HYDROGEN SULPHIDE OXIDATION UNDER CLAUS FURNACE CONDITIONS

by
HOWARD AUSTIN BENNETT
B.A.Sc. University of Toronto, 1968 M.A.Sc. University of Toronto, 1969

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in
 THE FACULTY OF GRADUATE STUDIES Department of Chemical Engineering

We accept this thesis as conforming to the required standard
THE UNIVERSITY OF BRITISH COLUMBIA
January, 1979
(C) Howard Austin Bennett, 1979

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. . It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Chemical Engineering

The University of British Columbia
2075 Wesbrook Place
Vancouver, Canada V6T 1W5

Date March 20, 1979

- ABSTRACT

The oxidation of hydrogen sulphide under Claus furnace conditions (800 to $1500^{\circ} \mathrm{K}$ and one atmosphere pressure) was studied theoretically and experimentally.

Equilibrium compositions of mixtures resulting from reactions between $\mathrm{H}_{2} \mathrm{~S}$ and air were calculated for temperatures and $\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{~S}$ ratios ranging from 600 to $2000^{\circ} \mathrm{K}$ and 0.05 to 1 , respectively. Forty-four compounds containing nitrogen, hydrogen, oxygen and sulphur were assumed to be present at equilibrium, but only 25 had concentrations exceeding 0.1 ppm . Eleven carbon compounds were later included, but only five of them had concentrations greater than 0.1 ppm . Sulphur yields in the furnace were found to increase about 10% when $\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{~S}$ ratios less than 0.5 (stoichiometric) are used. Feed impurities such as NH_{3}. (below $\left.1600^{\circ} \mathrm{K}\right), \mathrm{H}_{2} \mathrm{O}$ and CO_{2} diminish the sulphur yields.

A computer model was developed to simulate a Claus plant consisting of a furnace and two catalytic converters operating adiabatically. The model showed that the maximum sulphur yields for the plant are obtainable when operating with stoichiometric air. Preheating the furnace feed or recycling part of the furnace products enhances the overall yield only slightly. Enriching the combustion air with pure oxygen causes the sulphur yield to drop since, with N_{2} absent, the furnace temperature rises to over $2200^{\circ} \mathrm{K}$. Above $1750^{\circ} \mathrm{K}$, the sulphur yield falls with temperature.

To determine equilibrium compositions experimentally, various
mixtures of known $\mathrm{H}_{2} \mathrm{~S} /$ air ratios were introduced into a quartz vessel located in a furnace and operating between 800 and $1500^{\circ} \mathrm{K}$. The contents of this vessel were sampled and analysed by gas chromatography. Experimental measurements for $\mathrm{H}_{2} \mathrm{~S}$ dissociation were in excellent agreement with Raymont's ${ }^{19}$ results and theoretical predictions. Results for $\mathrm{H}_{2} \mathrm{~S}$ oxidation showed the same trend as the theoretical predictions, but did not agree quantitatively; the experimental sulphur yields exceeded the predicted values by up to 15%. Reasons for these discrepancies are discussed.

TABLE OF CONTENTS

ABSTRACT ii
LIST OF TABLES vii
LIST OF FIGURES ix
ACKNOWLEDGEMENTS xi
CHAPTER

1. INTRODUCTION 1
2. LITERATURE REVIEW 7
2.1 Theory 7
2.2 Experimental 22
2.3 Claus Process 28
2.3.1 Controls 28
2.3.2 Furnace 28
2.3.3 Reheaters 29
2.3.4 Catalytic Converters 29
2.3.5 Sulphur Wash Tower 29
3. THEORY 31
3.1 Equilibrium Compositions 31
3.1.1 Acid Gas Containing Pure $\mathrm{H}_{2} \mathrm{~S}$ Only 31
3.1.2 Impurities in Acid Gas 36
3.1.3 Hydrogen Sulphide Dissociation 38
3.2 Adiabatic Flame Temperature 38
3.3 Recycle 41
3.4 Thermochemical Data 44
3.5 Vapour Pressure of Sulphur 53
4. EXPERIMENTAL APPARATUS 55
4.1 Requirements of the Apparatus 55
4.2 Apparatus and Principles of Operation 55
4.2.1 Feed Mixture Preparation 59
4.2.2 Furnace 59
4.2.3 Quartz Equilibrium Vessel 62
4.2.4 Sampling 62
4.3 Gas Chromatography 63
4.3.1 Requirements of the G.C. Column 63
4.3.2 Analysis of Four Compounds 63
4.3.2.1 Sing1e coluran operating isothermally 64
4.3.2.2 Three columns operating isothermally 64
4.3.2.3 One column with temperature programming 67
4.3.3 Analysis of Three Compounds 67.
4.3.4 Column Packings 69
4.3.5 Calibration of the Gas Chromatograph 72
4.4 Calculation of Mixture Compositions 72
4.4.1 Calculation of the Feed Composition 72
4.4.2 Composition of the Sampled Gases 76
4.4.3 Composition of the Equilibrium Vessel Contents 77
4.4.4 Dissociation of Hydrogen Sulphide 78
5. THEORETICAL RESULTS 80
5.1 Claus Furnace 80
5.1.1 Acid Gas Containing $\mathrm{H}_{2} \mathrm{~S}$ Only 80
5.1.2 Acid. Gas Containing Carbon Compounds 91
5.1.3 Acid Gas Containing Ammonia 102
5.1.4 Hydrogen Sulphide Dissociation 102
5.2 Claus Plant 105
5.2.1 Oxygen Concentration in the Furnace Feed 107
5.2.2 Enriching Combustion Air with Oxygen 109
5.2.3 Preheating the Furnace Feed 109
5.3 Effect of Recycle 115
6. EXPERIMENTAL RESULTS 125
6.1 Averaging Technique 125
6.2 Comparison of Experimental with Theoretical Results 125
6.2.1 Effect of Temperature 140
6.2.2 Effect of PA 140
6.3 Causes of Deviation between Experimental and Theoretical Results 142
6.3.1 High Temperature Reversion 142
6.3.2 $\mathrm{H}_{2} \mathrm{~S}-\mathrm{SO}_{2}$ Reaction at Low Temperatures 145
6.3.3 Sample Size 145
6.3.4 Trace Compounds 147
6.3.5 Theoretical Data 147
6.3.6 Temperature Measurement 149
6.3.7 Error Analysis 149
7. CONCLUSIONS 153
7.1 Theoretical Equilibrium Compositions and Yields 153
7.2 Claus Plant Model 153
7.3 Experimental Equilibrium Compositions 154
NOMENCLATURE 155
REFERENCES 159
APPENDIX
A EXPERIMENTAL PROCEDURE 163
A. 1 Preparing the Feed Mixture 163
A. 2 Introducing the Mixture into the Equilibrium Vessel 163
A. 3 Sampling the Equilibrium Vessel 164
A. 4 Calibration of Gas Chromatograph 164
B CALCULATOR PROGRAMS AND SAMPLE CALCULATIONS 166
B. 1 Constants for Gas Chromatograph Calibration 166
B. 2 Equilibrium Vessel Compositions 170
.2.1 Hydrogen Sulphide Oxidation 170 170
B.2.2 Hydrogen Sulphide Dissociation 171
B. 3 Compositions of a Mixture of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$ and N_{2} 173
C CALIBRATION CURVES FOR ROTAMETERS 175
D EXPERIMENTAL RESULTS 182
E COMPUTER PROGRAMS 201
F ERROR ANALYSIS 231

LIST OF TABLES

Table
2.1 Summary of various theoretical papers on the Claus Process 11
2.2 Experimental sulphur yields found by various authors 23
3.1 Equilibrium equations for the system $\mathrm{H}_{2} \mathrm{~S}$-air. 34
3.2 Equilibrium equations for the system $\mathrm{H}_{2} \mathrm{~S}$ - air - CO_{2} - NH_{3} 37
3.3 Equilibrium equations for the system $\mathrm{H}_{2} \mathrm{~S}-\mathrm{CH}_{4}-\mathrm{NH}_{3}$ 39
3.4 Thermochemical data not available from McBride et al. 46
3.5 Matrix A 47
3.6 Vector di 47
3.7 Heat capacities of gaseous sulphur molecules from Rau et al. 49
3.8 Matrix A 50
3.9 McBride coefficients calculated in this thesis 51
3.10 Comparison of standard errors of data of S_{2} generated from McBride coefficients 52
3.11 Equations for vapour pressure of sulphur 54
4.1 List of equipment 60
4.2 Possible chromatographic columns for separating $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2} 65
4.3 Gas chromatography references for separations involving $\mathrm{H}_{2} \mathrm{~S}$ and/or SO_{2} 66
4.4 Thermal conductivities of various gases at $0^{\circ} \mathrm{C}$ 68
4.5 Operating conditions of the gas chromatograph 70
6.1 Moles of product formed at various temperatures from 100 moles of $\mathrm{H}_{2} \mathrm{~S}$ and 238 moles of air (stoichiometric air) 141
6.2 Effect of sampling time and $\mathrm{P}_{2} \mathrm{O}_{5}$ at $1200^{\circ} \mathrm{K}$ 144
6.3 Check for $\mathrm{H}_{2} \mathrm{~S}-\mathrm{SO}_{2}$ reaction at low temperatures 146
6.4 Effect of changes in $\mathrm{F}_{\mathrm{T}}^{\circ}$ of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{O}$ or S_{2} oncompositions at $1300^{\circ} \mathrm{K}$148
6.5 Comparison of $-\mathrm{F}_{\mathrm{T}}^{\circ}$ for SO_{2} computed by McBride coefficients with that listed in McBride or JANAF 150
6.6 Comparison of $-\mathrm{F}_{\mathrm{T}}^{\circ}$ for $\mathrm{H}_{2} \mathrm{O}$ computed by McBride coefficients with that listed in McBride or JANAF 151
6.7 Furnace temperature profiles. 152
B. 1 TI-58 program for calculating G.C. calibration curve constants and for finding equilibrium vessel compositions for $\mathrm{H}_{2} \mathrm{~S}$ oxidation 167
B. 2 Typical calibration data for the gas chromatograph (Run 77) 169
B. 3 TI-58 program for calculating equilibrium vessel compositions for $\mathrm{H}_{2} \mathrm{~S}$ dissociation 172
B. 4 TI-58 program for calculating the composition of a mixture of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$ and N_{2} 174
D. 1 Experimental results of hydrogen sulphide oxidation at $800^{\circ} \mathrm{K}$ for various PA 183
D. 2 Experimental results of hydrogen sulphide oxidation at $900^{\circ} \mathrm{K}$ for various PA 185
D.3 Experimental results of hydrogen sulptide oxidation at $1000^{\circ} \mathrm{K}$ for various PA 187
D. 4 Experimental results of hydrogen sulphide oxidation at $1100^{\circ} \mathrm{K}$ for various PA 189
D. 5 Experimental results of hydrogen sulphide oxidation at $1200^{\circ} \mathrm{K}$ for various PA 191
D. 6 Experimental results of hydrogen sulphide oxidation at $1300^{\circ} \mathrm{K}$ for various PA 193
D. 7 Experimental results of hydrogen sulphide oxidation at $1400^{\circ} \mathrm{K}$ for various PA 195
D. 8 Experimental results of hydrogen sulphide oxidation at $1500^{\circ} \mathrm{K}$ for various PA 198
E. $1 \quad \mathrm{H}_{2} \mathrm{~S}$ Dissociation. 202
E. 2 $\mathrm{H}_{2} \mathrm{~S}$ Oxidation 207
E. 3 Claus Plant 213
E. 4 McBride Coefficients 228
F.1 Estimate of errors in stoichiometric air, PA, by flow meters (Run 77) 232
F. 2 Estimates of errors in chemical compositions and sulphur yield 233

LIST OF FIGURES

Figure
1.1 Flowsheet of a typical straight-through Claus plant 3
2.1 Theoretical equilibrium conversions 9
3.1 Flowsheet of Claus plant with preheat and recycle 32
4.1 Schematic diagram of the experimental apparatus 56
4.2 Experimental apparatus 57
4.3 Typical chromatogram (Run 77) 71
4.4 Typical calibration curve for H_{2} (Run 77) 73
4.5 Typical calibration curve for $\mathrm{H}_{2} \mathrm{~S}$ (Run 77) 74
4.6 Typical calibration curve for SO_{2} (Run 77) 75
5.1 Effect of temperature on the partial pressure of harmless compounds (with:the exception of NO) 81
5.2 Effect of temperature on the partial pressure of sulphur compounds 82
5.3 Effect of temperature on the partial pressure of sulphur polymers 83
5.4 Comparison of sulphur yields calculated by various workers ($\mathrm{PA}=100$) 86
5.5 Effect of temperature and PA on sulphur yield 88
5.6 Effect of PA on sulphur yield at various temperatures 89
5.7 Effect of PA on the adiabatic flame temperature and on the corresponding sulphur yield 90
5.8 Effect of temperature on the partial pressure of harmless compounds (with the exception of NO) 92
5.9 Effect of temperature on the partial pressure of sulphur polymers 93
5.10 Effect of temperature on the partial pressure of carbon compounds 94
5.11 Effect of temperature on the partial pressure of sulphur compounds 95
5.12 Effect of temperature and CO_{2} on the sulphur yield 97
5.13 Effect of temperature and PA on the sulphur yield 98
5.14 Effect of PA on the adiabatic flame temperature and on the corresponding sulphur yield 100
5.1.5 Effect of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} on the sulphur yield 101
5.16 Effect of ammonia on the sulphur yield (sufficient air to oxidise the $\mathrm{H}_{2} \mathrm{~S}$ only) 103
5.17 Effect of ammonia on the sulphur yield (sufficient air to oxidise both the $\mathrm{H}_{2} \mathrm{~S}$ and the NH_{3}) 104
5.18 Effect of ammonia on sulphur yields from $\mathrm{H}_{2} \mathrm{~S}$ dissociation 106
5.19 Effect of PA on Claus plant yields and temperatures 108
5.20 Effect of enriching combustion air with oxygen on Claus plant yields and temperatures 110
5.21 Effect of temperature of furnace feed on Claus plant yields and temperatures 112
5.22 Effect of temperature of first converter feed on Claus plant yields and temperatures 113
5.23 Effect of temperature of second converter feed on Claus plant yields and temperatures 114
5.24 Effect of recycle on yield at $1300^{\circ} \mathrm{K}$ with $\mathrm{PA}=100$ 116
5.25 Effect of temperature on sulphur yield for various recycles 117
5.26 Effect of recycle on Claus plant yields 118
5.27 Effect of recycle on temperature of the Claus furnace 120
5.28 Effect of recycle on temperature of the catalytic converters 121
5.29 Effect of recycle on yield of the first catalytic converter 122
5.30 Effect of recycle on yield of the second catalytic converter 124
6.1 Effect of PA on H_{2} 126
6.2 Effect of PA on $\mathrm{H}_{2} \mathrm{~S}$ 127
6.3 Effect of PA on SO_{2} 128
6.4 Effect of PA on N_{2} 129
6.5 Effect of PA on $\mathrm{H}_{2} \mathrm{O}$ 130
6.6 Effect of PA on S_{2} 131
6.7 Effect of PA on sulphur yield at $800^{\circ} \mathrm{K}$ 132.
6.8 Effect of PA on sulphur yield at $900^{\circ} \mathrm{K}$ 133
6.9 Effect of PA on sulphur yield at $1000^{\circ} \mathrm{K}$ 134
6.10 Effect of PA on sulphur yield at $1100^{\circ} \mathrm{K}$ 135
6.11 Effect of PA on sulphur yield at $1200^{\circ} \mathrm{K}$ 136.
6.12 Effect of PA on sulphur yield at $1300^{\circ} \mathrm{K}$ 137
6.13 Effect of PA on sulphur yield at $1400^{\circ} \mathrm{K}$ 138
6.14 Effect of PA on sulphur yield at $1500^{\circ} \mathrm{K}$ 139
6.15 Effect of temperature on the concentration of H_{2} formed from $\mathrm{H}_{2} \mathrm{~S}$ dissociation 143
C. 1 Calibration of rotameter Ch.E 2912B (Gilmont Model F-2000, Size 10) for H_{2} 176
C. 2 Calibration of rotameter Ch.E 2912B (Gilmont Model $\mathrm{F}-2000$, Size 10) for $\mathrm{H}_{2} \mathrm{~S}$ 177
C. 3 Calibration of rotameter Ch.E 2912B (Gilmont Model $\mathrm{F}-2000$, Size. 10), for SO_{2} 178
C. 4 Calibration of rotameter Ch.E 3107A (Gilmont Model F-1200, Size 2), for N_{2} 179
C. 5 Calibration of rotameter Ch.E 2600 (Gilmont Model F-1100, Size 1) for air 180
C. 6 Calibration of rotameter 2912A (Gilmont Model $\mathrm{F}-2000$, Size 10) for $\mathrm{H}_{2} \mathrm{~S}$ 181

ACKNOWLEDGEMENTS

The author wishes to thank the following:
--Dr. Axel Meisen for his patient help during this work;
--Nina Thurston for her excellent typing;
--Monica Gutiérrez who drew the figures;
--Don Sheraton who took the photograph of the apparatus;
--The workshop of the Chemical Engineering Department and theglassblowing shop of the Physics Department for help in constructing the experimental apparatus;
-The faculty, students and others of the Chemical Engineering Department for their help and encouragement;

- My parents for their patience, love and encouragement. The financial support from the National Research Council of Canada in the form of a scholarship and research grant is gratefully acknowledged.

CHAPTER 1

INTRODUCTION

Canada is the world's second largest supplier of elemental sulphur, producing seven million tons in 1976 . 1 Virtually all Canadian sulphur is produced from hydrogen sulphide by the Claus process. The two major sources of $\mathrm{H}_{2} \mathrm{~S}$ in Canada arise from natural gas processing and petroleum refining.

Hydrogen sulphide, an undesirable constituent of most Canadian natural gas, is usually removed by absorption into amine solutions. Carbon dioxide, which may also be present in natural gas, is removed together with the $\mathrm{H}_{2} \mathrm{~S}$, as are small quantities of methane and higher hydrocarbons.

In petroleum refining, $\mathrm{H}_{2} \mathrm{~S}$ is the by-product of hydrofining (hydrogenation of sulphur-bearing feedstocks), and is also obtained from sour water stripping. Depending on refinery operation, ammonia and CO_{2} may also be associated with the $\mathrm{H}_{2} \mathrm{~S}$ stream.

Thus, $\mathrm{H}_{2} \mathrm{~S}$ from petroleum refining or natural gas processing can contain ammonia, carbon dioxide, methane and higher hydrocarbons and is usually saturated with water vapour. A mixture of such compounds is often called an "acid gas."

Until fairly recently it was common practice either to vent the acid gas directly to the atmosphere or to incinerate it before discharge. Incineration oxidises the $\mathrm{H}_{2} \mathrm{~S}$ to SO_{2}, which, although less odorous than
$\mathrm{H}_{2} \mathrm{~S}$, is still offensive. To minimise pollution, the acid gas nowadays is usually treated by the Claus process, to convert the $H_{2} S$ to elemental sulphur.

This sulphur recovery process, as developed by C. F. Claus and improved by H. Bähr, is based on the following main reactions:

$$
\begin{align*}
& \mathrm{H}_{2} \mathrm{~S}+3 / 2 \mathrm{O}_{2}=\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \tag{1.1}\\
& 2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2}=3 / \mathrm{j} \mathrm{~S} \tag{1.2}
\end{align*}
$$

These equations can be combined to give the so-called "overall Claus reaction,"

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{~S}+1 / 2 \mathrm{O}_{2}=1 / \mathrm{j} \mathrm{~S}_{\mathrm{j}}+\mathrm{H}_{2} \mathrm{O} \tag{1.3}
\end{equation*}
$$

Subscript j denotes the number of atoms per molecule of sulphur vapour. At temperatures less than $150^{\circ} \mathrm{C}, \mathrm{j} \simeq 8$, whereas above $800^{\circ} \mathrm{C}, \mathrm{j} \simeq 2$. For temperatures between 150 and $800^{\circ} \mathrm{C}$, j lies between 8 and 2 .

There are three main variations of the Claus process--"straight through," "split stream," and "direct oxidation." ${ }^{2}$ Since the "straight through" process is the most efficient and hence the preferred version, only it will be discussed in this thesis. However, it cannot be used to treat acid gases containing less than about $50 \% \mathrm{H}_{2} \mathrm{~S}$, or more than about 2% hydrocarbons. ${ }^{3}$ For such acid gases, either the split flow or direct oxidation process, described in detail by Estep et al., ${ }^{3}$ must be used.

In the straight through process, the entire acid gas is sent to the Claus furnace where it is oxidised with air under free flame conditions at about $1100^{\circ} \mathrm{C}$. To achieve maximum conversion, operating experience has shown that the amount of air should be stoichiometric with respect to Eq. 1.3 , i.e., the $\mathrm{H}_{2} \mathrm{~S} / \mathrm{O}_{2}$ ratio should be $2 / 1$.

The furnace products, which are mainly nitrogen, water vapour, elemental sulphur vapour, SO_{2}, and unreacted $\mathrm{H}_{2} \mathrm{~S}$, are first cooled to

Figure 1.1: Flowsheet of a typical straight-through Claus plant ${ }^{3}$.
Legend: C--sulphur condenser
CC--catalytic converter
H--heater
approximately $380^{\circ} \mathrm{C}$ in a waste heat boiler. This is followed by further cooling to about $150^{\circ} \mathrm{C}$ in a condenser, where the elemental sulphur is removed as a liquid. Before entering the catalytic converter, the process gases are reheated to near the optimal temperature for the main converter reaction, Eq. 1.2. Since this reaction is exothermic, low temperatures favour the equilibrium sulphur yield, however, high temperatures are necessary to increase the reaction rate and to prevent sulphur from condensing and fouling the catalyst. The optimal temperature in most plants appears to be about $260^{\circ} \mathrm{C}$. To promote this reaction, alumina is the catalyst commonly used. The elemental sulphur produced in the converters is condensed and drained to sulphur storage pits. Most of the elemental sulphur mist from the last condenser is trapped by a coalescer before the gases are incinerated. The primary purpose of the incinerator is to oxidise all sulphur compounds to SO_{2} before dis-. charge to the atmosphere.

