Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Hydrogen sulphide oxidation under claus furnace conditions Bennett, Howard Austin 1979

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1979_A1 B35.pdf [ 14.02MB ]
Metadata
JSON: 831-1.0058793.json
JSON-LD: 831-1.0058793-ld.json
RDF/XML (Pretty): 831-1.0058793-rdf.xml
RDF/JSON: 831-1.0058793-rdf.json
Turtle: 831-1.0058793-turtle.txt
N-Triples: 831-1.0058793-rdf-ntriples.txt
Original Record: 831-1.0058793-source.json
Full Text
831-1.0058793-fulltext.txt
Citation
831-1.0058793.ris

Full Text

HYDROGEN SULPHIDE OXIDATION UNDER CLAUS FURNACE CONDITIONS by HOWARD AUSTIN BENNETT B.A.Sc. U n i v e r s i t y of Toronto, 1968 M.A.Sc. Un i v e r s i t y of Toronto, 1969 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES Department of Chemical Engineering We accept t h i s t h e s i s as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA January, 1979 ©Howard A u s t i n Bennett, 1979 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e Head o f my D e p a r t m e n t o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f C h e m i c a l E n g i n e e r i n g The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 W e s b r o o k P l a c e V a n c o u v e r , C a n a d a V6T 1W5 D a t e M a r c h 2 0 , 1 9 7 9 Supervisor: Professor Axel Meisen - ABSTRACT The oxidation of hydrogen sulphide under Claus furnace conditions (800 to 1500°K and one atmosphere pressure) was studied theoretically and experimentally. Equilibrium compositions of mixtures resulting from reactions, between H2S and air were calculated for temperatures and O2/H2S ratios ranging from 600 to 2000°K and 0.05 to 1, respectively. Forty-four compounds containing nitrogen, hydrogen, oxygen and sulphur were assumed to be present at equilibrium, but only 25 had concentrations exceeding 0.1 ppm. Eleven carbon compounds were later included, but only five of them had. concentrations greater than 0.1 ppm. Sulphur yields in the furnace were found to increase about 10% when O2/H2S ratios less than 0.5 (stoichiometric) are used. Feed impurities such as NH3.(below 1600°K), H20 and C0 2 diminish the sulphur yields. A computer model was developed to simulate a Claus plant consist-ing of a furnace and two catalytic converters operating adiabatically. The model showed that the maximum sulphur yields for the plant are obtainable when operating with stoichiometric a i r . Preheating the furnace feed or recycling part of the furnace products enhances the overall yield only slightly. Enriching the combustion air with pure oxygen causes the sulphur yield to drop since, with N2 absent, the furnace temperature rises to over 2200°K. Above 1750°K, the sulphur yield f a l l s with temperature. To determine equilibrium compositions experimentally, various i i mixtures of known H2S/air r a t i o s were introduced into a quartz v e s s e l located i n a furnace and operating between 800 and 1500°K. The contents of t h i s v e s s e l were sampled and analysed by gas chromatography. Experimental measurements f o r H2S dissociation were i n ex c e l l e n t agree-19 ment with Raymont's r e s u l t s and t h e o r e t i c a l p r e d i c t i o n s . Results f o r H2S oxidation showed the same trend as the t h e o r e t i c a l p r e d i c t i o n s , but did not agree q u a n t i t a t i v e l y ; the experimental sulphur y i e l d s exceeded the predicted values by up to 15%. Reasons f o r these discrepancies are discussed. i i i TABLE OF CONTENTS ABSTRACT . LIST OF TABLES . . . . . . . LIST OF FIGURES ACKNOWLEDGEMENTS . CHAPTER 1. INTRODUCTION LITERATURE REVIEW 2.1 Theory 2.2 Experimental . . . . . . . . . 2.3 Claus Process . . . . . . . . 2.3.1 Controls . . . . . . 2.3.2 Furnace 2.3.3 Reheaters 2.3.4 C a t a l y t i c Converters 2.3.5 Sulphur Wash Tower . 3. THEORY 3.1 Eq u i l i b r i u m Compositions 3.1.1 Acid Gas Containing Pure H 2S Only 3.1.2 Impurities i n Acid Gas 3.1.3 Hydrogen Sulphide D i s s o c i a t i o n 3.2 Adiabatic Flame Temperature . . . . . . 3.3 Recycle 3.4 Thermochemical Data . 3.5 Vapour Pressure of Sulphur 4. EXPERIMENTAL APPARATUS 4.1 Requirements of the Apparatus . . . . . . 4.2 Apparatus and P r i n c i p l e s of Operation 4.2.1 Feed Mixture Preparation . . . 4.2.2 Furnace 4.2.3 Quartz E q u i l i b r i u m Vessel . . . 4.2.4 Sampling 4.3 Gas Chromatography 4.3.1 Requirements of the G.C. Column 4.3.2 Analysis of Four Compounds . . 4.3.2.1 Single column operating isothermally i v 4.3.2.2 Three columns operating isothermally 64 4.3.2.3 One column with temperature programming . . . 67 4.3.3 Analysis of Three Compounds 67. 4.3.4 Column Packings 69 4.3.5 C a l i b r a t i o n of the Gas Chromatograph . . . 72 4.4 C a l c u l a t i o n of Mixture Compositions . . . . . . . 72 4.4.1 C a l c u l a t i o n of the Feed Composition . . . . 72 4.4.2 Composition of the Sampled Gases 76 4.4.3 Composition of the Equilibrium Vessel Contents 77 4.4.4 D i s s o c i a t i o n of Hydrogen Sulphide 78 5. THEORETICAL RESULTS 80 5.1 Claus Furnace 80 5.1.1 Acid Gas Containing H 2S Only 80 5.1.2 Acid Gas Containing Carbon Compounds . . . 91 5.1.3 Acid Gas Containing Ammonia 102 5.1.4 Hydrogen Sulphide D i s s o c i a t i o n 102 5.2 Claus Plant 105 5.2.1 Oxygen Concentration i n the Furnace Feed . 107 5.2.2 Enriching Combustion A i r with Oxygen . . . 109 5.2.3 Preheating the Furnace Feed 109 5.3 E f f e c t of Recycle 115 6. EXPERIMENTAL RESULTS 125 6.1 Averaging Technique 125 6.2 Comparison of Experimental with T h e o r e t i c a l Results • 125 6.2.1 E f f e c t of Temperature 140 6.2.2 E f f e c t of PA 140 6.3 Causes of Deviation between Experimental and T h e o r e t i c a l Results 142 6.3.1 High Temperature Reversion 142 6.3.2 H 2S - S0 2 Reaction at Low Temperatures . . 145 6.3.3 Sample Size 145 6.3.4 Trace Compounds 147 6.3.5 The o r e t i c a l Data 147 6.3.6 Temperature Measurement 149 6.3.7 Error Analysis . 149 7. CONCLUSIONS 153 7.1 T h e o r e t i c a l Equilibrium Compositions and Y i e l d s . . 153 7.2 Claus Plant Model . 153 7.3 Experimental Equilibrium Compositions 154 NOMENCLATURE 155 REFERENCES ' 159 v APPENDIX A EXPERIMENTAL PROCEDURE . . . I 6 3 A . l P r e p a r i n g t h e Feed M i x t u r e . . . 163 A.2 I n t r o d u c i n g t h e M i x t u r e i n t o t h e E q u i l i b r i u m V e s s e l 163 A.3 S a m p l i n g t h e E q u i l i b r i u m V e s s e l 164 A. 4 C a l i b r a t i o n o f Gas Chromatograph 164 B CALCULATOR PROGRAMS AND SAMPLE CALCULATIONS 1 6 6 B. l C o n s t a n t s f o r Gas Chromatograph C a l i b r a t i o n 1 6 6 B.2 E q u i l i b r i u m V e s s e l C o m p o s i t i o n s . . . . 1^0 B.2.1 Hydrogen S u l p h i d e O x i d a t i o n 170 B.2.2 Hydrogen S u l p h i d e D i s s o c i a t i o n 171 B.3 C o m p o s i t i o n s ' o f a M i x t u r e o f H 2S, S 0 2 and N 2 . . I 7 3 C CALIBRATION CURVES FOR ROTAMETERS i 7 5 D EXPERIMENTAL RESULTS 1 8 2 E COMPUTER PROGRAMS 2 ° 1 F ERROR ANALYSIS 231 v i LIST OF TABLES Table 2.1 Summary of various t h e o r e t i c a l papers on the Claus Process 11 2.2 Experimental sulphur y i e l d s found by various authors . 23 3.1 Equilibrium equations f o r the system H 2 S - a i r 34 3.2 Equilibrium equations for the system H2S - a i r -CO2 - NH3 37 3.3 Equilibrium equations for the system H2S - CHt+ - NH3 . 39 3.4 Thermochemical data not a v a i l a b l e from McBride et a l . . 46 3.5 Matrix A 47 3.6 Vector d ± 47 3.7 Heat c a p a c i t i e s of gaseous sulphur molecules from Rau et a l 49 3.8 Matrix A 50 3.9 McBride c o e f f i c i e n t s calculated i n t h i s thesis . . . . 51 3.10 Comparison of standard errors of data of S2 generated from McBride c o e f f i c i e n t s . . 52 3.11 Equations for vapour pressure of sulphur . 54 4.1 L i s t of equipment 60 4.2 Possible chromatographic columns for separating H 2 , N 2 , H2S and SO2 65 4.3 Gas chromatography references f or separations i n v o l v i n g H2S and/or SO2 66 4.4 Thermal c o n d u c t i v i t i e s of various gases at 0°C . . . . 68 4.5 Operating conditions of the gas chromatograph 70 6.1 . Moles of product formed at various temperatures from 100 moles of H2S and 238 moles of a i r (stoichiometric 6.2 E f f e c t of sampling time and P2O5 at 1200°K 144 6.3 Check for H2S - SO2 r e a c t i o n at low temperatures . . . 146 6.4 E f f e c t of changes i n F° of H 2 S , SO2, H2O or S2 on compositions at 1300°K 148 6.5 Comparison of -F° for SO2 computed by McBride c o e f f i c i e n t s with that l i s t e d i n McBride of JANAF . . . 150 6.6 Comparison of -F° f o r H 20 computed by McBride c o e f f i c i e n t s with that l i s t e d i n McBride or JANAF . . . 151 6.7 Furnace temperature p r o f i l e s 152 B . l TI-58 program for c a l c u l a t i n g G.C. c a l i b r a t i o n curve constants and for f i n d i n g e q u i l i b r i u m v e s s e l compositions for H 2S oxidation r - ^ 7 B.2 T y p i c a l c a l i b r a t i o n data for the gas chromatograph (Run 77) .169 B.3 TI-58 program for c a l c u l a t i n g e q u i l i b r i u m v e s s e l compositions for H 2S d i s s o c i a t i o n 172 B.4 TI-58 program for c a l c u l a t i n g the composition of a mixture of H 2S, S0 2 and N 2 1 7 i v i i ' D.l Experimental r e s u l t s of hydrogen sulphide oxidation at 800°K for various PA 1 8 3 D.2 Experimental r e s u l t s of hydrogen sulphide oxidation at 900°K for various PA 1 8 5 D.3' Experimental r e s u l t s of hydrogen sulphide oxidation at 1000°K for various PA • <• • 1 8 7 D.4 Experimental r e s u l t s of hydrogen sulphide oxidation at 1100°K for various PA 1 8 9 D.5 Experimental r e s u l t s of hydrogen sulphide oxidation at 1200°K f o r various PA . 1 9 1 D.6 Experimental r e s u l t s of hydrogen sulphide oxidation at 1300°K for various PA 1 5 3 D.7 Experimental r e s u l t s of hydrogen sulphide oxidation at 1400°K for various PA 1 9 5 D. 8 Experimental r e s u l t s of hydrogen sulphide oxidation at 1500°K for various PA 1 9 8 E. l H 2S D i s s o c i a t i o n 202 E.2 H 2S Oxidation 207 E.3 Claus Plant 213 E. 4 McBride C o e f f i c i e n t s 228 F. l Estimate of errors i n stoichiometric a i r , PA, by flow meters (Run 77) , 232 F.2 Estimates of errors i n chemical compositions and sulphur y i e l d 233 v i i i \ LIST OF FIGURES Figure 1.1 Flowsheet of a t y p i c a l straight-through Claus plant . . 3 2.1 T h e o r e t i c a l equilibrium conversions 9 3.1 Flowsheet of Claus plant with preheat and recy c l e . . . 32 4.1 Schematic diagram of the experimental apparatus . . . . 56 4.2 Experimental apparatus 57 4.3 T y p i c a l chromatogram (Run 77) 71 4.4 T y p i c a l c a l i b r a t i o n curve f o r H 2 (Run 77) 73 4.5 T y p i c a l c a l i b r a t i o n curve for H 2S (Run 77) . . . . . . 74 4.6 T y p i c a l c a l i b r a t i o n curve f o r S0 2 (Run 77) 75 5.1 E f f e c t of temperature on the p a r t i a l pressure of harmless compounds (with the exception of NO) 81 5.2 E f f e c t of temperature on. the p a r t i a l pressure of sulphur compounds 82 5.3 E f f e c t of temperature on the p a r t i a l pressure of sulphur polymers 83 5.4 Comparison of sulphur y i e l d s calculated by various workers (PA = 100) 86 5.5 E f f e c t of temperature and PA on sulphur y i e l d . . . . . . 88 5.6 E f f e c t of PA on sulphur y i e l d at various temperatures 89 5.7 E f f e c t of PA on the adiabatic flame temperature and on the corresponding sulphur y i e l d 90 5.8 E f f e c t of temperature on the p a r t i a l pressure of harmless compounds (with the exception of NO) 92 5.9 E f f e c t of temperature on the p a r t i a l pressure of sulphur polymers 93 5.10 E f f e c t of temperature on the p a r t i a l pressure of carbon compounds 94 5.11 E f f e c t of temperature on the p a r t i a l pressure of sulphur compounds . . . . . . 95 5.12 E f f e c t of temperature and C0 2 on the sulphur y i e l d . . 97 5.13 E f f e c t of temperature and PA on the sulphur y i e l d . . . 98 5.14 E f f e c t of PA on the adiabatic flame temperature and on the corresponding sulphur y i e l d 100 5.15 E f f e c t of H 20 and C0 2 on the sulphur y i e l d 101 5.16 E f f e c t of ammonia on the sulphur y i e l d ( s u f f i c i e n t a i r to ox i d i s e the H 2S only) 103 5.17 E f f e c t of ammonia on the sulphur y i e l d ( s u f f i c i e n t a i r to ox i d i s e both the H 2S and the NH3) 104 5.18 E f f e c t of ammonia on sulphur y i e l d s from H 2S d i s s o c i a t i o n 106 5.19 E f f e c t of PA on Claus plant y i e l d s and temperatures ' 108 i x 5.20 E f f e c t of enriching combustion a i r with oxygen on Claus plant y i e l d s and temperatures . . . . 110 5.21 E f f e c t of temperature of furnace feed on Claus plant y i e l d s and temperatures 112 5.22 E f f e c t of temperature of f i r s t converter feed on Claus plant y i e l d s and temperatures 113 5.23 E f f e c t of temperature of second converter feed on Claus plant y i e l d s and temperatures 114 5.24 E f f e c t of re c y c l e on y i e l d at 1300°K with PA = 100 . 116 5.25 E f f e c t of temperature on sulphur y i e l d f o r various recycles 117 5.26 E f f e c t of recycle on Claus plant y i e l d s 118 5.27 E f f e c t of re c y c l e on temperature of the Claus furnace 120 5.28 E f f e c t of recy c l e on temperature of the c a t a l y t i c converters 121 5.29 E f f e c t of recy c l e on y i e l d of the f i r s t c a t a l y t i c converter 122 5.30 E f f e c t of recy c l e on y i e l d of the second c a t a l y t i c converter 124 6.1 """ E f f e c t of PA on H 2 . . . . 126 6.2 E f f e c t of PA on H 2S . . . 127 6.3 E f f e c t of PA on S0 2 128 6.4 E f f e c t of PA on N 2 129 6.5 E f f e c t of PA on H 20 130 6.6 • E f f e c t of PA on S 2 131 6.7 E f f e c t of PA on sulphur y i e l d at 800°K 132. 6.8 E f f e c t of PA on sulphur y i e l d at 900°K 133 6.9 E f f e c t of PA on sulphur y i e l d at 1000°K 134 6.10 E f f e c t of PA on sulphur y i e l d at 1100°K . . . . . . . 135 6.11 E f f e c t of PA on sulphur y i e l d at 1200°K 136 6.12 E f f e c t of PA on sulphur y i e l d at 1300°K 137 6.13 E f f e c t of PA on sulphur y i e l d at 1400°K 138 6.14 E f f e c t of PA on sulphur y i e l d at 1500°K 139 6.15 E f f e c t of temperature on the concentration of H 2 formed from H 2S d i s s o c i a t i o n ' 143 C l C a l i b r a t i o n of rotameter Ch.E 2912B (Gilmont Model F-2000, Size 10) for H 2 176 C.2 C a l i b r a t i o n of rotameter Ch.E 2912B (Gilmont Model F-2000, Size 10) for H 2S . 177 C.3 C a l i b r a t i o n of rotameter Ch.E 2912B (Gilmont Model F-2000, Size 10), for S0 2 . 178 C.4 C a l i b r a t i o n of rotameter Ch.E 3107A (Gilmont Model F-1200, Size 2) , for N 2 179 C.5 C a l i b r a t i o n of rotameter Ch.E 2600 (Gilmont Model F-1100, Size 1) for a i r 180 C.6 C a l i b r a t i o n of rotameter 2912A (Gilmont Model F-2000, Size 10) for H 2S 181 x ACKNOWLEDGEMENTS The author wishes to thank the f o l l o w i n g : — D r . A x e l Meisen f o r h i s p a t i e n t help during t h i s work; — : N i n a Thurston f o r her e x c e l l e n t t y p i n g ; --Monica G u t i e r r e z -who drew the f i g u r e s ; — D on Sheraton who took the photograph of the apparatus; --The workshop of the Chemical Engineering Department and the-glassblowing shop of the Ph y s i c s Department f o r help i n c o n s t r u c t i n g the experimental apparatus; — T h e f a c u l t y , students and others of the Chemical Engineering Department f o r t h e i r help and encouragement; —My parents f o r t h e i r p a t i e n c e , love and encouragement. The f i n a n c i a l support from the N a t i o n a l Research C o u n c i l of Canada i n the form of a s c h o l a r s h i p and research grant i s g r a t e f u l l y acknowledged. x i CHAPTER 1 INTRODUCTION Canada is the world's second largest supplier of elemental sulphur, producing seven million tons in 1976.^ Virtually a l l Canadian sulphur is produced from hydrogen sulphide by the Claus process. . The two major sources of H2S in Canada arise from natural gas processing and petroleum refining. Hydrogen sulphide, an undesirable constituent of most Canadian natural gas, is usually removed by absorption into amine solutions. Carbon dioxide, which may also be present in natural gas, is removed together with the H2S, as are small quantities of methane and higher hydrocarbons. In petroleum refining, H2S is the by-product of hydrofining (hydrogenation of sulphur-bearing feedstocks), and is also obtained from sour water stripping. Depending on refinery operation, ammonia and C02 may also be associated with the H2S stream. Thus, H2S from petroleum refining or natural gas processing can contain ammonia, carbon dioxide, methane and higher hydrocarbons and is usually saturated with water vapour. A mixture of such compounds is often called an "acid gas." Until f a i r l y recently i t was common practice either to vent the acid gas directly to the atmosphere or to incinerate i t before discharge. Incineration oxidises the H2S to S0 2, which, although less odorous than 1 2 H 2 S , i s s t i l l o f f e n s i v e . To minimise p o l l u t i o n , the acid gas nowadays i s usually treated by the Claus process, to convert the H 2S to elemental sulphur. This sulphur recovery process, as developed by C. F. Claus and improved by H. B'ahr, i s based on the following main reactions: H 2S + 3 / 2 0 2 = S0 2 + H 20 (1.1) 2 H 2S + S0 2 = 3/j S + 2 H 20 (1.2) These equations can be combined to give the s o - c a l l e d " o v e r a l l Claus r e a c t i o n , " H 2S + 1/2 0 2 = 1/j S + H 20 (1.3) Subscript j denotes the number of atoms per molecule of sulphur vapour. At temperatures le s s than 150°C,j - 8, whereas above 800°C, j - 2. For temperatures between 150 and 800°C, j l i e s between 8 and 2. There are three main v a r i a t i o n s of the Claus p r o c e s s — " s t r a i g h t 2 through," " s p l i t stream," and " d i r e c t oxidation." Since the " s t r a i g h t through" process i s the most e f f i c i e n t and hence the preferred version, only i t w i l l be discussed i n t h i s t h e s i s . However, i t cannot be used to t r e a t acid gases containing le s s than about 50% H 2S, or more than about 3 2% hydrocarbons. For such acid gases, e i t h e r the s p l i t flow or d i r e c t 3 oxidation process, described i n d e t a i l by Estep et a l . , must be used. In the s t r a i g h t through process, the e n t i r e acid gas i s sent to the Claus furnace where i t i s oxidised with a i r under free flame conditions at about 1100°C. To achieve maximum conversion, operating experience has shown that the amount of a i r should be stoichiometric with respect to Eq. 1.3, i . e . , the H 2S/0 2 r a t i o should be 2/1. The furnace products, which are mainly nitrogen, water vapour, elemental sulphur vapour, S0 2, and unreacted H 2S, are f i r s t cooled to 150 °C 260 °C 165 °C FURNACE AND WASTE HEAT BOILER 1050 °C 4 4' AIR ACID GAS 210 °C 135 fC f LIQUID SULPHUR Figure 1.1: Flowsheet of a typical straight-through Claus plant . Legend: C—sulphur condenser CC—catalytic converter H—heater approximately 380°C i n a waste heat b o i l e r . This i s followed by further cooling to about 150°C i n a condenser, where the elemental sulphur i s removed as a l i q u i d . Before entering the c a t a l y t i c converter, the process gases are reheated to near the optimal temperature f o r the main converter r e a c t i o n , Eq. 1.2. Since t h i s r e a c t i o n i s exothermic, low temperatures favour the equilibrium sulphur y i e l d , however, high temperatures are necessary to increase the r e a c t i o n rate and to prevent sulphur from condensing and f o u l i n g the c a t a l y s t . The optimal tempera-ture i n most plants appears to be about 260°C. To promote t h i s r e a c t i o n , alumina i s the c a t a l y s t commonly used. The elemental sulphur produced i n the converters i s condensed and drained to sulphur storage p i t s . Most of the elemental sulphur mist from the l a s t condenser i s trapped by a coalescer before the gases are incinerated. The primary purpose of the i n c i n e r a t o r i s to oxidise a l l sulphur compounds to S0 2 before d i s - i charge to the atmosphere. Well-operated Claus plants with two c a t a l y t i c converters recover about 95% of the sulphur i n the acid gas feed. This recovery i s com-prised of the following approximate y i e l d s : furnace 60%, f i r s t c a t a l y t i c converter 20%, second converter 15%. If a Claus plant, operating at 95% recovery, processes acid gas containing 1000 tons per day of sulphur, i t would discharge about 100 tons per day of sulphur dioxide to the atmos-phere. S t r i c t e r p o l l u t i o n c o n t r o l regulations, such as those i n e f f e c t i n A l b e r t a and other provinces, require that large sulphur plants must reach recoveries of about 99%. Most conventional Claus plants are unable to achieve such performance f o r the following main reasons: (i ) Maximum furnace and converter y i e l d s are attained only when the combustion a i r i s exactly s t o i c h i o m e t r i c . For an a i r surplus 5 . or d e f i c i e n c y of X%, the sulphur loss i s also of the order of X%. Sophisticated c o n t r o l systems have been developed to assure that the amount of combustion a i r i s always st o i c h i o m e t r i c . Although IS they can increase sulphur y i e l d as much as 3 % , such systems are 4 usually quite c o s t l y , ( i i ) The mixing of a i r and acid gas i n the furnace may not be complete because of imperfect burner design, ( i i i ) I f the acid gas contains carbon compounds, then COS and CS 2 may be formed i n the furnace. These compounds pass r e l a t i v e l y unaffected through the c a t a l y t i c converters, and are oxidised to C0 2 and S0 2 only i n the i n c i n e r a t o r , (iv) As c a t a l y s t s become deactivated, le s s H 2S and S0 2 are converted to sulphur. A f t e r a year or more, the c a t a l y s t s require regener-a t i o n or replacement. In a conventional Glaus p l a n t , the gas from the f i n a l coalescer, termed the " t a i l gas," can be treated to improve the o v e r a l l y i e l d . Usually a unit i s added down-stream of the coalescer to trea t the gas before i t i s incinerated. However, the cost of such t a i l - g a s conditioning u s u a l l y exceeds that of the basic Claus plant. An a l t e r n a t i v e to t a i l gas treatment may be to improve the perform-ance of the Claus process i t s e l f but t h i s requires a better understanding of the process than i s currently a v a i l a b l e . One important aspect of t h i s i s to determine accurately the thermodynamic equ i l i b r i u m between hydrogen sulphide and a i r under Claus process conditions. Although e q u i l i b r i a are never exactly achieved i n p r a c t i c e because of k i n e t i c l i m i t a t i o n s , they nevertheless provide u s e f u l information on maximum at t a i n a b l e sulphur y i e l d s and chemical compounds l i k e l y to be formed. 6 Of s p e c i a l i n t e r e s t i s the Claus furnace, since t h i s unit u s u a l l y converts over 50% of the H2S i n the acid gas to sulphur. Moreover, r e l a t i v e l y l i t t l e research has been done on the furnace. Although the e f f e c t on furnace performances of parameters such as acid gas composition i s important, t h e i r e f f e c t on the e n t i r e plant must also be considered. In t h i s t h e s i s , a Claus furnace and two converters are modelled. This model i s then used to study the e f f e c t of the following on furnace and converter equilibrium compositions: — a c i d gas impurities ( N H 3 , H 2 0 , CO2 and C H i J ; — t h e amount of a i r added to the acid gas; —temperature of the feed stream to the furnace and to each converter. The r e s u l t s of t h i s thesis should help to provide guidance for the optimal operation of Claus furnaces. CHAPTER 2 LITERATURE REVIEW This chapter reviews important papers on the Claus process under the following headings: theory, experiments and industry. For a more general review, the reader i s r e f e r r e d to the p u b l i c a t i o n by Estep et a l . 3 2.1 Theory Although the Claus process was developed i n the 1890's and modern plants date from the 1940's, p r a c t i c a l l y no t h e o r e t i c a l i n v e s t i g a t i o n s were published u n t i l 1953, when Gamson and Elkins"' presented a major study. They ca l c u l a t e d equilibrium compositions of H 2S and a i r mixtures under Claus process conditions and compared t h e i r predictions with t h e i r experimental r e s u l t s . The following paragraphs deal with Gamson and E l k i n s ' t h e o r e t i c a l work; t h e i r experiments are discussed i n Sect. 2.2. Gamson and E l k i n s considered the following reactions to determine the e q u i l i b r i u m composition: 2 H 2S + 0 2 = 2 H2Q + S 2 S 6 = 3 S 2 S 8 = 4 S 2 2 H 2S + 3 0 2 = 2 H 20 + 2 S0 2 2 H 2S + S0 2 = 2 H 20 + 3/2 S 2 ••' S 2 + 2 0 2 = 2 S0 2 7 (2.2) (2.3) (2.4) (2.5) (2.6) Furthermore, they made the following assumptions — R e a c t i o n s 2.1, 2.4 and 2.6 go to completion. Therefore, no oxygen i s present, and only Eqs. 2.2, 2.3 and 2.5 need be considered. — T h e only compounds present at equilibrium are H 2 S , H2O, S 2 , Sg, Sg, SO2 and N2 and they obey the i d e a l gas law. — T h e acid gas i s pure H 2S. — T h e supply of combustion a i r i s stoichiometric with respect to Eq. 2.1 and contains 21 v o l . % O2 and 79 v o l . % N 2 . — T h e t o t a l pressure i s constant at 0.5, 1, or 2 atmospheres. Gamson and E l k i n s developed a unique hand computation method to predict e q u i l i b r i u m compositions subject to these assumptions. The sulphur y i e l d s c a l culated by the authors f o r a t o t a l pressure of one atmosphere are p l o t t e d as Curve A of F i g . 2.1. This curve has a minimum which they explained as follows: The minimum in the equilibrium-conversion curve i s caused by the s h i f t in the predominant sulphur specie [ s i c ] with temperature. The formation of diatomic sulphur by reactions (1) and (5) increases with increasing temperature; whereas, the opposite i s true with Sg and Sg. This explanation i s e s s e n t i a l l y correct, but more thorough discus-sion of the shape of t h i s curve i s presented i n Chapter 5 of t h i s t h e s i s . Gamson and El k i n s divided the curve into two regions. To the r i g h t of the minimum i s the "free flame" region, so c a l l e d because Claus furnaces operate w e l l above 800°K. At such elevated temperatures, combustion can occur i n a free flame and the re a c t i o n rates should be s u f f i c i e n t l y rapid f o r thermodynamic equilibrium to be attained. To the l e f t of the minimum i s the " c a t a l y t i c " region, so designated because Claus c a t a l y t i c converters operate at these lower temperatures. T E M P E R A T U R E , ° K Figure 2.1. Theoretical e q u i l i b r i u m conversions. 10 Gamson and E l k i n s predicted o v e r a l l y i e l d s of a Claus plant with a furnace which converted 70% of the acid gas to sulphur, a condenser which removed a l l the sulphur formed i n the furnace, and, f i n a l l y , a c a t a l y t i c converter. These t o t a l y i e l d s are p l o t t e d as Curve B of F i g . 2.1 for c a t a l y t i c converter temperatures from 400 to 650°K. Later i n t h i s chapter, F i g . 2.1 w i l l be compared to other equilibrium c a l c u l a t i o n s , experimental r e s u l t s (including those of Gamson and E l k i n s ) and plant data. The work of Gamson and E l k i n s , however, had some shortcomings. They assumed only seven species present at equilibrium, since t h i s was the maximum number which could e a s i l y be handled by a simple desk c a l -c u l a t o r . They considered an acid gas of pure H 2S, which was oxidised with stoichiometric amounts of a i r . F i n a l l y G a m s o n and E l k i n s used Kelley's thermodynamic data,^ published i n 1937. More recent and 7 8 accurate thermodynamic data are a v a i l a b l e . ' Since large d i g i t a l computers became r e a d i l y a v a i l a b l e i n the l a t e 1960's, the equilibrium compositions of Claus furnaces with as many as 44 species have since been ca l c u l a t e d f or various acid gas impurities, and deviations from sto i c h i o m e t r i c a i r . Furthermore, thermodynamic data have recently been published based on the l a t e s t theory and experiments. Numerous workers ^ t o ^ l elaborated cn Gamson and E l k i n s studies i n one or more of the following ways: the compounds present i n the s t a r t i n g and i n the e q u i l i b r i u m mixtures, the temperature range, the thermodynamic data, and the method of c a l c u l a t i n g the equilibrium compositions. Except where noted i n the. text, the r e s u l t s agreed s u b s t a n t i a l l y with those of Gamson and E l k i n s . A comparison of the papers i s summarised i n Table 2.1. , • TABLE 2.1 SUMMARY OF VARIOUS THEORETICAL PAPERS ON THE CLAUS PROCESS Authors* 10 11 12 13 14 15 16 17 18 19 20 21 This Thesis Date 1953 1966 1968 1971 1972 1972 1973 1974 1974 1974 1975 1977 1978 Feed / / / / H 2S / • / • / / / / / / H 20 / / • / V • / / C0 2 / / / • / • / Hydrocarbons Others / / V / / • °2 / / V / / / / / / / / / N 2 / / V V • / / / V / V / / Stoichiometric a i r (%) 100 100 NS 100 100 lOto 200 100 100 lOto 200 0 100 100 0-300 Equ i l i b r i u m Mixture N 2 NH3 NO N0 2 0 2 H 2 / • / / V / / / / / / • / / / • / / / / / / / / / / / / / / / / / / / / / / / / / /. / / / . / / / / / / Table 2.1 continued Authors* Date 5 1953 10 1966 11 1968 12 1971 13 1972 14 1972 15 1973 16 1974 17 1974 18 1974 19 1975 20 1977 21 1978 This Thesis H 20 / / / / / / / / / / / / • H 2S / • / / • / / / / / V / / H 2S 2 / / / / • SO / / • / / S0 2 / • / " / / • / / • • / / / S0 3 / / / / / S / / • • / / / s 2 : / / / / / • / / • • / • / / s^ / / / / / / / s 6 / / / / / • V / / / / • s 8 / / / / / / / / • / / S3S5S7 • • / V / C(S) Hydro-carbons CO C0 2 • / / • / / / • / / / / / / 7 / • • / / / / • / / Table 2.1 continued Authors* 5 10 11 12 13 14 15 16 17 18 19 20 21 This Thesis Date 1953 1966 1968 1971 1972 1972 1973 1974 1974 1974 1975 1977 1978 COS / / / / / / / / / CS 2 / / / • / / • / / Others / / / / / The rmo dynami c 7,22, 7,22, 7,8,22 data 6 6 25 NS 8 7,8 7,23 7,8 NS 7,23 23 NS 7,27 23,24 Temperature 400 823 500 400 1073 600 973 600 750 1450 883 250 (°K) to NS to to to to to NS to to to to to to 1600 923 1300 1750 2773. 2000 1573 2000 2000 2000 1712 2200 C a l c u l a t i o n s FEM FEM FEM FEM FEM FEM *Authors: 5=Gamson and E l k i n s ; 10=0pekar and Goar; l l = E r i k s s o n and Rosen; 12=Boas and Andrade; 13=McGregor; 14=Neumann; 15=Bennett and Meisen; 16=Bragg; 17=Fischer; 18=Meisen and Bennett; 19=Raymont; 20=Kerr and B e r l i e ; 21=Maadah and Maddox Abbreviations: NS=Not Stated; FEM=Free Energy Minimisation 14 Opekar and Goar"^ wrote a computer program to c a l c u l a t e equilibrium compositions and mass and heat balances for a l l units oif a Claus plant, i . e . , furnace, waste heat b o i l e r , c a t a l y t i c converters, sulphur condens-ers, and t a i l gas i n c i n e r a t o r . D e t a i l s of these computations, however, were not given. A t y p i c a l optimisation study indicated that o v e r a l l Claus plant conversions could be increased 2% by changing parameters such as the temperatures of the acid gas and of the f i r s t and second condenser o u t l e t s . Eriksson and Rosen'''"'" estimated that free energy data from JANAF was accurate to ±1% (except f o r SO) and that data f o r SO from JANAF, 25! 9 9 S^, S 6 and S 8 from Braune et a l and H 2S 2 from Mackle and O'Hare^ were accurate to ±10%. Erikkson and Rosen also examined the e f f e c t of the r a t i o of the p a r t i a l pressures of H 2S to S0 2 on the sulphur y i e l d . They found the y i e l d to be a maximum when t h i s r a t i o was 2.0, a fac t well-known to Claus plant operators. 12 Boas and Andrade modelled a Claus plant to determine the e f f e c t of the following on sulphur y i e l d : feed composition, temperatures of the waste heat b o i l e r , condenser and c a t a l y t i c converter, furnace con-version, entrainment and the r a t i o of the p a r t i a l pressures of H 2S to S0 2. They examined i n turn e f f e c t s of CH^, H 20, and N 2 i n the acid gas. With 5% CH^ present, y i e l d s decrease 3%,'with 5% H 20, conversion f e l l only 1%, while with 5% N 2, y i e l d s dropped n e g l i g i b l y . 9 Valdes p l o t t e d equilibrium conversions based on acid gas from r e f i n e r y operations or from well-head f a c i l i t i e s . Valdes noted that the equilibrium plots were arrived at in much the same manner that Gamson calculated the conversions; namely, s a t i s f y i n g the equilibrium constants for the known predominant reactions occurring in the system. The main difference, however, 15 consisted in the inclusion here of all the components in the feed gas and all the possible chemical species that might be present in the system at any given temperature. Although Valdes neither named the species, nor described further h i s program he did emphasise the importance of C0 2 and hydrocarbons i n the s t a r t i n g mixture. His r e s u l t s were s i m i l a r to those of Gamson and E l k i n s . To supplement an experimental i n v e s t i g a t i o n into the c a t a l y t i c 13 re a c t i o n of H 2S and S0 2, McGregor calculated the thermodynamic e q u i l -i b r i a of sev e r a l sulphur plant reactions. His predicted sulphur y i e l d s f o r the Claus furnace were s l i g h t l y higher than those of Gamson and Elk i n s because d i f f e r e n t thermodynamic data were used. At temperatures above 1200°K, hydrogen concentrations exceeded 10%. For the converters he predicted thermodynamic y i e l d s of reactions i n v o l v i n g COS, CS 2, C0 2, CH^, and CO, which he considered important since COS and CS 2 emission can account f o r about 1/3 of the t o t a l sulphur losses from a Claus plant. 14 Neumann estimated Claus furnace e q u i l i b r i a f o r various feed gases* containing C0 2 and H 20. For combustion with sto i c h i o m e t r i c a i r , he found p r a c t i c a l l y no CH^ or NH3, concentrations of N0 x, S0 3 and CS 2 at or below the ppm l e v e l , and COS about 1%, and concluded that the 26 ^7 higher l e v e l s of CS 2 obtained by other workers could not be explained by eq u i l i b r i u m considerations alone. Neumann found s i g n i f -i c a n t concentrations of H 2 and 'CO which increased with temperature. He also noted that, under furnace conditions, the reactions forming H 2 and CO increase the consumption of H 2S and S 2, and lower the flame temperature. Neumann examined the e f f e c t of pressure on sulphur recovery at 16 1400°C, and l i k e Gamson and E l k i n s , found that increasing the pressure decreased the y i e l d s except at very low temperatures. Bragg"*"*' modelled an e n t i r e Claus plant, including a furnace, waste heat b o i l e r , c a t a l y t i c converters, condensers, and t a i l gas i n c i n e r a t o r . For each u n i t , Bragg computed mass and energy balances, and for the furnace and converters, he calculated the adiabatic flame temperature, allowing f or heat losses. Bragg noted that equilibrium was achieved i n the furnace only i f the r eacting gases were completely mixed and the residence time was s u f f i c i e n t l y large. To account for the lack of equilibrium i n the furnace, Bragg by-passed some H 2S d i r e c t l y to the f i r s t c a t a l y t i c con-v e r t e r . Side reactions i n the c a t a l y t i c converters i n v o l v i n g CO, H 2, COS and CS 2 were modelled by withholding portions of these compounds from reaction, although, f o r fresh c a t a l y s t and high reactor tempera-tures, COS and CS 2 did not have to be withheld. The model could be used f o r routine plant s u r v e i l l a n c e and optim-i s a t i o n , f o r checking the consistency of experimental data, or for p r e d i c t i n g sulphur recoveries. Actual and predicted sulphur recoveries agreed within 0.2%. Quantities such as process temperatures and approaches to equilibrium also agreed within experimental error. Fischer"^ discussed proper operation of Claus furnaces and he pre-dic t e d temperatures, compositions and sulphur y i e l d s i n the furnace. Except for CS 2, whose concentration was only 1/200 of the measured value, the predicted compositions agreed w e l l with plant data from properly designed furnaces. Sulphur y i e l d s of several furnaces exceeded 80% for temperatures above 1000°C and residence times over three seconds, 3 28 compared to y i e l d s of about 70% as reported by e a r l i e r workers. ' 17 The discrepancy of 10% could be a r e s u l t e i t h e r of improved Claus furnace technology or reve r s i o n i n the sampling l i n e s . Fischer was unable to measure the exact composition of the gas at the furnace e x i t , and instead took samples at 260°C j u s t upstream of the f i r s t c a t a l y t i c converter. The reactions y i e l d i n g elemental sulphur probably continued as the gases were cooled, g i v i n g apparently high sulphur y i e l d s . This "reversion" w i l l be discussed further i n the experimental section of t h i s chapter. Bennett and Meisen"'"^ computed equilibrium compositions by a method 23 used by Kellogg which seemed simpler than free energy minimisation. F i r s t , the p a r t i a l pressures of "key components" were guessed. For Claus furnace e q u i l i b r i a , S 2, H 2S, H 20 and N 2 were chosen, as t h e i r p a r t i a l pressures were expected to be among the highest. I t was con-venient to consider that 0 2 and H 2 were formed according to H 20 + 1/2 S 2 = 1/2 0 2 + H 2S (2.7) and H 20 = H 2 + 1/2 0 2. (2.8) The other products present i n the equilibrium mixture re s u l t e d from rea c t i o n between the elements S 2, N 2, 0 2 and H 2, i . e . , a/2 H, + b/2 N, + c/2 0 0 + d/2 S 0 = H N, 0 S,, (2.9) z z z ^ a b c d for example, i n the case of HgSO^, a = 2 , b = 0 , c = 4 , d = l and Eq. 2.9 becomes H 2 + 2 0 2 + 1/2 S 2 = B.ZS0^ (2.10) The p a r t i a l pressures of a l l the components of the eq u i l i b r i u m mixture were then used to evaluate: — t h e sum of p a r t i a l pressures, P^; — t h e atomic r a t i o s of bound as w e l l as unbound oxygen to sulphur, RQ§'> — : r a t i o of hydrogen to sulphur, R^gl — r a t i o of nitrogen to oxygen, R ^ Q * 18 Since the t o t a l pressure was atmospheric, P^ , = 1, and since the i n i t i a l mixture was assumed to be pure H 2S and a i r (79% N 2 and 21% 0 2 ) , the desired magnitudes of R^, and R^ ' were 2.0 and 3.76 r e s p e c t i v e l y . Although R could be f r e e l y s p e c i f i e d , a value of unity corresponded to s t o i c h i o m e t r i c a i r according to Eq. 2.1. If the t o t a l pressure and the three r a t i o s did not agree within 0.1% of the desired values (denoted by * ) , new p a r t i a l pressures of the key components were determined from ts 2 ] = [ s 2 ] 0 {(PT*/PT) %s/**os)r (2 .1D [H 2S] = [ H 2 S ] Q {(PT*/PT) (K^/Rag)}* (2-12) [H 20] = [ H 2 0 ] Q (P^/P^* (2.13) [N 2] = [ N 2 ] Q {(PT*/PT) i\0*/\0)}^ (2-1^) where [ ] denoted p a r t i a l pressure and the subscript "0" r e f e r r e d to the previous i t e r a t i o n . The c a l c u l a t i o n s were repeated u n t i l the desired convergence was obtained. The a d i a b a t i c flame temperature was also computed. D e t a i l s of t h i s c a l c u l a t i o n , as w e l l as Kellogg's method are given i n Chapter 3. The authors found that, for at l e a s t some temperatures between 600 and 2000°K, the following 25 compounds exceeded 0.1 ppm at 1 atmosphere: NH3, NO, N 2, H, H 2, H 20, HS, H 2S, H 2S 2, 0, OH, 0 2, SO, S0 2, S0 3, S 20, SN, S, S 2, S 3, S 4, S 5, S 5, S ? and Sg,. Above 1200°K, the concentration of H2- exceeded 1%, and above 1000°K the concentration of S 2 exceeded 10%, which was more than ten times that of any other sulphur polymer. Using Kellogg's.free energy equations for the sulphur polymers introduced n e g l i g i b l e error into the sulphur y i e l d s , which are p l o t t e d as Curve C of F i g . 