0 a 11 a12 O l a 21 a22 I t i s . e a s y t o see t h a t the c e l l (0, 1 ) + corresponds t o the l i n e a r h a l f space < A 2 i > | a ( r e c a l l A^j from 1.18), and ( o , 1 ) ~ corresponds to <A 2 1> a2i<0 ( o , 2) + corresponds to <A 2 1, A 2 2>| (1 , D + corresponds to < A n , A 2 i > | ( 1 , D~ corresponds to < A11» A 2 1>| ( o , 2)" corresponds to <A 2 1, A 2 2 > | Fig. 1 a^-]>0 a 2 2<0 Gi v i n g these l i n e a r h a l f spaces o r i e n t a t i o n s , i t i s easy t o determine from them the incidence numbers [ ( 1 , 1 ) + , (0, 1 ) + ] , [ ( 1 , 1 ) + , ( 0 , I ) - ] , e t c . and thus ob t a i n d ( l , 1 ) + , d ( l , 1 ) " , d(0, 2 ) + 18 and d(0, 2 ) ~ . In order t o determine d ( l , 2 ) + and d ( l , 2 ) ~ , a more complicated procedure i s needed since ( 1 , 2 ) + i s not a l i n e a r h a l f space i n these coordinates ( i t i s the set a l l a12 A : I At = 0 We must | a 2 1 a 2 2 j go to new graph coordinates where the c e l l ( 1 , 2 ) + i s l i n e a r as w e l l as (1 , 1 ) + and (0, 2 ) + ( P ^ Q ^ w i l l work), and keep t r a c k of the o r i e n t a t i o n s induced by the c e l l s ( 1 , 1 ) + , ( 1 , 1 ) ~ , (0, 2 ) + and (0, 2 ) ~ on t h e i r corresponding l i n e a r subspaces i n the new coordinates. This i s the main t e c h n i c a l i t y i n the proof of P r o p o s i t i o n 2.8. Here, we can i n a s i m i l a r manner obt a i n d ( l , 2 ) + , d ( l , 2 ) ~ , d(2, 2 ) + and d(2, 2 ) ~ which together w i t h the above w i l l y i e l d the homology of G 2 2 s t a t e d i n Table I I . Note: The boundary map c a l c u l a t e d above w i l l not n e c e s s a r i l y be the same as i n 2.9 as the choice of c e l l o r i e n t a t i o n s might be d i f f e r e n t . 2 .5 Notation: For o~ = (CT^ , . . . ., 0"k) a Schubert symbol, denote by o - 6 S the symbol (CT1 - 6 l g , . . . , - 6 k g ) where 6.g i s the Kronecker 5. Note: CT - 6 S i s a Schubert symbol » CTS S CTS - 1. 2.6 Lemma: Let cr = (CT^ , . . . , S n) and cr' be Schubert symbols such t h a t |CT| = |CT'| + 1. Then i n G k n , [e*, ej,] = [ e * , e C T i ] = 0 unless cr' = cr - 5 g f o r some s. pf: This f o l l o w s from (the proof of) 1.14 and 2.2 ( i ) and the f a c t that i f cr' / cr - 6^ , f o r any s then a. = cr! + 1 f o r some i„ . s i 0 i 0 0 2.7 Lemma: Let o = (cr^, . . . , o^ 5 n) and cr' be Schubert symbols such t h a t CT' = CT - 5 s f o r some s. Then i n G k n , (wi t h c e l l o r i e n t a t i o n s as defined i n 1.20) we have 19 i ) [e+, ej,] = (-l)°s+k-s[e-, e+,] i i ) [e+, e+,] = (-1) 3 + 1 3 + 2 ^ pf: This i s proved by going t o graph coordinates where the lemma takes the f o l l o w i n g form. 2.8 P r o p o s i t i o n : Suppose CT and cr' are Schubert symbols as above and |CT'| = r . Then i n the graph coordinates centred a t P t' we have: i ) ea, c U C T i and i s a coordinate r-plane i n R^ X n. As i n 1.19 c a l l t h i s plane LQ, . i i ) e C T + fl U C T i and e ~ (1 U » are coordinate r + 1 h a l f planes ( c a l l them H + and H~) such t h a t H + U L , U H~ i s a coordinate r + 1 plane. i i i ) The o r i e n t a t i o n s of H + and H induced by e C T + and are the same eCT » o"s + k - s i s odd. i v ) The o r i e n t a t i o n of H + induced by e C T + c o i n c i d e s w i t h the o r i e n t a t i o n of L_ (as defined i n 1.20) followed by the normal i n t o H + <=» k - s + CTG+1 + CTS+2 + . . . + CT^ i s odd. Note: The above, together w i t h 2.2 ( i i ) and ( i i i ) immediately proves 2.7 pf: Using the above n o t a t i o n : i ) This i s 1.19. i i ) P € e C T + fl UCT, » i t has rep r e s e n t a t i o n s (see 1.2 and 1.18) of the forms 20 X l = row s * 1 0 0 * ft o * 0*^ +1 column 0 0 0 0 . . 1 0 0 * V s - 1 CTs+s column column * 1 0 o k + k column and row s 1 0 ft o ft crj+1 =CT1+1 column CT'+S s o'+s+l s -O+s-1 =cr„+s S column column ft 1 ft CT'+k k =a k +k column » there i s an o r i e n t a t i o n p r e s e r v i n g l i n e a r t r a n s f o r m a t i o n t a k i n g the r e p r e s e n t a t i o n of P t o an X 2 r e p r e s e n t a t i o n > 0 i n the r e p r e s e n t a t i o n . (This can be seen by l o o k i n g only at the columns + i V i , and cr + s - 1.) In such a case, the X 2 r e p r e s e n t a t i o n w i l l have O's t o the r i g h t of the l ' s except f o r row s which w i l l have a p o s i t i v e number (1/©) i n column CTs + s, and O's t o the r i g h t . Thus P = <P^t(A) where A = ( a ^ j ) i s a k x n matrix with 21 a,--: = 0 f o r j > a- + i + 1 and a,, ^  > 0. -L J _L t> , U o Conversely, f o r any such matrix A , P = cp^,(A) has r e p r e s e n t a t i o n s of the forms X^ and X 2 . S i m i l a r l y , P € e a ~ fl U_, » T(P) has a r e p r e s e n t a t i o n of the form X^ and P has a r e p r e s e n t a t i o n of the form X 2 «• there i s an o r i e n t a t i o n r e v e r s i n g l i n e a r t r a n s f o r m a t i o n t a k i n g the X^ re p r e s e n t a t i o n t o an X 2 r e p r e s e n t a t i o n ~ © < 0 » P = < P C T , ( A ) where A = ( a ^ j ) i s a k x n matrix w i t h a^j = 0 f o r i _ CT • + i + 1 and a„ _ > 0. J l S,CTS This proves ( i i ) . From ( i i ) we have the diagram shown. For ( i i i ) and ( i v ) we must f i n d the o r i e n t a t i o n s of H and H induced by e C T +, which can be done by f i n d i n g the Jacobian of the maps -1 -1 <P- ° <PCTt and cpCT o T o cp^, . ( H + and H have n a t u r a l o r i e n t a t i o n s given by t h e i r ordered b a s i s <A 1 1 ' ' A l a 1 ' A 2 l ' ' k l ' ' Aka k>' The o r i e n t a t i o n of coordiyvxV« induced by e C T + w i l l be the same i f _ i cp o cp , has Jacobian w i t h p o s i t i v e CT CT F i g . 