Well-operated Claus plants with two catalytic converters recover about 95% of the sulphur in the acid gas feed. This recovery is comprised of the following approximate yields: furnace 60% first catalytic converter 20%, second converter 15%. If a Claus plant, operating at 95% recovery, processes acid gas containing 1000 tons per day of sulphur, it would discharge about 100 tons per day of sulphur dioxide to the atmosphere. Stricter pollution control regulations, such as those in effect in Alberta and other provinces, require that large sulphur plants must reach recoveries of about 99%. Most conventional Claus plants are unable to achieve, such performance for the following main reasons:
(i) Maximum furnace and converter yields are attained only when the combustion air is exactly stoichiometric. For an air surplus
or deficiency of $\mathrm{X} \%$, the sulphur loss is also of the order of $\mathrm{X} \%$. Sophisticated control systems have been developed to assure that the amount of combustion air is always stoichiometric. Although they can increase sulphur yield as much as 3%, such systems are usually quite costly. ${ }^{4}$
(ii) The mixing of air and acid gas in the furnace may not be complete because of imperfect burner design.
(iii) If the acid gas contains carbon compounds, then COS and CS_{2} may be formed in the furnace. These compounds pass relatively unaffected through the catalytic converters, and are oxidised to CO_{2} and SO_{2} only in the incinerator.
(iv) As catalysts become deactivated, less $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} are converted to sulphur. After a year or more, the catalysts require regeneration or replacement. In a conventional Claus plant, the gas from the final coalescer, termed the "tail gas," can be treated to improve the overall yield. Usually a unit is added downstream of the coalescer to treat the gas before it is incinerated. However, the cost of such tail-gas conditioning usually exceeds that of the basic Claus plant.

An alternative to tail gas treatment may be to improve the performance of the Claus process itself but this requires a better understanding of the process than is currently available. One important aspect of this is to determine accurately the thermodynamic equilibrium between hydrogen sulphide and air under Claus process conditions. Although equilibria are never exactly achieved in practice because of kinetic limitations, they nevertheless provide useful information on maximum attainable sulphur yields and chemical compounds likely to be formed.

Of special interest is the Claus furnace, since this unit usually converts over 50% of the $\mathrm{H}_{2} \mathrm{~S}$ in the acid gas to sulphur. Moreover, s relatively little research has been done on the furnace.

Although the effect on furnace performances of parameters such as acid gas composition is important, their effect on the entire plant must also be considered. In this thesis, a Claus furnace and two converters are modelled. This model is then used to study the effect of the following on furnace and converter equilibrium compositions:
--acid gas impurities $\left(\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}\right.$ and $\left.\mathrm{CH}_{4}\right)$;
--the amount of air added to the acid gas;
--temperature of the feed stream to the furnace and to each converter.
The results of this thesis should help to provide guidance for the optimal operation of Claus furnaces.

CHAPTER 2

LITERATURE REVIEW

This chapter reviews important papers on the Claus process under the following headings: theory, experiments and industry. For a more general review, the reader is referred to the publication by Estep et a1. ${ }^{3}$

2.1 Theory

Although the Claus process was developed in the 1890's and modern plants date from the 1940^{\prime} s, practically no theoretical investigations were published until 1953, when Gamson and Elkins ${ }^{5}$ presented a major study. They calculated equilibrium compositions of $\mathrm{H}_{2} \mathrm{~S}$ and air mixtures under Claus process conditions and compared their predictions with their experimental results. The following paragraphs deal with Gamson and Elkins' theoretical work; their experiments are discussed in Sect. 2.2.

Gamson and Elkins considered the following reactions to determine the equilibrium composition:

$$
\begin{align*}
2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2} & =2 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}_{2} \tag{2.1}\\
\mathrm{~S}_{6} & =3 \mathrm{~S}_{2} \tag{2.2}\\
\mathrm{~S}_{8} & =4 \mathrm{~S}_{2} \tag{2.3}\\
2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} & =2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2} \tag{2.4}\\
2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2} & =2 \mathrm{H}_{2} \mathrm{O}+3 / 2 \mathrm{~S}_{2} \tag{2.5}\\
\mathrm{~S}_{2}+2 \mathrm{O}_{2} & =2 \mathrm{SO}_{2} \tag{2.6}
\end{align*}
$$

Furthermore, they made the following assumptions
--Reactions 2.1, 2.4 and 2.6 go to completion. Therefore, no oxygen is present, and only Eqs. 2.2, 2.3 and 2.5 need be considered.
--The only compounds present at equilibrium are $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}, \mathrm{S}_{2}, \mathrm{~S}_{6}$, $\mathrm{S}_{8}, \mathrm{SO}_{2}$ and N_{2} and they obey the ideal gas law.
--The acid gas is pure $\mathrm{H}_{2} \mathrm{~S}$.
--The supply of combustion air is stoichiometric with respect to Eq. 2.1 and contains 21 vol. $\% \mathrm{O}_{2}$ and 79 vol. $\% \mathrm{~N}_{2}$.
--The total pressure is constant at $0.5,1$, or 2 atmospheres. Gamson and Elkins developed a unique hand computation method to predict equilibrium compositions subject to these assumptions.

The sulphur yields calculated by the authors for a total pressure of one atmosphere are plotted as Curve A of Fig. 2.1. This curve has a minimum which they explained as follows:

> The minimum in the equilibrium-conversion curve is caused by the shift in the predominant sulphur specie [sic] with temperature. The formation of diatomic sulphur by reactions (1) and (5) increases with increasing temperature; whereas, the opposite is true with S_{6} and S_{8}.

This explanation is essentially correct, but more thorough discussion of the shape of this curve is presented in Chapter 5 of this thesis. Gamson and Elkins divided the curve into two regions. To the right of the minimum is the "free flame" region, so called because Claus furnaces operate well above $800^{\circ} \mathrm{K}$. At such elevated temperatures, combustion can occur in a free flame and the reaction rates should be sufficiently rapid for thermodynamic equilibrium to be attained. To the left of the minimum is the "catalytic" region, so designated because Claus catalytic converters operate at thesc lower temperatures.

6
Figure 2.1. Theoretical equilibrium conversions.

Gamson and Elkins predicted overall yields of a Claus plant with a furnace which converted 70% of the acid gas to sulphur, a condenser which removed all the sulphur formed in the furnace, and, finally, a catalytic converter. These total yields are plotted as Curve B of Fig. 2.1 for catalytic converter temperatures from 400 to $650^{\circ} \mathrm{K}$. Later in this chapter, Fig. 2.1 will be compared to other equilibrium calculations, experimental results (including those of Gamson and E1kins) and plant data.

The work of Gamson and Elkins, however, had some shortcomings. They assumed only seven species present at equilibrium, since this was the maximum number which could easily be handled by a simple desk calculator. They considered an acid gas of pure $\mathrm{H}_{2} \mathrm{~S}$, which was oxidised with stoichiometric amounts of air. Finally, Gamson and Elkins used Kelley's thermodynamic data, ${ }^{6}$ published in 1937. More recent and accurate thermodynamic data are available. 7,8

Since large digital computers became readily available in the late 1960's, the equilibrium compositions of Claus furnaces with as many as 44 species have since been calculated for various acid gas impurities, and deviations from stoichiometric air. Furthermore, thermodynamic data have recently been published based on the latest theory and experiments. Numerous workers ${ }^{9 t o 21}$ elaborated on Gamson and Elkins studies in one or more of the following ways: the compounds present in the starting and in the equilibrium mixtures, the temperature range, the thermodynamic data, and the method of calculating the equilibrium compositions. Except where noted in the text, the results agreed substantially with those of Gamson and Elkins. A comparison of the papers is summarised in Table 2.1.

TABLE 2.1
SUMMARY OF VARIOUS THEORETICAL PAPERS ON THE CLAUS PROCESS

Authors*	5	10	11	12	13	14	15	16	17	18	19	20	21	This Thesis
Date	1953	1966	1968	1971	1972	1972	1973	1974	1974	1974	1975	1977	1978	
Feed														
$\mathrm{H}_{2} \mathrm{~S}$	\checkmark													
$\mathrm{H}_{2} \mathrm{O}$			\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
CO_{2}						\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Hydrocarbons Others			\checkmark	\checkmark				\checkmark	\checkmark				\checkmark	\checkmark
O_{2}	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark						
N_{2}	\checkmark		\checkmark	\checkmark	\checkmark									
Stoichiometric air (\%)	100	100	NS	100		100	$\begin{array}{r} \text { 10to } \\ 200 \end{array}$	100	100	$\begin{array}{r} 10 \text { to } \\ 200 \end{array}$	0	100	100	0-300
Equilibrium Mixture														
$\begin{gathered} \text { Mixture } \\ \mathrm{N}_{2} \end{gathered}$	\checkmark		\checkmark	\checkmark	\checkmark									
NH_{3}						\checkmark	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark
NO						\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark
NO_{2}						\checkmark	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark
O_{2}		\checkmark				\checkmark								
H_{2}			\checkmark		\checkmark									

Table 2.1 continued

Authors* Date	5 1953	10 \vdots 1966	11 1968	12 1971	$\begin{gathered} 13 \\ 1972 \end{gathered}$	$\begin{gathered} 14 \\ 1972 \end{gathered}$	$\begin{array}{r} 15 \\ 1973 \end{array}$	$\begin{gathered} 16 \\ 1974 \end{gathered}$	$\begin{gathered} 17 \\ 1974 \end{gathered}$	$\begin{gathered} 18 \\ 1974 \end{gathered}$	$\begin{gathered} 19 \\ 1975 \end{gathered}$	$\begin{gathered} 20 \\ 1977 \end{gathered}$	$\begin{gathered} 21 \\ 1978 \end{gathered}$	This Thesis
$\mathrm{H}_{2} \mathrm{O}$	\checkmark		\checkmark	\checkmark	\checkmark									
$\mathrm{H}_{2} \mathrm{~S}$	\checkmark													
- $\mathrm{H}_{2} \mathrm{~S}_{2}$			\checkmark				\checkmark			\checkmark	\checkmark			\checkmark
S0			\checkmark			.	\checkmark			\checkmark		\checkmark		\checkmark
SO_{2}	\checkmark	\checkmark	\checkmark	$=\checkmark$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
SO_{3}		.	\checkmark			- \checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark
- S		\checkmark			\checkmark		\checkmark			\checkmark	\checkmark	\checkmark		\checkmark
S_{2}	\checkmark													
S_{4}			\checkmark				\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
S_{6}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
S_{8}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
$\mathrm{S}_{3} \mathrm{~S}_{5} \mathrm{~S}_{7}$							\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
C (S)								\checkmark						
Hydrocarbons		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark				\checkmark
CO				\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	${ }^{\prime}$	\checkmark
CO_{2}		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark

Table 2.1 continued

Authors*	5	10	11	12	13	14	15	16	17	18	19	20	21	This Thesis
Date	1953	1966	1968	1971	1972	1972	1973	1974	1974	1974	1975	1977	1978	
COS				\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
CS_{2}				\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Others							\checkmark			\checkmark	\checkmark		\checkmark	\checkmark
Thermodynamic data	6	6	$\begin{array}{r} 7,22 \\ 25 \end{array}$	NS	8	7,8	7,23	7,8	NS	7,23	$\begin{gathered} 7,22 \\ 23 \end{gathered}$	NS	7,27	$\begin{gathered} 7,8,22 \\ 23,24 \end{gathered}$
Temperature (${ }^{\circ} \mathrm{K}$)	$\begin{array}{r} 400 \\ \text { to } \\ 1600 \end{array}$	NS	$\begin{array}{r} 823 \\ \text { to } \\ 923 \end{array}$	$\begin{array}{r} 500 \\ \text { to } \\ 1300 \end{array}$	$\begin{array}{r} 400 \\ 10 \\ 1750 \end{array}$	$\begin{gathered} 1073 \\ \text { to } \\ 2773 . \end{gathered}$	$\begin{array}{r} 600 \\ \text { to } \\ 2000 \end{array}$	NS	$\begin{array}{r} 973 \\ \text { to } \\ 1573 \end{array}$	$\begin{array}{r} 600 \\ \text { to } \\ 2000 \end{array}$	$\begin{array}{r} 750 \\ \text { to } \\ 2000 \end{array}$	$\begin{gathered} 1450 \\ \text { to } \\ 2000 \end{gathered}$	$\begin{array}{r} 883 \\ \text { to } \\ 1712 \end{array}$	$\begin{array}{r} 250 \\ \text { to } \\ 2200 \end{array}$
Calculations			FEM	FEM	FEM	FEM		FEM	FEM					

*Authors: 5=Gamson and Elkins; 10=Opekar and Goar; 11=Eriksson and Rosén; 12=Boas and Andrade; $13=$ McGregor; $14=$ Neumann; $15=$ Bennett and Meisen; $16=$ Bragg; $17=$ Fischer; $18=$ Meisen and Bennett; 19=Raymont; $20=$ Kerr and Berlie; $21=$ Maadah and Maddox

Abbreviations: NS=Not Stated; FEM=Free Energy Minimisation

Opekar and Goar 10 wrote a computer program to calculate equilibrium compositions and mass and heat balances for all units of a Claus plant, i.e., furnace, waste heat boiler, catalytic converters, sulphur condensers, and tail gas incinerator. Details of these computations, however, were not given. A typical optimisation study indicated that overall Claus plant conversions could be increased 2% by changing parameters such as the temperatures of the acid gas and of the first and second condenser outlets.

Eriksson and Rosén ${ }^{11}$ estimated that free energy data from JANAF was accurate to $\pm 1 \%$ (except for SO) and that data for SO from JANAF, S_{4}, S_{6} and S_{8} from Braune et al ${ }^{25}$ and $H_{2} S_{2}$ from Mackle and 0^{\prime} Hare 22 were accurate to $\pm 10 \%$. Erikkson and Rosen also examined the effect of the ratio of the partial pressures of $\mathrm{H}_{2} \mathrm{~S}$ to SO_{2} on the sulphur yield. They found the yield to be a maximum when this ratio was 2.0 , a fact well-known to Claus plant operators.

Boas and Andrade ${ }^{12}$ modelled a Claus plant to determine the effect of the following on sulphur yield: feed composition, temperatures of the waste heat boiler, condenser and catalytic converter, furnace conversion, entrainment and the ratio of the partial pressures of $\mathrm{H}_{2} \mathrm{~S}$ to SO_{2}. They examined in turn effects of $\mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O}$, and N_{2} in the acid gas. With $5 \% \mathrm{CH}_{4}$ present, yields decrease 3%, with $5 \% \mathrm{H}_{2} \mathrm{O}$, conversion fell only 1%, while with $5 \% \mathrm{~N}_{2}$, yields dropped negligibly.

Valdes ${ }^{9}$ plotted equilibrium conversions based on acid gas from refinery operations or from well-head facilities. Valdes noted that
the equilibrium plots were arrived at in much the same manner that Gamson calculated the conversions; namely, satisfying the equilibrium constants for the known predominant reactions occurring in the system. The main difference, however,
consisted in the inclusion here of all the components in the feed gas and all the possible chemical species that might be present in the system at any given temperature.

Although Valdes neither named the species, nor described further his program he did emphasise the importance of CO_{2} and hydrocarbons in the starting mixture. His results were similar to those of Gamson and Elkins.

To supplement an experimental investigation into the catalytic reaction of $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2}, McGregor ${ }^{13}$ calculated the thermodynamic equilibria of several sulphur plant reactions. His predicted sulphur yields for the Claus furnace were slightly higher than those of Gamson and Elkins because different thermodynamic data were used. At temperatures above $1200^{\circ} \mathrm{K}$, hydrogen concentrations exceeded 10%. For the converters he predicted thermodynamic yields of reactions involving $\operatorname{COS}, \mathrm{CS}_{2}, \mathrm{CO}_{2}$, CH_{4}, and CO , which he considered important since COS and CS_{2} emission can account for about $1 / 3$ of the total sulphur losses from a Claus plant.

Neumann ${ }^{14}$ estimated Claus furnace equilibria for various feed gases containing CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. For combustion with stoichiometric air, he found practically no CH_{4} or NH_{3}, concentrations of $\mathrm{NO}_{\mathrm{x}}, \mathrm{SO}_{3}$ and CS_{2} at or below the ppm level, and COS about 1%, and concluded that the higher levels of CS_{2} obtained by other workers 26,27 could not be explained by equilibrium considerations alone. Neumann found significant concentrations of H_{2} and ' CO which increased with temperature. He also noted that, under furnace conditions, the reactions forming H_{2} and CO increase the consumption of $\mathrm{H}_{2} \mathrm{~S}$ and S_{2}, and lower the flame temperature.

Neumann examined the effect of pressure on sulphur recovery at
$1400^{\circ} \mathrm{C}$, and like Gamson and Elkins, found that increasing the pressure decreased the yields except at very low temperatures.

Bragg ${ }^{16}$ modelled an entire Claus plant, including a furnace, waste heat boiler, catalytic converters, condensers, and tail gas incinerator. For each unit, Bragg computed mass and energy balances, and for the furnace and converters, he calculated the adiabatic flame temperature, allowing for heat losses.

Bragg noted that equilibrium was achieved in the furnace only if the reacting gases were completely mixed and the residence time was sufficiently large. To account for the lack of equilibrium in the furnace, Bragg by-passed some $\mathrm{H}_{2} \mathrm{~S}$ directly to the first catalytic converter. Side reactions in the catalytic converters involving $\mathrm{CO}, \mathrm{H}_{2}$, COS and CS_{2} were modelled by withholding portions of these compounds from reaction, although, for fresh catalyst and high reactor temperatures, COS and CS_{2} did not have to be withheld.

The model could be used for routine plant surveillance and optimisation, for checking the consistency of experimental data, or for predicting sulphur recoveries. Actual and predicted sulphur recoveries agreed within 0.2%. Quantities such as process temperatures and approaches to equilibrium also agreed within experimental error.

Fischer ${ }^{17}$ discussed proper operation of Claus furnaces and he predicted temperatures, compositions and sulphur yields in the furnace. Except for CS_{2}, whose concentration was only $1 / 200$ of the measured value, the predicted compositions agreed well with plant data from properly designed furnaces. Sulphur yields of several furnaces exceeded 80% for temperatures above $1000^{\circ} \mathrm{C}$ and residence times over three seconds, compared to yields of about 70% as reported by earlier workers. ${ }^{3,28}$

The discrepancy of 10% could be a result either of improved Claus furnace technology or reversion in the sampling lines. Fischer was unable to measure the exact composition of the gas at the furnace exit, and instead took samples at $260^{\circ} \mathrm{C}$ just upstream of the first catalytic converter. The reactions yielding elemental sulphur probably continued as the gases were cooled, giving apparently high sulphur yields. This "reversion" will be discussed further in the experimental section of this chapter.

Bennett and Meisen ${ }^{15}$ computed equilibrium compositions by a method used by Kellogg ${ }^{23}$ which seemed simpler than free energy minimisation. First, the partial pressures of "key components" were guessed. For Claus furnace equilibria, $\mathrm{S}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}$ and N_{2} were chosen, as their partial pressures were expected to be among the highest. It was convenient to consider that O_{2} and H_{2} were formed according to

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{~S}_{2}=1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{~S} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{O} \quad=\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \tag{2.8}
\end{equation*}
$$

The other products present in the equilibrium mixture resulted from reaction between the elements $\mathrm{S}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$ and H_{2}, i.e.,

$$
\begin{equation*}
a / 2 \mathrm{H}_{2}+\mathrm{b} / 2 \mathrm{~N}_{2}+\mathrm{c} / 2 \mathrm{O}_{2}+\mathrm{d} / 2 \mathrm{~S}_{2}=\mathrm{H}_{\mathrm{a}} \mathrm{~N}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \mathrm{~S}_{\mathrm{d}} \tag{2.9}
\end{equation*}
$$

for example, in the case of $\mathrm{H}_{2} \mathrm{SO}_{4}$,

$$
a=2, b=0, c=4, d=1
$$

and Eq. 2.9 becomes

$$
\begin{equation*}
\mathrm{H}_{2}+2 \mathrm{O}_{2}+1 / 2 \mathrm{~S}_{2}=\mathrm{H}_{2} \mathrm{SO}_{4} \tag{2.10}
\end{equation*}
$$

The partial pressures of all the components of the equilibrium mixture were then used to evaluate:
--the sum of partial pressures, P_{T};
--the atomic ratios of bound as well as unbound oxygen to sulphur, R_{OS};
--ratio of hydrogen to sulphur, R_{HS};
--ratio of nitrogen to oxygen, RNo.

Since the total pressure was atmospheric, $\mathrm{P}_{\mathrm{T}}=1$, and since the initial mixture was assumed to be pure $\mathrm{H}_{2} \mathrm{~S}$ and air ($79 \% \mathrm{~N}_{2}$ and $21 \% \mathrm{O}_{2}$), the desired magnitudes of $R_{H S}$ and $R_{N O}$ were 2.0 and 3.76 respectively. Although $R_{O S}$ could be freely specified, a value of unity corresponded to stoichiometric air according to Eq. 2.1.

If the total pressure and the three ratios did not agree within 0.1% of the desired values (denoted by *), new partial pressures of the key components were determined from

$$
\begin{align*}
& {\left[\mathrm{S}_{2}\right]=\left[\mathrm{S}_{2}\right]_{0}\left\{\left(\mathrm{P}_{\mathrm{T}} * / \mathrm{P}_{\mathrm{T}}\right)\left(\mathrm{R}_{\mathrm{OS}} / \mathrm{R}_{\mathrm{OS}}\right)\right\}^{\frac{1}{2}}} \tag{2.11}\\
& {\left[\mathrm{H}_{2} \mathrm{~S}\right]=\left[\mathrm{H}_{2} \mathrm{~S}\right]_{0}\left\{\left(\mathrm{P}_{\mathrm{T}} * / \mathrm{P}_{\mathrm{T}}\right)\left(\mathrm{R}_{\mathrm{HS}} * / \mathrm{R}_{\mathrm{HS}}\right)\right\}^{\frac{1}{2}}} \tag{2.12}\\
& {\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}_{2} \mathrm{O}\right]_{0}\left(\mathrm{P}_{\mathrm{T}} * / \mathrm{P}_{\mathrm{T}}\right)^{\frac{1}{2}}} \tag{2.13}\\
& {\left[\mathrm{~N}_{2}\right]=\left[\mathrm{N}_{2}\right]_{0}\left\{\left(\mathrm{P}_{\mathrm{T}} * / \mathrm{P}_{\mathrm{T}}\right)\left(\mathrm{R}_{\mathrm{NO}} * / \mathrm{R}_{\mathrm{NO}}\right)\right\}^{\frac{1}{2}}} \tag{2.14}
\end{align*}
$$

where [] denoted partial pressure and the subscript " 0 " referred to the previous iteration. The calculations were repeated until the desired convergence was obtained.

The adiabatic flame temperature was also computed. Details of this calculation, as well as Kellogg's method are given in Chapter 3.

The authors found that, for at least some temperatures between 600 and $2000^{\circ} \mathrm{K}$, the following 25 compounds exceeded 0.1 ppm at 1 atmosphere: $\mathrm{NH}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{H}, \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HS}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{~S}_{2}, \mathrm{O}, \mathrm{OH}, \mathrm{O}_{2}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{~S}, \mathrm{O}$, $\mathrm{SN}, \mathrm{S}, \mathrm{S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}, \mathrm{~S}_{5}, \mathrm{~S}_{6}, \mathrm{~S}_{7}$ and S_{8}. Above $1200^{\circ} \mathrm{K}$, the concentration of H_{2} exceeded 1%, and above $1000^{\circ} \mathrm{K}$ the concentration of S_{2} exceeded 10%, which was more than ten times that of any other sulphur polymer.