2.1. The authors v a r i e d the combustion a i r from 10% to 200%,of 19 s t o i c h i o m e t r i c . At fi x e d temperatures, maximum sulphur y i e l d s occurred with l e s s than stoichiometric amounts of a i r . Under adiabatic condi-t i o n s , however, stoichiometric a i r resulted i n maximum y i e l d s , which confirms plant operating experience. An important drawback of t h i s paper was that the acid gas was 18 assumed to be pure H 2S. A subsequent paper by Meisen and Bennett examined the e f f e c t s on y i e l d of having CO^ and H^O i n the acid gas. In a d d i t i o n to the 25 compounds whose concentrations exceeded 0.1 ppm, the authors assumed ,the following to be present at equilibrium: CH^, C 2H 2, C 2H 4, C 2H l t0, HCN, C 2N £, CO, C0 2, COS, CS and CS 2. When the acid gas contained C0 2 or H 20 the sulphur y i e l d decreased. For an acid gas containing 10% H 20 only, the y i e l d dropped by only 3%. The y i e l d also f e l l 3% for 15% C0 2 i n the ac i d gas, provided the e q u i l i -brium temperature exceeded 1500°K. At temperatures below 1200°K, as much as 30% C0 2 had no noticeable e f f e c t on the sulphur y i e l d . For an acid gas containing 15% C0 2, the most abundant carbon com-pound at eq u i l i b r i u m was C0 2, with a concentration from 2 to 6%. The non-carbon compounds had a composition s i m i l a r . t o those i n the authors' previous paper. No data were a v a i l a b l e for the polymers S 3, S^, S 5, S g, and S 7, and t h e i r f ree energies were therefore estimated from equations given 23 by Kellogg, even though they were only s t r i c t l y v a l i d up to 700°K. At higher temperatures, however, the p a r t i a l pressures of the heavy sulphur species were extremely small, and consequently, l i t t l e e rror was introduced into the sulphur y i e l d , the r e s u l t of greatest i n t e r e s t . Most other authors, however, considered only S 2, Sg and Sg, because they lacked data f o r the other polymers. 20 24 In 1973, Rau et a l . published equations, v a l i d between 773 and 1273°K, for c a l c u l a t i n g the composition of a l l sulphur polymers from S 2 to S s . They based t h e i r equations on l i t e r a t u r e data and t h e i r own measurements of sulphur vapour d e n s i t i e s between 827°K and 1273°K. With an upper l i m i t of 1273°K, the equations of Rau et a l . should therefore p r e d i c t more accurately than those of Kellogg the sulphur polymer d i s t r i b u t i o n above 700°K. The paper of Rau et a l . i s e s p e c i a l l y valuable as t h e i r equations enable c a l c u l a t i n g equilibrium constants of sulphur polymers without i n t e r p o l a t i o n . For the other compounds, JANAF data, presented at increments of 100°C, require i n t e r p o l a t i o n , when used to obtain the r e s u l t s described i n Sect. 5.1 of t h i s t h e s i s . Raymont investigated the thermal decomposition of H 2S, which he postulated to be responsible for H 2 concentrations of up to 3% i n Claus 47 23 plants. He used Kellogg's method to predict the l e v e l s of H 2, H 2S, sulphur vapour and sulphanes (H 2S., where j = 2 to 9), present at ...... 19 equilibrium. 20 Kerr and B e r l i e predicted equilibrium compositions of the furnace as a function of the H 2S content of the acid gas and found close agree-ment with actual conversion e f f i c i e n c i e s f o r acid gas streams containing over 90% H 2S. They also concluded that the use of 100% sto i c h i o m e t r i c a i r was not optimal because the furnace produces H 2 and CO which do not undergo subsequent reactions. These compounds reduce the a i r demand from that c a l c u l a t e d by assuming that they are absent. 21 Maadah and Maddox considered a large number of reactions and impurities. Like Kerr and B e r l i e , t h e i r predicted concentrations of COS and CS 2 were much below those of plant t e s t data. Small amounts 21 of impurities were found to have only a minor e f f e c t on predicted s u l -phur y i e l d s which were about 98% for a furnace and two converters. 22 2.2 Experimental Compared to t h e o r e t i c a l work few experimental r e s u l t s have been published on the Claus process, and most of these are concerned not . , , r • \ • i , •, 30to43 with the furnace, but with the c a t a l y t i c converters . Various papers r e p o r t i n g plant t r i a l s or experiments pertinent to Claus furnace operation are summarised i n Table 2.2. 36 Taylor and L i v i n g s t o n were among the f i r s t to i n v e s t i g a t e the no n - c a t a l y t i c oxidation of H S. However, they added excess oxygen to a batch reactor heated to between 475 and 675°K, a temperature range w e l l below that of the Claus furnace. They detected sulphur and H2SO4 i n the r e a c t i o n products, and concluded that the equation, 2 H 2S + 3 0 2 = 2 H 20 + 2 S0 2 (2.15) did not adequately describe the r e a c t i o n mechanism. Furthermore, t h i s equation predicted a pressure decrease le s s than that observed during the r e a c t i o n . The authors postulated that t h i s pressure decrease may be accounted for by a subsequent r e a c t i o n such as 2 H 2S + S0 2 = 2 H 20 +3/2 S 2, (2.16) or by the s o l u b i l i t y of the S0 2 i n the l i q u i d sulphur formed, or by the production of H 2S0i t. Gamson and Elkins"' reported that B'ahr and Braus had oxidised H 2S i n a free flame at temperatures of up to 1000°C, cooled the combustion products and condensed the sulphur. Apparent y i e l d s ranging from 80 to 90% were found. As mentioned e a r l i e r , Gamson and Elki.ns c a l c u l a t e d the maximum y i e l d to be l e s s than 75%. The high y i e l d s of Bahr and Braus may have been caused by "reversion" which could be explained as follows: during co o l i n g , the combustion products continue to react u n t i l a 1 s u f f i c i e n t l y low temperature i s reached to stop the r e a c t i o n . According TABLE 2.2 EXPERIMENTAL SULPHUR YIELDS FOUND BY VARIOUS AUTHORS CN • rH rH o C oo m !-t u v o CM CO to xt / -e) cn rH Q) cu rH c3 CU co OJ m cu rH o  0) J3 OO •H c U 3 4-i cO CO -rl -X O o 60 M rH CO, -H ,C CO -rl >- & B CU CO CO CO . U U SX UAuthor(2) crj 4J CO rH U •H •H U CU 0) o o PO. PQ w w cu O W O Fu Pu pq ixi W « S Date 1940 1950 1953 .1959 1971 1974 1975 1977 1977 Temperature °C 1000 600-750 500 575 650 >1300 205-815 288 371 491 >1035 1240 1120 1110 NS NS . Sulphur Y i e l d (%); 80to90 76to82 73 71.7 70.6 90 7to85 8 12 58 66 86 68 NS 50to80 71 T h e o r e t i c a l Y i e l d * 68 55to60 60 55 57 74 63to97 93 77 57 70 73 73 72 N A NA Acid gas composition % H2.S 100 100 96 100 15 100 38 95 62 69 50to98 83 % C0 2 0 0 0 0 83 0 62 0 38 31 NS 17 others 0 0 4 0 2 0 0 5 0 0 NS 0 Scale of -apparatus NS Bench Bench Bench Bench Bench Plant Plant Plant Plant Plant NS=Not stated; NA=Not applicable; *=Theoretical sulphur y i e l d i s based on oxidation of pure H 2S with sto i c h i o m e t r i c a i r 2 4 to F i g . 2.1, f o r an apparent y i e l d of 80 to 90%, t h i s temperature would l i e between 565 and 635°K. Another cause of the discrepancy between the experimental and t h e o r e t i c a l y i e l d s could be the Wackenroder 44 rea c t i o n , 2 H2S + S0 2 v a t e 5 2 K^O + 3/2 S 2 (2.17) which, ,in the presence of l i q u i d water, i s ra p i d , even at room tempera-ture. Probably the f i r s t important experimental study of the Claus pro-28 cess was published i n 1950 by Sawyer et a l . They operated a tubular laboratory furnace with a 460 mm long quartz tube, 25 mm i n diameter. With a flow ra t e of 60 ml./min. of H 2S and 290 ml./min. a i r (200% of stoichiometric) and f o r temperatures between 873 and 1023°K, they obtained sulphur y i e l d s of about 80%, compared with t h e o r e t i c a l y i e l d s of le s s than 50% for the same amount of a i r . This discrepancy was probably caused by reversion. H 2S and S0 2 were analysed by Tutweiler t i t r a t i o n , as follows. A sample was taken i n t o the Tutweiler burette by d i s p l a c i n g an aqueous starch s o l u t i o n , and was then t i t r a t e d with iodine to the blue end poin t : H 2S + I 2 = 2 HI + S (2.18) S0 2 + I 2 + 2 H 20 = 2 HI + H 2S0 4 (2.19) This t i t r a t i o n gave the t o t a l concentration of H 2S and S0 2. Then, Na 2S 20 3 was added to remove the blue colour and the HI and K^SO^ were t i t r a t e d with NaOH to the methyl orange end point. From the normal-i t i e s and volumes of iodine and bases used i n the two t i t r a t i o n s , the amounts of H 2S and S0 2 could be ca l c u l a t e d . Sawyer et a l . also studied H 2S oxidation at temperatures below 650°K. Reacting 96% H 2S i n a p o r c e l a i n tube, they noted a drop i n 25 y i e l d from 73% at 500°C to 71% at 650°c. They explained the lower con-versions at higher temperatures with the following argument, based on k i n e t i c considerations. The oxidation of H 2S was stepwise, the two important steps being H 2S + 1/2 0 2 = H 20 + 1/j S.., (2.20) and 1/j + 0 2 = S0 2 (2.21) Sulphur and H 2S competed f or the oxygen. At lower temperatures, re a c t i o n 2.21 was suppressed; hence the high conversions to free sulphur. How-ever, with increasing temperatures, re a c t i o n 2.21 became more s i g n i f i c a n t and more sulphur was converted to S0 2; hence the lower y i e l d s . In another experiment, Sawyer et a l . examined the e f f e c t of space v e l o c i t y on y i e l d . They found that f o r an increase of residence time from 1.76 sec to 3.55 sec, the apparent y i e l d decreased from 62% to a minimum of 45% and then increased back to 62%. Sawyer et a l . postu-l a t e d that t h i s minimum was due to the presence of free oxygen along the e n t i r e length of the furnace. At the lower space v e l o c i t i e s , oxygen reacted with both H 2S and sulphur u n t i l a l l the oxygen was used up. Then H 2S reacted with S0 2, thus increasing the actual conversion. At higher space v e l o c i t i e s , oxygen was present at the reactor e x i t , and t h i s oxygen reacted with H 2S i n the sampling l i n e s . A more p l a u s i b l e explan-ati o n may be, that under the laminar flow conditions of the experiment, heat trans f e r was poor and the bulk gas temperature was s u b s t a n t i a l l y l e s s than the w a l l temperature. Higher flow rates resulted i n increased gas temperatures, but they also gave lower contact times, which, at low flow rates, outweighed heat t r a n s f e r considerations. Hence, y i e l d f e l l with increasing flow rates, u n t i l a minimum y i e l d was reached where heat t r a n s f e r began to play the larger r o l e . 26 Gamson and E l k i n s ^ investigated experimentally the free flame com-bustion of pure H 2S. They used two concentric pyrex tubes 6 and 10 mm. i n diameter. A i r at 6.0 ml/min (0.76 f t 3 / h r ) flowed through the inner tube, H 2S at 2.4 ml/min (0.31 f t 3 / h r ) flowed through the annulus, and the two streams were mixed i n the flame. The reaction products were absorbed by an aqueous NaOH scrubber and subsequently analysed by wet methods. Gamson and Elkins obtained y i e l d s of 90%, compared with t h e i r c a l -9 culated conversions of 75%, and i n d u s t r i a l ones of 55%. There are two possible explanations f o r the discrepancies. F i r s t , as suggested by Sawyer et a l . , k i n e t i c s may play a r d l e , i f , at high temperatures, H 2S i s oxidised more quickly to sulphur, than sulphur i s to S0 2. Second, reversion may be a cause, i f the gases are not quenched r a p i d l y enough before sampling, or i f H 2S and S0 2 combine at room temperature a f t e r sampling to form sulphur. At temperatures below 550°K, rea c t i o n a f t e r sampling, rather than k i n e t i c s should be the major e f f e c t . Since Gamson and Elkins operated a c a t a l y t i c converter at 550°K and found y i e l d s s i m i l a r to the t h e o r e t i c a l ones, re a c t i o n a f t e r sampling i s u n l i k e l y to have caused the discrepancy i n the furnace r e s u l t s . 45 Levy and Merryman reacted H 2S with excess 0 2 i n N 2 or Ar at about 1260°K, and determined l e v e l s of N 2, 0 2, H 2S, and H 20 by mass spectrometry. They analysed S0 3 as HjSO^ and the remaining sulphur oxides by barium c h l o r a n i l a t e . Levy and Merryman suggested that the concentrations of the free r a d i c a l s H, 0, OH and SH could then be estimated from the composition p r o f i l e s obtained from t h e i r apparatus. Their r e s u l t s d i f f e r e d s u b s t a n t i a l l y from Gamson and E l k i n s ' equilibrium experiments, but t h i s was undoubtedly due to Levy and Merryman using more than f i v e times stoichiometric oxygen. For example, Levy and Merryman found 11% free 0 2 , only 5% H2O, 6% SO2 and no free sulphur. They postulated a r e a c t i o n scheme for the stepwise oxidation of H2S to SO and further to SO2 and SO3, which may have some a p p l i c a t i o n to the study of the Claus process. Levy and Merryman also suggested a reac-t i o n mechanism c o n s i s t i n g of 23 steps, found a number of s i g n i f i c a n t rate constants, and calculated concentrations of atoms and free r a d i c a l s . 46 Hyne was i n t e r e s t e d . i n the behaviour of Claus furnaces and b u i l t a "mini-furnace" with v a r i a b l e b a f f l e s , ceramic l i n i n g and a i r as w e l l as f u e l nozzles. He was e s p e c i a l l y concerned about "minor" components of the acid gas, such as CH4 and other hydrocarbons. Hyne presented a sequence of some chain reactions i n the furnace, which he f e l t were necessary ( i n ad d i t i o n to the reactions considered by Gamson and E l k i n s ) to account for H 2 and SO3 found i n t y p i c a l Claus plants. These reactions were very s e n s i t i v e to r e l a t i v e l y small amounts (less than 0.1%) of i n i t i a t o r s , i n h i b i t o r s , poisons, etc. Hyne proposed to analyse stable species by a gas chromatograph, and free r a d i c a l s , which are s h o r t - l i v e d , by a mass spectrometer. To date, however, no r e s u l t s have been published i n the open l i t e r a t u r e . 19 47 48 Raymont ' ' experimented with H2S d i s s o c i a t i o n and found, for . temperatures above 1250°K, hydrogen concentrations agreeing with those predicted on the basis of the following r e a c t i o n , 2 H2S = 2 H2 + S2 (2.22) The agreement suggests h i s quenching was superior to that of Sawyer et a l . as w e l l as Gamson and E l k i n s . Below 1250°K, however, the rate of reac-t i o n without a c a t a l y s t was so low that y i e l d s were les s than those predicted from thermodynamic c a l c u l a t i o n s . 28 2.3 Claus Process 3 In a comprehensive review, Estep et a l . considered most p r a c t i c a l aspects of Claus plant operation, which they i l l u s t r a t e d by describing twc plants. A t y p i c a l straight-through plant whose flow sheet i s shown i n F i g . 1.1, w i l l be discussed i n t h i s s ection i n the l i g h t of the work 9 17 of Estep, Valdes and Fischer. 2.3.1 Controls Ratio flow controls proportion the acid gas and a i r s t o i c h i o m e t r i c -3 a l l y . Such a r a t i o i s said to maximise sulphur y i e l d i n the furnace. ' 43 49 50 ' ' The c o n t r o l l e r must compensate for temperature f l u c t u a t i o n s i n the a i r , and both temperature and composition changes i n the acid gas. Accurate analysis of the acid gas composition i s therefore e s s e n t i a l . Once correct r a t i o s have been established and checked by stack gas anal-y s i s (H 2S/S0 2 r a t i o should be 2/1) the furnace temperature may be used as a c o n t r o l point, since i t w i l l r i s e with excess combustion a i r and f a l l with d e f i c i e n t a i r . Furthermore, the temperature of the c a t a l y t i c converter beds drops with any deviation from the correct amount of com-bustion a i r . Correct combustion r a t i o s can therefore be maintained by proper metering, stack gas analysis and monitoring of furnace and cata-l y s t bed temperatures. 2.3.2 Furnace A c y l i n d r i c a l furnace, 3.7 m i n diameter contains two burner ports at each end and a chequered b a f f l e w a l l i n the centre. Fischer*^ suggested that improperly designed furnaces achieve often less than 20% -conversion, compared to 75% t h e o r e t i c a l l y . Poor furnace design can lead to formation of carbon and ammonical sulphur compounds which impair safety and optimal sulphur recovery i n the c a t a l y t i c converters. Most 29 combustion chambers should be l a r g e r . Burners should mix a i r with acid gas before these gases reach the combustion chamber. This can be achieved by a multi-burner system d i s t r i b u t e d over the e n t i r e front w a l l . Proper furnace design, Fischer, noted, can increase sulphur recovery of a plant with two c a t a l y t i c converters to a l e v e l not normally achieved i n even three converter u n i t s . 2.3.3 Reheaters 3 In the Okotoks plant, an acid gas f i r e d reheater brings the gases up to the operating temperature of the c a t a l y t i c converter. Other 9 methods of reheat are a v a i l a b l e . These include d i r e c t mixing of com-bustion products from the waste heat b o i l e r (simpler and cheaper than a c i d gas f i r e d reheater, but sulphur y i e l d s are poorer) and i n d i r e c t heat exchange (expensive but comparatively high y i e l d s ) . Temperatures downstream of the furnace (except i n the condensers) must always exceed the sulphur dew point; otherwise sulphur w i l l condense and plug gas ducts or f o u l the c a t a l y s t . 2.3.4 C a t a l y t i c Converters Valdes noted that two c a t a l y t i c converters with sulphur condensa-t i o n i n between would recover more sulphur than a s i n g l e converter with a th i c k e r bed. The extra c a t a l y s t i n the s i n g l e converter would achieve l i t t l e a d d i t i o n a l conversion, since i t would operate at an excessively high temperature which would not favour conversion. 2.3.5 Sulphur Wash Tower A tower, 3.4 x 3.4 x 10.7 m high c i r c u l a t e s cooled molten sulphur counter-current to the gas to condense the sulphur formed i n the f i n a l c a t a l y t i c converter. Valdes pointed out that a s h e l l and tube heat exchanger i s cheaper than r e f l u x i n g l i q u i d sulphur. 30 The Okotoks plant processes 190,000 standard m3/day of a c i d gas containing 75.1 % H 2 S , 24.7% CO2 and 0.2% hydrocarbons and i n e r t s . The furnace recovers about 66% of the sulphur of the feed, the f i r s t c a t a l y t i c converter, 21%, the second converter, 6%, for a t o t a l recovery of 93.6%. Sulphur production i s 160 tons/day. This section described only a few of the design and operating 'considerations i n Claus plants. The reader i s ref e r r e d to Estep et a l . , Fischer, and Valdes f o r more d e t a i l s . CHAPTER 3 THEORY This chapter describes a mathematical model of a Claus plant with recycle whose flow sheet i s shown i n F i g . 3.1. The model consists of f i v e main parts which c a l c u l a t e the equilibrium compositions, adiabatic flame temperatures, recycle stream compositions, thermochemical properties and check for sulphur condensation i n the converters. Each part i s sub-sequently discussed i n t h i s chapter. 3.1 Equilibrium Compositions Equilibrium c a l c u l a t i o n s are based on the following assumptions: a l l compounds behave as i d e a l gases, a i r consists e n t i r e l y of nitrogen (79%) and oxygen (21%) and the t o t a l system pressure i s 1 atmosphere. 3.1.1 Acid Gas Containing Pure H2S Only For the equilibrium c a l c u l a t i o n s , i t i s convenient to consider that oxygen and hydrogen are formed according to H 2 0 + 1/2 S 2 = 1/2 0 2 + H 2S (3.1) H 2 0 = H 2 + 1/2 0 2 (3.2) and that a l l other products l i k e l y to be present i n the equilibrium mixture, i . e . , N, NH, NH2, NH3, NO, N 0 2 , N 0 3, N 2H 2, N ^ , N 2 0 , N 2 0 3 , N 2 0 4 , N 2 0 5 , H, HNO, c i s - H N 0 2 , t r a n s - H N 0 2 , H N 0 3 , H 0 2, H 2 0 2 , H^O^, 0 , OH, 0 3 , SO, S 0 2 , S 0 3 , S 2 0 , SH, H 2S 2, SN, S, S 3, S^, S 5, S g, S y, Sg, r e s u l t from reactions between the elements S 2, N 2, 0 2 and H 2. To c a l c u l a t e 31 A I R B A C I D G A S F U R N A C E A N D W A S T E H E A T B O I L E R C C , C 2 f L I Q U I D S U L P H U R Figure 3.1. Flowsheet of Claus plant with preheat and recycle. Legend: C—sulphur condenser C C — c a t a l y t i c converter H—heater 3 3 the equilibrium composition, the following procedure, described i n Chapter 2 i s used: (i) The p a r t i a l pressures of the key components S 2, H 2S, H 20 and N 2 are guessed. ( i i ) The p a r t i a l pressures of 0 2 and H 2 are obtained from the law of mass ac t i o n applied to Eqs. 3.1 and 3.2, i . e . , [°2l = K 0 2 2 [ H 2 0 ] 2 [ S 2 ] / [ H 2 S ] 2 (3.3) and i [H 2] = Kg [ H 2 0 ] / [ 0 2 ] 2 . ( 3 . 4 ) 2 ( i i i ) The p a r t i a l pressures of the elements S 2, N 2 , 0 2 and H 2 enable the compositions of the remaining species to be calculated from the reactions l i s t e d i n Table 3 . 1 . (iv) With a l l p a r t i a l pressures known, the t o t a l pressure P^, and the r a t i o s of both bound and free hydrogen to sulphur (R^g)> nitrogen to oxygen (R^g) a n d oxygen to sulphur (Rgg) can be found and then compared to the corresponding desired values, P*, Rgg> R*JQ and R*,g- Since the t o t a l pressure i s one atmosphere, P* = 1.0, and since the acid gas i s pure H 2S, and a i r i s assumed to consist of 7 9 % N 2 and 2 1 % 0 2 , R * < , = 2 and R * Q = 3.76. The oxygen to sulphur r a t i o can be f r e e l y s p e c i f i e d , but according to Eq. 3 . 1 , R * = 1 corresponds to stoichiometric amounts of 0 2 and H 2S i n the feed mixture. (v) If P^ ,, Rgg> R^JQ O R R Q S ^ e v l a t e m o r e than 0 . 1 % from the corres-ponding desired values, p a r t i a l pressures of the key components are obtained from Eqs. 2 . 1 1 to 2.14. (vi) Steps ( i i ) to (v) are repeated u n t i l convergence i s obtained; the sulphur y i e l d i s found from TABLE 3.1 EQUILIBRIUM EQUATIONS FOR THE SYSTEM II2S-AIR 1/2 N 2 • = N (1) 1/2 N 2 + 1/2 H 2 = NH (2) 1/2 N 2 + H 2 = NH2 (3) 1/2 N 2 + 3/2 H 2 = NH3 (4) 1/2 N 2 + 1/2 0 2 = NO (5) 1/2 N 2 + 0 2 = N0 2 (6) 1/2 N 2 + 3/2 0 2 = N0 3 (7) K + H o 2 2 ' = c i s - N 2 H 2 (8) N + 2 H 2 2 N 2 H 4 (9) N 2 + 1/2 0 2 = N O 2 (10) N 2 + 3/2 0 2 = N2°3 (11) N + 2 0„ 2 2 • •= N2°4 (12) N + 5/2 a 2 2 =: N2°5 (13) 1/2 H 2 = H (14) 1/2 H 2 + 1/2 N 2 + 1/2 0 2 = HNO (15) 1/2 H 2 + 1/2 N 2 + °2 = cis-HNO„ 2 (16) 1/2 H 2 + 1/2 N 2 + = trans-HNO„ 2 (17) 1/2 H 2 + 1/2 N 2 + 3/2 0 = H N ° 3 (18) 1/2 H + 0 o 2 2 = H0 2 (19) H + 0„ 2 2 = H2°2 (20) H 2 + 1/2 S 2 + 2 °2 = H 2 S ° 4 (21) H„ + S n 2 2 = H 2 S 2 (22) 1/2 0 2 0 (23) 1/2 0 2 + 1/2 H 2 = OH (24) 3/2 0 2 = °3 (25) 1/2 S 2 S (26) 1/2 S 2 + 1/2 N 2 = SN (27) 1/2 S 2 + 1/2 H 2 • = SH (28) 1/2 S 2 + 1/2 0 2 = SO (29) 1/2 S 2 + 0 2 = S°2 (30) 1/2 S 2 + 3/2 0 2 = so 3 (31) S„ + 1/2 0„ 2 2 = s 9o (32) Table 3.1 continued 35 3/2 S 2 = S 3 (33) 2 S 2 = Sk (34) 5/2 S 2 = S 5 (35) 3 S 2 = S 6 (36) 7/2 S 2 = S 7 (37) 4 S 2 = S 8 (38) 36 Y = 100 [S T]/{[H2SOit] + [SN] + [SH] + [H 2S] + 2 [H 2S 2] + [SO] + [S0 2] + [S0 3]•+ 2 [S 20] + [S T]} (3.5) 8 where [S.,] = I j [S.] (3.6) j = l 2 3.1.2 Impurities In Acid Gas Under i n d u s t r i a l conditions, the acid gas frequently contains CH4, C0 2, H 20 and NH3 i n a d d i t i o n to H 2S. I t i s therefore desirable to con-side r carbon and nitrogen compounds as w e l l , and the procedure described i n Sect. 3.1.1 i s revised s l i g h t l y as follows: ( i ) Carbon dioxide i s chosen as a f i f t h key component. ( i i ) Compounds whose concentrations were found to be always les s than 0.1 ppm i n Sect. 3.1.1 are neglected and the following carbon species are included i n the c a l c u l a t i o n s : HCN, C 2N 2, CS 2, C 2H 2, CHi*, C2.H4., C2Hi+0, CO, COS, CS as w e l l as the key component, C0 2. Since elemental carbon does not appear i n the equilibrium mixtures to any s i g n i f i c a n t extent, the carbon species are not considered to be formed from t h e i r elements, but rather from the equations shown i n Table 3.2. ( i i i ) In a d d i t i o n to R^g> R ^ Q a ^ d Rgg? the r a t i o of carbon to sulphur, R^g, must be considered. Since the feed can contain H 20 and NH3, and are no longer constant, but, l i k e and R^gj depend on the composition of the furnace feed. (iv) New guesses of the key components are calculated from Eq. 2.11 to 2.14 and from [C0 2] = [CO 2] 0 {(P*/P) (Rg s/R c s)}* (3.7) The percentage sulphur y i e l d i s modified to include carbon compounds: TABLE 3.2 EQUILIBRIUM EQUATIONS FOR THE SYSTEM H 2S - AIR - C0 2 - NH 3 1/2 N 2 + 3/2 H 2 = NH3 (1) 1/2 N 2 + 1/2 0 2 = NO (2) 1/2 H 2 = H (3) H2 H" S2 = (4) 1/2 o 2 = 0 (5) 1/2 0 2 + 1/2 H 2 = OH (6) 1/2 S 2 = S (7) 1/2 S 2 + 1/2 N 2 = SN (8) 1/2 S 2 + 1/2 H 2 = SH (9) 1/2 S 2 + 1/2 0 2 = SO (10) 1/2 S 2 + 0 2 = so 2 (11) 1/2 S 2 + 3/2 0 2 = S0 3 (12) S 2 + 1/2 0 2 = s 2o (13) 3/2 S 2 = S3 (14) 2 S 2 = (15) 5/2 S 2 = (16) 3 S 2 = S6 (17) 7/2 S 2 = s 7 (18) 4 S 2 = S8 (19) C0 2 + 1/2 N 2 + 1/2 H 2 = HCN + 0 2 (20) 2 HCN = C 2N 2 + H 2 (21) C0 2 + 2 H 2S = CS 2 + 2 H 20 (22) 2 CS 2 + H 2 = ^2^2 ~^ ^2 (23) 1/2 C 2H 2 + 3/2 H 2 = CH^ (24) C2 Hi+ (25) C ^ + 1/2 0 2 c2nko (26) co 2 CO + 1/2 0 2 (27) C0 2 + H 2S = • COS + H 20 (28) COS + H 2 = CS + H 20 (29) 38 Y = 100 [S T]/{[SN] + [SH] + [H 2S] + 2[H 2S 2] + [SO] + [S0 2] + [S0 3] + 2[S 20] + 2[CS 2] + [COS] + [CS ] + [ST]} (3.8) 3.1.3 Hydrogen Sulphide D i s s o c i a t i o n This thesis examines both H 2S oxidation and H 2S d i s s o c i a t i o n . The l a t t e r not only provides i n s i g h t into Claus plant operation, but a l s o , as w i l l be described i n the experimental sec t i o n , i s e x c e l l e n t f o r check-ing the operation of the apparatus. I f neither C0 2 nor H 20 i s associated with the acid gas, compounds containing oxygen w i l l not be present at equilibrium and the computer program* must therefore be modified to c a l c u l a t e H 2S d i s s o c i a t i o n . This i s done by considering that H 2 i s formed by the following r e a c t i o n : H 2S = H 2 + 1/2 S 2 (3.9) A l l other compounds are produced by the reactions shown i n Table 3.3. 3.2 Adiabatic Flame Temperature The method described i n the preceding section enables the c a l c u l a -t i o n of e q u i l i b r i u m compositions for given temperatures, pressures and feed compositions. However, since Claus furnaces operate a d i a b a t i c a l l y (heat losses are usually minor), the compositions and y i e l d s should be ca l c u l a t e d at the adiabatic flame temperature (AFT). The following procedure was adopted i n t h i s study. F i r s t , a value of the AFT, say T^, i s guessed and the corresponding equilibrium composition i s found by the method described i n Sect. 3.1. Then the temperature, T, to which the mixture w i l l r i s e i s obtained from the heats of r e a c t i o n and thermal data of the compounds. If T^ and T d i f f e r by more than 5°K, the procedure i s repeated using T as the new guess, u n t i l convergence i s reached. The equation for c a l c u l a t i n g the AFT i s : *Table E . l of Appendix E. TABLE 3.3 EQUILIBRIUM EQUATIONS FOR THE SYSTEM H 2S - CRk - NH 3 1/2 N 2 + 3/2 H 2 = NH3 (1) 1/2 H 2 = H (2) H 2 + S 2 = H 2S 2 (3) 1/2 H 2 + 1/2 S 2 = SH (4) 1/2 N 2 + 1/2 S 2 = SN (5) 1/2 S 2 S (6) 3/2 S 2 = s 3 (7) 2 S 2 = Sk (8) 5/2 S 2 = s 5 (9) 3 S 2 = s 6 (10) 7/2 S 2 = s 7 (11) 4 S 2 = s 8 (12) 1/2 N 2 + CH4 = HCN + 3/2 H 2 (13) 2 HCN = C 2N 2 + H 2 (14) 2 CS 2 + H 2 = C 2H 2 + 2 S 2 (15) C 2H 2 + H 2 = (16) CHu +•1/2 S 2 = CS + 2 H 2 (17) CS + 1/2 S 2 = CS 2 (18) 40 . ^ 0 , 1 ^ " V i + . V n i - n O s i ) ( A H r , 2 9 8 ) i Heat released on cooling Heat produced by the the reactants to 298°K reactions at 298°K N = E n.(H° - H° ) (3.10) i = l Heat required to heat the products from 298°K to the AFT where n^ ., n. = number of moles of species i present before re a c t i o n 0, x x and at the adiabatic flame temperature, r e s p e c t i v e l y . I f species i i s absent before reaction, n . = 0; i f U, x i t i s absent at the flame temperature, n^ = 0. H° , H° = enthalpy at T , and T, r e s p e c t i v e l y , cal/mole R (AH° o r i o ) • = standard heat of formation of species i at 298°K, 1, cy o X cal/mole" N = t o t a l number of species T^ = reactant temperature, ° K T = adiabatic -flame temperature ° K Although the f i r s t term i n Eq. 3.10 i s e a s i l y c a l c u l a t e d , i t can usually be neglected, since T ^ 298°K. Since T i s not known, the l a s t term i s rewritten as I n ±(Hj - HJ ) ± = In.((H; - H ° 9 8 ) . + Cj dT}, (3.11) x=l x=l G G i which may be approximated by j ^ i ^ T " H298>i s j ^ i 1 ^ " H 2 9 8 ) i + C ; . ( T " T G ^ ^ - 1 2 ) The accuracy of t h i s approximation increases as T approaches T. Subs t i t u t i n g Eq. 3.12 i n 3.10 and so l v i n g f o r T y i e l d s : 41 T " TG + <.VnO,i(HTR " H ; 9 8 ) l + .Vni " n 0 , i ) <A Hr f298>± 1=1 ' R 1=1 - - i .v±c;. (3-i3) 1=1 G 1=1 * i Since Eq. 3.13 i s written i n terms of moles rather than p a r t i a l pressures, both the feed and equ i l i b r i u m compositions must be expressed i n terms of moles. 3.3 Recycle The e f f e c t of adding a recycle stream ( c . f . F i g . 3.1) on the y i e l d of a Claus furnace i s subsequently examined. I t i s assumed that the condenser removes a l l elemental sulphur from stream E, i . e . , stream D contains no elemental sulphur, whereas stream L contains only elemental sulphur. The temperature of every stream except E can be f r e e l y s p e c i f i e d at the s t a r t of the recy c l e c a l c u l a t i o n s , while that of stream E must be found from the adiabatic flame temperature c a l c u l a t i o n s described i n the previous section. The compositions of the streams are computed as follows: With a basis of 100 moles of acid gas, the moles of H 2S, H 20, NH 3, C0 2 and CH^ i n stream A are s p e c i f i e d by the acid gas composition; 0 2 and N 2 are computed from the amount of combustion a i r added to the acid gas. The compositions of the other streams may be obtained from those of stream A by the following mass balances: M = e,B M A + M •„ e,A e,C (3.14) M „ = e,C r M e,D (3.15) + M = e,L e,E (3.16) M e , E " (3.17 M _ = e,L (Y/100) Mi e,t (3.18) 42 where M represents the t o t a l moles of element e (C, H, N, 0 or S) i n e, hi stream E, r i s the f r a c t i o n of stream D recycled, subscripts A, B, C, D, E and L r e f e r to the various streams and Y i s the percent sulphur y i e l d defined by Eq. 3.8. When the mass balances are made f o r an element other than sulphur, then Y = 0 to make M =0. This follows since e,L only sulphur i s present i n stream L. Substituting Eqs. 3.15 to 3.18 into "Eq. 3.14 gives Me,B = M e , A / ( 1 " r , ) ( 3 ' 1 9 ) where r ' i s defined by r' = r ( l - Y/100) (3.20) Eq. 3.14 to 3.20 enable the number of moles of element e i n streams B to F to be c a l c u l a t e d from the composition of stream A. The number of moles of compound i i n a given stream, say stream E, i s r e l a t e d to the t o t a l moles of element e by the equation N, E j m = M (3.21) i ="L l i b where j i s the number of atoms of element e i n compound i . For example, i f e i s hydrogen and i corresponds to H 20, then j = 2, but, i f i corresponds to C 2N 2, then j = 0. The summation i s over the t o t a l number of compounds, N. Since the gases are assumed to be i d e a l , the number of moles of compound i i s proportional to the p a r t i a l pressure of i , i . e . , f o r stream E, m. _ = a P. (3.22) i , E l Su b s t i t u t i n g Eq. 3.22 i n Eq. 3.21 gives N a Z j P. = M (3.23) i = l 1 S u b s t i t u t i n g Eq. 3.19 and 3.23 i n Eq. 3.17 and s o l v i n g f or a gives 43 • N a = M . / [ z j P . ( l - r ' ) ] (3.24) Since the gases are i d e a l , a should be the same for each element, but because of computer round-off e r r o r , s l i g h t v a r i a t i o n s occur and the mean value i s therefore used. From Eq. 3.22 and 3.24 the number of moles of each species i n stream E i s computed. Subsequently, the compositions of streams, B, C, D and F are found by mass balances. The s o l u t i o n of the equations governing the recy c l e case, l i k e that of the eq u i l i b r i u m compositions, i s i t e r a t i v e . F i r s t , the r a t i o s R^g, R^g, and R Qg at the mixing point * are guessed, then the equilibrium compositions, the y i e l d and f i n a l l y r ' can be computed. For the k i t e r a t i o n , an improved guess of the r a t i o R i s given by 6 b < ReS>k = < Me,B / MS,B>k ( 3 ' 2 5 ) where, i n the denominator, e = S has been substituted and elsewhere e = C, H or 0. Sub s t i t u t i n g Eq. 3.19 i n the R.H.S. of Eq. 3.25, and noting that i f e ^ S, r ' = r , gives ( R e S > k = [ ( M e , A / M s , A > d " D/(1 - r ' ) ] R (3.26) Since the f r a c t i o n recycled ( r ) , and the composition of stream A are both constant, < ReS>k" ^ e . A ^ s . A 5 <1 - * > / ( ! - r ' k ) (3-27) L e t t i n g g = M /M (3.28) and f k =•(!.- r ) / ( l - r ' k ) (3.29) and s u b s t i t u t i n g Eqs. 3.28 and 3.29 i n Eq. 3.27 y i e l d s ( R e S ) k = B f k (3-30) or f o r the next i t e r a t i o n , <*eS>k*l = e f k + r (3.3D 44 From Eqs. 3.30 and 3.31, ( R e s V " W V ( 3 " 3 2 ) I f f , / f deviates from unity by more than 0.1%, new r a t i o s are obtained K."T"_L K. from Eq. 3.32; t h i s enables the computation of revised e q u i l i b r i u m compositions, sulphur y i e l d , r ' , and f i n a l l y k 0 for the next i t e r a t i o n . i+2 For the f i r s t i t e r a t i o n , f i s set to unity, although a better procedure may be to guess the y i e l d and substitute the r e s u l t i n g r ' in t o Eq. 3.29 to obtain a guess of f ^ . 3.4 Thermochemical Data In order to compute the equ i l i b r i u m compositions and the adiabatic flame temperatures, thermochemical data are needed. For most compounds, data are l i s t e d i n JANAF tables at i n t e r v a l s of 100°K and i n t e r p o l a t i o n i s therefore required. Thermochemical data i n the form of power s e r i e s o f f e r the p o s s i b i l i t y of f a s t e r , more precise computation. For most 8 compounds considered i n t h i s t h e s i s , McBride et a l . have published sets of c o e f f i c e n t s to ay for the following equations: C ° -2- = a1 + a 2T + a 3 T 2 + a^T 3 + a5Th (3.33) K A 2 a 3 a 4 a 5 a 6 ^ = a 1 + — T + T T 2 + T T 3 + T - T 4 + T (3.34) S T a3 9 ak , a5 , T± = a1 l n T + a 2T H—— T + — T + — T^ + a 7 (3.35) F° a 2 a 3 a 4 a 5 a 6 - = a 1 ( l - l n T ) - T T - - R T 2 - - T 3 - 2 Q T ^ + T - a 7 (3.36) The e q u i l i b r i u m constants may be obtained from K^ , = exp(- AF°/RT), (3.37 where 45 AF^ = I n.(F°). - I n (F«) (3.38) 1=1 1=1 For the species l i s t e d i n Table 3.4, c o e f f i c i e n t s are not a v a i l a b l e . The c o e f f i c i e n t s f o r these compounds are found by simultaneous l e a s t squares approximation. This method, described i n d e t a i l by Zeleznik and Gordon"'"'" i s used by McBride et a l . for th e i r c a l c u l a t i o n s , y i e l d s the equation, Ax ± = d , (3.39) T where x_^  = [a-^  , a 2 , ... , and aj to a 7 are the c o e f f i c e n t s , i n Eq. 3.33 to 3.36 and a 8 to a 1 Q a r e Lagrange m u l t i p l i e r s . Matrix A i s constant but cl i s a function of heat capacity, enthalpy and entropy of specie i . Zeleznik and Gordon noted that two sets of c o e f f i c i e n t s , one from 300°K to T Q, the other from T Q to 5000°K, gave a better f i t of the data than j u s t one set. McBride found that TQ = 1000°K gave good r e s u l t s for most compounds. The elements of A and of d_^  are l i s t e d i n Tables 3.5 and 3.6 r e s p e c t i v e l y . Since A i s very i l l - c o n d i t i o n e d , i t must be scaled by m u l t i p l y i n g with F which i s given by F = diag[10" 7,10" 9,10" 1 2,10" 1 5,10" 1 8,10" 3,10" 6,10" 6,10 _ 5,10~ 5] (3.40) M u l t i p l y i n g both sides of Eq. 3.39 by F, and solving f or x^ gives x ± = (F A.)" 1 F d (3.41) the matrix F A must be inverted by a double p r e c i s i o n routine; s i n g l e p r e c i s i o n i n v e r s i o n gives erroneous r e s u l t s . For each compound i n Table 3.4, two sets of c o e f f i c i e n t s are generated, one for temperatures below 1000°K, the other for temperatures above 1000°K. McBride c o e f f i c i e n t s are calculated f or the sulphur polymers S3 to 24 S 7 even though Rau et a l . provide an equation and c o e f f i c i e n t s f o r TABLE 3.4 THERMOCHEMICAL DATA NOT AVAILABLE FROM McBRIDE ET AL. Compound Source of Data Form of Data H 2S 2 Mackle and 0'Hare 2 2 300 to 1000°K i n increments of 100 °K S 3 to S 7 'Rau et " a l . 2 4 C o e f f i c i e n t s of equation f o r C^ 58,820,02^0 JANAF7 0 to 6000°K i n increments of 100°K TABLE 3 . 5 MATRIX A ( S e e r e f e r e n c e TABLE 3 . 6 VECTOR d. ( S e e r e f e r e n c e 48 heat capacity. Although t h i s equation may be more accurate, the conven-ience of having the data i n the same form for a l l the compounds, outweighs t h i s advantage. To generate McBride c o e f f i c i e n t s for these sulphur polymers (S 3 to. S 7 ) , the heat capacity, enthalpy and entropy are needed i n i n t e r v a l s of 100°K, from 300 to 5000°K. These data were generated from the equation given for C° by Rau et a l . C° = A + (B x 10~ 3) T + ( C x 10 5) T - 2 (3.42) and i t s derived functions, T H T " H298 = / 2 9 8 Cp" d T = AT + 1/2(B x 10~ 3) T 2 - (C x 10 5) T _ 1 + AH° 2 9 g (3.43) and AS°= / 2 9 8 ( C p / T ) d T = A In T + (B x 10~ 3) T - 1/2(C x 10 5) T~ 2 + S ° g g (3.44) where the c o e f f i c i e n t s , A, B and C are l i s t e d f o r S3 to S7 i n Table 3.7. McBride c o e f f i c i e n t s for a l l compounds i n Table 3.4 (except H2S2) were ca l c u l a t e d f or two temperature ranges: 300 to 1000°K and 1000. to 5000°K. For H2S2 the second range was 1000 to 2000°K. [Data for H2S2 above 1000°K were estimated by p l o t t i n g the given data (300 to 1000°K) and extrapolating to 2000°K.] Table 3.8 l i s t s the elements of the symmetric matrix A of Eq. 3.39 for each of the three temperature ranges. Table 3.9 l i s t s the McBride c o e f f i c i e n t s f o r H 2 S 2 , S 3 , S^, S 5 , Sg, S 7 , Sg, S2O, and C2Hi+0. In summary, McBride c o e f f i c i e n t s f o r the t h i r t y - s i x species assumed to be present at e q u i l i b r i u m were obtained from three sources: 8 —McBride et a l . (most compounds); 7 9? — D a t a from JANAF tables (Ss, S 20, C2^0), or Mackle and O'Hare ( H 2 S 2 ) : — D a t a generated by Eqs. 3.42 to 3.44 (S3 to S 7 ) . TABLE 3.7 HEAT CAPACITIES OF GASEOUS SULPHUR MOLECULES FROM RAU ET AL.24 C = A + P -3 10 BT + i o5 c f 2 (T i n ° K ) a Polymer AH° S° \ A B C Kcal/mol cal/mol/°K S 2 8.54 0.28 -0.79 31.20 54.40 S 3 12.854 1.04 -1.554 33.81 64.39 Su 19.092 0.783 -2.820 34.84 74.22 S 5 25.558 0.253 -3.771 26.14 73.74 su 31.580 0.120 -4.400 24.36 84.60 S 7 37.038 0.613 -4.723 27.17 97.41 s 8 42.670 0.860 -5.110 24.32 102.76 Equation i n the authors' computer program was used instead of that given i n t h e i r Table 1, as the l a t t e r appeared to have an i n c o r r e c t sign f o r an exponent . TABLE 3.8 MATRIX A (A) For 300 < T < 1000°K 3 . 45563D 02 4. 