2 determinant, and the o r i e n t a t i o n induced by e^ - w i l l be the same i f cp ° T ° <p t has Jacobian with p o s i t i v e determinant.) To w r i t e these maps O C T coordinatewise, we must see how t o go from one r e p r e s e n t a t i o n t o another. Given P € UCT fl U _ i , l e t v^, . . . , v k be rows of the type r e p r e s e n t a t i o n f o r P. To o b t a i n a r e p r e s e n t a t i o n of the form X 2 , 22 use rows w1, . . . , w k where the w-'s are obtained i n the f o l l o w i n g way: w r i t e the **s i n X 1 as a^. i n the appropriate manner -1 (A = (a i :-) w i l l be <Pa,(P) and a s > Q w i l l be © — s e e 1.18). Then w„ v s / a s , o s a n d w £ = vj_ - ( a i C T / a s ) ( v s ) i * s iCT s'"so- s / v "s-Note: the determinant of t h i s t ransformation i s l / a s o - , and thus i s o r i e n t a t i o n p r e s e r v i n g f o r a S C J > 0 and o r i e n t a t i o n r e v e r s i n g i f scr s Working out t h i s l i n e a r transformation i n c o e f f i c i e n t s , we get cp;*(P) = ( a l m ) - ( b . J = cfTV) W h e r e ~ a i o -so ser f o r i = s, j f o r i i s, j = CT f o r i = s, j f cr a . • a. s] ICT scr„ f o r i / s. n i cr •1 2.8a. For convenience c a l l t h i s map f . Then f l a > 0 i s ip" o m scr and f a < 0 i s T o c p . o c p so cr cr s We must now f i n d the determinant of the Jacobian when we r e s t r i c t f to L . For f i j ( a l m ) = b i j , the p a r t i a l d e r i v a t i v e s are 3f. 3a7~ = 6 i j °jm f o r 1 1 s, m i os , i i- s and j f CT Thus r e s t r i c t i n g t o these c o e f f i c i e n t s gives us the i d e n t i t y 23 matrix so f o r the determinant we need only worry about the k - s + c r x k - s + cr matrix s s 3f 3a lm where i = s or j = a, , 1 = s or m = as , and j < a. and m 5 CT-^ This matrix i s 3f s i S a s l 3 a s 2 r -1 ( a _ ) af s2 af so af S+lCT af ko SO~_ (a-s> -1 3a 3a„,., _ . . . 3a, „ so\ S+1CT ko s s s 0 (a„„ ) S0\, - ( a _ ) -2 • ( a _ ) S 0 0 0 the 3a„^ column scr„ -1 2.8b. The determinant of J f | T i s thus ( - l ) k ~ s + 1 ) / ( a o r r ) | J J C T S E o\,+k-s+l 2 . 8 ( i i i ) . From 2.8b and 2.8a above we have t h a t the o r i e n t a t i o n s on H and H agree o~s + k - s i s odd. 2 . 8 ( i v ) . Comparing f i r s t the o r i e n t a t i o n <A 11 » ' * * ' A 1CT . ' A ? 1 > • * ' ' A 9 r r _ > • • • > A H > lCT  "21' - ' ' ' "2c ' • • * ' "kl  * * ' ' Ako\ > o f H  1 ^ k with the o r i e n t a t i o n < A11> • • • > Alo 1» A21> , A s l , . . . , A s C T^_ l S A g + 1 , . A k l , . . . , A k a > of L^, followed by A g o- (the normal i n t o H +) we have agreement CTs+l + CTs+2 + + Oy. i s even. Comparing the above o r i e n t a t i o n f o r 24 H +, with t h a t induced by e*, by 2.8b we have agreement » ( - l ) k - s i s odd. Combining the two, we have agreement —• k - s + o" s + 1 + CTs+2 + • • • + CTk ^ s Q-E.D. 2.9 Theorem: The boundary map d i n the chain complex f o r G k n w i t h c e l l o r i e n t a t i o n s as i n 1.20 i s ,, +x V / i xl+k-s+o c : +<i + . • .+Ov/ + / „ xk-s+o s _ d(e_) = I (-1) s+1 k ( e C T _ 5 + (-1) e a _ 5 ) s s . t . s s and d(e~) = Td(eJ) pf: This f o l l o w s d i r e c t l y from 2.7 and 2.8 and the f a c t t h a t T preserves c e l l o r i e n t a t i o n s . 2.10 C o r o l l a r y : The boundary map d i n the chain complex f o r G k n w i t h c e l l o r i e n t a t i o n s as i n 1.20 i s v . 1+k-s+CT + 1+. . .+o-k k-s+cr„ d(e_) = I (-1) 3 + 1 K ( l + (-1) 3 ) e C T _ 5 . s s . t . s CT ,5CT -1 s-1 s pf: This f o l l o w s from 2.9 and the f a c t t h a t >|r : G k n G k n maps e* and e C T t o e C T p r e s e r v i n g o r i e n t a t i o n . 2.11 Remark: For j , 1, j and 1 the embeddings i n 1.4, the induced chain maps commute with d (from 1.21 and 2.3) so th a t the above formulas are v a l i d i n G k and § k , and a l s o i n G and G ( i f we t h i n k of each Schubert symbol CT as s t a r t i n g w i t h a nonzero i n t e g e r CT^ t o avoid the problem of having an i n f i n i t e number of CT^). 25 Some Low Dimensional Examples Fi n d i n g the homologies of the unoriented and o r i e n t e d Grassmannians and Schubert v a r i e t i e s reduces v i a 2.9 and 2.10 t o a l g e b r a i c computation which w i l l be c a r r i e d out over Z i n some examples below. In g e n e r a l , homology over other groups can then be determined using the U n i v e r s a l C o e f f i c i e n t s theorem, but i n the f o l l o w i n g case i t i s e a s i e r t o compute the homology d i r e c t l y from the chain complex: 2.12 Theorem: H r(G; Z 2) = C r(G; Z 2) f o r a l l r , and the same i s tru e f o r G^ . and G^^ f o r a l l k and n. pf: From 2.10, the boundary map d i s 0 mod 2 i n a l l dimensions. The method used i n the examples i s t o f i n d i n dimension r a set of f r e e generators f o r the group of c y c l e s (denoted Zp) and w r i t e out the boundaries d ( C r + ^ ) (denoted B r) i n terms of these generators. The homology H p = Z r/B r i s then the set of generators of Z r together with r e l a t i o n s given by s e t t i n g the boundary elements to zero. The main d i f f i c u l t y i s i n l o o k i n g f o r a set of f r e e generators f o r Z r , as i t i s not always c l e a r whether or not a set of cy c l e s spans the whole of Z p (although t o s i m p l i f y t h i n g s , l i n e a r independence i n the examples given i s obvious, and i t i s easy t o determine what the rank of Z r should be). In a l l the cases worked out, the above poi n t has been s e t t l e d by i n s p e c t i o n , which i n higher dimensions i s not p o s s i b l e . 