Using Kellogg's.free energy equations for the sulphur polymers introduced negligible error into the sulphur yields, which are plotted as Curve C of Fig. 2.1.

The authors varied the combustion air from 10% to 200% of
stoichiometric. At fixed temperatures, maximum sulphur yields occurred with less than stoichiometric amounts of air. Under adiabatic conditions, however, stoichiometric air resulted in maximum yields, which confirms plant operating experience.

An important drawback of this paper was that the acid gas was assumed to be pure $\mathrm{H}_{2} \mathrm{~S}$. A subsequent paper by Meisen and Bennett ${ }^{18}$ examined the effects on yield of having CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ in the acid gas. In addition to the 25 compounds whose concentrations exceeded 0.1 ppm , the authors assumed the following to be present at equilibrium: CH_{4}, $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, \mathrm{HCN}, \mathrm{C}_{2} \mathrm{~N}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{COS}, \mathrm{CS}$ and CS_{2}.

When the acid gas contained CO_{2} or $\mathrm{H}_{2} \mathrm{O}$ the sulphur yield decreased. For an acid gas containing $10 \% \mathrm{H}_{2} \mathrm{O}$ only, the yield dropped by only 3%. The yield also fell 3% for $15 \% \mathrm{CO}_{2}$ in the acid gas, provided the equilibrium temperature exceeded $1500^{\circ} \mathrm{K}$. At temperatures below $1200^{\circ} \mathrm{K}$, as much as $30 \% \mathrm{CO}_{2}$ had no noticeable effect on the sulphur yield.

For an acid gas containing $15 \% \mathrm{CO}_{2}$, the most abundant carbon compound at equilibrium was CO_{2}, with a concentration from 2 to 6%. The non-carbon compounds had a composition similar to those in the authors' previous paper.

No data were available for the polymers $S_{3}, S_{4}, S_{5}, S_{6}$, and S_{7}, and their free energies were therefore estimated from equations given by Kellogg, ${ }^{23}$ even though they were only strictly valid up to $700^{\circ} \mathrm{K}$. At higher temperatures, however, the partial pressures of the heavy sulphur species were extremely small, and consequently, little error was introduced into the sulphur yield, the result of greatest interest. Most other authors, however, considered only $\mathrm{S}_{2}, \mathrm{~S}_{6}$ and S_{8}, because they lacked data for the other polymers.

In 1973, Rau et al. ${ }^{24}$ published equations, valid between 773 and $1273^{\circ} \mathrm{K}$, for calculating the composition of all sulphur polymers from S_{2} to S_{8}. They based their equations on literature data and their own measurements of sulphur vapour densities between $827^{\circ} \mathrm{K}$ and $1273^{\circ} \mathrm{K}$.

With an upper limit of $1273^{\circ} \mathrm{K}$, the equations of Rau et al. should therefore predict more accurately than those of Kellogg the sulphur polymer distribution above $700^{\circ} \mathrm{K}$.

The paper of Rau et al. is especially valuable as their equations enable calculating equilibrium constants of sulphur polymers without interpolation. For the other compounds, JANAF data, presented at increments of $100^{\circ} \mathrm{C}$, require interpolation, when used to obtain the results described in Sect. 5.1 of this thesis.

Raymont investigated the thermal decomposition of $\mathrm{H}_{2} \mathrm{~S}$, which he postulated to be responsible for H_{2} concentrations of up to 3% in Claus plants. ${ }^{47}$ He used Kellogg's method ${ }^{23}$ to predict the levels of $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$, sulphur vapour and sulphanes $\left(\mathrm{H}_{2} \mathrm{~S}_{\mathrm{j}}\right.$, where $\mathrm{j}=2$ to 9$)$, present at equilibrium. ${ }^{19}$

Kerr and Berlie ${ }^{20}$ predicted equilibrium compositions of the furnace as a function of the $\mathrm{H}_{2} \mathrm{~S}$ content of the acid gas and found close agreement with actual conversion efficiencies for acid gas streams containing over $90 \% \mathrm{H}_{2} \mathrm{~S}$. They also concluded that the use of 100% stoichiometric air was not optimal because the furnace produces H_{2} and CO which do not undergo subsequent reactions. These compounds reduce the air demand from that calculated by assuming that they are absent.

Maadah and Maddox ${ }^{21}$ considered a large number of reactions and impurities. Like Kerr and Berlie, their predicted concentrations of COS and CS_{2} were much below those of plant test data. Small amounts
of impurities were found to have only a minor effect on predicted sulphur yields which were about 98% for a furnace and two converters.

2.2 Experimental

Compared to theoretical work few experimental results have been published on the Claus process, and most of these are concerned not with the furnace, but with the catalytic converters ${ }^{30 \text { to } 43 . ~ V a r i o u s ~}$ papers reporting plant trials or experiments pertinent to Claus furnace operation are summarised in Table 2.2.

Taylor and Livingston ${ }^{36}$ were among the first to investigate the non-catalytic oxidation of $\mathrm{H}_{2} \mathrm{~S}$. However, they added excess oxygen to a batch reactor heated to between 475 and $675^{\circ} \mathrm{K}$, a temperature range well below that of the Claus furnace. They detected sulphur and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the reaction products, and concluded that the equation,

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2} \tag{2.15}
\end{equation*}
$$

did not adequately describe the reaction mechanism. Furthermore, this equation predicted a pressure decrease less than that observed during the reaction. The authors postulated that this pressure decrease may be accounted for by a subsequent reaction such as

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2}=2 \mathrm{H}_{2} \mathrm{O}+3 / 2 \mathrm{~S}_{2}, \tag{2.16}
\end{equation*}
$$

or by the solubility of the SO_{2} in the liquid sulphur formed, or by the production of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Gamson and Elkins ${ }^{5}$ reported that Bähr and Braus had oxidised $\mathrm{H}_{2} \mathrm{~S}$ in a free flame at temperatures of up to $1000^{\circ} \mathrm{C}$, cooled the combustion products and condensed the sulphur. Apparent yields ranging from 80 to 90% were found. As mentioned earlier, Gamson and Elkins calculated the maximum yield to be less than 75%. The high yields of Bähr and Braus may have been caused by "reversion" which could be explained as follows: during cooling, the combustion products continue to react until a sufficiently low temperature is reached to stop the reaction. According

TABLE 2.2
EXPERIMENTAL SULPHUR YIELDS FOUND BY VARIOUS AUTHORS

Author (2) Date											N 世 U 0 in 1971					
Temperature ${ }^{\circ} \mathrm{C}$	1000	600-750	500	575	650	>1300	205-815	288	371	491	>1035	1240	1120	1110	NS	NS .
Sulphur Yield (\%)	80to90	76to82	73	71.7	70.6	90	7to85	8	12	58	66	86	68	NS	50to80	71
Theoretical Yield*	68	55to60	60	55	57	74	$63 t 097$	93		57.	70	73	73	72	NA	NA
Acid gas composition $\% \mathrm{H}_{2} \mathrm{~S}$																
$\% \mathrm{H}_{2} \mathrm{~S}$ $\% \mathrm{CO}$	100 0			$\begin{array}{r} 96 \\ 0 \end{array}$								95				
$\% \mathrm{CO}_{2}$ others	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 4 \end{aligned}$		$\begin{array}{r}0 \\ 0 \\ \hline\end{array}$	83 2		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		68 0	0	$\begin{array}{r} 38 \\ 0 \end{array}$	$\begin{array}{r} 31 \\ 0 \end{array}$	$\begin{array}{\|l\|} \text { NS } \\ \text { NS } \end{array}$	17 0
Scale of apparatus	NS	Bench		Bench		Bench	Bench				P1ant		lant	Plant	Plant	Plant

NS $=$ Not stated; $N A=$ Not applicable; $*=$ Theoretical sulphur yield is based on oxidation of pure $\mathrm{H}_{2} \mathrm{~S}$ with stoichiometric air
to Fig. 2.1, for an apparent yield of 80 to 90%, this temperature would lie between 565 and $635^{\circ} \mathrm{K}$. Another cause of the discrepancy between the experimental and theoretical yields could be the Wackenroder reaction, 44

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2} \xrightarrow{\text { water }} 2 \mathrm{H}_{2} \mathrm{O}+3 / 2 \mathrm{~S}_{2} \tag{2.17}
\end{equation*}
$$

which, in the presence of liquid water, is rapid, even at room temperature.

Probably the first important experimental study of the Claus process was published in 1950 by Sawyer et al. ${ }^{28}$. They operated a tubular laboratory furnace with a 460 mm long quartz tube, 25 mm in diameter. With a flow rate of $60 \mathrm{ml} . / \mathrm{min}$. of $\mathrm{H}_{2} \mathrm{~S}$ and $290 \mathrm{ml} . / \mathrm{min}$. air (200% of stoichiometric) and for temperatures between 873 and $1023^{\circ} \mathrm{K}$, they obtained sulphur yields of about 80%, compared with theoretical yields of less than 50% for the same amount of air. This discrepancy was probably caused by reversion.
$\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} were analysed by Tutweiler titration, as follows. A sample was taken into the Tutweiler burette by displacing an aqueous starch solution, and was then titrated with iodine to the blue end point:

$$
\begin{gather*}
\mathrm{H}_{2} \mathrm{~S}+\mathrm{I}_{2}=2 \mathrm{HI}+\mathrm{S} \tag{2.18}\\
\mathrm{SO}_{2}+\mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \tag{2.19}
\end{gather*}
$$

This titration gave the total concentration of $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2}. Then, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added to remove the blue colour and the HI and $\mathrm{H}_{2} \mathrm{SO}_{4}$ were titrated with NaOH to the methyl orange end point. From the normalities and volumes of iodine and bases used in the two titrations, the amounts of $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} could be calculated.

Sawyer et al. also studied $\mathrm{H}_{2} \mathrm{~S}$ oxiçation at temperatures below $650^{\circ} \mathrm{K}$. Reacting $96 \% \mathrm{H}_{2} \mathrm{~S}$ in a porcelain tube, they noted a drop in
yield from 73% at $500^{\circ} \mathrm{C}$ to 71% at $650^{\circ} \mathrm{C}$. They explained the lower conversions at higher temperatures with the following argument, based on kinetic considerations. The oxidation of $\mathrm{H}_{2} \mathrm{~S}$ was stepwise, the two important steps being
and

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{~S}+1 / 2 \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}+1 / \mathrm{j} \mathrm{~S}_{\mathrm{j}}, \tag{2.20}
\end{equation*}
$$

Sulphur and $\mathrm{H}_{2} \mathrm{~S}$ competed for the oxygen. At lower temperatures, reaction 2.21 was suppressed; hence the high conversions to free sulphur. However, with increasing temperatures; reaction 2.21 became more significant and more sulphur was converted to SO_{2}; hence the lower yields.

In another experiment, Sawyer et al. examined the effect of space velocity on yield. They found that for an increase of residence time from 1.76 sec to 3.55 sec , the apparent yield decreased from 62% to a minimum of 45% and then increased back to 62%. Sawyer et al. postulated that this minimum was due to the presence of free oxygen along the entire length of the furnace. At the lower space velocities, oxygen reacted with both $\mathrm{H}_{2} \mathrm{~S}$ and sulphur until all the oxygen was used up. Then $\mathrm{H}_{2} \mathrm{~S}$ reacted with SO_{2}, thus increasing the actual conversion. At higher space velocities, oxygen was present at the reactor exit, and this oxygen reacted with $\mathrm{H}_{2} \mathrm{~S}$ in the sampling lines. A more plausible explanation may be, that under the laminar flow conditions of the experiment, heat transfer was poor and the bulk gas temperature was substantially less than the wall temperature. Higher flow rates resulted in increased gas temperatures, but they also gave lower contact times, which, at low flow rates, outweighed heat transfer considerations. Hence, yield fell with increasing flow rates, until a minimum yield was reached where heat transfer began to play the larger rôle.

Gamson and Elkins ${ }^{5}$ investigated experimentally the free flame combustion of pure $\mathrm{H}_{2} \mathrm{~S}$. They used two concentric pyrex tubes 6 and 10 mm . in diameter. Air at $6.0 \mathrm{ml} / \mathrm{min}\left(0.76 \mathrm{ft}^{3} / \mathrm{hr}\right)$ flowed through the inner tube, $\mathrm{H}_{2} \mathrm{~S}$ at $2.4 \mathrm{ml} / \mathrm{min}\left(0.31 \mathrm{ft}^{3} / \mathrm{hr}\right)$ flowed through the annulus, and the two streams were mixed in the flame. The reaction products were absorbed by an aqueous NaOH scrubber and subsequently analysed by wet methods.

Gamson and Elkins obtained yields of 90%, compared with their calculated conversions of 75%, and industrial ones of 55%. ${ }^{9}$ There are two possible explanations for the discrepancies. First, as suggested by Sawyer et al., kinetics may play a role, if, at high temperatures, $\mathrm{H}_{2} \mathrm{~S}$ is oxidised more quickly to sulphur, than sulphur is to SO_{2}. Second, reversion may be a cause, if the gases are not quenched rapidly enough before sampling, or if $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} combine at room temperature after sampling to form sulphur. At temperatures below $550^{\circ} \mathrm{K}$, reaction after sampling, rather than kinetics should be the major effect. Since Gamson and Elkins operated a catalytic converter at $550^{\circ} \mathrm{K}$ and found yields similar to the theoretical ones, reaction after sampling is unlikely to have caused the discrepancy in the furnace results.

Levy and Merryman ${ }^{45}$ reacted H_{2} S with excess O_{2} in N_{2} or Ar at about $1260^{\circ} \mathrm{K}$, and determined levels of $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ by mass spectrometry. They analysed SO_{3} as $\mathrm{H}_{2} \mathrm{SO}_{4}$ and the remaining sulphur oxides by barium chloranilate. Levy and Merryman suggested that the concentrations of the free radicals $\mathrm{H}, \mathrm{O}, \mathrm{OH}$ and SH could then be estimated from the composition profiles obtained from their apparatus. Their results differed substantially from Gamson and Elkins' equilibrium experiments, but this was undoubtedly due to Levy and Merryman using
more than five times stoichiometric oxygen. For example, Levy and Merryman found 11% free O_{2}, only $5 \% \mathrm{H}_{2} \mathrm{O}, 6 \% \mathrm{SO}_{2}$ and no free sulphur. They postulated a reaction scheme for the stepwise oxidation of $\mathrm{H}_{2} \mathrm{~S}$ to SO and further to SO_{2} and SO_{3}, which may have some application to the study of the Claus process. Levy and Merryman also suggested a reaction mechanism consisting of 23 steps, found a number of significant rate constants, and calculated concentrations of atoms and free radicals. Hyne ${ }^{46}$ was interested in the behaviour of Claus furnaces and built a "mini-furnace" with variable baffles, ceramic lining and air as well as fuel nozzles. He was especially concerned about "minor" components of the acid gas, such as CH_{4} and other hydrocarbons. Hyne presented a sequence of some chain reactions in the furnace, which he felt were necessary (in addition to the reactions considered by Gamson and Elkins) to account for H_{2} and SO_{3} found in typical Claus plants. These reactions were very sensitive to relatively small amounts (less than 0.1%) of initiators, inhibitors, poisons, etc. Hyne proposed to analyse stable species by a gas chromatograph, and free radicals, which are short-lived, by a mass spectrometer. To date, however, no results have been published in the open literature.

Raymont ${ }^{19,47,48}$ experimented with $\mathrm{H}_{2} \mathrm{~S}$ dissociation and found, for temperatures above $1250^{\circ} \mathrm{K}$, hydrogen concentrations agreeing with those predicted on the basis of the following reaction,

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{~S}=2 \mathrm{H}_{2}+\mathrm{S}_{2} \tag{2.22}
\end{equation*}
$$

The agreement suggests his quenching was superior to that of Sawyer et al. as well as Gamson and Elkins. Below $1250^{\circ} \mathrm{K}$, however, the rate of reaction without a catalyst was so low that yields were less than those predicted from thermodynamic calculations.

2.3 Claus Process

In a comprehensive review, Estep et al. ${ }^{3}$ considered most practical aspects of Claus plant operation, which they illustrated by describing twc plants. A typical straight-through plant whose flow sheet is shown in Fig. 1.1, will be discussed in this section in the light of the work of Estep, Valdes ${ }^{9}$ and Fischer. ${ }^{17}$

2.3.1 Controls

Ratio flow controls proportion the acid gas and air stoichiometrically. Such a ratio is said to maximise sulphur yield in the furnace. ${ }^{3}$, 43,49,50 The controller must compensate for temperature fluctuations in the air, and both temperature and composition changes in the acid gas. Accurate analysis of the acid gas composition is therefore essential. Once correct ratios have been established and checked by stack gas analysis $\left(\mathrm{H}_{2} \mathrm{~S} / \mathrm{SO}_{2}\right.$ ratio should be $2 / 1$) the furnace temperature may be used as a control point, since it will rise with excess combustion air and fall with deficient air. Furthermore, the temperature of the catalytic converter beds drops with any deviation from the correct amount of combustion air. Correct combustion ratios can therefore be maintained by proper metering, stack gas analysis and monitoring of furnace and catalyst bed temperatures.

2.3.2 Furnace

A cylindrical furnace, 3.7 m in diameter contains two burner ports at each end and a chequered baffle wall in the centre. Fischer ${ }^{17}$ suggested that improperly designed furnaces achieve often less than 20% conversion, compared to 75% theoretically. Poor furnace design can lead to formation of carbon and ammonical sulphur compounds which impair safety and optimal sulphur recovery in the catalytic converters. Most
combustion chambers should be larger. Burners should mix air with acid gas before these gases reach the combustion chamber. This can be achieved by a multi-burner system distributed over the entire front wall. Proper furnace design, Fischer, noted, can increase sulphur recovery of a plant with two catalytic converters to a level not normally achieved in even three converter units.

2.3.3 Reheaters

In the Okotoks plant, ${ }^{3}$ an acid gas fired reheater brings the gases up to the operating temperature of the catalytic converter. Other methods of reheat are available. ${ }^{9}$. These include direct mixing of combustion products from the waste heat boiler (simpler and cheaper than acid gas fired reheater, but sulphur yields are poorer) and indirect heat exchange (expensive but comparatively high yields). Temperatures downstream of the furnace (except in the condensers) must always exceed the sulphur dew point; otherwise sulphur will condense and plug gas ducts or foul the catalyst.

2.3.4 Catalytic Converters

Valdes noted that two catalytic converters with sulphur condensation in between would recover more sulphur than a single converter with a thicker bed. The extra catalyst in the single converter would achieve little additional conversion, since it would operate at an excessively high temperature which would not favour conversion.

2.3.5 Sulphur Wash Tower

A tower, $3.4 \times 3.4 \times 10.7 \mathrm{~m}$ high circulates cooled molten sulphur counter-current to the gas to condense the sulphur formed in the final catalytic converter. Valdes pointed out that a shell and tube heat exchanger is cheaper than refluxing liquid sulphur.

The Okotoks plant processes 190,000 standard $\mathrm{m}^{3} /$ day of acid gas containing $75.1 \% \mathrm{H}_{2} \mathrm{~S}, 24.7 \% \mathrm{CO}_{2}$ and 0.2% hydrocarbons and inerts. The furnace recovers about 66% of the sulphur of the feed, the first catalytic converter, 21%, the second converter, 6%, for a total recovery of 93.6%. Sulphur production is 160 tons/day.

This section described only a few of the design and operating considerations in Claus plants. The reader is referred to Estep et a1., Fischer, and Valdes for more details.

CHAPTER 3

THEORY

This chapter describes a mathematical model of a Claus plant with recycle whose flow sheet is shown in Fig. 3.1. The model consists of five main parts which calculate the equilibrium compositions, adiabatic flame temperatures, recycle stream compositions, thermochemical properties and check for sulphur condensation in the converters. Each part is subsequently discussed in this chapter.

3.1 Equilibrium Compositions

Equilibrium calculations are based on the following assumptions: a11 compounds behave as ideal gases, air consists entirely of nitrogen (79\%) and oxygen (21\%) and the total system pressure is 1 atmosphere.