18165D 04 1.76839D 07 1. 05141D 10 7. 31261D 12 4. 18165D 04 8. 55000D 06 5.02666D 09 3 . 69192D 12 2. 9B069D 15 1. 76839D 07 5. 02666D 09 3.44579D 12 2. 75990D 15 2. 35752D 18 1. 05141D 10 3. 6919 2D 12 2.75990D 15 2. 32180D 18 2. 04910D 21 7. 31261D 12 2. 98069D 15 2.35752D 18 2. 04910D 21 1. 84924D 24 1. 42897D-02 4. OOOOOD 00 1.73333D 03 9. 50000D 05 6. 03200D 08 5. 12526D 01 5- 20000D 03 1.90000D 06 1. 00533D 09 6. 32900D 11 1. C0000D 00 1. OOOOOD 03 1.OOOOOD 06 1. OOOOOD 09 1. OOOOOD 12 1. 00000D 00 5. OOOOOD 02 3.33333D 05 2. 50000D 08 2. OOOOOD 11 6. 90776D 00 1- OOOOOD 03 5.OOOOOD 05 3. 33333D 08 2. 50000D 11 (B) For 1000 < T < 5000°K 2. 65844D 03 1. 17937D 06 2.31782D 09 6. 51016D 12 2. 15458D 16 1. 17937D 06 9. 59400D 08 2.70600D 12 9. 57415D 15 3 . 72991D 19 2. 31782D C9 2. 70600D 12 8.93587D 15 3- 45362D 19 1. 42493D 23 6. 51016D 12 9. 57415D 15 3.45362D 19 1. 40334D 23 5. 98688D 26 2. 15458D 16 3. 72991D 19 1.42493D 23 5. 98688D 26 2. 61365D 30 1. 67024D- 02 2. 05000D 01 4. 10000D 04 1. 06600D 08 3. 24720D 11 3. 24488D 02 1. 23000D 05 2.13200D 08 5. 41200D 11 1. 64128D 15 1. OOOOOD 00 1. OOOOOD 03 1.OOOOOD 06 1. OOOOOD 09 1. OOOOOD 12 1. 00000D 00 5. OOOOOD 02 3.33333D 05 2. 50000C 08 2. OOOOOD 11 6. 90776D 00 1. OOOOOD 03 5.OOOOOD 05 3. 33333D 08 2. 50000D 11 (C) For 1000 < T < 2000°K 6. 07116D 02 1. 45790D 05 1- 298 11D 08 1. 56548D 11 2. 16469D 14 1. 45790D 05 5. 81625D 07 7.01250D 10 1. 03153D 14 1. 64868D 17 1. 29811D 08 7. 01250D 10 9.62759D 13 1. 52656D 17 2. 56777D 20 1. 56548D 11 1. 03153D 14 1.52656D 17 2. 52887D 20 4. 38510D 23 2- 16469D 14 1. 64868D 17 2.56777D 20 4. 38510D 23 7. 76965D 26 7. 68771D-•03 5. 50000D 00 5.50000D 03 6. 46250D 06 8. 4 1500D 09 8.01907D 01 1. 65000D 04 1.29250D 07 1. 40250D 10 1. 76833D 13 1. 00000D 00 1. OOOOOD 03 1.OOOOOD 06 1. OOOOOD 09 1. OOOOOD 12 1. OOOOOD 00 5. OOOOOD 02 3.33333D 05 2. 50000D 08 2. OOOOOD 11 6. 90776D 00 1. OOOOOD 03 5.00000D 05 3. 33333D 08 2. 50000D 11 1.42897D-02 4.OOOOOD 00 1.73333D 03 9.50000D 05 6.03200D 08 2.99768D-05 O.OOOOOD-01 O.OOOOOD-01 1.000000-03 O.OOOOOD-01 5.12526D 01 5.20000D 03 1.90000D 06 1.00533D 09 6.32900D 11 O.OOOOOD-01 6.OOOOOD 00 O.OOOOOD-01 O.OOOOOD-01 1.OOOOOD 00 1.OOOOOD 00 1.OOOOOD 03 1.OOOOOD 06 1.OOOOOD 09 1.OOOOOD 12 O.OOOOOD-O 1 O.OOOOOD-01 O.OOOOOD-01 O.OOOOOD-01 O.OOOOOD-01 1.OOOOOD 00 5.OOOOOD 02 3.333330 05 2.50000D 08 2.OOOOOD 11 1.00000D-03 O.OOOOOD-01 O.OOOOOD-01 O.OOOOOD-01 O.OOOOOD-01 6.90776D 00 1.OOOOOD 03 5.OOOOOD 05 3.33333D 08 2.50000D 11 0.OOOOOD-O1 1.OOOOOD 00 O.OOOOOD-01 0.OOOOOD-01 0.OOOOOD-01 1.67024D-02 2.05000D 01 4.10000D 04 1.06600D 08 3.24720D 11 8.53650D-06 O.OOOOOD-01 O.OOOOOD-01 1.00000D-03 0.OOOOOD-01 3.24488D 02 1.23000D 05 2.13200D 08 5.41200D 11 1.64128D 15 0.OOOOOD-01 4.10000D 01 O.OOOOOD-01 O.OOOOOD-01 1.OOOOOD 00 1.OOOOOD 00 1.OOOOOD 03 1.OOOOOD 06 1.OOOOOD 09 1.00000D 12 O.OOOOOD-01 0.OOOOOD-01 O.OOOOOD-01 O.OOOOOD-01 0.OOOOOD-01 1.OOOOOD 00 5.OOOOOD 02 3.33333D 05 2.50000D 08 2.OOOOOD 11 1.00000D-03 O.OOOOOD-01 0.OOOOOD-01 O.OOOOOD-01 O.OOOOOD-01 6.90776D 00 1.OOOOOD 03 5.OOOOOD 05 3.33333D 08 2.50000D 11 0.OOOOOD-01 1.OOOOOD 00 0.OOOOOD-01 0.OOOOOD-01 0.OOOOOD-01 7.68771D-03 5.50000D 00 5.50000D 03 6.46250D 06 8.41500D 09 5.63955D-06 O.OOOOOD-01 0.OOOOOD-01 1.000000-03 0.OOOOOD-01 8.01907D 01 1.65000D 04 1.29250D 07 1.40250D 10 1.76833D 13 0.OOOOOD-01 1.10000D 01 O.OOOOOD-OI O.OOOOOD-01 1.OOOOOD 00 1.OOOOOD 00 1.OOOOOD 03 1.OOOOOD 06 1.OOOOOD 09 1.OOOOOD 12 O.OOOOOD-01 O.OOOOOD-01 O.OOOOOD-01 0.OOOOOD-01 O.OOOOOD-01 1.OOOOOD 00 5.00000D 02 3.33333D 05 2.50000D 08 2.OOOOOD 11 1.00000D-03 O.OOOOOD-01 0.OOOOOD-01 O.OOOOOD-01 0.OOOOOD-01 6.90776D 00 1.OOOOOD 03 5.OOOOOD 05 3.33333D 08 2.50000D 11 0.OOOOOD-01 1.OOOOOD 00 0.OOOOOD-01 O.OOOOOD-01 O.OOOOOD-01 TABLE 3.9 McBRIBE COEFFICIENTS H2S2 A 2. 9 8 3 8 4 1 E 0 0 1 . 8 2 7 0 3 0 E - 0 2 - 3 . 3 7 7 9 4 3 E - 0 5 c - 4 . 0 0 6 3 7 6 E 0 0 3 . 8 2 5 9 0 3 E - 0 2 - 4 . 4 8 4 2 9 9 E - 0 5 S3 A 1 . 9 9 4 5 5 0 S 0 0 2. 2 1 4 2 8 5 E - 0 2 - 4 . 1 9 9 0 5 8 E - 0 5 B 6 . 1 9 2 6 7 2 E 0 0 8 . 2 8 1 5 0 7 S - 0 4 - 1 . 3 0 0 4 5 2 E - 0 7 S 4 ft 1 . 4 1 9 4 1 5 E 0 0 4 . 0 1 4 5 2 3 E - 0 2 - 7 . 7 5 5 3 5 6 E - 0 5 B 9. 0 8 7 3 3 7 E 0 0 9 . 8 4 3 1 5 5 E - 0 4 -2. 5 8 7 6 9 0 E - 0 7 S 5 A 1 . 8 8 9 7 7 6 E 0 0 5 . 3 U 3 9 6 1 E - 0 2 - 1 . 0 4 0 8 8 8 E - 0 4 B 1 . 2 1 6 4 8 7 E 0 1 9 . 1 8 9 2 4 8 E - 0 4 - 3 . 4 7 8 0 6 1 E - 0 7 S 6 & 3 . 1 1 1 9561=; 0 0 6 . 2 1 0 3 0 7 E - 0 2 - 1 . 2 1 0 3 1 0 E - 0 4 B 1 . 5 0 7 7 6 0 E 0 1 9 - 8 6 2 6 2 0 E - 0 4 - 4 . 0 6 7 8 9 0 B - 0 7 S 7 . A 4 . 9 7 7 8 2 3 E 0 0 6 . 6 4 8 6 1 2 E - 0 2 - 1 . 2 8 3 4 7 7 E - 0 4 B 1 . 7 7 7 3 2 2 E 0 1 1 . 2 8 5 8 3 9 E - 0 3 - 4 . 2 6 6 6 1 3 E - 0 7 S 8 & 8 . 1 3 4 3 8 0 E 0 0 6 . 2 0 1 3 7 6 E - 0 2 - 1 . 1 4 5 7 9 3 E - 0 4 B 2. 0 7 4 6 7 7 E 0 1 1 . 4 2 2 9 8 0 E - 0 3 - 6 . 2 5 3 4 0 5 E - 0 7 S 2 0 A 2. 9 8 1 4 4 9 E 0 0 1 . 1 1 7 7 8 7 E - 0 2 - 1 . 3 4 5 0 1 3 E - 0 5 B 5 . 9 0 4 7 4 1 E 0 0 1 . 2 3 5 8 1 9 E - 0 3 - 5 . 4 5 3 1 3 9 E - 0 7 C 2 H 4 3 A 9. 7 4 8 1 8 2 E - - 0 1 1 . 2 0 0 1 0 6 E - 0 2 2. 4 0 4 2 8 2 E - 0 5 B 4 . 3 4 1 6 2 6 E 0 0 1 . 4 2 3 4 3 3 E - 0 2 - 5 . 7 3 4 2 5 2 E - 0 6 S 2 B : A 2. 0 6 2 3 3 5 E 0 0 1 - 0 S 4 2 5 1 E - 0 2 -2. 0 6 0 5 0 8 E - • 0 5 S 2 3 A 2. 7 1 2 9 0 2 E 0 0 6 . 2 1 0 4 6 8 E - • 0 3 - 9 . 1 8 8 9 0 7 E - • 0 6 s 2 n A 2. 6 9 9 9 3 5 E 0 0 6 . 2 7 4 9 5 3 E - 0 3 - 9 . 2 8 7 0 7 8 E - • 0 6 52 B : B 4 . 1 5 5 1 8 4 E 0 0 2 . 9 9 4 1 9 9 E - • 0 4 - 6 . 8 0 5 5 8 9 E - • 0 8 S2 J r B 4 . 1 9 2 6 8 7 E 0 0 3 . . 7 7 7 8 2 1 E - • 0 4 - 1 . 5 1 3 3 9 9 E - • 0 7 s2 n I B 1 . 1 8 9 6 9 3 E 0 0 3 . . 9 4 6 9 7 0 E - • 0 4 - 1 . 5 5 6 6 6 3 E - • 0 7 L E G E N D : A — F O K 3 0 0 < T < 1 0 0 0 K B — F O R 1 0 0 0 < T < 5 0 0 0 K C — F O B 1 0 0 0 < T < 2 0 0 0 K H — C A L C U L A T E D F R O M B A U ' S E Q U A T I O N S J — C A L C U L A T E D F R O M J A S A F D A T A H — C O E F F I C I E N T S A S L I S T E D I N H C B B I D E CALCULATED IN THIS THESIS 3 . 1 9 1 6 0 4 E - 0 8 - 1 . 1 3 3 4 4 3 S - 1 1 - 1 . 5 0 4 9 3 0 E 0 4 1 . 0 1 2 1 9 9 E 0 1 2 . 2 7 6 6 2 8 E - 0 8 - 4 . 1 1 9 6 1 8 E - 1 2 - 1 . 3 5 2 1 1 2 E 0 4 4 . 5 1 9 7 9 7 E 0 1 3 . 6 9 3 0 5 2 E - 0 8 - 1 . 2 1 6 3 8 0 E - 1 1 1 . 5 7 3 8 1 5 E J ) 4 1 . 6 0 0 0 9 0 E 0 1 2 . 4 4 5 5 2 7 E - 1 1 - 1 . 6 9 3 1 4 1 E - 1 5 1 . 5 0 3 7 9 6 E 0 4 - 3 . 3 5 2 7 7 2 E 0 0 6 . 8 4 9 1 6 6 E - 0 8 - 2 . 2 6 4 3 4 1 E - 1 1 1 . 5 8 8 4 5 7 E 0 4 2. 0 1 7 9 9 8 E 0 1 4 . 9 9 6 9 1 4 E - 1 1 - 3 . 5 4 7 5 8 4 2 - 1 5 1 . 4 6 1 4 6 2 E 0 4 - 1 . 5 1 2 0 7 0 E 0 1 9 . 1 9 8 4 9 3 E - 0 8 - 3 . 0 4 2 6 9 7 E - 1 1 1 . 0 9 6 7 1 7 E 0 4 1 . 4 2 8 2 6 7 E 0 1 6 . 7 3 3 6 0 0 E - 1 1 - 4 . 7 9 3 2 2 4 B - 1 5 9 . 2 6 7 0 4 3 E 0 3 - 3 . 3 0 1 1 3 1 E 0 1 1 . 0 6 8 7 4 2 E - 0 7 - 3 . 5 3 2 8 0 0 E - 1 1 9 . 4 4 4 7 1 5 E 0 3 1 . 0 8 3 2 2 9 E 0 1 7 . 8 7 3 0 8 8 E - 1 1 - 5 . 6 0 2 0 9 3 E - 1 5 7 . 4 6 3 7 8 9 E 0 3 - 4 . 4 2 5 0 8 7 E 0 1 1 . 1 3 5 8 3 8 E - 0 7 - 3 . 7 4 9 1 3 7 3 - 1 1 1 . 0 1 6 4 4 2 E 0 4 5 . 6 3 3 7 5 9 E 0 0 8 . 2 0 7 4 1 3 E - 1 1 - 5 . 8 0 6 9 0 9 E - 1 5 8 . 0 4 0 4 6 1 E 0 3 - 5 . 3 3 0 1 5 1 E 0 1 9 . 7 4 4 2 3 5 E - 0 8 - 3 . 1 3 5 0 7 1 E - 1 1 7 . 8 3 0 7 1 5 E 0 3 - 8 . 7 9 7 3 1 7 E 0 0 1 . 2 1 1 8 3 1 E - 1 0 - 8 . 6 3 6 8 6 6 E - 1 5 5 . 5 8 9 2 6 6 E 0 3 - 6 . 7 7 0 5 2 2 E 0 1 7 . 6 1 7 5 9 7 E - 0 9 - 1 . 6 3 2 6 4 5 E - 1 2 - 8 . 0 7 4 2 2 7 E 0 3 1 . 2 3 1 6 6 3 E 0 1 1 . 0 6 5 6 6 9 E - 1 0 - 7 . 6 7 0 5 7 8 E - 1 5 - 8 . 7 7 5 3 3 6 F 0 3 - 2 . 2 8 9 6 8 2 E 0 0 - 3 . 9 7 6 8 5 2 E - 0 8 1 . 6 5 7 6 4 1 E - 1 1 - 7 . 0 9 9 2 2 3 E 0 3 1 . 9 3 3 1 3 1 E 0 1 1 . 0 5 8 2 4 7 E - • 0 9 - 7 . 3 3 7 5 8 2 E - 1 4 - 8 . 5 3 3 7 1 1 E 0 3 - 7 . 1 6 9 8 4 9 B - • 0 1 1 . 7 9 8 2 7 8 E - 0 8 - 5 . 8 8 4 0 2 8 E - 1 2 1 . 4 7 5 2 4 1 E 0 4 1 . 3 1 6 0 4 9 B 0 1 6 . 4 9 5 2 2 7 E - • 0 9 - 1 . 7 3 3 3 6 8 E - 1 2 1 . 4 5 0 3 2 0 E 0 4 1 . 0 4 7 5 5 3 E 0 1 6 . 5 3 9 3 2 7 E - • 0 9 - 1 . 7 8 0 2 2 8 E - 1 2 1 , 4 5 0 4 9 3 E 0 4 1 . 0 5 3 4 2 2 E 0 1 1 . 2 8 6 4 5 4 E - • 1 1 - 8 . 9 4 5 4 4 5 E - • 1 6 1 . 4 4 0 1 2 8 E 0 4 3 . 4 9 7 3 7 8 E 0 0 2. 9 2 8 0 2 1 E - • 1 1 - 2 . 0 8 6 2 1 3 E - • 1 5 1 . 4 1 8 7 4 7 E 0 4 3 . 2 7 7 4 4 2 E 0 0 3 . 0 3 6 8 0 1 E - • 1 1 - 2 . 1 7 9 5 8 5 E - • 1 5 1 . 4 1 8 8 1 3 E 0 4 3 . 2 9 3 0 3 0 E 0 0 52 TABLE 3.10 COMPARISON OF STANDARD ERRORS OF DATA OF S 2 GENERATED FROM McBRIDE COEFFICIENTS Source C P H T - H298 ST O l a 2 a 2 g McBride et a l . 0 .001 0 .002 0. 000 0.144 0. 000 0.064 This t h e s i s + JANAF 7 0 .001 0 .002 0. 001 0.144 0. 000 0.063 This thesis + Eqs. 3.42 0 .028 0 .058 0. 008 0.189 0. 052 0.047 to 3.44 a 2 1000 I (3L, - J O 2 T=300 " 1 '5000 Z " (X_ - X ) : T=1000 n 2 - 1 where X = C , H^ , - H or S^ l i s t e d i n JANAF tables for temperature T p_ i zyo l n 1 , n 2 X = Cp , - H 2 9g or ca l c u l a t e d from McBride c o e f f i c i e n t s f o r temperature T , T = temperature i n °K the number of. temperature i n t e r v a l s i n the summation (n^ =8; n 2 = 41) 53 Since McBride c o e f f i c i e n t s for S 2 can be obtained from each of these three sources, a comparison of t h e i r accuracy could be made. Table 3.10 shows that the standard error of thermochemical data generated by McBride c o e f f i c i e n t s from each of the three sources i s less than 10%. Thus, McBride c o e f f i c i e n t s are an accurate, convenient way of representing thermochemical data. 3.5 Vapour Pressure of Sulphur Sulphur condenses when the sum of the p a r t i a l pressures of the various sulphur species, i . e . , 8 . P = 2 [S.], (3.45) s . j 1=1 exceeds the saturated vapour pressure of sulphur. An equation for the 52 l a t t e r can be obtained by f i t t i n g a curve to the data of West. • The author reported vapour pressure-temperature data for sulphur between 393 and 919°Kandtwo equations, l i s t e d i n Table 3.11, one v a l i d below 573°K, the other for temperatures between 573 and 823 °K. At 573°K, however, the vapour pressures given by the two equations d i f f e r e d by almost 20%. Likewise two equations provided by The Sulphur Data 53 Book disagreed by over 4% at the common point. The s i n g l e equation 54 given by Rau et a l . did not cover the e n t i r e range desired. I t was therefore decided to f i t the data of West et a l . to a s i n g l e equation v a l i d from 393 to 919°K. The equation used i s l n P v = 3.77978 + 1.91809 * 10~ 6 T 2 - 796.138 T _ 1 - 1,883,640 T~ 2 (3.46) where P i s i n atmospheres and T i s i n °K. The c o e f f i c i e n t of determin-v 2 ati o n (r ) was 0.99999. This equation gives a better f i t to the experi-mental data of West et a l . than any of the equations l i s t e d i n Table 3.11 54 TABLE 3.11 EQUATIONS FOR VAPOUR PRESSURE OF SULPHUR Source Range (°K) Equation IT 5 2 West 373 to 573 573 to 823 l o g 1 0 P = 6.04892 - 4087.8/T l o g 1 0 P = 4.57579 - 3288.5/1 Sulphur Data Book 5 3 393 to 598 598 to 823 l o g 1 0 P = 11.8 - 0.006228T - 5405.1/T l o g 1 0 P = 4.57579 - 3288.5/T Rau et a l . 590 to 1313 l o g 1 0 P = 60.9106 - 24,971/T + 1.0817 x 10 7/T : - 2.2060 x 10 9/T 3 - 14.4102 l o g 1 0 T 2 P i s i n atmospheres; T i n °K CHAPTER 4 EXPERIMENTAL APPARATUS 4.1 Requirements of the Apparatus The experimental equipment must be capable of providing feed mix-tures having known r a t i o s of a i r to hydrogen sulphide, heating these mixtures to a given temperature (between 800 and 1500°K) and l e t t i n g the mixtures come to equilibrium at one atmosphere pressure. In situ a n a l y s i s of the gas mixture i n the equilibrium v e s s e l was rejected because of complexity and expense. The r e a c t i o n products therefore had to be sampled before a n a l y s i s . The sampling procedure had to have the following c h a r a c t e r i s t i c s : — s p e e d to quench the gases r a p i d l y and prevent reversion; — r e m o v a l of condensed sulphur before i t could clog the valves and l i n e s ; — r emoval of condensed water which catalyses the reaction between H 2S and S0 2• Since theory p r e d i c t s that H 2, H 2S, S0 2, N 2, H 20 and sulphur vapour are present i n q u a n t i t i e s exceeding 1%, and since the water and sulphur are removed during sampling, an analysis technique was sought which deter-mined the concentrations of j u s t H 2, H 2S, S0 2 and N 2. 4.2 Apparatus and P r i n c i p l e s of Operation The following sections describe the apparatus and how i t was designed to meet the requirements given i h the previous s e c t i o n . The equipment i s shown i n F i g s . 4.1 and 4.2 and important components of the 55 Figure 4.1. Schematic diagram of the experimental apparatus. The legend i s on page 58. Ol ov Figure 4.2. Experimental apparatus. (The e q u i l i b r i u m vessel has been removed from the furnace to show i t s shape and size.) The le g e n d i s o n page 58. 58 Legend for Figures 4.1 and 4.2 C Clamp EV Equilibrium v e s s e l F Furnace GBi,GB2 Gas bag for feed and product mixtures, r e s p e c t i v e l y GBC Gas bag container MG McLeod gauge MT M u l l i t e tube R Pressure r e l i e f valve Si and S 2 Septums SC P2O5 scrubber ST Stopcock SV Solenoid valve SVT Solenoid valve timer T Tygon tubing Vi to Vg Stainless s t e e l valves VP Vacuum pump 59 apparatus are l i s t e d i n Table 4.1. D e t a i l s of the operating procedure are given i n Appendix A. 4.2.1 Feed Mixture Preparation The feed mixtures were prepared by blending streams of a i r and hydrogen sulphide i n the desired r a t i o s . The flow of C P . grade H 2S (from a l e c t u r e b o t t l e ) was metered by a Gilmont rotameter (model F2000, •size 10) whereas the a i r flow was determined with another Gilmont r o t a -meter (model F1100, s i z e 1). The feed mixture was stored i n 2 - l i t r e Tedlar gas bags (supplied by Environmental Measurements Inc.) u n t i l needed. Instead of f i r s t c o l l e c t i n g the air-H 2S mixture i n a gas bag, one might also consider passing i t d i r e c t l y through the eq u i l i b r i u m v e s s e l . In a s e r i e s of experiments, metered flows of a i r and H 2S were passed through a 10 mm ID Vycor tube located i n a small furnace. Reaction products were sampled from the e x i t of the tube. The apparatus, however, was u n s a t i s f a c t o r y f o r two main reasons; — A t low flow ra t e s , the residence time was s u f f i c i e n t f o r the gases to a t t a i n chemical equilibrium, but the heat t r a n s f e r was poor and the gases d i d not reach the desired temperature. — A t high flow ra t e s , the heat t r a n s f e r was good, but residence times were too low f o r the gases to reach chemical equilibrium. 4.2.2 Furnace A Lindberg furnace (model 54233), capable of a t t a i n i n g a tempera-ture of 1500°C, and c o n t r o l l a b l e to w i t h i n ±1°C, was chosen f o r t h i s work. The furnace, which i s 635 mm long, contains eight SiC heating elements which are spaced i n such a way that a 200 mm long zone i s created where the temperature i s uniform w i t h i n ± 5 ° C To enable easy p o s i t i o n i n g , 60 TABLE 4.1 LIST OF EQUIPMENT Code used i n Figs.4.] Item Supplier Model Comments and 4.2 Gases - Nitrogen A i r Liquide Cylinder -- Hydrogen A i r Liquide Cylinder -- Hydrogen sulphide Matheson Lecture b o t t l e -- Sulphur dioxide Matheson Lecture b o t t l e . —T, , - . -Chromatograph — Gas Chromatograph Beckman GC-2 — - Recorder Sargent SRG with Disc integrator - Chart paper Graphic Controls S-72168 -- Gas d r i e r Chemical Research Supplies - -S Septa Chromatograph s i l i c o n e S p e c i a l i t i e s Grey rubber 12.5 mm and 9.5 mm d i a . - Syringe Hamilton 1005 LLCH 5 ml capacity - Syringe needles Hamilton N722, Pt 3. 22 gauge 50 mm long Gas bags ' GB Gas bag Environmental 10-011 du Pont Measurements, Tedlar, Inc. 240mmx300mm (2 l i t r e s ) GBC Gas bag container - 60mmx230mmx 310mm Valves, etc. — N 2 regulator A i r Liquide 1040 -- H 2 regulator A i r Liquide 1040 -- Lecture b o t t l e A i r Liquide 2080 For hose valves (2) connection ST Stopcock Corning -V l - V l + Valves (4) Whitey SS-IRS4 1/4" v 5 Valve Whitey SS-IRS6 1/8" 61 Table 4.1 continued Code used i n Figs.4.] Item S u p p l i e r Model Connie ti t s and 4.2 SV Solenoid Skinner E l e c t r i c V52 DB2100 1/8" o r i f i c e diam. SVT Solenoid timer i - 0.05 to 2.3 seconds range R Pressure R e l i e f Swagelok SS-6R-10 Releases at Valve 5 p s i g T T e f l o n Tubing C a d i l l a c P l a s - 2mm ID x 3mm OD -t i c s SC P 2 O 5 Scrubber - 5mm IDx7mm OD Tube f i l l e d xlOOmm long w i t h P 2 O 5 ; ends plugged w i t h g l a s s wool Rotameters - Rotameters (2) Gilmont F2000 S i z e 10 0.2-90ml/min a i r - Rotameter Gilmont P1100 S i z e 1 1-280ml/min a i r - Rotameter Gilmont 1F1200 S i z e 2 20-2100ml/min a i r High Temp. Equipment F Furnace Lindberg 54233 50mm 300mm heated zone - C o n t r o l l e r Lindberg 59545 -MT M u l l i t e Tube McDanel PT134 46mm IDx51mm Re f r a c t o r y ODx635mm QT Quartz Tubing Quartz S c i e n t i f i c ; QT2E 2mm IDx8mm OD QT40D 40mm IDx44mm OD Vacuum Equipment VP Vacuum Pump W. M. Welch "Duo S e a l " _ MG McLeod Gauge • F. J. Stokes — — 62 the furnace was placed on a p a l l e t equipped with wheels. 4.2.3 Quartz Equilibrium Vessel Quartz was selected as the material of construction of the ve s s e l because i t can withstand temperatures of up to 1250°C, yet i s compar-a t i v e l y easy to work into the desired " p i p e t t e " shape. Such a shape takes advantage of the " f l a t zone" of the furnace. The "bulb" of the .pipette, 40mm ID x 20,0mm long and containing about 250 ml, l i e s e n t i r e l y within the f l a t temperature zone of the furnace. Gases are supplied to, and withdrawn from the v e s s e l through two quartz c a p i l l a r y tubes (2mm ID x 8mm OD x 280mm long) which have a combined capacity of 2ml, and which extend beyond the f l a t zone. The pi p e t t e shape of the v e s s e l therefore enables over 99% of i t s contents to a t t a i n a uniform tempera-ture and composition, provided the residence time i s s u f f i c i e n t l y long. The quartz e q u i l i b r i u m v e s s e l rests on a m u l l i t e tube (46mm ID x 51mm OD x 635mm long) which was inserted i n t o the furnace chamber. 4.2.4 Sampling The sampling system consists of a gas bag (placed i n s i d e a metal container), valves, f i t t i n g s and a vacuum pump. Before a sample can be taken, both the gas bag and i t s container are evacuated to about 300y Hg vacuum (valves V 2 - V 5 of F i g . 4.1 open, V 6 and the solenoid closed). To sample, valve V 2 i s f i r s t closed (to prevent the sample from being drawn in t o the vacuum pump), the stopcock ST i s opened and the solenoid valve i s activated. A timing c i r c u i t opens the solenoid valve for a predetermined period, e.g., two seconds. Sampled gases flow r a p i d l y into the gas bag because of the pressure d i f f e r e n c e . I n i t i a l l y the pressure i n the ves s e l i s one atmosphere, whereas the pressure i n s i d e the gas bag i s about 300|j Hg. Af t e r sampling, the corresponding 63 pressures are about 0.8 and 0.02 atm., assuming that a 50ml sample (at S.T.P.) i s taken. Opening valve Vg restores the pressure i n the container and gas bag to one atmosphere. Opening clamp C and valve restores the reactor pressure to atmospheric conditions by drawing an a d d i t i o n a l amount of the air-H2.S feed mixture into the equilibrium v e s s e l . To ensure that e q u i l i b r i u m had been attained, samples were withdrawn a f t e r the gas mix-tures had resided i n the equilibrium v e s s e l f o r various periods of time. A glass tube containing phosphorus: pentoxide (P2O5) i s located i n the sampling l i n e j u s t upstream of the solenoid valve. The purpose of the P 2 0 5 i s to remove l i q u i d water which i s capable of c a t a l y s i n g the reaction between H 2S and S 0 2 . The desiccant i s p e r i o d i c a l l y replaced to ensure adequate absorbancy. The stopcock ST i s o l a t e s the contents of the e q u i l -ibrium v e s s e l from the P2O5 and i s opened only j u s t before sampling. 4.3 Gas Chromatography Gas chromatography was chosen as the method of analysis because i t i s f a i r l y simple, rapid and inexpensive. Furthermore, a Beckman GC-2 chromatograph was a v a i l a b l e . 4.3.1 Requirements of the G.C. Column The column used i n the gas chromatograph should have the following p r o p e r t i e s : — s e p a r a t e H 2 , N 2, H 2S and S 0 2 , which are the gases expected to be present i n s i g n i f i c a n t concentrations; — o p e r a t e at close to ambient temperature to minimise reaction of H2S with S 0 2 i n the column. 4.3.2 Analysis of Four Compounds An attempt was made to devise a chromographic system to separate and detect the following four compounds: H 2 , N 2 , H2S and SO2. Three 63 pressures are about 0.8 and 0.02 atm., assuming that a 50ml sample (at S.T.P.) i s taken. Opening valve Vg restores the pressure i n the container and gas bag to one atmosphere. Opening clamp C and valve restores the reactor pressure to atmospheric conditions by drawing an a d d i t i o n a l amount of the a i r - H 2 S feed mixture into the equilibrium v e s s e l . To ensure that e q u i l i b r i u m had been attained, samples were withdrawn a f t e r the gas mix-tures had resided i n the equilibrium v e s s e l f o r various periods of time. A glass tube containing phosphorous pentoxide (P2O5) i s located i n the sampling l i n e j u s t upstream of the solenoid valve. The purpose of the P 2 0 5 i s to remove l i q u i d water which i s capable of c a t a l y s i n g the r e a c t i o n between H 2S and S0 2. The desiccant i s p e r i o d i c a l l y replaced to ensure adequate absorbancy. The stopcock ST i s o l a t e s the contents of the e q u i l -ibrium v e s s e l from the P 20s and i s opened only j u s t before sampling. 4.3 Gas Chromatography -Gas chromatography was chosen as the method of an a l y s i s because i t i s f a i r l y simple, rapid and inexpensive. Furthermore, a Beckman GC-2 chromatograph was a v a i l a b l e . 4.3.1 Requirements of the G.C. Column The column used i n the gas chromatograph should have the following p r o p e r t i e s : — s e p a r a t e H 2, N 2, H 2S and S0 2, which are the gases expected to be present, i n s i g n i f i c a n t concentrations; — o p e r a t e at close to ambient temperature to minimise re a c t i o n of H 2S with S0 2 i n the column. 4.3.2 Analysis of Four Compounds An attempt was made to devise a chromographic system to separate and detect the following four compounds: H 2, N 2, H 2S and S0 2. Three 64 d i f f e r e n t arrangements were examined. Although none proved to be suc-c e s s f u l , each method i s described b r i e f l y i n the following s e c t i o n and summarised i n Table 4.2. 4.3.2.1. Single column operating isothermally. The simplest way i s to separate H 2, N 2, H 2S and S0 2 with a s i n g l e column maintained at a constant temperature. Table 4.3 summarises references dealing with the chromatographic separation of gas mixtures containing H 2S and/or S0 2. None of these references describes s i n g l e columns which operate isothermally and are capable of separating H 2, N 2, H 2S and S0 2 i n per-cent q u a n t i t i e s . Supelco^^ suggested a 1.8m column of Porapak Q f o r the separation of N 2, H 2S and S0 2. To separate H 2 and N 2 as w e l l would require a column about 6m long and t h i s was excessive for the Beckman GC-2, due to pressure drop considerations. 4.3.2.2. Three columns operating isothermally. A 1.8m x 3mm column of molecular sieve 5A (80/100 mesh) separated H 2 and N 2 but permanently adsorbed H 2S and S0 2. On the other hand, a 1.8m column of Porapak Q separated N 2, H 2S and S0 2 (H 2 and N 2 eluted together, forming a composite peak). , An analysis of a l l four compounds could therefore be achieved, at l e a s t i n p r i n c i p l e , by using three columns i n s e r i e s . The f i r s t column would be Porapak Q, which separates H 2S and S0 2. This i s followed by a column of KOH to remove H 2S and S0 2 before the remaining gases pass i n t o the t h i r d column containing the molecular'sieve. The l a s t column then separates H 2 and N 2. However, due to pressure drop r e s t r i c t i o n s , the a v a i l a b l e chromatograph could not handle columns longer than about 3m. The t o t a l length of the three column system was, however, greater than t h i s and the arrangement had to be abandoned. 65 TABLE 4.2 POSSIBLE CHROMATOGRAPHIC COLUMNS FOR SEPARATING H 2, N 2, H 2S AND S0 2 Supplier Supelco Chromatographic S p e c i a l i t i e s ^ Analabs^ 7 Column 6m Porapak QS 0.5mx3mm Porapak QS and 1.8m><3mm molecular sieve 5A lmx3mm Spherocarb Operating Conditions Isothermal Porapak QS separates H 2S and S0 2 which are anal-ysed and then absorbed by KOH. The molecular sieve then separates H 2 and N 2 H 2 and N 2 are separated at 40°C; H 2S and S0 2 are separated at 180°C Reason f o r Rejection Column i s too long f o r a v a i l a b l e G.C. due to pressure drop r e s t r i c t i o n Columns are too long for av a i l a b l e G.C. The "Thermotrac" temperature pro-gramming attachment for the Beckman GC-2 did not work properly TABLE 4 .3 GAS CHROMATOGRAPHY REFERENCES FOR SEPARATIONS INVOLVING H 2S AND/OR S0 2 Unless otherwise noted, a thermal conductivity detector and H 2 c a r r i e r gas were used Abbreviation: NS = not stated Authors Robbins et a l 5 8 1964 Hodges and Matson 5 9 1964 Koppe and Adams 6 0 ' 1967 J o n e s 6 1 1967 Obermiller and C h a r l i e r 6 2 6 3 1967 1968 Applebury & Schaer 6 t f 1970 Column: Length(m) OD(mm) 6x6 Packing material Dibutyl Sebacate on Fluoropak Temperature(°C) 60 Gases of i n t e r -est separated S0 2 elution(min) H 2,N 2,H 2S,S0 2 15 1.8x6 1.8x6 0.3x6 2.4x5 1.8*5 3x6 T r i t o n Benzo S i l i c a T r i t o n PorapakQ PorapakQ X-305 c e l l o - gel X-305 on Chromo-sorb G 3 X3 1.5x1.5 1.8x6 PorapakQ PorapakQ on solve Dia-toport S 25to75 30 100 30to70 60tol40 . ambtol25 90 75 A i r , K 2S, S0 2 6 12 10 H 2S, SO 2 7 NS 90 H 2,N 2,H 2S N 2,H 2S,S0 2 H 2S,S0 2 - 6 4 NS Comments -Three columns were needed, each operated at a d i f f e r e n t , temperature -Total length of 6m was excessive -Authors found s i l i c a gel best -Best temperature was 120°C - T r i t o n X gave better separ-ation than did PorapakQ (ppb quantities) -Microcoulo-metric detector (M.C.D.) was used -Two columns, one "hot" and one " c o l d " were required -He/H2 c a r r i e r was used -Two columns were required one at -70°C and the other at 90°C -PorapakQ absorbed small . q u a n t i t i e s of S0 2 q u a n t i t i e s ) -M.C.D. used 66 T h o r n s b e r r y 5 5 . Anon 1971 1972 Bollman and Mortimore 5 7 1972 Bremner and Banwart 1974 68 Murdock and Atwood 5 9 1974 de Souza Supelco Supelco Analabs t70 et al' 1975 Inc 71 1976 72 Inc 1977 Inc 57 1977 1.8x6 0.6x6 1x3 Pora- A c i d - A c i d -pakQS washed, washed Deaet- Deact-i g e l i g e l 0.6x6 Carbon molecular sieve 1.8x2 ID Chromosil 310 3.7x5 0.5x3 0.5x3 PorapakQS Acetone- Carbo-and Porapak washed s i e v e S R i n s e r i e s PorapakQS 1.8x4 0.9x3 Chromosil Sphero-310 carb 98 122 50-150. 175 40 95 30to210 100to250 40 150to200 HoS S0 2 9 H 2S NA H 2S,S0 2 H 2S,S0 2 2.5 N2--K2,H2S, S0 2 NS H 2S,S0 2 H 2S,S0 2 H 2S,S0 2 H 2S,S0 2 NS -Authors p r e f e r r e d D e a c t i g e l - T a i l i n g and adsorptive losses were noted -Flame photometric detector (F.P.D.) used with a i r as . c a r r i e r gas -Condition-ing with H 2S was required -Best separ-a t i o n f o r H 2S was at 175°C -Chromosil was best -Trace q u a n t i t i e s of gases were studied - F . P . D . used with N 2 as c a r r i e r gas -Excessive -No S02 t a i l - t a i l i n g i n g with a c i d -washed D e a c t i g e l -F.P.D. used - E x c e l l e n t -A 2.9m separation column of percent separated q u a n t i t i e s H 2 and N 2 at 40°C -May catalyse H 2S d i s s o c i -a t i o n 67 4.3.2.3. One column with temperature programming. A 0.9m x 3 mm column of Spherocarb separated H 2 and N 2 at 40°C, and H 2S and S0 2 between 150 and 2 0 0 ° C * However, the a v a i l a b l e Beckman "Thermotrac" temperature programming system proved to be unsatisfactory, since i t required two columns with i d e n t i c a l pressure drops. If a more modern gas chromato-graph had been a v a i l a b l e , then temperature programming would have been very promising. 4.3.3 Analysis of Three Compounds Since no s a t i s f a c t o r y method could be found to separate H 2, N 2, H 2S and S0 2 using the a v a i l a b l e gas chromatograph, i t was decided to separate only H 2, H 2S and S0 2. If N 2 i s chosen as the c a r r i e r gas, then the nitrogen of the sample passes through the gas chromatograph undetected and does not i n t e r f e r e with the hydrogen a n a l y s i s . Hydrogen, H 2S and S0 2 are measured d i r e c t l y , whereas N 2 must be determined by d i f -ference. The accuracy of t h i s method i s determined to a large degree by the response of H 2, H 2S, and S0 2 obtained with N 2 as the c a r r i e r gas. Since the GC-2 was f i t t e d with a thermal conductivity detector, the response to any compound i s proportional to the d i f f e r e n c e between the thermal con-d u c t i v i t y of the c a r r i e r gas and that of the compound. Table 4.4 shows that, although N 2 produces only a r e l a t i v e l y f a i r response with H 2S and S0 2, i t r e s u l t s i n a quite good response for H 2. Since samples usually contain only about 2% H 2, but as much as 10% H 2S and S0 2, nitrogen nevertheless i s an excellent c a r r i e r gas because i t gives the highest s e n s i t i v i t y f o r the l e a s t p l e n t i f u l compound. Furthermore, since N 2 constitutes up to 75% of the sample, l i t t l e accuracy i s l o s t by measuring the N 2 by d i f f e r e n c e . Consequently, t h i s method of a n a l y s i s can be *The c a r r i e r gas was a H^/He mixture. TABLE 4.4 THERMAL CONDUCTIVITIES OF VARIOUS GASES AT 0 ° C 7 3 . (The units f o r thermal conductivity are kerg/sec/°C/cm.) Compound Thermal Conductivity Differences i n Thermal Conductivity He N 2 Ar He 13.9 0. -11.62 -12.32 N 2 2.28 11.62 0. -0.70 Ar 1.58 12.32 0.70 0. H 2 15.9 -2.0 -13.62 -14.32 H 2S 1.20 12.70 1.08 0.38 S0 2 0.77 13.13 1.51 0.81 69 expected to have an accuracy s i m i l a r to an arrangement capable of separat-ing H 2, N 2, H 2S, and S0 2. 4.3.4 Column Packings Three column packings suggested i n the l i t e r a t u r e were chosen for experimental evaluation: acid-washed Deactigel, Spherocarb and Porapak QS. Acid-washed Deactigel was unsatisfactory because of excessive S0 2 t a i l i n g . For example, S0 2 i n j e c t e d i n t o a 0.5m x 3mm column at 70°C with 40ml/min. N 2 c a r r i e r gas started to elute a f t e r 5 min., but had not completely eluted a f t e r over 15 min. Spherocarb was rejected because i t absorbed H 2S and S0 2 at tempera-tures below 100°C. Above 100°C, i t appeared to catalyse H 2S d i s s o c i a -t i o n , to some extent. I n j e c t i n g H 2S into a 1.8m x 3 mm s t a i n l e s s s t e e l column of 100/120 mesh Spherocarb and using 40ml/min of N 2 as c a r r i e r gas, produced a s i n g l e negative peak although H 2S should have given a positive peak. It i s p o s s i b l e that t h i s negative peak can be produced even when H 2 and H 2S occur simultaneously. With N 2 as the c a r r i e r gas, a thermal conductivity detector i s over twelve times as s e n s i t i v e to H 2 as i t i s to H 2S, and hence would produce a negative peak even i f both gases were present i n s i m i l a r concentrations. The t h i r d material tested, Porapak QS, proved to be excellent f or separating H 2, H 2S and S0 2. Operating under the conditions l i s t e d i n Table 4.5, chromatograms of the type shown i n F i g . 4.3 could be obtained. Sulphur dioxide t a i l i n g was small, and the analysis could be completed i n j u s t over three minutes. R e p r o d u c i b i l i t y was e x c e l l e n t , with t y p i c a l errors f o r H 2, H 2S and S0 2 being 2, 3 and 5%, r e s p e c t i v e l y . Due to i t s excellent performance, Porapak QS was chosen as the column packing. Teflon was selected as the tubing material because Koppe and Adams^^ TABLE 4.5 OPERATING CONDITIONS OF THE GAS CHROMATOGRAPH Tubing: Packing: Column Temperature: C a r r i e r gas: In l e t pressure: Flow r a t e : Detector: Current: Attenuation: Sample s i z e : Composition: Chart speed: 1.1m x 3mm F.E.P. (Teflon) Porapak QS, 80/100 mesh 40°C Nitrogen 20 psig 60ml/min at 25°C and 1 atmosphere Thermal conductivity 150 mA -5.0 for H 2; 1.0 for H 2S and for S0 2 5 ml H 2 0.5% H 2S 4.7% S0 2 7.1% N 2 87.7% (by difference) 0.5 in/min TIME , m i n . Figure 4.3 T y p i c a l chromatogram (Run / 7 ) . found that i t adsorbed l e s s H 2S and S0 2 at 70°C than glass or s t a i n l e s s s t e e l . Moreover, a Te f l o n tube i s easy to pack and c o i l . 4.3.5 C a l i b r a t i o n of the Gas Chromatograph C a l i b r a t i o n mixtures were prepared by combining, i n the desired r a t i o s , streams of H 2S (measured by Gilmont rotameter F2000, s i z e 1) and N 2 (measured by Gilmont rotameter F1200, s i z e 2). The mixture was sampled with a 5ml syringe inserted into a septum port i n the l i n e s . The sample was i n j e c t e d i n t o the gas chromatograph and the area of the r e s u l t i n g peak measured. This procedure was repeated at other flow-rates of H 2S and N 2 to produce the compositions needed f o r the c a l i b r a -t i o n curve. Curves for H 2 and S0 2 were obtained with the same apparatus i n a s i m i l a r manner. Using N 2 rather than a i r eliminated a i r peaks which i n t e r f e r e with the detection of H 2. Sample c a l c u l a t i o n s are presented i n Appendix B. T y p i c a l c a l i b r a t i o n curves are shown i n F i g s . 4.4 to 4.6. The data are f i t t e d almost p e r f e c t l y by s t r a i g h t l i n e s with c o r r e l a t i o n coef-f i c i e n t s ( r 2 ) exceeding 0.9900. The data were processed by a Texas Instruments TI58 pocket programmable c a l c u l a t o r using the program l i s t e d i n Table B . l of Appendix B. 4.4 C a l c u l a t i o n of Mixture Compositions This s e c t i o n develops the equations necessary for computing the composition of the a i r - H 2 S feed mixture and the equilibrium v e s s e l . 4.4.1 C a l c u l a t i o n of the Feed Composition In preparing a feed mixture i t was necessary to know what r o t a -meter p o s i t i o n s corresponded to a given percent of sto i c h i o m e t r i c a i r , P.. I f the amount of a i r i s sto i c h i o m e t r i c according to the r e a c t i o n , Figure 4.4. T y p i c a l c a l i b r a t i o n curve for H (Run 77). 76 H 2S + 1/2 0 2 = H 20 + 1/j S (4.1) then, the r a t i o of oxygen to H2S i s 0.5. The r a t i o of air to H 2S i s therefore (100/21) x 0.5, or 50/21. For any amount of a i r , then, P A = (Q A/Q H 2 S) (21 /50) x 100 (4.2) where Q. and Q are the flow rates of a i r and H 2S, r e s p e c t i v e l y . The " A H 2 o c a l i b r a t i o n curves f o r a i r and H 2 S (Figs. C.5 and C.2 i n Appendix C) may be represented by the following equations: ^ A = m A X A + b A . ( 4 ' 3 ) ^H 2 S *^2 S H 2 S H 2 S where m, b and x denote the slope, intercept and rotameter f l o a t p o s i t i o n , r e s p e c t i v e l y . Substituting Eqs. 4.3 and 4.4 into Eq. 4.2 gives P A = 4 2 ( r a A x A + b A ) / ( m H 2 S x H 2 S + b H 2 S ) (4.5) or V - P A ^ S ^ 4 2 V *H2S + [ P A b H 2 S / ( 4 2 n A > " V m A ] ( 4 ' 6 ) Since i t was d i f f i c u l t to set the flowrates p r e c i s e l y , the actual P^ was calculated from Eq. 4.5. The TI58 program for t h i s c a l c u l a t i o n i s l i s t e d i n Table B . l . 4.4.2 Composition of the Sampled Gases The composition of a sample taken from the product gas bag was determined from the peak areas of H 2, H 2S and S0 2 and t h e i r corresponding c a l i b r a t i o n curves. Since the curves are l i n e a r , i t follows that y. .= (A. - b.)/m. (4.7) where i ref e r s to H 2, H 2S or S0 2, y^ i s the percent of compound i i n the gas bag A_^  i s the area under the chromatographic peak m and b are the slope and i n t e r c e p t , r e s p e c t i v e l y , of the c a l i b r a t i o n curve. The nitrogen content i s obtained by dif f e r e n c e , i . e . , \ = 1 0 0 " \ + \ s + y S 0 2 ) ( 4 - 8 ) 4 . 4 . 3 Composition of the Equilibrium Vessel Contents When the equilibrium vessel i s sampled, sulphur and water are con-densed. Since the sample volumes are small ( t y p i c a l l y l e s s than 50 ml) i t was impr a c t i c a l to measure sulphur and water g r a v i m e t r i c a l l y . These compounds were therefore calculated from mass balances and using the following assumptions: — t h e gases are i d e a l ; — t h e equilibrium v e s s e l pressure i s atmospheric; — a i r consists of 21% 0 2 and 79% N 2; — o n l y H 2, H 2 S , S 0 2, N 2, H2O and S2 are present i n the equilibrium v e s s e l — w a t e r and sulphur are removed completely. Consequently, the sample contains only H 2 , H 2S, S 0 2 and N 2. These assumptions enable mass balances to be set up as follows. The atomic r a t i o s of the elements i n the feed and i n the products must be i d e n t i c a l . For example, the r a t i o of bound as we l l as unbound nitrogen to oxygen atoms, R ^ Q J 1 S given by ho = ( 2* 7 9>/< 2* 2 1) = 2 V ( 2 n s o 2 + ( 4 ' 9 ) where n_^  r e f e r s to the number of moles of compound i i n the sample taken from the equilibrium v e s s e l before the sulphur and water are condensed. Likewise, \S - 2 - ( 2 n H 2 + 2 nH 2S + 2 n H 2 0 ) / ( n H 2 S + n S 0 2 + V ( 4-1 0 ) R Q H = PA/ 2 0 0 = ( 2 n S ( ) 2 + n ^ ) / ^ + 2 n H z S + I n ^ ( 4 . 1 1 ) If 100 moles of sample are chosen as a ba s i s , then 78 % = v ( 4 - 1 2 ) %2S = yH 2S' ( 4 - 1 3 )  n s o 2 = y s o 2 ' ( 4 ' 1 4 ) n N 2 = y N 2 ' ( 4 ' 1 5 ) since these compounds are not removed during sampling. The number of moles of water and sulphur follow from Eqs. 4.9 and 4.10, i . e . , and Hence V > = ° ' 5 3 2 \ 2 - 2 n s o 2 ( 4 ' 1 6 > n S 2 = ° - 5 ( n H 2 " n S 0 2 + n H 2 0 } ( 4 ' 1 7 ) P. = 100 n./n_ (4.18) x x T where P^ represents the percent of compound i (H 2, H 2S, S0 2, N 2, H 20 or S 2) i n the equilibrium v e s s e l , and U T = n H 2 + nH 2S + n S 0 2 + % + nH 20 + n S 2 ' ( 4 - 1 9 ) The sulphur y i e l d i s given by Y = 2n„ /(2n_ +-n + n ) (4.20) 2 2 2 o u 2 The experimental error may be estimated by comparing the P^ value of the feed mixture with that given by P A - 100/11.88/^ C ^ + ^ - Z n g ^ + l ] (4.21) This equation follows from s u b s t i t u t i n g Eq. 4.16 into Eq. 4.11. Equations 4.9 to 4.20 may be used to c a l c u l a t e the compositions and sulphur y i e l d s provided P^ > 0. For H 2S d i s s o c i a t i o n , where P^ = 0, the equation developed i n the next s e c t i o n must be used. 4.4.4 D i s s o c i a t i o n of Hydrogen Sulphide The c a l c u l a t i o n f o r determining gas compositions i s s i m i l a r to that of the previous sec t i o n , except that the eq u i l i b r i u m v e s s e l i s assumed to 79 contain H 2 , H 2 S and S 2 only. Equation 4.10 reduces to R H S " 2 = ( 2 n H 2 + 2 n H 2 S ) / ( n H 2 S + 2V (4-22) or n Q = 0.5 n u . (4.23) S 2 H 2 The quantities n and n are found from Eqs. 4.12 and 4.13, re s p e c t i v e l y . H20 H.2 The equation f o r the sulphur y i e l d becomes Y = 2 n S 2 / ( 2 n S 2 + n H 2 S ) ( 4 ' 2 4 ) and the composition of the gases i n the equilibrium v e s s e l i s given by P. = 100 n./n T (4.25) where n T = n H 2 + nH 2S + n S 2 ( 4 ' 2 6 ) TI58 programs for c a l c u l a t i n g the reactor compositions and y i e l d s based on the mass balances are l i s t e d i n Appendix B for both H 2 S d i s s o c i -a t i o n and oxidation. CHAPTER 5 THEORETICAL RESULTS 5.1 Claus Furnace 5.1.1 Acid Gas Containing ^ S Only The compositions of equ i l i b r i u m mixtures were c a l c u l a t e d * at oxygen to sulphur r a t i o s , R n Q> ranging from 0.1 to 2.0 and a t o t a l pressure of 1.0 atm. The l a t t e r i s close to i n d u s t r i a l conditions. The concentra-tions of the following compounds were usually i n excess of 0.1 ppm f o r at l e a s t some temperatures l y i n g between 600 and 2000°K: O2, 0, H 2, H, OH, H 20, N 2, NO, NH3, SO, S0 2, S0 3, S 20, SH, H 2S, H 2S 2, SN and where j = 1, 2, ... 