2.12a Note: In G, , when w r i t i n g boundary elements do and da (where \a\ = r + 1) i n terms of generators f o r Z r , i f da+ = ±da~ then we need only worry about da+. Thus i n w r i t i n g the boundaries i n terms 26 of generators of Z r , some Schubert symbols y i e l d two expressions and some only one. In Table I and i n the examples 2.15, a shortened n o t a t i o n w i l l be used. 2.13 Notation: i ) Any Schubert symbol CT = (CT^ , . . . , CT^) w i l l be w r i t t e n a^ov, . . . ay. (as ay 5 9 i n a l l cases, t h i s w i l l not give r i s e t o confusion) and le a d i n g zeros w i l l be omitted. The zero symbol w i l l be denoted i i ) In G, the symbols +-o~ ( s i m i l a r l y -+a, ++a and —CT) w i l l r e f e r t o a l i n e a r combination of a n t i p o d a l Schubert c e l l s where the f i r s t s i g n r e f e r s t o the c o e f f i c i e n t of CT+ and the second s i g n to that of CT~. A Schubert symbol cr with one (or no) ; s i g n attached t o i t w i l l r e f e r t o the p o s i t i v e c e l l c r + ; e.g., +-23 r e f e r s to the chain element (2, 3 ) + - (2, 3)' 23 + 14 r e f e r s t o the chain element (2, 3 ) + + ( 1 , 4 ) + TABLE I: THE BOUNDARY MAP IN C(G): (NOTATION FROM 2.13, "-*» REPRESENTS d ) . 1 2 3 4 5 6 7 8 9 10 G2,2 1-*-+* 2-+--1 11-*—1 12-*—11 ++ 2 G2,3 3-*-+ 2 13-*-+ 12 — 3 23-*-+ 22 -+ 13 33-*— 23 G2,» 4-*— 3 14-*— 13 ++ 4 24-*— 23 +- 14 34-*— 33 ++ 24 44-*+- 34 G2,5 5-*-+ 4 15-*-+ 14 5 25-*-+ 24 -+ 15 35-*-+ 34 — 25 45-*-+ 44 -+ 35 55-*— 45 G3,3 112-)— 111 +- 12 113-*-+ 112 -+ 13 122-*+- 112 -+ 22 123-*-+ 122 -+ 113 +- 23 222*— 122 223-*-+ 222 + +123 133-»— 123 -+ 33 233-*— 223 — 133 333-*-+ 233 114-*— 113 +- 14 124-*— 123 +- 114 -+ 24 134-*— 133 ++ 124 +- 34 224-*— 223 — 124 144-*+- 134 -+ 44 234-*— 233 ++ 224 ++ 134 244-*+- 234 — 144 334-*— 333 +- 234 G3,5 115-*-+ 114 -+ 15 125-*-+ 124 -+ 115 +- 25 135-*-+ 134 — 125 -+ 35 225-*-+ 224 ++ 125 145-*-+ 144 -+ 135 +- 45 235-*-+ 234 — 225 — 135 1111-*--111 1112-*—1111 ++ 112 1113-*-+1112 — 113 1122-*+-1112 — 122 1114-*—1113 ++ 114 1123-*-+1122 -+1113 ++ 123 1222-*—1122 ++ 222 1124-*—1123 +-1114 — 124 1133-*—1123 . — 133 1223-*-+1222 ++1123 — 223 2222-*+-1222 1134-*—1133 ++1124 ++ 134 1233-*—1223 —1133 ++ 233 1224-*—1223 —1124 ++ 224 2223-*-+2222 -+1223 1144-*+-1134 — 144 1234-*—1233 ++1224 ++1134 — 234 1333-*-+1233 — 333 2233-*—2223 +-1233 2224-*—2223 +-1223 28 2.14 Theorem: i ) H r(G ; Z ) =4 Z f o r r = 0 and n 0 otherwise i i ) H r ( G l 9 n , Z) =L Z f o r r = 0 and r = n i f n i s odd Z 2 f o r r < n and odd 0^ otherwise. pf: i ) z r ( G l j n , Z) are generated by the chain elements ( r ) + ( r ) f o r r odd, r - n, and ( r ) - ( r ) f o r n > r > 0 and even. For r = 0 Z p i s generated by ( 0 ) + and ( 0 ) ~ . (This i s e a s i l y seen from the Table I.) The boundary group B r (Image of d : C r + 1 -> C p) i s generated by ( r ) + + ( r ) f o r r odd r < n ( r ) + - ( r ) f o r 0 5 r < n. Thus H r = Z r/B r i s zero except f o r r = 0 and n where i t i s Z. i i ) From 2.10, the f o l l o w i n g can be v e r i f i e d r Z generated by B generated by Thus Z r/B r i s ( r ) r odd i 0 r > 0 even (0) (the 0 - c e l l ) f o r r = 0 2(r) r < n odd 1° r even or r = n < Z 2 f o r r < n and odd Z f o r r = 0 and r = n i f n i s odd 0 otherwise. v . 29 2.15 Examples: In these examples, Table I i s used by i n s p e c t i o n t o f i n d generators f o r Z r . In l a b e l i n g the c y c l e s , no d i s t i n c t i o n i s made between c y c l e s of d i f f e r e n t dimensions (e.g., both ++1 and +-2 are l a b e l e d " a " ) . As i t w i l l always be c l e a r what dimension i s being t a l k e d about, t h i s should not cause any confusion. Notation i s as described i n 2.13. i ) 5 2 > 3 : Dimension: 0 1 2 3 4 5 6 Generators ...+ a=" a=++l a=+-2 a=++3 a=++22 a=++23 a=+-33 f o r Z p : b=*~ b=+-ll b=+-12 b=+-13 c = 2 - l l +-22 B : r a+b d(2)=-a d(3)=-a d(12)= 2c-a-b d(13) +=-b-a d(13)~=b-a d(22)=b d(23)=-b d(33)=-a I t i s easy to see that Z. r / B r = Iz r = 0, 2, 4, 0 otherwise v. (In dimension 2, Z r/B r has the r e l a t i o n s a = 0 2c c generates Z r / B r and has order 0.) Thus In the next examples only the f i r s t homology groups are determined, as the r e s t can then be found using U n i v e r s a l C o e f f i c i e n t s and Poincare d u a l i t y s i n c e G v _ i s o r i e n t e d f o r a l l k, n. i i } 53,3 Dimension ( r ) : 0 1 2 3 4 Z r : a=*+ a=++l a=+-2 a=++3 , a=++22 b=*~ b=+-ll c = 2 - l l b=+-12 c=++lll b=+-13 +-22 c=+-112 -+22 B r : a+b a a 2c-a-b 111: b b±a b 112:. b±c b 113: b+c 122: c See note 2.8a. r V B r Z 0 f o r r f o r r f o r r 0, 4 2 1, 3 i i i ) G 3,4 Dimension ( r ) : 3 4 5 6 Z : r a ,b,c a,b,c a=++23 a=+-33 d=22+13-4 b=++113 b=+-222 e=+-4 c=++122 c=++123 d=122+113 -23 d=+-114-+24 e=+-14 e=++24—33 B : r 4: a, b ,c ,b+c a, 34: e b±a,b 14: 2d-b+e-a 24: a±e 124: c±d b±c 114 b±e 133: c±a 222:±c 223: c±b 123: 2d-c -bta The unexplained elements i n Z r and B p are from Examples ( i i ) and ( i above, using the same l a b e l s . r H r = Z r/B r = < 0 r = 3 Z © Z r = 4 r = 5 and 6. The homology groups H Q , H 1 and H 2 are the same as i n G, 32 i v ) SKI, 4): Dimension ( r ) : 1 2 3 4 5 C r : 1+ l l + ; 2 + 1 2 + ; 3 + 1 3 + ; 4 + 14 + and a n t i p o d a l s a=++l a=+-2 b=+-ll c = 2 - l l a=++3 b=+-12 b'=++13—4 e=+-4 e=+-14 B r : 11: a 2: a 12: 2c-a-b 3: a 13: b±a 4: a 14: b' H : r 0 Z 0 Z Z v) 2 ( 1 , 2, 3): Dimension ( r ) : 1 2 3 4 5 6 C r : 1 + l l + ; 2 + 1 2 + ; 3 + ; l l l + 13 +;22 +;112 + 23 +;122 +;113 + 123 + and ant i p o d a l s Z : r a a;b;c a;b; a=++22 a=++23 c =++123 c=++lll b=+-13+-22 b=++113 c=+-112-+22 c=++122 d=122+113-23 B r : a a;b;2c-a-b b±a;b;b±c b;b+c;c 2d-c-b+a H r : 0 z 2 0 z Z©Z©Z Z 33 v i ) G^ i | : Dimension 6 Cycles: a, b , c, d, e as i n Example ( i i i ) and i n a d d i t i o n , f = 1122 + 1113 - 114 - 222 + 2 4 - 3 3 g = ++1113—114 and h = ++1122—222. Boundaries: e , c ± d , c ± a , c ± b as b e f o r e , and i n a d d i t i o n , 1114: g, 1222: h 1123: 2 f - h - g - e ± c . Thus i n homology we have e = g = h = 0, a = b = c = d, 2 f = c and 2c = 0. Thus f generates H g and 4f = 0, 2f £ 0, so H g = Z^ . Tables of Homology Groups of the Grassmannians Table I I I t a b u l a t e s the above r e s u l t s together w i t h a few more tha t have been worked out i n the above manner. By going t o large enough Grassmannians, such r e s u l