3.1.1 Acid Gas Containing Pure $\mathrm{H}_{2} \mathrm{~S}$ Only

For the equilibrium calculations, it is convenient to consider that oxygen and hydrogen are formed according to

$$
\begin{align*}
\mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{~S}_{2} & =1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{~S} \tag{3.1}\\
\mathrm{H}_{2} \mathrm{O} & =\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \tag{3.2}
\end{align*}
$$

and that all other products likely to be present in the equilibrium mixture, i.e., $\mathrm{N}, \mathrm{NH}, \mathrm{NH}_{2}, \mathrm{NH}_{3}, \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{NO}_{3}, \mathrm{~N}_{2} \mathrm{H}_{2}, \mathrm{~N}_{2} \mathrm{H}_{4}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{N}_{2} \mathrm{O}_{3}$, $\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{H}, \mathrm{HNO}$, cis $-\mathrm{HNO}_{2}$, trans $-\mathrm{HNO}_{2}, \mathrm{HNO}_{3}, \mathrm{HO}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}, 0, \mathrm{OH}$, $\mathrm{O}_{3}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{~S}_{2} \mathrm{O}, \mathrm{SH}, \mathrm{H}_{2} \mathrm{~S}_{2}, \mathrm{SN}, \mathrm{S}, \mathrm{S}_{3}, \mathrm{~S}_{4}, \mathrm{~S}_{5}, \mathrm{~S}_{6}, \mathrm{~S}_{7}, \mathrm{~S}$, result from reactions between the elements $\mathrm{S}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$ and H_{2}. To calculate

Figure 3.1. Flowsheet of Claus plant with preheat and recycle.
Legend: C--sulphur condenser CC--catalytic converter
the equilibrium composition, the following procedure, described in Chapter 2 is used:
(i) The partial pressures of the key components $\mathrm{S}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}$ and N_{2} are guessed.
(ii) The partial pressures of O_{2} and H_{2} are obtained from the law of mass action applied to Eqs. 3.1 and 3.2, i.e.,

$$
\begin{equation*}
\left[\mathrm{O}_{2}\right]=\mathrm{K}_{\mathrm{O}_{2}}^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}\left[\mathrm{~S}_{2}\right] /\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\mathrm{H}_{2}\right]=\mathrm{K}_{2}\left[\mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{O}_{2}\right]^{\frac{1}{2}} . \tag{3.4}
\end{equation*}
$$

(iii) The partial pressures of the elements S_{2}, N_{2}, O_{2} and H_{2} enable the compositions of the remaining species to be calculated from the reactions listed in Table 3.1.
(iv) With all partial pressures known, the total pressure P_{T}, and the ratios of both bound and free hydrogen to sulphur (R_{HS}), nitrogen to oxygen (R_{NO}) and oxygen to sulphur (R_{OS}) can be found and then compared to the corresponding desired values, $\mathrm{P}_{\mathrm{T}}^{*}$, $\mathrm{R}_{\mathrm{HS}}^{*}$, $\mathrm{R}_{\mathrm{NO}}^{*}$ and $\mathrm{R}_{\mathrm{OS}}^{*}$. Since the total pressure is one atmosphere, $\mathrm{P}_{\mathrm{T}}=1.0$, and since the acid gas is pure $\mathrm{H}_{2} \mathrm{~S}$, and air is assumed to consist of $79 \% \mathrm{~N}_{2}$ and $21 \% \mathrm{O}_{2}$, $\mathrm{R}_{\mathrm{HS}}^{*}=2$ and $R_{\text {NO }}^{*}=3.76$. The oxygen to sulphur ratio can be freely specified, but according to Eq. 3.1, $\mathrm{R}_{\mathrm{O}}^{*}=1$ corresponds to stoichiometric amounts of O_{2} and $\mathrm{H}_{2} \mathrm{~S}$ in the feed mixture.
(v) If $P_{T}, R_{H S}$, $R_{N O}$ or $R_{O S}$ deviate by more than 0.1% from the corresponding desired values, partial pressures of the key components are obtained from Eqs. 2.11 to 2.14 .
(vi) Steps (ii) to (v) are repeated until convergence is obtained; the sulphur yield is found from

TABLE 3.1
EQUILIBRIUM EQUATIONS FOR THE SYSTEM $\mathrm{H}_{2} \mathrm{~S}$-AIR

$1 / 2 \mathrm{~N}_{2}$	$=\mathrm{N}$	(1)
$1 / 2 \mathrm{~N}_{2}+1 / 2 \mathrm{H}_{2}$	= NH	(2)
$1 / 2 \mathrm{~N}_{2}+\mathrm{H}_{2}$	$=\mathrm{NH}_{2}$	(3)
$1 / 2 . \mathrm{N}_{2}+3 / 2 \mathrm{H}_{2}$	$=\mathrm{NH}_{3}$	(4)
$1 / 2 \mathrm{~N}_{2}+1 / 2 \mathrm{O}_{2}$	$=\mathrm{NO}$	(5)
$1 / 2 \mathrm{~N}_{2}+\mathrm{O}_{2}$	$=\mathrm{NO}_{2}$	(6)
$1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{O}_{2}$	$=\mathrm{NO}_{3}$	(7)
$\mathrm{N}_{2}+\mathrm{H}_{2}$	$=$ cis $-\mathrm{N}_{2} \mathrm{H}_{2}$	(8)
$\mathrm{N}_{2}+2 \mathrm{H}_{2}$	$=\mathrm{N}_{2} \mathrm{H}_{4}$	(9)
$\mathrm{N}_{2}+1 / 2 \mathrm{O}_{2}$	$=\mathrm{N}_{2} \mathrm{O}$	(10)
$\mathrm{N}_{2}+3 / 2 \mathrm{O}_{2}$	$=\mathrm{N}_{2} \mathrm{O}_{3}$	(11)
$\mathrm{N}_{2}+2 \mathrm{O}_{2}$	$=\mathrm{N}_{2} \mathrm{O}_{4}$	(12)
$\mathrm{N}_{2}+5 / 2 \mathrm{O}_{2}$	$=\mathrm{N}_{2} \mathrm{O}_{5}$	(13)
$1 / 2 \mathrm{H}_{2}$	$=\mathrm{H}$	(14)
$1 / 2 \mathrm{H}_{2}+1 / 2 \mathrm{~N}_{2}+1 / 2 \mathrm{O}_{2}$	$=\mathrm{HNO}$	(15)
$1 / 2 \mathrm{H}_{2}+1 / 2 \mathrm{~N}_{2}+\mathrm{O}_{2}$	$=\mathrm{cis}-\mathrm{HNO}_{2}$	(16)
$1 / 2 \mathrm{H}_{2}+1 / 2 \mathrm{~N}_{2}+\mathrm{O}_{2}$	$=$ trans $-\mathrm{HNO}_{2}$	(17)
$1 / 2 \mathrm{H}_{2}+1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{O}_{2}$	$=\mathrm{HNO}_{3}$	(18)
$1 / 2 \mathrm{H}_{2}+\mathrm{O}_{2}$	$=\mathrm{HO}_{2}$	(19)
$\mathrm{H}_{2}+\mathrm{O}_{2}$	$=\mathrm{H}_{2} \mathrm{O} 2$	(20)
$\mathrm{H}_{2}+1 / 2 \mathrm{~S}_{2}+2 \mathrm{O}_{2}$	$=\mathrm{H}_{2} \mathrm{SO}_{4}$	(21)
$\mathrm{H}_{2}+\mathrm{S}_{2}$	$=\mathrm{H}_{2} \mathrm{~S}_{2}$	(22)
$1 / 2 \mathrm{O}_{2}$	$=0$	(23)
$1 / 2 \mathrm{O}_{2}+1 / 2 \cdot \mathrm{H}_{2}$	$=\mathrm{OH}$	(24)
$3 / 2 \mathrm{O}_{2}$	$=\mathrm{O}_{3}$	(25)
$1 / 2 \mathrm{~S}_{2}$	$=\mathrm{S}$	(26)
$1 / 2 \mathrm{~S}_{2}+1 / 2 \mathrm{~N}_{2}$	$=\mathrm{SN}$	(27)
$1 / 2 \mathrm{~S}_{2}+1 / 2 \mathrm{H}_{2}$	$=\mathrm{SH}$	(28)
$1 / 2 \mathrm{~S}_{2}+1 / 2 \mathrm{O}_{2}$	= SO	(29)
$1 / 2 \mathrm{~S}_{2}+\mathrm{O}_{2}$	$=\mathrm{SO}_{2}$	(30)
$1 / 2 \mathrm{~s}_{2}+3 / 2 \mathrm{O}_{2}$	$=\mathrm{SO}_{3}$	(31)
$\mathrm{S}_{2}+1 / 2 \mathrm{O}_{2}$	$=\mathrm{S}_{2} \mathrm{O}$	(32)

Table 3.1 continued

$3 / 2 \mathrm{~S}_{2}$	$=\mathrm{S}_{3}$
$2 \mathrm{~S}_{2}$	$=\mathrm{S}_{4}$
$5 / 2 \mathrm{~S}_{2}$	$=\mathrm{S}_{5}$
$3 \mathrm{~S}_{2}$	$=\mathrm{S}_{6}$
$7 / 2 \mathrm{~S}_{2}$	$=\mathrm{S}_{7}$
$4 \mathrm{~S}_{2}$	$=\mathrm{S}_{8}$

$$
\begin{align*}
\mathrm{Y} & =100\left[\mathrm{~S}_{\mathrm{T}}\right] /\left\{\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]+[\mathrm{SN}]+[\mathrm{SH}]+\left[\mathrm{H}_{2} \mathrm{~S}\right]+2\left[\mathrm{H}_{2} \mathrm{~S}_{2}\right]\right. \\
& \left.+[\mathrm{SO}]+\left[\mathrm{SO}_{2}\right]+\left[\mathrm{SO}_{3}\right]+2\left[\mathrm{~S}_{2} \mathrm{O}\right]+\left[\mathrm{S}_{\mathrm{T}}\right]\right\} \tag{3.5}
\end{align*}
$$

where $\left[S_{T}\right]=\sum_{j=1}^{8} j\left[S_{j}\right]$

3.1.2 Impurities in Acid Gas

Under industrial conditions, the acid gas frequently contains CH_{4}, $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and NH_{3} in addition to $\mathrm{H}_{2} \mathrm{~S}$. It is therefore desirable to consider carbon and nitrogen compounds as well, and the procedure described in Sect. 3.1.1 is revised slightly as follows:
(i) Carbon dioxide is chosen as a fifth key component.
(ii) Compounds whose concentrations were found to be always less than 0.1 ppm in Sect. 3.1.1 are neglected and the following carbon species are included in the calculations: $\mathrm{HCN}, \mathrm{C}_{2} \mathrm{~N}_{2}, \mathrm{CS}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}$, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, \mathrm{CO}, \mathrm{COS}, \mathrm{CS}$ as well as the key component, CO_{2}. Since elemental carbon does not appear in the equilibrium mixtures to any significant extent, the carbon species are not considered to be formed from their elements, but rather from the equations shown in Table 3.2. (iii) In addition to $R_{H S}, R_{N O}$ and $R_{O S}$, the ratio of carbon to sulphur, $R_{C S}$, must be considered. Since the feed can contain $\mathrm{H}_{2} \mathrm{O}$ and NH_{3}, R_{HS} and R_{NO} are no longer constant, but, like R_{OS} and R_{CS}, depend on the composition of the furnace feed.
(iv) New guesses of the key components are calculated from Eq. 2.11 to 2.14 and from

$$
\begin{equation*}
\left[\mathrm{CO}_{2}\right]=\left[\mathrm{CO}_{2}\right]_{0}\left\{(\mathrm{P} * / \mathrm{P})\left(\mathrm{R}_{\mathrm{CS}}^{*} / \mathrm{R}_{\mathrm{CS}}\right)\right)^{\frac{1}{2}} \tag{3.7}
\end{equation*}
$$

The percentage sulphur yield is modified to include carbon compounds:

TABLE 3.2

EQUILIBRIUM EQJATIONS FOR THE SYSTEM

$$
\mathrm{H}_{2} \mathrm{~S}-\mathrm{AIR}-\mathrm{CO}_{2}-\mathrm{NH}_{3}
$$

$1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2}$	$=\mathrm{NH}_{3}$	(1)
$1 / 2 \mathrm{~N}_{2}+1 / 2 \mathrm{O}_{2}$	$=\mathrm{NO}$	(2)
$1 / 2 \mathrm{H}_{2}$	$=\mathrm{H}$	(3)
$\mathrm{H}_{2}+\mathrm{S}_{2}$	$=\mathrm{H}_{2} \mathrm{~S}_{2}$	(4)
$1 / 2 \mathrm{O}_{2}$	$=0$	(5)
$1 / 2 \mathrm{O}_{2}+1 / 2 \mathrm{H}_{2}$	$=\mathrm{OH}$	(6)
$1 / 2 \mathrm{~S}_{2}$	$=\mathrm{S}$	(7)
$1 / 2 \mathrm{~S}_{2}+1 / 2 \mathrm{~N}_{2}$	$=\mathrm{SN}$	(8)
$1 / 2 \mathrm{~S}_{2}+1 / 2 \mathrm{H}_{2}$	$=\mathrm{SH}$	(9)
$1 / 2 \mathrm{~S}_{2}+1 / 2 \mathrm{O}_{2}$	$=\mathrm{SO}$	(10)
$1 / 2 \mathrm{~S}_{2}+\mathrm{O}_{2}$	$=\mathrm{SO}_{2}$	(11)
$1 / 2 \mathrm{~S}_{2}+3 / 2 \mathrm{O}_{2}$	$=\mathrm{SO}_{3}$	(12)
$\mathrm{S}_{2}+1 / 2 \mathrm{O}_{2}$	$=\mathrm{S}_{2} \mathrm{O}$	(13)
3/2 S_{2}	$=S_{3}$	(14)
$2 \mathrm{~S}_{2}$	$=S_{4}$	(15)
$5 / 2 \mathrm{~S}_{2}$	$=S_{5}$	(16)
3. S_{2}	$=S_{6}$	(17)
$7 / 2 S_{2}$	$=S_{7}$	(18)
$4 S_{2}$	$=\mathrm{S}_{8}$	(19)
$\mathrm{CO}_{2}+1 / 2 \mathrm{~N}_{2}+1 / 2 \mathrm{H}_{2}$	$=\mathrm{HCN}+\mathrm{O}_{2}$	(20)
2 HCN	$=\mathrm{C}_{2} \mathrm{~N}_{2}+\mathrm{H}_{2}$	(21)
$\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{~S}$	$=\mathrm{CS}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	(22)
$2 \mathrm{CS}_{2}+\mathrm{H}_{2}$	$=\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{~S}_{2}$	(23)
$1 / 2 \mathrm{C}_{2} \mathrm{H}_{2}+3 / 2 \mathrm{H}_{2}$	$=\mathrm{CH}_{4}$	(24)
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$	$=\mathrm{C}_{2} \mathrm{H}_{4}$	(25)
$\mathrm{C}_{2} \mathrm{H}_{4}+1 / 2 \mathrm{O}_{2}$	$=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	(26)
CO_{2}	$=\mathrm{CO}+1 / 2 \mathrm{O}_{2}$	(27)
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{~S}$	$=\cos +\mathrm{H}_{2} \mathrm{O}$	(28)
$\mathrm{COS}+\mathrm{H}_{2}$	$=\mathrm{CS}+\mathrm{H}_{2} \mathrm{O}$	(29)

$\mathrm{Y}=100\left[\mathrm{~S}_{\mathrm{T}}\right] /\left\{[\mathrm{SN}]+[\mathrm{SH}]+\left[\mathrm{H}_{2} \mathrm{~S}\right]+2\left[\mathrm{H}_{2} \mathrm{~S}_{2}\right]\right.$
$\left.+[\mathrm{SO}]+\left[\mathrm{SO}_{2}\right]+\left[\mathrm{SO}_{3}\right]+2\left[\mathrm{~S}_{2} \mathrm{O}\right]+2\left[\mathrm{CS}_{2}\right]+[\mathrm{COS}]+[\mathrm{CS}]+[\mathrm{ST}]\right\}$

3.1.3 Hydrogen Sulphide Dissociation

This thesis examines both $\mathrm{H}_{2} \mathrm{~S}$ oxidation and $\mathrm{H}_{2} \mathrm{~S}$ dissociation. The latter not only provides insight into Claus plant operation, but also, as will be described in the experimental section, is excellent for checking the operation of the apparatus.

If neither CO_{2} nor $\mathrm{H}_{2} \mathrm{O}$ is associated with the acid gas, compounds containing oxygen will not be present at equilibrium and the computer program* must therefore be modified to calculate $\mathrm{H}_{2} \mathrm{~S}$ dissociation. This is done by considering that H_{2} is formed by the following reaction:

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{~S}=\mathrm{H}_{2}+1 / 2 \mathrm{~S}_{2} \tag{3.9}
\end{equation*}
$$

All other compounds are produced by the reactions shown in Table 3.3.

3.2 Adiabatic Flame Temperature

The method described in the preceding section enables the calculation of equilibrium compositions for given temperatures, pressures and feed compositions. However, since Claus furnaces operate adiabatically (heat losses are usually minor), the compositions and yields should be calculated at the adiabatic flame temperature (AFT). The following procedure was adopted in this study. First, a value of the AFT, say T_{G}, is guessed and the corresponding equilibrium composition is found by the method described in Sect. 3.1. Then the temperature, T, to which the mixture will rise is obtained from the heats of reaction and thermal data of the compounds. If T_{G} and T differ by more than $5^{\circ} \mathrm{K}$, the procedure is repeated using T as the new guess, until convergence is reached.

The equation for calculating the AFT is:

[^0]TABLE 3.3
EQUILIBRIUM EQUATIONS FOR THE SYSTEM $\mathrm{H}_{2} \mathrm{~S}-\mathrm{CH}_{4}-\mathrm{NH}_{3}$

$1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2}$	$=\mathrm{NH}_{3}$	(1)
$1 / 2 \mathrm{H}_{2}$	$=\mathrm{H}$	(2)
$\mathrm{H}_{2}+\mathrm{S}_{2}$	$=\mathrm{H}_{2} \mathrm{~S}_{2}$	(3)
$1 / 2 \mathrm{H}_{2}+1 / 2 \mathrm{~S}_{2}$	$=\mathrm{SH}$	(4)
$1 / 2 \mathrm{~N}_{2}+1 / 2 \mathrm{~S}_{2}$	$=\mathrm{SN}$	
$1 / 2 \mathrm{~S}_{2}$	$=\mathrm{S}$	
$3 / 2 \mathrm{~S}_{2}$	$=\mathrm{S}_{3}$	(6)
$2 \mathrm{~S}_{2}$	$=\mathrm{S}_{4}$	(7)
$5 / 2 \mathrm{~S}_{2}$	$=\mathrm{S}_{5}$	(10)
$3 \mathrm{~S}_{2}$	$=\mathrm{S}_{6}$	(11)
$7 / 2 \mathrm{~S}_{2}$	$=\mathrm{S}_{7}$	(12)
$4 \mathrm{~S}_{2}$	$=\mathrm{S}_{8}$	(13)
$1 / 2 \mathrm{~N}_{2}+\mathrm{CH}_{4}$	$=\mathrm{HCN}_{\mathrm{C}}+3 / 2 \mathrm{H}_{2}$	
$2 \mathrm{HCN}^{2}$	$=\mathrm{C}_{2} \mathrm{~N}_{2}+\mathrm{H}_{2}$	(14)
$2 \mathrm{CS}_{2}+\mathrm{H}_{2}$	$=\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{~S}_{2}$	
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$	$=\mathrm{C}_{2} \mathrm{H}_{4}$	(15)
$\mathrm{CH}_{4}+1 / 2 \mathrm{~S}_{2}$	$=\mathrm{CS}_{2}+2 \mathrm{H}_{2}$	
$\mathrm{CS}+1 / 2 \mathrm{~S}_{2}$	$=\mathrm{CS}_{2}$	

$$
\begin{array}{ll}
\sum_{i=1}^{N} n_{0, i}\left(H_{T_{R}}^{\circ}-H_{298}^{\circ}\right) & \\
i & \sum_{i=1}^{N}\left(n_{i}-n_{0, i}\right)\left(\Delta H_{f, 298}^{\circ}\right)_{i} \\
\text { Heat released on cooling } & \text { Heat produced by the } \\
\text { the reactants to } 298^{\circ} \mathrm{K} & \text { reactions at } 298^{\circ} \mathrm{K}
\end{array}
$$

$$
\begin{equation*}
=\sum_{i=1}^{N} n_{i}\left(H_{T}^{\circ}-H_{298}^{0}\right)_{i} \tag{3.10}
\end{equation*}
$$

Heat required to heat the products from $298^{\circ} \mathrm{K}$ to the AFT
where $n_{0, i}, n_{i}=$ number of moles of species i present before reaction and at the adiabatic flame temperature, respectively. If species i is absent before reaction, $n_{0, i}=0$; if it is absent at the flame temperature, $n_{i}=0$. $\mathrm{H}_{\mathrm{T}_{\mathrm{R}}}^{\circ}, \mathrm{H}_{\mathrm{T}}^{\circ}=$ enthalpy at T_{R}, and T , respectively, cal/mole
$\left(\Delta \mathrm{H}_{\mathrm{f}, 298}^{\circ}\right)_{i}=$ standard heat of formation of species i at $298^{\circ} \mathrm{K}$, cal/mole
$N=$ total number of species

$$
\begin{aligned}
\mathrm{T}_{\mathrm{R}} & =\text { reactant temperature, }{ }^{\circ} \mathrm{K} \\
\mathrm{~T} & =\text { adiabatic flame temperature }{ }^{\circ} \mathrm{K}
\end{aligned}
$$

Although the first term in Eq. 3.10 is easily calculated, it can usually be neglected, since $T_{R} \simeq 298^{\circ} \mathrm{K}$. Since T is not known, the last term is rewritten as

$$
\begin{equation*}
\sum_{i=1}^{N} n_{i}\left(H_{T}^{\circ}-H_{298}^{\circ}\right)_{i}=\sum_{i=1}^{N} n_{i}\left\{\left(H_{T}^{\circ}-H_{298}^{\circ}\right)_{i}+\int_{T_{G}}^{T} C_{p_{i}}^{\circ} d T\right\} \tag{3.11}
\end{equation*}
$$

which may be approximated by

$$
\begin{equation*}
\sum_{i=1}^{N} n_{i}\left(H_{T}^{\circ}-H_{298}^{\circ}\right)_{i} \simeq \sum_{i=1}^{N} n_{i}\left[\left(H_{T}^{\circ}-H_{298}^{\circ}\right)_{i}+C_{p_{i}}^{\circ}\left(T-T_{G}\right)\right] \tag{3.12}
\end{equation*}
$$

The accuracy of this approximation increases as T_{G} approaches T.
Substituting Eq. 3.12 in 3.10 and solving for T yields:

$$
\begin{align*}
T & =T_{G}+\left\{\sum_{i=1}^{N} n_{0, i}\left(H_{T_{R}}^{\circ}-H_{298}^{\circ}\right)_{i}+\sum_{i=1}^{N}\left(n_{i}-n_{0, i}\right)\left(\Delta H_{f, 298}^{\circ}\right)_{i}\right. \\
& \left.-\sum_{i=1}^{N} n_{i}\left(H_{T_{G}}^{\circ}-H_{298}^{\circ}\right)_{i}\right\} / \sum_{i=1}^{N} n_{i} C_{p_{i}^{\circ}}^{\circ} \tag{3.13}
\end{align*}
$$

Since Eq. 3.13 is written in terms of moles rather than partial pressures, both the feed and equilibrium compositions must be expressed in terms of moles.

3.3. Recycle

The effect of adding a recycle stream (c.f. Fig. 3.1) on the yield of a Claus furnace is subsequently examined. It is assumed that the condenser removes all elemental sulphur from stream E, i.e., stream D contains no elemental sulphur, whereas stream L contains only elemental sulphur. The temperature of every stream except E can be freely specified at the start of the recycle calculations, while that of stream E must be found from the adiabatic flame temperature calculations described in the previous section.

The compositions of the streams are computed as follows:
With a basis of 100 moles of acid gas, the moles of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CO}_{2}$ and CH_{4} in stream A are specified by the acid gas composition; O_{2} and N_{2} are computed from the amount of combustion air added to the acid gas.

The compositions of the other streams may be obtained from those of stream A by the following mass balances:

$$
\begin{align*}
M_{e, b} & =M_{e, A}+M_{e, C} \tag{3.14}\\
M_{e, C} & =r M_{e, D} \tag{3.15}\\
M_{e, D}+M_{e, L} & =M_{e, E} \tag{3.16}\\
M_{e, E} & =M_{e, B} \\
M_{e, L} & =(Y / 100) M_{e, E} \tag{3.18}
\end{align*}
$$

where $M_{e, E}$ represents the total moles of element $e(C, H, N, O$ or S) in stream E, r is the fraction of stream D recycled, subscripts A, B, C, D, E and L refer to the various streams and Y is the percent sulphur yield defined by Eq. 3.8. When the mass balances are made for an element other than sulphur, then $Y=0$ to make $M_{e, L}=0$. This follows since only sulphur is present in stream L. Substituting. Eqs. 3.15 to 3.18 into Eq. 3.14 gives

$$
\begin{equation*}
M_{e, B}=M_{e, A} /\left(1-r^{\prime}\right) \tag{3.19}
\end{equation*}
$$

where r^{\prime} is defined by

$$
\begin{equation*}
r^{\prime}=r(1-Y / 100) \tag{3.20}
\end{equation*}
$$

Eq. 3.14 to 3.20 enable the number of moles of element e in streams B to F to be calculated from the composition of stream A. The number of moles of compound i in a given stream, say stream E, is related to the total moles of element e by the equation

$$
\begin{equation*}
\sum_{i=1}^{N} j m_{i, E}=M_{e, E} \tag{3.21}
\end{equation*}
$$

where j is the number of atoms of element e in compound i. For example, if e is hydrogen and i corresponds to $\mathrm{H}_{2} \mathrm{O}$, then $\mathrm{j}=2$, but, if i corresponds to $\mathrm{C}_{2} \mathrm{~N}_{2}$, then $\mathrm{j}=0$. The summation is over the total number of compounds, N.