8. The other species, which were mentioned e a r l i e r , could therefore be neglected in'the equilibrium c a l c u l a t i o n s . Although the l i s t of compounds considered i n t h i s study does not contain a l l possible combinations of oxygen, hydrogen, sulphur and nitrogen, i t i s u n l i k e l y that any a d d i t i o n a l species could be formed i n appreciable proportions. Figures 5.1 to 5.3 depict the v a r i a t i o n i n p a r t i a l pressure of the most s i g n i f i c a n t compounds as a function of temperature for PA = 100. The f i r s t f i g u r e shows, with the exception of n i t r i c oxide, those species which may be regarded as harmless to the environment and the Claus pro-cess i t s e l f . The appreciable concentrations of hydrogen i n the rea c t i o n mixture.are w e l l known to Claus plant operators but have generally been 13 omitted from t h e o r e t i c a l c a l c u l a t i o n s . McGregor found p a r t i a l pres-sures of H 9 s i m i l a r to those shown i n Figure 5.1 but he d i d not consider *Computer programs for c a l c u l a t i n g the r e s u l t s i n t h i s chapter are l i s t e d i n Appendix E. 80 81 T 6 0 0 8 0 0 1000 1200 1400 1600 1800 2 0 0 0 T E M P E R A T U R E , ° K Figure 5.1. Eff e c t of temperature on the p a r t i a l pressure of harmless compounds (with the exception of NO). t \ u . — r 600 800 1000 1200 1400 1600 1800 2000 TEMPERATURE,°K Figure 5.2. E f f e c t of temperature on the p a r t i a l pressure of sulphur compounds. 83 Figure 5.3. E f f e c t of temperature on the p a r t i a l pressure of sulphur polymers. 84 the formation of atomic hydrogen. The l a t t e r becomes s i g n i f i c a n t only at elevated temperatures. Ammonia i s also known to occur i n Claus furnaces but i n view of the low concentrations predicted by the equilibrium c a l c u -l a t i o n s , i t i s u n l i k e l y to be formed by the reduction of atmospheric nitrogen. More probable explanations are that i t i s introduced with the feed gas or r e s u l t s from amines c a r r i e d over from the absorption u n i t s . The presence of nitrogen oxides except perhaps NO can be discounted. Hydrogen and sulphur are therefore more successful scavengers of oxygen than nitrogen. At temperatures exceeding 2000°K, the concentration of nitrogen compounds however would be expected to become s i g n i f i c a n t . Figure 5.2 shows the v a r i a t i o n i n p a r t i a l pressure with temperature of those sulphur compounds which are undesirable and lower the conversion e f f i c i e n c y of the Claus furnace. H 2S and S0 2 are the most abundant s u l -phur compounds and t h e i r concentrations are f a i r l y independent of temper-ature. The presence of other sulphur oxides, however, i s also s i g n i f i -cant. Although the concentration of S0 3 i s l e s s than 1 ppm, i t may con-t r i b u t e to sulphation, i . e . , deactivation of the converters downstream from the Claus furnace due to the formation of sulphate layers on the 74 c a t a l y s t surface. Other factors such as those c i t e d by Pearson may however also be responsible f o r sulphation. The remaining sulphur com-pounds, although present i n smaller concentrations than e i t h e r S0 2 or H 2S, should not be omitted from equilibrium c a l c u l a t i o n s . In p a r t i c u l a r H 2S 2 and SH are present i n s i g n i f i c a n t proportions, with the l a t t e r approaching that of hydrogen sulphide at elevated temperatures. The r o l e which these compounds play i n the Claus process and whether they i n fa c t pass through the b o i l e r and sulphur condenser downstream of the furnace i s presently unknown. 85 As seen from F i g . 5.3, a complex equilibrium e x i s t s between the various sulphur polymers with the l i g h t e r molecules being favoured by elevated temperatures. As mentioned previously no r e l i a b l e f r ee energy data are a v a i l a b l e f o r the heavy sulphur polymers at elevated temperature and caution should therefore be exercised i n using F i g . 5.3. The curves 5 13 agree moderately w e l l with those of Gamson and E l k i n s and McGregor •Any discrepancies are l i k e l y caused by the d i f f e r e n t f ree energy data used i n the present study. The aforementioned authors also omitted c e r t a i n sulphur polymers ( v i z . , S 3, , S 5, Sy and also S i n the case of Gamson and E l k i n s ) which i s j u s t i f i a b l e only for some r e s t r i c t e d tempera-ture ranges. The r e l a t i o n s h i p between sulphur y i e l d and temperature i s presented i n F i g . 5.4. The data were calculated f o r sto i c h i o m e t r i c amounts of oxygen i n the feed mixture. The agreement with r e s u l t s obtained by e a r l i e r workers i s generally good and any discrepancies are traceable to using e i t h e r d i f f e r e n t free energies or compounds. The v a l i d i t y of the present c a l c u l a t i o n s i s therefore established. Gamson and Elkins"' were the f i r s t to suggest that the minimum i n the y i e l d curve a r i s e s from the complex equ i l i b r i u m between the sulphur polymers. Since the strongly exothermic r e a c t i o n , H 2S + 1/2 0 2 = H 20 + 1/j S , (5.1) can be regarded as dominating the H 2S-air equilibrium and S g, S 7, Sg are the main polymers formed at low temperatures, the sulphur y i e l d must decrease with temperature according to Le C h a t e l i e r ' s p r i n c i p l e . These polymers d i s s o c i a t e endothermically at more elevated temperatures and Eq. 5.1 therefore becomes les s exothermic. The sulphur y i e l d conse-quently r i s e s . F i g . 5.4 also i n d i c a t e s that the y i e l d passes through a 400 600 800 1000 1200 1400 1600 1800 2000 T E M P E R A T U R E , ° K Figure 5.4. Comparison of sulphur y i e l d s c a l c u l a t e d by various workers (PA = 100). oo 87 maximum at approximately 1700°K. This behaviour has not been reported previously and i s observed only when H2 and either SH or SO are included i n the eq u i l i b r i u m c a l c u l a t i o n s . The ph y s i c a l reason for the maximum i s probably the f a c t that elemental sulphur undergoes oxidation at e l e - -vated temperatures. This i s p a r t l y confirmed by F i g . 5.2 which shows that the p a r t i a l pressures of most sulphur oxides increase with tempera-ture. Further support i s given to the conjecture by F i g . 5.5 which shows the r e l a t i o n s h i p between sulphur y i e l d and percentage sto i c h i o m e t r i c a i r i n the feed mixture so that a value of 100 corresponds to an O2/R2S r a t i o of 0.5 i n the i n i t i a l mixture. The s p e c i a l case of P^ = 0, i . e . , H2S d i s s o c i a t i o n , w i l l be discussed i n section 5.1. 4 of t h i s chapter. As seen from F i g . 5.5, the y i e l d i s lowered when a i r i n excess of s t o i c h i o -metric proportions i s used. To suppress formation of sulphur oxides at elevated temperatures, the a i r content i n the s t a r t i n g mixture should therefore be reduced. For example, at 2000°K, P A values of 20% and 60% r a i s e the sulphur y i e l d by .approximately 10% over that a t t a i n a b l e with stoi c h i o m e t r i c amounts of a i r . Similar conclusions can be drawn from F i g . 5.6 which in d i c a t e s that high temperatures and low oxygen to hydro-gen sulphide r a t i o s lead to the best y i e l d s . The operating conditions maximizing the conversion to elemental sulphur are however only achievable i n d u s t r i a l l y i f the feed gases to the Claus furnace are preheated. The e f f e c t of preheating the feed gases i s investigated more thoroughly l a t e r i n t h i s chapter. Without such provisions a decrease i n P^ reduces the furnace temperature and con-v e r s i o n e f f i c i e n c y . The l a t t e r i s apparent from F i g . 5.7 which shows the sulphur y i e l d at the adiabatic flame temperature. This temperature Figure 5.5. E f f e c t of temperature and PA on sulphur y i e l d . 89 0 5 0 100 150 2 0 0 P E R C E N T O F S T O I C H I O M E T R I C A I R , P A Figure 5.6. E f f e c t of PA on sulphur y i e l d at various temperatures. 0 50 100 150 200 PERCENT OF STOICHIOMETRIC AIR, PA Figure 5.7. E f f e c t of PA on the adiabatic flame temperature and on the corresponding sulphur y i e l d . 91 c l o s e l y approximates that of i n d u s t r i a l furnaces since they s u f f e r only minor heat l o s s e s . Figure 5.7 also indicates that the current i n d u s t r i a l p r a c t i c e of operating with stoichiometric amounts of a i r i n the absence of preheat i s sound. The y i e l d i s reduced when P^ < 100 due to lowered furnace temperatures and when P^ > 100 due to enhanced formation of sulphur oxides. 5.1.2 Acid Gas Containing Carbon Compounds The following parameters were varied: temperature (600 to 2000°K), a i r (20 to 300 percent of s t o i c h i o m e t r i c ) , aci d gas composition (H 20 and C0 2 concentrations up to 10 and 30 percent, r e s p e c t i v e l y ) . Of the 36 compounds considered a l l except HCN, C2N2, CHi+, C2H2, C2H4 and C2Hij0 had p a r t i a l pressures exceeding 0.1 ppm f o r at l e a s t some temperatures between 600 and 2000°K. The 30 remaining species should, therefore, not be omitted from the equilibrium calculatons. Figures 5.8 to 5.11 show the p a r t i a l pressures of the most important compounds present when H 2S containing 15 percent CO2 i s oxidized with a sto i c h i o m e t r i c amount of a i r . As seen from F i g . 5.8, nitrogen, the most abundant substance, undergoes l i t t l e change except for the production of small quantities of NH3, NO and SN. The high ammonia concentrations sometimes found i n industry are probably produced not from atmospheric nitrogen but rather amines c a r r i e d over from absorption towers. The p a r t i a l pressures of both molecular and atomic hydrogen are appreciable. The d i s t r i b u t i o n of sulphur polymers (shown i n F i g . 5.9) i s s i m i l a r to that for pure hydrogen sulphide. Although the dimer S2 predominates, other sulphur species are also s i g n i f i c a n t at some temperatures and therefore, none of them should be omitted as did most e a r l i e r w o rkers.' 11,12,13,14,16,17,26 92 6 0 0 8 0 0 1000 1200 1400 1600 1800 2 0 0 0 TEMPERATURE , °K Figure 5 . 8 . E f f e c t of temperature on the p a r t i a l pressure of harmless compounds (with the exception of NO). P A R T I A L P R E S S U R E , ATM (N C • H fO L n tn M C Hi M Hi T3 fD S* O C rt i-t O X) Hi 1 S CD 13 H fD CO M • Cu rt C H fD O 3 r t fD Co i-i rt H-Co T3 H fD CO CO c H fD e6 94 600 800 1000 1200 1400 1600 1800 2000 T E M P E R A T U R E , ° K Figure 5.10. E f f e c t of temperature on the p a r t i a l pressure of carbon compounds. Figure 5.11. E f f e c t of temperature on the p a r t i a l pressure of sulphur compounds. 96 Figure 5.10 shows the p a r t i a l pressures of carbon compounds of which CO2 and CO are the most abundant. Since at high temperatures C0 2 d i s s o c i a t e s into oxygen and CO, and since the l a t t e r can further react with elemental sulphur, the formation of COS, CS and CS 2 i s not s u r p r i s -ing. These compounds not only lower the sulphur y i e l d i n the furnace but are also unaffected by the usual Claus c a t a l y s t s and therefore present a p o l l u t i o n problem. The other main compounds which impair the furnace performance are H 2S and sulphur oxides. At elevated temperatures S0 2 i s more abundant than H 2S and t h i s suggests that elemental sulphur competes s u c c e s s f u l l y fo r oxygen, as seen from F i g . 5.11. Since the d i s s o c i a t i o n of C0 2 releases oxygen, smaller sulphur y i e l d s are expected with increasing C02 concentrations. This conjecture i s confirmed by F i g . 5.12 which gives the sulphur y i e l d as a function of temperature and for various C02 concentrations i n the a c i d gas. At low temperatures the curves coincide thus i n d i c a t i n g that C02 undergoes no appreciable r e a c t i o n . However, at temperatures exceeding about 1200°K, the curves part because carbon sulphides and a d d i t i o n a l sulphur oxides are formed. These compounds cause the maxima i n the y i e l d curves; the maxima become more pronounced f or higher i n i t i a l C02 concentrations. To reduce the oxidation of elemental sulphur, the amount of i n i t i a l a i r can be decreased. Figure 5.13 shows that the sulphur y i e l d i s considerably increased at elevated temperatures by lowering P A. Conversely, increasing P A reduces the y i e l d s . Although the percentage a i r does not s i g n i f i c a n t l y a f f e c t the extent to which carbon sulphides are formed, i t changes t h e i r p a r t i a l pressures due to the 99 d i l u t i o n provided by the nitrogen. whereas the sulphur y i e l d can be enhanced by lowering the amount of a i r i n the feed, t h i s improvement may not be r e a l i z a b l e i n p r a c t i c e because Claus furnaces operate under v i r t u a l l y adiabatic conditions. The y i e l d s at the adiabatic flame temperatures were, therefore, calculated by the method described previously. The r e s u l t s f or a feed gas at 298°K are shown i n F i g . 5.14. The best y i e l d s obtainable under adiabatic condi-tions occur with s t o i c h i o m e t r i c amounts of oxygen, a fa c t well-known to Claus plant operators. When P^ < 100 the y i e l d f a l l s due to the reduced flame temperature and when P > 100 i t declines on account of the oxidation of elemental sulphur. Hence, i n p r a c t i c e the feed gases to the Claus furnace must be preheated to achieve the enhanced y i e l d s p o s s i b l e with l e s s than s t o i c h i o m e t r i c amounts of a i r . If the acid gas contains water vapour, the sulphur y i e l d i s diminished as seen from F i g . 5.15. This behaviour follows from Eq. 5.1. Since the y i e l d i s reduced by only 2 percent.for 10 percent H2O i t would be uneconomical to dry the acid gas before i t enters the furnace. If the acid gas contains more than 30 percent CO2, the " s p l i t -stream" process must be adopted as mentioned i n the i n t r o d u c t i o n . Eq u i l i b r i u m compositions were, therefore, calculated f or an acid gas containing 30 percent CO2 and f o r P = 300, i . e . , using a s t o i c h i o m e t r i c amount of a i r according to Eq. 1.1. The primary r e a c t i o n products were SO2 and H2O with v i r t u a l l y no elemental sulphur being formed. The p a r t i a l pressures of the carbon sulphides were always l e s s than 1 ppm fo r temperatures between 600 and 2000°K thus supporting the e a r l i e r con-tention that they are produced by the r e a c t i o n between CO and elemental sulphur. PERCENT STOICHIOMETRIC AIR , PA Figure 5.14. E f f e c t of PA on the adiabatic flame temperature and on the corresponding sulphur y i e l d . o o 102 5.1.3 Acid Gas Containing Ammonia Ammonia, as w e l l as CO2 and water, can be associated with the acid gas. Figure 5.16 shows that below 1600°K, NH3 lowers the sulphur y i e l d of. a furnace but, above 1600°K, i t enhances the y i e l d . Since both NH3 and H 2S are oxidised i n the furnace, they compete f or combustion a i r ; less oxygen i s therefore a v a i l a b l e f o r re a c t i o n with H 2S. Consequently, an acid gas containing NH3 r e s u l t s i n y i e l d s s i m i l a r to those obtained when operating with P^ < 100. This i s shown by the s i m i l a r i t i e s of Fi g s . 5,. 13 and 5.16 which both exhibit cross-overs i n the curves near 1600°K. Temperatures les s than 1600°K favour the oxidation of H 2S to elemental sulphur rather than to S0 2. Hence with l e s s oxygen a v a i l a b l e (either because P^ < 100 or because some 0 2 has combined with NH 3), the sulphur y i e l d f a l l s . Temperatures above 1600°K, however, enhance, the oxidation of sulphur to S02 rather than to elemental sulphur, and an oxygen d e f i c i -ency therefore enhances sulphur y i e l d . S u f f i c i e n t a i r can be provided for complete oxidation of both ^ S and NH3 according to the reactions: H 2S + 1/2" 0 2 = H 20 + 1/j. S (5.2) NH3 + 3/4 0 2 = 3/2 H 20 + 1/2 N 2 (5.3) The s i m i l a r i t y of F i g . 5.17 to Fig. 5.15 suggests that, even with enough O2 for complete oxidation of both NH3 and H 2 S, the presence of ammonia i n the a c i d gas lowers the y i e l d . This i s probably so because NH3 oxidation produces water which tends to s h i f t the equilibrium of Eq. 5.2 to the l e f t . 5.1.4 Hydrogen Sulphide D i s s o c i a t i o n As shown by F i g . 5i5, H 2S d i s s o c i a t i o n produces much lower sulphur y i e l d s than H 2S oxidation at temperatures below about 1500°K. In s p i t e 103 6 0 0 8 0 0 1 0 0 0 1200 1400 1600 1800 2 0 0 0 TEMPERATURE,°K Figure 5.16. E f f e c t of ammonia on the sulphur y i e l d ( s u f f i c i e n t a i r to oxidise the H„S only). 104 6 0 0 8 0 0 1000 1 2 0 0 1400 1600 1800 2 0 0 0 T E M P E R A T U R E , ° K Figure 5.17. E f f e c t of ammonia on the sulphur y i e l d ( s u f f i c i e n t a i r to oxidise both the H^S and the NH^). 105 of t h i s , concentrations of the heavier sulphur polymers r e s u l t i n g from H2S d i s s o c i a t i o n are higher above 1400°K, because of the absence of N 2 and H 20 (see F i g . 5.3). Figure 5.1 shows that, f o r a l l temperatures, the concentration of hydrogen i s at le a s t ten times greater for H 2S 48 d i s s o c i a t i o n than i t i s for H 2S oxidation. Raymont examined t h i s r e a c t i o n and concluded that i t may produce an a t t r a c t i v e a l t e r n a t i v e to the Claus process, since i t y i e l d s two u s e f u l products, v i z . , hydrogen and sulphur. The dashed l i n e s of Fi g s . 5.1 and 5.3 agree w e l l with 19 Raymont's t h e o r e t i c a l r e s u l t s . As i n the case of H 2S oxidation, ammonia adversely a f f e c t s H 2S d i s s o c i a t i o n , as shown i n F i g . 5.18. With no oxygen present, the decom-p o s i t i o n equations corresponding to Eqs. 5.2 and 5.3 become H 2S = H 2 + 1/j S , (5.4) NH 3 = 3/2 H 2 + N 2 (5.5) The hydrogen from NH3 decomposition i n h i b i t s the H 2S d i s s o c i a t i o n , thus lowering the sulphur y i e l d . 5.2 Claus Plant In order to further the understanding of the Claus process, an en t i r e plant, c o n s i s t i n g of a furnace plus two c a t a l y t i c converters was modelled. The y i e l d and temperature of each unit of the plant are examined as a function of the following v a r i a b l e s : — t h e amount of combustion a i r i n the furnace; — t h e oxygen concentration of acid gas; —temperature of the feed to the furnace and/or converters; — r e c y c l e r a t i o of the f i r s t converter's feed back to the furnace. 106 6 0 0 8 0 0 1000 1 2 0 0 1400 1 6 0 0 1800 2 0 0 0 TEMPERATURE, °K Figure 5.18. E f f e c t of ammonia on sulphur y i e l d s from H 9S d i s s o c i a t i o n . 107 The Claus plant was assumed to operate a d i a b a t i c a l l y . Unless otherwise noted, the temperatures of both the combustion a i r and the acid gas are 298°K; the temperatures of the feeds to the f i r s t and second converters are 530 and 480°K, r e s p e c t i v e l y . 5.2.1 Oxygen Concentration i n the Furnace Feed Figure 5.19 shows that operating with 100% of stoichiometric a i r (P^ = 1 0 0 ) maximises the y i e l d of the en t i r e plant, a fac t well-known to Claus plant operators. Sulphur y i e l d s i n the combustion chamber, f i r s t converter and second converter are highest with P^ about 90, 120 and 105 re s p e c t i v e l y . The furnace temperature r i s e s with P^ (see F i g . 5.19) because adding a i r favours H2S oxidation. As discussed i n Sect. 1 of t h i s chapter, the furnace y i e l d r i s e s u n t i l P^ reaches about 90 because of r i s i n g furnace temperature, and then declines on account of the oxidation of elemental sulphur to SO2• In the c a t a l y t i c converters, sulphur y i e l d s r i s e when P^ > 50 as more S 0 2 becomes a v a i l a b l e to react with the H 2S. (Oxygen must be excluded from the converters to prevent c a t a l y s t sulphation.) Between 90 and 110% a i r , the converter y i e l d s are high because of favourable H 2S / S 0 2 r a t i o s . When P exceeds 2 0 0 , the y i e l d drops sharply because most of the sulphur i s present i n the converters as SO2• When P^ = 1 0 0 , the y i e l d i n the second converter, which operates at a more favourable temperature, exceeds the y i e l d i n the f i r s t converter. However, when P A < ^ o r P A > t n e s u l p n u r y i e l d i n the second converter i s worse than that i n the f i r s t , because a poor H 2S / S 0 2 r a t i o i n the f i r s t con-9 verter becomes worse downstream. The temperature of each converter, l i k e that of the furnace, r i s e s 108 0 50 100 150 200 250 300 PERCENT OF STOICHIOMETRIC AIR , PA Figure 5.19. E f f e c t of PA on Claus plant y i e l d s and temperatures. 109 and f a l l s with the y i e l d , as shown i n F i g . 5.19. This i s of course caused by the exothermic nature of the r e a c t i o n between H2S and SO2. 5.2.2 Enriching Combustion A i r with Oxygen In t h i s section, the e f f e c t of varying not the amount but the "quality" of the a i r to the furnace i s examined. By decreasing the a i r while simultaneously adding more pure oxygen to the acid gas, the t o t a l oxygen i n the furnace remains st o i c h i o m e t r i c , and only the concen-. t r a t i o n of the nitrogen, a d i l u e n t , i s reduced. This increases the concentration of the reactants, and might be expected to enhance the sulphur y i e l d . However, as shown by F i g . 5.20, the presence of nitrogen i s a c t u a l l y b e n e f i c i a l . Without nitrogen present (100% oxygen i n F i g . 5.20), the Claus furnace temperature r i s e s to 2220°K. This i s d e t r i -mental since above 1700°K the sulphur y i e l d i n the furnace f a l l s with in c r e a s i n g temperature, as shown i n F i g . 5.4. The minimum y i e l d of the f i r s t converter occurs at 750°K and 40% oxygen. Since the minimum i n the y i e l d vs temperature p l o t ( Fig. 5.4) corresponds to 850°K, temperature may not be the most important f a c t o r a f f e c t i n g y i e l d . The increasing y i e l d s i n the f i r s t converter may rather be a r e s u l t of f a l l i n g furnace conversions. This leaves the feed to the f i r s t converter r i c h i n ^ S , which reacts with the SO2. The converter, therefore, compensates for lower sulphur production i n the furnace. The complementary shapes of the y i e l d curves f o r the two converters i n d i c a t e that the second converter behaves s i m i l a r l y , o f f -s e t t i n g any decrease i n the y i e l d i n the f i r s t . 5.2.3 Preheating the Furnace Feed It was shown e a r l i e r i n t h i s chapter that furnace y i e l d s are enhanced when operating with l e s s than stoichiometric a i r , provided the 100 8 0 LTJ 6 0 z> C L _J CO H 4 0 z: LU O or LU C L 2 5 0 0 1 1 0 2 0 0 0 LEGEND : YIELDS TEMPERATURES T * TOTAL F « FURNACE C C . ! FIRST CATALYTIC 1 CONVERTER C C 2 : SECOND CATALYTIC CONVERTER H 1500 o LU DC Z> H < DC LU C L LU H 1000 CCg . I - p " , 2 0 4 0 6 0 8 0 PERCENT OXYGEN 5 0 0 100 Figure 5.20. E f f e c t of enriching combustion a i r with oxygen on Claus plant y i e l d s and temperatures. I l l furnace feed i s preheated. This section investigates how preheating a f f e c t s not only the Claus furnace, but also the two converters. Figure 5.21 shows that preheating the feed to a Claus plant operating with s t o i c h i o m e t r i c a i r enhances the o v e r a l l y i e l d only s l i g h t l y . When the temperatures of the a i r and acid gas are ra i s e d by 250°K, the furnace temperature r i s e s by 150°K. The furnace y i e l d increases s l i g h t l y , but the y i e l d of the f i r s t converter f a l l s substan-t i a l l y . A higher furnace temperature promotes the oxidation of H 2S to S02; t h i s adversely a f f e c t s the H2S/SO2 r a t i o and causes the y i e l d i n the f i r s t c a t a l y t i c converter to drop. The y i e l d i n the second converter, however, r i s e s as that i n the f i r s t f a l l s . Thus the second converter again compensates f o r the poor performance of the f i r s t . The temperature of the second converter r i s e s with y i e l d because of the exothermic heat of re a c t i o n . Heating the feed to the f i r s t converter causes i t s temperature to increase and i t s y i e l d to decrease; the y i e l d of the second converter r i s e s to compensate, with a subsequent r i s e i n temperature, as shown i n F i g . 5.22. The o v e r a l l Claus plant y i e l d f a i l s from 97 to 95%. Figure 5.23 shows that the second c a t a l y t i c converter should be operated at as low a temperature as po s s i b l e ; heating the feed only causes the y i e l d to f a l l d r a s t i c a l l y . r These r e s u l t s show that, f o r PA = 100, preheating the feed to any unit has a detrimental e f f e c t on Claus plant y i e l d . In p r a c t i c e , pre-heating the feed to the converters would s t i l l be necessary, to avoid sulphur condensation on the c a t a l y s t . 100 80 Q _ J LU >-or 3 X CL _ l z> CO H z LU O DC LU CL 60 40 20 F LEGEND = YIELDS TEMPERATURES T TOTAL F FURNACE CC. FIRST CATALYTIC 1 CONVERTER C C 2 SECOND CATALYTIC CONVERTER 112 1700 1600 1500 CC, r.r.? 1 . CC | 1 I 1 700 o LU CC < LU 0_ LU 600 500 250 300 350 400 FEED TEMPERATURE , 450 °K 500 Figure 5.21. E f f e c t of temperature of furnace feed on Claus plant y i e l d s and temperatures. 100 80 UJ >-% 60 X CL _ l ZD CO UJ o 0 1 40 UJ D_ T LEGEND • • YIELDS • TEMPERATURES T TOTAL F FURNACE CC, FIRST CATALYTIC CONVERTER C C 2 SECOND CATALYTIC CONVERTER 20 C C 2 113 1000 900 8 0 0 ^ — ui ZD < a: UJ CL 700 S 600 500 450 500 550 600 650 FEED TEMPERATURE ,°K 700 Figure 5.22. E f f e c t of temperature of f i r s t converter feed on Claus plant y i e l d s and temperatures. 100 80 UJ >-¥ 60 ZD x CL _J 3 C O H UJ O LU UJ CL 40 L E G E N D « Y I E L D S T E M P E R A T U R E S T T O T A L F F U R N A C E C C | F I R S T C A T A L Y T I C C O N V E R T E R c c 2 S E C O N D CATALYTIC C O N V E R T E R S U L P H U R C O N D E N S E S 20 CC, 0 400 450 500 550 FEED TEMPERATURE 114 700 600 500 400 o UJ C£ ZD h -< CH UJ CL s UJ l -300 200 650 Figure 5.23. E f f e c t of temperature on Claus plant y i e l d s of second converter and temperatures. feed 115 5.3 E f f e c t of Recycle In many chemical processes, part of the product stream i s recycled to undergo a d d i t i o n a l r e a c t i o n . This section investigates the e f f e c t of r e c y c l e , f i r s t f o r the Claus furnace alone, and then for the e n t i r e plant. Figures 5.24 and 5.25 show that increasing the rec y c l e enhances the y i e l d of a Claus furnace operating isothermally and with PA = 100. In t h i s t h e s i s , y i e l d i s defined as the percentage of sulphur recovered based on the feed to the furnace. The reason f o r the r i s e i n y i e l d with rec y c l e i s that elemental sulphur i s removed from the system, thus s h i f t -ing the equilibrium of the Claus reactions to the r i g h t . Although re c y c l e promises greatly improved conversion under i s o -thermal conditions, Claus plants behave more nearly a d i a b a t i c a l l y . The following sections i n v e s t i g a t e how rec y c l e a f f e c t s the y i e l d of each unit of an adiabatic Claus plant operating at 100, 90 or 110% of stoichiometric a i r . When PA = 100, then R = 1 i n the furnace. This corresponds to UL) R = 0.5, which, unlike R „ c , remains constant throughout the e n t i r e plant, because only sulphur i s condensed downstream from the furnace. However, when PA ^ 100, R ^ 0.5; t h i s adversely a f f e c t s the o v e r a l l On plant performance. S u f f i c i e n t a i r to restore R to 0.5 could be sup-On p l i e d to the f i r s t converter. S i m i l a r l y , i f PA = 110, a d d i t i o n a l H^S may be supplied to the converter to restore R to 0.5. These two OH examples are denoted by PA = 90* and PA = 110* r e s p e c t i v e l y . As shown i n F i g . 5.26 recy c l e tends to lower the sulphur y i e l d i n the adiabatic furnace. Since r e c y c l i n g the product stream, which con-tains over 60% nitrogen, increases the volume of i n e r t s i n the furnace, 100 90 LJ >-cr ZD X =! 8 0 V-ZD C O h-z LU O tr UJ CL 70 60 118 40 60 80 PERCENT RECYCLE 100 Figure 5.26. E f f e c t of recycle on Claus plant y i e l d s . PA = PA = 90*: a i r added to feed of f i r s t converter. 110*: H0S added to feed of f i r s t converter. 119 and decreases the H2S a v a i l a b l e for oxidation, less heat i s produced. Therefore, the furnace temperature f a l l s as shown i n F i g . 5.27. The minimum sulphur y i e l d s i n F i g . 5.26 occur at a recycle of s l i g h t l y over 70% corresponding to a temperature of about 850°K on F i g . 5.27. This temperature r e s u l t s i n the minimum y i e l d for a l l recycles shown i n F i g . 5.25. When the r e c y c l e exceeds 70%, the temperature l i e s i n the " c a t a l y t i c region" ( i . e . , below 850°K) where the y i e l d increases with decreasing temperature. Although consideration was given to r e c y c l i n g only the furnace gases, such r e c y c l e also influences the performance of the c a t a l y t i c converters. Figure 5.28 shows that the temperature i n the f i r s t con-v e r t e r , l i k e that of the furnace, f a l l s with increasing r e c y c l e . Since the converter operates below 850°K, the y i e l d r i s e s , as shown i n F i g . 5.29. Between 50 and 75% r e c y c l e , temperature increases s l i g h t l y but nevertheless, y i e l d continues to r i s e . This i s probably due to the drop i n furnace y i e l d r e s u l t i n g i n an increase i n unreacted H 2S i n the converter feed which combines with S0 2 to form sulphur and gives o f f heat. Thus, despite the increased volume of i n e r t s i n the converter, i t s temperature r i s e s s l i g h t l y with r e c y c l e i n t h i s range. Above 75% r e c y c l e , however, most of the H 2S i s oxidised to sulphur i n the furnace, thus increasing i t s y i e l d , but leaving l i t t l e H 2S for the converter. The converter y i e l d therefore drops sharply, with a corresponding f a l l i n temperature. The value of PA s i g n i f i c a n t l y a f f e c t s the y i e l d of the f i r s t con-v e r t e r only i f a i r or H 2S i s added to i t s feed. For PA = 90* the y i e l d i s halved, and the temperature r i s e s over 100°K for a l l r e c y c l e s . The extra a i r appears merely to o x i d i s e the sulphur formed i n the converter Figure 5.27. E f f e c t of recycle on temperature of the Claus furnace. 121 5.28. E f f e c t of re c y c l e on temperature of the c a t a l y t i c converters. PA = 90*: a i r i s added to f i r s t converter feed. PA = 110*: H 0S i s added to f i r s t . c o n v e r t e r feed. 122 20 40 60 80 100 PERCENT RECYCLE Figure 5.29. E f f e c t of re c y c l e on y i e l d of the f i r s t c a t a l y t i c converter. PA = 90*: a i r i s added to f i r s t converter feed. PA = 110*: H„S i s added to f i r s t converter feed. 123 thus causing the y i e l d to f a l l and the temperature to r i s e . The y i e l d i s highest f o r PA = 110*, since the added H 2S reacts i n the converter with the large amounts of S0 2 produced. The second converter produces the highest y i e l d when PA = 90*, as shown i n F i g . 5.30. This i s probably a r e s u l t of t h i s u nit's compen-sating f o r PA = 90* giving the lowest y i e l d i n the f i r s t converter. The next highest y i e l d s i n the second converter correspond to PA = 110*, 100, 110 and 90, the same order as for the f i r s t . The e f f e c t of a i r and r e c y c l e on the o v e r a l l y i e l d of the Claus plant i s shown on F i g . 5.26. It i s cl e a r that the best performance i s obtained operating with 100% stoichiometric a i r and without any r e c y c l e . The increase i n y i e l d i n the converters r e s u l t i n g from operation at PA = 110* does not compensate s u f f i c i e n t l y f o r the poor y i e l d i n the furnace. For PA = 90*, 110, or 90, y i e l d s are even poorer. The n e g l i g i b l e gains obtained with r e c y c l e are probably not worth the cost of the larger furnace and a d d i t i o n a l piping and controls required. Thus, i t appears that conventional operation at 100% stoi c h i o m e t r i c a i r with no r e c y c l e i s best. i 124 Figure 5.30. E f f e c t of recycle on y i e l d of the second c a t a l y t i c converter. PA = 90*: a i r i s added to f i r s t converter feed. PA = 110*: H„S i s added to f i r s t converter feed. CHAPTER 6 EXPERIMENTAL RESULTS Experimental r e s u l t s f o r temperatures between 800 and 1500°K are presented i n Appendix D. Figures 6.1 to 6.6 i l l u s t r a t e the e f f e c t of sto i c h i o m e t r i c a i r (P^) on the concentrations of H 2, H 2S, S0 2, N 2, H 20 and S 2 i n the product mixture. Figures 6 . 7 to 6.14 show the e f f e c t of P^ on sulphur y i e l d . 6.1 Averaging Technique Since the P. values were determined several times f o r each run, A both by the flow method (cf Sect. 4.4.1) and mass balance c a l c u l a t i o n s (cf Sect. 4.4.3), an average value was obtained before p l o t t i n g . For example, point A i n F i g . 6.10 was calculated as follows. The mean P^ value found by the flow method i s 119.5, whereas the corresponding quantity from the mass balances i s 127.4 (see Table D.4, run 77); The average i s therefore 123.4. S i m i l a r l y , the equilibrium v e s s e l composi-tions and the corresponding sulphur y i e l d were also averaged f o r each set of experimental conditions. The data points i n Fi g s . 6.7 to 6.14 were p l o t t e d with bars, showing the range of P^ values and sulphur y i e l d s . 6 .2 Comparison of Experimental with T h e o r e t i c a l Results Figures 6.1 to 6.6 c l e a r l y show that the experimental and theoret-i c a l r e s u l t s follow the same general trends. However, s u b s t a n t i a l d i f f e r e n c e s i n the compositions and sulphur y i e l d s may also be noted. 125 Figure 6.1. Effect of PA on H 127 Figure 6.2. E f f e c t of PA on P S . 128 Figure 6.3. E f f e c t of PA on S0 o. Figure 6.4. E f f e c t of PA on N ?. 130 Figure 6.5. E f f e c t of PA on H„0. 131 Figure 6 . 6 . E f f e c t o f PA o n S 132 0 5 0 100 150 2 0 0 P E R C E N T OF STOICHIOMETRIC AIR , PA Figure 6.7. E f f e c t of PA on sulphur y i e l d at 800°K. 133 -134 0 5 0 100 150 2 0 0 P E R C E N T OF STOICHIOMETRIC AIR , PA Figure 6.9. Effect, of PA on sulphur y i e l d at 1000°K. 1 3 5 137 1 3 8 ur 3 0 o CH UJ 2 0 10 0 0 5 0 100 150 2 0 0 P E R C E N T O F S T O I C H I O M E T R I C AIR , PA Figure 6.14. E f f e c t of PA on sulphur y i e l d at 1500°K. . . . 140. Possible causes of these discrepancies are discussed i n Sect. 6.3. 6.2.1 E f f e c t of Temperature The e f f e c t of temperature on the concentration of H 2 , H 2S, S0 2, N 2, H 20, S 2 and sulphur y i e l d i s best seen i n Fi g s . 5.1 to 5.4. It i s believed that an increase i n temperature (at constant P.) promotes the d i s s o c i a t i o n of H 2S into H 2 and sulphur; thus, the concentration of H 2S f a l l s while the amount of H 2 and S 2 r i s e s . The concentrations of S0 2 and H 20 are v i r t u a l l y independent of temperature. This may be due to the fac t that an increase i n tempera-ture not only favours the formation of S0 2 and H 20 v i a H 2S oxidation, but also promotes t h e i r d i s s o c i a t i o n . The concentration of N 2 drops s l i g h t l y with r i s i n g temperature. Although the number of moles of N 2 i s almost constant f o r a s p e c i f i e d P^, since N 2 i s v i r t u a l l y i n e r t , the t o t a l number of moles i n the gas mixture increases with r i s i n g temperature, as shown i n Table 6.1. A s l i g h t drop i n the N 2 concentration i s therefore observed. 6.2.2 E f f e c t of P. A_ The percent of stoichiometric a i r (P^) has a strong e f f e c t on prod-uct composition and sulphur y i e l d . I t may be reasoned that, f o r a given temperature, increasing P^ promotes the conversion of H 2 to H 20, H 2S to S 2 and S 2 to S0 2. Consequently, the concentrations of H 2 and H 2S f a l l while those of S0 2 r i s e with temperature. Likewise, the amounts of S 2 (at temperatures below 1500°K) and H 20 ex h i b i t a maximum corresponding to a P^ of about 70 (see Figs. 6.5 and 6.6). Since comparatively l i t t l e H 2 and H 2S are a v a i l a b l e when P^ values exceed 70, most of the oxygen reacts with the S 2 to form S0 2, rather than with H 2 or H 2S. Consequently, the concentration of H 20 and S 2 drops while that of S0 2 continues to r i s e . TABLE 6.1 MOLES OF PRODUCT FORMED AT VARIOUS TEMPERATURES FROM 100 MOLES OF H 2S AND 238 MOLES OF AIR (STOICHIOMETRIC AIR) Moles i n Product Compound • 800°K 1300°K 1500°K H 2 0.06 4.81 10.84 H 2S 29.16 17.94 13.54 S0 2 14.54 11.08 11.81 N 2 187.91 187.93 187.91 H 20 70.46 77.19 75.52 is. 3 19.52 34.61 36.34 Others 0.85 0.80 1.14 T o t a l : 322.50 334.36 337.10 142 6-3. Causes of Deviation between Experimental and T h e o r e t i c a l Results Excellent agreement between the experimental and t h e o r e t i c a l com-posi t i o n s and y i e l d s was found for H 2S d i s s o c i a t i o n (P^ = 0). Further-47 more, the H 2 concentrations agree well with those of Raymont, as shown by F i g . 6.15. When P. i s greater than zero, the experimentally determined compos-i t i o n s of H 2, H 2S, S0 2 and N 2 tend to f a l l below t h e i r t h e o r e t i c a l values. For H 20, S 2 and the-sulphur y i e l d , the experimentally derived r e s u l t s l i e above the t h e o r e t i c a l q u a n t i t i e s ; the d i f f e r e n c e i s e s p e c i a l l y noticeable for the sulphur y i e l d s . Although the experimental data exhibit some sc a t t e r , t h e i r deviation from the t h e o r e t i c a l predictions cannot be explained i n t h i s manner. Six p o s s i b l e causes f o r the discrepancies between the t h e o r e t i c a l and experimental sulphur y i e l d s are discussed below. 6.3.1 High Temperature Reversion One possible explanation for the high experimental sulphur y i e l d s could be " r e v e r s i o n " at high temperatures. Although Gamson and Elkins"' suggested that y i e l d s greater than the t h e o r e t i c a l equilibrium at the flame temperature would be obtained i f reaction continued during cooling u n t i l the equilibrium was frozen at a temperature where the reaction rates became slow, they considered t h i s u n l i k e l y because the actual conversion corresponds to the equilibrium at a temperature of 300°C so that the reaction rates would have to be extremely rapid down to that temperature. To t e s t for p o s s i b l e reversion, the sampling time (the duration the solenoid valve i s open) was v a r i e d from 0.5 to 10 seconds. Table 6.2 shows that the e f f e c t of sampling time on product compositions and 4 0 14.4 TABLE 6.2 EFFECT OF SAMPLING TIME AND P 2 0 5 AT 1200°K Product Compositions (%) Time (sec) P A by Mass Balance H 2 H 2S S0 2 N 2 H 20 S 2 Sulphur Y i e l d ( % ) 0.5. 