t s are v a l i d f o r G^ and G as shown i n Table I I I . Cohomology can be found u s i n g U n i v e r s a l C o e f f i c i e n t s , and the r e s u l t s can be compared w i t h those obtained u s i n g c h a r a c t e r i s t i c c l a s s e s (see [ l ] pages 179 and 182). The copies of Z are generated by P o n t r j a g i n c l a s s e s and t h e i r products. Another method would be t o use the cochain complex d i r e c t l y , where the incidence numbers d e f i n i n g 6 (the coboundary map) would be [ e a , ep] = [ep, e a] from the boundary map. Going through the same procedure as i n Example 2.15, e x p l i c i t generators i n terms of Schubert c e l l duals could be determined. In t h i s way f o r instance i t could be found which Schubert v a r i e t i e s represent the P o n t r j a g i n c l a s s e s . Table I I . Homology groups f o r G, where k and n are s m a l l 52,2 G2,3 G2,4 g 2 , B S,3 G3,<4 S,5 Ho Z Z z Z Z Z Z z H l 0 0 0 0 0 0 0 0 H 2 z e e z z Z Z 2 Z 2 Z 2 Z 2 H 3 0 0 0 0 0 0 0 0 H<4 z z z @ z Z z z ® z z z « z © z H 5 0 G 0 z Z 2 Z 2 . Z 2 H 6 z Z z Z 2 Z 2 0 \ H 7 0 0 0 0 z 0 H 8 Z z 0 ZfflZ z Z®ZfflZ@Z H 9 0 z Z 2 Z 2 z 4 H10 z 0 0 Z 2 H l l 0 z 0 12 z Z 2 z @ z ® z H13 0 Z 2 H1H 0 0 H15 z 0 H16 z r 2.17 A s s e r t i o n : H r ( G 2 n ) = <Z f o r r even-and r 4 n, r 5 2n Z © Z f o r r = n even 0 otherwise. <2 2> • • • > G 2 5 c a n ^ e g e n e r a l i z e d e a s i l y . C o r o l l a r y : H r(G2) = Z f o r r even, 0 f o r r odd. The method used f o r G, 35 Table I I I . Low dimensional homology groups f o r G : K (Note: H r ( G k ) = H r ( - 2]<- 5 r +i) since the embedding G k + 1 -* G k covers a l l c e l l s of G k of dimension r + 1 or l e s s . A l s o , H r ( G r + i ) = H r ( G r + 2 ) = . . . = H r(G) f o r the same reason.) H o H l H 2 H 3 \ H 5 H 6 G l z 0 0 0 0 0 0 z 0 z 0 z 0 0 5 3 z 0 Z 2 0 z Z 2 0 % z 0 Z 2 0 z ® z z 2 z 2 ® z 2 S 5 z 0 Z2 0 z ® z 2 • Z 2®Z 2 5 6 z 0 Z 2 0 z ® z 2 z © z 2 © z 2 G ? z 0 Z 2 • • z 2 © z 2 © z 2 G z 0 z 2 0 z ® z 2 z 2 z 2 © z 2 © z 2 In the unoriented Grassmannians and Schubert v a r i e t i e s , the computations are much simpler as there are only h a l f as many c e l l s t o worry about and the boundary map i s much simpler. 36 Table IV. Homology f o r the unoriented Grassmannians G, f o r s m a l l K j i i k and n: G2,2 G2,3 G2,4 G2,5 G3,3 G3,4 Z Z Z Z Z Z H l Z 2 Z2 Z2 Z 2 Z 2 , Z 2 H 2 z 2 z 2 z 2 z 2 Z 2 Z 2 H 3 0 Z2 Z 2 Z 2 z 2 © z 2 \ z z z ® z 2 z © z 2 z z © z 2 H 5 Z 2 Z 2 z 2 © z 2 z © z 2 © z 2 H 6 0 Z 2 Z 2 Z 2 Z2*522 H y ' 0 Z 2 Z 2 z „ © z „ 2 2 H8 Z Z 0 Z©Z„ 2 H 9 Z2 z Z 2 ^ 2 H10 0 0 H l l Z2 H 1 2 0 Note th a t there i s Poincare D u a l i t y i n G 0 0 , G 0 ., and G 2,2 ' 2,4 °3 s3 ' This r e f l e c t s the f a c t t h a t G j ^ i s o r i e n t a b l e whenever k + n i s even (see [ 2 ] ) . Remark: The homology groups f o r G k > n have been determined i n [ 7 ] , but as t h i s a r t i c l e was not a v a i l a b l e i n Russian or E n g l i s h i t was not p o s s i b l e t o compare r e s u l t s . 37 PART I I I - HOMOLOGY AND COHOMOLOGY PRODUCTS We now t u r n t o the m u l t i p l i c a t i v e s t r u c t u r e s , Only the Z 2 homology and cohomology products i n the unoriented Grassmannians are s t u d i e d , but the cohomology r i n g s t r u c t u r e i s determined e n t i r e l y (3.16 and 3.17). The formulas d e s c r i b i n g the cup product are equivalent v i a Poincare d u a l i t y (described i n terms of Schubert symbols i n 3.7) t o those d e s c r i b i n g products i n Z cohomology of G^ n ( C ) (see [ 3 ] ) . In the form g i v e n , they can a l s o be used t o determine cup products i n the unoriented Schubert v a r i e t i e s , and some examples are given. The' General I n t e r s e c t i o n Theory To Be Used For M a manifold, there i s a product theory f o r i n t e r s e c t i o n s of c y c l e s i n H t(M; Z^) c a l l e d the Lefschetz i n t e r s e c t i o n n L : H n - a ( M ' Z2> * H n - b ( M ' Z2> - H n - a - b ( M ' Z2> which i s r e l a t e d t o the cup product i n cohomology i n the f o l l o w i n g way. 3.1 A s s e r t i o n : For b = n - a above, the product fi^ induces a map D : H n_ a(M; Z 2) * H a(M; Z 2) Z H Q(M; Z 2) which can be considered as a map D : H n_ a(M; Z 2) -* Hom(Ha(M; Z 2) Z 2) w H 3(M; Z £) by a -y the map f ( B ) = a fl B € Z I B* L afl LB=l I f a n L p = Y i n H A(M; Z ) then D(a) u D(B) = D(Y) i n H*(M; Z 2 ) . This i s due t o the Lefschetz i n t e r s e c t i o n product being Poincare dual t o the cup product i n the sense that the f o l l o w i n g diagram commutes: 38 ( w i t h Z 2 c o e f f i c i e n t s ) (M) x H"( n [Ml D y a+b. . H (M) n [M] H n_ a(M) x H n_ b(M) -*H n-a-b [M] \ (M) where <-> [M] i s the cap product w i t h the fundamental c l a s s of M ( l y i n g i n H Q ( M ; Z 2 ) ) i . e . the Poincare dual map. 3.2 Ass e r t i o n : ' Let M be an n dimensional manifold w i t h a c e l l complex s t r u c t u r e , and e a , e^ c e l l s i n the complex r e p r e s e n t i n g Z 2 c y c l e s a and B. Suppose there i s continuous map h : M -> M homotopic to the i d e n t i t y such that f o r any c e l l s e a , c e a and e^, c ep , e Q , i s transverse t o Me^,). Then e a fl h(ep) i s a Z 2 c y c l e i n M homologous t o a fl^ B. I f e"a fl h ( i p ) = 0 then a n L B'= 0. This i s from general i n t e r s e c t i o n theory (e.g., see [10]). Simple I n t e r s e c t i o n s i n G, and the Poincare D u a l i t y Map • K , n •• A s t r a i g h t f o r w a r d t r a n s l a t i o n of 3.2 i n t o Schubert c e l l terminology i s given below (3.4) and, using i t , the Poincare d u a l i t y map i s described i n terms of Schubert symbols (3.7) and some examples of e x p l i c i t i n t e r s e c t i o n s are given. 