Since the gases are assumed to be ideal, the number of moles of compound i is proportional to the partial pressure of i, i.e., for stream E,

$$
\begin{equation*}
m_{i, E}=\alpha P_{i} \tag{3.22}
\end{equation*}
$$

Substituting Eq. 3.22 in Eq. 3.21 gives

$$
\begin{equation*}
\alpha \sum_{i=1}^{N} j P_{i}=M_{e, E} \tag{3.23}
\end{equation*}
$$

Substituting Eq. 3.19 and 3.23 in Eq. 3.17 and solving for α gives

$$
\begin{equation*}
\alpha=M_{e, A} /\left[\sum_{i=1}^{N} j P_{i}\left(1-r^{\prime}\right)\right] \tag{3.24}
\end{equation*}
$$

Since the gases are ideal, α should be the same for each element, but because of computer round-off error, slight variations occur and the mean value is therefore used.

From Eq. 3.22 and 3.24 the number of moles of each species in stream E is computed. Subsequently, the compositions of streams, B, C, D and F are found by mass balances.

The solution of the equations governing the recycle case, like that of the equilibrium compositions, is iterative. First, the ratios R_{CS}, $R_{H S}$, and $R_{O S}$ at the mixing point * are guessed, then the equilibrium compositions, the yield and finally r ' can be computed. For the $k^{\text {th }}$ iteration, an improved guess of the ratio R_{e} is given by

$$
\begin{equation*}
\left(R_{e S}\right)_{k}=\left(M_{e, B} / M_{S, B}\right)_{k} \tag{3.25}
\end{equation*}
$$

where, in the denominator, $e=S$ has been substituted and elsewhere $\mathrm{e}=\mathrm{C}$, H or 0 . Substituting Eq. 3.19 in the R.H.S. of Eq. 3.25, and noting that if $e \neq S, r^{\prime}=r$, gives

$$
\begin{equation*}
\left(R_{e S}\right)_{k}=\left[\left(M_{e, A} / M_{S, A}\right)(I-r) /\left(1-r^{\prime}\right)\right]_{k} \tag{3.26}
\end{equation*}
$$

Since the fraction recycled (r), and the composition of stream A are both constant,

$$
\begin{equation*}
\left(R_{e S}\right)_{k}=\left(M_{e, A} / M_{s, A}\right)(I-r) /\left(1-r_{k}^{\prime}\right) \tag{3.27}
\end{equation*}
$$

Letting

$$
\begin{equation*}
\beta=M_{e, A} / M_{s, A} \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}=\cdot(1-r) /\left(1-r_{k}^{\prime}\right) \tag{3.29}
\end{equation*}
$$

and substituting Eqs. 3.28 and 3.29 in Eq. 3.27 yields

$$
\begin{equation*}
\left(R_{e S}\right)_{k}=\beta f_{k} \tag{3.30}
\end{equation*}
$$

or for the next iteration,

$$
\begin{equation*}
\left(R_{e S}\right)_{k+1}=\beta f_{k+1} . \tag{3.31}
\end{equation*}
$$

From Eqs. 3.30 and 3.31,

$$
\begin{equation*}
\left(R_{e S}\right)_{k+1}=\left(R_{e S}\right)_{k} f_{i+1} / f_{k} . \tag{3.32}
\end{equation*}
$$

If f_{k+1} / f_{k} deviates from unity by more than 0.1%, new ratios are obtained from Eq. 3.32; this enables the computation of revised equilibrium compositions, sulphur yield, r^{\prime}, and finally k_{i+2} for the next iteration. For the first iteration, f_{1} is set to unity, although a better procedure may be to guess the yield and substitute the resulting r ' into Eq. 3.29 to obtain a guess of f_{1}.

3.4 Thermochemical Data

In order to compute the equilibrium compositions and the adiabatic flame temperatures, thermochemical data are needed. For most compounds, data are listed in JANAF tables at intervals of $100^{\circ} \mathrm{K}$ and interpolation is therefore required. Thermochemical data in the form of power series offer the possibility of faster, more precise computation. For most compounds considered in this thesis, McBride et al. ${ }^{8}$ have published sets of coefficents a_{1} to a_{7} for the following equations:
$\frac{C_{p}^{\circ}}{R}=a_{1}+a_{2} T+a_{3} T^{2}+a_{4} T^{3}+a_{5} T^{4}$.
$\frac{H_{T}^{\circ}}{R T}=a_{1}+\frac{a_{2}}{2} T+\frac{a_{3}}{3} T^{2}+\frac{a_{4}}{4} T^{3}+\frac{a_{5}}{5} T^{4}+\frac{a_{6}}{T}$
$\frac{S_{T}^{\circ}}{R}=a_{1} \ln T+a_{2} T+\frac{a_{3}}{2} T^{2}+\frac{a_{4}}{3} T^{3}+\frac{a_{5}}{4} T^{4}+a_{7}$
$\frac{F_{T}^{\circ}}{R T}=a_{1}(1-\ln T)-\frac{a_{2}}{2} T-\frac{a_{3}}{6} T^{2}-\frac{a_{4}}{12} T^{3}-\frac{a_{5}}{20} T^{4}+\frac{a_{6}}{T}-a_{7}$
The equilibrium constants may be obtained from

$$
\mathrm{K}_{\mathrm{T}}=\exp \left(-\Delta \mathrm{F}_{\mathrm{T}}^{\circ} / \mathrm{RT}\right),
$$

where

$$
\begin{equation*}
\Delta F_{T}^{\circ}=\sum_{i=1}^{N} n_{i}\left(F_{T}^{\circ}\right)_{i}-\sum_{i=1}^{N} n_{0, i}\left(F_{T}^{\circ}\right)_{i} \tag{3.38}
\end{equation*}
$$

For the species listed in Table 3.4 , coefficients are not available. The coefficients for these compounds are found by simultaneous least squares approximation. This method, described in detail by Zeleznik and Gordon 51 is used by McBride et al. for their calculations, yields the equation,

$$
\begin{equation*}
\underset{\sim}{A x} \underset{\sim}{i}={\underset{\sim}{i}}^{d}, \tag{3.39}
\end{equation*}
$$

where $\underset{\sim}{x} \underset{i}{T}=\left[a_{1}, a_{2}, \cdots, a_{10}\right]$, and a_{1} to a_{7} are the coefficents, in Eq. 3.33 to 3.36 and a_{8} to a_{10} are Lagrange multipliers. Matrix $\underset{\sim}{A}$ is constant but $\underset{\sim}{i}$ is a function of heat capacity, enthalpy and entropy of specie i. Zeleznik and Gordon noted that two sets of coefficients, one from $300^{\circ} \mathrm{K}$ to T_{0}, the other from T_{0} to $5000^{\circ} \mathrm{K}$, gave a better fit of the data than just one set. McBride found that $T_{0}=1000^{\circ} \mathrm{K}$ gave good results for most compounds. The elements of $\underset{\sim}{A}$ and of $\underset{\sim}{d}$ are listed in Tables 3.5 and 3.6 respectively.

Since A is very ill-conditioned, it must be scaled by multiplying with $\underset{\sim}{F}$ which is given by

$$
\begin{equation*}
\underset{\sim}{F}=\operatorname{diag}\left[10^{-7}, 10^{-9}, 10^{-12}, 10^{-15}, 10^{-18}, 10^{-3}, 10^{-6}, 10^{-6}, 10^{-5}, 10^{-5}\right] \tag{3.40}
\end{equation*}
$$ Multiplying both sides of Eq. 3.39 by $\underset{\sim}{F}$, and solving for ${\underset{\sim}{x}}$ gives

$$
\begin{equation*}
\underset{\sim}{x}{ }_{i}=(\underset{\sim}{F} \underset{\sim}{A})^{-1} \underset{\sim}{F} \underset{\sim}{d} \tag{3.41}
\end{equation*}
$$

the matrix $\underset{\sim}{F} \underset{\sim}{A}$ must be inverted by a double precision routine; single precision inversion gives erroneous results. For each compound in Table 3.4 , two sets of coefficients are generated, one for temperatures below $1000^{\circ} \mathrm{K}$, the other for temperatures above $1000^{\circ} \mathrm{K}$.

McBride coefficients are calculated for the sulphur polymers S_{3} to S_{7} even though Rau et $a 1 .{ }^{24}$ provide an equation and coefficients for

TABLE 3.4
THERMOCHEMICAL DATA NOT AVAILABLE FROM McBRIDE ET AL.

Compound	Source of Data	Form of Data
$\mathrm{H}_{2} \mathrm{~S}_{2}$	Mackle and $0^{\prime} \mathrm{Hare}^{22}$	300 to $1000^{\circ} \mathrm{K}$ in increments of $100^{\circ} \mathrm{K}$ S_{3} to S_{7} $\mathrm{~S}_{8}, \mathrm{~S}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
Jau et al. ${ }^{\text {Coefficients of }}$equation for C		

TABLE 3.5
MATRIX A
(See reference 51)

TABLE 3.6
$\operatorname{VECTOR} \underset{\sim}{d}$
(See reference 51)
heat capacity. Although this equation may be more accurate, the convenience of having the data in the same form for all the compounds, outweighs this advantage. To generate McBride coefficients for these sulphur polymers (S_{3} to S_{7}), the heat capacity, enthalpy and entropy are needed in intervals of $100^{\circ} \mathrm{K}$, from 300 to $5000^{\circ} \mathrm{K}$. These data were generated from the equation given for C_{p}° by Rau et al.

$$
\begin{equation*}
C_{p}^{\circ}=A+\left(B \times 10^{-3}\right) T+\left(C \times 10^{5}\right) T^{-2} \tag{3.42}
\end{equation*}
$$

and its derived functions,

$$
\begin{align*}
\mathrm{H}_{\mathrm{T}}^{\circ}-\mathrm{H}_{298}^{\circ} & =\int_{298}^{\mathrm{T}} \mathrm{C}_{\mathrm{P}}^{\circ} \mathrm{dT} \\
& =\mathrm{AT}+1 / 2\left(\mathrm{~B} \times 10^{-3}\right) \mathrm{T}^{2}-\left(\mathrm{C} \times 10^{5}\right) \mathrm{T}^{-1}+\Delta \mathrm{H}_{\mathrm{f}, 298}^{\circ} \tag{3.43}
\end{align*}
$$

and $\quad \Delta S^{\circ}=\int_{298}^{T}\left(C_{p}^{\circ} / T\right) d T$

$$
\begin{equation*}
=A \ln T+\left(B \times 10^{-3}\right) \mathrm{T}-1 / 2\left(\mathrm{C} \times 10^{5}\right) \mathrm{T}^{-2}+\mathrm{S}_{298}^{0} \tag{3.44}
\end{equation*}
$$

where the coefficients, A, B and C are listed for S_{3} to S_{7} in Table 3.7. McBride coefficients for all compounds in Table 3.4 (except $\mathrm{H}_{2} \mathrm{~S}_{2}$) were calculated for two temperature ranges: 300 to $1000^{\circ} \mathrm{K}$ and 1000. to $5000^{\circ} \mathrm{K}$. For $\mathrm{H}_{2} \mathrm{~S}_{2}$ the second range was 1000 to $2000^{\circ} \mathrm{K}$. [Data for $\mathrm{H}_{2} \mathrm{~S}_{2}$ above $1000^{\circ} \mathrm{K}$ were estimated by plotting the given data (300 to $1000^{\circ} \mathrm{K}$) and extrapolating to $\left.2000^{\circ} \mathrm{K}.\right]$ Table 3.8 1ists the elements of the symmetric matrix $\underset{\sim}{A}$ of Eq. 3.39 for each of the three temperature ranges. Table 3.9 lists the McBride coefficients for $H_{2} S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}, S_{8}$, $\mathrm{S}_{2} \mathrm{O}$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$.

In summary, McBride coefficients for the thirty-six species
assumed to be present at equilibrium were obtained from three sources:
-McBride et al. ${ }^{8}$ (most compounds);
--Data from JANAF tables ${ }^{7}\left(\mathrm{~S} 8, \mathrm{~S}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)$ or Mackle and $0^{\prime} \operatorname{Hare}^{22}\left(\mathrm{H}_{2} \mathrm{~S}_{2}\right)$: --Data generated by Eqs. 3.42 to 3.44 (S_{3} to S_{7}).

TABLE 3.7
HEAT CAPACITIES OF GASEOUS SULPHUR MOLECULES
FROM RAU ET AL. 24

$C_{p}=A+10^{-3} B T+10^{5} \mathrm{C} . \mathrm{T}^{-2}$				$\left(\mathrm{T} . \text { in }{ }^{\circ} \mathrm{K}\right)^{\text {a }}$	
Polymer				$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$	
	A	B	C	Kcal/mol	$1 / \mathrm{mol} /{ }^{\circ} \mathrm{K}$
S_{2}	8.54	0.28	-0.79	31.20	54.40
S_{3}	12.854	1.04	-1.554	33.81	64.39
S_{4}	19.092	0.783	-2.820	34.84	74.22
S_{5}	25.558	0.253	-3.771	26.14	73.74
S_{6}	31.580	0.120	-4.400	24.36	84.60
S_{7}	37.038	0.613	-4.723	27.17	97.41
S_{8}	42.670	0.860	-5.110	24.32	102.76

${ }^{a^{\text {Equation }}}$ in the authors' computer program was used instead of that given in their Table 1 , as the latter appeared to have an incorrect sign for an exponent.
(A) For $300<T<1000^{\circ} \mathrm{K}$

3.45563D	02	$4.18165 D$	04	$1.76839 D$	07
$4.18165 D$	04	$8.55000 D$	06	$5.02666 D$	09
$1.76839 D$	07	$5.02666 D$	09	$3.44579 D$	12
1.051410	10	$3.69192 D$	12	$2.75990 D$	15
$7.31261 D$	12	$2.98069 D$	15	$2.35752 D$	18
$1.42897 D-02$	$4.00000 D$	00	$1.73333 D$	03	
$5.12526 D$	01	$5.20000 D$	03	$1.90000 D$	06
$1.00000 D$	00	$1.00000 D$	03	$1.00000 D$	06
$1.00000 D$	00	$5.00000 D$	02	$3.33333 D$	05
$6.90776 D$	00	1.000000	03	$5.00000 D$	05

(B) For $1000<\mathrm{T}<5000^{\circ} \mathrm{K}$

2. $65844 D$	03	1.179370	06
$1.17937 D$	06	$9.59400 D$	08
$2.31782 D$	09	$2.70600 D$	12
$6.51016 D$	12	$9.57415 D$	15
$2.15458 D$	16	3.729910	19
$1.67024 D$	02	2.050000	01
$3.24488 D$	02	$1.23000 D$	05
$1.00000 D$	00	$1.00000 D$	03
$1.00000 D$	00	$5.00000 D$	02
$6.90776 D$	00	$1.00000 D$	03

$2.31782 D$	09
$2.70600 D$	12
$8.93587 D$	15
$3.45362 D$	19
1.424930	23
4.100000	04
2.132000	08
$1.00000 D$	06
$3.33333 D$	05
$5.00000 D$	05

$6.51016 D$	12
$9.57415 D$	15
$3.45362 D$	19
1.403340	23
$5.98688 D$	26
$1.06600 D$	08
$5.41200 D$	11
$1.00000 D$	09
$2.50000 D$	08
$3.33333 D$	08

$2.15458 D$	16
$3.72991 D$	19
$1.42493 D$	23
$5.98688 D$	26
$2.61365 D$	30
$3.24720 D$	11
$1.64128 D$	15
$1.00000 D$	12
$2.00000 D$	11
$2.50000 D$	11

[^1]5. 12526D 01 5. $20000 \mathrm{D} \cdot 03$ 1.90000 D 06 1.00533 D 09 6.32900D 11 $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$ 8.00000 D 00 $0.00000 \mathrm{D}-01$ 0.00000D-01 1. 00000 D 00
1.00000000 1.00000003 1.00000006 1.00000009 1.00000D 12 $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-0$
1.00000000
1.00000000
5.00000002 3.333330 05 2.50000D 08 2.00000011 $1.00000 \mathrm{D}-03$ $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$
6.90776000 1.00000D 03 5.00000D 05 3. 33333 D 08 2.50000 D 11 $0.00000 \mathrm{D}-01$ 1.000000 00 $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$
(C) For $1000<\mathrm{T}<2000^{\circ} \mathrm{K}$
6.07116 D 02 1.45790005 1.298110087 1.56548D 11 2. 16469 D 14 7.687710-03 8.01907001 8.019070
1.000000
1 1.00000000
1.00000000 6.90776000

1. 4579000 5.81625007 7.01250 D 10 1.03153 D 14 1.64868D 17 5.50000 D 00 1.65000D 04 1.65000D 04 1.00000003 5.00000 D 02 1. 00000 D 03
2. 29811 D 08 7.01250 D 10 9.62759 D 13 1.52656D 17 2.56777D 20 5.50000D 03 1.29250007 1.00000 D 06 1.00000 D 06 3.333330
5.000000 5.00000005
1.031530 14 1.52656D 17 2.52887 D 20 4.38510 D 23 6.46250 D 06 1.40250 D 10 1.00000D 09 2.00000 D 09 $2.50000 D 08$
$3.33333 D 08$ 3.33333D 08
3. 16469 D 14 1.648680 17 1.64868017 2.56777 D 20 4. 38510D 23 7. 76965 D 26 8.41500 D 09 1.76833 D 13 1.000000 12 2.000000 2.00000019 2.50000D 11
7.68771D-03 5.50000000 5.50000003 6.46250 D 06 8.41500 D 09 5. $63955 \mathrm{D}-06$ $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$ 1. $00000 \mathrm{D}-03$ $0.00000 \mathrm{D}-01$
4. 24488 D 02 1.23000D 05 2. 13200 D 08 5.41200 D 11 1.64128 D 15 $0.00000 \mathrm{D}-01$ 4.10000001 0.00000D-01 $0.000000-01$ 1.00000D 00
1.00000D 00 1.00000003 1. 00000 D 06 1.000000 09 1.00000D 12 $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$ 0.00000 D-01
1.00000000 5.00000D 02 3. 33333005 2.50000D OB 2.00000D 11 $1.00000 \mathrm{D}-03$ $0.00000 \mathrm{D}-01$ $0.000000-01$ $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$
6.90776000 1.00000D 03 5.00000D 05 3. 33333D 08 2.500000 11 $0.00000 \mathrm{D}-01$ 1.00000D 00 0. $00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$ $0.000000-01$
5. 01907 D 01 1.65000D 04 1.29250007 1.40250 D .10 1.76833 D 13 $0.00000 \mathrm{D}-01$ 1. 10000 D 01 0.00000D-01 $0.00000 \mathrm{D}-01$ 1.00000D 00
1.00000000 1.00000D 03 1.00000006 1.000000 06 1.00000009 1.00000 D 12 $0.00000 \mathrm{D}-01$ 0. 00000D-01 $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$
$0.00000 \mathrm{D}-01$
1.00000D 00 5.00000D 02 3.333330 05 2.500000 08 2.00000D 11 1.00000D-03 $0.00000 \mathrm{D}-01$ 0.000000-01 $0.000000-01$ $0.00000 \mathrm{D}-01$
6.90776000 1.00000003 5.00000 D 05 3. 33333 D 08 2. 50000D 11 0.00000D-01 1.00000000 $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$

TABLE 3.9
McBRIDE COEFFICIENTS CALCULATED IN THIS THESIS

TABLE 3.10
COMPARISON OF STANDARD ERRORS OF DATA OF S_{2} generated from mcbride coefficients

Source	C_{p}		$\mathrm{H}_{\mathrm{T}}-\mathrm{H}_{298}$	$\mathrm{~S}_{\mathrm{T}}$		
	σ_{1}	σ_{2}	σ_{1}	σ_{2}	σ_{1}	σ_{2}
McBride et al.						
This thesis + JANAF						
This thesis + Eqs. 3.42 to 3.44	0.001	0.002	0.000	0.144	0.000	0.064

$$
\begin{aligned}
& \sigma_{1}=\left[\frac{\sum_{T=300}^{1000}\left(x_{T}-\hat{X}_{T}\right)^{2}}{n_{1}-1}\right]^{\frac{1}{2}} \\
& \sigma_{2}=\left[\frac{\sum_{T=1000}^{5000}\left(x_{T}-\hat{X}_{t}\right)^{2}}{n_{2}-1 .}\right]^{\frac{1}{2}}
\end{aligned}
$$

where $\mathrm{X}=\mathrm{C}_{\mathrm{P}_{\mathrm{T}}}, \mathrm{H}_{\mathrm{T}}-\mathrm{H}_{298}$ or S_{T} listed in JANAF tables for temperature T $\hat{\mathrm{X}}=\mathrm{C}_{\mathrm{P}_{\mathrm{T}}}, \mathrm{H}_{\mathrm{T}}-\mathrm{H}_{298}$ or S_{T} calculated from McBride coefficients for temperature T
$\mathrm{T}=$ temperature in ${ }^{\circ} \mathrm{K}$
$\mathrm{n}_{1}, \mathrm{n}_{2}=$ the number of temperature intervals in the summation

$$
\left(n_{1}=8 ; \quad n_{2}=41\right)
$$

Since McBride coefficients for S_{2} can be obtained from each of these three sources, a comparison of their accuracy could be made. Table 3.10 shows that the standard error of thermochemical data generated by McBride coefficients from each of the three sources is less than 10%.

Thus, McBride coefficients are an accurate, convenient way of representing thermochemical data.

3.5 Vapour Pressure of Sulphur

Sulphur condenses when the sum of the partial pressures of the various sulphur species, i.e.,

$$
\begin{equation*}
P_{s}=\sum_{j=1}^{8}\left[S_{j}\right], \tag{3.45}
\end{equation*}
$$

exceeds the saturated vapour pressure of sulphur. An equation for the latter can be obtained by fitting a curve to the data of West. 5^{52} The author reported vapour pressure-temperature data for sulphur between 393 and $919^{\circ} \mathrm{K}$ and two equations, listed in Table 3.11 , one valid below $573^{\circ} \mathrm{K}$, the other for temperatures between 573 and $823^{\circ} \mathrm{K}$. At $573^{\circ} \mathrm{K}$, however, the vapour pressures given by the two equations differed by almost 20\%. Likewise two equations provided by The Sulphur Data Book ${ }^{53}$ disagreed by over 4% at the common point. The single equation given by Rau et al. ${ }^{54}$ did not cover the entire range desired. It was therefore decided to fit the data of West et al. to a single equation valid from 393 to $919^{\circ} \mathrm{K}$. The equation used is $\ln P_{v}=3.77 .978+1.91809 \times 10^{-6} \mathrm{~T}^{2}-796.138 \mathrm{~T}^{-1}-1,883,640 \mathrm{~T}^{-2}$ where P_{v} is in atmospheres and T is in ${ }^{\circ} \mathrm{K}$. The coefficient of determination (r^{2}) was 0.99999 . This equation gives a better fit to the experimental data of West et al. than any of the equations listed in Table 3.11.