98.8 0.7 4.0 2.1 55.8 25.4 12.0 79.7 1 99.5 ; 0.7 3.8 2.2 56.0 25.4 12.0 79.8 2 99.1 ; 0-. 8 3.9 2.2 55.9 • 25.3 11.9 79.5 2 100.2 0.7 4.8 2.8 56.2 24.3 11.1 74.1 2 99.7 0.8 4.6 2.6 56.1 24.5 11.4 75.9 2* 99.5 0.9 3.5 2.1 55.9 25.5 12.1 81.1 4 99.5 0.5 4.4 2.4 56.1 25.1 11.6 77.3 6 100.6 0.6 4.5 2.6 56.3 24.6 11.3 76.1 10 99.9 1.0 4.6 2.8 56.1 24.3 11.3 75.4 *No P2O5 present 145 sulphur y i e l d was f a i r l y small. Furthermore, since the experimental r e s u l t s for H 2S d i s s o c i a t i o n agree w e l l with the t h e o r e t i c a l values, the sampling time was probably s u f f i c i e n t l y short to render reversion n e g l i g -i b l e . 6.3.2 H 2S - S0 2 Reaction at Low Temperatures As mentioned before, the reaction 2 H 2S + S0 2 = 2 H 20 + 3/j S (6.1) j ' i s catalysed by water and proceeds r a p i d l y , even at room temperature. If t h i s reaction should occur during sampling, excessive sulphur y i e l d s would be noted. The gas samples were therefore passed through a tube f i l l e d with phosphorus pentoxide. Table 6.2 shows that the P 2 0 5 reduced the apparent sulphur y i e l d by about 5%. The effectiveness of the P 2 0 5 was fur t h e r confirmed by the sampling time experiments, since the sulphur y i e l d s would otherwise have increased s u b s t a n t i a l l y with sampling time. To t e s t f o r r e a c t i o n of H 2S and S0 2 i n the gas chromatograph, known mixtures containing about 10% H 2S, 10% S0 2 and 80% N 2 were made up and analysed chromatographically. As seen from Table 6.3, the agreement i s good and r e a c t i o n i n the G.C. column did therefore not occur to any s i g n i f i c a n t extent. Likewise, mixtures of H 2S, S0 ? and N 2 were analysed a f t e r passing them through a tube containing P205> to test f o r po s s i b l e c a t a l y t i c e f f e c t s of the P 20 5. As seen from Table 6.3, no s i g n i f i c a n t e f f e c t of P 2 0 5 was observed. 6.3.3 Sample Size I n s u f f i c i e n t sample s i z e may cause errors i n the sulphur y i e l d . I f not enough sample i s taken into the gas bag GB ?, then a i r w i l l be sucked TABLE 6.3 CHECK FOR H 2S OR S0 2 REACTION AT LOW TEMPERATURES a) In gas chromatograph Gas composition (%) from rotameter settings from G.C analysis H 2S S0 2 H 2S : S0 2 3.6 4.5 3.8 4.6 3.7 2.9 3.7 3.1 6.1 11.4 6.6 11.2 10.2 4.7 10.0 4.8 10.2 6.3 10.5 6.2 b) In phosphorous pentoxide d r i e r Gas composition by G.C. analysis (%) upstream of P 2 0 5 downstream of P 205 H 2S S0 2 H 2S S0 2 1.8 - 1.4 -3.0 - 2.9 -6.0 - 6.2 -11.8 - 11.6 -• - 3.8 - 3.0 - 6.7 - 6.4 - 11.4 - 11.4 5.0 5.0 4.2 4.4 5.6 5.8 5.0 5.3 9.4 3.5 9.4 3.9 147 into the syringe when i t i s removed from the septum S 2 . Consequently, the compositions of H 2, H 2S and S0 2 w i l l appear to be low, causing an apparently high sulphur y i e l d . Tests showed that r e l i a b l e r e s u l t s would be obtained with the syringe set at 5 ml, provided the gas bag GB 2 con-tained at l e a s t 25 ml of the product mixture. 6.3.4 Trace Compounds The assumption that the equilibrium v e s s e l contains only H 2, H 2S, S0 2, N 2, H 20 and S 2 may introduce errors. Theory predicts that H 2S 2, HS, SO, S 20, and S 3 to S 8 a l l exceed 0.1% i n the range of 800 to 1500°K and 0 to 200 percent a i r . To examine the e f f e c t of omitting these compounds, the t h e o r e t i c a l values of the compositions of H 2, H 2S, S0 2 and N 2 were substituted into the mass balance equations. The concentrations of H 20 and S 2, as w e l l as the sulphur y i e l d were then c a l c u l a t e d . As seen from the dashed l i n e s i n Figs. 6.7 to 6.14 the sulphur y i e l d s are up to 3% higher than the t h e o r e t i c a l values. 6.3.5 T h e o r e t i c a l Data Since the e q u i l i b r i u m constants are exponential functions of the free energies of formation, a small error i n free energy can greatly a f f e c t the t h e o r e t i c a l equilibrium compositions and sulphur y i e l d s . To examine the s e n s i t i v i t y of the r e s u l t s to the free energies, F° of each compound was r a i s e d by 10% i n turn. Increasing F° of H 2S, S0 2, H 20 and S 2 (the most abundant species) caused the greatest changes i n the sulphur y i e l d s ; the r e s u l t s are shown i n Table 6.4. Reducing the F^ , of S0 2 by 2.88% at 1300°K brought the t h e o r e t i c a l and experimental sulphur y i e l d s into good agreement. Similar r e s u l t s were obtained by a l t e r i n g F° of H 2S, H 20 or S 2 by appropriate amounts, as shown i n Table 148 TABLE 6.4 EFFECT OF CHANGES IN F° OF H 2S, S0 2, H 20 OR S 2 ON COMPOSITIONS AT 130O°K* Percent Change Product Compositions Sulphur Compound i n A F ° H 2S S0 2 N 2 H 20 S 2 Y i e l d - 0 1.4 5.4 3.3 56.2 23.1 10.3 69.5 H 2S +10 0.4 16.2 8.3 57.9 14.1 3.0 ' -19.5 S0 2 +10 6.2 13.3 9.8 56.7 10.5 3.4 22.9 H 20 +10 ' 0.1 0.3' 0.2 55.7 29.2 14.3 98.0 s 2 +10 1.4 2.3 1.9 55.8 25.9 12.7 85.4 Experimen t a l 2.3 -3.8 2.6 55.3 24.1 12.0 78.9 H 2S -2.57 1,8 3.3 2.5 55.9 24.5 11.6 78.9 S0 2 -2.88 0.9. 3.5 2.0 56.1 25.5 11.6 78.9 H 20 +1.55 0.9 3.7 2.2 56.0 25.1 11.6 78.8 S'2 : +5.13 • 1.5 3.6 2.5 55.9 24.7 11.7 78.9 *PA =100 149 Errors i n the free, energies of formation of SO2 and H2O alone, compounds which are not formed from H2S d i s s o c i a t i o n , would r e s u l t i n the experimental and t h e o r e t i c a l compositions being s i m i l a r f or PA = 0, hut d i f f e r e n t f or PA > 0. Therefore the accuracy of the McBride data fo r these two compounds was examined. Tables 6.5 and 6.6 compare F° for SO2 and H2O generated by McBride c o e f f i c i e n t s with the o r i g i n a l data l i s t e d by McBride et a l . The average deviations f or both SO2 and H2O are l e s s than 0.01% and thus i n d i c a t e n e g l i g i b l e error i n the f i t for the range 800 - 1500°K. The errors- i n the o r i g i n a l JANAF data were estimated by Eriksson and Rosen to be about ±1% for both S0 2 and H2O. Thus, the error i n the data used i n t h i s thesis i s expected to be under 1%. 6.3.6 Temperature Measurement Table 6.7 shows the a x i a l temperature p r o f i l e of the furnace as measured by a chromel-alumel thermocouple ins e r t e d in-the m u l l i t e tube. The maximum temperature of 837°C i s 10° C higher than that i n d i c a t e d by the platinum - platinum/13% rhodium thermocouple attached to the con-t r o l l e r . This i s close to the l i m i t s of experimental errors of ±3/4 and ±1/4% f o r chromel-alumel and Pt - P t / l 3 % Rh thermocouples, r e s p e c t i v e l y . The temperature i s uniform to within ±5°C for a distance of 150 mm instead of f or 200 mm as stated by the furnace manufacturer. For the e n t i r e 200 mm, the temperature i s uniform to within ±10°C. 6.3.7 Er r o r Analysis Errors i n sto i c h i o m e t r i c a i r , equilibrium v e s s e l compositions and sulphur y i e l d s are estimated i n Appendix F. For example, the estimated error i n the sulphur y i e l d of about 12% compares with t y p i c a l errors based on repeated measurements (see 100 o/x i n Tables D.l to D.8) of about 5%. 150 TABLE 6.5 COMPARISON OF -F° FOR S0 2 COMPUTED BY McBRIDE COEFFICIENTS o 7 WITH THAT LISTED IN McBRIDE OR IN JANAF _ F ° T - F° T from JANAF Temp °K by c o e f f i c i e n t s from McBride Table Er r o r , A% E r r o r , A% 800 • 121436.48 121435.8 -0.00056 121438.0 0.00125 900 128531.93 128531.1 -0.00065 128533.7 0.00137 1000 135769.78 135768.9 -0.00065 135772.0 0.00164 Mean error - - -0.00062 - 0.00142 1000 135769.77 135768.9 -0.00064 135772.0 0.00164 1100 143137.87 143136.9 -0.00067 143140.3 0.00170 1200 150625.76 150625,0 -0.00051 150630.6 0.00321 1300 158224.56 158224.2 -0.00023 158230.0 0.00344 1.400 165926.62 165926.9 0.00017 165933.0 0.00385 1500 173725.30 173726.4 0.00063 173734.0 0.00501 Mean Error - - -0.00021 - 0.00314 151 TABLE 6.6 COMPARISON OF -F° FOR H 20 COMPUTED BY McBRIDE COEFFICIENTS 8 7 WITH THAT LISTED IN McBRIDE OR IN JANAF - K T - F° T from JANAF Temp °K by c o e f f i c i e n t s from McBride Table Error, A% Error, A% 800 96269.42 96269.2 -0.00023 96269.1 -0.00033 900 101672.12 101671.8 -0.00032 101670.9 -0.00120 1000 107181.10 107180.8 -0.00028 107180.9 -0.00018 Mean error - - -0.00027 - -0.00057 1000 107181.10 107180.8 -0.00028 107180.9 -0.00018 1100 112788.79 112788.4 -0.00034 112787.4 -0.00123 1200 118489.06 118488.5 . -0.00047 118487.1 -0.00165 1300 124276.66 124276.8 -0.00070 124274.3 -0.00190 1400 130147.03 130145.7 -0.00010 130142.7 -0.00333 1500 136096.10 136094.2 -0.00014 136091.4 -0.00345 Mean . Error - - -0.00070 - -0.00196 I 152 TABLE 6.7 FURNACE TEMPERATURE PROFILES (Temperature c o n t r o l l e r set to 827°C) A x i a l distance from centre of furnace Temperature mm °C -280 379 -230 518 -180 670 -125 795 -100 816 -75 828 -50 837 -25 837 0 835 +25 835 +50 830 +75 826 +100 814 +125 789 +180 652 +230 481 +280 356 152a The d i f f e r e n c e i s to be expected, since 12% represents the maorimvm possidte, rather than the most l i k e l y error i n the sulphur y i e l d . Similar s t a t e -ments may be made with respect to the chemical compositions and s t o i -chiometric a i r (PA). The error analysis should, therefore, be regarded only as a means of comparing the r e l a t i v e importance of er r o r sources. ,In view of the r e p r o d u c i b i l i t y of the r e s u l t s and systematic trends of the dependent v a r i a b l e s (such as sulphur y i e l d and composition), the experimental measurements may be regarded as r e l i a b l e . A c e r t a i n degree of s c a t t e r i n the data was unavoidable due to the l i m i t a t i o n s i n the ex-perimental technique and d i f f i c u l t i e s of i n v e s t i g a t i n g highly reactive chemical compounds at elevated temperatures. CHAPTER 7 CONCLUSIONS 7.1 T h e o r e t i c a l E q u i l i b r i u m Compositions and Y i e l d s E q u i l i b r i u m mixtures r e s u l t i n g from the rea c t i o n among H 2S, C0 2, H 20, NH3 and a i r at atmospheric pressure were found to contain the f o l -lowing compounds whose p a r t i a l pressures exceeded 10 7 atm. for at le a s t some temperatures between 600 and 2000 °K: N 2, NH3, NO, 0, 0 2, OH, H, H 2, H 20, H 2S, H 2S 2, SH, SN, SO, S0 2, S O 3 , S 20, S to S g, C0 2, CO, COS, CS and CS 2. These compounds should therefore not be omitted from e q u i l i b r i u m c a l c u l a t i o n s . It was shown that sulphur y i e l d s i n Claus furnaces could be increased s i g n i f i c a n t l y by operating with PA les s than 100, since t h i s suppressed the further oxidation of elemental sulphur. In p r a c t i c e , such r a t i o s require preheating of the feed gases- for the- Claus furnace. The presence of impurities, such as NH3 (below 1600°K), H 20 and C0 2 was shown to diminish the sulphur y i e l d s . Between 600 and 1850°K, H 2S d i s s o c i a t i o n was predicted to produce lower sulphur y i e l d s than did H 2S oxidation. 7.2 Claus Plant Model Modelling a Claus plant c o n s i s t i n g of a furnace and two c a t a l y t i c converters, which operate a d i a b a t i c a l l y gave the following r e s u l t s : — T h e maximum o v e r a l l sulphur y i e l d occurs when operating with 153 154 s t o i c h i o m e t r i c a i r . — E n r i c h i n g t h i s a i r with oxygen causes the o v e r a l l sulphur y i e l d to f a l l . — P r e h e a t i n g the feed to the furnace or converters enhances the sulphur y i e l d only marginally. — R e c y c l i n g part of the f i r s t converter's feed back to the furnace improves the y i e l d s l i g h t l y ; these minor gains are probably not worth the a d d i t i o n a l cost encountered i n p r a c t i c e . Consequently, i t seems preferable to operate Claus plants with 100% of s t o i c h i o m e t r i c a i r , without oxygen enrichment and without r e c y c l e . 7.3 Experimental Equilibrium Compositions Compositions of H 2, H 2S, S0 2, N 2, H 20 and S 2 and the sulphur y i e l d were obtained experimentally at one atmosphere pressure and between 800 and 1500°K. The experimental r e s u l t s followed the same trend as the t h e o r e t i c a l ones, but did not coincide exactly with them. The sulphur y i e l d s were up to 15% higher than the t h e o r e t i c a l ones; random e r r o r alone did not account f o r the d i f f e r e n c e . Six possible causes were inv e s t i g a t e d : — h i g h temperature reversion ( u n l i k e l y ) ; — r e a c t i o n of H 2S with S0 2 at room temperatures, e i t h e r i n the sampling l i n e s or i n the gas chromatograph (possible, not not l i k e l y ) ; — t a k i n g i n s u f f i c i e n t sample (p o s s i b l e ) ; — n e g l e c t i n g important species ( r e s u l t s i n an apparent increase i n y i e l d of up to 3%); — e r r o r s i n the t h e o r e t i c a l data (possible^ but not l i k e l y ) ; — e r r o r s i n temperature measurement ( u n l i k e l y ) . NOMENCLATURE a c o e f f i c i e n t i n Eq. 2.9 ai,a2,...,a7 McBride c o e f f i c i e n t s ag,ag,aio Lagrange m u l t i p l i e r s A c o e f f i c i e n t i n Eq. 3.42 A symmetric matrix of temperature summations A_^  area under chromatographic peak b c o e f f i c i e n t i n Eq. 2.9 b.,b intercept of a i r and H„S flowmeter c a l i b r a t i o n curve, A HoS 1 - 2 res p e c t i v e l y B c o e f f i c i e n t i n Eq. 3.42 b. inter c e p t of GC c a l i b r a t i o n curve f o r compound i (H2, 1 H 2S or S0 2) c c o e f f i c i e n t i n Eq. 2.9 Cp° standard heat capacity of a species i i C c o e f f i c i e n t i n Eq. 3.42 d c o e f f i c i e n t . i n Eq. 2.9 •d vector of thermochemical properties of species i f fa c t o r defined by Eq. 3.29 = ( 1 - r ) / ( 1 - r ' k ) F^ 0 standard free energy of a species at temperature T AFjj, free energy of re a c t i o n at temperature T F diagonal matrix for s c a l i n g A H.!,,H° ,H° . enthalpy of a compound at temperatures T, T and T R G r e s p e c t i v e l y H 2gg enthalpy of a compound at 298.16°K 156 standard enthalpy of formation of a compound at 298.16°K from i t s elements compound number number of atoms per molecule of sulphur vapour or number of atoms of element e i n compound i equilibrium constant at temperature T equi l i b r i u m constant f o r the formation of 0 2 (Eq. 3.3) equilibrium constant f o r the formation of H 2 (Eq. 3.4) slope of a i r and H 2S rotameter c a l i b r a t i o n curve slope of G.C. c a l i b r a t i o n curve f o r compound i (H 2, H 2S or S0 2) number of moles of element e (C, K, N, 0 o f S ) i n streams A, B, C, D, E, and L, re s p e c t i v e l y of F i g . 3.1 •number- of-moles of compound i ' i n stream E number of moles of compound i present at the adiabatic flame temperature a f t e r r e a c t i o n number of moles of compound i before r e a c t i o n t o t a l number of species number of temperature i n t e r v a l s summed i n obtaining McBride c o e f f i c i e n t s percent of stoi c h i o m e t r i c a i r i n the feed mixture (= 100 Rgg) p a r t i a l pressure of compound i (atm) sum of the p a r t i a l pressures of the various sulphur species t o t a l pressure (= sum of the p a r t i a l pressures of a l l the compounds) vapour pressure of sulphur flowrates of a i r and H 2S r e s p e c t i v e l y f r a c t i o n of stream D recycled modified f r a c t i o n recycled defined by Eq. 3.20 c o r r e l a t i o n c o e f f i c i e n t 15.7 R gas constant (= 1 . 9 8 7 2 6 cal/mole/°K) R^ ,g r a t i o of carbon to sulphur R g g r a t i o of element e (carbon, hydrogen or nitrogen) to sulphur R^g r a t i o of hydrogen to sulphur R^JQ r a t i o of nitrogen to oxygen R r a t i o of oxygen to sulphur U o S° standard entropy of a species at temperature T s T = W ( E q " 3 , 6 ) . T adiabatic flame temperature, °K T„ guess of adiabatic flame temperature, °K T_ temperature of the reactants, °K K TQ common temperature f o r the two sets of McBride c o e f f i c i e n t s x. ~x vector of McBride c o e f f i c e n t s f o r compound' i x ,x^ rotameter f l o a t p o s i t i o n f o r a i r and H2S, r e s p e c t i v e l y y_^  percent of compound i (H2, H2S or SO2) i n gas bag Y sulphur y i e l d defined by Eqs. 3.5 and 3.8 Greek p r o p o r t i o n a l i t y constant i n Eq. 3.22 constant i n Eq. 3.28 (= M /M ) 6 j A S j A Subscripts A,B,C,,D,E,L streams i n F i g . 3.1 e element (either C, H, N, 0 or S) G guessed HS hydrogen to sulphur i compound number k i t e r a t i o n number NO nitrogen to oxygen OS oxygen to sulphur R reactant S sulphur T t o t a l V vapour 0 previous i t e r a t i o n Superscripts T transpose of a vector * desired value i n Eqs. 2.11 to 2.14 and 3.7 Miscellaneous [ ] p a r t i a l pressure 159 REFERENCES Anon, Hydrocarbon Process. 57 (1) 181 (1978). Grekel, H., Kunkel, L. V., and McGalliard, R., Chem. Eng. Progr. 61 (9) 70 (.1965). Estep, J . W., McBride, G. T., and West, J . R., i n McKetta, J . J . (ed.), Advances in Petroleum Chemistry and Refining, Vol. 6-, Chapt. 7 Interscience, New York, NY (1962). Goar, B. G., Hydrocarbon Process, A]_ (9)» 2 4 8 (1968). Gamson, B. W. , and E l k i n s , R. H. , Chem. Eng. Progr. 49^ , 203 (1953). Ke l l e y , K. K., U. S. Bur. Mines, B u l l . 406 (1937). S t u l l , D. R., and Prophet, H., (ed.) JANAF Thermochemical Tables, 2nd Ed., National Bureau of Standards, Washington, DC (1971). McBride, B. J . , Heimel, S., Ehlers, J . G., and Gordon, S., Thermo-dynamic Properties to 6000°K for 210 Substances Involving the F i r s t .18 £lements.,..;NASA,SE-.3001, .Washington, DC (1963).. Valdes, A. R., Hydrocarbon Process. P e t r o l . Refiner, 43 (3) 104 (1964). Opekar, P. C , and Goar, B. G. , Hydrocarbon Process., 45^  (6) 181 (1966). Eriksson, G., and Rosen, E., Proceedings of the Symposium on Recovery of Pulping Chemicals, H e l s i n k i (1968). Boas, A. H. , and Andrade, R. C. , Hydrocarbon Process _50_, (3) 81 (1971). McGregor, D. E., Ph.D. Thesis, U n i v e r s i t y of Alberta, Edmonton, Alta. (1971) . Neumann, K. K., Erdb'l, Kohle, Erdgas, Petrochem. v e r e i n i g t mit Brennst. Chem., 25_, 656 (1972). Bennett, H. A., and Meisen, A., Can. J . Chem. Eng., 51, 720 (1973). Bragg, J . R., 76th National AIChE Meeting, Tulsa, Okla, Mar 10-13, (1974). Fischer, H., Hydrocarbon Process., 53 (10), 125 (1974). 160 18. Meisen, A., and Bennett, H. A., Hydrocarbon Process., 5_3 (11), 171 (1974). 19. Raymont, M. E. D., Ph.D. Thesis, U n i v e r s i t y of Calgary, Calgary, Alta.(1974). 20. Kerr, R. K., and B e r l i e , E. M., Energy Process./Can., May-June, 42 (1977). 21. Maadah, A. G. , and Maddox, R, N. , Hydrocarbon Process, _5_7_, (8) 143 (1978). 22. Mackle, H. , and O'Hare, P.A.G. Trans. Faraday S o c , 59, 309 (1963). 23. Kellogg, H. H., Met. Trans., 2, 2161 (1971). 24. Rau, H., Kutty, T. R. N., and Guedes de Carvalho, J . R. F., J . Chem. Thermodynamics^, 833 (1973). 25. Braune, H. , Peter, S., urid Neveling, V., Z. Naturforsch. _6a_, 32 (1951). 26. Peter, S., und Woy, H., Chem. Ing. Techk., 41, 1 (1969). 27. Pasternak, R., Brennst. Chem. 50, 200 (1969). 28. Sawyer, F. G., Kader, R. N., Herndon, L . K., and Morningstar, E., Ind. Eng. Chem., 42, 1938 (1950). 29. Kerr, R. K. , Energy Process./Can. , July-Aug. , 28 (1976). 30. Kerr, R. K. , P a s k a l l , H. G. , and Ball a s h , N.', Energy Process./Can. , -Sept.-Oct., 66 (1976) . 31. Kerr, R. K., and P a s k a l l , H. G., Energy Process./Can., Nov-Dec., 38 (1976). 32. Kerr, R. K., P a s k a l l , H. G., and Ballash, N., Energy Process./Can., Jaa-Feb. , 40 (1977). 33. Kerr, R. K., and B e r l i e , E. M., Energy Process./Can., July-Aug., 48 (1977). 34. Randall, M., and von Bichowsky, F. R., J . Amer. Chem. Soc. 40, 368 (1918). 35. Taylor, H. A., and Wesley, W. A., J . Phys. Chem., 31, 216 (1927). 36. Taylor, H. A., and Livingston, E. M., J. Phys. Chem. 35, 2676 (1931). 37. Murthy, A. R. V., and Rao, B. S., Proc. Indian Acad. Sci., 34A, 283 (1951). 161 38. Deo, A. V., D a l l a Lana, I. G., and Habgood, H. W. , J . Catal. 21_, 270 (1971). 39. D a l l a Lana, I. G., McGregor, D. E., L i u , C. L., and Cormode, A. E., Uni v e r s i t y of Alberta Report, Proceedings of the 5th European/2nd Int e r n a t i o n a l Symposium on Chemical Reaction Engineering, Paper B (1972). 40. Diah, I. G., Ponter, A- B., and Shemilt, L. W., Ind. Eng.. Chem. Process. Des. Develop., 11, 458 (1972). 41. ' .Grekel, H., O i l Gas J . , 57 (30) 76 (1959). 42. .Fischer, H. , Chem. Ing. Techk., 43, 1168 (1971). 43. Kopp, S. P., and Morin, M. M., Gas Conditioning Conference, Paper G (1977). 44. Meyer, B., Sulphur, Energy and Environment, E l s e v i e r , Amsterdam (1977). 45. Levy, A., and Merryman, E. L. , Combust. Flame, 9^, 229 (1965). 46. Hyne, J. B., Alber t a Sulphur Research Ltd. Report. 47. Raymont, M. E. D., Hydrocarbon Process., 54 (5) 177 (1975). 48. Raymont, M. E. D., Hydrocarbon Process., ^ 4 (7) 139 (1975). 49. Carmassi, M. J. , and Z w i l l i n g , J . P., Hydrocarbon Process., 4j6 (4) 117 (1967). 50. Smith, D. E., and Funk, G. L., Gas Conditioning Conference, Paper Q (1977). 51. Zeleznik, F. J . , and Gordon, S., NASA Tech. Note D-767 Washington, D.C. (1961). 52. West, J . R., Ind. Eng. Chem., 42, 713 (1950). 53. T u l l e r , W. N. (ed.), The Sulphur Data Book, McGraw H i l l , New York, NY (1954). 54. Rau, H., Kutty, T. R. N., and Guedes de Carvalho, J . R. F., J. Chem. Thermodynamics 5, 291 (1973). 55. Supelco, Inc., B e l l e f o n t e , Pa., P r i v . Comm. (1976). 56. Chromatographic S p e c i a l i t i e s , Ltd., B r o c k v i l l e , Ont., P r i v . Comm. (1976). 16-2 57. Spherocarb, Analabs, Inc., North Haven, Conn (1977). 58. Robbins, L. A., Bethea, R. M., and Wheelock, T. D., J . Chromatogr. 13, 361 (1964). 59. Hodges, C. T. , and Matson, R. F. , Anal. Chem. 37_, 1065 (1965). 60. Koppe, R. K., and Adams, D. F., Environ. S c i . Technol.,1^, 479 (1967). 61. Jones, C. N., Anal. Chem.,39, 1858 (1967).. 62. Obermiller, E. L., and C h a r l i e r , G. 0., J . Gas Chromatogr., b_ 446 (1968). 63.. Obermiller, E. L. , and C h a r l i e r , G. 0., J . Gas Chromatogr., ]_ 580 (1969). 64. Applebury, T. E., and Schaer, M. J . , J . A i r P o l l u t Contr. Ass., _20,83 (1970). 65. Thornsberry, W. L. , Anal. Chem. 4_3, 452 (1971). 66. Deactigel, Applied Science Laboratories, Inc.,, State College PA (1971). 67. Bollman, D. H., and Mortimore, D. M., J , Chromatogr. Sci., 10, 523 (1972). 68. Bremner, J . M. , and Banwort, W. L. , Sulphur Inst. J.,10_, (1), (1974). 69. Murdock, D. L., and Atwood, G. A., Ind. Eng. Chem. Process. Des. Develop.,13, 254 (1974). 70. de Souza, T. L. C , Lane, D. C. , and Bhatia, S. P., Anal. Chem., 47, 543 (1975). 71. B u l l e t i n 712A, Supelco. Inc.,, Bellafonte Pa. (1976) . 7-2. Catalog 11, p 19, Supelco Inc, Bellafonte Pa. (1977). 73. In t e r n a t i o n a l C r i t i c a l Tables, Vol V, p. 213 McGraw H i l l , New York, NY (1926). 74. Pearson, M. J . , Hydrocarbon Process., 52 (2), 81 (1973). 163 APPENDIX A EXPERIMENTAL PROCEDURE The following section l i s t s each step i n operating the apparatus shown i n Figs. 4.1 and 4.2. v ( i ) F i l l the gas sampling bag GB1 with the desired mixture of a i r and H 2S. 1 ( i i ) Introduce t h i s mixture into the equilibrium v e s s e l , ( i i i ) A fter one hour (or more) sample the equilibrium v e s s e l , (iv) C a l i b r a t e the gas chromatograph. (This may be done between steps ( i i ) and ( i i i ) . ) (v) Analyse the sample, (vi) Calculate the composition of the equilibrium v e s s e l . A.1 Preparing the Feed Mixture A gas bag i s f i l l e d with a feed mixture of a i r and H 2S as follows: (i) Set the H 2S flow rate to at l e a s t 20 as indic a t e d by the r o t a -meter. ( i i ) Set the a i r flowrate. according to Eq. 4.6 to produce the desired PA' ( i i i ) Evacuate gas bag GBj. (iv) F i l l the bag with a i r and H 2S. (v) When the bag i s f u l l , connect i t to the apparatus as shown i n Fi g . 4.1. A.2 Introducing the Mixture into the Equi l i b r i u m Vessel The feed mixture i s admitted into the equi l i b r i u m v e s s e l as follows: ( i ) Close a l l valves except C, ST, SV, V 2 and V 5 of F i g . 4.1, turn pump VP on, and evacuate the re a c t i o n v e s s e l u n t i l i t s pressure f a l l s below about 300y Hg. 164 ( i i ) Close stopcock ST then open valve V^ to admit the feed mixture- into the v e s s e l . A f t e r about 10 seconds, close again. A.3 Sampling the Equilibrium Vessel A f t e r e q u i l i b r i u m has been attained, which may require an hour or mor-e, the gases i n the equilibrium v e s s e l are sampled as follows: ( i ) A f t e r c l o s i n g valve Vg and opening valves V 2, V3, V^ and V5, evacuate the product gas bag and i t s container, ( i i ) When the pressure f a l l s below about 300u Hg, open stopcock ST and close valve V 2. Take a sample by actuating the solenoid SV with the timer set for 2 seconds, ( i i i ) As soon as the solenoid closes again, close V^ and ST; turn o f f the vacuum pump and open release valve Vg. (iv) Open valve Vi to admit s u f f i c i e n t feed mixture into the equi l i b r i u m v e s s e l to replace the volume withdraxra by sampling, (v) Take a 5 ml sample from gas bag GB 2 with a syringe; leave the needle i n the septum for about t h i r t y seconds to allow the syringe contents to reach atmospheric pressure, (vi) Inject the sample into the gas chromatograph. A. 4 C a l i b r a t i o n of Gas Chromatograph Separate c a l i b r a t i o n curves for H 2, H 2S and S0 2 were prepared f o r most experimental runs. T y p i c a l composition ranges used are: 0-10% for H 2, 0-25% for H 2S, and 0-10% for S0 2; the ranges vary, depending on the expected composition i n the equi l i b r i u m v e s s e l . The chromatograph i s c a l i b r a t e d f or H 2S as follows: (i ) Set the H2S and N2 (diluent) flow r a t e s , and then allow about one minute for the l i n e s to be purged by the H 2S/N 2 mixture, ( i i ) From the rotameter f l o a t p o s i t i o n s compute the percent H 2S. 165" ( i i i ) Insert syringe needle through septum s^, withdraw a 5 ml sample, but leave the needle i n the septum f o r about one minute to allow the pressure i n s i d e the syringe to reach one atmosphere, (iv) Inject sample into gas chromatograph. Wait f i v e seconds before withdrawing the needle, to avoid loss of sample through the G.C. septum. (v) Measure the area of the gas chromatograph peak from the trace of the Disc inte g r a t o r ( b u i l t i n t o the recorder) and pl o t t h i s area i against the corresponding percent H2S. (vi) Repeat steps ( i ) to (v) at l e a s t three times for a range of flow rates and thus obtain a c a l i b r a t i o n curve. Then f i t the points to a s t r a i g h t l i n e using the program l i s t e d i n Appendix B. ( v i i ) Repeat.-.steps ( i ) to (vi) f or -II2 and .then f o r SO2. 166 APPENDIX B CALCULATOR PROGRAMS AND SAMPLE CALCULATIONS Programs were written f o r the Texas Instruments TI-58 programmable pocket c a l c u l a t o r to compute: — g a s chromatograph c a l i b r a t i o n constants; — e q u i l i b r i u m v e s s e l compo.sitions for both H 2S oxidation and dissociation;: — c o m p o s i t i o n of a gas stream containing H 2S, S0 2 and N 2. The use of these programs i s described i n the following sections with r e s u l t s of sample c a l c u l a t i o n s i n brackets. B.1 Constants for Gas Chromatograph C a l i b r a t i o n Table B . l l i s t s a TI-58 program which c a l c u l a t e s the intercept and slope of the c a l i b r a t i o n curves for hydrogen, hydrogen sulphide and s u l -phur dioxide. The c a l i b r a t i o n constants are found as follows: ( i ) Key i n the program l i s t e d i n Table B . l . ( i i ) Key i n the constants for the flowmeters: --For N 2: -213.403 STO 18; 24.991 STO 19 — F o r H 2: -3.698 STO 16; 2.119 STO 17 ( i i i ) Clear the s t a t i s t i c a l r e g i s t e r s : press 2nd E' (iv) Key i n flowmeter f l o a t p o s i t i o n s , x: Key x (5.5) press A, see x (5.50) H 2 H 2 Key (93.5), press B, see x^ ^ (93.50) (v) Press 2nd C , see % H 2 (0.37) (vi) Key i n area under H 2 peak (298), press 2nd D' see n (1.00), the number of points on the c a l i b r a t i o n curve entered so f a r . ( v i i ) Repeat steps (iv) to (vi) f o r each point on the c a l i b r a t i o n curve. (See Table B.2 for the values.) 167 TABLE B . l TI-58 PROGRAM FOR CALCULATING G.C. CALIBRATION CURVE CONSTANTS AND FOR FINDING EQUILIBRIUM VESSEL COMPOSITIONS LOC CODE KEY 0 0 0 76 L B L 0 0 1 11 H 0 0 2 4 2 STO U U b 0 0 7 0 0 8 0 1 0 01 1 I 11 h U22 : 0 2 3 0 2 4 0 2 5 R.-S L B L B Q 1 F?,- s 76 L B L 0 9 0 9 -: r-i •• •-• - i p. •• 76 L B L 14 . JJ 4 3 RCL RCL TO 0 5 76 L B L 16 H E FOR H 2S OXIDATION 9 2 RTH 76 L B L 15 E 5 3 F I X I J 4 0 4 0 4 8 0 5 0 0 5 2 i - i cr ~ ' l_l J .": 0 5 4 0 5 5 0 5 6 0 5 7 f i cr o U6 I 0 6 2 i 0 6 3 0 6 4 0 6 5 • 0 6 6 0 6 7 0 6 8 , 0 6 9 0 7 0 43 RCL no o r ;L o 4 3 RCL 11 11 4 2 S i Li 0 6 0 6 4 3 RCL 5 9 07 0 7 6 0 14 D 4 3 RCL 4 3 RCL 1 4 1 4 O cr. _ cr cr ,j_ 4 3 RCL 15 15 0 4 ~ 0 4 0 8 5 0 8 6 f : G l O 100 /' 1 0 1 i. U J 106 107 1 Uo 1 0 9 r Q c r . _ ' • 42 S T D 0 3 0 4 STG. RCL 0 6 RCL 0 4 STO 01 RCL 0 2 Ol 0 3 9 0; 0 7 9 0 8 0 -4 3 K C L 0 5 0 5 O ^ _ £ _ 0 6 0 6 0 8 1 0 0 0 8 2 0 0 no o LEAF 168 OMITTED IN PAGE NUMBERING. TABLE. B.2 TYPICAL CALIBRATION DATA FOR THE GAS CHROMATOGRAPH (Run 77) Float Positions Peak Gas Gas N 2 % Gas Area H 2 5.5 93.5 0.37 298. 9.5 94 0.76 1020 16 95 1.38 1500 14.5 66.5 1.83 2310 14.5 46 2.81 3740 H 2S 89 19.5 31.11 3000 63 31 13.57 1365 40 44.5 5.92 565 27 61 2.87 255 22 86 1.62 113 S0 2 84 21.5 20.68 5086 65 37.5 8.42 2247 46 56 3.94 1011 21 68.5 1.64 - 450 21 91 1.20 272 Gas Intercept Slope C o r r e l a t i o n C o e f f i c i e n t H 2 -202.19 1381.05 0.9946 H 2S -17.19 97.72 0.9996 S0 2 49.00 245.82 0.9992 170, ( v i i i ) Compute c o r r e l a t i o n c o e f f i c i e n t ( r 2 ) : press 2nd Op 13, see r 2 . (0.99). (ix) C alculate intercept and slope and store f o r use i n the mass balance part of the programme: press 2nd Op 12, see intercept (-202.19), press STO 10; press x ^ t, see slope (1381.05), press STO 11. (x) Key i n the data for the c a l i b r a t i o n of the flowmeter f o r H 2S: 1.789 STO 16; 1.370 STO 17. (xi) Repeat steps ( i i i ) to (ix) to c a l c u l a t e the intercept (-17.19) and slope (97.72) f or the H 2S c a l i b r a t i o n curve, but store these i n r e g i s t e r s 12 and 13 r e s p e c t i v e l y , ( x i i ) Key i n the data for the c a l i b r a t i o n of the flowmeter f o r S0 2: 5.262 STO 16; 0.9427 STO 17. ( x i i i ) Repeat steps ( i i i ) to (ix) but store i n t e r c e p t (49.00) and slope (245.82) i n r e g i s t e r s 14 and 15 r e s p e c t i v e l y , (xiv) To c a l c u l a t e the percent of stoic h i o m e t r i c a i r (P^) by flowmeter, key i n flowmeter constants f o r H 2S and a i r r e s p e c t i v e l y : 1.789 STO 16, 1.370 STO 17; -75.884 STO 18, 3.975 STO 19. Then key i n f l o a t p o s i t i o n s , x: Enter x (36), press A, see x^ „ (36.00). n 2 p r i 2 o Enter x^ (54.5), press B, see x^ (54.50). Press 2nd C', see % H 2S (26.64). Then press 2nd A' see P A (115.67). B.2 Eq u i l i b r i u m Vessel Compositions B.2.1 Hydrogen Sulphide Oxidation The programme l i s t e d i n Table B . l also c a l c u l a t e s vessel composi-tions from the G.C. c a l i b r a t i o n data and mass balance equations as 171 follows: ( i ) Ensure that the G.C. c a l i b r a t i o n data are i n r e g i s t e r s 10 to 15. ( i i ) Key i n the areas under the gas chromatograph peaks, A: Key i n A^ (546), press A, see A^ (546.00). Key i n A ^ g (412), press B, see ^ ^ ( 4 1 2 . 0 0 ) . Key i n A (2005), press C, see A (2005.00). ( i i i ) To c a l c u l a t e the composition of the equilibrium v e s s e l , press E, see percent hydrogen (% H2) i n the v e s s e l (0.4). Press R/S, see % H 2S (3.1). Continue pressing R/S and see, i n turn, % S0 2 (5.6), % N ? (61.4), % H 20 (21.4), % S 2 (8.1), % sulphur y i e l d (65.1) and P^ by mass balance (131,1). (iv) Repeat steps ( i ) to ( i i i ) for new A^ , A^ g and AgQ . B. 2.. 2, Hydrogen Sulphide D i s s o c i a t i o n The program l i s t e d i n Table B.3 c a l c u l a t e s G.C. c a l i b r a t i o n curves f o r H 2 and H 2S and computes the composition of" the v e s s e l f o r H 2S d i s -s o c i a t i o n as follows: ( i ) Key i n the program. ( i i ) Calculate and store c a l i b r a t i o n data f o r H 2 and H 2S as described i n Section B.1, steps ( i i ) to ( x i ) . For Table D.4, run 83, the interc e p t and slope for H 2 are 500.28 (STO 10) and 382.86 (STO 11), re s p e c t i v e l y ; f o r H 2S the numbers are -42.46 (STO 12) and 53.35 (STO 13). ( i i i ) Key i n the areas under the gas chromatograph peaks, 1 A: Key i n A (4560), press A, see A^ (4560.00). H 2 r i 2 Key i n A^ ^ g(4890), press B, see A R g (4890.00). (iv) To c a l c u l a t e e q u i l i b r i u m v e s s e l compositions: press E, see percent hydrogen (9.8). Press R/S, see % H 2S (85.3). Continue pressing 173 R/S and see, i n turn, % S 2 (4.9), % sulphur y i e l d (10.3), and % H 2 + % H 2 S i n the syringe (103.1). B.3 Compositions of a Mixture of H 2 S, S0 2 and N 2 The program l i s t e d i n Table B.4 calc u l a t e s the % H 2S and S0 2 i n a mixture of H 2 S, S0 2 and N 2, as follows: ( i ) Key i n rotameter c a l i b r a t i o n constants: For H 2S: 0.3219 STO 10; .1.3213 STO 11 For S0 2: 5.2624 STO 12; 0.9427 STO 13 For N 2 : -213.403 STO 14; 24.991 STO 15. ( i i ) Key i n rotameter f l o a t p o s i t i o n s , x: Key (25), press A, see (25.00) Key (60), press B, see x 0_ (60.00) Su 2 bU 2 Key (26.5), press C, see ^ (26.50). ( i i i ) Calculate composition of mixture: Press D-see % H 2S (6.13) Press E see % S0 2 (11.36). LEAF 174 OMITTED IN PAGE NUMBERING. 175 APPENDIX C CALIBRATION CURVES FOR ROTAMETERS Four rotameters were required f o r the experiments: ChE 2912A and B (both Gilmont Instruments, Size 10), ChE 2600 (Gilmont Size 1), and ChE 3107A (Gilmont Size 2). The rotameters were used as follows: — C h E 2912B ( c a l i b r a t e d f o r H 2, H 2S, and S0 2) and ChE 3107A (N 2) : f o r gas chromatograph c a l i b r a t i o n ; — C h E 2912B (H 2S) and 2600 ( a i r ) : to set the r a t i o of a i r to H 2S for f i l l i n g gas bags; — C h E 2912A (I12S), 2912B ( S 0 2 ) and 3107 A( N 2) : to examine the rea c t i o n of H 2S with S0 2. Rotameters ChE 2600 and ChE 2912A and B were c a l i b r a t e d with a stopwatch and a 50 ml soap bubble flowmeter; ChE 3107, with a stopwatch and a 200 ml soap bubble flowmeter. The data are plo t t e d i n Fig s . C . l to C.6. Linear regression was applied to f i n d the best s t r a i g h t l i n e for each plot;, the data are f i t t e d very w e l l as the c o r r e l a t i o n c o e f f i c -i e nts ( r 2 ) exceed 0.996. 176 Figure C l . 4 0 6 0 FLOAT POSITION C a l i b r a t i o n of rotameter Ch.E 2912B (Gilmont Model F-2000, Size 10) for H 9. F i g u r e C.3. C a l i b r a t i o n of r o t a m e t e r Ch.E. 2912B ( G i l m o n t Model F-2000, S i z e 10 ) f o r S0„. 179 2 0 0 0 1500 L U K IOOO 3 CVJ 5 0 0 0 Fo r x > 2 5 • INTERCEPT - 2 1 3 . 4 0 3 SLOPE 24.991 r'2 0 . 9 9 9 4 0 2 0 4 0 6 0 FLOAT POSITION, x 8 0 Figure C.4. C a l i b r a t i o n of rotameter Ch.E. 3107A (Gilmont Model F-1200, Size 2), for N 0. 300 250 UJ Si cn o _j u_ 150 zz 100 < 50 0 For x > 2 5 : INTERCEPT -75.844 SLOPE = 3.975 r 2 •  0.9977 oo 0 20 40 60 FLOAT POSITION 80 100 Figure C-5. C a l i b r a t i o n of rotameter Ch.E. 2600 (Gilmont Model F-1100, Size 1) for a i r . Figure C. 6. C a l i b r a t i o n of rotameter 2912A (Gilmont Model F-2000, s i z e 10) for H„S. APPENDIX D EXPERIMENTAL RESULTS 183 TABLE D.l EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT 800°K FOR VARIOUS P A Run P A Product Compositions (%) Sulphur Y i e l d ( % ) Code Flow M.B. Avg. H 2 H 2S S0 2 N 2 H 20 S 2 83 - -0.6 99.0 - - - 0.3 0.6 99.2 - - - 0.3 0.4 99.4 - - - 0.2 .0.5 99.2 - 0.3 0.6 0.6 0.4 0.5 Mean, x 0.5 99.2 - - - 0.3 0.5 100 a/x - 18.2 0.2 - - - 18.2 18.2 66 45.9 45.9 55.2 43.0 54.8 48.7 . 57.1 0.0 19.8 0.2 44.9 23.5 11.7 0.0 20.0 0.2 44.7 23.5 11.7 0.0 18.5 0.2 45.5 23.9 11.9 53.9 53.6 55.9 Mean, x 45.9 55.7 50.8 0.0 19.4 0.2 45.0 23.6 11.8 54.5 100 a/x 5.1 2.2 0.0 4.2 0.0 0.9 1.0 1.0 2.3 56 70.6 56.8 64.8 Mean, x 64.1 74.6 69.4 0.05 10.5 0.7 50.7 25.6 12.5 69.1 100 a/x 10.8 -4 74.9 75.8 76.8 77.5 Mean, x 76.3 70.6 . 73.5 0.0 12.4 0.7 49.7 25.1 12.2 65.2 100 a/x 1.5 — : — : — : — _ i — 184 Table D.l continued Run Product Compositions (%) Sulphur Code Flow M.B. Avg. H 2 H 2S S0 2 N 2 H 20 S 2 Y i e l d (%•) 55 99.1 0.0 6.5 3.1 56.3 23.7 10.3 68.4 98.7 0.0 5.7 2.6 56.1 24.6 11.0 72.5 100.2 0.0 5.3 2.7 56.4 24.6 10.9 73.1 100.9 0.0 6.0 3.2 56.6 23.8- 10.3 69.2 97.0 0.0 8.1 3.6 56.1 22.6 9.5 61.8 99.1 100.5 0.0 6.7 3.4 56.7 23.3 9.9 66.3 96.2 100.6 0.0 5.2 2.7 56.5 24.6 11.0 73.4 Mean, x 97.7 99.6 98.7 0.0 6.2 3.0 56.4 23.9 10.4 69.2 100 o/x 2.1 1.4 - 0.0 16.2 12.7 0.4 3.2 5.6 6.1 57 117.2 120.6 Mean, x 118.9 121.1 120.0 0.0 3.4 4.5 60.0 22.9 9.2 70.0 100 o/x 2.0 - - - - - - - - -74A 197.6 170.3 0.0 0.7 7.6 65.8 19.8 6.1 59.5 205.2 160.1 0.0 0.7 6.8 64.7 20.8 7.0 64.8 Mean, x 201.4 165.2 183.3 0.0 0.7 7.2 65.3 20.3 6.6 62.2 100 a/x 2.7 4.4 - 0.0 0.0 7.9 1.2 3.5 9.7 6.0 185 TABLE D.2 EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT 900°K FOR VARIOUS P. Run Product Compositions (%) Sulphur Code Flow M.B. Avg. H 2 H 2S S0 2 N 2 H 20 S 2 Y i e l d ( % ) 83 2.1 96.8 _ _ 1.1 2.1 —• - 2.2 96.7 - - - 1.1 2.2 — - 2.1 96.9 - - - 1.0 2.1 — — 2.0 97.0 - - - 1.0 2.0 — - 1.9 97.2 - - - 0.9 1.9 - - 1.8 97.3 - - - 0.9 1.8 Mean, x 2.0 97.0- 1.0 2.0 100 o/x - - - 7.3 0.2 - - - 8.9 7.3 66 45.9 45.9 49.7 0.2 23.8 0.4 42.8 21.9 10.8 47.2 43.0 46.6 0.2 26.0 0.4 41.6 21.3 10.5 44.3 48.7 50.1 0.2 23.5 0.4 43.0 22.0 10.9 47.7 Mean, x 45.9 48.8 47.4 0.2 24.4 0.4 42.5 21.7 10.7 46.4 100 o/x 5.1 3.9 - 0.0 5.6 0.0 1.8 1.7 1.9 4.0 52 70.6 71.1 0.1 13.5 1.4 50.0 23.8 11.3 60.2 56.8 74.9 0.1 13.4 2.2 51.1 22.8 10.4 57.1 64.8 70.2 0.1 14.9 1.9 49.9 22.7 10.5 55.4 Mean, x 64.1 72.1 68.1 0.1 13.9 1.8 50.3 23.1 10.7 57.6 100 o/x 10.8 3.5 - 0.0 6.0 22.0 1.3 2.6 4.6 4.2 50 73.4 0.1 12.5 1.5 50.6 24.0 11.3 61.8 - 77.9 0.1 11.0 1.6 51.7 24.2 11.3 64.2 Mean, x 75.7 0.1 11.8 1.6 51.2 24.1 11.3 63.0 100 o/x - 4.2 0.0 9.0 4.6 1.5 0.6 0.0 2.7 186 Table D.2 continued Run Code Product Compositions (%) Sulphur Y i e l d (%) Flow M.B. Avg. H 2 H 2S S0 2 N 2 H 20 S 2 54 88.6 95.7 86.5 98.2 87.2 0.1 7.9 2.1 54.1 24.6 11.3 0.1 9.5 2.6 53.8 23.5 10.5 0.1 8.8 2.3 53.9 24.0 10.9 69.3 63.5 66.3 Mean, x j 97.0 87.4 92.2 0.1 8.7 2.3 53.9 24.0 10.9 66.4 100 a/x 1.8 1.2 0.0 9.2 10.8 0.3 2.3 3.7 4.4 57 123.1 120.7 117.2 123.5 120.6 122.3 0.0 4.1 5.1 60.4 22.0 8.4 0.0 4.1 4.8 60.0 22.4 8.8 0.0 3.8 5.0 60.4 22.2 8.6 0.0 4.0 4.9 60.2 22.2 8.7 64.8 66.6 66.1 66.0 Mean, x 118.9 122.4 120.7 0.0 4.0 5.0 60.3 22.2 8.6 65.9 100 a/x 2.0 1.0 0.0 3.5 2.6 0.3 0.7 2.0 1.2 93 130.3 170.1 127.5 170.1 126.2 167.6 126.6 167.6 125.4 0.0 3.6 5.6 61.4 21.4 7.9 0.0 3.8 5.4 61.0 21.6 8.1 0.0 3.7 5.2 60.8 21.9 8.3 0.0 4.4 5.6 61.0 21.2 7.8 0.0 4.3 5.5 60.8 21.4 8.0 63.3 64.0 65.1 61.1 61.9 Mean, x 168.9 127.2 148.1 0.0 4.0 5.5 61.0 21.5 8.0 63.1 100 a/x 0.9 1.5 0.0 9.2 3.1 0.4 1.2 2.4 2.5 70 184.7 168.0 154.0 168.0 164.5 0.0 2.7 7.3 64.4 19.5 6.1 0.0 3.1 8.4 65.6 18.1 4.8 54.7 45.7 Mean, x 173.6 159.3 166.5 0.0 2.9 7.9 65.0 18.8 5.5 50.2 100 a/x 5.6 4.7 0.0 9.8 9.9 1.3 5.3 16.9 12.7 187 TABLE D.3 EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT 1000°K FOR VARIOUS P A Run P A Product Compositions (%) Sulphur Code Flow M.B. Avg. H2 H2S SO2 N 2 H 20 s 2 Y i e l d ( % ) 83 5.1 92.3 _ 2.6 5.3 — 5.2 92.3 - - - 2.6 5.3 _ — 5.2 92.1 - - 2.6 5.4 — — 5.1 92.4 - - - 2.5 5.2 — — 5.0 92.4 - ' - - - 2.5 5.2 - - • 5.2 92.3 - - - 2.6 5.3 Mean, x , ; 5.1 92. 