3.3 Remark and Nota t i o n : From the chain complex C^G^ n ) as s o c i a t e d with the Schubert c e l l decomposition (1.22) we obta i n a mod 2 chain complex C r ( G k n ; Z 2) and a mod 2 cochain complex C r ( G k } n ; Z 2) = Hom(C r(G k 5 n; Z 2 ) , Z 2 ) . For e 0 € C r ( G k n ; Z 2 ) , CT a Schubert symbol, w r i t e the cochain element dual to e C T as 0 " & j i . e . , a* € Hom(C ( G k n ; Z 2 ) , Z 2) i s the l i n e a r map sending eQ t o 1 and e^ t o 0 f o r r\ ± o. Since the cochain map 6 i s zero mod 2, H r ( G k > n ; Z 2) = C r ( G k j n ; Z 2) and {a* : \a\ = r } i s a b a s i s f o r H r(G k n ; Z 2) dual t o the b a s i s {e C T : |CT| = r } f o r H r ( G k j n ; Z 2 ) . From here on, Z 2 homology and cohomology w i l l be assumed unless otherwise s t a t e d . 3.4 Theorem: Let e^ and e^ be c e l l s i n G k n f o r a and r\ Schubert symbols. Suppose there i s an orthogonal l i n e a r t ransformation £ „k+n „k+n „ , * : R -»• R inducing $ : G k n G k n s u c n t h a t i ) For any e C T l c e a and , c e^ , e a t i s transverse t o # ( e v ) . i i ) e C T n * ( e ^ ) = ^ e ^ D U $3^7 (2 ) U . . . U * m e C T ( m ) f o r some orthogonal transformations 3^, . . . , § m , where cr(l) . . . o(m) are d i s t i n c t Schubert symbols of rank \o\ + |t]| - kn. Then i n H A(G k n ) , eQ 0^ e^ (the Lefschetz i n t e r s e c t i o n product) i s e C T ( 1 ) + e C T ( 2 ) + . . . + e a ( m ) . pf : This f o l l o w s from 3.2 as * : G k n G k n ^ s homotopic t o the i d e n t i t y , and ^ i e C T ( i ) i s homologous to e c r ( i ) ( s i n c e ^ i s a l s o homotopic t o the i d e n t i t y map). 3.5 Notation: Define S P : R q R Q, p 5 q by " ^ ( e ^ =J e p - i + l f o r i 2 p e^ f o r i > p. 40 I f q - k + n, then : G^ n -+ Gy. _ i s the induced homeomorphism. 3.6 Lemma: Let e C T and e„ be Schubert c e l l s i n G,, „ and <£> = § e^ D  bcnubert c e l l s i n ^ n k+n as defined above. Then we have i ) e„ i s transverse to i>e CT T] i i ) e C T fl e^ = 0 unless CT^ + T l ^ . i + i - n V i . i i i ) i f r)^ = n - CTk_^+1 V i then e C T fl $ = the p o i n t {P C T} i n G, . ( R e c a l l 1.6.) pf: i ) Suppose cr and r\ are Schubert symbols such t h a t CT^ + "H^.i+l - n - 1 f o r some i . I f P € e C T D <£> e^ , then dimension of P fl ](R ^ ) = i ( j as i n 1.4) and - "Hi, 1 - + 1 + k - i + 1 dimension of P D l ( R K ~ x + 1 ) = k - i + 1 cr.+i „ T j , . + 1 + k - i + l =» J(R 1 ) n K R k 1 + 1 ) > i - CTi + i + T i k _ i + 1 + k - i + l > n + k or c^ + > n - 1 which i s a c o n t r a d i c t i o n . Thus e C T fl = 0 . i i ) Suppose CT and rj are Schubert symbols such that CT^ + T ) - k _ i + 1 > n f o r a l l i . Consider the graph coordinates centred at P C T (see 1.17, 1.18 and 1.19). Since e^ c u C T , the i n t e r s e c t i o n e C T H ^ e ^ l i e s e n t i r e l y i n UCT , the domain of the graph coordinates. R e c a l l that L C T c R k x n £ s ^he l i n e a r subspace corresponding t o e C T . 'Claim: UCT D# e^ = (L_ f i f e - ) x La c R k x n i n the above graph coordinates. p f : L C T = {A = ( a i j ) s . t . = 0 f o r j > o^} L Q = {A = (a£j) s . t . = 0 f o r j 5 o^}. Suppose A € # e^ c R . The plane cpCT(A) = P i s the row space of the matrix i n 1.18 corresponding t o A. Since P i s i n # e^ , i t must s a t i s f y the Schubert c o n d i t i o n s dimension of p'n i ( R ^ ) = i and dimension of P f | l ( R T l i + : L ~ 1 ) = i - 1. Looking at the matrix i n 1.18, i t can be seen that these c o n d i t i o n s are independent o f a^j f o r j > CT^ since r ) ] < _ i + i + °i - n-Thus P € * e^ fl U, CT « P = <PCT(A) f o r some A = ( a ^ J s . t . f o r A' = ( a l ^ ) where a i j = { a i j f ° r j 5 CTi 0 f o r j > CT^ and A' € L fl * e . CT T) Thus $ e^ n UCT = CLCT fl $ e n) x L CT This c l a i m proves 3 . 6 ( i i ) s i n c e L C T fl $ e^ has dimensi on |TTJ | - (kn - |cr| ) and the i n t e r s e c t i o n i s transverse ( s i n c e L C T i s orthogonal to L Q and thus to LQ fl <£> e^). i i i ) Suppose CT and r\ are Schubert symbols such t h a t a i + T V i + l = n • V i-P € $ e^ fl e"CT o P 0 j ( R i + 1 ) i n dimension > i and - r ' v _ i 4 . i + k " i + 1 n+k-o---i+l . . . P D l ( R = R ) i n dimension k - l f o r a l l I « P 3<e"rr.> f o r a l l i u i 42 Remark: Although 3.6 above shows t h a t we can always make two c e l l s e CT and e^ i n G k n transverse ( i n the manner of 3 . 4 ( i ) ) using the orthogonal k+n — — transformation $ . However, although the i n t e r s e c t i o n e C T fl * e^ must be a c y c l e homologous i n H.,.(Gk n ) t o e a ep , i t i s not i n general a union of orthogonal transformations of Schubert c e l l s as r e q u i r e d i n 3 . 4 ( i i ) . 3.7 Theorem: In G k n , the i n t e r s e c t i o n product ("1^. s a t i s f i e s : i ) For Schubert symbols cr and r\, e C T f l L e_ = 0 unless CT^ + T j ^ . i + i - n V i . i i ) f l L : H n_ p x H r -* H Q ^ Z 2 i s the map (CT, TI) •+ i i i f • T ] I = n - o- k_ i + 1 V i 0 otherwise. L i i i ) The Poincare d u a l i t y ( i n v e r s e ) map D : H -»• H P i s n-r CT -> TI* where TI . = n - CT, . , „ V i . l k-i+1 pf: ( i ) f o l l o w s from 3.6(i) and 3.2. ( i i ) f o l l o w s from 3 . 6 ( i i ) , 3.2 and ( i ) above si n c e i f | cr j + |T)| = n and T)^ = n - °"k_i+^ does not hold f o r a l l i then 3 such t h a t T I . + CT, . . 1 < n. ^0 k-iQ+1 ( i i i ) i s j u s t another way of saying ( i i ) . This r e s u l t i s equivalent to P r o p o s i t i o n , page 1072 i n [3] which was f i r s t proved i n [9]. 3.8 Remark: The i n t e r s e c t i o n product i s unnatural i n the sense t h a t f o r f : M -> M' a continuous ( c e l l u l a r ) map, f A does not preserve the i n t e r s e c t i o n product. However, i n cohomology, the induced map f* does 4 3 preserve cup product, so th a t i n the Grassmannians we have the f o l l o w i n g : i ) For j : G k -*. G k , , n' > n, j as i n 1 . 4 , j * : H*(G k n,) H*(G k j n) i s the map a* -y cr* (as can be seen from 3 . 