TABLE 3.11
EQUATIONS FOR VAPOUR PRESSURE OF SULPHUR

Source	Range $\left({ }^{\circ} \mathrm{K}\right)$	Equation
West ${ }^{52}$	373 to 573 573 to 823	$\log _{10} \mathrm{P}=6.04892-4087.8 / \mathrm{T}$ $\log _{10} \mathrm{P}=4.57579-3288.5 / \mathrm{T}$
Sulphur Book 53	393 to 598 598 to 823	$\log _{10} \mathrm{P}=11.8-0.006228 \mathrm{~T}-5405.1 / \mathrm{T}$ $\log _{10} \mathrm{P}=4.57579-3288.5 / \mathrm{T}$
Rau et al. 54	590 to 1313	$\log _{10} \mathrm{P}=60.9106-24,971 / \mathrm{T}+1.0817 \times 10^{7} / \mathrm{T}^{2}$ $-2.2060 \times 10^{9} / \mathrm{T}^{3}-14.4102 \log _{10} \mathrm{~T}$

P is in atmosphexes; T in ${ }^{\circ} \mathrm{K}$

CHAPTER 4

EXPERIMENTAL APPARATUS

4.1. Requirements of the Apparatus

The experimental equipment must.be capable of providing feed mixtures having known ratios of air to hydrogen sulphide, heating these mixtures to a given temperature (between 800 and $1500^{\circ} \mathrm{K}$) and letting the mixtures come to equilibrium at one atmosphere pressure.

In situ analysis of the gas mixture in the equilibrium vessel was rejected because of complexity and expense. The reaction products therefore had to be sampled before analysis. The sampling procedure had to have the following characteristics:
--speed to quench the gases rapidly and prevent reversion;
--removal of condensed sulphur before it could clog the valves and lines;
--removal of condensed water which catalyses the reaction between $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2}.

Since theory predicts that $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}$ and sulphur vapour are present in qụantities exceeding 1%, and since the water and sulphur are removed during sampling, an analysis technique was sought which determined the concentrations of just $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$ and N_{2}.

4.2 Apparatus and Principles of Operation

The following sections describe the apparatus and how it was designed to meet the requirements given it the previous section. The equipment is shown in Figs. 4.1 and 4.2 and important components of the

Figure 4.1. Schematic diagram of the experimental apparatus.

[^2]

Figure 4.2. Experimental apparatus. (The equilibrium vessel has been removed from the furnace to show its shape and size.)

The legend is on page 58.

Legend for Figures 4.1 and 4.2

C	Clamp
EV	Equilibrium vessel
F	Furnace
$\mathrm{GB}_{1}, \mathrm{~GB}_{2}$	Gas bag for feed and product mixtures, respectively
GBC	Gas bag container
MG	McLeod gauge
MT	Mullite tube
R	Pressure relief valve
S_{1} and S_{2}	Septums
SC	$\mathrm{P}_{2} \mathrm{O}_{5}$ scrubber
ST	Stopcock
SV	Solenoid valve
SVT	Solenoid valve timer
T	Tygon tubing
V_{1} to V_{6}	Stainless steel valves
VP	Vacuum pump

apparatus are listed in Table 4.1. . Details of the operating procedure are given in Appendix A.

4.2.1 Feed Mixture Preparation

The feed mixtures were prepared by blending streams of air and hydrogen sulphide in the desired ratios. The flow of C.P. grade $\mathrm{H}_{2} \mathrm{~S}$ (from a lecture bottle) was metered by a Gilmont rotameter (model F2000, size 10) whereas the air flow was determined with another Gilmont rotameter (model F1100, size 1). The feed mixture was stored in 2-litre Tedlar gas bags (supplied by Environmental Measurements Inc.) until needed.

Instead of first collecting the air- $\mathrm{H}_{2} \mathrm{~S}$ mixture in a gas bag, one might also consider passing it directly through the equilibrium vessel. In a series of experiments, metered flows of air and $H_{2} S$ were passed through a 10 mm ID Vycor tube located in a small furnace. Reaction products were sampled from the exit of the tube. The apparatus, however, was unsatisfactory for two main reasons:
--At low flow rates, the residence time was sufficient for the gases to attain chemical equilibrium, but the heat transfer was poor and the gases did not reach the desired temperature.
--At high flow rates, the heat transfer was good, but residence times were too low for the gases to reach chemical equilibrium.

4.2.2 Furnace

A Lindberg furnace (model 54233), capable of attaining a temperature of $1500^{\circ} \mathrm{C}$, and controllable to within $\pm 1^{\circ} \mathrm{C}$, was chosen for this work. The furnace, which is 635 mm long, contains eight SiC heating elements which are spaced in such a way that a 200 mm long zone is created where the temperature is uniform within $\pm 5^{\circ} \mathrm{C}$. To enable easy positioning,

TABLE 4.1
LIST. OF EQUIPMENT

Table 4.1 continued

the furnace was placed on a pallet equipped with wheels.

4.2.3 Quartz Equilibrium Vessel

Quartz was selected as the material of construction of the vessel because it can withstand temperatures of up to $1250^{\circ} \mathrm{C}$, yet is comparatively easy to work into the desired "pipette" shape. Such a shape takes advantage of the "flat zone" of the furnace. The "bulb" of the pipette, 40 mm ID $\times 200 \mathrm{~mm}$ long and containing about 250 ml , lies entirely within the flat temperature zone of the furnace. Gases are supplied to, and withdrawn from the vessel through two quartz capillary tubes (2mm ID $\times 8 \mathrm{~mm}$ OD $\times 280 \mathrm{~mm}$ long) which have a combined capacity of 2 ml , and which extend beyond the flat zone. The pipette shape of the vessel therefore enables over 99% of its contents to attain a uniform temperature and composition, provided the residence time is sufficiently long. The quartz equilibrium vessel rests on a mullite tube (46 mm ID $\times 51 \mathrm{~mm}$ OD $\times 635 \mathrm{~mm}$ long) which was inserted into the furnace chamber.

4.2.4 Sampling

The sampling system consists of a gas bag (placed inside a metal container), valves, fittings and a vacuum pump. Before a sample can be taken, both the gas bag and its container are evacuated to about 300_{μ} Hg vacuum (valves $V_{2}-V_{5}$ of Fig. 4.1 open, V_{6} and the solenoid closed). To sample, valve V_{2} is first closed (to prevent the sample from being drawn into the vacuum pump), the stopcock ST is opened and the solenoid valve is activated. A timing circuit opens the solenoid valve for a predetermined period, e.g., two seconds. Sampled gases flow rapidly into the gas bag because of the pressure difference. Initially the pressure in the vessel is one atmosphere, whereas the pressure inside the gas bag is about $300 \mu \mathrm{Hg}$. After sampling, the corresponding
pressures are about 0.8 and 0.02 atm., assuming that a 50 ml sample (at S.T.P.) is taken. Opening valve V_{6} restores the pressure in the container and gas bag to one atmosphere. Opening clamp C and valve V_{1} restores the reactor pressure to atmospheric conditions by drawing an additional amount of the air $-\mathrm{H}_{2} \mathrm{~S}$ feed mixture into the equilibrium vessel. To ensure that equilibrium had been attained, samples were withdrawn after the gas mixtures had resided in the equilibrium vessel for various periods of time.

A glass tube containing phosphorus: pentoxide ($\mathrm{P}_{2} \mathrm{O}_{5}$) is located in the sampling line just upstream of the solenoid valve. The purpose of the $\mathrm{P}_{2} \mathrm{O}_{5}$ is to remove liquid water which is capable of catalysing the reaction between $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2}. The desiccant is periodically replaced to ensure adequate absorbancy. The stopcock ST isolates the contents of the equilibrium vessel from the $\mathrm{P}_{2} \mathrm{O}_{5}$ and is opened only just before sampling.

4.3 Gas Chromatography

Gas chromatography was chosen as the method of analysis because it is fairly simple, rapid and inexpensive. Furthermore, a Beckman GC-2 chromatograph was available.

4.3.1 Requirements of the G.C. Column

The column used in the gas chromatograph should have the following properties:
--separate $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2}, which are the gases expected to be present in significant concentrations;
--operate at close to ambient temperature to minimise reaction of $\mathrm{H}_{2} \mathrm{~S}$ with SO_{2} in the column.

4.3.2 Analysis of Four Compounds

An attempt was made to devise a chromographic system to separate and detect the following four compounds: $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2}. Three
pressures are about 0.8 and 0.02 atm., assuming that a 50 ml sample (at S.T.P.) is taken. Opening valve V_{6} restores the pressure in the container and gas bag to one atmosphere. Opening clamp C and valve V_{1} restores the reactor pressure to atmospheric conditions by drawing an additional amount of the air $-\mathrm{H}_{2} \mathrm{~S}$ feed mixture into the equilibrium vessel. To ensure that equilibrium had been attained, samples were withdrawn after the gas mixtures had resided in the equilibrium vessel for various periods of time.

A glass tube containing phosphorous pentoxide ($\mathrm{P}_{2} \mathrm{O}_{5}$) is located in the sampling line just upstream of the solenoid valve. The purpose of the $\mathrm{P}_{2} \mathrm{O}_{5}$ is to remove liquid water which is capable of catalysing the reaction between $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2}. The desiccant is periodically replaced to ensure adequate absorbancy. The stopcock ST isolates the contents of the equilibrium vessel from the $\mathrm{P}_{2} \mathrm{O}_{5}$ and is opened only just before sampling.

4.3 Gas Chromatography

Gas chromatography was chosen as the method of analysis because it is fairly simple, rapid and inexpensive. Furthermore, a Beckman GC-2 chromatograph was available.

4.3.1 Requirements of the G.C. Column

The column used in the gas chromatograph should have the following properties:
--separate $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2}, which are the gases expected to be present. in significant concentrations;
--operate at close to ambient temperature to minimise reaction of $\mathrm{H}_{2} \mathrm{~S}$ with SO_{2} in the column.
4.3.2 Analysis of Four Compounds

An attempt was made to devise a chromographic system to separate and detect the following four compounds: $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2}. Three
different arrangements were examined. Although none proved to be successful, each method is described briefly in the following section and summarised in Table 4.2.
4.3.2.1. Single column operating isothermally. The simplest way is to separate $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2} with a single column maintained at a constant temperature. Table 4.3 summarises references dealing with the chromatographic separation of gas mixtures containing $\mathrm{H}_{2} \mathrm{~S}$ and/or SO_{2}. None of these references describes single columns which operate isothermally and are capable of separating $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2} in percent quantities. Supelco ${ }^{55}$ suggested a 1.8 m column of Porapak Q for the separation of $\mathrm{N}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2}. To separate H_{2} and N_{2} as well would require a column about 6 m long and this was excessive for the Beckman GC-2, due to pressure drop considerations.
4.3.2.2. Three columns operating isothermally. A $1.8 \mathrm{~m} \times 3 \mathrm{~mm}$ column of molecular sieve 5A ($80 / 100$ mesh) separated H_{2} and N_{2} but permanently adsorbed $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2}. On the other hand, a 1.8 m column of Porapak Q separated $\mathrm{N}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{SO}_{2}\left(\mathrm{H}_{2}\right.$ and N_{2} eluted together, forming a composite peak). An analysis of all four compounds could therefore be achieved, at least in principle, by using three columns in series. The first column would be Porapak Q , which separates $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2}. This is followed by a column of KOH to remove $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} before the remaining gases pass into the third column containing the molecular'sieve. The last column then separates H_{2} and N_{2}. However, due to pressure drop restrictions, the available chromatograph could not handle columns longer than about 3 m . The total length of the three column system was, however, greater than this and the arrangement had to be abandoned.

TABLE 4.2
POSSIBLE CHROMATOGRAPHIC COLUMNS FOR SEPARATING
$\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{~S}$ AND SO_{2}

	Supplier		
	Supelco ${ }^{55}$	Chromatographic Specialities 56	Analabs ${ }^{57}$
Column	6m Porapak QS	$0.5 \mathrm{~m} \times 3 \mathrm{~mm}$ Porapak $Q S$ and $1.8 \mathrm{~m} \times 3 \mathrm{~mm}$ molecular sieve 5A	$1 \mathrm{~m} \times 3 \mathrm{~mm}$ Spherocarb
Operating Conditions	Isothermal	Porapak QS separates $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} which are analysed and then absorbed by KOH. The molecular sieve then separates H_{2} and N_{2}	H_{2} and N_{2} are separated at $40^{\circ} \mathrm{C}$; $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} are separated at $180^{\circ} \mathrm{C}$
Reason for Rejection	Column is too long for available G.C. due to pressure drop restriction	Columns are too long for available G.C.	The "Thermotrac" temperature programming attachment for the Beckman GC-2 did not work properly

TABLE 4.3

gas chromatography references for separations Involving $\mathrm{H}_{2} \mathrm{~S}$ AND/OR SO_{2}

Unless otherwise noted, a thermal conductivity detector and H_{2} carrier gas were used Abbreviation: NS = not stated

							Authors					
	$\begin{gathered} \text { Robbins } \\ \text { et a1 } \\ 1964 \end{gathered}$		ges an tson ${ }^{59}$ 1964			$\begin{aligned} & \text { pe and } \\ & \text { ams } 60 \\ & 1967 \end{aligned}$	$\begin{gathered} \text { Jones }{ }^{\dot{6} 1} \\ 1967 \end{gathered}$	Oberm Char 1967	$\begin{gathered} 11 \mathrm{er} \text { and } \\ \text { ier }^{62} 63 \\ 1968 \end{gathered}$	Applebury \& Schaer ${ }^{64}$ 1970		
Columin:												
Length (m) OD (mm)	6×6	1. 8×6	1.8×6	0.3×6	2.4×5	1.8×5	3×6	3×3	1.5×1.5	1.8×6		
Packing material	Dibuty1 Sebacate on Fluoropak	```Triton Benzo Silica X-305 cello- gel on solve Dia- toport S```			Triton PorapakQ X-305 on Chromo- sorb G		PorapakQ	PorapakQ		PorapakQ		
Temperature (${ }^{\circ} \mathrm{C}$)	60	25 to. 75	30	100	30 to 70	60 tol 140	ambtol25	90	75	90		
Gases of interest separated	$\begin{gathered} \mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2} \\ 15 \end{gathered}$	$\begin{array}{ccc}\text { Air, } & \mathrm{H}_{2} \mathrm{~S}, & \mathrm{SO}_{2} \\ 6 & 12 & 10\end{array}$			$\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$7		$\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{~S}$.	$\begin{gathered} \mathrm{N}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2} \\ 6 \ldots \ldots 4 \end{gathered}$		$\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$		
SO_{2} elution(min)					NS							
Comments	-Three columns were needed, each operated at a different. temperature -Total length of 6 m was excessive	-Authors found silica gel best -Best temperature was $120^{\circ} \mathrm{C}$					-Triton X gave better separation than did PorapakQ (ppb quantities)		-Two columns, one "hot" and one "cold"	-Two columns were required one at $-70^{\circ} \mathrm{C}$ and the other at $90^{\circ} \mathrm{C}$		-PorapakQ absorbed small. quantities of SO_{2}
					-Microcoulometric detector (M.C.D.) was used		were required $-\mathrm{He} / \mathrm{H}_{2}$ carrier was used	```(ppm quantities) -M.C.D. used```				

Thorns 19	erry^{65}	$\begin{gathered} \text { Anon }^{66} \\ 1972 \end{gathered}$	Bollman and Mortimore ${ }^{67}$ 1972	Bremner and Banwart ${ }^{68}$ 1974	Murdock and Atwood 69 1974	```de Souza et al'0 1975```	$\begin{gathered} \text { Supelco } \\ \text { Inc } 71 \\ 1976 \end{gathered}$	$\begin{gathered} \text { Supelco } \\ \text { Inc } 72 \\ 1977 \end{gathered}$	$\begin{gathered} \text { Analabs } \\ \text { Inc } 57 \\ 1977 \end{gathered}$
1.8×6	0.6×6	1×3	0.6×6	$1.8 \times 2 \mathrm{ID}$	3.7×5	0.5×3	0.5×3	1.8×4	0.9×3
PorapakQS	Acidwasned Deactigel	Acid- washed Deact- igel	Carbon molecular sieve	$\begin{aligned} & \text { Chromosil } \\ & 310 \end{aligned}$	PorapakQS and Porapak R in series	Acetone- washed PorapakQS	Carbosieve S	$\begin{aligned} & \text { Chromosil } \\ & 310 \end{aligned}$	Sphero- carb
98	122	50-150	175	40	95	30 to 210	100 to250	40	150 to200
$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$	$\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$	$\begin{aligned} & \mathrm{N}_{2}, \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}, \\ & \mathrm{SO}_{2} \end{aligned}$	$\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$	$\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$	$\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$	$\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$
6	9	NA	6	2.5	NS	NS	7	6	5
-Authors preferred Deactigel		-Tailing and adsorptive losses were noted -Flame photometric detector (F.P.D.) used with air as carrier gas	-Condition- -Chromosil ing with $\mathrm{H}_{2} \mathrm{~S}$ was best was required -Trace -Best separ- quantities ation for of gases $\mathrm{H}_{2} \mathrm{~S}$ was were at $175^{\circ} \mathrm{C}$ studied -F.P.D. used with N_{2} as carrier gas		-	-Excessive SO_{2} tailing with acidwashed Deactigel -F.P.D. used	$\begin{aligned} & \text {-No } \\ & \text { tailing } \end{aligned}$	-Excellent -A 2.9m separation column of percent separated quantities H_{2} and N_{2} at $40^{\circ} \mathrm{C}$ -May catalyse $\mathrm{H}_{2} \mathrm{~S}$ dissoci- ation	

4.3.2.3. One column with temperature programming. A $0.9 \mathrm{~m} \times 3 \mathrm{~mm}$ column of Spherocarb separated H_{2} and N_{2} at $40^{\circ} \mathrm{C}$, and $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} between 150 and 200° C.* However, the available Beckman "Thermotrac" temperature programming system proved to be unsatisfactory, since it required two columns with identical pressure drops. If a more modern gas chromatograph had been available, then temperature programming would have been very promising.

4.3.3 Analysis of Three Compounds

Since no satisfactory method could be found to separate H_{2}, N_{2}, $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} using the available gas chromatograph, it was decided to separate only $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2}. If N_{2} is chosen as the carrier gas, then the nitrogen of the sample passes through the gas chromatograph undetected and does not interfere with the hydrogen analysis. Hydrogen, $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} are measured directly, whereas N_{2} must be determined by difference.

The accuracy of this method is determined to a large degree by the response of $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$, and SO_{2} obtained with N_{2} as the carrier gas. Since the GC-2 was fitted with a thermal conductivity detector, the response to any compound is proportional to the difference between the thermal conductivity of the carrier gas and that of the compound. Table 4.4 shows that, although N_{2} produces only a relatively fair response with $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2}, it results in a quite good response for H_{2}. Since samples usually contain only about $2 \% \mathrm{H}_{2}$, but as much as $10 \% \mathrm{H}_{2} \mathrm{~S}$ and SO_{2}, nitrogen nevertheless is an excellent carrier gas because it gives the highest sensitivity for the least plentiful compound. Furthermore, since N_{2} constitutes up to 75% of the sample, little accuracy is lost by measuring the N_{2} by difference. Consequently, this method of analysis can be

TABLE 4.4
THERMAL CONDUCTIVITIES OF VARIOUS GASES AT $0^{\circ} \mathrm{C}^{73}$. (The units for thermal conductivity are $\mathrm{kerg} / \mathrm{sec} /{ }^{\circ} \mathrm{C} / \mathrm{cm}$.)

		Therma1 Conductivity		
Compound	He	N_{2}	Ar	
He	13.9	0.	-11.62	-12.32
$\mathrm{~N}_{2}$	2.28	11.62	0.	-0.70
Ar	1.58	12.32	0.70	0.
H_{2}	15.9	-2.0	-13.62	-14.32
$\mathrm{H}_{2} \mathrm{~S}$	1.20	12.70	1.08	0.38
SO_{2}	0.77	13.13	1.51	0.81

expected to have an accuracy similar to an arrangement capable of separating $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{~S}$, and SO_{2}.

4.3.4 Column Packings

Three column packings suggested in the literature were chosen for experimental evaluation: acid-washed Deactigel, Spherocarb and Porapak QS.

Acid-washed Deactigel was unsatisfactory because of excessive SO_{2} tailing. For example, SO_{2} injected into a $0.5 \mathrm{~m} \times 3 \mathrm{~mm}$ column at $70^{\circ} \mathrm{C}$ with $40 \mathrm{ml} / \mathrm{min} . \mathrm{N}_{2}$ carrier gas started to elute after 5 min ., but had not completely eluted after over 15 min .

Spherocarb was rejected because it absorbed $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} at temperatures below $100^{\circ} \mathrm{C}$. Above $100^{\circ} \mathrm{C}$, it appeared to catalyse $\mathrm{H}_{2} \mathrm{~S}$ dissociation, to some extent. Injecting $\mathrm{H}_{2} \mathrm{~S}$ into a $1.8 \mathrm{~m} \times 3 \mathrm{~mm}$ stainless steel column of $100 / 120$ mesh Spherocarb and using $40 \mathrm{ml} / \mathrm{min}$ of N_{2} as carrier gas, produced a single negative peak although $\mathrm{H}_{2} \mathrm{~S}$ should have given a positive peak. It is possible that this negative peak can be produced even when H_{2} and $\mathrm{H}_{2} \mathrm{~S}$ occur simultaneously. With N_{2} as the carrier gas, a thermal conductivity detector is over twelve times as sensitive to H_{2} as it is to $\mathrm{H}_{2} \mathrm{~S}$, and hence would produce a negative peak even if both gases were present in similar concentrations.

The third material tested, Porapak $Q S$, proved to be excellent for separating $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2}. Operating under the conditions listed in Table 4.5, chromatograms of the type shown in Fig. 4.3 could be obtained. Sulphur dioxide tailing was small, and the analysis could be completed in just over three minutes. Reproducibility was excellent, with typical errors for $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2} being 2, 3 and 5%, respectively. Due to its excellent performance, Porapak $Q S$ was chosen as the column packing.