3 _ • 2.6 5.3 100 d/x - - - 1.6 0.1 - - - , 2.0 1.4 63A 49.7 49.7 Mean, x. 49.7 54.8 52.2 0.5 21.0 1.0 44.8 21.9 10.7 49.4 100 a / x 0.0 - - - - - • - - -50 77.3 0.3 11.1 1.7 51.5 24.0 11.3 63.9 — 71,9 0.3 . 12.9 1.4 50.2 23.9 11.4 61.3 74.9 0.3 10.8 1.0 50.8 25.0 12.1 67.4 _ 70.9 0.4 12.8 1.2 49.8 24.2 11.7 62.5 - 70.6 0.4 12.8 1.1 49.7 24.3 11.8 62.9 Mean, x 73.1 0.3 12.1 1.3 50.4 24.3 11.7 63.6 100 o/x - 4.0 - 16.1 8.6 21.7 1.5 1.8 2.8 3.6 86 83.2 0.2 9.5 2.0 53.0 24.2 11.2 66.0 83.6 0.2 9.1 1.9 53.0 24.4 11.4 67.3 83.5 0.2 8.9 1.7 53.0 24.7 11.6 68.5 85.5 0.1 8.4 1.8 53.4 24.8 11.5 69.2 96.0 85.2 0.1 8.5 1.8 53.4 24.7 11.5 68.9 96.0 85.8 0.1 8.0 1.7 52.5 25.1 11.7 70.9 Mean, x 96.0 84.5 90.3 0.2 8.7 1.8 53.2 24.7 11.5 68.5 100 a/x 0.0 1.4 - 36.5 6.2 6.4 0.5 1.3 1.5 2.5 188 Table D.3 continued Run Product Compositions (%) Sulphur Y i e l d ( % ) Code Flow M.B. Avg. H 2 H 2S S0 2 N 2 H 20 S 2 79 96.9 106.6 96.9 105.3 0.1 6.1 4.0 57.8 22.7 9.4 0.1 5.8 3.7 57.5 23.1 9.7 65.0 67.0 Mean, x 96.9 106.0 101.5 0.1 6.0 3.85 57.7 22.9 9.6 66.0 100 a/x 0.0 0.9 0.0 3.6 5.5 0.4 1.2 2.2 2.1 97 120.9 123.8 118.3 122.2 117.0 120.7 120.4 0.1 4.0 4.8 60.0 22.3 8.8 0.0 3.8 4.4 59.5 23.0 9.3 0.0 3.6 4.1 59.3 23.3 9.6 0.0 3.1 4.3 59.8 23.3 9.5 66.8 69.6 71.5 71.9 Mean, x 122.2 119.2 120.7 0.0 3.6 4.4 59.7 23.0 9.3 70.0 100 a/x 1.3 1.5 200.0 10.7 6.7 0.5 2.1 3.8 3.3 93 132.4 170.1 129.3 170.1 137.8 167.6 132.9 167.6 128.7 0.3 2.7 5.5 61.5 21.8 8.3 0.3 2.9 5.3 61.1 22.0 8.5 0.3 3.1 6.2 62.3 20.7 7.4 0.3 3.2 5.8 61.7 21.3 7.9 0.2 3.0 5.2 61.0 22.0 8.5 66.9 67.5 61.2 63.8 67.5 Mean, x 168.9 132.2 150.6 0.3 3.0 5.6 61.5 21.6 8.1 65.4 100 a/x 0.9 2.7 16.0 3.4 7.3 0.8 2.6 5.8 74 152.0 148.6 158.4 153.0 0.1 1.4 6.6 63.9 20.8 7.2 0.1 1.4 6.3 63.5 21.2 7.5 0.1 1.5 , 7.1 64.6 20.1 6.5 0.1 1.5 6.7 64.0 20.6 7.0 64.3 66.3 60.2 63.0 Mean, x 153.0 0.1 1.5 6.7 64.0 20.7 7.1 63.5 100 a/x 2.7 - 0.0 6.9 4.9 0.7 2.2 6.0 4.0 ( 72 200.1 197.1 183.1 197.1 178.2 0.1 0.4 8.3 66.9 18.9 5.4 0.1 0.3 8.0 66.4 19.4 5.8 55.2 58.1 Mean, x 198.1 180.7 189.4 0.1 0.4 8.2 66.7 19.2 5.6 56.7 100 a/x 0.9 1.9 0.0 20.2 2.6 0.5 1.8 5.1 3.6 189 TABLE D.4 EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT 1100°K FOR VARIOUS P. Run P A Product Compositions (%) Sulphur Code Flow M.B. Avg. H 2 H 2S S0 2 N 2 H 20 S 2 Y i e l d ( % ) 83 9.8 85.3 _ 4.9 10.3 - - 9.7 85.4 - - - 4.9 10.2 — - 9.5 85.7 - - - 4.8 10.0 - - 9.8 85.4 - - - 4.9 10.3 - - 9.6 85.7 - - - 4.8 10.0 Mean, x 9.7 85.5 _ _ 4.9 10.1 100 o/x - - - 1.3 0.2 - - - 1.1 1.5 63A 53.8 0.9 19.8 0.2 44.2 23.1 11.9 54.3 55.3 0.9 18.8 0.2 44.8 23.3 12.0 55.7 49.7 57.7 0.8 17.8 0.4 45.6 23.4 11.9 56.7 49.7 57.2 1.0 18.7 0.8 45.5 22.6 11.4 53.9 Mean, x 49.7 56.0 52.9 0.9 18.8 0.4 45.0 23.1 11.8 55.2 100 a/x 0.0 3.2 - 9.1 4.4 7.1 1.5 1.5 2.3 2.3 48 70.9 78.1 1.1 10.1 1.8 51.5 23.8 11.6 66.0 68.5 77.3 1.1 10.9 2.0 51.4 23.4 11.2 63.6 74.4 78.5 1.1 9.9 1.7 51.6 24.1 11.7 66.9 Mean, x 71.3 78.0 74.7 1.1 10.3 1.8 51.5 23.8 11.5 65.5 100 o/x 4.2 0.8 - 0.0 5.1 8.3 0.2 1.5 2.3 2.6 46 101.2 1.4 4.4 3.1 56.3 23.7 11.0 74.6 99.0 1.5 4.2 2.7 55.8 24.3 11.5 77.0 100.3 0.6 4.1 2.4 56.2 25.1 11.6 78.1 99.1 99.8 0.6 4.2 2.3 56.1 25.2 11.7 78.3 99.9 99.8 0.6 4.2 2.4 56.1 25.1 11.6 77.9 Mean, x 99.5 100.0 99.8 0.9 4.2 2.6 56.1 24.7 11.5 77.2 100 a/x 0.6 0.8 - 49.7 2.6 12.7 0.3 2.7 2.4 2.0 190 Table D.4 continued Run Code Product Compositions (%) Sulphur Y i e l d ( % ) Flow M.B. Avg. H 2 H 2S S0 2 N 2 H 20 S 2 58 123.9 117.2 120.5 123.9 126.0 0.2 2.8 4.2 59.8 23.4 9.7 0.3 3.6 5.2 60.7 21.8 8.4 73.4 65.7 Mean, x 121.7 123.3 122.5 0.3 3.2 4.7 60.3 22.6 9.1 69.6 100 a / x 3.2 3.2 28.3 17.7 15.0 1.1 5.0 10.2 7.8 77 131.1 115.7 128.3 122.2 126.5 120.6 123.7 0.4 3.1 5.6 61.4 21.4 8.1 0.4 3.0 5.3 61.0 21.9 8.5 0.4 3.2 5.2 60.7 22.0 8.6 0.4 3.2 4.9 60.3 22.3 8.9 65.1 67.1 67.4 68.7 Mean, x 119.5 127.4 123.4 0.4 3.1 5.3 60.9 21.9 8.5 67.1 100 a / x 2.8 2.4 0.0 3.1 5.5 0.8 1.7 3.9 2.2 68 127.0 124.3 147.3 130.0 141.1 130.4 0.1 1.6 4.3 60.6 23.7 9.7 0.2 2.0 4.2 60.2 23.6 9.7 0.2 2.4 5.0 61.1 22.4 8.8 0.2 2.5 5.2 61.2 22.2 8.7 76.7 75.6 70.4 69.3 Mean, x 144.2 127.9 136.1 0.2 2.1 4.7 60.8 23.0 9.2 73.0 100 a / x 3.0 2.2 28.6 19.4 10.7 0.8 3.4 6.0 5.1 93 129.7 170.1 125.5 170.1 137.6 167.6 139.7 167.6 133.8 0.3 1.7 4.7 61.0 23.0 9.3 0.3 1.6 4.2 60.3 23.7 9.9 0.4 1.8 5.6 62.1 21.8 8.3 0.4 1.9 5.9 62.4 21.4 8.0 0.4 1.9 5.3 61.6 22.1 8.6 74.5 77.3 69.0 67.3 70.4 Mean, x 168.9 133.3 151.1 0.4 1.8 5.1 61.5 22.4 8.8 71.7 100 a / x 0.9 4.3 15.2 7.3 13.4 1.4 4.2 8.8 5.7 72 162.5 200.1 171.1 197.1 165.3 197.1 171.1 0.4 0.8 7.2 64.9 20.0 6.6 0.5 1.0 8.0 65.8 19.0 5.8 0.5 0.9 7.6 65.2 19.6 6.2 0.5 1.0 8.0 65.8 19.0 5.8 62.1 56.2 59.5 56.2 Mean, x 198.1 167.5 182.8 0.5 0.9 7.7 65.4 19.4 6.1 58.5 100 a / x 0.9 2.6 10.5 10.4 5.0 0.7 2.5 6.3 4.9 191 TABLE D.5 EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT 1200°K FOR VARIOUS P. Run f P A Product Compositions (%) Sulphur Code Flow M.B. Avg. H 2 H 2S S0 2 N 2 H 20 Y i e l d ( % ) 84 _ _ 12.4 81.3 _ 6.2 13.3 - - 13.0 80.5 - - - 6.5 13.9 - - 13.3 80.1 - - - 6.6 14.2 Mean, x _ _ 12.9 80.6 6.4 13.8 100 a/x - - - 3.6 0.8 - - - 3.2 3.3 63 54.8 2.4 18.0 0.5 44.3 22.6 12.2 56.9 47.3 54.7 2.4 18.2 0.5 44.2 22.5 12.2 56.7 46.4 55.7 2.4 17.7 0.6 44.6 22.5 12.2 57.1 44.9 51.1 2.7 19.8 0.4 42.8 22.1 12.2 54.8 Mean, x 46.2 54.1 50. 2 2.5 18.4 0.5 44.0 22.4 12.2 56.4 100 a/x 2.6 3.8 - 6.1 5.1 16.3 1.8 1.0 0.0 1.9 48 78.0 2.4 8.3 1.5 51.1 24.1 12.5 71.9 77.0 2.5 8.7 1.5 50.9 24.0 12.5 70.9 76.4 2.6 9.5 1.9 50.8 23.3 12.0 68.0 70.9 75.7 2.6 9.6 1.8 50.6 23.4 12.1 68.0 68.-5 76.6 2.1 8.8 1.3 50.8 24.3 12.6 71.3 74.4 75.8 2.2 8.9 1.2 50.6 24.4 12.7 71.5 Mean, x 71.3 76.6 74. 0 2.4 9.0 1.5 50.8 23.9 12.4 70.3 100 a/x 4.2 1.1 8.7 5.5 17.8 0.4 1.9 2.3 2.5 46 97.6 1.7 5.0 3.0 55.6 23.5 11.1 73.5 96.8 1.8 4.9 2.9 55.4 23.7 11.3 74.3 97.3 1.9 4.7 2.9 55.5 23.7 11.3 74.9 99.1 97.6 1.8 4.4 2.8 55.5 24.0 11.5 76.3 99.9 96.2 .1.8 4.5 2.6 55.2 24.2 11.7 76.9 Mean, x 99.5 97.1 98. 3 1.8 4.7 2.8 55.4 23.8 11.4 75.2 100 a/x 0.6 0.6 - 3.9 5.4 5.3 0.3 1.2 2.0 1.9 192 Table D.5 continued Run Code Product Compositions (%) Sulphur Y i e l d ( % ) Flow M.B. Avg. H 2 H 2S S0 2 N 2 H 20 S 2 58 120.8 119.9 123.9 117.4 117.2 122.2 123.9 121.9 0.3 2.0 3.9 59.7 23.2 10.2 1.5 2.6 4.7 59.4 22.3 9.5 0.5 2.7 3.9 59.2 23.6 10.1 0.5 3.1 4.7 60.0 22.5 9.2 0.5 3.0 4.6 59.9 22.7 9.3 77.4 72.3 75.4 70.1 71.0 Mean, x 121.7 120.4 121.1 0.7 2.7 4.4 59.6 22.9 9.7 73.2 100 a/x 3.2 1.6 72.3 16.1 9.7 0.6 2.3 4.8 4.2 68 • 129.9 126.9 147.3 128.7 141.1 126.1 0.2 1.7 4.7 61.0 23.1 9.3 0.2 1.4 4.2 60.5 23.8 9.9 0.2 1.6 4.5 60.8 23.4 9.5 0.2 1.5 4.2 60.4 23.8 9.9 74.5 77.8 75.9 77.5 Mean, x 144.2 127.9 136.1 0.2 1.6 4.4 60.7 23.5 9.8 76.4 100 a/x 3.0 1.3 0.0 8.3 5.6 0.5 1.4 3.1 2.0 72 201.1 152.5 197.1 158.7 197.1 157.8 0.2 0.6 6.3 63.8 21.4 7.7 0.3 0.7 6.9 64.5 20.6 7.0 0.3 0.7 6.8 64.4 20.7 7.1 69.0 65.2 65.5 Mean, x 198.1 156.3 177.2 0.3 0.7 6.7 64.2 20.9 7.3 66.6 100 a/x 0.9 2.1 21.7 8.7 4.8 0.6 2.1 5.2 3.2 193 TABLE D.6 EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT 1300°K FOR VARIOUS P. Run P A Product Compositions (%') Sulphur Code Flow M..B. Avg. ' H 2 H 2S S0 2 N 2 H 20 S 2 Y i e l d ( % ) 18.5 72.3 — — - 9.2 20.4 84 — - 20.9 68.7 - - - 10.4 23.3 — - 20.5 69.3 - - - 10.2 22.8 — — 18.5 72.3 - - 9.2 20.3 - - 19.2 71.2 - - - 9.6 21.3 Mean, x 19.5 70.8 _ _ 9.7 21.6 100 a/x • - - - • 5.8 2.4 - - - 5.7 6.4 63 55.5 3.1 16.2 0.2 44.3 23.1 13.0 61.2 56.5 3.1 15.5 0.2 44.6 23.4 13.2 62.7 47.3 50.6 3.9 18.8 0.4 42.4 21.8 12.7 57.1 46.4 53.4 3.5 17.2 0.3 43.5 22.5 12.9 59.5 44.9 51.9 3.9 17.8 0.3 42.9 22.2 12.9 58.7 Mean, x 46.2 53.6 49.9 3.5 17.1 0.3 43.5 22.6 12.9 59.8 100 a/x 2.6 4.6 - 11.4 7.6 29.9 2.1 2.9 1.4 3.6 48 73.5 2.8 8.8 1.0 49.8 24.5 13.1 72.9 75.0 2.6 7.9 0.8 50.2 25.0 13.4 75.4 76.6 3.4 7.2 1.2 50.5 24.4 13.3 76.0 70.9 75.0 3.7 7.7 1.3 50.0 24.1 13.3 74.7 68.5 73.2 4.2 8.4 1.4 49.5 23.4 13.1 72.7 74.4 73.5 4.1 8.1 1.3 49.6 23.7 13.2 73.8 Mean, x 71.3 74.5 72.9 3.5 8.0 1.2 49.9 24.2 13.2 74.3 100 a/x 4.2 1.8 - 19.1 6.9 19.3 0.8 2.4 0.9 1.8 46 99.1 97.7 2.0 3.6 2.4 55.4 24.5 12.1 80.0 99.9 97.0 2.6 3.9 2.8 55.2 23.7 11.8 77.8 Mean, x 99.5 97.4 98.5 2.3 3.8 2.6 55.3 24.1 12.0 78.9 100 a/x 0.6 . 0.5 18.4 5.7 10.9 0.3 2.3 1.8 2.0 194 Table D.6 continued Run Code Product Compositions (%) Sulphur Yie l d ( % ) Flow M.B. Avg. H 2 H 2S S0 2 N 2 H 20 S 2 58 123.9 120.1 117.2 118.6 123.9 118.0 0.6 2.1 4.0 59.5 23.7 10.2 0.6 1.8 3.6 59.2 24.2 10.6 0.7 2.0 3.7 59.1 24.0 10.5 77.1 79.6 78.7 Mean, x 121.7 118.9 120.3 0.6 2.0 3.8 59.3 24.0 10.4 78.5 100 o / x 3.2 0.9 9.1 7.8 5.5 0.4 1.1 2.0 1.6 68 124.7 124.3 147.3 122.4 141.1 127.0 0.3 1.2 3.9 60.2 24.1 10.3 0.3 1.2 3.9 60.1 24.2 10.3 0.3 1.2 3.6 59.8 24.5 10.6 0.3 1.5 4.3 60.5 23.5 9.8 79.9 80.1 81.4 77.0 Mean, x 144.2 124.6 134.4 0.3 1.3 3.9 60.2 24.1 10.3 79.6 100 a / x 3.0 1.5 0.0 11.8 7.3 0.5 1.7 3.2 2.3 91 136.1 131.6 173.0 139.0 177.8 137.4 163.3 134.5 0.5 0.7 4.9 61.7 23.0 9.3 0.5 0.8 4.5 61.1 23.5 9.7 0.5 0.9 5.3 62.1 22.4 8.8 0.2 1.0 5.1 62.0 22.8 9.0 0.2 1.0 4.8 61.6 23.2 9.3 76.8 78.5 74.0 74.7 76.3 Mean, x 171.4 135.7 153.6 0.4 0.9 4.9 61.7 23.0 9.2 76.1 100 a / x 4.3 2.1 43.2 14.8 6.2 0.6 1.8 3.7 2.3 72 200.1 157.2 197.1 163.6 197.1 155.0 0.4 0.7 6.8 64.3 20.7 7.2 0.4 0.7 7.3 65.0 20.0 6.5 0.4 0.7 6.6 64.1 20.9 7.3 65.8 61.9 66.8 Mean, x 198.1 158.6 181.8 0.4 0.7 6.9 64.5 20.5 7.0 64.8 100 a/x 0.9 2.8 0.0 0.0 5.2 0.7 2.3 6.2 4.0 195 TABLE D.7 EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT 1400°K FOR VARIOUS P. Run P A Product Compositions (%) Sulphur Code Flow M.B. Avg. H 2 ; H 2S so 2 N 2 H 20 s 2 Y i e l d ( % ) 84 27.3 59.0 13.7 31.7 — 27.0 59.5 - - - 13.5 31.2 _ — 26.8 59.9 - - - 13.4 30.9 _ _ 26.0 61.0 - - - 13.0 29,8 _ 26.4 60.5 - - - 13.2 30.4 _ • - 26.6 60.1 - - - • 13.3 30.7 Mean, x 26.7 60.0 — 13.4 30.8 100 a/x - - - 1.7 1.2 - - - 1.8 2.1 88A 46.4 67.2 4.6 8.4 0.3 47.6 24.7 14.5 76.9 44.1 65.5 4.8 8.9 0.3 47.0 24.5 14.5 76.1 45.2 65.9 4.8 8.6 0.2 47.1 24.6 14.6 76.7 46.4 69.7 3.4 8.1 0.2 48.5 25.5 14.4 77.6 Mean, x 45.5 67.1 56. 3 4.4 8.5 0.3 47.6 24.6 14.5 76.8 100 a/x 2.4 2.8 - 23.7 4.0 23.1 1.4 0.4 0.6 0.8 95 61.6 5.6 10.6 0.5 45.8 23.3 14.2 71.7 52.2 62.0 5.5 10.4 0.5 45.9 23.4 14.2 ' 72.3 49.9 62.3 5.4 10.3 0.4 46.0 23.6 14.3 72.8 54.1 65.8 4.1 9.6 0.3 47.3 24.5 14.1 74.0 53.4 65.8 4.0 9.6 0.3 47.3 24.6 14.2 74.1 Mean, x 52.4 63.5 56. 9 4.9 10.1 0.4 46.5 23.9 14.2 73.0 100 a/x 3.5 3.3 - 16.2 4.6 25.0 1.7 2.6 0.5 1.4 98 62.4 5.1 10.9 0.6 46.1 23.4 14.0 71.0 62.7 5.1 10.6 0.5 46.2 23.5 14.0 71.6 63.6 4.9 10.2 0.5 46.5 23.8 14.1 72.7 50.3 69.1 4.1 8.7 0.7 48.3 24.3 13.9 74.6 50.3 71.1 3.9 8.0 0.6 48.8 • 24.7 14.0 76.5 48.7 70.1 4.1 7.8 0.5 48.5 24.9 14.3 77.5 49.9 68.2 4.2 8.6 0.4 48.0 24.6 14.2 75.7 Mean, x 49.8 66.7 58 .3 4.5 9.3 0.5 47.5 24.2 14.1 74.2 100 a/x 1.5 5.6 - 11.7 13.8 ' 18.0 2.5 2.5 1.0 3.4 196 Table D.7 continued Run Code 9 0 A Mean, x Flow M.B. Avg. Product Composition (%) H 2 H 2S S0 2 N 2 H 20 S 2 Sulphur Yie l d ( % ) 75.1 74.0 69.9 65.8 77.3 76.9 78.7 78.8 78.5 '80.1 71.2 78.4 74.8 3.5 5.6 0.6 50.4 25.5 14.2 82.0 3.7 5.4 0.6 50.3 25.6 14.4 82.7 3.1 5.6 0.7 50.9 25.7 14.0 81.6 2.9 5.9 0.8 51.0 25.6 13.9 80.6 3.0 5.7 0.7 50.8 25.7 14.0 81.5 2.5 5.9 0.8 51.4 25.7 13.7 1 80.2 3.1 5.7 0.7 50.8 25.7 14.0} 81.4 100 a/x 6.0 1.5 13.8 3.4 12. 0.8 0.2 1.7 88B 101.0 98.0 87.4 89.8 95.0 93.9 1.7 4.5 2.2 3.3 2.1 3.4 1.5 2.0 1.8 53.8 54.7 54.5 25.7 12.9 25.1 12.7 25.3 12.8 1.1 81.3 82.7 83.1 Mean, x 95.5 92.9 94. 2 2.0 3.7 1.8 54.3 25.4 • 12.8 82.4 100 a/x 7.5 2.9 - 13.2 17.8 14.2 0.9 1.2 0.8 1.1 81C 93.1 101.8 0.8 3.5 2.4 56.4 25.1 11.8 79.9 93.1 100.1 1.2 3.5 2.4 56.0 25.0 11.9 80.3 88.1 102.2 1.8 3.8 3.1 56.3 23.7 11.2 76.5 Mean, x 91.4 101.4 96. 4 1.3 3.6 2.6 56.2 24.6 11.6 78.9 100 a/x 3.2 1.1 - 39.7 4.8 15.3 0.4 3.2 3.3 2.6 77 136.1 1.2 1.5 5.7 61.7 21.5 8.5 70.4 115.7 132.7 1.1 1.4 5.3 61.2 22.0 8.9 72.8 122.2 130.6 0.9 1.5 . 5.0 61.0 22.5 9.2 74.0 120.6 128.2 0.8 1.3 4.6 60.6 23.0 9.6 76.3 Mean, x 119.5 131.9 125. 7 1.0 1.4 5.2 61.1 22.0 9.1 73.4 100 a/x 2.8 2.5 - 18.3 6.7 9.0 0.7 2.3 5.1 3.4 197 Table D.7 continued Run Code Product Compositions (%) Sulphur Y i e l d ( % ) Flow M.B. Avg. H 2 H 2S S0 2 N 2 H 20 S 2 9.1 173.0 140.2 177.8 137.4 163.3 132.8 0.7 0.7 5.4 62.2 22.2 8.7 j 0.7 0.8 5.2 61.9 22.4 9.0 i 0.5 0.8 4.6 61.3 23.3 9.6 | 74.1 74.8 77.9 Mean, x 171.4 136.8 154.1 0.6 0.8 5.1 61.8 22.6 9.1 75.6 100 a/x 4.3 2.7 18.2 7.5 8.2 0.7 2.6 5.0 2.7 74 : - 187.8 201.9 194.8 0.3 0.6 8.8 67.3 18.1 4.8 0.4 0.6 9.7 68.4 17.0 3.9 0.3 0.6 9.2 67.9 17.6 4.3 50.4 42.7 46.9 Mean, x 194.8 0.3 0.6 9.2 67.9 17.6 4.3 46.7 100 a/x - .3.6 17.3 0.0 4.9 0.8 3.1 10.4 8.3 198 TABLE D.8 EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT 1500°K FOR VARIOUS P. Run P A Product Compositions (%) Sulphur Code Flow M.B. Avg. H 2 H 2S S0 2 N 2 H 20 s 2 Y i e l d ( % ) 84 32.0 52.0 „ 16.0 38.1 _ — 31.7 52.4 - - - 15.9 37.7 _ — 32.0 52.0 - - - 16.0 i 38.1 _ — 32.6 51.1 - - - 16.3 ! 38.9 . _ — 32.5 51.2 - - - 16.3 ! 38.8 — — 32.6 51.1 - - - 16.3 ' 39.0 Mean, x 32.2 51.6 _ 16.1 38.4 100 a/x - - - 1.2 1.1 - - - 1.2 1 1.4 88A 65.4 6.4 7.5 0.4 46.7 24.1 15.1 79.4 67.6 6.0 6.5 0.2 47.3 24.7 15.2 81.9 46.4 68.0 6.0 6.3 0.2 47.4 24.9 15.3 82.6 44.1 66.2 6.5 7.0 0.4 46.8 24.2 15.2 80.5 45.2 66.5 6.4 6.7 0.3 46.9 24.4 15.3 81.5 46.4 64.8 7.1 6.7 0.2 46.3 24.1 15.5 81.7 Mean, x 45.5 66.4 56. 0 6.4 6.8 0.3 46.9 24.4 15.3 81.3 100 a/x 2.4 1.9 - 6.3 6.2 34.7 0.9 1.4 0.9 1.4 95 62.1 6.0 9.7 0.4 45.8 23.5 14.6 74.2 62.8 5.8 9.4 0.4 46.1 23.7 14.6 74.8 52.2 63.4 5.8 9.1 0.4 46.2 23.8 14.7 75.6 49.9 63.7 5.7 9.2 0.4 46.3 23.8 14.5 75.0 45.1 64.9 5.4 8.8 0.4 46.8 24.1 14.5 75.9 53.4 65.2 5.4 8.5 0.3 46.8 24.2 14.7 76.8 Mean, x 50.2 63.7 57. 0 5.7 9.1 0.4 46.3 23.9 14.6 75.4 100 a/x 7.3 1.9 - 4.2 0.9 10.6 0.9 1.1 0.6 1.2 199 Table D.8 continued Run Product Compositions (%) Sulphur Code Flow M.B. Avg. H 2 H 2S so2 N 2 H 20 s 2 Y i e l d ( % ) 98 62.8 6.7 9.0 0.6 45.9 23.2 14.7 75.4 63.2 6.5 8.7 0.5 46.0 23.4 14.7 76.1 50.3 63.8 6.4 8.5 0.5 46.2 23.7 14.8 76.8 50.3 67.2 6.1 7.8 0.8 47.3 23.6 14.5 77.2 48.7 67.0 6.0 7.8 0.7 47.3 23.7 14.5 77.4 49.9 67.3 6.0 7.6 0.7 47.3 23.9 14.6 77.9 Mean, x 49.8 65.2 57. 5 6.3 8.2 0.6 46.7 23.6 14.6 76.8 100 a/x 1.5 3.3 - 4.7 7.0 19.1 1.5 1.1 0.8 1.2 90 80.1 3.9 4.3 0.7 51.0 25.7 14.4 85.3 79.7 3.9 4.3 0.6 50.9 25.8 14.5 85.5 78.3 4.2 4.6 0.7 50.5 25.5 14.5 84.5 80.8 4.2 3.7 0.7 51.1 25.7 14.6 86.6 80.6 4.2 3.3 0.5 51.0 26.1 14.9 88.5 83.5 2.7 4.4 0.8 52.1 26.0 13.9 84.1 75.1 81.9 3.1 4.4 0.8 51.6 25.9 14.2 84.5 74.0 80.6 3.4 4.8 0.8 51.3 25.7 14.1 83.3 69.9 83.5 3.4 3.9 0.9 51.9 25.8 14.2 85.6 65.8 83.. 2 3.4 3.4 0.6 51.7 26.3 14.5 87.9 Mean, x 71.2 81.2 76. 2 3.6 4.1 0.7 51.3 25.9 14.4 85.6 100 a/x 6.0 2.2 - 14.3 12.4 16.9 1.0 0.9 2.0 1.9 81 93.1 103.6 1.6 2.8 2.7 56.5 24.6 11.7 80.8 93.1 105.8 1.3 1.6 2.3 56.8 25.6 12.4 86.5 88.1 104.6 1.2 1.3 1.9 56.6 26.3 12.8 88.7 Mean, x 91.4 104.7 98 .1 1.4 1.9 2.3 56.6 25.5 12.3 85.3 100 a/x . 3.2 1.1 - 15.2 41.8 17.4 0.3 3.4 4.5 1 4.8 77 136.9 1.2 1.1 5.6 61.8 21.7 8.7 72.2 115.7 134.2 1.2 1.0 5.3 61.4 22.0 9.0 74.0 122.2 134.1 1.3 0.9 5.3 61.3 22.0 9.0 74.4 120.6 130.4 1.3 0.9 4.9 60.8 22.6 9.5 76.7 Mean,x 119.5 133.9 126 .7 1.3 1.0 5.3 61.3 22.1 9.1 74.3 100 a/x 2.8 2.0 - 4.6 9.8 5.4 0.7 1.7 3.7 2.5 200 Table D.8 continued Run Product Compositions (%) Sulphur Code Flow M.B. Avg. H 2 H 2S S0 2 N 2 H 20 S 2 Y i e l d ( % ) 91 150.8 0.8 0.9 6.5 63.5 20.7 7.5 67.1 173.0 139.8 0.8 0.7 5.5 62.2 22.1 8.7 73.7 177.8 154.4 0.8 .0.9 6.9 64.0 20.3 7.2 64.9 163.3 141.8 0.8 6.8 5.7 62.4 21.9 8.5 72.4 'Mean, x •171.-4 146.7 159.1 0.-8 0.8 -6.2 63.0 21.3 8.0 69.5 100 a/x 4.3 4.8 - 0.0 11.6 10.7 M 4.2 9.2 6.0 74A 178.4 0.2 0.6 8.1 66.5 19.1 5.6 56.1 170.6 0.2 0.5' 7.6 65.7 19.8 6.2 60.3 179.0 0.4 0.6 8.3 66.5 18.8 ' 5.5 55.2 173.5 0.4 0.6 7.9 66.0 19.2 5.9 58.0 184.5 0.5 0.6 8.7 67.0 18.2 5.0 51.9 177.1 0.5 0.6 8.2 66.3 18.8 5.5 55.5 Mean, x 177.2 0.4 0.6 8.1 66.3 19.0 5.6 56.2 100 a/x - 2.7 - 37.3 7.0 4.6 0.7 2.8 7.2 5.0 APPENDIX E COMPUTER PROGRAMS V 202 TABLE E . l H 2S DISSOCIATION S C R E A T E S23 $ G E T S23 S N U M B E R S S C O M P I L E T I N E=500 C O M P U T E R P R O G R A H M E 1 C L A U S C O M B U S T I O N C H A M B E R E Q U I L I B R I A W I T H 23 S P E C I E S C O N T A I N I N G C , H, N A N D S D O U B L E P R E C I S I O N C P D R E A L N S E R R , N 2 E X , N S D , N 5 , N , N S N S D ' . D I M E N S I O N C P D ( 2 5 ) , P ( 2 5 , 2 0 ) , C ( 2 5 , 2 0 ) , N C V ( 2 0 ) D A I A N C P D / 2 3 / , N P / 2 4 / , N C P D P 2 / 2 5 / , N S N S D / 1 . 0 / , C S C S D / 1 . 0 / R E A D ( 5 , 1 0 0 ) ( C P D ( N C ) , N C = 1 , N C P D P 2 ) * D A T A A * R E A D ( 5 , 1 0 1 ) P E R R , N S E R E , f I S E R R , C S E R R , N 2 E X , H 2 S S X , S 2 5 X , C H 4 S X * 0 A T A B * R E A D ( 5 , 1 0 2 ) ( ( C ( N C , N T ) , N C = 1 , N C P D ) , N T = 6 , 2 0 ) * D A I A C * R E A D ( 5 , 1 0 3 ) N I T E R S , L O W T , K A O T , N F E E D S , N H 3 3 Y P , KW R T * D A r A 11 N T E M P = K A O T - L O W T «• 1 L O W T P 7 = L O W T « - 7 L O W T P 9 = L O W T * 8 . ' I E { N T E H P - L T . 9 ) L O W T P 7 = K A O T C A L L T R A P S ( 0 , 0 , 9 0 0 0 ) W R I T E ( 6 , 1 0 1 ) N I T E R S , P E R R , N 2 E X , L O W T , N S E R B , H 2 S E X , 1 K A O T , H S E P R , S 2 E X , N E E E D S , C S E R R , C H 4 E X , N H 3 8 Y P C O M P U T E R D O E S N O T P R I N T E Q U I L I B R I U M C O N S T A N T S I F K W R T . E Q . 0 I F ( K W R T . E Q . 0 ) G O T O 3 W R I T E ( 6 , 1 0 5 ) W R I T E ( 6 , 1 0 6 ) ( K T , K T = 6 ,13) DO 1 N C = 1 , N C P D 1 W R I T E ( 6 , 1 0 7 ) N C , C P D ( N C ) , ( C ( N C,NT), NT=6,13) W R I T E ( 6 , 1 0 8 ) W R I T E ( 6 , 1 0 6 ) ( K T , K T = 1 4 , 2 0 ) DO 2 N C = 1 , N C P D 2 W R I T E ( 6 , 1 0 7 ) N C , C P D ( N C ) , ( C ( N C , N T ) , N T = 1 < J , 2 0 ) C O M P O S I T I O N O F T H E S E A R E G U E S S E D : N 2 H 2 S S 2 C H 4 3 I F ( N H 3 B Y ? . E Q . 0 ) R E A D ( 5,109) ( P ( 2 , N T ) , P ( 5 , N T ) , P ( 1 0 , N T ) , P ( 1 9, N T ) * 0 A I A 2Q 1 , H A O , N T = L O W T , K A O T ) , C O M M E N C E CllH A N D N H 3 I T E R A T I O N S DO 9 1 = 1 , N E E E D S R E A D ( 5 , 1 0 1 ) P . T T N H 3 , P C T C H 4 * D A T A 3 2 W R I T E ( 2 , 1 0 1) P C T N H 3 , P C T C H 4 W R I T S * * C O M P O S I T O N O F T H E S E A R E G U E S S E D : N 2 H 2 S S2 C H 4 I F ( N H 3 B Y P . G E . 1) R E A D ( 5 , 1 0 9 ) ( P ( 2 , N T ) , ? ( 5 , N T ) , P ( T O , N T ) , P ( 1 9 , N T ) * D A T A -3 1 , M A O , N T = L O W T , K A O T ) C O M P O S I T I O N O F I N I T I A L M I X T U R E I S F O U N D — B A S E D O N P C T N H 3 M O L E S O F N H 3 , E T C E T E R A A H 2 S = 1 0 0 . 0 - P C T N H 3 - P C T C H 4 C A L C U L A T E D E S I R E D R A T I O S N S D = P C T N H 3 / A H 2 S H S D = ( 2 . 0 * A H 2 S • 3 - 0 * P C T N H 3 + 4 . 0 * P C T C H 4 ) / A H 2 S C S D = P C T C H 4 / A H 2 S C O M M E N C E T E M P E R A T U R E I T E R A T I O N S DO 8 N T = L O W T , K A O T C O M M E N C E I T E R A T I O N S T O O B T A I N C O N V E R G E N C E A T G I V E N N H 3 > C H 4 A N D T E M P E R A T U R E DO 7 N I = 1 , N I T E R S S 2 = P ( 1 0 , N T ) S 5 = S 2 * * 0 . 5 N5 = P ( 2 , N T ) **0.5 H2 = P ( 5 , N T ) / C ( 5 , N T ) / S5 H 5 = H 2 * * 0 . 5 P( 1 , N T ) = C ( 1 , N T ) * N5 * H2**1.5 P( 3 , N T ) = C { 3, N T ) * H5 203 P ( U , N T ) = H 2 P ( 6 , N T ) = C ( 6 , N T ) * H 2 * S 2 P{ 7 , N T ) = C ( 7 , N T ) * S 5 * H 5 P ( 8 , N T ) = C ( 8 , N T ) * S 5 * N 5 P( 9 , N T ) = C ( 9 , N T ) * S 5 P ( 1 1 , N T ) = C ( 1 1 , N T ) * S 2 * * 1 . 5 P ( 1 2 , N T ) = C ( 1 2 , N T ) ' * S 2 * * 2 P ( 1 3 , N T ) = C ( 1 3 , N T ) * S 2 * * 2 . 5 P ( 1 4 , R T ) = C ( 1 4 , N T ) * S 2 * * 3 P ( 1 5 , N T ) = C ( 1 5 , N T ) * S 2 * * 3 . 5 P { 1 6 , N T ) = C ( 1 6 , N T ) * S 2 * * 4 " P ( 1 7 , N T ) = C ( 1 7 , N T ) * P ( 1 , N T ) * P ( 1 9 , N T ) / H 2 * * 3 P ( 1 8 , N T ) = C ( 1 B , N T ) * P ( 1 7 , N T ) * * 2 / H 2 P { 2 2 , N T ) = C ( 2 2 , N T ) * P ( 1 9 , N T ) * S 5 / H 2 * * 2 P ( 2 3 , N T ) "= C ( 2 3 , N T ) * < P ( 2 2 , N T ) * S 5 P ( 2 0 , N T ) = C ( 2 0 , N T ) * P ( 2 3 , N T ) * * 2 * H 2 / S 2 * * 2 P ( 2 1 , N T ) = C ( 2 1 , N T ) * P ( 2 0 , N T ) * H 2 C O M P U T E T O T A L M O L E S N I T R O G E N ( N ) , H Y D R O G E N ( H ) , S U L P H U R ( S ) A N D C A R B O N ( C C ) N = P ( 1 , N T ) * 2 . 0 * P ( 2 , N T ) + P ( 8 , N T ) *• P ( 1 7 , N T ) * 2 . 0 * P ( 1 8 , N T ) H = 3 . 0 * P ( 1 , N T ) « - P ( 3 , N T ) * 2 . 0 * ( P ( 4 , N T ) + P (5 , N T ) * • ? ( 6 , N T ) ) + P ( 7 , N T ) 1 - P ( 1 7 , N T ) + 4 . 0 * P ( 1 9 , N T ) + 2 . 0 * P ( 2 0 , t J T ) + 4 . 0 * P ( 2 1 , N T ) S L 3 S T = P ( 5 , N T ) + 2 . 0 * P ( 6 , N T ) + P ( 7 , N T ) * P ( 8 , N T ) * P ( 2 2 , N T ) * 2 . 0 * P ( 2 3 , N T ) S P E C O V = P ( 9 , N T ) + 2 . 0 * P ( 1 0 , ? J T ) «• 3 . 0 * P ( 1 1 , N T ) • 4 . 0 * P ( 1 2 , N T ) * 1 5 . 0 * P ( 1 3 , N T ) + 6 . 0 * P ( 1 4 , N T ) • 7 . 0 * P ( 1 5 , N T ) • 8 . 0 * P ( 1 6 , N T ) S = S L O S T «• S R E C O V C C • = P ( ' 1 7 , N T ) 2 . 0 * P ( 1 8 , N T ) + P ( 1 9 , N T ) * 2 . 0 * P ( 2 0 , N T ) 1 2 . 0 * P ( 2 1 , N T ) • P ( 2 2 , N T ) • P ( 2 3 , N T ) C O M P U T E T O T A L P R E S S U R E P ( N P , N T ) = 0 . 0 DO 6 N C = 1 , N C P D 6 P ( N P , N T ) = P ( N P , N T ) «• P ( N C , N T ) P T P T D = P ( N P , N T ) I F ( N S D . G T . 1 . 0 E - 0 6 ) N S N S D = N / S / N S D I F ( C S D . G T . 1 . 0 E - 0 6 ) C S C S D = C C / S / C S D H S H S D = H / S / H S D N C V f . N T ) = N I I F ( A B S ( P T P T D - 1 . 0 ) . G T . P E R R ) G O T O 6 1 I F ( A B S ( N S N S D - 1 . 0 ) . G T . N S E R R ) G O T O 6 1 I F ( A B S ( H S H S D - 1 . 0 ) . G T . H S E R R ) G O T O 6 1 I F ( A B S ( C S C S D - 1 . 0 ) . G T . C S E R R ) G O T O 6 1 G O T O 7 5 C O M P U T E N E W N 2 , H 2 S , S 2 A N D C H 4 6 1 P ( 2 , N T ) = P ( 2 , N T ) * ( P T P T D * N S N S D ) * * N 2 E X P ( 5 , N T ) = P { 5 , N T ) * ( P T P T D * H S H S D ) * * H 2 S E X P ( 1 0 , N T ) = P ( 1 0 , N T ) * ( P T P T D / H S H S D ) * * S 2 E X 7 ? ( 1 9 , N T ) = P ( 1 9 , N T ) * ( P T P T D * C S C S D ) * * C H 4 E X C O N V E R G E N C E I T E R A T I O N S E N D A T S T A T E M E N T 7 , T E M P E R A T U R E A T 8 A N D N F E E D S A T 9 7 5 W P I T E ( 2 , 1 0 9 ) P ( 2 , N T ) , P ( 5 , N T ) , P ( 1 0 , N T ) , P ( 1 9 , N T ) , N I W R I T E 2 * C A L C U L A T E P E R C E N T R E C O V E R Y 8 P ( N C P D P 2 , N T ) = S H E C O V / S * 1 0 0 . 0 W R I T E ( 6 , 1 1 0 ) A H 2 S , PCTNH3, P C T C H 4 W R I T E ( 6 , 1 0 6 ) ( K T , K T = L O W T , L O W T P 7 ) D O 8 3 N C = 1 , ! I C P D P 2 . 8 3 W R I T E ( 6 , 1 0 7 ) N C , C P D ( N C ) , ( P ( N C , N T ) , N T = L O W T , L O W T P 7 ) W R I T E ( 6 , 1 1 1 ) ( N C V ( N T ) , N T = L O W T , L O W T P 7 ) C O M P U T E R W R I T E S O U T P U T I N TWO S E C T I O N S I F N T E M P I S G R E A T E R T H A N 8 I F ( N T E M P . L T . 9 ) GO T O 9 W R I T E ( 6 , 1 0 8 ) 204 85 9 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 1 . 0 7 1 0 8 1 0 9 1 1 0 1 1 1 W R I T E ( 6 , 1 0 6 ) ( K T , K T = L 0 W T P 8 , K R O T ) D O 8 5 N C = 1 , N C P D P 2 MBIT?. ( 6 , 1 = 0 7 ) N C , C P D ( N C ) , ( P ( N C , N T ) , NT= W R I T E ( 6 , 1 1 1 ) ( N C V ( H T ) , N T = L O W T P 8 , K A O T ) W R I T S ( 6 , 1 0 5 ) S T O P F O R H A T ( 1 0 A 8 ) L 3 W T P 8 , K A O T ) F O R H A T F O R M A T F O R M A T F O R 3 A T ( ' 1 F 7 . 3 / ' 2 F 7 . 3 / ' 3 F 7 . 3 / ' 4 F 7 . 3 / ( 1 0 F 8 . 0 ) ( 1 P 4 E 2 0 . 8 ) ( 6 1 5 ) N I T E R S = ' , 1 5 , L O W T H I G H T = ' , N F ? . E D S = » , H H 3 B Y P = « 1 3 , ' 0 0 ' , I 3 , ' 0 0 » , 15, 15) 1 5 X , • P E R R = • , F 1 0 . 3 ' , 1 3 X , 1 5 X , ' N S E R R = F 1 0 . 3 , 1 3 X , 1 5 X , * H S E 3 R = ' , F 1 0 . 3 , 1 3 X , 1 5 X , ' C S E E R = » , F 1 0 . 3 , 1 3 X , • N2EX = ' , • H 2 S E X = ' , • S 2 E X = ' , • C H 4 E X = ' , F O R M A T ( » 1 E Q U I L I E R I U M C O N S T A N T S F O R T H E F O R M A T I O N O F C O M P O U N D S ' / / ) F O R H A T ( • C O M P O U N D ' , 8 ( 1 1 1 , ' 0 0 K ' ) ) F O R M A T ( 1 U , 1 2 , I X , A 8 r ( 1 P 3 E 1 5 . 5 ) ) F O R K A T ( / / ) F O R H A T ( 1 P E 1 5 . 7 , 1 5 X , 3 E 1 5 . 7 , 1 5 ) P O R K A T ( 1 H 1 , 1 0 X , ' E Q U I L I B R I U M P A R T I A L P R E S S O R E S I N A T M O S P H E R E S ' , 1 ' 0 ? 2 3 C O M P O U N D S P R O D U C E D F R O M H Y D R O G E N S U L P H I D E D I S S O C I A T I O N ' / 3 7 X 2 , ' T H E A C I D G A S F E E D C O N T A I N S » , F 6 . 1 , ' % H 2 S , ' F O R H A T ( 1 H , E N D F 5 . 1 , t N H 3 A N D ' , P 5 . 1 , ' % C H 4 * / ) I T E R A T I O N S ' , 4 X , 1 4 , 7 ( 1 1 X , 1 4 ) ) $ $ D A T A N H 3 N 2 H S 3 SU S 5 C 2 H 4 C S C S 2 0 . 0 0 1 0 . 0 0 1 $ U N N I 7 H B E R ^ C R E A T E D 2 3 $ G E T D 2 3 ^ N U M B E R 4 . 1 6 2 7 3 8 0 0 E - 0 2 1 . 7 8 5 0 1 3 0 0 E 0 5 1 . 5 7 3 9 5 1 0 0 F - 1 6 , 1 . 2 5 1 3 0 3 0 0 E 0 5 2 . 6 4 2 6 7 6 0 0 E - 1 1 1 . 0 3 6 3 3 3 0 0 2 0 9 1 . 0 0 0 0 0 0 0 0 2 0 0 1 . 5 6 4 0 0 0 0 0 E 0 3 1 . 0 0 0 0 0 0 0 0 2 0 0 2 . 3 8 6 5 3 2 0 0 E 0 4 4 . 4 4 3 1 2 4 0 0 E - 0 5 2 . 8 8 0 5 0 8 0 0 E - 0 9 2 . 8 7 7 8 1 4 0 0 E - 1 2 4 . 0 3 8 6 5 7 0 0 E - 0 5 3 . 0 0 0 5 1 9 0 0 2 - 0 1 1 . 5 0 7 2 1 6 0 0 E 0 2 1 . 0 0 0 0 0 0 0 0 E 0 0 1 . 2 4 6 3 2 9 0 0 2 0 7 3 . 1 6 5 2 9 4 0 0 E - 1 2 1 . 2 7 1 0 1 0 0 0 E - 1 1 6 . 2 6 1 1 4 6 0 0 E - 0 2 3 . 9 0 6 2 8 2 0 0 E - 0 1 7 . 9 1 3 7 4 0 0 0 E - 1 3 H 2 H 2 S H 2 S 2 S 6 S 7 S 8 T O T A L % Y I E L D 0 . 0 0 1 0 . 0 0 1 - 0 . 5 1 . 0 0 0 0 0 0 0 0 E 0 0 4 . 3 0 2 0 0 0 0 0 E 0 4 1 . 0 0 0 0 0 0 0 0 E 0 0 6 . 1 7 2 6 0 8 0 0 E 0 7 1 . 3 0 4 2 9 6 0 0 2 - 0 5 2 . 2 2 0 7 8 4 0 0 E - 1 2 2 . 5 0 8 7 4 6 0 0 2 - 1 4 7 . 2 4 5 4 5 5 0 0 E - 0 6 9 . 9 2 6 7 8 1 0 0 E - 0 1 1 . 5 7 6 7 5 5 0 0 E 0 5 1 . 0 0 0 0 0 0 0 0 2 0 0 5 . 5 1 5 9 5 7 0 0 E 0 8 5 . 1 2 1 9 2 1 0 0 E - 1 4 4 . 5 2 7 1 7 6 0 0 E - 1 3 4 . 2 8 8 1 0 4 0 0 E - 0 1 2 . 9 9 8 6 1 8 0 0 2 0 2 1 . 2 9 5 5 9 6 0 0 E - 1 4 1 . 2 1 4 9 1 4 0 0 2 - 0 3 4 . 7 1 0 7 0 5 0 0 E 0 2 3 . 0 6 8 6 8 3 0 0 E - 1 0 2 . 0 9 0 1 1 0 0 0 2 - 0 1 2 . 2 0 1 4 0 3 0 0 E - 0 3 5 . 2 1 6 1 8 7 0 0 E 0 3 S H R C H S N C 2 H 2 S C H 4 S 2 C 2 H 2 - 0 . 5 - 0 . 5 - 0 . 5 4 . 5 8 8 6 4 6 0 0 E - 1 7 7 . 3 0 3 4 1 1 0 0 E - 0 7 4 . 9 2 3 0 4 5 0 0 2 0 0 1 . 8 2 5 9 6 8 0 0 E 0 9 1 . 0 0 0 0 0 0 0 0 E 0 0 8 . 7 4 3 5 5 7 0 0 E 1 0 2 . 5 9 7 4 6 4 0 0 2 - 1 6 6 . 2 2 5 5 5 6 0 0 E - 1 5 5 . 1 7 2 1 2 6 0 0 E 0 0 1 . 6 3 1 2 8 5 0 0 E 0 6 6 . 4 8 0 6 1 3 0 0 E - 1 7 2 . 9 9 8 5 1 5 0 0 E - 0 3 2 . 1 0 2 7 0 8 0 0 E 0 3 8 . 1 5 6 4 5 6 0 0 E - 1 2 5 . 6 3 4 2 3 7 0 0 2 0 0 2 . 1 9 3 9 5 1 0 0 E - 0 5 1 . 1 3 9 8 2 8 0 0 2 0 5 1 . 0 0 0 0 0 0 0 0 E 0 0 1 . 8 5 2 0 0 0 0 0 E 0 1 1 . 0 0 0 0 0 0 0 0 E 0 0 7 . 7 1 8 5 7 6 0 0 2 - 0 1 2 . 3 8 9 6 0 5 0 0 E - 0 4 4 . 4 3 9 5 8 8 0 0 E - 0 5 2 . 3 1 6 8 2 1 0 0 E - 1 9 2 . 0 6 2 2 7 6 0 0 3 - 1 7 1 . 4 6 1 9 9 7 0 0 2 0 2 1 . 5 7 7 5 8 5 0 3 2 1 1 5 . 4 0 5 9 7 4 0 0 2 - 2 0 9 . 3 8 2 3 8 9 0 0 2 - 0 3 1 . 4 2 2 1 5 7 0 0 2 0 4 7 . 7 4 2 7 2 1 0 0 2 - 1 4 4 . 0 2 8 3 1 5 0 0 2 0 2 6 . 1 6 6 9 8 2 0 0 3 - 0 8 5 . 8 7 1 3 8 9 0 0 2 0 6 1 . 0 0 0 0 0 0 0 0 2 0 0 1 . 3 1 0 0 0 0 0 0 2 0 2 1 . 0 0 0 0 0 0 0 0 2 0 0 6 . 9 4 6 0 9 3 0 0 E 0 1 1 . 1 3 6 7 4 8 0 0 E - 0 4 6 . 4 5 0 7 6 6 0 0 2 - 0 7 1 . 1 6 1 1 0 3 0 0 2 - 1 0 1 . 5 3 2 8 6 1 0 0 2 - 0 4 1 . 1 8 7 3 4 7 0 0 E - 0 1 7 . 1 0 4 1 2 9 0 0 E - 0 1 1 . 0 0 0 0 0 0 0 0 E 0 0 6 . 5 7 7 0 8 1 0 0 E 0 5 205 5 . 8 4 7 1 2 9 0 0 E - 0 4 1 . 4 1 5 5 5 6 0 0 E 02 5 . 6 1 6 9 1 8 0 0 E - 0 9 1 . 5 3 0 6 9 0 0 0 E - 0 2 8 . 9 7 5 5 0 5 0 0 E - 0 2 4 . 3 9 2 4 3 8 0 0 E 0 2 1 .OOOOOOOOE 00 1 . 1 0 4 0 0 0 0 0 E 00 1 .OOOOOOOOE 0 0 1 . 2 1 2 1 3 7 0 0 E - 0 3 7 . 2 1 4 1 5 7 0 0 E - 0 4 2 . 1 5 1 4 1 2 0 0 E - 0 2 1 . 9 6 1 1 5 7 D 0 E - 0 7 2 . T 9 8 0 T 6 0 0 E - 0 3 1 . 8 8 3 7 9 5 0 0 2 - 0 2 1 . 9 0 6 3 6 9 0 0 E - 0 5 1 . 0 0 0 0 0 0 0 0 E 0 0 1 . 8 3 3 8 9 4 0 0 E 0 3 8 . 6 0 7 4 5 7 0 0 E - 0 8 4 . 7 2 7 3 0 5 0 0 E - 0 8 5 . 8 9 3 3 3 8 0 0 E - 0 4 4 . 1 6 3 5 6 5 0 0 E - 0 8 1 . 8 6 8 2 6 4 0 0 E - 0 8 8 . 6 2 1 3 0 1 0 0 E - 0 5 6 . 3 2 0 3 2 1 9 0 S 00 1.0 1 2 5 2 8 0 0 E - 0 5 2 . 0 8 9 4 3 2 0 0 E - 0 5 1 . 3 4 4 2 6 8 0 0 E 0 3 7 . 3 6 7 1 4 7 0 0 E - 0 1 1 . 0 0 0 0 0 0 0 0 E 0 0 3 . 7 3 9 0 0 0 0 0 E - 0 2 1 . 0 0 0 0 0 0 0 0 E 00 6 . 4 5 2 2 7 7 0 0 E - 0 7 2 . 8 3 1 9 0 9 0 0 E - 0 3 3 . 6 5 0 2 5 0 0 0 E 0 1 5 . 4 0 7 6 5 6 0 0 E - 0 5 1 . 6 1 5 9 4 3 0 0 E - 0 2 4 . 8 2 2 0 9 0 0 0 E - 0 3 9 . 2 2 3 9 2 4 0 0 E - 0 9 1 . 0 0 0 0 0 0 0 0 E 0 0 2 . 4 3 4 4 6 5 0 0 E 01 1 . 9 9 9 4 8 8 0 0 E - 0 5 3 . 7 0 6 5 7 0 0 0 E - 0 6 5 . 3 2 8 1 8 6 0 0 E - 0 5 1 . 1 2 9 0 3 0 0 0 E - 1 1 3 . 7 3 4 1 1 6 0 0 E - 0 6 2 . 9 6 1 5 2 1 0 0 E - 0 5 1 . 1 2 2 7 1 4 0 0 E 00 6 . 6 5 0 7 9 3 0 0 E - 0 4 6 . 0 5 2 2 6 3 0 0 E - 0 7 2 . 8 4 6 0 5 0 0 0 E 0 5 2 . 1 1 7 2 4 1 0 0 E - 0 2 1 . 0 0 0 0 0 0 0 0 E 00 5 . 2 6 5 9 9 9 0 0 P - 0 3 1 . 0 0 0 0 0 0 0 0 E 00 9 . 7 4 6 7 2 0 0 0 E - 0 9 6 . 3 8 2 6 8 5 0 0 E - 0 3 2 . 6 3 6 6 2 1 0 0 E 0 3 1 . 0 0 0 0 0 0 0 0 E 0 0 3 . 9 1 1 0 0 0 0 0 E 0 0 1 . 0 0 0 0 0 0 0 0 E 0 0 2 . 18 1 6 1 9 0 0 E - 0 2 4 . 3 7 1 3 0 6 0 0 E - 0 4 1 . 3 2 5 3 6 0 0 0 5 - 0 3 2 . 5 6 8 8 1 9 0 0 E - 0 8 1 . 0 6 4 8 1 9 0 0 E - 0 3 3 . 1 0 5 6 3 5 0 0 E - 0 2 3 . 2 6 1 3 3 0 0 0 E - 0 4 1 . 0 0 0 0 0 0 0 0 E 0 0 9 . 2 5 9 9 9 6 0 0 E 0 3 1 . 2 6 0 1 0 7 0 0 E - 0 8 1 . 0 1 1 0 8 8 0 0 E - 0 8 1 . 3 9 9 3 7 2 0 0 E - 0 3 8 . 1 1 4 0 6 7 0 0 E - 0 7 2 . 8 3 9 6 6 2 0 0 E - 0 9 1 . 2 4 8 4 6 2 0 0 E - 0 4 1 . 1 5 0 0 7 6 0 0 E 01 2 . 3 8 6 U 8 4 0 0 E - 0 6 7 . 2 9 7 1 4 5 0 0 E - 0 5 2 . 1 0 3 9 7 5 0 0 E 0 2 2 . 5 2 0 5 3 1 0 0 E 0 0 1 . 0 0 0 0 0 0 0 0 E 00 7 . 2 7 0 9 9 7 0 0 E - 0 2 1 . 0 0 0 0 0 0 0 0 E 00 2 . 7 6 8 2 6 9 0 0 E - 0 6 2 . 1 5 6 6 7 6 0 0 E - 0 3 8 . 4 7 4 8 6 5 0 0 E 00 1 . 7 5 0 7 3 0 0 0 S - 0 5 1 . 0 8 4 8 3 9 0 0 E - 0 2 6 . 3 2 1 6 2 3 0 0 E - 0 3 4 . 1 3 9 5 5 8 0 0 E - 0 8 1 . 0 0 0 0 0 0 0 0 E 00 5 . 7 8 4 1 6 1 0 0 E 01 6 . 5 9 1 4 9 0 0 0 E - 0 6 1 . 5 2 7 2 3 8 0 0 E - 0 6 8 . 6 3 3 4 4 6 0 0 E - 0 5 . 5 . 8 4 6 8 6 3 0 0 E - 1 1 1 . 2 7 5 3 5 8 0 0 E - 0 6 3 . 6 8 5 3 3 9 0 0 E - 0 5 1 . 6 0 0 6 4 6 0 0 E 0 0 2 . 8 0 6 3 4 9 0 0 E - 0 4 1 . 2 4 1 9 0 4 0 0 E - 0 6 9 . 4 7 1 2 0 0 0 0 E 04 4 . 3 9 1 0 1 6 0 0 E - 0 2 1 . 0 0 0 0 0 0 0 0 E 00 7 . 9 2 2 0 0 1 0 0 E - 0 3 1.OOOOOOOOE 0 0 2 . 3 0 0 8 1 4 0 0 E - 0 8 5 . 3 8 1 4 5 0 0 0 E - 0 3 1 . 0 8 4 6 7 6 0 0 E 0 3 7 . 8 3 7 4 3 1 0 0 E - 0 4 4 . 1 6 0 1 6 9 0 0 E - 0 2 2 . 5 5 1 5 1 6 0 0 E - 0 3 2 . 8 2 1 7 8 9 0 0 S - 1 0 1.OOOOOOOOE 0 0 3 . 1 7 2 7 8 2 0 0 E 00 2 . 2 5 4 3 2 4 0 0 E - 0 9 4 . 4 5 1 2 1 4 0 0 E - 0 4 5 . 6 7 1 5 2 6 0 0 E - 0 2 1 . 0 1 7 9 9 3 0 0 E - 0 2 1 . 0 0 0 0 0 0 0 0 E 00 6 . 2 8 6 9 5 1 0 0 E 04 1 . 3 0 5 5 9 8 0 0 E - 0 9 1 . 6 3 4 4 6 7 0 0 E - 0 9 3 . 9 1 5 2 9 5 0 0 E - 0 3 2 . 7 9 2 7 7 1 0 0 E - 0 5 3 . 0 5 8 7 2 6 0 0 E - 1 0 1 . 9 2 0 5 8 5 0 0 E - 0 4 2 . 3 1 3 2 7 9 0 0 E 01 4 . 4 3 3 7 9 5 0 0 E - 0 7 3. 1 7 7 8 1 9 0 0 E - 0 4 2 . 4 2 5 5 5 2 0 0 E 01 1 . 0 5 8 5 7 2 0 0 E 01 1 . 0 0 0 0 0 0 0 0 E 00 1 . 5 6 5 9 9 8 0 0 E - 0 1 1 . 0 0 0 0 0 0 0 0 E 00 • 1 . 5 1 0 9 2 8 0 0 E - 0 5 1 . 5 7 8 6 9 0 0 0 E - 0 3 1 . 5 7 0 5 0 1 0 0 E 00 4 . 8 3 5 3 3 0 0 0 E - 0 6 6 . 8 7 2 4 8 2 0 0 E - 0 3 8 . 6 2 4 6 8 7 0 0 E - 0 3 2 . 3 4 2 2 9 2 0 0 E - 0 7 1 . 0 0 0 0 0 0 0 0 E 00 1 . 5 5 9 0 5 3 0 0 E 02 1 . 8 7 9 1 2 6 0 0 E - 0 6 5 . 5 9 6 7 5 0 0 0 E - 0 7 1 . 4 9 7 5 3 9 0 0 E - 0 4 3 . 8 4 8 2 2 3 0 0 E - 1 0 3 . 7 6 1 9 6 2 0 0 E - 0 7 4 . 7 2 3 5 4 1 0 0 E - 0 5 2 . 3 8 9 9 8 6 0 0 E 00 1 . 0 6 3 7 6 1 0 0 E - 0 4 2 . 8 0 7 6 0 0 0 0 E - 0 6 2 . 7 3 6 5 4 8 0 0 E 04 9 . 9 9 1 7 6 5 0 0 E - 0 2 1 . 0 0 0 0 0 0 0 0 E 0 0 1 . 2 4 9 9 9 9 0 0 E - 0 2 1 . 0 0 0 0 0 0 0 0 E 00 6 . 0 6 8 5 0 0 0 0 E - 0 8 4 . 4 5 1 0 9 6 0 0 E - 0 3 4 . 0 0 9 9 8 7 0 0 E 0 2 3 . 5 6 4 2 6 6 0 0 E - 0 4 3 . 1 4 4 7 6 6 0 0 E - 0 2 3 . 0 7 3 6 7 0 0 0 E - 0 3 7 . 8 3 9 0 2 9 0 0 E - 1 0 1 . 0 0 0 0 0 0 0 0 E 0 0 5 . 7 9 1 6 4 4 0 0 E 00 1 . 2 9 8 3 7 9 0 0 E - 0 4 1 . 6 5 0 5 1 3 0 0 E - 0 5 2 . 3 8 3 1 2 3 0 0 E - 0 5 7 . 3 0 1 0 5 3 0 0 E - 13 2 . 2 8 1 3 5 3 0 0 E - 0 5 2 . 0 4 4 1 6 4 0 0 E - 0 5 8 . 6 5 2 3 1 9 0 3 E - 11 1 . 8 3 5 1 6 2 0 0 E - 10 1 . 3 5 6 8 8 7 0 0 E - 0 2 2 . 0 0 2 4 4 2 0 0 E - 03 2 . 1 0 5 7 0 3 0 0 E - 11 3 . 1 9 2 3 1 3 0 0 E - 04 5 . 2 7 6 1 3 0 0 0 E 01 6 . 0 7 9 7 1 6 0 0 E - 08 1 . 8 3 4 7 7 6 0 0 E - 03 1 . 8 9 4 8 7 1 0 0 E 00 5 . 7 6 3 1 8 9 0 0 E 01 1 . oooooooos 00 3 . 8 3 4 0 0 0 0 0 E - •01 1 . , OOOOOOOOE 00 1 . 1 1 5 5 1 6 0 0 E - •04 1. , 10 1 1 8 9 0 0 3 -•03 2 . , 1 9 8 4 2 0 0 0 E -•01 1. . 0 9 9 8 4 9 0 0 E -•06 4 . . 0 6 0 0 3 3 0 3 E-- 0 3 1. . 2 3 5 9 3 9 0 0 E - • 0 2 1. . 7 6 5 1 3 0 0 3 S-- 0 6 1. .OOOOOOOOE 00 4. . 9 1 3 7 3 2 0 0 E 02 4, . 4 8 4 2 9 3 0 0 E - - 0 7 1 . 7 7 5 7 0 4 0 0 E - - 0 7 2 . 8 2 2 4 0 3 0 0 S - - 0 4 3 . 3 4 6 2 9 7 0 3 E - 0 9 9 . 3 5 1 0 0 9 0 0 E - 0 8 6 . 2 4 3 4 5 2 0 0 E - 0 5 3 . 7 6 1 9 8 0 0 0 E 00 3 . 5 4 7 7 8 0 0 0 E - 0 5 7 . 1 3 3 0 9 5 0 0 E - 0 6 6 . 7 1 3 4 6 0 0 0 E 03 2 . 5 3 6 1 9 6 0 0 E - 0 1 1 . 0 0 0 0 0 0 0 0 E 00 2 . 0 3 9 0 0 0 0 0 E - 0 2 1.OOOOOOOOE 00 1 . 3 2 7 0 4 1 0 0 E - 0 7 3 . 5 9 7 4 9 3 0 0 E - 0 3 1 . 3 0 3 7 3 9 0 0 E 02 1 . 4 6 6 1 9 0 0 0 E - 0 4 2 . 2 9 3 1 7 8 0 0 E - 0 2 3 . 8 0 0 8 3 1 0 0 E - 0 3 2 . 4 8 5 2 7 7 0 0 E - 0 9 1.OOOOOOOOE 00 1 . 1 3 6 7 9 5 0 0 E 01 5 . 3 6 3 2 2 6 0 0 E - 0 5 3 . 1 5 4 0 7 3 0 0 E - 0 6 3 . 4 7 9 7 4 7 0 0 E - 0 5 2 . 6 5 0 3 9 B 0 0 E - 1 2 9 . 7 0 0 2 0 2 0 0 E - 0 6 2 . 4 3 55 99 0 0 E - 0 5 8 . 1 6 7 9 4 2 0 0 E - 0 1 1 . 4 4 0 4 6 0 0 0 E - 0 3 3 . 1 9 9 1 6 5 0 0 E - 0 7 7 . 6 1 2 8 6 8 0 0 E 05 1 . 1 0 2 9 4 1 0 0 E - 0 2 1.OOOOOOOOE 00 206 1 . 6 1 8 4 7 7 0 0 E - 0 3 5 . 3 5 U 2 6 5 0 0 E - 0 2 2 . 1 5 6 1 5 0 0 0 E - 0 3 1 . 1 3 5 7 2 9 0 0 E - 1 0 1 . . 0 0 0 0 0 0 0 0 E 00 1 . 8 4 9 1 8 4 0 0 E 0 0 STTNNtlHBER 2 . 8 7 7 9 9 6 0 0 E - 0 4 3 . 1 1 4 9 9 6 0 0 E - 0 5 1 . 6 9 9 O 9 3 0 0 E - O 5 2 . 3 1 9 2 8 6 0 0 E - 1 3 4 . 9 1 8 2 1 8 0 0 E - 0 5 6 . 1 4 2 1 0 0 0 0 E - 0 1 2 . 8 9 1 4 4 9 0 0 E - 0 3 1 . 8 1 1 4 6 5 0 0 E - 0 7 1 . 8 4 2 7 5 1 0 0 E 06 6 . 1 3 5 8 5 8 0 0 E - 0 3 3 . 6 4 6 0 0 0 0 0 E - 0 3 1 . 0 0 0 0 0 0 0 0 E 00 4 . 5 3 5 1 3 4 0 0 E - 0 9 7 . 4 U 3 9 9 0 0 0 E - 0 3 5 . 8 5 4 0 0 7 0 0 E 0 3 TABLE E.2 H,S OXIDATION 207 S C R E A T E S 3 6 $ G E T S 3 6 SNUMBER I S C O M P I L B T I M E = 5 0 0 COMPUTER PROGRAMME 14 CLATJS C O M B U S T I O N CHAMBER E Q U I L I B R I A WITH 36 S P E C I E S I N C L U D I N G C A R B O N S P E C I E S D O U B L E P R E C I S I O N CPD R E A L N 5 , T l , N O , NONOD, N O E R R , N 2 , N 2 E X , NOD D I M E N S I O N C P D ( 3 8 ) , P ( 3 8 , 2 0 ) , C ( 3 8 , 2 0 ) , N C V ( 2 0 ) DATA N C P D / 3 6 / , N P / 3 7 / , N C P D P 2 / 3 8 / , C S C S D / 1 . / , N O N O D / 1 . / , R / 1 . 0 E 1 0 / R E A D ( 5 , 1 0 0 ) ( C P D ( N C ) , N C = 1 , N C P D P 2 ) * D A T A A * R E A D ( 5 , 1 0 1 ) P E R R , N O E R R , H S E R R , H O E R R , C S E R R , N 2 E X , H 2 0 E X , H 2 S E X , * D A T A 8 * 1 S 2 E X , C 0 2 E X READ ( 5 , 1 0 2 ) ( ( C ( N C , N T ) , N C = 1 , N C P D ) , N T = 6 , 2 0 ) *DAT A C * READ ( 5 , 1 0 3 ) N I T E R S , LOWT, K A O T , N F E E D S , I A R B Y P , KWRT * D A T A 11 NTEMP = KAOT - LOWT * 1 LOWTP7=LOWT+7 LOHTP8=LOWT<-8 I P (NTEMP . L T . 9) LOWTP8=LOWT C A L L T R A P S ( 0 , 0 , 9 0 0 0 ) W R I T E ( 6 , 1 0 4 ) N I T E R S , P E E R , N 2 E X , LOWT, N O E R R , H 2 0 E X , 1 K A O T , H S E R R , H 2 S S X , N F E E D S , H O E R R , S 2 E X , I A R B Y P , C S E R R , C 0 2 E X C O M P U T E R DOES NOT P R I N T E Q U I L I B R I U M C O N S T A N T S I F KHRT . E Q . 0 I F (KWRT . E Q . 0) GO TO 3 W R I T E ( 6 * 1 0 5 ) ( K T , K T = 6 , 1 3 ) DO 1 N C = 1 , N C P D 1 W R I T S ( 6 , 1 0 6 ) N C , CPD ( N C ) , ( C ( N C , N T ) , N T = 6 , 1 3 ) W R I T E ( 6 , 1 0 5 ) ( K T , K T = 1 4 , 2 0 ) DO 2 N C = 1 , N C P D 2 W R I T E ( 6 , 1 0 6 ) N C , CPD (NC) , ( C ( N C , N T ) , N T = 1 4 , 2 0 ) 3 I F ( I A R B Y P . E Q . 0) R E A D ( 5 , 1 0 7 ) ( P ( 3 , N T ) , P ( 9 , N T ) , P ( 1 0 , N T ) , * D A T A 20 1 P ( 1 9 , N T ) , P ( 3 4 , N T ) , MAO, NT=LOWT, KAOT) COMMENCE NH3 AND CH4 I T E R A T I O N S DO 9 1 = 1 , N F E E D S R E A D ( 5 , 101) P C T A I R , P~TNH 3 , P C T H 2 0 , P C T C H 4 , P C T C 0 2 ' * D A T A 32 W R I T E ( 4 , 1 0 1 ) P C T A I R , P C T N H 3 , P C T H 2 0 , P C T C H 4 , P C T C 0 2 W R I T E * * I F ( P C T A I R . G T . 1 . 0 E - 0 6 ) R = 2 0 0 . 0 / P C T A I R C O M P O S I T O N OF N 2 , H 2 0 , H 2 S , S 2 , C 0 2 , I S G U E S S E D I F ( I A R B Y P . G E . 1) READ ( 5 , 1 0 7 ) ( P ( 3 , N T ) , P ( 9 , N T ) , P ( 1 0 , N T ) , * D A T k - 3 1 P ( 1 9 , N T ) , P ( 3 4 , N T ) , MAO, N T =LOWT,KAOT) C O M P O S I T I O N O F I N I T I A L M I X T U R E I S F O U N D — B A S E D ON P C T C H 4 MOLES OF C H 4 , ET C E T E 3 A AH2S = 1 0 0 . 0 - P C T N H 3 - P C T K 2 0 - P C T C H 4 - P C T C 0 2 A 0 2 = 0 . 0 0 5 * A H 2 S * P C T A I R «- 0 . 7 5 * P C T N H 3 +• 2 . 0 * P C T C H 4 AN2 = 3 . 7 6 * A 0 2 A T O T A L = 1 0 0 . 0 + A02 • AN2 PN2 = A N 2 / A T O T A L P 0 2 = A 0 2 / A T O T A L P H 2 S = A H 2 S / A T 0 T A L PNH 3 = P C T N H 3 / A T O T A L P H 2 0 = P C T H 2 0 / A T O T A L P C H 4 = P C T C H 4 / A T O T A L P C 0 2 = P C T C 0 2 / A T O T A L C A L C U L A T E D E S I R E D R A T I O S OXY = 2 . 0 * P O 2 «- P H 2 0 • 2 . 0 * P C O 2 HOD = ( 2 . 0 * P N 2 • P N H 3 ) / O X Y SOD = P H 2 S / O X Y CSD = (PCH4 * P C 0 2 ) / P H 2 S HSD = ( 2 . 0 * P n 2 S + 3 . 0 * P N H 3 • 2 . 0 * P H 2 O 4 . 0 * P C H 4 ) / P H 2 S 208 COMMENCE T E M P E R A T U R E I T E R A T I O N S DO 8 N T = L 0 W T , K A O T COMMENCE I T E R A T I O N S TO O B T A I N C O N V E R G E N C E AT G I V E N A I B AND T E M P E R A T U R E DO 7 N I - 1 , N I T E R S N 2 = P ( 3 , N T ) N 5 = N 2 * * 0 . 5 S 2 = P ( 1 9 , N T ) S 5 = S 2 * * 0 . 5 0 2 = { C ( 5 , N T ) * P ( 9 , N T ) * S 5 / P ( 1 0 , N T ) ) * * 2 0 5 = 0 2 * * 0 . 5 H2 = C ( 8 , N T ) * P { 9 , N T ) / 0 5 H 5 = H 2 * * 0 . 5 P ( 1,N.T) C ( 1 , HT) * N5 * H 2 * * 1 . 5 ? ( 2 , NT) C ( 2 , N T ) * N5 * 0 5 P ( 4 , N T ) = C ( 4 , NT) 0 5 P ( 5 , NT) 0 2 P ( 6 , N T ) C ( 6 , N T ) * 0 5 * H5 P ( 7 , N T ) - C ( 7 , N T ) * H5 P ( 8 , N T ) = H2 P ( 1 1 , N T ) = C ( 1 1 , N T ) * H2 * S 2 P ( 1 2 , NT) C ( 1 2 , N T ) * S 5 * H5 P ( 1 3 , N T ) = C ( 1 3 , N T ) * S 5 * N5 P ( 1 4 , N T ) = C (14 , NT) * S5 * 0 5 P ( 1 5 , H T ) = C ( 1 5 , N T ) S 5 * 0 2 P ( 1 6 , N T ) = C ( 1 6 , N T ) * S 5 * 0 2 * * 1 . 5 P ( 1 7 , N T ) C ( 1 7 , N T ) * S 2 * 0 5 P ( 1 8 , N T ) C ( 1 8 , H T ) * S 5 P ( 2 0 , NT) = C ( 2 0 , N T ) S 2 * * 1 . 5 P (2 1 , NT) = C ( 2 1 , NT) * S 2 * * 2 P ( 2 2 , NT) = C ( 2 2 , N T ) * S 2 * * 2 . 5 P ( 2 3 , NT) •= C ( 2 3 , N T ) * S 2 * * 3 P ( 2 4 , H T ) — C ( 2 4 , N T ) * S 2 * * 3 . 5 P ( 2 5 , NT) = C ( 2 5 , NT) * S 2 * * 4 ? ( 2 6 , N T ) = C ( 2 6 , N T ) / 0 2 * P ( 3 4 , N T ) * N5 * H5 P ( 2 7 , NT) = C ( 2 7 , N T ) / H2 * ? ( 2 6 , N T ) * * 2 P ( 3 6 , NT) C ( 3 6 , N T ) / P ( 9 , N T ) * * 2 * P ( 3 4 , N T ) * P ( 1 0 , H T ) * * 2 P ( 2 9 , N T ) = C ( 2 9 , N T ) / S 2 * * 2 * P ( 3 6 , N T ) * * 2 * H2 P ( 2 3 , N T ) = C ( 2 8 , H T ) * P ( 2 9 , N T ) * * 0 . 5 * H 2 * * 1 . 5 P (3 0 , NT) = C ( 3 0 , N T ) * P ( 2 9 , N T ) * H2 P (3 1 , NT) = C ( 3 1 , N T ) * P ( 3 0 , N T ) * 0 5 P ( 3 2 , N T ) C ( 3 2 , NT) / 0 5 * P ( 3 4 , N T ) P ( 3 3 , N T ) C ( 3 3 , N T ) / P ( 9 , N T ) * P ( 3 4 , N T ) * P ( 1 0 , N T ) P ( 3 5 , N T ) = C ( 3 5 , N T ) / P ( 9 , N T ) * P ( 3 3 , N T ) * H2 C O M P U T E T O T A L MOLES N I T R O G E N N , H Y D R O G E N . H , O X Y G E N 0 , S U L P H U R S , AND CARBON CC N = P ( 1 , N T ) +P ( 2 , N T ) + 2 . 0 * P ( 3 , N T ) t P ( 1 3 , N T ) + P ( 2 6 , N T ) «• 2 . 0 * ? ( 2 7 , N T ) H = 3 . 0 * P ( 1 , N T ) + P ( 6 , N T ) *• " ( 7 , N T ) + 2 . 