3 , 1 . 2 1 and 2 . 1 2 ) and j*(cr* u r\*) = a* u TI*. i i ) For 1 : G k > n -»• G R, , k' > k, 1 as i n 1 . 4 , 1 * : H*(G k, n ) - H*(G k n ) i s the map CT* -*• ( C T 1 ) * where CT' = ( o " n + k , _ k + 1 , Q - n + k , ^ k + 2 , . . . , c r n + k t ) (as can be seen from 3 . 1 , 1 . 2 1 and 2 . 1 2 ) and l* ( c r * U T|&) = (cr')* U ( T ) ' ) * (T) ' defined from T) as cr' i s from cr). We a l s o have a l g e b r a i c r i g h t inverses f o r the maps j * and 1 * defined as, ( j * ) " 1 : H*(G k f n) - H * ( G k f n . ) n <n' i s the map (CT*) -»• (J,(CT))* and ( l * ) " 1 : H f t ( G k j n ) - H * ( G k , f n ) k 5 k ' i s the map cr* ->- ( l f ( c r ) ) * . These maps are group homomorphisms ( a c t u a l l y monomorphisms) but do not i n general preserve cup product. We now go t o some s p e c i f i c examples of i n t e r s e c t i o n product which use 3 . 4 d i r e c t l y . Checking t r a n s v e r s a l i t y i s i n general more complicated t o v e r i f y than i n 3 . 6 , so f o r the remainder of the paper we w i l l assume the f o l l o w i n g . 44 3.9 Assumption: Let e Q and e^ be Schubert c e l l s i n G^ . n , and suppose there i s an orthogonal transformation <S : R k + n -»• R k + n such t h a t e a fl # (where § : n -»• G k n i s induced by <£>) i s a ( Z 2 ) c y c l e Y o f dimension |CT| + \r\\ - kn. Then i ) e C T i s transverse to <i> e i i ) there i s an orthogonal transformation I 1' : R k + n R k + n such t h a t $ = e^ and f o r any e^, c e a a n d e^ t c e^ , e^ ., i s transverse t o <£' e^ i i i ) The c y c l e Y i s e C T fl e^ . Note: ( i i ) =» ( i i i ) 3.10 Examples: The same n o t a t i o n as i n (2.16) w i l l be used. Remark about Schubert c o n d i t i o n s : R e c a l l (1.10) t h a t f o r CT = (CT^ , . . . , CT^) a Schubert symbol, the Schubert c o n d i t i o n s a s s o c i a t e d w i t h eQ i n G^  n are dimension of P fl j(R°i + 1) > i V i . I f CT = n, then the above Schubert c o n d i t i o n i s redundant m (sin c e every k-plane i n R k + n i n t e r s e c t s j ( R n + i ) i n dimension i ) and can be l e f t out. i ) In G 2 2 look at 12 1*1 L 12. I f we take the orthogonal transformation ^ : G 2 2 &2 2 ( s e e 3.5), then 12 and # 4(12) s a t i s f y 3.4(i) but not 3 . 4 ( i i ) , so we must use o a d i f f e r e n t t r a n s f o r m a t i o n . Take § : G 2 2 G2 2 ( r e c a H 3.5): 12" n #3(T2~) = {P € G 2 2 s . t . dim. P fl <e±, e"2> _. 1 and dim. P fl <e"2, e"3> > 1} which i s e a s i l y seen t o be X^ U X 2 where 45 X1 = {P € G 2 2 s . t . dim. P fl <e2> = 1} X 2 = {P € G 2 j 2 s-1"' p c ^ 1 * e"2, e"3>} . Since X2 = 11 and X^ = $(02~) where $ i s any orthogonal t r a n s f o r m a t i o n t a k i n g e^ t o e~2 , by 3.9 we have 12 12 = 02 + 11 i n G 2 >2 • i i ) In G 2 3 look at 13 D L 23. Here, we use : G 2 3 -> G 2 3 : 13" (1 #4(23~) = {P € G 2 > 3 s . t . dim. P fl <e"1, e"2> > 1 and dim. P fl <e 2, 6 3 , e.,> > 1} which i s X^ U X 2 where X 1 = {P € G 2 3 s . t . dim. P fl <e"2> = 1 } X 2 - {P € G 2 3 s . t . dim. P fl <e±, e~2> > 1 and P c <e^, e 2 , eg, e^>} Since X 2 = 12 and X^ = $(03) f o r <£ as i n ( i ) above, we have 13 f l L 23 = 12 + 03 i n G 2 3 . 4 i i i ) In G 3 3 look at 133 D L 233, using $ : % 3 G 3 3 : 133" n §4(233") = {P € G 3 3 s . t . dim. P fl <e±, e"2> > 1 and dim. P fl <e 2, eg, e^> > 1} which as i n ( i i ) above i s X^ U X 2 where i+6 X-L = {P € G 3 3 s . t . P (1 <e"2> = 1} X 2 = {P € G 3 3 s . t . dim. P 0 <e~1, e"^ > 1 and P c < e ; L, e 2 , e"3, e"4>} However, here X 2 = 123 and X 1 = #(033) f o r # as above. Thus i n G g 3 we have 133 f l L 233 = 123 + 033. i v ) In G 3 j 3 look at 123 (1 L 233. Let <$: R ->• R be an orthogonal transformation mapping <e^, e 2 , e 3> t o <e 2, e^, e^> and # the induced homeomorphism on G 3 3 . 123 fl #(233) = {P € G 3 3 s . t . dim. P 0 <e±, e 2> > 1, dim. P fl <e 2, e^, e^> > 1 and dim. P fl <e^, e 2 , e 3 , e^> > 2}. With a l i t t l e d i f f i c u l t y , t h i s can be seen t o be X^ U X 2 U X3 where X1 = {P € G 3 3 s . t . dim. P (1 <e"2> = 1 and dim. P fl <e^f e 2 , e 3 , e ^ > 2} X 2 = {P € G 3 3 s . t . dim. P (1 <e 1, e 2> > 1 and dim. P D <e^, e 2 , e^> > 2} X 3 = {P € G 3 3 s . t . dim. P fl <e 1, e 2> > 1 and . P c <i"lt . . . , _" >}. Under s u i t a b l e orthogonal transformations #^  , # 2 , and # 3 , 47 X± = ^ ( 0 2 3 ) , X 2 = * 2(Tl3") and X 3 = # 3(T22). Thus 123 DT 233 = 023 + 113 + 122 i n H (G 0 v) In G 2 ^ look at 34 D L 24, using $ = * 5: 24 fl $ 34 = {P € G 2 > 4 s . t . dim. P fl j ( R 3 ) > 1 and dim. P fl <e 2, e 3 , e^, e^> > 1} which i s X U Y where X = {P € G 2 4 s . t . dim. P fl <e~2, i~3> > 1} and Y = {P € G 2 4 s . t . dim. P fl j ( R 3 ) > 1 and P c j ( R 5 ) } . X = 3>^(14) and Y = 23 f o r some orthogonal t r a n s f o r m a t i o n ^ . Thus 34 f l L 24 = 14 + 23. v i ) In G 3 3 look at 222 D L 033. By 3 . 7 ( i ) , 222 f l L 033 = 0 i n G 3 3 , but l e t us t r y to make a nonempty i n t e r s e c t i o n , using 3^: 222" fl $ 5(033) = {P € G 3 3 s . t . dim. P fl <e~5> = 1 and P c <e^, . . . , e s>}-This i s the c e l l §5(022"), but | 022 | = 4 whereas | 222 | + j 033 [ - 9 5 = 6 + 6 - 9 = 3 . Thus we cannot use 3.9, although 222 and $ (033) (the open c e l l s ) are t r a n s v e r s e , having empty i n t e r s e c t i o n . 3.11 Remark: Using 3 . 7 ( i i i ) and 3.1 we can r e w r i t e the above r e s u l t s as cup products i n cohomology: i ) In H*(G 2 2 ) , 01* u 01* = 11* + 02* 48 i i ) In H*(G 2 3), 02* u 01* = 12* + 03* i i i ) In H*CG3 3) the same i s t r u e i v ) In H*(G 3 3), 12* u 01* = 112* + 22* + 13* v) In H*(G 2 4 ) , 02* u 01* = 12* + 03*. Note: 01* u 01* = 11* + 02* must hold i n H*(G, „) f o r a l l K ,n k ^ 2 and n > 2, s i n c e there are no other Schubert symbols of dimension 2. Complicated I n t e r s e c t i o n s and the General Formula I t i s not always p o s s i b l e t o i n t e r s e c t Schubert c e l l s as i n 3.10 so t h a t 3.4 can be used—3.14 has such examples—and f o r the cases where i t i s not p o s s i b l e , a more complicated argument, such as the one developed below, i s needed. The examples i n 3,14 lead up to the main formula i n 3.16. 