Teflon was selected as the tubing material because Koppe and Adams ${ }^{60}$

TABLE 4.5
OPERATING CONDITIONS OF THE GAS CHROMATOGRAPH

Tubing:	1.1m $\times 3 \mathrm{~mm}$ F.E.P. (Teflon)
Packing:	Porapak QS, 80/100 mesh
Column Temperature:	$40^{\circ} \mathrm{C}$
Carrier gas:	Nitrogen
Inlet pressure:	20 psig
Flow rate:	$60 \mathrm{ml} / \mathrm{min}$ at $25^{\circ} \mathrm{C}$ and 1 atmosphere
Detector:	Thermal conductivity
Current:	150 mA
Attenuation:	$\begin{aligned} & -5.0 \text { for } \mathrm{H}_{2} ; 1.0 \text { for } \mathrm{H}_{2} \mathrm{~S} \\ & \text { and for } \mathrm{SO}_{2} \end{aligned}$
Sample size:	5 m 1
Composition:	$\mathrm{H}_{2} \quad 0.5 \%$
	$\mathrm{H}_{2} \mathrm{~S} \quad 4.7 \%$
	$\mathrm{SO}_{2} \quad 7.1 \%$
	N_{2} 87.7\% (by difference)
Chart speed:	$0.5 \mathrm{in} / \mathrm{min}$

Figure 4.3. Typical chromatogram (Run 77).
found that it adsorbed less $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} at $70^{\circ} \mathrm{C}$ than glass or stainless steel. Moreover, a Teflon tube is easy to pack and coil.

4.3.5 Calibration of the Gas Chromatograph

Calibration mixtures were prepared by combining, in the desired ratios, streams of $\mathrm{H}_{2} \mathrm{~S}$ (measured by Gilmont rotameter F 2000 , size 1) and N_{2} (measured by Gilmont rotameter F 1200 , size 2). The mixture was sampled with a 5 ml syringe inserted into a septum port in the 1 ines. The sample was injected into the gas chromatograph and the area of the resulting peak measured. This procedure was repeated at other flowrates of $\mathrm{H}_{2} \mathrm{~S}$ and N_{2} to produce the compositions needed for the calibration curve. Curves for H_{2} and SO_{2} were obtained with the same apparatus in a similar manner. Using N_{2} rather than air eliminated air peaks which interfere with the detection of H_{2}. Sample calculations are presented in Appendix B.

Typical calibration curves are shown in Figs. 4.4 to 4.6. The data are fitted almost perfectly by straight lines with correlation coefficients (r^{2}) exceeding 0.9900. The data were processed by a Texas Instruments TI58 pocket programmable calculator using the program listed in Table B. 1 of Appendix B.

4.4 Calculation of Mixture Compositions.

This section develops the equations necessary for computing the composition of the air- $-\mathrm{H}_{2} \mathrm{~S}$ feed mixture and the equilibrium vessel.

4.4.1 Calculation of the Feed Composition

In preparing a feed mixture it was necessary to know what rotameter positions corresponded to a given percent of stoichiometric air, $P_{A} \cdot$. If the amount of air is stoichiometric according to the reaction,

Figure 4.4. Typical calibration curve for H_{2} (Run 77).

Figure 4.5. Typical calibration curve for $\mathrm{H}_{2} \mathrm{~S}$ (Run 77).

Figure 4.6. Typical calibration curve for SO_{2} (Run 77).

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{~S}+1 / 2 \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}+1 / \mathrm{j} \mathrm{~S}_{\mathrm{j}} \tag{4.1}
\end{equation*}
$$

then, the ratio of oxygen to $\mathrm{H}_{2} \mathrm{~S}$ is 0.5 . The ratio of air to $\mathrm{H}_{2} \mathrm{~S}$ is therefore $(100 / 21) \times 0.5$, or $50 / 21$. For any amount of air, then,

$$
\begin{equation*}
P_{A}=\left(Q_{A} / Q_{H_{2} \mathrm{~S}}\right)(21 / 50) \times 100 \tag{4.2}
\end{equation*}
$$

where Q_{A} and $Q_{H_{2} S}$ are the flow rates of air and $H_{2} S$, respectively. The calibration curves for air and $\mathrm{H}_{2} \mathrm{~S}$ (Figs. C. 5 and C. 2 in Appendix C) may be represented by the following equations:

$$
\begin{align*}
\mathrm{Q}_{\mathrm{A}} & =\mathrm{m}_{\mathrm{A}} \mathrm{x}_{\mathrm{A}}+\mathrm{b}_{\mathrm{A}} \tag{4.3}\\
\mathrm{Q}_{\mathrm{H}_{2} \mathrm{~S}} & =\mathrm{m}_{\mathrm{H}_{2} \mathrm{~S}} \mathrm{x}_{\mathrm{H}_{2} \mathrm{~S}}+\mathrm{b}_{\mathrm{H}_{2} \mathrm{~S}} \tag{4.4}
\end{align*}
$$

where m, b and x denote the slope, intercept and rotameter float position, respectively. Substituting Eqs. 4.3 and 4.4 into Eq. 4.2 gives

$$
\begin{equation*}
\mathrm{P}_{\mathrm{A}}=42\left(\mathrm{~m}_{\mathrm{A}} \mathrm{x}_{\mathrm{A}}+\mathrm{b}_{\mathrm{A}}\right) /\left(\mathrm{m}_{\mathrm{H}_{2} \mathrm{~S}} \mathrm{x}_{\mathrm{H}_{2} \mathrm{~S}}+\mathrm{b}_{\mathrm{H}_{2} \mathrm{~S}}\right) \tag{4.5}
\end{equation*}
$$

or
$x_{A}=P_{A} m_{H_{2} S} /\left(42 m_{A}\right) x_{H_{2} S}+\left[P_{A} b_{H_{2} S} /\left(42 m_{A}\right)-b_{A} / m_{A}\right]$
Since it was difficult to set the flowrates precisely, the actual P_{A} was calculated from Eq. 4.5. The TI58 program for this calculation is listed in Table B.1.

4.4.2 Composition of the Sampled Gases

The composition of a sample taken from the product gas bag was determined from the peak areas of $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2} and their corresponding calibration curves. Since the curves are linear, it follows that

$$
\begin{equation*}
y_{i}=\left(A_{i}-b_{i}\right) / m_{i} \tag{4.7}
\end{equation*}
$$

where i refers to $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$ or SO_{2},
y_{i} is the percent of compound i in the gas bag
A_{i} is the area under the chromatographic peak m and b are the slope and intercept, respectively, of the calibration curve.

The nitrogen content is obtained by difference, i.e.,

$$
\begin{equation*}
\mathrm{y}_{\mathrm{N}_{2}}=100-\left(\mathrm{y}_{\mathrm{H}_{2}}+\mathrm{y}_{\mathrm{H}_{2} \mathrm{~S}}+\mathrm{y}_{\mathrm{SO}_{2}}\right) \tag{4.8}
\end{equation*}
$$

4.4.3 Composition of the Equilibrium Vessel Contents

When the equilibrium vessel is sampled, sulphur and water are condensed. Since the sample volumes are small (typically less than 50 ml) it was impractical to measure sulphur and water gravimetrically. These compounds were therefore calculated from mass balances and using the following assumptions:
--the gases are ideal;
--the equilibrium vessel pressure is atmospheric;
--air consists of $21 \% \mathrm{O}_{2}$ and $79 \% \mathrm{~N}_{2}$;
--only $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}$ and S_{2} are present in the equilibrium vessel;
--water and sulphur are removed completely. Consequently, the sample contains only $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$ and N_{2}.

These assumptions enable mass balances to be set up as follows. The atomic ratios of the elements in the feed and in the products must be identical. For example, the ratio of bound as well as unbound nitrogen to oxygen atoms, R_{NO}, is given by

$$
\begin{equation*}
\mathrm{R}_{\mathrm{NO}}=(2 \times 79) /(2 \times 21)=2 \mathrm{n}_{\mathrm{N}_{2}} /\left(2 \mathrm{n}_{\mathrm{SO}_{2}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}\right) \tag{4.9}
\end{equation*}
$$

where n_{i} refers to the number of moles of compound i in the sample taken from the equilibrium vessel before the sulphur and water are condensed. Likewise,
$\mathrm{R}_{\mathrm{HS}}=2=\left(2 \mathrm{n}_{\mathrm{H}_{2}}+2 \mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}+2 \mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}\right) /\left(\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}+\mathrm{n}_{\mathrm{SO}_{2}}+2 \mathrm{n}_{\mathrm{S}_{2}}\right)$ $\mathrm{R}_{\mathrm{OH}}=\mathrm{PA} / 200=\left(2 \mathrm{n}_{\mathrm{SO}_{2}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}\right) /\left(2 \mathrm{n}_{\mathrm{H}_{2}}+2 \mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}+2 \mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}\right)$
If 100 moles of sample are chosen as a basis, then

$$
\begin{align*}
& \mathrm{n}_{\mathrm{H}_{2}}=\mathrm{y}_{\mathrm{H}_{2}} \tag{4.12}\\
& \mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}=\mathrm{y}_{\mathrm{H}_{2} \mathrm{~S}}, \tag{4.13}\\
& \mathrm{n}_{\mathrm{SO}_{2}}=\mathrm{y}_{\mathrm{SO}_{2}} \tag{4.14}\\
& { }^{\mathrm{n}_{\mathrm{N}_{2}}}=\mathrm{y}_{\mathrm{N}_{2}} \tag{4.15}
\end{align*}
$$

since these compounds are not removed during sampling. The number of moles of water and sulphur follow from Eqs. 4.9 and 4.10, i.e.,

$$
\begin{equation*}
\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=0.532 \mathrm{n}_{\mathrm{N}_{2}}-2 \mathrm{n}_{\mathrm{SO}_{2}} \tag{4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{n}_{\mathrm{S}_{2}}=0.5\left(\mathrm{n}_{\mathrm{H}_{2}}-\mathrm{n}_{\mathrm{SO}_{2}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}\right) \tag{4.17}
\end{equation*}
$$

Hence

$$
\begin{equation*}
P_{i}=100 \mathrm{n}_{\mathrm{i}} / \mathrm{n}_{\mathrm{T}} \tag{4.18}
\end{equation*}
$$

where P_{i} represents the percent of compound $i\left(H_{2}, H_{2} S, \mathrm{SO}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}\right.$ or S_{2}) in the equilibrium vessel, and

$$
\begin{equation*}
\mathrm{n}_{\mathrm{T}}=\mathrm{n}_{\mathrm{H}_{2}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}+\mathrm{n}_{\mathrm{SO}_{2}}+\mathrm{n}_{\mathrm{N}_{2}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}+\mathrm{n}_{\mathrm{S}_{2}} . \tag{4.19}
\end{equation*}
$$

The sulphur yield is given by

$$
\begin{equation*}
\mathrm{Y}=2 \mathrm{n}_{\mathrm{S}_{2}} /\left(2 \mathrm{n}_{\mathrm{S}_{2}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}+\mathrm{n}_{\mathrm{SO}_{2}}\right) \tag{4.20}
\end{equation*}
$$

The experimental error may be estimated by comparing the P_{A} value of the feed mixture with that given by

$$
\begin{equation*}
\mathrm{P}_{\mathrm{A}}=100 /\left[1.88 / \mathrm{n}_{\mathrm{N}_{2}}\left(\mathrm{n}_{\mathrm{H}_{2}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}-2 \mathrm{n}_{\mathrm{SO}_{2}}\right)+1\right] \tag{4.21}
\end{equation*}
$$

This equation follows from substituting Eq. 4.16 into Eq. 4.11.
Equations 4.9 to 4.20 may be used to calculate the compositions and sulphur yields provided $\mathrm{P}_{\mathrm{A}}>0$. For $\mathrm{H}_{2} \mathrm{~S}$ dissociation, where $\mathrm{P}_{\mathrm{A}}=0$, the equation developed in the next section must be used.

4.4.4 Dissociation of Hydrogen Sulphide

The calculation for determining gas compositions is similar to that of the previous section, except that the equilibrium vessel is assumed to
contain $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and S_{2} only. Equation 4.10 reduces to

$$
\begin{equation*}
\mathrm{R}_{\mathrm{HS}}=-2=\left(2 \mathrm{n}_{\mathrm{H}_{2}}+2 \mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}\right) /\left(\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}+2 \mathrm{n}_{\mathrm{S}_{2}}\right) \tag{4.22}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{n}_{\mathrm{S}_{2}}=0.5 \mathrm{n}_{\mathrm{H}_{2}} . \tag{4.23}
\end{equation*}
$$

The quantities $\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}$ and $\mathrm{n}_{\mathrm{H}_{2}}$ are found from Eqs. 4.12 and 4.13, respectively. The equation for the sulphur yield becomes

$$
\begin{equation*}
\mathrm{Y}=2 \mathrm{n}_{\mathrm{S}_{2}} /\left(2 \mathrm{n}_{\mathrm{S}_{2}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}\right) \tag{4.24}
\end{equation*}
$$

and the composition of the gases in the equilibrium vessel is given by

$$
\begin{equation*}
P_{i}=100 \mathrm{n}_{\mathrm{i}} / \mathrm{n}_{\mathrm{T}} \tag{4.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{n}_{\mathrm{T}}=\mathrm{n}_{\mathrm{H}_{2}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}+\mathrm{n}_{\mathrm{S}_{2}} \tag{4.26}
\end{equation*}
$$

TI58 programs for calculating the reactor compositions and yields based on the mass balances are listed in Appendix B for both $\mathrm{H}_{2} \mathrm{~S}$ dissociation and oxidation.

CHAPTER 5

THEORETICAL RESULTS

5.1 Claus Furnace

5.1.1 Acid Gas Containing $\mathrm{H}_{2} \mathrm{~S}$ Only

The compositions of equilibrium mixtures were calculated* at oxygen to sulphur ratios, $R_{\text {OS }}$, ranging from 0.1 to 2.0 and a total pressure of 1.0 atm . The latter is close to industrial conditions. The concentrations of the following compounds were usually in excess of 0.1 ppm for at least some temperatures lying between 600 and $2000^{\circ} \mathrm{K}: \mathrm{O}_{2}, \mathrm{O}, \mathrm{H}_{2}, \mathrm{H}, \mathrm{OH}$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{2}$, NO, $\mathrm{NH}_{3}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{~S} 2 \mathrm{O}, \mathrm{SH}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{~S}_{2}, \mathrm{SN}$ and S where $j=1,2, \ldots 8$. The other species, which were mentioned earlier, could therefore be neglected in the equilibrium calculations. Although the list of compounds considered in this study does not contain all possible combinations of oxygen, hydrogen, sulphur and nitrogen, it is unlikely that any additional species could be formed in appreciable proportions.

Figures 5.1 to 5.3 depict the variation in partial pressure of the most significant compounds as a function of temperature for $P A=100$. The first figure shows, with the exception of nitric oxide, those species which may be regarded as harmless to the environment and the Claus process itself. The appreciable concentrations of hydrogen in the reaction mixture are well known to Claus plant operators but have generally been omitted from theoretical calculations. McGregor ${ }^{13}$ found partial pressures of H_{2} similar to those shown in Figure 5.1 but he did not consider
*Computer programs for calculating the results in this chapter are listed in Appendix E.

Figure 5.1. Effect of temperature on the partial pressure of harmless compounds (with the exception of NO).

Figure 5.2. Effect of temperature on the partial pressure of sulphur compounds.

Figure 5.3. Effect of temperature on the partial pressure of sulphur polymers.
the formation of atomic hydrogen. The latter becomes significant only at elevated temperatures. Ammonia is also known to occur in Claus furnaces but in view of the low concentrations predicted by the equilibrium calculations, it is unlikely to be formed by the reduction of atmospherjc nitrogen. More probable explanations are that it is introduced with the feed gas or results from amines carried over from the absorption units. The presence of nitrogen oxides except perhaps NO can be discounted. Hydrogen and sulphur are therefore more successful scavengers of oxygen than nitrogen. At temperatures exceeding $2000^{\circ} \mathrm{K}$, the concentration of nitrogen compounds however would be expected to become significant.

Figure 5.2 shows the variation in partial pressure with temperature of those sulphur compounds which are undesirable and lower the conversion efficiency of the Claus furnace. $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} are the most abundant sulphur compounds and their concentrations are fairly independent of temperature. The presence of other sulphur oxides, however, is also significant. Although the concentration of SO_{3} is less than 1 ppm, it may contribute to sulphation, i.e., deactivation of the converters downstream from the Claus furnace due to the formation of sulphate layers on the catalyst surface. Other factors such as those cited by Pearson ${ }^{74}$ may however also be responsible for sulphation. The remaining sulphur compounds, although present in smaller concentrations than either SO_{2} or $\mathrm{H}_{2} \mathrm{~S}$, should not be omitted from equilibrium calculations. In particular $\mathrm{H}_{2} \mathrm{~S}_{2}$ and SH are present in significant proportions, with the latter approaching that of hydrogen sulphide at elevated temperatures. The role which these compounds play in the Claus process and whether they in fact pass through the boiler and sulphur condenser downstream of the furnace is presently unknown.

As seen from Fig. 5.3, a complex equilibrium exists between the various sulphur polymers with the lighter molecules being favoured by elevated temperatures. As mentioned previously no reliable free energy data are available for the heavy sulphur polymers at elevated temperature and caution should therefore be exercised in using Fig. 5.3. The curves agree moderately well with those of Gamson and Elkins ${ }^{5}$ and McGregor ${ }^{13}$. Any discrepancies are likely caused by the different free energy data used in the present study. The aforementioned authors also omitted certain sulphur polymers (viz., $S_{3}, S_{4}, S_{5}, S_{7}$ and also S in the case of Gamson and Elkins) which is justifiable only for some restricted temperature ranges.

The relationship between sulphur yield and temperature is presented in Fig. 5.4. The data were calculated for stoichiometric amounts of oxygen in the feed mixture. The agreement with results obtained by earlier workers is generally good and any discrepancies are traceable to using either different free energies or compounds. The validity of the present calculations is therefore established. Gamson and Elkins ${ }^{5}$ were the first to suggest that the minimum in the yield curve arises from the complex equilibrium between the sulphur polymers. Since the strongly exothermic reaction,

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{~S}+1 / 2 \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}+1 / \mathrm{j} \mathrm{~S}_{\mathrm{j}} \text {, } \tag{5.1}
\end{equation*}
$$

can be regarded as dominating the H_{2} S-air equilibrium and S_{6}, S_{7}, S_{8} are the main polymers formed at low temperatures, the sulphur yield must decrease with temperature according to Le Chatelier's principle. These polymers dissociate endothermically at more elevated temperatures and Eq. 5.1 therefore becomes less exothermic. The sulphur yield consequently rises. Fig. 5.4 also indicates that the yield passes through a

Figure 5.4. Comparison of sulphur yields calculated by various workers ($\mathrm{PA}=100$).
maximum at approximately $1700^{\circ} \mathrm{K}$. This behaviour has not been reported previously and is observed only when H 2 and either SH or SO are included in the equilibrium calculations. The physical reason for the maximum is probably the fact that elemental sulphur undergoes oxidation at elevated temperatures. This is partly confirmed by Fig. 5.2 which shows that the partial pressures of most sulphur oxides increase with temperature.

Further support is given to the conjecture by Fig. 5.5 which shows the relationship between sulphur yield and percentage stoichiometric air in the feed mixture so that a value of 100 corresponds to an $\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{~S}$ ratio of 0.5 in the initial mixture. The special case of $P_{A}=0$, i.e., $\mathrm{H}_{2} \mathrm{~S}$ dissociation, will be discussed in section 5.1 .4 of this chapter. As seen from Fig. 5.5, the yield is lowered when air in excess of stoichiometric proportions is used. To suppress formation of sulphur oxides at elevated temperatures, the air content in the starting mixture should therefore be reduced. For example, at $2000^{\circ} \mathrm{K}, \mathrm{P}_{\mathrm{A}}$ values of 20% and 60% raise the sulphur yield by approximately 10% over that attainable with stoichiometric amounts of air. Similar conclusions can be drawn from Fig. 5.6 which indicates that high temperatures and low oxygen to hydrogen sulphide ratios lead to the best yields.

The operating conditions maximizing the conversion to elemental sulphur are however only achievable industrially if the feed gases to the Claus furnace are preheated. The effect of preheating the feed gases is investigated more thoroughly later in this chapter. Without such provisions a decrease in P_{A} reduces the furnace temperature and conversion efficiency. The latter is apparent from Fig. 5.7 which shows the sulphur yield at the adiabatic flame temperature. This temperature

Figure 5.5. Effect of temperature and PA on sulphur yield.

Figure 5.6. Effect of PA on sulphur yield at various temperatures.

Figure 5.7. Effect of PA on the adiabatic flame temperature and on the corresponding sulphur yield.
closely approximates that of industrial furnaces since they suffer only minor heat losses. Figure 5.7 also indicates that the current industrial practice of operating with stoichiometric amounts of air in the absence of preheat is sound. The yield is reduced when $\mathrm{P}_{\mathrm{A}}<100$ due to lowered furnace temperatures and when $\mathrm{P}_{\mathrm{A}}>100$ due to enhanced formation of sulphur oxides.

5.1.2 Acid Gas Containing Carbon Compounds

The following parameters were varied: temperature (600 to $2000^{\circ} \mathrm{K}$), air (20 to 300 percent of stoichiometric), acid gas composition ($\mathrm{H}_{2} \mathrm{O}$ and CO_{2} concentrations up to 10 and 30 percent, respectively). Of the 36 compounds considered all except $\mathrm{HCN}, \mathrm{C}_{2} \mathrm{~N}_{2}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ had partial pressures exceeding 0.1 ppm for at least some temperatures between 600 and $2000^{\circ} \mathrm{K}$. The 30 remaining species should, therefore, not be omitted from the equilibrium calculatons.

Figures 5.8 to 5.11 show the partial pressures of the most important compounds present when $\mathrm{H}_{2} \mathrm{~S}$ containing 15 percent CO_{2} is oxidized with a stoichiometric amount of air. As seen from Fig. 5.8, nitrogen, the most abundant substance, undergoes little change except for the production of small quantities of NH_{3}, NO and SN . The high ammonia concentrations sometimes found in industry are probably produced not from atmospheric nitrogen but rather amines carried over from absorption towers. The partial pressures of both molecular and atomic hydrogen are appreciable.

The distribution of sulphur polymers (shown in Fig. 5.9) is similar to that for pure hydrogen sulphide. Although the dimer S_{2} predominates, other sulphur species are also significant at some temperatures and therefore, none of them should be omitted as did most earlier workers. 5,10 , $11,12,13,14,16,17,26$

Figure 5.8. Effect of temperature on the partial pressure of harmless compounds (with the exception of NO).

PARTIAL PRESSURE, ATM

Figure 5.10. Effect of temperature on the partial pressure of carbon compounds.

Figure 5.11. Effect of temperature on the partial pressure of sulphur compounds.

Figure 5.10 shows the partial pressures of carbon compounds of which CO_{2} and CO are the most abundant. Since at high temperatures CO_{2} dissociates into oxygen and $C 0$, and since the latter can further react with elemental sulphur, the formation of $C O S, C S$ and $C S_{2}$ is not surprising. These compounds not only lower the sulphur yield in the furnace but are also unaffected by the usual Claus catalysts and therefore present a pollution problem.