0 * ( P ( 9 , N T ) t P ( 9 , N T ) • 1 P ( 1 0 , N T ) * P ( 1 1 , N T ) ) «• P ( 1 2 , N T ) + ? ( 2 6 , N T ) • 2 . 0 * P ( 2 9 , N T ) • 2 4 . 0 * ( P ( 2 8 , N T ) + P ( 3 0 , N T ) + P ( 3 1 , N T ) ) 0 = P ( 2 , N T ) P ( 4 , N T ) • 2 . 0 * P ( 5 , N T ) + P ( 6 , N T ) • ? ( 9 , NT) • 1 P ( 1 4 , N T ) • 2 . 0 * P ( 1 5 , N T ) + 3 . 0 * P ( 1 6 , NT) • P ( 1 7 , N T ) * P ( 3 1 , N T ) > 2 P ( 3 2 , N T ) *• • P ( 3 3 , N T ) * 2 . 0 * P ( 3 4 , N T ) S L O S T = P ( 1 0 , NT) +2. 0 * ? (1 1, NT) * P ( 1 2 , NT) +P ( 1 3 , MT) • ? ( 1 4 , NT) + P ( 1 5 , N T ) • 1 P ( 1 6 , N T ) + 2 . 0 * P ( 1 7 , M T ) t p ( 3 3 , N T ) + P ( 3 5 , N T ) + 2 . 0 * ? ( 3 6 , N T ) S R E C O V = P ( 1 8 , N T ) + 2 . 0 * P ( 1 9 , N T ) 3 . 0 * P ( 2 0 , NT) + 4 . 0 * P ( 2 1 , N T ) • 1 5 . 0 * P ( 2 2 , N T ) • 6 . 0 * P ( 2 3 , N T ) + 7 . 0 * P ( 2 4 , N T ) + 8 . 0 * P ( 2 5 , N T ) S = S L O S T *• S R E C O V C C = P ( 2 6 , N T ) > 2 . 0 * P ( 2 7 , NT) *-P (28 , N T ) + 2 . 0 * (P ( 2 9 , NT) * P ( 30 , NT) * T P ( 3 1 , N T ) ) * P ( 3 2 , N T ) * P ( 3 3 , N T ) * P ( 3 4 , N T ) +? ( 3 5 , N T ) + P ( 3 6 , N T ) 209 C c COMPOTE T O T A L P R E S S U R E P ( N P , N T ) = 0 . 0 DO 6 N C = 1 , N C P D 6 P ( N P , N T ) = P ( N P , N T ) «• P ( N C , N T j P T ? T D = P ( N P , H T ) I F f NOD . G T . 1 . 0 E - 0 8 ) H S H S D = H / S / H S D S O S O D = S / 0 / S O D I F ( C S D . G T . 1 . 0 E - 0 8 ) C S C S D = C C / S / C S D N C V ( N T ) = N I I P ( A B S ( P T P T D - 1 . 0 ) I F {ABS ( N O N O D - 1 . 0) I F ( . A B S ( R S H S D - I . O ) . GT NONOD= N / O / N O D . G T . P E R R ) GO TO 61 . S T . NOERR) GO TO 61 H S E R P ) GO TO 61 I F (AP.S ( S O S O D - 1 . 0 ) . G T . HOERR) GO TO 61 I F ( A B S ( C S C S D - 1 . 0 ) - G T . C S E R R ) GO TO 6 1 GO TO 7 5 •COMPUTE NEW N 2 , H 2 0 , H 2 S , S 2 , C 0 2 61 P ( 3 , NT) P ( 9 , NT) P ( 1 0 , N T ) P ( 1 9 , N T ) P ( 3 4 , N ? ) P ( 3 , NT) P ( 9 , NT) P ( 1 0 , N T ) P ( 1 9 , N T ) P ( 3 4 , N T ) * * N2EX * * H 2 0 E X ( P T P T D * N O N O D ) P T P T D ( P T P T D * H S H S D ) * * H 2 S E X ( P T P T D * S O S O D ) * * S 2 E X _ ( P T P T D * C S C S D ) * * C 0 2 E X C O N V E R G E N C E I T E R A T I O N S END AT S T A T E M E N T 7 , T E M P E R A T U R E AT 8 AND N E E E D S AT 9 7 5 W R I T E ( 4 , 1 0 7 ) P ( 3 , N T ) , P ( 9 , N T ) , P ( 1 0 , N T ) , P ( 1 9 , N T ) , P ( 3 4 , N T ) , NI C A L C U L A T E P E R C E N T R E C O V E R Y 8 P ( N C ? D P 2 , N T ) = S R E C O V / S * 1 0 0 . 0 C O M P U T E R W R I T E S O U T P U T ON TWO P A G E S I F NTEMP I S G R E A T E R THAN 8 I E ( N T E M P . L T . 9) GO TO 84 W R I T E ( 6 , 1 0 8 ) N C P D , R, P C T A I R , P C T N H 3 , P C T H 2 0 , P C T C H 4 , P C T C 0 2 , 1 P H 2 S , P D 2 , P N 2 , P N H 3 , P H 2 0 , P C H 4 , P C 0 2 , ( K T , KT=LOWT,LOWTP7) DO 3 3 N C = 1 , N C P D P 2 W R I T E ( 6 , 1 0 6 ) N C , C P D ( N C ) , ( ? ( N C , N T ) , NT= L O W T , L O W T P 7 ) W R I T E ( 6 , 1 0 9 ) ( M C V ( N T ) , N T = L O W T , L O W ? P 7 ) W R I T E ( 6 , 1 0 8 ) N C P D , R , P C T A I R , P C T N H 3 , P C T H 2 0 , P C T C H 4 , P C T C 0 2 , 1 P H 2 S , P 3 2 , P N 2 , ? N H 3 , P H 2 0 , P C H 4 , P C 0 2 , ( K T , K T - L 0 W T P 8 , K A O T ) DO 8 5 N C = 1 , N C P D P 2 W R I T E ( 6 , 1 0 6 ) N C , CPD (NC) , ( P ( N C , N T ) , N T = L O W T P 8 , K A O T ) W R I T E ( 6 , 1 0 9 ) ( N C V ( M T ) , N T = L O W T P 8 , K A O T ) W R I T E ( 6 , 1 0 5 ) KWRT 8 3 84 8 5 9 1 0 0 10 1 102 1 0 3 1 0 4 1 0 5 106 107 108 S T O P F O R M A T ( 1 0 A 8 ) FORMAT ( 1 0 F 8 . 0 ) FORM AT ( 1 P 4 E 2 0 . 8 ) FORMAT ( 6 1 5 ) FORM A T ( ' N I T E R S = « , 1 5 , 1 F 7 . 3 / ' T L O B =• T H I G H =• 1 5 X , 1 3 , ' 0 0 ' , 1 5 X , 2 F 7 . 3 / » I  1 3 , ' 0 0 ' , 1 5 X , 3 F 7 . 3 / • NFEEDS=», 1 5 , 1 5 X , 4 F 7 . 3 / ' I A R B Y P = * ,. 1 5 , 1 5 X , ' C S E R R F 1 0 . 3 , 1 3 X , • N 2 E X F 1 0 . 3 , 1 3 X , ' H 2 0 E X = « , F 1 0 . 3 , 1 3 X , • H 2 S E X = » , F 1 0 . 3 , 1 3 X , » P E R R •NOERR • H S E R R ' H O E R R F10.3, 13X, 'C02EX ' S 2 E X = • , = ' , F 7 . 3 / ) FORMAT ( 1 H 1 , 2 3 X , « E Q U I L I B R I U M C O N S T A N T S FOR T H E F O R M A T I O N OF COMPO 1 UN D S ' / / / • C O M P O U N D ' , 8 ( 1 1 1 , ' 0 0 K ' ) ) F O R M A T (1H , 1 2 , 1 X , A 3 , ( 1 P 8 E 1 5 . 5 ) ) FORMAT ( 1 P 5 E 1 5 . 7 , 15) FORMAT ( 1 H 1 , 1 0 X , ' E Q U I L I B R I U M P A R T I A L P R E S S U R E S I N A T M O S P H E R E S OF 1 1 , 1 3 , 1 COMPOUNDS PRODUCED FROM HYDROGEN S U L P H I D E C O M B U S T I O N * / 1H 2 0 , 3 5 X , ' H 2 S / 0 2 R A T I O I S - - - - - - - - - -F 8 . 3 , « ( ' , F 5 . 1 , ' % S T O I C H I O M E T R I C A I R 210 3 ) V 3 1 X , ' T H E A C I D GAS F E E D C O N T A I N S * 4 •' % H 2 0 ' , F 5 . 1 , ' % CH4 A N D ' , F 5 . 1 5 P O S I T I 0 N OF THE I N I T I A L M I X T U R E ' / 1R 6 7 8 9 1H 1H IH 5 3 X , 5 3 X , 5 3 X , ' 0 2 * NH3 • • C H I * F 8 . 3 , ' F 8 . 3 , • F 8 . 3 , • % * / IH % ' / 1H 1 0 9 FORMAT ( 1 H 0 , « END $$D AT A' I T E R A T I O N S ' , 4 X , 1 4 , F 5 . 1 , « % N H 3 ' , F 5 - 1 , • % C 0 2 ' / / 1H , 4 3 X , ' C O t ! , 5 3 X , ' H 2 S ' , 2 P F 8 . 3 , • %* / 5 3 X , ' N 2 ' , F 8 . 3 , , 5 3 X , « H 2 0 « , , 5 3 X , ' C 0 2 ' , C O M P O U N D 1 , 8 ( 1 1 1 , 7 { M X , 1 4 ) ) % • / F 8 - 3 , ' * • / F 8 . 3 , ' % ' / / / ' 0 0 K ' ) ) NH3 HO H2 0 0 2 OH H H 2 S 2 S H SN S3 S 0 2 S 0 3 S 2 0 S4 S 5 S 6 S7 S 8 HCN C 2 N 2 C 2 H 4 0 CO COS CO 2 C S C S 2 T O T A L 0 . 0 0 1 S UENUMBER S C R E A T E P1 5 C P E A T E K 3 6 S G E T K 3 6 0 . 0 0 1 0 . 0 0 1 0 . 0 0 1 0 . 0 0 1 • 0 . 5 H2 H20 S S 2 CH4 C 2 H 2 % Y I E L D - 0 . 5 - 0 . 5 H 2 S S 3 C2H4 - 0 . 5 - 0 . 5 ER 4 . 1 6 2 7 3 8 0 0 2 - 0 2 6 . 1 5 2 8 7 9 0 0 E - 08 1 . OOOOOOOOE 00 2 . 6 5 1 8 3 5 0 0 2 - 19 4 . 1 3 5 6 6 3 0 0 2 - 14 2 . 4 5 8 4 5 5 0 0 E - 0 3 4 . 5 8 3 6 4 6 0 0 E - 17 2 . 3 1 6 8 2 1 0 0 2 - 19 4 . 3 1 6 2 5 6 0 0 E 18 1 . 7 8 5 0 1 3 0 0 E 0 5 4 . 3 0 2 0 0 0 0 0 2 04 7 . 3 0 3 4 1 1 0 0 E - 07 2 . 0 6 2 2 7 6 0 0 E - 17 1 . 9 5 0 9 9 0 0 0 E 0 5 6 . 0 1 2 7 7 1 0 0 E 27 2 . 5 3 1 0 2 2 0 0 2 31 6 . 4 4 9 7 0 3 0 0 E 12 1 . 5 7 3 9 5 1 0 0 2 - 16 1 . OOOOOOOOE 00 4 . 9 2 3 0 4 5 0 0 2 00 1 . 4 6 1 9 9 7 0 0 E 02 1. 2 5 1 3 0 3 0 0 2 0 5 6 - 1 7 2 6 0 3 0 0 2 07 1 . 8 2 5 9 7 0 0 0 2 09 1 . 5 7 7 5 8 5 0 0 E 11 4 . 2 9 7 9 3 2 0 0 E - 45 1 . 3 0 4 2 9 7 0 0 2 - 0 5 2 . 2 1 4 9 3 7 0 0 2 10 5 . 4 0 5 9 7 5 0 0 2 - 20 1 . 0 8 6 3 3 4 0 0 2 09 9 . 26 7 3 5 0 0 0 E 04 8 - 1481 1 3 0 0 E - 21 1 . 3 8 8 6 5 5 0 0 2 - 0 3 1 . 0 0 0 0 0 0 0 0 2 00 6 . 5 2 1 0 3 2 0 0 E - 10 4 . 4 3 5 6 9 7 00 E - 07 9 . 3 3 2 3 8 9 0 0 E - 03 8 . 1 8 8 2 8 3 0 0 E - •07 1 . OOOOOOOOE 00 3 . 5 3 5 8 7 7 0 0 2 - 16 3 . 6 9 4 0 5 8 0 0 E - 12 7 . 5 7 8 4 1 3 0 0 E - •03 2 . 5 0 8 7 4 8 0 0 E - 14 2 . 5 9 7 4 6 4 0 0 2 - 16 3 . 0 4 9 9 0 5 0 0 E 15 1 . 4 2 2 1 5 7 0 0 E 04 1 . 5 6 4 0 0 0 0 0 E 03 7 . 2 4 5 4 5700 2 - 06 6 . 2 2 5 5 5 6 0 0 E - 15 3 . 7 2 9 5 9 1 0 0 E 04 1 . 6 1 0 9 2 1 0 0 E 23 4 . 6 4 7 4 0 6 0 0 2 25 3 . 1 5 3 2 0 4 0 0 E 10 7 . 7 4 2 7 2 1 0 0 2 - •14 1 . 0 0 0 0 0 0 0 0 2 00 9 . 9 2 6 7 8 1 0 0 2 - 01 5 . 1 7 2 1 2 8 0 0 E 00 4 . 0 2 8 3 1 5 0 0 E 0 2 2 . 3 8 6 5 3 2 0 0 E 04 1. 5 7 6 7 5 5 0 0 2 0.5 1. 6 3 1 2 8 5 0 0 2 0 6 1 . 5 9 8 3 4 2 0 0 2 - •38 4 . 4 4 3 1 2 4 0 0 2 - •05 7 . , 8 1 8 2 8 1 0 0 2 07 6 . 4 8 0 6 1 3 0 0 E - 17 5 . 8 7 1 3 8 9 0 0 E 06 4 . . 4 0 0 7 4 2 0 0 E 03 2 . 7 4 2 6 8 3 0 3 E - •17 3 . 7 3 5 3 7 6 0 0 2 - •03 1 . 0 0 0 0 0 0 0 0 E 00 2 . . 2 2 0 1 1 1 0 0 E -•08 3 . , 2 1 6 5 1 4 0 0 2 - •06 2 . 9 9 8 5 1 5 0 0 E - •03 5 . 7 0 8 9 2 0 0 0 E - - 0 6 1 . , 0 0 0 0 0 0 0 0 2 00 7 . , 8 8 5 9 1 7 0 0 2 - •14 1 . 0 7 6 9 9 5 0 0 E - •10 1 . 7 5 7 5 1 4 0 0 2 - - 0 2 2 . , 8 7 7 8 1 4 0 0 E -- 1 2 5 . . 1 2 1 9 2 1 0 0 2 -• 14 1 . 9 5 2 3 8 9 0 0 E 13 2 . 1 0 2 7 0 9 0 0 E 03 1 . 3 1 0 0 0 0 0 0 2 0 2 4 . 0 3 8 6 5 7 0 0 E-•05 4 . 5 2 7 1 7 6 0 0 E - •13 1. 0 7 3 5 8 0 0 0 E 04 6 . 7 2 8 8 2 6 0 0 2 19 2 . , 3 3 6 5 0 0 0 0 2 21 5 . 8 4 8 3 6 8 0 0 E 08 8 . 1 5 6 4 5 6 0 0 E - - 1 2 1 . 0 0 0 0 0 0 0 0 E 00 3 . . O 0 0 5 1 9 O O E - •01 4 . 2 8 8 1 0 4 0 0 2 -•01 5 . 6 3 4 2 3 7 0 0 F 0 0 6 . . 9 U 6 0 9 8 0 0 E 01 1. . 5 0 7 2 1 6 0 0 2 0 2 2 . , 9 9 8 6 1 8 0 0 E 0 2 1 . 3 4 9 3 0 9 0 0 E - - 3 3 1. . 1 3 6 7 4 8 0 0 E -- 0 4 1. . 0 9 2 3 1 1 0 0 2 06 1 . . 2 9 5 5 9 7 0 0 E - -14 1 . 1 3 9 8 2 8 0 0 E 0 5 4 . . 4 9 5 1 5 6 0 0 2 0 2 1. . 2 0 6 6 8 9 0 0 2 - - 1 4 7 . . 8 5 5 7 6 9 0 0 E - -0 3 1 . 0 0 0 0 0 0 0 0 E 0 0 3 . . 0 5 3 2 4 5 0 0 E - - 0 7 1. , 4 2 2 2 7 0 0 0 E-- 0 5 1. , 2 1 4 9 1 4 0 0 E -- 0 3 2 . , 5 8 5 2 3 9 0 0 2 - - 0 5 1. .OOOOOOOOE 00 5 . . 3 2 4 3 7 8 0 0 2 - - 1 2 1. . 4 9 1 0 6 3 0 0 E - - 0 9 3 . , 3 7 1 4 9 9 0 0 E -- 0 2 1. . 1 6 1 1 0 3 0 0 2 -- 1 0 3. . 1 6 5 2 9 4 0 0 2-- 1 2 3 . . 1 5 9 2 6 3 0 0 E 11 4 . , 7 1 0 7 0 5 0 0 2 02 1. . 8 5 2 0 0 0 0 0 2 01 1. . 5 3 2 8 6 1 0 0 2 - - 0 4 1. , 2 7 1 0 1 0 0 0 E --11 4 . , 1 0 5 9 5 3 0 0 E 0 3 1. . 5 8 2 5 4 4 0 0 2 17 1. . 0 6 4 1 3 8 0 0 2 18 2 . . 6 3 1 0 9 2 0 0 E 07 3 . . 0 6 8 6 3 3 0 0 E - - 1 0 1. .OOOOOOOOE 00 1 . 1 9 7 3 4 7 0 0 2 -- 0 1 6 . . 2 6 1 1 4 6 0 0 F -- 0 2 2 . . 0 9 0 1 1000E-- 0 1 7, . 7 1 8 5 7 6 0 0 2 - 0 1 7. . 1 0 4 1 2 9 0 0 2 - 0 1 3 . . 9 0 6 2 3 2 0 0 E - - 0 1 9 . . 1 5 2 6 4 1 0 0 E -- 3 0 2. . 3 8 9 6 0 5 0 0 2 - - 0 4 3 . 8 4 9 7 3 5 0 0 2 04 7. . 9 1 3 7 4 0 0 0 E -- 1 3 5 . . 2 1 6 1 3 7 0 0 2 0 3 7 . 6 2 2 7 6 9 0 0 E 01 1 . 368 16400 2-- 1 2 1. . 3 9 8 2 2 2 0 0 E - - 0 2 1 . 0 0 0 0 0 0 0 0 E 00 2 . 3 0 2 2 9 4 0 0 E - 0 6 4 . 4 9 4 5 5 1 0 0 2 - - 0 5 5. . 8 4 7 1 2 9 0 0 E - - 0 4 8. . 6 5 4 8 3 7 0 0 E - 0 5 1 .OOOOOOOOE 00 1 . 5 5 5 1 3 1 0 0 E - 1 0 1. . 2 2 4 7 8 9 0 0 E - - 0 8 5. . 6 6 0 4 5 4 0 0 E - 0 2 2 . 2 5 4 3 2 4 0 0 E - 0 9 8 . 6 5 2 3 1 9 0 0 E - 1 1 211 1 . 1 5 5 7 5 8 0 0 2 10 1 . 8 3 5 1 6 3 0 0 E - 1 0 2 . 2 0 4 3 5 0 0 0 E 0 6 1 . 3 5 6 8 8 7 0 0 E - 0 2 2 . 0 0 2 4 4 2 0 0 E - 0 3 2 . 1 0 5 7 0 3 0 0 E - 1 1 2 . 2 1 5 3 1 9 0 0 E - 0 2 3 . 19.231 3 0 0 E - 0 U 6 . 8 8 8 5 8 6 0 0 E - 0 8 7 . 6 5 9 3 2 0 0 0 E 08 1 . 6 3 4 4 6 7 0 0 2 - 0 9 2 . 9 0 3 0 5 1 0 0 E 05 3 . 9 1 5 2 9 5 0 0 E - 0 3 2 . 7 9 2 7 7 1 O O E - 0 5 3 . 0 5 8 7 2 6 0 0 E - 1 0 3 . 2 1 9 4 2 0 0 0 E - 0 2 1 . 9 2 0 5 8 5 0 0 2 - 0 4 2 . 9 1 4 9 8 1 0 0 E - 0 7 7 . 9 3 5 8 2 8 0 0 E 0 7 1 .0 1 1 0 8 8 0 0 E - 0 3 5 . 3 7 2 4 9 1 0 0 E 0 4 1 . 3 9 9 3 7 2 0 0 2 - 0 3 8 . 1 1 4 0 6 7 0 0 E - 0 7 2 . 8 3 9 6 6 2 0 0 2 - 0 9 4 . 3 9 6 7 9 3 0 0 E - 0 2 1 . 2 4 8 4 6 2 0 0 E - 0 4 9 . 8 9 9 2 3 1 0 0 E - 0 7 1 . 16 1 7 8 2 0 0 E 0 7 4 . 7 2 7 3 0 5 0 0 E - 0 8 1 . 2 9 8 0 1 0 0 0 E 04 5 . 8 9 3 3 3 8 0 0 E - 0 4 4 . 1 6 3 5 6 5 0 0 E - O 8 1 . 8 6 8 2 6 5 0 0 E - 0 3 5 . 6 9 5 1 7 9 0 0 E - 0 2 8 . 6 2 1 3 0 1 0 0 E - 0 5 2 . 8 3 4 2 3 1 0 0 E - 0 6 2 . 2 3 0 0 0 5 . 0 0 2 0 6 1 . 7 7 5 7 0 4 0 0 E - 0 7 3 . 7 9 4 9 4 7 0 0 E 0 3 2 . 8 2 2 4 0 3 0 0 2 - 0 4 3 . 3 4 6 2 9 7 0 0 E - 0 9 9 . 3 5 1 0 0 9 0 0 E - 0 8 7 . 1 0 2 6 9 8 0 0 E - 0 2 6 . 2 4 8 4 5 2 0 0 S - 0 5 7 . 0 6 9 2 6 1 0 0 2 - 0 6 5 . 3 2 1 6 1 1 0 0 E 05 5 . 5 9 6 7 5 0 0 0 E - 0 7 1 . 3 1 7 7 6 6 0 0 2 0 3 1 . 4 9 7 5 3 9 0 0 E - 0 4 3 . 8 4 8 2 2 8 0 0 E - 1 0 3 . 7 6 1 9 6 2 0 0 2 - 0 7 8 . 5 9 5 3 1 1 0 0 E - 0 2 4 . 7 2 3 5 4 1 0 0 E - 0 5 1 . 5 7 5 3 6 1 0 0 E - 0 5 1 . 5 1 7 1 0 6 0 0 E 0 5 1 . 5 2 7 2 3 8 0 0 E - 0 6 5 . 2 1 6 0 9 1 0 0 E 0 2 8 . 6 3 3 4 4 6 0 0 2 - 0 5 1 . 4 1 5 5 5 6 0 0 E 02 1 . 8 9 7 0 6 4 0 0 E 0 3 5 . 6 1 6 9 1 8 0 0 E - 0 9 1 . 5 3 0 6 9 0 0 0 E - 0 2 1 . 0 6 2 8 6 4 0 0 E - 2 6 4 . 3 9 2 4 3 8 0 0 E 02 1.OOOOOOOOE 0 0 2 . 3 2 7 0 3 6 0 0 2 - 0 4 8 . 6 3 7 1 1 8 0 0 E - 0 2 5 . 2 7 6 1 3 0 0 0 E 01 1 . 0 0 9 0 6 2 0 0 E 0 3 6 . 0 7 9 7 1 6 0 0 2 - 0 8 1.. 8 3 4 7 7 6 0 0 E - 0 3 3 . 4 1 4 7 0 5 0 0 E - 2 4 5 . 7 6 3 1 8 9 0 0 2 01 1 .OOOOOOOOE 0 0 5 . 3 0 8 1 1 4 0 0 E - 0 4 1 . 2 2 5 7 1 4 0 0 E - 0 1 2 . 3 1 3 2 7 9 0 0 E 01 5 . 9 6 0 2 3 3 0 0 E 0 2 . 4 . 4 3 3 7 9 5 0 0 E - 0 7 3 . 1 7 7 8 1 9 0 0 E - 0 4 4 . 1 9 G 2 0 9 0 0 E - 2 2 1 . 0 5 8 5 7 2 0 0 E 0 1 1.OOOOOOOOE 0 0 1 . 0 6 6 1 3 5 0 0 E - 0 3 1 . 6 4 5 6 9 6 0 0 E - 0 1 1 . 1 5 0 0 7 6 0 0 E 01 3 . 8 1 6 1 3 5 0 0 E 02 2 . 3 8 6 4 8 4 0 0 E - 0 6 7 . 2 9 7 1 4 5 0 0 E - 0 5 2 . 4 5 4 2 3 9 0 0 E - 2 0 2 . 5 2 0 5 3 2 0 0 2 00 1.OOOOOOOOE 0 0 1 . 9 3 9 6 6 8 0 0 E - 0 3 2 . 1 1 7 7 4 7 0 0 2 - 0 1 6 . 3 2 0 3 2 1 0 0 E 00 2 . 6 0 6 8 2 8 0 0 E 0 2 1 . 0 1 2 5 3 0 0 0 E - 0 5 2 . 0 8 9 4 3 2 0 0 E - 0 5 8 . 0 3 0 7 9 9 0 0 E - 1 9 7 . 3 6 7 1 4 7 0 0 E - 0 1 1.OOOOOOOOE 0 0 3 . 2 5 7 1 3 1 0 0 E - 0 3 2 . 6 3 0 6 7 0 0 0 E - 0 1 3 . 7 6 1 9 3 0 0 0 E 0 0 1 . 8 7 2 9 3 7 0 0 E 02 3 . 5 4 7 7 8 0 0 0 E - 0 5 7 . 1 3 3 0 9 5 0 0 E - 0 6 1 . 6 5 1 0 7 7 0 0 E - 17 2 . 5 3 6 1 9 7 0 0 E - 0 1 1.OOOOOOOOE 00 5 . 1 2 6 4 6 5 0 0 E - 0 3 3 - 1 8 0 4 2 2 0 0 E - 0 1 2 . 3 8 9 9 3 6 0 0 E 00 1 . 4 0 1 9 9 4 0 0 E 0 2 1 . 0 6 3 7 6 1 0 0 E - 0 4 2 . 8 0 7 6 0 0 0 0 E - 0 6 3 - 9 1 1 0 0 0 0 0 E 00 1 . 2 4 9 4 0 4 0 0 E 15 1.OOOOOOOOE 0 0 2 . 1 3 1 6 1 9 0 0 F . - 0 2 4 . 3 7 1 3 0 6 0 0 E - 0 4 1 . S 5 2 2 2 6 0 0 E 01 1 . 1 4 3 3 4 5 0 0 E - 0 5 1.OOOOOOOOE 00 2 . 5 6 8 8 1 9 0 0 E - 0 8 1 . 1 0 4 0 0 0 0 0 E 00 2 . 3 3 5 3 3 9 0 0 E 13 1.OOOOOOOOE 00 1 . 2 1 2 1 3 7 0 0 E - 0 3 7 . 2 1 4 1 5 7 0 0 E - 0 4 5 . 8 5 0 2 5 4 0 0 E 00 4 . 1 9 4 4 9 6 0 0 E - 0 5 1.OOOOOOOOE 00 1 . 9 6 1 1 5 7 0 0 E - 0 7 3 . 8 3 4 0 0 0 0 0 E - 0 1 8 . 8 1 2 5 0 7 0 0 E 11 1 .OOOOOOOOE 00 1 . 1 1 5 5 1 6 0 0 E - 0 4 1 . 1 0 1 1 8 9 0 0 E - 0 3 2 . . 2 4 6 6 1 5 0 0 E 00 1 . 2 2 7 1 7 4 0 0 E - 0 4 1.OOOOOOOOE 00 1 . 0 9 9 8 4 9 0 0 E - 0 6 1 . 5 6 5 9 9 8 0 0 E - 0 1 5 . 4 1 2 1 2 5 0 0 E 10 1.OOOOOOOOE 00 1 . 5 1 0 8 2 8 0 0 E - 0 5 1 . 5 7 3 6 9 0 0 0 E - 0 3 1 . 0 0 3 0 9 9 0 0 E 00 3 . 0 2 3 7 8 7 0 0 E - 0 4 1.OOOOOOOOE 00 4 . 8 3 . 5 3 3 0 0 0 E - 0 6 7 . 2 7 0 9 9 7 0 0 E - 0 2 4 . 9 5 S 5 8 4 0 0 E 09 1.OOOOOOOOE 00 2 . 7 6 8 2 6 9 0 0 E - 0 6 2 . 1 5 6 6 7 6 0 0 E - 0 3 5 . 0 3 8 2 4 7 0 0 E - 0 1 6 . 5 0 5 4 6 9 0 0 E - 0 4 1.OOOOOOOOE 0 0 1 . 7 5 0 7 8 0 0 0 E - 0 5 3 . 7 3 9 0 0 0 0 0 E - 0 2 6 . 2 5 8 7 0 3 0 0 E 08 1.OOOOOOOOE 00 6 - 4 5 2 2 7 7 0 0 E - 0 7 2 - 8 3 1 9 0 9 0 0 E - 0 3 2 . 7 8 3 2 1 3 0 0 E - 0 1 1 . 2 5 7 3 4 9 0 0 E - 0 3 1 .OOOOOOOOE 00 5 . 4 0 7 6 5 6 0 0 E - 0 5 2 . 0 8 9 0 0 0 0 0 E - 0 2 1 . 0 2 2 8 9 0 0 0 E 08 1 .OOOOOOOOE 00 1 . 8 2 7 0 4 1 0 0 E - 0 7 4 . 4 5 1 2 1 4 0 0 E - 0 4 2 . 2 7 2 8 9 9 0 0 E 15 5 . 6 7 1 5 2 6 0 0 E - 0 2 1 . 0 1 7 9 0 8 0 0 E - 0 2 2 . 6 1 5 3 4 5 0 0 E 0 3 5 . 9 9 5 1 1 5 0 0 E - 1 1 1. 1 2 4 9 3 7 0 0 E - 0 4 2 . 4 7 0 5 6 9 0 0 E - 0 9 1 . 3 0 5 5 9 8 0 0 E - 0 9 T . 0 6 4 8 1 9 0 0 E - 0 3 ' . 1 . 4 9 5 8 0 3 0 0 3 13 3 . 1 0 5 6 8 5 0 0 E - 0 2 3 - 2 6 1 8 3 0 0 0 E - 0 4 2 . 8 7 0 0 8 0 0 0 E 02 1 . 3 1 5 1 9 5 0 0 E - Q 9 2 . . 3 7 0 0 2 5 0 0 E - 0 4 2 . 4 8 1 6 6 7 0 0 E - 0 8 1 . 2 6 0 1 0 7 0 0 S - 0 8 . 2 . 1 9 8 0 1 6 0 0 E - 0 3 2 . 2 8 1 6 5 0 0 0 E 11 1 . 3 8 3 7 9 5 0 0 E - 0 2 1 . 9 0 6 3 6 9 0 0 E - 0 5 4 . 5 3 1 0 3 9 0 0 E 01 1 . 7 1 7 9 5 3 0 0 2 - 0 8 4 . 3 8 4 1 5 2 0 0 E - 0 4 1 . 7 5 2 0 9 7 0 0 2 - 0 7 8 . 6 0 7 4 5 7 0 0 E - 0 8 4 . 0 6 0 0 3 3 0 0 E - 0 3 6 . 6 5 4 5 0 9 0 0 E 09 1 . 2 3 5 9 8 9 0 0 2 - 0 2 1 . 7 6 5 1 3 0 0 0 2 - 0 6 9 . 4 8 0 4 9 9 0 0 2 00 1 . 5 0 7 1 5 3 0 0 E - 0 7 7 . 3 5 7 7 2 7 0 0 2 - 0 4 9 . 3 7 6 7 5 5 0 0 2 - 0 7 4 . 4 8 4 2 9 3 0 0 2 - 0 7 6 . 8 7 2 4 8 2 0 0 E - 0 3 3 . 2 2 9 6 7 8 0 0 E 08 8 . 6 2 4 6 8 7 0 0 E - 0 3 2 . 3 4 2 2 9 2 0 0 2 - 0 7 2 . 4 7 5 0 2 1 0 0 E 00 9 . 6 6 4 1 5 4 0 0 2 - 0 7 1 . 1 3 9 7 8 3 0 0 2 - 0 3 4 . 0 1 7 8 5 1 0 0 2 - 0 6 1 . 8 7 9 1 2 6 0 0 E - 0 6 1 . 0 8 4 8 3 9 0 0 2 - 0 2 2 . 3 5 5 0 8 0 0 0 2 07 6 - 3 2 1 6 2 3 0 0 2 - 0 3 4 . 1 3 9 5 5 8 0 0 2 - 0 8 7 . 7 2 2 0 0 2 0 0 E - 0 1 4 . 8 2 3 9 9 3 0 0 2 - 0 6 1 . 6 6 1 6 5 9 0 0 2 - 0 3 1 . 4 3 7 5 6 5 0 0 E - 0 5 6 . 5 9 1 4 9 2 0 0 E - 0 6 1 . 6 1 5 9 4 3 0 3 2 - 0 2 2 . 3 8 7 5 2 3 0 0 2 0 6 4 . 8 2 2 0 9 0 0 0 2 - 0 3 9 . 2 2 3 9 2 4 0 0 E - 0 9 t r > < / » tf» W r" f r-t H M n w w as 1-3 i-* o H O ? ! hr) Ul Ul OA CTi f to i-3 w «/»v» r '.-o a M a --a 2 ! 5 S to t-3 * -•J\ *3 C ui s» : a \ i-i i •*! f H ?» < CO >-} CO t n co ;w SJ a 10 II CO Ul 0> C n t O - r . U I - » U l r O U l U l U I O J - » - * U I (Ti VO £r - i CO CD 43 tO to ~» O 03 O O 0 o M tO 1 I o o _» (Jl U) OA tO _» >45 Ul vo vo a i W O J co vo %o as ui vo o o o 0 o o CO tO to 1 I _i o o Ul Ul -• _» 43 - j cn C C - J \Q OA cn O Ul \0 cn si u i o o o 0 o o to co 1 I o o o Ul Ul o c «r vO 43 a cn - J 43 ui o o 0 o tO 1 I o o Ul —» ro ui CD O » _1 Ul o Ul Ul Ul Ul o o 0 o CO L0 1 I o -» cn u ui co cn co UJ ui Ui cn o _. UJ ui tO 00 U> -* Ul o o o 0 o o to '0 co 1 I o o o Ul Ul s i o 0 cn o CO Ul CD -» 01 4= o o o o t-o ro l o o ui a « ui U) Ul Ul o Ul -» vO *43 o o 0 o co ro 1 i o o Ul -• si cn o ui o o tO O vO iO CO o o 0 o LO ro 1 I o -» cn to « —. - J .-» vo cn -j co c ~-s l Ul o o o o to w I o o Ul tO CO ui cn 43 43 O Ul -J 43 Ul 35 O O O O '0 ro I o o cn 43 o vo -» to o> s i —» —A —« Ul 'Jl to CD tO U) -j -r o a o 0 o o to co ro 1 l i o a o Ul Ul -» ui to •B AO -. o -» Ul cn o o o 0 o ro co 1 I o -» Cn - » OJ Ul to O O oo ui cn vO ui co 43 s i OA -» o O O o 0 o o to co to 1 I o o o ui to cn o to o o -. o to a sl CD CO CO o o o o to to I o o 43 u i on o co —» Ul Ul 00 43 co to vO o o o 0 o ?a ro 1 I o o Ul - » r o co - J c ui on U» CO ui cn oo ui o o 0 o to CO 1 I o -» cn -t o> + o Ul cn II n? ^ c n c ^ - . t o u i c n u i _ . - . - * - ' u i - » - J c o c o -» o Ui o u i o co o u i O CO o o O o w to I O o O Ul 43 CO V0 -» vO - • 43 43 43 Cn to Ul O O 0 o to w 1 I -» O Ul si CO CO \0 CO O 4r Ul 43 —• VO vO O O o o ro 10 I o o Ul -* J Ul o •ST CD vO to - J VO cn O -» CD o ^ O O O 0 o o ro :T) to 1 I I o o o ^ to o -. to o o to o to to O vO -J O *: 'X) o -* o o o o o o 1:0 tO CO I I o o o to Ul _. 4= VO o c cn cn Ul o o o 0 o to CO 1 I o o Ul o —• Ul cn CO -1 \J3 VO UJ 4=-co to o o o o -o to I o o vO Ul cn O to o CO 00 4= Ul — i Ul o o 0 o to ro 1 I o o - . to to - . • • • O ~* VO o -• O -4 O o to CO O 43 to O -• vO o o o o o o to to ro I I o o -* o w e CncnCD-*4=--4rrO-.N>-.-'W :0.-*vO.O o cn Ul Ul ro o to - J Cn vo U J u i o o 0 o ro to 1 I o o -4 4= m —• Ul to c to 4= on —» cn 43 o o o o to ro o o Ul o Ul vO to to cn o cn to J3 O o o 0 o to to 1 I o o -j to O Ul Ul O VO VO o —» <o O O Ul O -» o o av cn o o o o o o to to I I o o -» o to Ul to CO 4= O _» Ol VO Ul O 4= O W si CD O Ul ui o cn co cn co 4= 41 IO -» 00 4T O o o O o o to to co 1 o o o to o -» cn o 4= O U3 O tO O cn o CO o o a CJ o to i-0 o o Ul o VO Ul. ro ~> Ul - ~ l Ul cn 4= Ul Ul o o 0 o to to 1 I o -» to Ol ^ U I N I C to Ul O CO 4= Ul o ro -C vO C7> Ul o o 0 o to to 1 I o o t o t o 4= Ul 4= Ul ui Ui >45 -» VO Ul o -c o o o o to CO I I o o Ul vO -I p u > • • O Ul Ol O O 4= O —* cn O OA O o to o O Ul o o o o o o o to to to I o o o O Ul Ul OA O o CO o 43 O si o -o o o o o o to to I o o Ul o 43 VO ~4 Ul 4= tO O OA IO 0 -» O o O o tO to 1 I O o ui to Ui - J a> •= tO OA cn -4 CO N> Ul O o o 0 o to to 1 I o o Ul vO O 43 tO O O OA O CO Ul o vo >o O UJ VO O Ul VO o o o o o o to to to t o o o o cn Ul CO o vO O si o 43 O Ul o -> o o o o o w ro I o o -P o s i o to Ul 43 Ul 4= IO 43 sj CO Ul o o 0 o to to 1 I o o ui to Ul Ul CO o -. o 43 00 Ul - » O 43 o o 0 o ro tu 1 I o o Ul CO o o o _. o to O s i O OA O CO o o o o rt to o o o cn s i Ul • • iO Ul tO OA to c o to O OA I OA o o 0 o to 1 I o o UJ .13 -« UJ l i t O OA o O s! Ul O sj O Ul o O si si O Ul ui o o o o o o to to to I I o o o o u i —» I 4 3 OA • I 43 O Ul OA - » CD o Ul VO o OA O o o o o w ro t I o o Ul 00 _ . to -« • I • o o to O s i 43 o —• vo o to vo O Ul -43 O VO vO o o o o o o ro to to I o o o O s i to 43 O OA O cn o o vO o a o o o o o to to I o o 43 O , to -» Ul I t < ro ov ui to u i vo ro vo s i C0O-P 00 -» VO O -» Ul o o o 0 o o to to to 1 I I o o o Ul Ul Ul _ » - • - * tO vO Ul Ul s i O -» s i Ul s i ui to to ui o to {- {: a o o o o o o w M to I I I o o o ui ui ro r o u i t o c n 4 3 u i r o r o t o - ^ 4 3 ^ r o u i r o m s i u i u i u i u i - » u j c n _ » r o u i u i to _i tr tO -» tO Ul Ul Ul OA s i - » to Ul ^o o o o 0 o to to 1 I -< o O Ul Ul Ul 43 Ul OA 43 Ul to O cn o ui o o o o to I o o ui to CO Oi s | Ul s i -P VO 43 AO Ul OA O o o 0 o tO tO 1 I o o 43 43 kO 43 o o Ul 43 43 s i s i -A CO 0 o o o L0 to 1 I o o Ul 43 Ul CO o to to -> S i s i Ul 00 Ul \0 o o 0 o to to 1 I o -» NJ O Ul O -» Ul s i OA _ i -» o Ul wO _» _» -» av OA s i vO o o o o o o .fl to to I I o o o ui 43 ro tO vJO vO Ul 00 s i UJ ui 00 OA o —• o o 0 o to cu 1 I o o 43 43 yO O to to 00O to o o o to I o o Ul 43 J ca o Ul s i - a vO CO O O OA O tO s i Ul vi) O O O O o o o to to I I I o -» o to O Ul O 43 OA 43 s i S i s i OA OA OA o o o o M 10 I o o 43 ro UJ ro OA o ui cn to to to cn OA -» o o o o to to I I o o Ul 43 O si Ul OA CO OA vO Ul to c -» Ul o o o o to to I I o o Ul u i _t 4? Ul CO Ul Ul to KJ _> s i CO s i O CJ 0 o to to 1 I o o 00 -» O si O CO CO si Ul 43 _ i o o o o o w to I o o UJ Ul tO VO 43 VO xO to 00 VO vo - . C O si CO O CD OO to o o o 0 o o to CO CO 1 I I o o o t o Ul u i UJ vO s i o OA 00 O 43 VO CD OA CO Ul -» VO s i O VO 0 o o o o o w cl to 1 I I o o o Ul Ul - » to 1—' to 213 TABLE E.3 CLAUS PLANT C A L C U L A T E A D I A B A T I C F L A M E T E M P E R A T U R E I N F U R N A C E AND I N C A T A L Y T I C C O N V E R T E R S rnxTtnnvin H I M K B P I ? R V & D TN H2S I S COMPOUND 10 • C R E A T E S 2 8 S I Z E = 2 0 P $ G E T S 2 8 5 N U R B E R $ $ C O M P I I . E COMPUTER PROGRAMME 28 S C L A U S F U R N A C E - C A T C O N V E R T E R E Q U I L I B R I A WITH 36 S P E C I E S AND N U N I T S - 1 C O N V E R T E R S * *. * * « OP N 2 , H 2 0 , H 2 S , S 2 , C 0 2 ) * I N I N 0 1 2 C 3 C A R D S C C A R D S C A R D S C C A R P S I N C A R D 1 : C A R D 2 : C A R D 3 : C A R D 4 : C A R D S 5 , C O M P U T E R H2S S 3 C 2 H 0 I N F I L E 1 NH3 H 2 S 2 SU C 2 H 4 0 ' S ' F I L E • A ' • S O U R C E * 2 NO SH S 5 CO A R E : A R E : A R E : 3 N 2 SN S 6 COS u 5 6 0 0 2 OH SO S 0 2 S 0 3 S7 S8 HCN C 0 2 C S C S 2 7 H S 2 0 C 2 N 2 TOTAL 8 H2 S CHU 9 H20 S 2 C 2 H 2 HEATS OF F O R M A T I O N AT 2 9 8 . 1 5 K FOR 36 COMPOUNDS E R R , E X P N 2 , E X P H 2 0 , E X P H 2 S , E X P S 2 , E X P C 0 2 M C B R I D E C O E F F I C I E N T S FOR 36 COMPOUNDS N F E E D S , N U N I T S , N A F T I , N R R I , N E Q M I , T E R R L I M I T , L O G , I S I M P , ( S T E P ( I ) , 1= 1 ,4 ) , E P S F I L E « P ' P C T . A I R , A R E : P C T N H 3 P C T H 2 0 , P C T C H 4 , P C T C 0 2 N U U , K S E A D P , K A O , T A , T E , T C , RR P ( 3 ) , P (9) , P ( 1 0 ) , P ( 1 9 ) , P ( 3 4 ) , ( P R E S S U R E S F L A S T , H S D , S O D , C S D , S L S 6 , 7 (FOR C A T A L Y T I C C O N V E R T E R # 1 ) : S I M I L A R TO 2 , 3 , 4 (FOR F U R N A C E ) * PROGRAM C O M P U T E S UP TO 6 C A T C O N V E R T E R S — A DD MORE S E T S OF 3 C A R D S E A C H * ********** ******************************* ************ DOnST.E P R E C I S I O N CPD P E A L K , N , N O , N O D , N O N O D , N 2 , N 5 D I M E N S I O N C P D ( 6 9 ) , TEM P A F (7) , I T E R S (4) , BM (37) , DM (37) , FM (37) , 1 A ( 3 6 , 2 , 7 ) , B ( 3 6 , 2 , 7 ) , X ( 4 ) , S T E P (4) , K ( 3 6 ) COMMON D H F ( 3 6 ) , AM (37) , CM (37 ) , EM ( 3 7 ) , P ( U 1 ) , . C , H , N , 0 , S , 1 A C , A H , A N , A O , A S , C S D , H S D , H O D , S O D , S L S , E X P N 2 , E X P H 2 0 , 2 E X P H 2 S , E X P S 2 , E X P C 0 2 , R E , T E P . P , A D H F , O M R S , HT A , K , KW RT : **** COMPOUND N A M E S , H E A T S OF F O R M A T I O N , ERROR AND E X P O N E N T I A L S AND I T E R P A R A M E T E R S READ ( 5 , 1 0 1 0 ) ( C P D ( H C ) , N C = 1 , 6 9 ) R E A D ( 5 , 1 0 2 0 ) (DHF (NC) , N C = 1 , 3 6 ) READ ( 5 , 1 0 2 0 ) E R R , E X P N 2 , E X P H 2 0 , E X P H 2 S , E X P S 2 , E X P C 0 2 READ ( 5 , 1 0 3 0 ) ( ( (A (NC , LH , J ) , J = 1 , 7 ) , L H = 1 , 2 ) , N C = 1 , 3 6 ) P E A D ( 5 , 1 0 4 0 ) N F E E D S , N U N I T S , N U W R T , N A F T I , N R R I , N E Q M I , KWRT, T E R R READ ( 5 , 1 0 4 5 ) L I M I T , L O G , I A , I B , ( S T E P ( I ) , 1 = 1 , 4 ) , E P S C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C O M P U T E R W R I T E S E R R O R S AND E X P O N E N T S AND I T E R A T I O N P A R A M E T E R S WRITE ( 6 , 1 0 5 0 ) E S R , E X P N 2 , E X P H 2 0 , E X P H 2 S , E X P S 2 , E X P C 0 2 , 1 N F E E D S , N U N I T S , N A F T I , N R R I , N E Q M I , T E R R C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C O N V E R T C O E F F I C I E N T S O F E X P A N S I O N FOR H TO G I V E I T T H E S A M E FORM AS T H A T FOR C P C C P T / R = A1 + A 2 * T A 3 * T * * 2 C H T / R = A6 + A 1 * T + A 2 / 2 * T * * 2 C = B 1 * B 2 * T • E3 * T * * 2 DO 10 NC=1,36 DO 10 L H = 1 , 2 B ( N C , L H , 1 ) = A ( N C , L H , 5 ) B ( N C , L H , 2 ) = A ( N C , L H , 1 ) B ( N C , L H , 3 ) = A (NC , L H , 2) / 2 . 0 B ( N C , L H , 4 ) = A ( N C , LH , 3) / 3 . 0 B ( N C , L H , 5 ) = A ( N C , L H , 4 ) / 4 . 0 AU * T * * 3 A 3 / 3 * T * * 3 B4 * T * * 3 + A5 * T * * 4 0 . 0 * T * * 5 + A 4 / 4 * T * * 4 + A 5 / 5 * T * * 5 B5 * T * * 4 • B6 * T * * 5 214 B(NC,LH,6) = A(NC,LH,5) /5.0 CONSTANT A6 I S SET TO ZERO SINCE CPT/R EXPANSION HAS NO T**5 TERM CONSTANT B l I S USED IN S BB ROUTINE KP SINCE B1 = A1 BEFORE A1 HAS SET EQUAL TO ZEHD 10 A (NC,LH,6) = 0 . 0 DO 130 NFDS=1,NFEEDS COMPOSITION OF I N I T I A L MIXTURE I S FOUND—BASED ON 100 SOLES OF ACID GAS DO 20 NC=1,36 AM (NC) = 0 . 0 DM (NC) = 0.0 20 P (NC) = 0.0 P(38)=0.0 P(41)=0.0 COK.POSr.TrON OF FEED TO FURNACE I S READ AT THE BEGINNING OF EACH FEED ITERATION COMPUTER READS: PCTAIR, PCTNH3, PCTII20, PCTCH4, PCTC02 READ ( 5 , 1020) PCTAIR, AM ( 1 ) , AM ( 9 ) , AM ( 2 8 ) , AM (31) WRITE (4, 1020) PCTAIR, AM ( 1 ) , AM ( 9 ) , AM ( 28) , AM (34) C****************************** - AM (28) - AM (34) 0.75*AM(1) • 2.0*AH{28) AM (10) AM ( 5) AM ( 3) AM (37) PNH3 = PN 2 = P02 = PH20 = PH2S = PCH4 = PCD 2 = KUNITS=1 KU=0 I F (NAFTI AM (5) = 100.0 - AM (1) - AM (9) = 0. 0 0 5 M M (10) *PCTAIR = 3. 76*AM(5) = 100.0 *• AM(3) AH ( 1) /AM (37) A M ( 3)/AM (37) AH ( 5)/AM (37) AH( 9)/AM(37) AM (10) /AM (37) A8(28)/AM(37) AM (34) /AM (37) EQ. 1) KU=8 COMMENCE DO I F :ALCULATE AC = 1 AH = 1 AN = AO = AM ( 2) + 1 2.0*AM(15) • 2 2.0*AM(34) . AS = AM ( 10) + 1 AM{16) + 2 4. 0*AM (21) • 3 8.0*AM(25) + CSD = AC/AS HSD = AH/AS NOD = AN/AO SOD = AS/AO READ (5,1045) NDU, READ (5, 1060) P(3) ****************** AND ATOMIC RATIOS UNIT ITERATIONS BY READING GUESS OF AFT, COMPOSITION 130 NU=1,NUNITS (KUNITS .EQ. KU) STOP VARIOUS RATIOS OF THE FOLLOWING ATOMS TN THE FEED STEAM: C, H, = AM(26) f 2.0*AM(27) * AM(28) + 2. 0* {A K (2 9) * AM (30) *A M (3 1) ) *-AM(32) + AM(33) *• AM (34) • AM(35) * AM(36) 3.0*AM(1) *• AM(5) • AM(7) * 2.0* (AH (8) • AM ( 9) +AM (10) *AH (11) ) • AM(12) AM(26) *• 2.0*AM(29) + 4. 0* (AM (23) + AM (33 ) +AH (31) ) AM(1) *• AM (2) *• 2.0*AM(3) + AH(13) • AM(26) + 2.0*AM(27) N, 0, S AM ( 4) * 2 3. 0 *AM (16) . 0 * A M { 5) • A M(17) 0*AM(11) 0*AM (17) , 0*AM (22) AM(33) AM (12) AM (18) AM ( 6) AM (31) A M ( 9) AM (32) A3 (14) AM (33) AM(13) + AM(14) + AM(15) 3. 0*AM (20) AH (3 5) + 2. 0*AM (19) 6. 0*AM (23) 2. 0*AM (36) 7. 0*AM (24) KREADF, ° (9) -KAO, I E S , TA, TENEW, TC, R R P (10) , P(19) , P(34) I F (RR .GT. 1.0E-06) READ (5,1060) FLAST, HSD, SOD, CSD, SLS OMRR=1.0-RR 215 T H E R E A C T A N T S O F STREAM k E N T E R I N G F C B (NH=0) OR CAT C O N V E R T E R (NU>0) C A L C U L A T E T H E HEAT OF F O R M A T I O N OF ADHF = 0 . 0 DO 30 N C = 1 , 3 6 3 0 ADHF = ADHF • AM ( N C ) * D H F ( N C ) C A L C U L A T E HEAT C O N T E N T OF S T R E A M A C A L L C P H ( A M , B , 2 9 8 . 1 5 , HOA) C A L L C P H ( A M , B , T A , HTA) HTA= H T A - H O A 2 ***************************************** ************************************** COMMENCE A D I A B A T I C F L A M E T E M P I T E R A T I O N S FOR F U R N A C E OR C A T A L Y T I C C O N V E R T E R S • * C O N V E R G E N C E C R I T E R I A I S I N I T I A L L Y S L A C K — O N L Y 9 OF T H E 36 C P D S ARE C O N S I D E R E D I T E R S (1)-=0 I T E R S (4) =0 3 5 ERROR=ERR I F (KAO . E Q . 0) E R R O R = 1 0 . 0 * E R R DO 7 0 N F = 1 , N A F T I I T E R S ( 1 ) = I T E R S ( 1 ) • 1 TE= TENEW C A L L K P ( T E , A , B , K) C A L C U L A T E E Q U I L I B R I U M C 0 5 P O S I T I O N S I N THE C A T A L Y T I C C O N V E R T E R S DO 5 0 N R R = 1 , N B R I I F ( I E S . L E . 0) C A L L EQM ( N E Q M I , K A O , E R R , J E Q M I , X, S U M S Q , 1) I P ( I E S . L T . 0) GO TO 45 I F ( J E Q M I - L T . NEQMI) GO TO 4 5 C A L C U L A T E THE S T A R T I N G P O I N T FOH T H E H I L L - C L I M B I N G S U B R O U T I N E HOOKE E = 1 . 0 E - 0 6 X ( 1 ) = S Q R T ( P ( 3 ) ) X (2) = S Q R T (P ( 9) ) -t ( 3 ) = S Q R T ( P ( 1 0 ) ) -X ( 4 ) = S Q R T ( P ( 1 9 ) ) -W R I T E ( 6 , 1 0 9 0 ) W R I T E ( 6 , 1 0 6 0 ) P (3) , W R I T E ( 6 , 1 0 6 0 ) X (1) , C A L L HOOKE ( Y , X , 4 , I F (Y . L T . 1 . 0 E - 0 2 ) 3 0 TO 40 C A L L HOOKE1 ( Y , X , 4 , L I M I T , S T E P , L O G , E P S ) 4 0 C A L L EQM ( N E Q M I , K A O , E R R , J E Q M I , v ^ " " ^ 4 5 I T E R S ( 2 ) = N S R T T E R S ( 3 ) = J E Q M I I T E R S (4) = I T E R S (4) 4 - ITERS (3) C O N V E R G E N C E MAY NOT H A V E B E E N O B T A I N E D FOR E Q U I L I B R I U M I T E R S AT T H I S T E M P E R A T U R E C E A S E FURTHER I T E R A T I O N S BUT P R I N T R E S U L T O B T A I N E D SO F A R I F ( I T E R S (3) . G E . NEQMI) GO TO 5 5 C A L C U L A T E MOLES O F C , H, N , 0 , S I N S T R E A M E O F F U R N A C E OR C A T A L Y T I C C O N V E R T E R F C = 0 . 0 - S - E - E - E P (9) , P (10 ) , P ( 1 9 ) , P ( 3 4 ) X ( 2 ) , X ( 3 ) , X ( 4 ) L I M I T , S T E P , L O G , E P S ) L O G , E P S ) X , S U M S Q , 1) D E N = 4 . 0 KCONV=1 I F (C . L T . 1 . 0 E - 0 6 ) F C = AC / OMRR / C D E N = 5 . 0 F H = AH FN = GO TO 4 6 4 6 / OMRR / H AN / OMRR / N F O = AO / OMRR / O F S = AS / ( 1 . 0 - R R * S L S ) / S F A V G = ( F C + F H + F N + F O * F S ) / D E N C A L C U L A T E ^ M O L E S ^ O F ^ E A C H S P E C I E S I N S T R E A M E ( E Q U I L I B R I U M ) AND C ( R E C Y C L E ) 216 DO 4 7 N C = 1 , 3 6 E H ( N C ) = P ( N C ) * F AVG 4 7 C M ( N C ) = P ( N C ) * P A V G R R C O N D E N S E A L L T H E E L E M E N T A L S U L P H U R FROM S T R E A 3 C DO 4 8 N C = t 8 , 2 S 4 8 C M ( N C ) = 0 . 0 PO 49 N C = 1 , 3 6 4 9 BM (NC) = AM (NC) * C M ( N C ) C A L C U L A T E R A T I O S O F T H E F O L L O W I N G ATOMS I H T H E F E E D S TO EACH U N I T : C , K , N , 0 , S BC = B M ( 2 6 ) • 2 . 0 * 3 M ( 2 7 ) * BM (28 ) • 2 . 0 * (BM (29 ) *-BM ( 3 0 ) + B M (3 1) ) * 1 B M { 3 2 ) + B M ( 3 3 ) + B M ( 3 4 ) + BM(35 ) • B M ( 3 6 ) BH = 3 . 0 * B M ( 1 ) *• B M ( 6 ) *• BM (7) • 2 . 0 * (3M (8) +BM ( 9) +3 M (10 ) + 3M ( 1 1 ) ) 1 • 3 M ( 1 2 ) • 3 M ( 2 6 ) • 2 . 0 * B M ( 2 9 ) + 4 . 0 * (3M (28) + 3M (30 ) + BM (31) ) BN = B R { 1 ) + B M ( 2 ) *• 2 . 0 * B M ( 3 ) + E M ( 1 3 ) *• B M ( 2 6 ) + 2 . 0 * 3 M ( 2 7 ) BO = BM ( 2) + BM ( 4) * 2 . 0 * B M ( 5) + 3M ( 6) * BM( 9) • B M ( 1 4 ) • :^4!,ns, . B » < " i . Spi) . B.I32, ..1(33. • 1 2 . 0 * B M ( 1 5 ) + BM(3 5) 1 B M ( 1 6 ) 2 4 . 0 * P M ( 2 1 ) 3 8 . 0 * B M ( 2 5 ) 2 . 0 * B M (19 ) 6 . 0 * B M (23) 2 . C * B M (36) 3 . 0 * B M (20) 7 . 0 * B M ( 2 4 ) + • 5 . 0 *BM ( 2 2 ) BM (33) C A L C U L A T E NEW G U E S S O F R A T I O S OF ATOMS B C S D = B ' C / B S B H S D = B H / 3 S BNO D = B N / B O B S 0 D = B S / B O F C S D = 1 . 0 I F (BCSD . G T . 1 . 0 E - 0 8 ) F C S D = B C S D / C S D I F (ABS { F C S D - 1 . 0 ) . G T . ERR) GO TO 4 9 5 I F ( A B 3 ( B H S D / H S D - 1 . 0 ) . G T . ERR) GO TO 4 9 5 I F ( A B S ( B N O D / N O D - 1 . 0 ) . G T . ERR) GO TO 4 9 5 I F ( A B S ( 3 S O D / S O D - 1 . 0 ) . G T . ERR) GO TO 4 9 5 GO TO 6 0 C A L C U L A T E NEW D E S I R E D R A T I O S I N S T R E A M B ( E N T E R I N G T H E F U R N A C E ) 4 9 5 C S D = 3 C S D HSD=3HSD NOD=BNOD 5 0 SOD=3SOD C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C O N V E R G E N C E HAS NOT B E E N O B T A I N E D FOR R E C Y C L E I T E R A T I O N S AT T H I S T E M P E R A T U R E C E A S E FURTHER I T E R A T I O N S I N A L L U N I T S BUT P R I N T R E S U L T O B T A I N E D SO F A R 55 K U R I T S ^ O C O N V E R G E D AT T H E G I V E N R E C Y C L E R A T I O AND T E M P E R A T U R E C O M P U T E NEW G U E S S O F T H E A D I A B A T I C F L A M E T E M P E R A T U R E (AFT) 6 0 C A L L AFT ( T C , T E , A , B , N A F T I , T E N E W , KCONV) C U R R E N T V A L U E OF T E M P E R A T U R E I S W R I T T E N I F (KCONV . E Q . 0) K U N I T S = 0 I F ( K U N I T S . E Q . 0) GO TO 80 I F ( A B S ( T E - T E N E W ) . L E . T E R R ) GO TO 6 5 7 0 C O N T I N U E C H E C K TO S E E I F I T E R A T I N G ON 9 COMPOUNDS (KAO=0) OR 3 6 COMPOUNDS (KAO=1) 6 5 I F (KAO . E Q . 1) GO TO 8 0 KAO=1 GO TO 35 C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C O N V E R G E N C E O B T A I N E D FOR A F T I T E R A T I O N S OR L A S T A F T I T E R A T I O N HAS B E E N R E A C H E D * C A L C U L A T E T O T A L MOLES I N E A C H S T R E A M * 217 8 0 DO 8 5 N C = 1 8 , 2 5 8 5 DM (NC) = EM (NC) 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 N C = 1 , 3 6 EM (NC) - DM (NC) - CH (NC) A M ( 3 7 ) * AM(NC) BM (37) BM (NC) CM (37) • CM (NC) DM (37 ) + DM (NC) E M ( 3 7 ) • E M ( N C ) 90 F M ( 3 7 ) = P M ( 3 7 ) *• FM (NC) COMPUTE P E R C E N T R E C O V E R Y , B A S E D ON P ( 3 9 ) = P ( 3 8 ) / ( 1 . 0 - R R * ( 1 P ( 4 0 ) = P ( 3 9 ) * ( 1 . 0 - P ( 4 1 ) ) P (U 1) = P (U 0) + P (41) Qtf**if * * * * * * * * * * * * * * * * * * * * * * * * * * WRITE (4 , 1 0 4 5 ) N tJ , K R E A D F , K A O , I E S , T A , W H I T E ( 4 , 1 0 6 0 ) P ( 3 ) , P ( 9 ) , P ( 1 0 ) , P ( 1 9 ) , I F (RR . G T . 1 . O E - 0 6 ) W R I T E ( 4 , 1 0 6 0 ) NOD, C O M P U T E R W R I T E S H E A D I N G S FOR E I T H E R F U R N A C E OR (NU „ L T . NUWRT) GO TO 115 {HO . E Q . 1) W R I T E ( 6 , 1 0 3 0 ) R R , P C T A I R , A f l ( 1 ) , AM (9) AM ( 3 4 ) , P H 2 S , P N H 3 , P 0 2 , P H 2 0 , P N 2 , P C H 4 , P C 0 2 NUM1=NO-1 I F (NU . G T . 1) W R I T E ( 6 , 1 0 9 0 ) NUH1 W P I T E ( 6 , 1 1 0 0 ) 8 5 AM ( 3 7 ) B M ( 3 7 ) C M ( 3 7 ) D M ( 3 7 ) E M ( 3 7 ) F M ( 3 7 ) DO 9 0 FH (NC) AH ( 3 7 ) B K ( 3 7 ) C H ( 3 7 ) D M ( 3 7 ) E M ( 3 7 ) F (E Q U I L I B R I U M . 0 - ? ( 3 8 ) ) ) AND A C I D GAS S T R E A M S R E S P E C T I V E L Y T E , T C , RR P ( 3 4 ) , NU H S D , S O D , C S D , S L S , C A T A L Y T I C C O N V E R T E R NU R E S U L T S I F I F AM (28 ) 1 ( 6 , 1 0 9 0 ) T A , T E 100 W R I T E ( 6 , 1 1 1 0 ) N C , C P D ( N C ) , P ( N C ) , AM (NC) , C M ( N C ) , BM (NC) , EM (NC) 1 DM (NC) , FM (NC) DO 110 N C = 3 8 , 4 1 110 W R I T E ( 6 , 1 1 2 0 ) 1 P ( N C ) , C H E C K I F S U L P H n p HAS CPD (NC) , C P D (NC»4) , C P D ( N C * 8 ) , C P D (NC+12) , C P D ( N C + 1 6 ) , C * D ( H C + 2 0 ) , C ? D ( N C + 2 4 ) , C P D ( N C * 2 8 ) , I T E R S ( N C - 37) O N D E N S E D — I F I T H A S , WRITE S P R E S S U R E AND S VAPOUR P R E S S ^tc** ********** **** . 9 1 8 0 9 E - 0 6 * T E * T E - 7 9 6 . 1 3 3 / r E - 1 8 8 3 6 4 0 . 0 / T E / T S 1 1 5 P S = 0 . 0 DO 1 2 0 N C = 1 8 , 2 5 1 2 0 P S = PS • P (NC) V P = 3 . 7 7 9 7 8 *• 1. V P = E X P ( V P ) I F ( P S . G T . VP) WRITE ( 6 , 1 1 3 0 ) P S , T E , VP C H A R G E N O T A T I O N : S T R E A M F B E C O M E S S T R E A M A O F T H E N E X T U N I T DO 1 2 5 N C = 1 , 3 6 AM (NC) =FM (NC) C O N T I N U E STOP FORMAT FORMAT FORM AT FORMAT FORMAT FORMAT 1 C 0 2 V , 1 2 5 130 1 0 1 0 1 0 2 0 1 0 3 0 1 0 4 0 1 0 4 5 1 0 5 0 { 10A8) ( 8 F 1 0 . 4 ) ( 2 0 X , 3 E 2 0 . 8 / 4 E 2 0 . 3 ) ( 7 1 5 , F 1 0 . 2 ) ( 4 1 5 , 5 F 1 0 . 2 ) ( • 0 ERR F 1 0 . 3 , 5 F 1 0 . 2 / , E X P N 2 E X P H 2 0 E X P H 2 S E X P S 2 E X P 0 N F E E D S N U N I T S N A F T I N R R I NEQMI T E R R • / , 1 8 , 3 1 1 0 , 1 1 1 , F 1 0 . 2 ) 218 1 0 6 0 FORM AT ( 1 P 5 E 1 5 . 7 , 15) 1 0 8 0 FORMAT ( ' 1 E Q U I L I B R I U M P A R T I A L P R E S S U R E S I N A T M O S P H E R E S OF 36 COMP 10DNDS P R O D U C E D FROM HYDROGEN S U L P H I D E COMBUSTION- W I T H ' , 2 P F 5 . 1 , 2 ' 7, R E C Y C L E * / / / IH , 3 7 X , ' S T O I C H I O M E T R I C A I R I S ' , 0 P F 6 . 1 , * %' / 3 1 4 X , ' T H E A C I D GAS F E E D C O N T A I N S ' , F 5 . 1 , • % N H 3 ' , F 5 . 1 , 4 • % H 2 0 * , P 5 - 1 , » % Cm A N D ' , F 5 . 1, » % C 0 2 ' / / 1H , 3<JX, ' C O H 5 P O S I T I O N OF T H E I N I T I A L M I X T U R E ' / 1H , 3 4 X , « H 2 S ' , 2 P F 8 . 3 , * 5 5 ' , 6 8 X , * N H 3 ' , F 8 . 3 , ' % ' / 1H , 3 4 X , * 0 2 ' , F 8 . 3 , • % ' , 7 8 X , * H 2 0 ' , F 8 . 3 , « % ' / 1H , 3 4 X , ' N 2 ' , F 8 . 3 , • % ' , 8 flX, « C H 4 ' , F 8 . 3 , • * • / IH , 4 4 X , ' C 0 2 ' , F 8 . 3 , ' K ' / / ) 1 0 9 0 FORMAT ( ' 1 E Q U I L I B R I U M P A R T I A L P R E S S U R E S I N A T M O S P H E R E S OF 3 6 COMP 10UNDS P R O D U C E D I N C A T A L Y T I C C O N V E R T E R ' , 1 2 / / / / ) 1 1 0 0 FORMAT ( ' F E E D TO T H I S U N I T I S A T ' , F 7 . 1 , * K E L V I N ' / / , 1 • C O M P O U N D ' , 8 X , ' P { ' , F 7 . 1 , ' ) MOLES I N A MOLES I 2N C MOLES I N B MOLES I N E MOLES I N D MOLES I N F ' ) 1 1 1 0 FORMAT ( I H , 1 2 , 1 X , A 8 , ( 1 P 7 E 1 5 . U ) ) 1 1 2 0 FORMAT ( 1 H , 4 X , 5 A 3 , 2 P F 8 . U , • 3 5 ' , 1 0 X , 3 A 9 , 15 ) 1 1 3 0 FORMAT ( / / • * * * * S U L ? H U R HAS C O N D E N S E D * * * * S U L P H U R P A R T I A L P R E S S U R E U S ' , F 8 . 4 , • VAPOUR P R E S S S U R E OF S A T ' , F 7 . 1 , ' K E L V I N I S ' , F9 .1 . ) END S U B R O U T I N E EQM ( N E Q M I , K A O , E R R , J E Q M I , X , S U M S Q , I ) R E A L K , N , N O , N O D , N O N O D , N 2 , N5 D I M E N S I O N A { 3 6 , 2 , 7 ) , B ( 3 6 , 2 , 7 ) , K (36) , X ( 4 ) , SUMSQ (5) COHHON D H F ( 3 6 ) , AM (37) , CM ( 3 7 ) , EM ( 3 7 ) , P ( 4 1 ) , C , H , N , 0 , S , 1 A C , A H , A N , A O , A S , C S D , H S D , N O D , S O D , S L S , E X P N 2 , 2 X P H 2 0 , 2 E X P H 2 S , E X P S 2 , E X P C 0 2 , R R , T E R R , A D H F , O M R R , H T A , K , KBRT C S C S D = 1 . 0 I F ( N E Q M I . K B . 1) GO TO 10 E = 1 . 0 E - 0 6 P ( 3) .= ( X ( 1 ) +E) * * 2 P ( 9) = ( X ( 2 ) +E) * * 2 P ( 1 0 ) = ( X ( 3 ) +E) * * 2 P ( 1 9 ) •= ( X ( U ) +E) * * 2 TO DO 6 0 N I = 1 , N E Q M I N2 = P ( 3 ) N 5 = N 2 * * 0 . 5 S 2 = P ( 1 9 ) S5=P (19) * * 0 . 5 0 2 = ( K ( 5 ) * P { 9 ) * S 5 / P ( 1 0 ) ) * * 2 0 5 = 0 2 * * 0 . 5 H2 = t H5=H2< P ( 1) P ( 2) P.{ <*) P ( 5) P ( 6) P ( 7 ) P ( 8) P ( 1 D ? ( 1 2 ) P ( 1 3 ) P ( 1 1 ) P ( 1 5 ) P ( 1 6 ) P { 1 7 ) P ( 1 8 ) P ( 2 0 ) ) * P ( 9 ) / 0 5 . 5 K { 1) * N5 * H 2 * * 1 . 5 K ( 2) * N5 * 0 5 K ( 4) * 0 5 0 2 K ( 6) * 0 5 * H 5 K ( 7) H5 H2 K ( 1 1 ) * H2 * S 2 K ( 1 2 ) * S5 * H5 K ( 1 3 ) * S 5 * N5 K(1<0 * S5 * 0 5 K ( 1 5 ) * S5 * 0 2 K { 1 6 ) * S5 * 0 2 * * 1 . 5 K ( 1 7 ) * S 2 * 0 5 K ( 1 8 ) * S 5 K ( 2 0 ) * S 2 * * 1 . 5 2 1 9 P ( 2 1 ) = P ( 2 2 ) -P ( 2 3 ) = P ( 2 4 ) = P ( 2 5 ) = P ( 2 6 ) = P ( 2 7 ) = ? ( 3 6 ) = P ( 2 9 ) = ? { 2 3 ) = P ( 3 0 ) = P-C-3-1.) = P ( 3 2 ) = P ( 3 3 ) = P ( 3 5 ) = C O M P O T E T O T A L C 1 H 1 N 0 1 P ( 2 6 ) P ( 3 3 ) K ( 2 1 ) K (22 ) K ( 2 3 ) K ( 2 4 ) K ( 2 5 ) K ( 2 6 ) K { 2 7 ) K<36) K ( 2 9 ) K ( 2 8 ) K ( 3 0 ) K ( 3 1 ) K ( 3 2 ) K ( 3 3 ) K { 3 5 ) M O L E S 4-•f * S 2 * * 2 * S 2 * * 2 . 5 * S 2 * * 3 * S 2 * * 3 . 5 * S 2 * * « / 0 2 * P { 3 4 ) * H5 * H5 / H2 * P ( 2 6 ) * * 2 / P ( 9 ) * * 2 * P ( 3 4 ) * P < 1 0 ) * * 2 / S 2 * * 2 * P ( 3 6 ) * * 2 * H2 * P ( 2 9 ) * * 0 . 5 * H 2 * * 1 . 5 * P (29) * H2 * P ( 3 0 ) * 0 5 / 0 5 * P (34 ) / ? ( 9 ) * P ( 3 4 ) / P ( 9 ) * P ( 3 3 ) = 3 . 0 * P ( 1 ) * P ( 1 0 ) *. H2 CARBON C , HYDROGEN H , N I T R O G E N N , OXYGEN 0 , 2 . 0 * P ( 2 7 ) • P ( 2 8 ) • 2 - 0 * ( P ( 2 9 ) * P ( 3 0 ) + P ( 3 1 ) ) * P ( 3 4 ) + P ( 3 5 ) • P ( 3 6 ) AND S U L P H U R P ( 3 2 ) *• •f P (12) * + P ( 6 ) • P ( 7 ) *• 2 - 0 * ( P ( 3 ) + P (9) - t-P ( 1 0 ) + P ( 1 1 ) ) P ( 2 6 ) 2 . 0 * P { 2 9 ) * 4 - 0 * (P (28 ) +? ( 3 0 ) + ? ( 3 1 ) ) P ( 1) + P { 2) + 2 . 0 * ? ( 3 ) + P ( 1 3 ) + P { 2 6 ) + 2 . 