3.12 D e f i n i t i o n : For k 5 k' d e f i n e g : {subsets of G, _} -+ {subsets of G, , \ K ,n K ,n as X c G v -> {P € G v, such t h a t P contains a K ,n K ,n k-plane j ( P ' ) c j ( R k + n ) f o r some P' 6 X}. 3.13 Claim: I f X i s a c y c l e i n ^(Gfc. n ) homologous to cr(l) + . . . + o"(m) where cr(i) are Schubert symbols i = 1, . . . , m, then g(x) i s a c y c l e i n ^ ^ . ( k ' _ k ) n ^ G k ' n^ homologous t o CT'(I) + . . . + <j'(m) where CT' ( i ) = ( o ( i ) 1 , c r(i) 0, . . . , cr(i), , n, n, . . . , n) V v ' k 1 - k f o r i = 1, . . . , m. This w i l l not be proved, but i t s v a l i d i t y i s suggested by the case X = ^(oTTT) U * 2 (O T 2 ) ) U. . . U *m(c7TmT) f o r some orthogonal transformations 3^, . . . , $ m . Here, the c l a i m i s obviously t r u e . 49 3.14 Examples: i ) Look at 24 |"IL 24 i n G 2 4 , using $ = $ 5 : 24" fl $(24) = {P € G 2 4 s . t . dim. P fl <e±, e"2, e"3> > 1 and dim. P D <e 3, e^, e 5> > 1}. This i s X U Y where X = {P € G 2 }t| s . t . dim. P D <e"3> = 1} and Y = {P € 24 n $(24) s . t . P c <e l s . . . , e5>} = 23" 0 *(23> Although 23 and $(23) do not s a t i s f y the t r a n s v e r s a l i t y c o n d i t i o n s i n 3.3 as c e l l s i n G 2 ^ , when considered as c e l l s i n G they do (by 3.6). Thus 23*n $ (23") i n G 2 3 i s homologous t o 23 f l L 23 = 13 + 22 (by 3.11), so Y = j(2"3~n $(23~)) i n G 2 ^ i s homologous t o 13 + 22 a l s o , since j preserves homology c l a s s . X i s $'(04) f o r some orthogonal transformation $', so combining the homology c l a s s e s determined by X and Y we o b t a i n 24 fl $ 24 = X U Y i s a c y c l e i n G 2 ^ homologous t o 1 3 + 2 2 + 0 4 . By 3.9 then, 24 fl 24 = 13 + 22 + 04 i n H,(G 0 u ) . In cohomology, by 3 . 7 ( i i i ) , . t h i s reads as 0 2 * u 02» = 13* + 22* + 04*. i i ) In G^ ^ look at 2334 n.L 2444 usi n g $ = $ 7: 2334" n $ 244¥ = {P 6 G^ 4 s . t . dim. P fl j(R3) > 1 _ dim. P fl j ( R 5 ) > 2 dim. P fl j ( R 6 ) > 3 and dim. P fl <e 5, eg, e y > - 1}. This i s X U Y where 50 X = 2334 fl # 24~W fl j ( G 4 3 ) = 2333 ("I $ 2333, and Y = {P € 2334 fl $ 2444 s . t . dim. P fl <e"5, e~6> > 1}, since f o r P € 2334 fl § 2444, i f P fl <e~5, e~6> = 0, then dim. P D ] ( R 7 ) = dim. P fl j ( R 6 ) + dim. P (1 <e"5, e"6, e~7> = 4 so tha t P must be i n X. As i n ( i ) above, 2333 fl <i> 2333 i n 3 i s homologous t o 2333 f l L 2333 = 1333 + 2233 (by 3.11 and 3 . 7 ( i i i ) ) , so that i n G 4 4 a l s o 2333 fl # 2333 i s a c y c l e homologous t o 1333 + 2233. Y = g(233 fl $(133) c G 3 3) f o r g as i n 3.12. (This can be e a s i l y checked.) In G3 3 , 233 and § 133 s a t i s f y the t r a n s v e r s a l i t y c o n d i t i o n s i n 3.3, thus 233 fl *(133) i n G3 3 i s a c y c l e homologous to 123 + 033 (by 3 . 1 0 ( i i i ) ) . Thus, by 3.13, Y = g(233 fl * 133" c G3 3) i s a c y c l e i n G^ ^ homologous t o 1234 + 0334. Combining the homology c l a s s e s of X and Y we have 2334 f l L 2444 = 1333 + 2233 + 0334 + 1234 i n H t ( G u . ) . In cohomology t h i s reads as 112* u 2* = 1113* + 1122* + 114* + 123*. The f o l l o w i n g two formulas (3.15 and 3.16) completely describe the cohomology r i n g s t r u c t u r e i n G as a r i n g generated by the Schubert cocycles (0, 0, . . . , 0 , a ) * over a l l i n t e g e r s a > 1. 3.15 Claim: Let CT = (CT^, . . . , c r k ) and r ) = ( 0 , 0, . . . , 0 , T ] k ) be Schubert c y c l e s i n G k n . i ) For j : G k j n - G k j n , , n' > n and 51 ( j *) as i n 3.8, we have ( J * ) - 1 ( C T * u T ] * ) = CT* u T } * . i i ) For 1 : G k n ^ G k i > n •, k' > k and ( l * ) - 1 as i n 3.8, we have ( l * ) _ 1 ( a * u T i * ) = ( C T ' ) * U On 1 )* where CT ' = (0, 0, . . . , 0, CT. , . . . , CTv ) and r\ - (0, 0, . . . , 0, rj, ), v v J 1 v , ^ k' - k n + k' - 1 This can be proved by going t o the i n t e r s e c t i o n product v i a D (3.7) and g e n e r a l i z i n g f o r ( i ) , the way i n which 3 . 1 0 ( i i ) and ( v i ) give the same answer i n cohomology (3.11) and f o r ( i i ) , the way i n which 3 . 1 0 ( i i ) and ( i i i ) give the same answer i n cohomology (3.11). -1 -1 Note: In general i t i s not tru e that ( j * ) and (1*) preserve cup p r o d u c t — s e e 3.19(iv) and ( v ) . 3.16 Claim: Let CT = (CT^ = 0, CT2 > 0, CT3, . . . , 0 " k ) and T) = (0, 0, . . . , 0, r ] k ) be Schubert symbols. In H*(G) we have cr* u r|* = Z ( C T ' ) * , summed over a l l cr' = (cr' , . . . , CT'), Schubert 1 K symbols of dimension |CT'| = |CT| + r ) k such t h a t CT^ 5 cr| 5 CK + 1 f o r • < CT' k - CTk • i = 1 , . . . , k - 1 and cr, 5 ,' I n d i c a t i o n of proof: For CT and T) as above, define CT • n, as ZCT' f o r CT' as above. Claim: cr • r\ s p l i t s i n t o two sums Z^cr' and Z2CT' where Z^ i s over CT' s . t . CT' = (a£, CT^ + 1, o'l + 1, . . . , o» + 1) 52 f o r a l l CT" i n the sum f o r ( 0 , CT2 - 1 , 0-3 - 1 , • • • , CTk - 1 ) ' ( 0 , 0 , , 0 , T ] K ) Z 2 i s over CT ' s . t . cr' = (cr^' + 1, crjj + 1 , , CT" + 1) k f o r a l l CT" i n the sum f o r ( 0 , C T 2 - 1 , CTg - 1 , . . , cr - 1 ) • ( 0 , 0 , , 0 , T K - 1). pf: For cr' i n the sum f o r cr • r\ t e i t h e r = cr 2 i n which case CT' i s i n Z 0 , or cr' < cr i n which case cr' i s i n . 2 1- 2 1 Conversely, f o r cr' i n Z^ or Z 2 , i t i s easy t o see th a t CT' s a t i s f i e s cr^ 5 CT.! 5 o~^+^ and |CT'| = |CT| + r| k . By 3.15, the cup product cr* u r\* can be taken i n H*(G k n ) without l o s i n g any terms. Go to the corresponding i n t e r s e c t i o n product i n H (G. ) v i a the Poincare d u a l i t y ( 3 . 