0 * P ( 2 7 ) P ( 2 ) «- P ( 4) • 2 . 0 * P ( 5) •+• P ( 6) + P { 9) +• P ( 1 4 ) * 2 . 0 * P ( 1 5 ) • 3 . 0 * ? ( 1 6 ) • P ( 1 7 ) +• P { 3 1 ) * P ( 3 2 ) * P ( 3 3 ) + 2 . 0 * P { 3 4 ) S L O S T = P ( 1 0 ) +• 2 . 0 * P ( 1 1 ) • P ( 1 2 ) • P ( 1 3 ) • P ( 1 4 ) f ? ( 1 5 ) • V P ( 1 6 ) • 2 . 0 * P ( 1 7 ) 4- P ( 3 3 ) *• P ( 3 5 ) • 2 . 0 * P { 3 6 ) + 3 . 0 * P ( 2 0 ) + 4 . 0 * P ( 2 1 ) * • 7 . 0 * P ( 2 4 ) + 8 . 0 * P ( 2 5 ) 2 . 0 * P (19) 6 . 0 * P (23) S R E C O V = P ( 1 8 ) + 1 5 . 0 * P ( 2 2 ) + C O M P U T E T O T A L P P E S S U R E P (37 ) = 0 . 0 DO 30 N C = 1 , 3 6 30 P ( 3 7 ) = P ( 3 7 ) + P ( N C ) P T P T D = ? ( 3 7 ) S = ST.OST +• S R E C O V S L S = S L O S T / S I E (CSD . G T . 1 . 0 E - 0 8 ) C S C S D = C / S / C S D H S H S D = H / S / H S D NONOD= R / O / N O D S O S O D = S / 0 / S O D J E Q M I ^ N I S U M S Q ( I ) = ( P T P T D - 1 . 0) * * 2 + 1 ( S O S O D - 1 . 0 ) * * 2 «-I F ( N E Q M I . E Q . 1) RETURN I F ( N I . E Q . N E Q N I ) W R I T E ( 6 , 1 ) 1 FORM A*1" ( 1 P 6 E 1 8 . 8 ) I F ( A E S ( H S H S D - I . O ) I F ( A B S ( S O S O D - 1 . 0 ) I F ( A B S ( N O N O D - I . O ) I F ( A B S ( P T P T D - I . O ) I F ( A B S ( C S C S D - 1 . 0 ) C A L C U L A T E Y I E L D B A S E D ON S T R E A M E P ( 3 8 ) = S R E C O Y / S RETURN. C O M P U T E NEW' R 2 , H 2 0 , 5 0 P { 3) = P ( 3) * P { 9 ) = P ( 9) * P ( 1 0 ) = P ( 1 0 ) * P ( 1 9 ) = P ( 1 9 ) * 6 0 P ( 3 4 ) = P ( 3 4 ) * ( N O N O D - 1 . 0 ) * * 2 ( C S C S D - 1 . 0 ) * * 2 «- ( H S H S D - 1 . 0 ) * * 2 SUMSQ ( I ) , P T P T D , N O N O D , H S H S D , S O S O D , C S C S D . G T . . G T . . G T . . G T . . G T . ERR) ERR) ERR) ERR) ERR) GO GO GO GO GO TO TO TO TO TO 5 0 5 0 5 0 5 0 5 0 r o T  bl) ( C O M P O S I T I O N OF PRODUCTS AT E Q U I L I 3 R I U H ) H 2 S , S 2 , C 0 2 ( O T ? T D * N 0 N 0 D ) * * E X P N 2 P T P T D * * E X P H 2 0 ( P T P T D * H S H S D ) * * E X P H 2 S ( P T P T D * S O S 0 D ) * * E X P S 2 ( P T ? T D * C S C S D ) * * E X P C 0 2 220 R E T U R N BHD S U B R O U T I N E K P ( T , A , B , EQMK) C A L C U L A T E E Q U I L I B R I U M C O N S T A N T S , K P , FOR 3 6 S P E C I E S AT ANY T E M P E R A T U R E , T K E L T I N C F ( N C ) I S F R E E E N E R G Y OF F O R M A T I O N OF COMPOUND NC C R ( N C ) I S F R E E E N E R G Y O F THE R E A C T I O N THAT FORMS COMPOUND NC C O R R E S P O N D I N G E Q U I L I B R I U M C O N S T A N T AT T E M P E R A T U R E , T I S G I V E N BY E Q M K ( N C ) R E A L R , N , N O , N O D , N O N O D , N 2 , N5 D I M E N S I O N A ( 3 6 , 2 , 7 ) , B (3 6 , 2 , 7 ) , F ( 3 6 ) . , R ( 36 ) ,EQMK (36) , H 2 9 8 (36 ) , K (36) COMMON D H F { 3 6 ) , AM (37 ) , CM ( 3 7 ) , EM (37 ) , P ( 1 1 ) , C , H , N , 0 , S , 1 A C , A H , A N , A O , A S , C S D , H S D , N O D , S O D , S L S , E X P N 2 , E X P H 2 0 , 2 P X P H 2 S , E X P S 2 , E X P C 0 2 , R R , T E R R , A D H F , O M R R , H T A , K , KWRT DATA K S K I P / O / AI.NT= ALOG (T) T L N T = T * A L N T LH=1 I F (T . G T . 1 0 0 0 . 0 ) LH = 2 C A L C U L A T E F R E E E N E R G I E S OF F O R M A T I O N D I V I D E D BY R U S I N G H C B R I D E ' S C O E F F I C I E N T S I F ( K S K I P . E Q . 1) GO TO 30 K S K I P = 1 C A L C U L A T E E N T H A L P Y AT 2 9 8 . 1 5 K E L V I N FOR 36 COMPOUNDS DO 2 0 N C = 1 , 3 6 T 0 = 2 9 8 . 1 5 T 2 = T 0 * * 2 / 2 . O T 3 = T 0 * * 3 / 3 . 0 . T l i = T 0 * * 4 /H . 0 T 5 = T 0 * * 5 / 5 . 0 C O N S T A N T B1 HAS B E E N S E T E Q U A L TO A6 I N T H E MAIN PROGRAHME 20 H 2 9 8 (NC) •= (A ( N C , .1 , 1) * T 0 *• A ( N C , 1 , 2 ) * T 2 + A ( N C , 1 , 3 ) * T 3 »• 1 A (NC , 1 , 4 ) * T 4 * A ( N C , 1 , 5 ) * T 5 + B ( N C , 1 , 1 ) ) * 1 . 9 8 7 2 6 30 T 2 = T / 2 . 0 T 3 = T * * 2 / 6 . 0 T 4 = T * * 3 / 1 2 . 0 T 5 = T * * 4 / 2 0 . 0 RT= 1 . 9 8 7 2 6 * T DO 4 0 N C = 1 , 3 6 4 0 F ( N C ) = A ( N C , L H , 1) * ( 1 . 0 - A L N T ) - A ( N C , L H , 2) * T 2 - A (NC , L H , 3) * T 3 -1 A ( N C , L H , 4) * T 4 - A ( N C , L H , 5) * T 5 + B ( N C , L H , 1 ) / T - A ( N C , L H , 7 ) * 2 ( 1 0 0 0 . 0 * D H P ( N C ) - H 2 9 8 ( N C ) ) / RT C O H P U T E F R E E E N E R G I E S OF R E A C T I O N F N 2 = F { 3) F 0 2 = F ( 5) FH2 = F ( 8) F S 2 = F ( 1 9 ) F N = 0 . 5 * F N 2 FO = 0 . 5 * F O 2 PH = 0 . 5 * P H 2 F S = 0 . 5 * F S 2 R ( 1) = F ( 1) - PN - F H 2 * 1 . 5 R ( 2) - F ( 2) - F N - FO R ( 3) = 0 . 0 R ( 4) = F ( 4) - FO R ( 5) = F (10 ) + FO - F (9) - F S R ( 6) = F ( 6) - FO - F H R ( 7 ) = F ( 7) - F H R ( 8) = F ( 8) • FO - F ( 9 ) R ( 9) =0.0 R ( 1 0 ) =0.0 221 F S -F S -F S -F S -F S -F S 2 -F S P H PN FO F 0 2 F 0 2 * 1 , FO R { 1 1 ) = F { 1 1 ) - F H 2 - F S 2 B ( 1 2 ) = F ( 1 2 ) R ( 1 3 ) = F ( 1 3 ) P ( T » ) = F ( 1 U ) R ( 1 5 ) = F ( 1 5 ) R ( 1 6 ) = F ( 1 6 ) R ( 1 7 ) = F ( 1 7 ) R ( 1 8 ) = F ( 1 8 ) R ( 1 9 ) = 0 . 0 R ( 2 0 ) = F { 2 0 ) R ( 2 1 ) = F ( 2 1 ) R (22 ) = F ( 2 2 ) R ( 2 3 ) = F { 2 3 ) R(2 'U) = F ( 2 4 ) R { 2 5 ) = F ( 2 5 ) R (26 ) = F ( 2 6 ) R (27 ) = F ( 2 7 ) R { 3 6 ) = F ( 3 6 ) R ( 2 9 ) = F ( 2 9 ) R (28 ) •= F (28 ) R ( 3 0 ) = F ( 3 0 ) R ( 3 1 ) = F ( 3 1 ) R ( 3 2 ) = F ( 3 2 ) R ( 3 3 ) = P ( 3 3 ) R (34 ) '= 0 . 0 R ( 3 5 ) = F ( 3 5 ) + F ( 9) -C O M P O T E E Q U I L I B R I U M C O N S T A N T S DO 80 N C = 1 , 3 6 8 0 E Q M K ( N C ) = E X P ( - R (NC) ) R E T U R N END S U B R O U T I N E A FT ( T C , C A L C U L A T E A D I A B A T I C F L A M E 1 . 5*FS2 2 . 0 * F S 2 2 . 5 * F S 2 3 . 0*FS2 3 . 5 * F S 2 4 . 0 * F S 2 F 0 2 - ? (34) - F N - F H F H 2 - 2 . 0 * F ( 2 6 ) 2 . 0 * F ( 9) - F ( 3 4 ) - 2 . 0 * F ( 1 0 ) 2 . 0 * F S 2 - 2 . 0 * F ( 3 6 ) -FH2 0 . 5 * F ( 2 9 ) - 1 . 5*FH2 F ( 2 9 ) - FH2 F f 30) - FO FO P ( 3 4 ) - F (10 ) F ( 3 4 ) F { 9) F ( 3 3 ) - F 0 2 FROM F R E E ENERGY OF R E A C T I O N R E A L K , «i N O , N O D , T E , A , B , N A F T I , T E N E W , KCONV) T E M P E R A T U R E OF C L A U S F U R N A C E OR C A T A L Y T I C C O N V E R T E R N O N O D , N 2 , N5 D I M E N S I O N A ( 3 6 , 2 , 7 ) , B ( 3 6 , 2 , 7 ) , K (36 ) COMMON D H F ( 3 6 ) , AM ( 3 7 ) , C M ( 3 7 ) , E M ( 3 7 ) , P ( 4 1 ) , C , H , N , 0 , S , 1 A C , A H , A N , A O , A S , C S D , H S D , N O D , S O D , S L S , E X P N 2 , E X P H 2 0 , 2 E X P H 2 S , E X P S 2 , E X P C 0 2 , R R , T E R R , A D H F , OMR R , H T A , K , KWRT £******** *************** ******************************************************** C O M P O S I T I O N S O F S T R E A M S C AND E H A V E NOW B E E N C A L C U L A T E D FOR T H I S T E M P E R A T U R E * C A N NOW F I N D F L A M E T E M P E R A T U R E R E S U L T I N G FROM R E C Y C L E R A T I O AND I N I T I A L COM? * C A L C U L A T E H E A T OF R E A C T I O N = E N T H A L P Y OF PRODUCTS - E N T H A L P Y O F R E A C T A N T S D H R = - A D H F DO 5 0 N C = 1 , 3 6 5 0 DHR = DHR + DHF ( N C ) * ( E M ( N C ) - C H ( N C ) ) D H R = D H R * 1 0 0 0 . 0 2 9 8 . 1 5 , HOC) 2 9 9 . 1 5 , HOE) T C , HTC) C A L L C P H ( C M , B , C A L L CPH ( E M , B , C A L L C P H ( C M , B , HTC = HTC - HOC COMPUTE I M P R O V E D G U E S S TEN EW=TE DO 6 0 N D T = 1 , 1 0 0 C A L C U L A T E HEAT C O N T E N T C A L L C P H ( E M , B , C A L L C P H ( E M , A , H T E = H T E - HOE OF F L A M E T E M P E R A T U R E BY I T E R A T I N G AT C O N S T A N T C O M P O S I T I O N AND HEAT C A P A C I T Y T E N E W , HTE) T E N E W , C P T E ) FOR R E C Y C L E STREAM E 222 C A L C U L A T E T E M P E R A T U R E D I F F E R E N C E FROM HTA *• HTC - DHR = HTE • C PT E * DT DT = (HTA • HTC - DHR - HTE) / C P T E I F ( N A F T I . E Q . 1) GO TO 6 5 T E N E W = T E N E W * D T I F ( A B S { D T ) . L T . T E R R ) R E T U R N 6 0 C O N T I N U E C O N S T A N T C O M P O S I T I O N A D I A B A T I C F L A R E T E M P E R A T U R E I T E R A T I O N S H A V E NOT C O N 7 E R G E D 6 5 K C 0 N V = 0 R E T U R N ' END S U B R O U T I N E C P H ( X M O L E S , A , T , H T X ) C O M P U T E S E I T H E R C P OR HT D E P E N D I N G ON ARRAY A C C P T / R = A1 + A 2 * T • A 3 * T * * 2 + A4 * T * * 3 *• A5 * T * * 4 + 0 . 0 * T * * 5 C H T / R = A6 + A 1 * T * A 2 / 2 * T * * 2 • A 3 / 3 * T * * 3 • A 4 / 4 * T * * 4 +• A 5 / 5 * T * * 5 C = B1 + B 2 * T + B 3 * T * * 2 * BU * T * * 3 + B 5 * T * * 4 • B6 * T * * 5 R E A L K , N , N O , N O D , NONOD, N 2 , N5 D I M E N S I O N A ( 3 6 , 2 , 7 ) , X M O L E S ( 3 6 ) , H T ( 3 6 ) , K ( 3 6 ) COMMON D H F ( 3 6 ) , AM ( 3 7 ) , CM (37 ) , E M ( 3 7 ) , P ( 4 1 ) , C , H , N , 0 , S , 1 A C , A H , A N , A O , A S , C S D , H S D , NOD, S O D , S L S , E X P N 2 , E X P H 2 0 , 2 E X P H 2 S , E X P S 2 , E X P C 0 2 , R R , T E R R , A D H F , O M R R , H T A , K , KWRT LH=1 I F (T . G T . 1 0 0 0 . 0 ) LH = 2 DO 10 N C = 1 , 3 6 C A L C U L A T E THE H E A T CONTENT OF EACH OF THE 36 S P E C I E S AT T E M P E R A T U R E T HT (NC) = A ( N C , L H , 1) DO 10 J = 2 , 6 10 H T ( N C ) = HT (NC) • A (NC , L H , . 7 ) * T * * ( J - 1 ) C A L C U L A T E H E A T C O N T E N T OF S T R E A M X HTX = 0 . 0 DO 20 N C - 1 , 3 6 2 0 HTX = HTX XMOLES (NC) * H T ( N C ) HTX = H T X * 1 . 9 3 7 2 6 RETURN END S U B R O U T I N E R S P ( Y , X , N , J R S P ) D I M E N S I O N X (4) , Y (N) J P . S P = J 3 S P + 1 C A L L EQS ( 1 , 1 , 0 . 0 0 1 , J E Q M I , X , Y , N) R E T U R N END S U B R O U T I N E HOOKE ( Y O , X , N , N R S P I , D E L T A , K W R T , EPS) C O M P U T E S MINIMUM OF F C N U S I N G O R D I N A R Y HOOKE AND J E E V E S METHOD (HJ) C A L L S S U B R O U T I N E R S ? ( Y , X , N , NRSP) C Y V A L U E OF F C N A F T E R NTRL I T E R A T I O N S C X I N I T I A L S T A R T I N G P O I N T OF T H E F C N TO BE M I N I M I Z E D C N NUMBER OF V A R I A B L E S I N FCN TO 3 E M I N I M I Z E D C N R S P I MAXIMUM NUM3E3 OF F U N C T I O N A L E V A L U A T I O N S C D E L T A ( I ) I N I T I A L S T E P S I Z E I N THE I TH D I R E C T I O N C O N S T A N T KWRT S E T A.S FOLLOWS FOR O U T P U T S C 1 AT B E G I N N I N G AND END O N L Y C 0 AT END OF EACH P A T T E R N MOVE C - 1 AT END OF E A C H T R I A L C B P S MIN V A L U E ANY D E L T A ( I ) CAN H A V E — O T H E R W I S E PROGRAMME S T O P S C A R R I E S OUT L O C A L S E A R C H E S E V E N I F P A T T E R N MOVE I S A F A I L U R E D I M E N S I O N X ( N ) , DELTA (H) , X I N I T ( 5 ) r Y (5) , B ( 5 , 2 0 0 ) , R H O ( 5 ) , Y O ( 1 ) DO 10 1=1 , N 10 RHO ( I ) = 0 . 5 W R I T E ( 6 , 1 0 0 0 ) ( X ( T ) , 1=1 , N) 0 0 20 1=1,11 2 0 X I N I T ( I ) = X ( T ) HT=1 K=0 COMPOTE I N I T I A L R E S P O N S E NRSP=0 C A L L R S P ( Y O , X , 1 , N R S P ) N T R L S = N R S ? I / N DO 2 0 0 N T R L = 1 , N T R L S I P (KWRT . L T . 1) W R I T E ( 6 , 1 0 1 0 ) N T , N R S P , Y 3 ( 1 ) , ( X ( I ) COMMENCE L O C A L E X P L O R A T I O N I N THE X1 D I R E C T I O N X ( 1 ) = X (1) • D E L T A (1) C A L L R S P ( Y , X , 1 , NRSP) I F ( Y ( 1 ) . L T . Y O ( 1 ) ) GO TO 3 0 X ( 1 ) = X ( 1 ) - 2 . 0 * D E L T A < 1 ) C A L L R S P ( Y , X , 1 , NRSP) I F ( Y ( 1 ) . L T . Y O { 1 ) ) GO TO 30 X ( 1 ) = X ( 1 ) • D E L T A (1 ) Y ( 1 ) = Y O { 1 ) COMMENCE L O C A L E X P L O R A T I O N I N THE X ( I ) D I R E C T I O N 3 0 I F (KWRT . L T . 0) W R I T E ( 6 , 1020 ) N R S P , Y { 1 ) , ( X ( I ) , 1=1 I F ( N R S P . G E . N R S P I ) GO TO 2 1 0 DO 50 1= 2 , N X ( I ) - X ( I ) • D E L T A ( I ) C A L L R S P ( Y , X, I , NRSP) I F ( Y ( I ) - L T . Y ( I - 1 ) ) GO TO 10 X ( I ) = X ( I ) - 2 . 0 * D E L T A ( I ) C A L L RSP ( Y , X , I , N R S P ) I F ( Y ( I ) . L T . Y ( I - 1 ) ) GO TO 40 X ( I ) = X ( I ) «• D E L T A ( I ) Y ( T ) = Y ( I - 1 ) 4 0 I F (KWRT - L T . 0) WRITE ( 6 , 1 0 2 0 ) N R S P , Y ( I ) , (X ( J ) , J=1 I F ( N R S P . G E . N R S P I ) GO TO 2 1 0 5 0 C O N T I N U E COMPOTE P A T T E R N MOVE NT=NT+1 I F (K . G T . 0) GO TO 1 6 0 6 0 DO 7 0 1= 1 , H 7 0 B ( I , N T ) = X ( I ) I F (NT . G T . 2) GO TO 9 0 DO 80 1 = 1 , N 80 B ( 1 , 1 ) = X I N I T ( I ) 9 0 DO 1 0 0 I = 1 , N 100 X ( I ) = 2 . 0 * B ( I , N T ) - B ( I , N T - 1 ) C H E C K TO S E E I F P A T T E R N MOVE HAS B E E N MADE DO 110 1 = 1 , N I F ( A B S ( X ( I ) - B ( I , N T ) ) . G T . 1 . 0 E - 0 3 ) GO TO 130 110 C O N T I N U E C U T S T E P S I Z E I N H A L F DO 120 1= 1 , N D E L T A ( I ) = D E L T A ( I ) * R H O ( I ) I F {DELTA ( I ) - L T . E P S ) RETURN 1 2 0 C O N T I N U E W R I T E ( 6 , 1 0 3 0 ) ( D E L T A ( I ) , 1= 1 , N ) GO TO 2 0 0 1 3 0 C A L L R S P ( Y O , X , 1 , N R S P ) I F ( Y O ( 1 ) . L T . Y (N) ) GO TO 1 5 0 K=1 224 1 0 0 0 1 0 1 0 1 0 2 0 Y N O L D = Y (N) GO TO 2 0 0 1 5 0 K = - 1 GO TO 2 0 0 1 6 0 I F (Y (N) . L T . YNOLD) GO TO 60 DO 1 8 0 1 = 1 , H 180 B ( I , NT) = B ( I , N T - 1 ) DO 190 1 = 1 , N 1 9 0 X ( I ) = B ( I , NT) Y O ( 1 ) = Y N O L D K = - 1 2 0 0 C O N T I N U E 2 1 0 W R I T E ( 6 , 1 0 1 0 ) N T , N R S P , Y ( 1 ) , ( X ( I ) , 1 = 1 , N ) R F T U R N FORMAT ( 1 H 0 , ' T H E C O O R D I N A T E S OF T H E S T A R T I N G POINT A R E ' , 1 5 F 1 2 . 6 / ( 4 3 X , 5 F 1 2 . 6 ) ) FORMAT (1H , 2 1 5 , 1 P 6 E 1 6 . 7 / , ( 2 7 X , 5 E 1 6 . 7 ) ) FORMAT (1H , 1 1 0 , 1 P 6 E 1 6 . 7 / , ( 2 7 X , 5 E 1 6 . 7 ) ) 1 0 3 0 FORMAT ( 1 P 5 E 1 6 . 7 ) END S U B R O U T I N E HOOKE1 ( Y O , X , N , N 3 S P I , D E L T A , K W R T , E P S ) C O M P U T E S MIN IMUM OF F C N U S I N G M O D I F I E D P E R T U R B A T I O N METHOD D I M E N S I O N X ( N ) , XO (5) , Y (5) , YO (N) , D E L T A (H) NRSP=- .1 DO t O N T R L S = 1 , 4 C O M P U T E I N I T I A L . F C N V A L U E AND S T E P S I Z E S AT S T A R T 0 ? E A C H S E T OF N P E R T U R B A T I O N S DO 10 1 = 1 , H X O ( I ) = X ( I ) 10 D E L T A ( I ) = 0 . 0 0 5 * X ( I ) D E L T A (3) = 0 . 1 * X ( 3 ) C A L L R S P ( Y O , X O , 1 , N R S P ) W R I T E ( 6 , 1 0 1 0 ) N R S P , N R S P , Y O ( 1 ) , ( X O ( J ) , J = 1 , N ) DO 30 1 = 1 , N DO 25 U X I = 1 , 1 0 0 X ( I ) = X ( I ) + D E L T A ( I ) C A L L R S P ( Y , X , 1 , NRSP) I F (KWRT . L T . 0) W R I T E ( 6 , 1 0 1 0 ) N X I , N R S P , Y ( 1 ) , ( X ( J ) , J = 1 , N ) I F ( Y ( 1 ) . G E . Y O ( 1 ) ) GO TO 20 Y O ( 1 ) = Y ( 1 ) X O ( I ) =X ( I ) N X I 0 = N X I D E L T A ( I ) = 2 . 0 * D E L T A ( I ) GO TO 2 5 20 X ( I ) = X ( I ) - D E L T A ( I ) D E L T A ( I ) = - 0 . 5 * D E L T A ( I ) I F ( A B S ( D E L T A ( I ) ) . L T . E P S ) GO TO 26 2 5 C O N T I N U E 26 Y ( 1 ) = Y O ( 1 ) X ( I ) = X O ( I ) 30 I F (KWRT . L E . 0 ) WRITE ( 6 , 1 0 1 0 ) N X I O , N R S P , Y ( 1 ) , (X ( J ) , J = 1 , N) 40 W R I T E ( 6 , 1 0 1 0 ) N X I O , N R S P , Y ( 1 ) , ( X ( J ) , J = 1 , N ) R E T U R N 1 0 1 0 FORMAT ( I H , 2 1 5 , 1 P 6 E 1 6 . 7 ) END $ $ D A T A „ a H2 H20 H2S NH3 NO H2 0 0 2 OH H £ s 2 S J " S 2 SB SI SO SOg2 S 0 3 S ^ ^ ^ ^ 225 C 2 H 4 0 CD C O S Y I E L D O E 5 E D ON ES ED ON H I S L W I T L A O S P L A L U D I NO T O T A L E Q A 1 E I T E Y C L E I T - 1 0 . 9 7 0 2 1 . 5 8 0 - 5 7 . 7 9 8 - 4 . 8 8 0 - 1 3 . 5 0 0 6 6 . 6 8 0 2 4 . 2 0 0 3 2 . 3 0 0 - 3 3 . 0 8 0 - 9 4 . 0 5 4 0 . 0 0 1 - 0 . 5 $ DNNTIMBEH S T R D N C A T E S 2 8 S C R E A T E A S I Z E = 5 P *G'ET A SNOMBER 1 N 1 H 3 ( G ) - 9 . 5 6 7 8 8 9 8 E - 0 9 1 N1H3 (G) 3 . 7 3 9 3 8 5 7 E - 1 0 2 N 10 1 (G) - 7 . 8 6 3 3 6 3 9 E - 0 9 2 N 1 0 1 (3) 1 . 0 6 2 8 2 0 9 E - 1 0 3 H2 (G) - 9 . 7 6 0 8 3 4 1 E - 1 0 3 N 2 ( G ) 1. 1 3 1 5 8 4 9 E - 1 0 4 01 (G) - 2 . 9 9 4 7 2 0 0 E - 0 9 4 0 1 (G) 5 . 9 6 4 3 6 2 1 E - 1 2 5 0 2 (G) - 8 . 2 9 9 8 7 1 6 E - 0 9 5 0 2 ( G ) 4 . 2 4 9 0 1 5 9 E - 1 1 6 0 1 H 1 (3 ) - 2 . 1 0 3 5 8 9 6 E - 1 0 6 0 1 H 1 (G) 1 . 9 8 0 2 7 8 5 E - 1 1 7 HI (G) - 0 . 7 H 1 ( G ) - 0 . 8 H2 (G) 9 . 5 1 2 2 6 6 2 E - 0 9 8 H2 (G) - 2 . 0 3 3 1 9 0 7 E - 1 1 9 H 2 0 1 (3) - 4 . 5 9 3 0 0 4 4 E - 0 9 9 H201 (G) 1 . 1 7 9 0 8 5 3 E - 1 0 10 H 2 S 1 (G) - 2 . 7 4 5 3 6 6 5 E - 0 9 10 H 2 S 1 (G) 2 . 6 8 0 7 9 9 8 E - 1 0 11 H 2 S 2 ( G ) 3 . 1 9 1 6 0 4 1 D - 0 8 11 H 2 S 2 ( G ) c o 2 C S C S 2 T O T A L Y I E L D B A Y I E L D B A Y I E L D BA F S E D ON F C L A O S P Q O I L I B R I E E D TO T E E D TD C L A N T INCt lM COMPO T S I T I O H ONLY NT H I S H N I T T O T A L F L L A S T R E C L A S X EQ v n i L I B R I O O I L I B R I T O A T I O N S R A T I O N M I T E R H I T E R S 0 . 0 0 0 3 . 8 3 0 3 0 . 8 4 0 7 3 . 8 7 0 5 5 . 0 0 0 - 0 . 5 5 9 . 5 5 9 3 4 . 6 0 0 3 3 . 8 1 0 - 1 7 . 8 9 5 2 7 . 9 8 0 - 0 . 5 3 . 7 7 1 6 1 9 8 E 0 0 3 . 1 3 1 3 2 3 6 E - 1 2 2 . 1 4 9 3 9 8 6 E 0 0 - 2 . 3 6 0 5 5 5 4 E - 1 4 4 . 1 4 6 9 4 7 6 S 00 2 . 2 3 0 9 5 1 2 E - 1 2 3 . 1 5 2 9 3 6 0 E 0 0 - 7 . 3 7 2 0 7 8 3 E - 1 5 3 . 6 9 1 6 1 4 8 E 0 0 - 9 . 9 7 7 2 2 3 4 E - 14 2 . 8 5 4 5 7 6 IE 0 0 - 7 . 6 8 9 7 0 7 0 E - 1 5 3 . 0 2 1 8 8 9 4 E 0 0 9 . 0 7 7 7 5 4 7 E - 13 2 . 5 3 7 2 5 6 7 E 00 - 5 . 5 7 4 3 6 0 3 E - 1 6 3 . 7 1 8 9 9 4 6 E 00 2 . 7 0 8 2 1 8 0 S - 1 2 3 . 5 9 7 5 1 2 9 E 0 0 - 3 . 3 4 6 0 2 0 4 E - 1 5 3 . 8 2 3 4 7 0 3 E 0 0 - 5 . 2 5 4 6 5 5 1 E - 1 4 2 . 8 8 9 5 5 4 4 E 00 - 3 . 8 4 5 2 9 4 0 E - 1 6 2 . 5 0 0 0 0 0 0 E 0 0 - 0 . 2 . 5 0 0 0 0 0 0 E 00 - 0 . 2 . 8 4 6 0 8 4 9 E 0 0 - 3 . 3 0 9 3 4 2 1 E - 1 2 3 . 0 4 3 & 8 9 7 E 0 0 2 . 4 5 9 3 7 9 1 E - 1 5 4 . 1 5 6 5 0 1 6 E 0 0 1 . 4 2 3 3 6 5 4 E - 1 2 2 . 6 7 0 7 5 3 2 E 00 - 6 . 1 9 7 3 5 5 9 E - 15 3 . 9 1 6 3 0 7 4 E 0 0 4 . 8 5 8 4 3 6 5 E - 1 3 2 . 7 6 5 7 1 4 9 E 0 0 - 1 . 7 9 6 7 6 8 1 E - 1 4 2 . 9 3 3 8 4 0 8 D 0 0 - 1 . 1 3 3 4 4 2 7 D - 1 1 - 4 . 0 0 6 3 7 5 8 D 0 0 0 . 0 0 0 6 3 . 0 0 0 3 4 . 8 4 0 5 4 . 190 - 0 . 5 9 . 4 3 2 1 . 6 4 0 2 6 . 1 4 0 1 2 . 5 4 0 - 0 . 5 - 4 . 8 6 2 1 3 6 8 E - 0 4 - 6 . 7 2 8 0 9 3 3 E 0 3 6 . 4 9 2 8 5 2 1 E - 0 3 - 6 . 4 0 1 9 6 1 6 E 0 3 - 4 . 1 1 9 7 2 3 7 E - 0 3 9 . 7 4 4 7 8 9 4 E 0 3 1 . 4 0 5 9 9 5 5 E - 0 3 9 . 8 5 2 2 0 4 8 E 0 3 - 1 . 3 3 3 2 5 5 2 E - 0 3 - 1 . 0 5 2 3 3 3 6 E 0 3 1 . 5 9 7 6 3 1 6 E - 0 3 - 8 . 9 0 1 7 4 4 5 E 02 - 2 . 1 7 3 7 2 4 9 E - 0 3 2 . 9 1 3 7 1 9 0 E 04 - 1 . 8 4 2 2 1 9 0 E - 0 5 2 . 9 2 3 0 0 0 7 E 04 - 2 . 5 1 6 7 2 8 8 E - 0 3 - 1 . 0 5 7 6 7 0 6 E 03 7 . 8 1 4 5 6 0 3 E - 0 4 - 1 . 1 9 2 7 9 1 8 E 0 3 - 1 . 1 1 8 7 2 2 9 E - 0 3 3 . 5 8 5 2 7 8 7 E 0 3 9 . 9 8 3 5 0 6 1 E - 0 4 3 . 8 8 1 1 7 9 2 E 0 3 - 0 . 2 . 5 4 7 0 4 9 7 E 04 - 0 . 2 . 5 4 7 0 4 9 7 E 04 4 . 1 9 3 2 1 1 6 E - 0 3 - 9 . 6 7 2 5 3 7 2 E 02 6 . 1 1 8 7 1 1 0 E - 0 4 - 8 . 5 4 9 1 0 0 2 E 0 2 - 1 . 7 2 4 4 3 3 4 E - 0 3 - 3 . 0 2 8 3 7 7 0 E 04 3 . 0 3 1 7 1 1 5 E - 0 3 - 2 . 9 3 8 8 9 9 4 E 04 - 3 . 5 1 8 8 6 7 1 S - 0 4 - 3 . 6 0 9 5 5 8 5 E 0 3 4 . 0 1 3 1 9 1 4 E - 0 3 - 3 . 3 3 5 9 8 0 8 E 0 3 1 . 8 2 7 0 2 9 5 D - 0 2 - 1 . 5 0 4 9 3 0 6 D 04 3 . 3 2 5 9 0 2 5 D - 0 2 5 2 . 1 0 0 - 7 0 . 9 4 7 2 4 . 3 6 0 - 1 2 . 5 8 0 0 . 0 0 0 - 9 4 . 5 9 0 2 7 . 1 7 0 - 2 6 . 4 1 7 9 . 8 7 4 2 2 5 7 E - 0 6 1 . 4 6 5 4 0 4 9 E 0 0 - 2 . 2 6 9 5 1 9 3 E - 0 6 9 . 2 3 8 9 0 7 1 E 00 9 . 6 9 2 2 4 6 7 E - 0 6 2 . 5 6 9 4 2 9 0 E 00 - 5 . 7 0 7 8 4 6 2 E - 0 7 6 . 9 4 4 6 4 6 5 E 00 2 . 6 5 0 3 1 0 0 E - 0 6 2 . 2 8 7 4 9 8 0 E 0 0 - 6 . 2 5 6 6 2 5 4 E - 0 7 6 . 3 9 0 2 3 7 9 E 00 3 . 7 5 4 2 2 0 3 E - 0 6 2 . 6 4 6 0 0 7 6 E 00 - 8 . 8 0 1 7 9 2 1 E - 0 9 4 . 9 4 6 7 9 4 2 E 00 8 . 5 8 3 7 3 5 3 E - 0 6 3 . 9 0 8 0 7 0 4 E 00 - 2 . 2 3 8 6 6 7 0 R - 0 7 3 . 7 4 9 2 6 5 9 ^ 00 1 . 2 4 6 6 3 1 9 S - 0 6 5 . 8 2 5 3 0 2 9 S - 0 1 - 2 . 1 8 7 9 9 0 4 E - 0 7 5 . 5 5 9 7 0 1 6 E 0 0 - 0 . - 4 . 6 0 0 1 0 9 6 E - 0 1 - 0 . - 4 . 6 0 0 1 0 9 6 E - 0 1 - 9 . 6 1 1 9 3 3 2 E - 0 6 - 1 . 4 1 1 7 8 5 0 E 0 0 - 7 . 3 9 9 3 5 5 1 E - 0 9 - 1 . 6 4 8 1 3 3 9 K 00 5 . 6 9 8 2 3 1 6 E - 0 6 - 6 . 8 6 1 6 2 4 6 E - 0 1 - 8 . 5 3 5 1 5 7 0 S - 0 7 6 . 8 8 3 8 3 9 1 E 0 0 4 . 2 1 9 1 3 1 2 E - 0 6 2 . 3 6 6 0 0 4 2 E 00 - 1. 5 0 4 4 8 9 8 E - 0 6 7 . 9 3 2 7 1 8 6 E 00 - 3 . 3 7 7 9 4 3 0 D - 0 5 1 . 0 1 2 1 9 9 3 1 ) 01 - 4 . 4 8 4 2 9 8 7 D - 0 5 226 2 . 2 7 6 6 2 7 5 D - 0 8 12 H 1 S 1 (G) 3 . 8 3 2 4 2 1 2 2 - 0 9 12 H 1 S 1 (G) 7 . 9 0 4 4 6 2 8 E - 1 1 13 N 1 S 1 (G) - 9 . 5 0 8 9 1 3 0 E - 0 9 13 N 1 S 1 (G) 5 . 8 0 5 3 5 3 1 E - 1 1 14 S 1 0 1 (G) - 3 . 9 5 1 8 2 3 6 S - 0 9 14 S 1 0 1 (G) 6 . 3 5 1 3 2 9 3 E - 1 1 15 S 1 0 2 ( G ) - 4 . 2 2 0 6 7 6 6 E - 0 9 15 S 1 0 2 (3) 1 . 6 6 3 6 5 2 3 E - 1 0 16 S 1 0 3 ( G ) 4 . 9 7 8 7 3 9 3 E - 0 9 16 S 1 0 3 { G ) 2 . 7 3 2 2 0 7 6 E - 1 0 17 S 2 0 { G ) 7 . 6 1 7 5 9 5 8 D - 0 9 17 S 2 0 ( G ) 1 . 0 6 5 6 6 8 7 0 - 10 18 S1 (G) 3 . 13 8 2 4 3 9 E - 0 9 18 S1 (G) - 5 . 1 8 6 8 5 2 0 E - 11 19 S 2 ( G ) 6. 5 3 9 3 2 7 6 E - 09 19 S 2 ( G ) 3 . 0 3 6 8 0 1 0 E - 11 20 S3 (G) 3 . 6 9 3 0 5 2 0 D - 08 20 S 3 ( G ) 2 . 4 4 5 5 2 6 3 D -•11 21 S4 (G) 6 . 3 4 9 1 6 4 8 D - •08 21 S 4 (G) 4 . 9 9 6 9 1 4 4 D - -11 22 S 5 (G) 9 . 1 9 8 4 9 5 7 D - - 0 8 22 S 5 (G) 6 . 7 3 3 5 9 9 2 0 -- 1 1 2 3 S6 (G) 1 . 0 6 3 7 4 1 7 D - - 0 7 2 3 S6 (G) 7 . 8 7 3 0 8 8 3 0 -- 1 1 24 S 7 ( G ) 1 . 1 3 5 8 3 8 5 D - 0 7 24 S 7 ( G ) 8 . 2 0 1 2 9 9 6 D - 1 1 2 5 S ( 8 ) 9 . 7 4 4 2 3 6 1 D - 0 8 2 5 S { 8 ) 1. 2 1 1 8 3 1 1 D - 1 0 26 H 1 0 1 N 1 ( G ) 4 . 1 1 9 6 1 8 1 D - 1 2 4 . 2 5 8 6 8 5 5 E 0 0 2 . 0 2 5 2 0 3 0 E - 1 2 2 . 9 8 8 2 0 4 0 E 0 0 5 . 0 5 7 5 8 4 3 E - 15 4 . 0 6 2 2 1 5 1 E 0 0 3 . 2 8 4 3 0 3 4 E - 1 2 3 . 8 4 0 4 4 6 6 E 0 0 • 4 . 0 6 9 3 8 4 8 E - 1 5 3 . 1 3 6 4 3 2 6 E 0 0 1 . 6 5 4 0 3 0 6 E - 1 2 3 . 8 1 1 6 4 5 1 E 0 0 - 4 . 5 1 3 9 8 9 2 E - 1 5 3 . 2 2 5 7 1 3 2 E 00 2 . 1 3 9 2 7 3 3 E - 1 2 5 . 1 9 8 2 4 5 1 E 0 0 - 1 . 1 8 4 7 8 3 7 E - 1 4 2 . 2 8 4 8 6 6 1 E 00 - 2 . 0 6 6 4 6 4 1 E - 1 3 7 . 0 2 4 6 6 2 4 E 0 0 -1 . 9 4 0 4 5 1 3 E - 1 4 2 . 9 8 1 4 4 8 7 D 0 0 - 1 . 6 3 2 6 4 5 8 D - 1 2 5 . 9 0 4 7 4 1 0 D 0 0 - 7 . 6 7 0 5 7 6 7 D - 1 5 2 . 9 1 3 7 2 5 8 E 0 0 - 1 . 1 7 0 8 9 8 8 E - 1 2 2 . 9 1 4 5 7 7 0 E 00 3 . 2 7 0 9 9 3 2 E - 1 5 2 . 6 9 9 9 3 4 9 E 0 0 - 1 . 7 3 0 2 2 S 2 E - 1 2 4 . 1 8 9 6 9 3 2 E 0 0 - 2 . 1 7 9 5 8 4 9 2 - 1 5 1 . 9 9 4 5 5 0 0 D 0 0 - 1 . 2 1 6 3 8 0 4 D - 1 1 6 . 1 9 2 6 7 2 2 D 0 0 - 1 . 6 9 3 1 4 1 0 0 - 1 5 1 . 4 1 9 4 1 5 5 D 0 0 - 2 . 2 6 4 3 4 1 9 0 - 1 1 9 . 0 8 7 3 3 6 3 D 0 0 - 3 . 5 U 7 5 8 3 9 D - 1 5 1 . 8 8 9 7 7 6 7 D 0 0 - 3 . 0 4 2 6 9 6 8 D - 1 1 1 . 2 1 6 4 8 6 6 D 01 - 4 . 7 9 3 2 2 3 9 D - 1 5 3 . 1 1 1 9 5 6 1 D 0 0 - 3 . 5 3 2 3 0 0 0 D - 1 1 1 . 5 0 7 7 6 0 1 D 0 1 - 5 . 6 0 2 0 9 3 1 D - 1 5 4 . 9 7 7 8 2 3 3 D 0 0 - 3 . 7 4 9 1 3 7 S D - 1 1 1 . 7 7 7 3 4 6 6 D 0 1 - 5 . 3 0 1 8 3 5 5 D - 1 5 8 . 1 3 4 3 8 0 6 D 0 0 - 3 . 1 3 5 0 7 1 I D - 1 1 2 . 0 7 4 6 7 7 0 D 0 1 - 3 . 6 3 6 8 6 7 0 D - 1 5 2 . 1 6 8 1 1 5 0 E 0 0 - 1 . 3 5 2 1 1 2 2 D 0 4 - 1 . 2 7 8 3 3 1 7 E - 0 3 1 . 7 0 2 2 8 6 2 E 0 4 1 . 3 5 8 5 8 1 1 E - 0 3 1 . 7 3 8 6 9 3 5 E 04 - 2 . 8 1 9 0 1 7 9 E - 0 3 3 . 0 8 7 2 6 6 8 E 04 7 . 4 5 7 4 5 9 0 E - 0 4 3 . 0 7 9 5 1 8 4 E 04 1 . 3 0 8 0 6 8 9 E - 0 3 - 3 . 4 5 7 2 6 7 2 E 0 2 7 . 8 9 6 6 1 0 7 E - 0 4 - 5 . 9 5 9 9 4 8 8 E 0 2 5 . 6 5 5 1 2 0 7 E - 0 3 - 3 . 6 9 0 4 4 7 6 E 04 2 . 0 5 9 5 0 9 5 E - 0 3 - 3 . 7 5 4 1 4 5 7 2 04 1 . 6 6 9 1 4 0 4 E - 0 2 - 4 . 8 3 4 1 5 8 7 E 0 4 3 . 2 7 9 5 5 0 9 2 - 0 3 - 5 . 0 1 3 3 3 0 3 E 04 1 . 1 1 7 7 8 6 9 D - 0 2 - 8 . 0 7 4 2 2 5 5 D 0 3 1 . 2 3 5 8 1 8 8 D - 0 3 - 8 . 7 7 5 3 3 4 4 D 03 3 . 1 2 9 4 0 6 1 E - 0 4 3 . 2 5 6 8 2 7 2 E 04 - 5 . 6 6 1 9 3 9 0 E - 0 4 3 . 2 6 0 4 9 4 0 E 04 6 . 2 7 4 9 5 4 9 E - 0 3 1 . 4 5 0 4 9 3 5 E 04 3 . 3 4 6 9 7 0 4 E - 0 4 1 . 4 1 8 8 1 3 3 E 04 2 . 2 1 4 2 8 5 4 D - 0 2 1 . 5 7 3 8 1 5 2 D 04 8 . 2 8 1 5 0 6 4 D - 0 4 1 . 5 0 3 7 9 6 3 D 04 4 . 0 1 4 5 2 2 4 D - 0 2 1 . 5 8 3 4 5 7 4 D 04 9 . 3 4 3 1 5 5 0 D - 0 4 1 . 4 6 1 4 6 2 1 D 0 4 5 - 3 4 3 9 6 1 2 D - 0 2 1 . 0 9 6 7 1 6 7 D 04 9 . 1 8 9 2 4 8 3 D - 0 4 9 . 2 6 7 0 4 3 4 D 03 6 . 2 1 0 3 0 7 4 D - 0 2 9 . 4 4 4 7 1 6 5 D 0 3 9 . 8 6 2 6 1 9 9 D - 0 4 7 . 4 6 3 7 3 8 6 D 03 6 . 6 4 8 6 1 2 5 D - 0 2 1 . 0 1 5 4 4 2 2 D 0 4 1 . 2 8 5 4 0 2 6 D - 0 3 8 . 0 4 0 3 7 1 5 0 03 6 . 2 0 1 0 7 6 2 D - 0 2 7 . 8 3 0 7 1 6 3 D 0 3 1 . 4 2 2 9 9 0 2 D - 0 3 5 . 5 8 9 2 6 5 2 D 0 3 1 . 0 7 2 8 9 5 4 E - 0 2 4 . 5 1 9 7 9 6 6 D 01 - 8 . 3 7 8 5 9 0 6 2 - 0 7 - 3 . 5 3 6 7 3 0 3 2 - 0 1 - 4 . 7 1 0 5 3 3 5 E - 0 7 6 . 3 4 8 2 7 8 1 E 00 9 . 3 1 5 8 0 8 8 2 - 0 6 4 . 0 6 1 2 6 2 8 2 0 0 - 3 . 0 5 7 8 1 8 4 E - 0 7 . 4 . 4 7 2 3 2 0 7 2 0 0 2 . 1 8 3 7 3 6 4 2 - 0 6 8 . 3 5 7 0 2 9 2 B 00 - 3 . 2 9 8 6 1 2 7 E - 0 7 4 . 5 4 4 2 2 3 2 2 0 0 - 2 . 4 9 7 0 2 0 3 E - 0 7 9 . 8 1 7 7 0 3 6 2 00 - 8 . 6 2 5 4 4 5 0 2 - 0 7 - 3 . 3 0 5 9 9 6 3 2 - 0 1 - 1 . 4 6 1 0 5 6 0 S - 0 5 1 . 3 4 8 0 1 1 7 2 01 - 1 . 4 2 0 2 2 6 7 2 - 0 6 - 1 . 0 9 2 2 3 5 3 2 01 - 1 . 3 4 5 0 1 2 5 D - 0 5 1 . 2 3 1 6 6 2 S D 01 - 5 . 4 5 3 1 3 9 0 D - 0 7 - 2 . 2 8 9 6 3 2 5 D 00 - 2 . 6 0 9 2 5 0 8 2 - 0 6 3 . 5 6 8 1 1 5 4 2 0G 2 . 8 4 9 7 5 8 4 E - 0 7 3 - 7 6 4 0 3 5 0 2 00 - 9 . 2 8 7 0 7 7 5 E - 0 6 1 . 0 5 3 4 2 2 2 E 01 - 1 . 5 5 6 6 6 3 3 E - 0 7 3 . 2 9 3 0 3 0 0 2 0 0 - 4 . 1 9 9 0 5 3 1 . D - 0 5 1 . 6 0 0 0 8 9 9 D 01 - 1 . 3 0 0 4 5 2 2 0 - 0 7 - 3 . 3 5 2 7 7 2 0 0 0 0 - 7 . 7 5 5 3 5 6 5 D - 0 5 2 . 0 1 7 9 9 3 4 D 01 - 2 . 5 8 7 6 8 9 5 D - 0 7 - 1. 5 1 2 0 7 0 1 D 01 - 1 . 0 4 0 8 9 3 5 D - 0 4 1 . 4 2 8 2 6 7 4 D 01 - 3 . 4 7 0 0 6 1 2 0 - 0 7 - 3 . 30 1 1 3 0 0 D 01 - 1 . 2 1 0 3 1 0 0 D - 0 4 1 . 0 8 3 2 2 9 2 D 01 - 4 . 0 6 7 8 9 0 1 0 - 0 7 - 4 . 4 2 5 0 3 6 5 D 01 - 1. 2 8 8 4 7 7 4 D - 0 4 5 . 3 5 6 9 9 5 9 D 00 - 4 . 2 6 4 0 4 0 6 D - 0 7 -5.3579567D 01 - 1. 1 4 5 7 9 3 4 D-04 - 8 . 7 9 7 3 1 7 0 D 00 - 6 . 2 5 3 4 0 4 7 D - 0 7 - 6 . 7 7 0 5 2 1 0 D 01 - 1.5088089E-05 227 1 . 1 9 3 3 0 1 8 E - 08 2 6 H l O l f l 1 (G) 2 . 1 6 9 1 6 1 5 E - 10 2 7 C 2 H 2 ( G ) 2 . 1 9 6 8 4 1 2 E - 08 27 C 2 N 2 (G) 3 . 0 9 4 7 4 0 5 E - 10 28 C 1 H 4 ( G ) - 2 . 9 7 1 5 4 3 2 E - •08 •28 C 1 : H 4 ( 3 ) 7 . 1 3 7 0 2 8 1 E -•10 2 9 C 2 H 2 (3) 2 . 7 9 5 0 5 5 0 E -- 0 8 29 C 2 H 2 (G) 3 . 1054 2 9 5 E -- 1 0 3 0 C 2 H 4 ( G ) - 1 . 1 5 6 0 2 7 2 E -- 0 8 3 0 C 2 H 4 ( G ) 7 . 9 4 5 2 1 3 2 E - - 1 0 - 3 - 9 7 6 8 5 1 8 0 - 0 8 1 . 0 5 8 2 4 6 8 D - 0 9 32 C 1 0 1 (G) - 3 . 4 7 3 7 7 2 6 E - 0 9 3 2 C 1 0 1 (G) 1. 1 3 5 0 3 3 6 E - 10 3 3 C 1 0 1 S 1 ( G ) 1 . 5 0 6 2 4 3 9 E - 0 3 33 C T 0 1 S M G ) 1 . 8 7 8 7 3 6 9 E - 10 34 C 1 0 2 ( G ) 6 . 3 4 5 9 1 7 5 E -•09 34 C 1 0 2 ( G ) 2 - 4 1 4 7 4 4 6 E - -10 35 C 1 S 1 (G) - 7 . 0 8 5 8 7 1 4 E - - 0 9 3 5 C 1 S 1 (G) 7 . 4 3 9 2 0 2 4 E - - 1 1 36 C 1 S 2 (G) 1. 0 5 6 7 8 3 2 E -- 0 8 36 C 1 S 2 (G) 1 . 3 7 4 4 7 6 0 E - 1 0 fONNUWBEH S T S O S C i T E k 3 . 7 0 0 4 4 5 3 E - 1 2 3 - 6 5 3 8 0 3 2 E 0 0 1 . 4 2 9 6 3 1 1 E - 1 4 3 . 4 0 2 6 9 2 5 E 0 0 7 . 0 9 7 2 0 7 4 E - 1 2 6 - 5 0 2 4 2 6 4 E 0 0 2 . 1 4 8 2 9 9 2 E - 1 4 4 . 2 4 9 7 6 7 8 E 00 9 . 5 1 0 3 5 8 0 E - 1 2 1 . 1 7 9 5 7 4 4 E 0 0 - 4 . 7 4 9 0 3 5 3 E - 1 4 7 . 9 0 3 3 3 4 0 E - 0 1 - 8 . 4 4 8 4 1 2 5 E - 1 2 4 . 4 9 6 5 6 4 4 E 0 0 - 2 . 0 0 0 4 3 0 9 E - 14 1- 1 2 0 2 4 3 6 E 00 5 . 2 3 3 6 9 2 9 E - 12 3 - 5 0 2 3 5 1 6 E 0 0 - 5 - 3 2 3 5 6 8 1 E - 14 9 . 7 4 9 1 8 1 5 D - 01 1 . 6 5 7 6 4 0 2 D - 11 4 . 3 4 1 6 2 6 2 D 0 0 : - 7 . 3 3 7 5 8 1 6 D - 14 3 . 7 8 7 1 3 3 2 & 0 0 7 . 7 2 1 6 8 4 1 E - 13 2 - 9 5 1 1 5 1 9 E 00 - 7 . 7 8 3 2 7 3 2 E - •15 2 . 0 8 8 5 5 2 3 E 0 0 - 4 . 4 4 6 3 5 3 2 E - • 1 2 5 . 2 0 6 3 3 7 3 E 0 0 - 1 . 3 1 0 3 5 2 5 E - - 1 4 2 . 1 7 0 1 0 0 0 E 0 0 - 1 . 6 2 8 0 7 0 1 E - - 1 2 U . 4 1 2 9 2 6 6 E 0 0 - 1 . 6 7 4 2 9 8 6 E - - 1 4 3 . 3 9 8 1 9 9 2 E 00 2 . 6 1 5 7 5 2 6 E - 1 2 3 . 6 7 6 6 1 5 2 E 00 - 5 . 2 4 7 5 5 1 4 E - 1 5 2 . 9 1 7 4 6 2 0 E 0 0 - 2 . 7 9 4 4 9 7 8 E - 1 2 5 . 9 4 9 1 5 2 6 E 00 - 9 . 6 8 3 8 9 6 5 E - 1 5 1 . 4 6 8 2 9 0 0 E 0 4 3 . 4 4 3 6 4 5 5 E - 0 3 1 . 4 4 2 1 8 0 4 E 0 4 1 . 7 7 5 6 2 9 9 E - 0 2 3 . 5 5 5 0 2 0 7 E 0 4 4 . 0 5 3 2 1 8 4 E - 0 3 3 . 4 9 0 4 7 4 9 E 04 - 6 . 9 1 2 6 5 6 2 E - 0 3 - 1 . 0 1 8 6 6 3 2 2 04 1 . 0 9 5 0 5 9 4 E - 0 2 - 9 . 8 5 5 6 6 2 7 E 0 3 2 . 3 4 6 6 1 2 2 E - 0 2 2 . 6 2 5 4 8 4 4 E 04 5 . 2 6 9 3 3 2 1 E - 0 3 2 . 5 6 3 7 1 9 1 E 0 4 1 . 3 9 0 5 7 1 6 E - 0 2 5 . 3 3 2 8 8 9 6 E 0 3 1 . 1 5 9 2 1 0 1 E - 0 2 4 . 4 5 4 3 9 6 0 E 0 3 1 . 2 0 0 1 0 5 8 D - 0 2 - 7 . 0 9 9 2 2 1 1 D 0 3 1 . 4 2 3 4 3 3 2 0 - 0 2 - 8 . 5 3 3 7 1 1 9 D 0 3 - 2 . 1 7 0 9 5 2 6 E - 0 3 - 1 . 4 3 6 3 5 0 8 E 04 1. 5 5 2 5 5 6 7 2 - 0 3 - 1 . 4 2 3 1 8 2 7 E 04 1 . 4 6 1 3 9 8 9 E - 0 2 - 1 - 7 6 2 4 2 3 8 F 04 2 . 4 7 1 7 6 6 1 E - 0 3 - 1 . 8 3 2 7 7 7 1 E 04 1 . 0 3 7 8 1 1 5 E - 0 2 - 4 . 8 3 5 2 6 0 2 E 04 3 . 1 9 2 2 8 9 6 E - 0 3 - 4 . 8 9 4 4 0 4 3 E 0 4 - 5 . 8 9 2 3 5 9 4 2 - 0 4 2 . 6 4 8 3 3 7 0 E 0 4 9 . 2 6 7 9 8 9 6 E - 0 4 2 . 6 2 9 2 3 0 9 E 04 1 . 2 4 9 8 7 0 0 E - 0 2 1 . 2 7 7 7 0 7 6 E 04 1 . 7 2 4 5 6 1 0 E - 0 3 1 . 2 0 5 3 7 4 9 E 04 9 . 2 8 1 0 1 9 9 S 0 0 - 1 . 2 5 8 5 1 2 8 2 - 0 6 2 . 3 7 2 6 0 1 5 E 0 0 - 2 . 6 8 6 0 5 5 9 B - 0 5 5 . 4 1 2 2 7 9 1 S 0 0 - 1 . 6 6 3 9 9 6 6 E - 0 6 - 9 . 4 4 1 9 0 9 3 2 0 0 3 - 1 6 0 2 1 3 4 E - 0 5 - 9 . 1 7 5 4 9 9 1 2 - 0 1 - 4 . 0 6 2 2 1 3 1 2 - 0 6 1 . 2 5 0 5 9 3 4 2 01 - 3 . 5 5 4 1 9 2 8 2 - 0 5 1 . 4 0 0 5 2 2 8 2 01 - 1 . 8 4 0 2 6 6 8 2 - 0 6 - 3 . 1 4 4 8 1 5 2 - 3 00 2 . 6 5 6 8 3 7 4 2 - 0 6 1 . 5 8 3 7 7 6 0 2 01 - 4 . 4 7 4 5 2 2 5 2 - 0 6 2 . 4 6 6 7 5 2 8 2 0 0 2 . 4 0 4 2 8 1 6 D - 0 5 1 . 9 3 3 1 3 1 7 D 01 - 5 . 7 3 4 2 5 2 6 D - 0 6 - 7 . 1 6 9 3 4 3 6 D - 0 1 5 . 0 7 5 7 3 3 7 E - 0 6 2 - 6 3 3 5 4 5 9 2 00 - 6 . 1 9 1 1 4 1 1 2 - 0 7 6 . 5 3 1 4 4 5 0 2 00 - 2 . 0 4 6 5 8 8 4 E - 0 5 1 . 2 3 6 7 3 7 2 2 01 - 1 . 0 0 1 1 2 8 7 S - 0 6 - 2 . 9 1 3 3 3 0 6 E 00 - 1 . 0 7 3 3 9 3 8 2 - 0 5 1 . 0 6 6 4 3 3 8 2 01 - 1 . 2 9 7 8 2 3 0 2 - 0 6 - 7 . 2 8 7 5 7 6 9 2 - 0 1 5 . 9 4 4 9 8 1 7 2 - 0 6 5 . 9 1 9 5 2 6 8 2 0 0 - 3 . 8 8 7 3 3 6 4 E - 0 7 3 . 9 1 5 6 1 5 1 2 00 - 1 . 6 1 0 9 1 3 2 2 - 0 5 8 . 8 7 6 3 4 3 1 2 0 0 - 7 . 2 1 1 1 1 0 6 2 - 0 7 - 6 . 2 0 5 1 0 7 6 3 00 228 TABLE E . 4 • ' McBRIDE COEFFICIENTS S C H E A T E S 2 2 $ G E T S 2 2 J S U M E E R ; $ $ C O M P I L E C O M E D I E S PROGRAMME 22 C A L C U L A T E S I M U L T A N E O U S L E A S T S Q U A R E S F I T OF C P , HT AND ST F O B H 2 S 2 , S 2 0 , S 2 , S 8 C 2 H 4 0 , WHICH Y I E L D S C O E F F I C I E N T S OF B C E B I D E ' S POWER S E R I E S R E A L * 8 T O , R , F , C 4 3 , A , T 1 0 , T 2 0 , T 3 0 , T 4 0 , T 5 0 , 1 6 0 , T 7 0 , T 8 0 , 1 1 M 2 , T H 1 , P , T 0 2 , 1 0 3 , T 0 4 , T , T 2 , T 3 , T 4 , T T O , C E O , S T O , H T G , 2 T T , C P , S T , H T , D , B , Y , X , T E , D E T , D F L O A T , DLOG D I M E N S I O N L O W T ( 2 ) , KAOT (2) , F ( 1 0 ) , A ( 1 0 , 1 0 ) , T T ( 5 0 ) , C P ( 5 0 ) , 1 ST ( 5 0 ) , H T < 5 0 ) , D ( 1 0 ) , B ( 1 0 , 6 ) , Y ( 1 0 , 6) , X (7) , T E ( 1 0 , 1 0 ) , 2 I P E R M ( 2 0 ) DATA N C P D S / 3 / , L O W T / 3 , 1 0 / , K A C T / 1 0 , 5 0 / DATA F / 1 . 0 D - 0 7 , 1 . 0 D - 0 9 , 1 . 0 D - 1 2 , 1 . 0 D - 1 5 , 1 . 0 D - 1 8 , 1 1 . 0 D - 0 3 , 1 . 0 D - 0 6 . 1 . 0 D - 0 6 , 1 . 0 0 - 0 5 , 1 . 0 D - 0 5 / 1 0 = 1 0 0 0 . 0 B = 1 . 9 8 7 2 6 C 4 3 = 4 . 0 / 3 . 0 DO 8 0 K T = 1 , 2 LOW=LOWT(KT) K A C = K A O T ( K l ) DO 20 1 = 1 , 1 0 DO 20 J = 1 , 10 2 0 A ( I , J ) = 0 - 0 T 1 0 = 0 . 0 T 2 0 = 0 . 0 1 3 0 = 0 . 0 1 4 0 = 0 . 0 1 5 0 = 0 . 0 1 6 0 = 0 . 0 1 7 0 = 0 . 0 1 8 0 = 0 . 0 1 M 2 = 0 . 0 I M 1 = 0 . 0 P = 0 . 0 1 0 2 = 1 0 * * 2 1 0 3 = 1 0 * * 3 1 0 4 = 1 0 * * 4 DO 40 N l = L O W , K A O 1 = D F L O A T (N I ) * 1 0 0 . 0 1 2 = 1 * * 2 T 3 = l * * 3 • r a = i * * 4 A ( 1 , 1 A { 2 , 1 A ( 3 , 1 A ( 4 , 1 A ( 5 , 1 A ( 6 , 1 A ( 7 , 1 1 1 0 = 1 1 0 • 1 1 2 0 = 1 2 0 + 1 2 1 3 0 = 1 3 0 + 1 3 1 4 0 = 1 4 0 + 1 4 T 5 0 = 1 5 0 • 1 * * 5 1 6 0 = T 6 0 • 1 * * 6 A ( 1 , 1 ) • 2 . 0 0 + ( D L O G ( l ) ) * * 2 A ( 2 , 1 ) «• ( 1 . 5 0 »• DLOG (1) ) * T A ( 3 , 1 ) + ( C 4 3 «• DLOG ( T ) / 2 . 0 ) * T 2 A ( 4 , 1 ) +• ( 1 . 2 5 + D L O G ( 1 ) / 3 . 0 ) * T 3 A ( 5 , 1 ) • ( 1 . 2 0 + D L O G ( l ) / 4 . 0 ) * 1 4 A ( 6 , 1 ) + 1 . 0 / 1 A ( 7 , 1 ) * DLOG (1) 1 7 0 = T 7 0 *• T * * 7 _ Q T 8 0 = T 8 0 *• T * * 8 TH2 = TM2 + 1 . 0 / T 2 TM1 = TM1 • 1 . 0 / T P = P • 1 . 0 A ( 8 , 1 ) = 1 .0 A ( 9 , 1 ) = 1 . 0 A ( 1 0 , 1 ) = DLOG(TO) A ( 2 , 2 ) = 9 . 0 / 4 . 0 * T 2 0 A ( 3 , 2 ) = 5 . 0 / 3 . 0 * 1 3 0 A ( 4 , 2 ) = 3 5 . 0 / 2 4 . 0 * T 4 0 A ( 5 , 2 ) = 2 7 . 0 / 2 0 . 0 * 1 5 0 A [6,2) = E / 2 . 0 A ( 7 , 2 ) = T 1 0 A ( 8 , 2 ) = TO A ( 9 , 2 ) = 1 0 / 2 . 0 A ( 1 0 , 2 ) = TO A ( 3 , 3 ) = 4 9 . 0 / 3 6 . 0 * T 4 0 A ( 4 , 3 ) = 5 . 0 / 4 . 0 * T 5 0 A ( 5 , 3 ) •= 1 4 3 . 0 / 1 2 0 . 0 * T 6 0 A ( 6 , 3 ) = 1 1 0 / 3 - 0 A ( 7 , 3 ) = 1 2 0 / 2 . 0 A ( 8 , 3 ) = T 0 2 A ( 9 , 3 ) = 1 0 2 / 3 . 0 A ( 1 0 , 3 ) = 1 0 2 / 2 - 0 M 4 # 4 ) =, 1 6 9 . 0 / 1 4 4 - 0 * T 6 0 A ( 5 , 4 ) = 1 7 . 0 / 1 5 . 0 * T 7 0 A ( 6 , 4 ) = 1 2 0 / 4 . 0 A ( 7 , 4 ) = 1 3 0 / 3 . 0 A ( 8 , 4 ) = 1 0 3 A ( 9 , 4 ) = 1 0 3 / 4 . 0 A ( 1 0 , 4 ) = 1 0 3 / 3 . 0 A ( 5 , 5 ) = 44 1 . 0 / 4 0 0 . 0 * T 8 0 A ( 6 , 5 ) = 1 3 0 / 5 . 0 A ( 7 , 5 ) = 1 4 0 / 4 . 0 A ( 8 , 5 ) = 1 0 4 A ( 9 , 5 ) = 1 0 4 / 5 - 0 A ( 1 0 , 5 ) = 1 0 4 / 4 . 0 A ( 6 , 6 ) = 1M2 A . ( 7 , 6 ) = 0 . 0 A ( 8 , 6 ) = 0 . 0 A ( 9 , 6 ) = 1 . 0 / T 0 A ( 1 0 , 6 ) = 0 . 0 A ( 7 , 7 ) = P A ( 8 , 7 ) = 0 . 0 A ( 9 , 7 ) = 0 . 0 A { 1 0 , 7 ) = 1 . 0 DO 30 1 = 8 , 1 0 DO 30 J = 8 , 1 0 3 0 A ( I , J ) = 0 . 0 C A L C U L A T E OTHER E L E M E N T S OF S Y M M E T R I C M A T R I X DO 40 1 = 1 , 1 0 DO 40 J = 1 , 10 4 0 A ( I , J ) = A ( J , I ) C O M P U T E R W R I T E S M A T R I X B E F O R E I N V E R T I N G I T WRITE ( 6 , 1 0 0 0 ) WRITE ( 6 , 1 0 1 0 ) ( ( A ( I , J ) , J = 1 , 1 0 ) , 1 = 1 , 1 0 ) W K I 1 E ( 3 , 1 0 1 0 ) ( ( A ( I , J ) , J = 1 , 1 0 ) , 1 = 1 , 1 0 ) C O M P U T E R S C A L E S M A T R I X B E F O R E I N V E S T I N G I T DO 4 5 1 = 1 , 1 0 DO 4 5 J= 1 , 1 0 US A ( 1 , 0 ) = A ( I , J ) * F ( I ) W B I 1 E ( 6 , 1 0 1 0 ) ( ( A ( I , J ) , J = 1 , 1 0 ) , 1 = 1 , 1 0 ) C A L C D L A T E VECTOR D , WHICH I S A F O N C T I P N OF C P , HT AND S T DO 6 5 N C P D = 1 , N C P D S R E A D ( 5 , 1 0 3 0 ) D H F 2 9 8 W R I T E ( 6 , 1 0 3 0 ) D H F 2 9 8 B E A D ( 5 , 1 0 3 0 ) ( I T ( N T ) , C P ( N T ) , ST (NT) , H T ( N T ) , N T = L O H , K A O ) C P ( N T ) , ST ( H I ) . HT (HT) , NT=LOW,KAO) W R I T E ( 6 , 1 0 3 0 ) ( T T ( N T ) DO 5 5 1= 1 , 10 55 D ( I ) = 0 . 0 DO 6 0 N T = L O W , K A O T = D F L O A T ( N T ) * 1 0 0 . 0 C O N V E R T E N T H A L P Y PROM ; K I L O C A L O R I E S / M O L E TO C A L O R I E S / H O L E AND D I V I D E EY T E H P = (HT (NT) +-DHF298) * 1 0 0 0 . 0 / T H T ( N T ) D ( 1 ) D (2 ) D ( 3 ) D ( 4 ) 0 ( 5 ) D ( 6 ) ' 6 0 D ( 7 ) 0 ( 8 ) D { 9 ) D { 1 0 ) = C O M P U T E S DO + + 4-*• 4 C P ( N T ) ( C P ( N T ) (CP (NT) ( C P ( N T ) (CP (NT) HT (NT) / T S T ( N T ) * 1 0 0 0 . 0 HT (NT) H T ( N T ) / 2 . H T ( N T ) / 3 H T ( N T ) / 4 H T ( N T ) / 5 BY GAS C O N S T A N T E AND 6 5 C H E C K 7 0 D ( 1 ) 0 (2 ) D ( 3 ) D ( 4 ) D ( 5 ) D { 6 ) D ( 7 ) C P ( 1 0 ) H T ( 1 0 ) S T ( 1 0 ) D I V I D E S D 6 5 1 = 1 , 1 0 £ ( I , N C P D ) = D ( I ) * F ( I ) / R W R I T E ( 6 , 1 0 5 0 ) ( D ( I ) , 1 = 1 , 1 0 ) C A L L S L E ( 1 0 , 1 0 , A , N C P D S , 1 0 , W R I T E ( 6 , 1 0 6 0 ) D E T , J E X P W R I T E ( 6 , 1 0 5 0 ) ( (Y ( I , N C P D ) , 1=1 H R I I E ( 4 , 1 0 4 0 ) ( ( Y ( I , N C P D ) , 1 = 1 , 7 ) , C O E F F I C I E N T S O B T A I N E D BY W R I T I N G C P , DO 8 0 N C P D = 1 , N C P D S DO 70 1 = 1 , 7 X ( I ) = Y ( I , N C P D ) T = 2 9 8 . 1 5 1 2 = T * * 2 T 3 = l * * 3 1 4 = 1 * * 4 H T ( 2 ) = ( X ( 1 ) 1 X ( 5 ) * T 4 / 5 DO 80 N T = L O W , K A O T = D F L O A T ( N T ) * 100 T 2 = T * * 2 T 3 = T * * 3 T 4 = T * * 4 C P (NT) = S T ( N T ) * D L O G ( T ) S T ( N T ) ) * T S T ( N T ) / 2 . 0 ) ST (NT) / 3 . 0 ) S T ( N T ) / 4 . 0 ) 1 * * 2 1 * * 3 1 * * 4 S C A L E S D I N SAME MANNER A S H A T B I X B , Y , I P E B H , 1 0 , 10) T E , D E T , J E X P ) N C P D = 1 , N C P D S ) N C P D = 1 , N C P D S ) H T , AND S I , PBOM 3 0 0 TO 1 0 0 0 K X ( 2 ) * T / 2 - 0 • X ( 3 ) * T 2 / 3 . 0 X ( 6 ) / T ) * R * 1 • X ( 4 ) * T 3 / 4 o O 1 HT (NT) = I S T (NT) = 1 C P (NT) = X ( 1 ) X (5) * T 4 X ( D X (5) * T 4 / 5 . 0 X (1) *DLOG (T) X (5) * T 4 / 4 - 0 C P (NT) *'B * X ( 2 ) * T X ( 2 ) * T / 2 . X ( 6 ) / T X ( 2 ) * T X ( 7 ) «• X { 3 ) * T 2 0 X ( 3 ) * T 2 / 3 . 0 + X ( 3 ) * T 2 / 2 . 0 X ( 4 ) * T 3 X ( 4 ) * T 3 / 4 . X ( 4 ) * T 3 / 3 . 0 • . 0 •* 80 *B C O N V E R T E N T H A L P Y FROM K I L O C A L O f i l E S / M O L E TO C A L O R I E S / M O L E HT (NT) = HT (NT) * R * T / 1 0 0 0 . 0 - H T ( 2 ) / 1 0 0 0 . 0 S T (NT) = S T ( M T ) * R W R I T E ( 6 , 1 0 3 0 ) T , C P ( N T ) W R I T E ( 6 , 1 0 1 0 ) H T ( 2 ) • S T O P ( ' 0 •) ( / / ( 1 P 1 0 D 1 3 . 5 ) ) ( 4 F 1 0 . 3 ) ( 2 0 X , 1 P 3 E 2 0 . 7 / ( / ( 1 P 5 D 2 6 . 1 6 ) ) ( D 2 0 . 8 , 15) 1 0 0 0 1 0 1 0 1 0 3 0 104 0 1 0 5 0 1 0 6 0 FORMAT FO KM AT FORMAT FORMAT FORMAT FORMAT END ST (NT) , H T ( N T ) 1 P 4 E 2 0 . 7 ) $ $ D A T A S U H N O H B E B 231 APPENDIX F ERROR ANALYSIS The.maximum e r r o r s , not the most probable ones are estimated i n t h i s appendix. Two r u l e s were used i n the estimation: —When v a r i a b l e s are added or subtracted, t h e i r absolute e r r o r s are added. —When v a r i a b l e s are m u l t i p l i e d or div i d e d , t h e i r -percent e r r o r s are added. The absolute e r r o r s of d i r e c t l y measured v a r i a b l e s were obtained from the s p e c i f i c a t i o n s of instrument manufacturers. Hie other errors l i s t e d i n Tables F l and F2 were ca l c u l a t e d from the following equations: P A = 4 2 ( m A x A + b A ) / ( m H 2 S x H 2 S + b H 2 S ) ( F . l ) (F.2) Q = m.x. + b. x i 1 1 i y, = (F.3) where i = H 2 > H 2S or S0 2 • The er r o r s i n the compositions, sulphur y i e l d and PA by mass balance were estimated from Eqs. 4.12 to 4.21. TABLE F . l Estimate of errors i n stoichiometric a i r , PA, by flow meters (Run 77) 232 Variable T y p i c a l Value Absolute E r r o r * Percentage E r r o r * m. mA XA m.x.+b. A A A 42 4 2 < V A + V XH 2S "H2S m H 2 S X H 2 S + b H 2 S PA 54.5 3.975 216.64 -75.844 140.796 ml/min 42 5913.432 36 1.370 49.32 1.789 51.11 ml/min 115.70 1 0.02 5.05 0.38 5.43 ml/min 0 228.26 1 0.01 1.62 0.01 1.83 0.5 2.33 0.5 3.86 0 3.86 2.78 0.5 3.28 0.5 1.63 ml/min 3.19 8.16 7.05 * The errors may be p o s i t i v e or negative. 233 TABLE F.2 Estimates of errors i n chemical compositions and sulphur y i e l d Variable T y p i c a l Value Error Percent Error V * 2 H 2 v H 2S QH 2S= m H 2 S X H 2 S + bH 2S 12.0 2.119 25.43 -3.698 21.73 ml/min 48.20 1.370 66.03 1.789 67.82 ml/min SO, m SO, m s o 2 x s o 2 SO, Q s o 2 = m s o 2 x s o 2 + b s o 2 47.4 0.9427 44.68 5.262 49.95 ml/min 0.01 2.25 0.02 2.27 ml/min 1 0.01 1.70 0.01 1.71 ml/min 1 0.005 1.17 0.03 1.20 ml/min 8.33 0.5 8.83 0.5 10.45 2.07 0.5 2.57 0.5 2.5.2 2.11 0.5 2.61 0.5 2.40 234 TABLE F.2 Continued Variable T y p i c a l Value E r r o r Percent Er r o r . \ 60.77 1 1.65 \ 24.991 0.12 0.5 \ \ 1518.70 32.65 2.15 \ -213.403 1.07 0.5 1305.30 ml/min 33.68 ml/min 2.58 1327.03 ml/min 35.96 ml/min 2.71 VVVV 1.64 % 0.22 % 13.16 c cvv 1373.12 ml/min 35.39 ml/min 2.58 y H 2 S = % 2 S / ( Q H 2 S + Q N 2 ) 4.94 % 0.25 % 5.10 1355.25 ml/min 34.88 ml/min 2.57 3.69 % 0.18 % 4.97 TABLE F.2 Continued 235 Absolute Percent Variable T y p i c a l Value Error Error 0.5 moles 0.05 moles 10.45 n H 2 S = yH2,S 4.7 moles 0.12 moles 2.52 n s o 2 = y s o 2 7.1 moles 0.17 moles 2.40 W2 2 87.7 moles . 2.26 moles 2.58 0.532 I L . N 2 46.66 moles 1.20 moles 2.58 - s o 2 14.20 moles 0.34 moles 2.40 n H 2 0 = ° - 5 3 2 n N 2 - 2 n S 0 2 32.46 moles 1.54 moles 4.75 2 n S 2 = n H 2 - n S 0 2 + n H 2 0 25.86 moles 1.76 moles . 6.81 b2 12.93 moles 0.88 moles 6.81 n T = n H 2 + n H 2 S + n S 0 2 145.39 moles 5.02 moles 3.45 + \ + n H 2 0 + n S 2 * \ 0.0034 atm 0.0005 atm 13.90 p V 0.0323 atm 0.0019 atm 5.97 p s o 2 0.0488 atm 0.0029 atm 5.85 \ 0.6032 atm 0.0364 atm 6.03 p H 20 0.2233 atm 0.0194 atm 8.70 P = 2 0.0889 atm 0.0091 atm 10.26 236 Variable T y p i c a l Value Erro r Percent E r r o r 2 n s b2 25.86 moles 1.76 moles .6.81 ( 2 n s 2 + \ s + " s o ^ 37.66 moles 2.05 moles 5.44 Y = 2 0 0 ^ / ( 2 ^ + 1 ^ + n ^ ) 68.67% 8.41% 12.25 Temperature 1200°C 12°C 1% 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0058793/manifest

Comment

Related Items