7 ( i i i ) ) . & k ,n J From here we can g e n e r a l i z e the method and r e s u l t i n 3.14(11), and we get X i s homologous to the dual ( 3 . 7 ( i i i ) ) of Z* and Y i s homologous t o the dual ( 3 . 7 ( i i i ) ) of Z* . In t h i s way, 3.16 can be proved by i n d u c t i o n on |CT| and r\ , . Note: The above formula i n H*(G) holds i n H*(G, ( C ) ; Z) where K 5TI i t i s known as P i e r i ' s formula (see [3]). 3.17 Claim: In H*(G) we have, ( C T C T cr 1* 1 1 ' 2' • * • ' °k ; CT(CTk)* CT(CT, CT(CTk + 1 ) : - 1 - D * °(Vl)ft CT(CT1 - k + 1 ) * CT(CT - k + 2 ) * . cr(crk + k - 1 ) * * °^CTk-l + k - 2 ) " CT(CT1)* 53 the determinant, where the product i s cup product, and cr(a) = (0, 0, . . . , 0, a) f o r a > 0 and 0 f o r a < 0. I n d i c a t i o n of proof: This f o l l o w s a l g e b r a i c a l l y from 3.16 by i n d u c t i o n on the s i z e o f the m a t r i x ; e.g., f o r k = 2 we have (CT1 , CT2 )* = O(CT2)5' CT(CT2 + I) --CT(CT1 - 1 ) * a ( a 1 ) * CT(CT9)" U CTCCT-, ) * + o-(o\. - 1 ) * u CT(CT0 + 1 ) * (cr-p o"2) + (CT1 - 1, CT2 + 1) + . . . + (o, CT2 + CT1) . + (0, o 2 + CT1) + (CT1 - 1, CT2 + 1) + (CT1 - 2, CT2 + 2) + . = (o±, a 2 ) (The second l i n e i s from 3.16.) Note: In H * ( G k n ( C ) , Z) t h i s i s c a l l e d the determinantal formula (see [ 3 ] ) . 3.18 Remark: i ) The r e s u l t s i n 3.16 and 3.17 are a l s o v a l i d i n H*(G K R ) i f we use the p r o j e c t i o n s 1* : H*(G) •+ H*(G K) and j * : H*(G k) -*-H*(G k > n). (See 3.8.) i i ) They are a l s o v a l i d f o r H*(S2(cr)) f o r any Schubert symbol CT, i f we use i * : H*(G, ) -»- H*(f2(a)) where K, n i : S2(CT) -* G, i s the embedding. K ,n 3.19 Examples using 3.18 above: The shortened n o t a t i o n i s used a g a i n , and f o r convenience we w i l l drop the 5' c's, as everything i s i n cohomology. 54 i i ) H*('S(1, 3)) cohomology products: 1 11 2 1 11 + 2 11 12 2 12 + 3 12 13 3 13 13 i i i ) H * ( l , 1, 3)) cohomology products: 1 11 2 1 11 + 2 11 111 + 12 0 2 12 + 3 112 + 13 13 112 112 0 113 12 112 + 13 113 113 3 13 113 0 112 113 13 113 113 | The next two examples are of i n d i v i d u a l cup products i n d i f f e r e n t Grassmannians. i v ) 124 u 2: In H*(G) i t i s 1224 + 1134 + 1125 + 234 + 225 + 144 + 135 + 126. In H*(G 3 4 ) i t i s 234 + 144. In H*(G 3 5) i t i s 234 + 225 + 144 + 135. In H*CG4 u ) i t i s 1224 + 1134 + 234 + 144; i . e . , f o r j : G 3 ^ ->• G 3 5 and 1 : G 3 ^ ->• G^ 4 (j 5 ' 0 and ( l 5 ' 0 ~ do not preserve cup product. v) 12 u 113 = (1 * 2 + 3) u 113: In H*(G) i t i s 11123 + 11114 + 1223 + 1133 + 1115 + 233 + 224 + 134 + 125. For j : G 3 > 3 - G g ^ and 1 : G 3 j 3 - G ^ —1 ' 1 and (1*) do not preserve cup product. Remark: In G 3 3 , 12 u 113 can be determined to be 233 (as above) by going t o the Poincare duals and using the i n t e r s e c t i o n method as i n 3.10. 3.20 Conclusion: The product s t r u c t u r e i n H*(G), H*(G k) and H*(G k n ) i s w e l l known from c h a r a c t e r i s t i c c l a s s e s (see [1]). H*(G k) i s generated by the S-W cl a s s e s OJ^, . . . , of the t a u t o l o g i c a l bundle, and H"(G k n ) i s generated by co^, . . . , co^ . and co^, . . . , under the c o n d i t i o n s (1 + co^  + . . . + co k)(l + co1+ . . . + ccijj) = 1, where the Sj are the S-W c l a s s e s of the normal bundle. I t i s known (see [2]) t h a t COJ i s the cohomology c l a s s c r ( j ) * (from 3.17). By the map : G k n ->• G n k which i n cohomology must map «j t o C0j , we can f i n d the Schubert cocycle corresponding t o co^ : (cr( j ) ) = ( 1 , 1, . . . , 1) which we can c a l l """(j). V v J j times 56 Thus = co. , and T(.J)* must generate H*(G k). (This could be checked a l g e b r a i c a l l y u s i n g 3.16 and 3.17.) I t can be determined a l g e b r a i c a l l y from 3.16 and 3.17 t h a t i n G, ( j ) ' i s obtained r e c u r s i v e l y from C f ( j ) by T ( j ) * = CT(j)* + CT(j - 1)* u T ( l ) * + + o(j - 2 ) * w T ( 2 ) * + . . . + CT(1)*T(J - 1 ) * . This r e f l e c t s the i d e n t i t y (cOj + C0j_^ + . . . + CO 1)(COJ+ Sj_ : L + . . . + o o ^ ) = 1 i n c h a r a c t e r i s t i c c l a s s e s . The above shows that f o r G, G k and G^ n , the cohomology r i n g has a simple d e s c r i p t i o n . However, i n the cohomology of Schubert v a r i e t i e s , the product s t r u c t u r e i s more complicated, and the simp l e s t method of d e s c r i p t i o n seems to be t o give a t a b l e f o r cup product as i n 3 . 1 9 ( i i ) and ( i i i ) . 57 References [1] J . W. M i l n o r and J . D , S t a s h e f f C h a r a c t e r i s t i c C l a s s e s , Annals of Mathematics Studies P r i n c e t o n U n i v e r s i t y P r e s s . 12] S. L. Kleiman Geometry of Grassmannians and a p p l i c a t i o n s . . . , Publ. Math. I . H. E. S. No, 36, P a r i s (1969). [3] S. L. Kleiman and D. Laksov Schubert C a l c u l u s , American Math Monthly, 79, pages 1061-1082 (1972), [4] W. V. D. Hodge and D. Pedoe Methods of a l g e b r a i c geometry v o l . I and I I , Cambridge U n i v e r s i t y Press, 1953. [5] J . T. Schwartz D i f f e r e n t i a l Geometry and Topology, Gordon and Breach [6] S. S. Chern and Y u h - l i n Jou On the o r i e n t a b i l i t y of d i f f e r e n t i a b l e m a n i f o l d s , S c i . Rep. Nat. Tsing Hua Univ. 5, pages 13-17 (1948) [7] S. I . Al'ber Homologies of homogeneous spaces, Dokl. Akad. Nauk. USSR (N.S.) 98, pages 325-328, 1954 (Russian) 58 [8] H. Iwamoto On i n t e g r a l i n v a r i a n t s and B e t t i numbers of symmetric Riemannian manifolds. I J . Math. Soc. Japan 1, pages 91-110 (1949) [9] C. Ehresmann Sur l a t o p o l o g i e de c e r t a i n espaces homogenes, Ann. Math., 35 (1934) [10] S. Lefschetz Topology American Math. So c i e t y Colloquium P u b l i c a t i o n s , Volume XII New York (1930) 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0079494/manifest

Comment

Related Items