The other main compounds which impair the furnace performance àre $\mathrm{H}_{2} \mathrm{~S}$ and sulphur oxides. At elevated temperatures SO_{2} is more abundant than $H_{2} \mathrm{~S}$ and this suggests that elemental sulphur competes successfully for oxygen, as seen from Fig. 5.11. Since the dissociation of CO_{2} releases oxygen, smaller sulphur yields are expected with increasing CO_{2} concentrations.

This conjecture is confirmed by Fig. 5.12 whịch gives the sulphur yield as a function of temperature and for various CO_{2} concentrations in the acid gas. At low temperatures the curves coincide thus indicating that CO_{2} undergoes no appreciable reaction. However, at temperatures exceeding about $1200^{\circ} \mathrm{K}$, the curves part because carbon sulphides and additional sulphur oxides are formed. These compounds cause the maxima in the yield curves; the maxima become more pronounced for higher initial CO_{2} concentrations.

To reduce the oxidation of elemental sulphur, the amount of initial air can be decreased. Figure 5.13 shows that the sulphur yield is considerably increased at elevated temperatures by lowering P_{A}. Conversely, increasing P_{A} reduces the yields. Although the percentage air does not significantly affect the extent to which carbon sulphides are formed, it changes their partial pressures due to the

Figure 5.12. Effect of temperature and CO_{2} on the sulphur yield.

Figure 5.13. Effect of temperature and $P A$ on the sulphur yield.
dilution provided by the nitrogen.
Whereas the sulphur yield can be enhanced by lowering the amount of air in the feed, this improvement may not be realizable in practice because Claus furnaces operate under virtually adiabatic conditions. The yields at the adiabatic flame temperatures were, therefore, calculated by the method described previously. The results for a feed gas at $298^{\circ} \mathrm{K}$ are shown in Fig. 5.14. The best yields obtainable under adiabatic conditions occur with stoichiometric amounts of oxygen, a fact well-known to Claus plant operators. When $P_{A}<100$ the yield falls due to the reduced flame temperature and when $\mathrm{P}_{\mathrm{A}}>100$ it declines on account of the oxidation of elemental sulphur. Hence, in practice the feed gases to the Claus furnace must be preheated to achieve the enhanced yields possible with less than stoichionetric amounts of air.

If the acid gas contains water vapour, the sulphur yield is diminished as seen from Fig. 5.15. This behaviour follows from Eq. 5.1. Since the yield is reduced by only 2 percent. for 10 percent $\mathrm{H}_{2} \mathrm{O}$ it would be uneconomical to dry the acid gas before it enters the furnace. If the acid gas contains more than 30 percent CO_{2}, the "splitstream" process must be adopted as mentioned in the introduction. Equilibrium compositions were, therefore, calculated for an acid gas containing 30 percent CO_{2} and for $\mathrm{P}_{\mathrm{A}}=300$, i.e., using a stoichiometric amount of air according to Eq. 1.1. The primary reaction products were SO_{2} and $\mathrm{H}_{2} \mathrm{O}$ with virtually no elemental sulphur being formed. The partial pressures of the carbori sulphides were always less than 1 ppm for temperatures between 600 and $2000^{\circ} \mathrm{K}$ thus supporting the earlier contention that they are produced by the reaction between $C 0$ and elemental sulphur.

Figure 5.14. Effect of PA on the adiabatic flame temperature and on the corresponding sulphur yield.

Figure 5.15. Effect of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} on the sulphur yield.

5.1.3 Acid Gas Containing Ammonia

Ammonia, as well as CO_{2} and water, can be associated with the acid gas. Figure 5.16 shows that below $1600^{\circ} \mathrm{K}, \mathrm{NH}_{3}$ lowers the sulphur yield of. a furnace but, above $1600^{\circ} \mathrm{K}$, it enhances the yield. Since both NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ are oxidised in the furnace, they compete for combustion air; less oxygen is therefore available for reaction with $\mathrm{H}_{2} \mathrm{~S}$. Consequently, an acid gas containing NH_{3} results in yields similar to those obtained when operating with $P_{A}<100$. This is shown by the similarities of Figs. 5.13 and 5.16 which both exhibit cross-overs in the curves near $1600^{\circ} \mathrm{K}$. Temperatures less than $1600^{\circ} \mathrm{K}$ favour the oxidation of $\mathrm{H}_{2} \mathrm{~S}$ to elemental sulphur rather than to SO_{2}. Hence with less oxygen available (either because $\mathrm{P}_{\mathrm{A}}<100$ or because some O_{2} has combined with NH_{3}), the sulphur yield falls. Temperatures above $1600^{\circ} \mathrm{K}$, however, enhance the oxidation of sulphur to SO_{2} rather than to elemental sulphur, and an oxygen deficiency therefore enhances sulphur yield.

Sufficient air can be provided for complete oxidation of both $\mathrm{H}_{2} \mathrm{~S}$ and NH_{3} according to the reactions:

$$
\begin{align*}
& \mathrm{H}_{2} \mathrm{~S}+1 / 2 \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}+1 / \mathrm{j} \mathrm{~S}_{\mathrm{j}} \tag{5.2}\\
& \mathrm{NH}_{3}+3 / 4 \mathrm{O}_{2}=3 / 2 \mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{~N}_{2} \tag{5.3}
\end{align*}
$$

The similarity of Fig. 5.17 to Fig. 5.15 suggests that, even with enough O_{2} for complete oxidation of both NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$, the presence of ammonia in the acid gas lowers the yield. This is probably so because NH_{3} oxidation produces water which tends to shift the equilibrium of Eq. 5.2 to the left.

5.1.4 Hydrogen Sulphide Dissociation

As shown by Fig. 5.5, $\mathrm{H}_{2} \mathrm{~S}$ dissociation produces much lower sulphur yields than $\mathrm{H}_{2} \mathrm{~S}$ oxidation at temperatures below about $1500^{\circ} \mathrm{K}$. In spite

Figure 5.16. Effect of ammonia on the sulphur yield (sufficient air to oxidise the $\mathrm{H}_{2} \mathrm{~S}$ only).

Figure 5.17. Effect of ammonia on the sulphur yield (sufficient air to oxidise both the $\mathrm{H}_{2} \mathrm{~S}$ and the NH_{3}).
of this, concentrations of the heavier sulphur polymers resulting from $\mathrm{H}_{2} \mathrm{~S}$ dissociation are higher above $1400^{\circ} \mathrm{K}$, because of the absence of N_{2} and $\mathrm{H}_{2} \mathrm{O}$ (see Fig. 5.3). Figure 5.1 shows that, for all temperatures, the concentration of hydrogen is at least ten times greater for $\mathrm{H}_{2} \mathrm{~S}$ dissociation than it is for $H_{2} S$ oxidation. Raymont ${ }^{48}$ examined this reaction and concluded that it may produce an attractive alternative to the Claus process, since it yields two useful products, viz., hydrogen and sulphur. The dashed lines of Figs. 5.1 and 5.3 agree well with Raymont's theoretical results. ${ }^{19}$

As in the case of $\mathrm{H}_{2} \mathrm{~S}$ oxidation, ammonia adversely affects $\mathrm{H}_{2} \mathrm{~S}$ dissociation, as shown in Fig. 5.18. With no oxygen present, the decomposition equations corresponding to Eqs. 5.2 and 5.3 become

$$
\begin{align*}
& \mathrm{H}_{2} \mathrm{~S}=\mathrm{H}_{2}+1 / \mathrm{j} \mathrm{~S}_{\mathrm{j}}, \tag{5.4}\\
& \mathrm{NH}_{3}=3 / 2 \mathrm{H}_{2}+\mathrm{N}_{2} \tag{5.5}
\end{align*}
$$

The hydrogen from NH_{3} decomposition inhibits the $\mathrm{H}_{2} \mathrm{~S}$ dissociation, thus lowering the sulphur yield.

5.2 Claus Plant

In order to further the understanding of the Claus process, an entire plant, consisting of a furnace plus two catalytic converters was modelled.

The yield and temperature of each unit of the plant are examined as a function of the following variables:
--the amount of combustion air in the furnace;
--the oxygen concentration of acid gas;
--temperature of the feed to the furnace and/or converters;
--recycle ratio of the first converter's feed back to the furnace.

Figure 5.18. Effect of ammonia on sulphur yields from $\mathrm{H}_{2} \mathrm{~S}$ dissociation.

The Claus plant was assumed to operate adiabatically. Un1ess otherwise noted, the temperatures of both the combustion air and the acid gas are $298^{\circ} \mathrm{K}$; the temperatures of the feeds to the first and second converters are 530 and $480^{\circ} \mathrm{K}$, respectively.

5.2.1 Oxygen Concentration in the Furnace Feed

Figure 5.19 shows that operating with 100% of stoichiometric air $\left(P_{A}=100\right)$ maximises the yield of the entire plant, a fact well-known to Claus plant operators. Sulphur yields in the combustion chamber, first converter and second converter are highest with P_{A} about 90,120 and 105 respectively.

The furnace temperature rises with P_{A} (see Fig. 5.19) because adding air favours $\mathrm{H}_{2} \mathrm{~S}$ oxidation. As discussed in Sect. 1 of this chapter, the furnace yield rises until P_{A} reaches about 90 because of rising furnace temperature, and then declines on account of the oxidation of elemental sulphur to SO_{2}.

In the catalytic converters, sulphur yields rise when $P_{A}>50$ as more SO_{2} becomes available to react with the $\mathrm{H}_{2} \mathrm{~S}$. (Oxygen must be excluded from the converters to prevent catalyst sulphation.) Between 90 and 110% air, the converter yields are high because of favourable $\mathrm{H}_{2} \mathrm{~S} / \mathrm{SO}_{2}$ ratios. When P_{A} exceeds 200 , the yield drops sharply because most of the sulphur is present in the converters as SO_{2}. When $\mathrm{P}_{\mathrm{A}} \simeq 100$, the yield in the second converter, which operates at a more favourable temperature, exceeds the yield in the first converter. However, when $P_{A}<80$ or $P_{A}>120$, the sulphur yield in the second converter is worse than that in the first, because a poor $\mathrm{H}_{2} \mathrm{~S} / \mathrm{SO}_{2}$ ratio in the first converter becomes worse downstream. ${ }^{9}$

The temperature of each converter, like that of the furnace, rises

Figure 5.19. Effect of PA on Claus plant yields and temperatures.
and falls with the yield, as shown in Fig. 5.19. This is of course caused by the exothermic nature of the reaction between $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2}.

5.2.2 Enriching Combustion Air with Oxygen

In this section, the effect of varying not the amount but the "quality" of the air to the furnace is examined. By decreasing the air while simultaneously adding more pure oxygen to the acid gas, the total oxygen in the furnace remains stoichiometric, and only the concentration of the nitrogen, a diluent, is reduced. This increases the concentration of the reactants, and might be expected to enhance the sulphur yield. However, as shown by Fig. 5.20, the presence of nitrogen is actually beneficial. Without nitrogen present (100% oxygen in Fig. 5.20), the Claus furnace temperature rises to $2220^{\circ} \mathrm{K}$. This is detrimental since above $1700^{\circ} \mathrm{K}$ the sulphur yield in the furnace falls with increasing temperature, as shown in Fig. 5.4.

The minimum yield of the first converter occurs at $750^{\circ} \mathrm{K}$ and 40% oxygen. Since the minimum in the yield vs temperature plot (Fig. 5.4) corresponds to $850^{\circ} \mathrm{K}$, temperature may not be the most important factor affecting yield. The increasing yields in the first converter may rather be a result of falling furnace conversions. This leaves the feed to the first converter rich in $\mathrm{H}_{2} \mathrm{~S}$, which reacts with the SO_{2}. The converter, therefore, compensates for lower sulphur production in the furnace. The complementary shapes of the yield curves for the two converters indicate that the second converter behaves similarly, offsetting any decrease in the yield in the first.

5.2.3 Preheating the Furnace Feed

It was shown earlier in this chapter that furnace yields are enhanced when operating with less than stoichiometric air, provided the

Figure 5.20. Effect of enriching combustion air with oxygen on Claus plant yields and temperatures.
furnace feed is preheated. This section investigates how preheating affects not only the Claus furnace, but also the two converters.

Figure 5.21 shows that preheating the feed to a Claus plant operating with stoichiometric air enhances the overall yield only slightly. When the temperatures of the air and acid gas are raised by $250^{\circ} \mathrm{K}$, the furnace temperature rises by $150^{\circ} \mathrm{K}$. The furnace yield increases slightly, but the yield of the first converter falls substantially. A higher furnace temperature promotes the oxidation of $\mathrm{H}_{2} \mathrm{~S}$ to SO_{2}; this adversely affects the $\mathrm{H}_{2} \mathrm{~S} / \mathrm{SO}_{2}$ ratio and causes the yield in the first catalytic converter to drop. The yield in the second converter, however, rises as that in the first falls. Thus the second converter again compensates for the poor performance of the first. The temperature of the second converter rises with yield because of the exothermic heat of reaction.

Heating the feed to the first converter causes its temperature to increase and its yield to decrease; the yield of the second converter rises to compensate, with a subsequent rise in temperature, as shown in Fig. 5.22. The overall Claus plant yield fails from 97 to 95%.

Figure 5.23 shows that the second catalytic converter should be operated at as low a temperature as possible; heating the feed only causes the yield to fall drastically.
r These results show that, for $P A=100$, preheating the feed to any unit has a detrimental effect on Claus plant yield. In practice, preheating the feed to the converters would still be necessary, to avoid sulphur condensation on the catalyst.

Figure 5.21. Effect of temperature of furnace feed on Claus plant yields and temperatures.

Figure 5.22. Effect of temperature of first converter feed on Claus plant yields and temperatures.

Figure 5.23. Effect of temperature of second converter feed on Claus plant yields and temperatures.

5.3 Effect of Recycle

In many chemical processes, part of the product stream is recycled to undergo additional reaction. This section investigates the effect of recycle, first for the Claus furnace alone, and then for the entire plant.

Figures 5.24 and 5.25 show that increasing the recycle enhances the yield of a Claus furnace operating isothermally and with $\mathrm{PA}=100$. In this thesis, yield is defined as the percentage of sulphur recovered based on the feed to the furnace. The reason for the rise in yield with recycle is that elemental sulphur is removed from the system, thus shifting the equilibrium of the Claus reactions to the right.

Although recycle promises greatly improved conversion under isothermal conditions, Claus plants behave more nearly adiabatically. The following sections investigate how recycle affects the yield of each unit of an adiabatic Claus plant operating at 100,90 or 110% of stoichiometric air.

When $P A=100$, then $R_{O S}=1$ in the furnace. This corresponds to $\mathrm{R}_{\mathrm{OH}}=0.5$, which, un1ike R_{OS}, remains constant throughout the entire plant, because only sulphur is condensed downstream from the furnace. However, when PA $\neq 100, \mathrm{R}_{\mathrm{OH}} \neq 0.5$; this adversely affects the overall plant performance. Sufficient air to restore R_{OH} to 0.5 could be supplied to the first converter. Similarly, if $\mathrm{PA}=110$, additional $\mathrm{H}_{2} \mathrm{~S}$ may be supplied to the converter to restore R_{OH} to 0.5 . These two examples are denoted by $P A=90 *$ and $P A=110 *$ respectively.

As shown in Fig. 5.26 recycle tends to lower the sulphur yield in the adiabatic furnace. Since recycling the product stream, which contains over 60% nitrogen, increases the volume of inerts in the furnace,

Figure 5.24. Effect of recycle on yield at $1300^{\circ} \mathrm{K}$ with $\mathrm{PA}=100$.

Figure 5.25. Effect of temperature on sulphur yield for various recycles.

Figure 5.26. Effect of recycle on Claus plant yieids.
$P A=90 \%$: air added to feed of first converter.
$P A=110 *: H_{2} S$ added to feed of first converter.
and decreases the $\mathrm{H}_{2} \mathrm{~S}$ available for oxidation, less heat is produced. Therefore, the furnace temperature falls as shown in Fig. 5.27. The minimum sulphur yields in Fig. 5.26 occur at a recycle of slightly over 70% corresponding to a temperature of about $850^{\circ} \mathrm{K}$ on Fig. 5.27. This temperature results in the minimum yield for all recycles shown in Fig. 5.25. When the recycle exceeds 70%, the temperature lies in the "catalytic region" (i.e., below $850^{\circ} \mathrm{K}$) where the yield increases with d'ecreasing temperature.

Although consideration was given to recycling only the furnace gases, such recycle also influences the performance of the catalytic converters. Figure 5.28 shows that the temperature in the first converter, like that of the furnace, falls with increasing recycle. Since the converter operates below $850^{\circ} \mathrm{K}$, the yield rises, as shown in Fig. 5.29. Between 50 and 75% recycle, temperature increases slightly but nevertheless, yield continues to rise. This is probably due to the drop in furnace yield resulting in an increase in unreacted $\mathrm{H}_{2} \mathrm{~S}$ in the converter feed which combines with SO_{2} to form sulphur and gives off heat. Thus, despite the increased volume of inerts in the converter, its temperature rises slightly with recycle in this range. Above 75% recycle, however, most of the $\mathrm{H}_{2} \mathrm{~S}$ is oxidised to sulphur in the furnace, thus increasing its yield, but leaving little $\mathrm{H}_{2} \mathrm{~S}$ for the converter. The converter yield therefore drops sharply, with a corresponding fall in temperature.

The value of PA significantly affects the yield of the first converter only if air or $\mathrm{H}_{2} \mathrm{~S}$ is added to its feed. For $\mathrm{PA}=90 *$ the yield is halved, and the temperature rises over $100^{\circ} \mathrm{K}$ for all recycles. The extra air appears merely to oxidise the sulphur formed in the converter

Figure 5.27. Effect of recycle on temperature of the Claus furnace.

Figure 5.28. Effect of recycle on temperature of the catalytic converters. PA $=90 *$: air is added to first converter feed. PA $=110 *: H_{2} \mathrm{~S}$ is added to first. converter feed.

Figure 5.29. Effect of recycle on yield of the first catalytic converter.
$P A=90^{*}$: air is added to first converter feed.
$P A=110 \%: H_{2} S$ is added to first converter feed.
thus causing the yield to fall and the temperature to rise. The yield is highest for $P A=110 \%$, since the added $H_{2} S$ reacts in the converter with the large amounts of SO_{2} produced.

The second converter produces the highest yield when $P A=90^{*}$, as shown in Fig. 5.30. This is probably a result of this unit's compensating. for $P A=90 \%$ giving the lowest yield in the first converter. The next highest yields in the second converter correspond to $\mathrm{PA}=110 \%$, 100 , 110 and 90 , the same order as for the first.

The effect of air and recycle on the overall yield of the Claus plant is shown on Fig. 5.26. It is clear that the best performance is obtained operating with 100% stoichiometric air and without any recycle. The increase in yield in the converters resulting from operation at $\mathrm{PA}=110 \%$ does not compensate sufficiently for the poor yield in the furnace. For $\mathrm{PA}=90 \%, 110$, or 90 , yields are even poorer. The negligible gains obtained with recycle are probably not worth the cost of the larger furnace and additional piping and controls required. Thus, it appears that conventional operation at 100% stoichiometric air with no recycle is best.

Figure 5.30. Effect of recycle on yield of the second catalytic converter. $P A=90 *: ~ a i r ~ i s ~ a d d e d ~ t o ~ f i r s t ~ c o n v e r t e r ~ f e e d . ~$ $\mathrm{PA}=110 \%$: $\mathrm{H}_{2} \mathrm{~S}$ is added to first converter feed.

CHAPTER 6

EXPERIMENTAL RESULTS

Experimental results for temperatures between 800 and $1500^{\circ} \mathrm{K}$ are presented in Appendix D. Figures 6.1 to 6.6 illustrate the effect of stoichiometric air $\left(\mathrm{P}_{\mathrm{A}}\right)$ on the concentrations of $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}$ and S_{2} in the product mixture. Figures 6.7 to 6.14 show the effect of P_{A} on sulphur yield.

6.1 Averaging Techníque

Since the P_{A} values were determined several times for each run, both by the flow method (cf Sect. 4.4.1) and mass balance calculations (cf Sect. 4.4.3), an average value was obtained before plotting. For example, point A in Fig. 6.10 was calculated as follows. The mean P_{A} value found by the flow method is 119.5 , whereas the corresponding quantity from the mass balances is 127.4 (see Table D.4, run 77): The average is therefore 123.4. Similarly, the equilibrium vessel compositions and the corresponding sulphur yield were also averaged for each set of experimental conditions. The data points in Figs. 6.7 to 6.14 were plotted with bars, showing the range of P_{A} values and sulphur yields.

6.2 Comparison of Experimental with Theoretical Results

Figures 6.1 to 6.6 clearly show that the experimental and theoretical results follow the same general trends. However, substantial differences in the compositions and sulphur yields may also be noted.

Figure 6.1. Effect of PA on H_{2}.

Figure 6.2. Effect of PA on $\mathrm{H}_{2} \mathrm{~S}$.

Figure 6.3. Effect of PA on SO_{2}.

Figure 6.4. Effect of PA on N_{2}.

Figure 6.5. Effect of PA on H_{2}. .

Figure 6.6. Effect of PA on S_{2}.

Figure 6.7. Effect of PA on sulphur yield at $800^{\circ} \mathrm{K}$.

Figure 6.8. Effect of PA on sulphur yield at $900^{\circ} \mathrm{K}$.

Figure 6.9. Effect of PA on sulphur yield at $1000^{\circ} \mathrm{K}$.

Figure 6.10. Effect of PA on sulphur yield at $1100^{\circ} \mathrm{K}$.

Figure 6.11. Effect of PA on sulphur yield at $1200^{\circ} \mathrm{K}$.

Figure 6.12. Effect of PA on sulphur yield at $1300^{\circ} \mathrm{K}$.

Figure 6.13. Effect of PA on sulphur yield at $1400^{\circ} \mathrm{K}$.

Figure 6.1.4. Effect of PA on sulphur yield at $1500^{\circ} \mathrm{K}$.

Possible causes of these discrepancies are discussed in Sect. 6.3.

6.2.1 Effect of Temperature

The effect of temperature on the concentration of $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$, $\mathrm{N}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{S}_{2}$ and sulphur yield is best seen in Figs. 5.1 to 5.4. It is believed that an increase in temperature (at constant P_{A}) promotes the dissociation of $\mathrm{H}_{2} \mathrm{~S}$ into H_{2} and sulphur; thus, the concentration of $\mathrm{H}_{2} \mathrm{~S}$ falls while the amount of H_{2} and S_{2} rises.

The concentrations of SO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are virtually independent of temperature. This may be due to the fact that an increase in temperature not only favours the formation of SO_{2} and $\mathrm{H}_{2} \mathrm{O}$ via $\mathrm{H}_{2} \mathrm{~S}$ oxidation, but also promotes their dissociation.

The concentration of N_{2} drops slightly with rising temperature. Although the number of moles of N_{2} is almost constant for a specified P_{A}, since N_{2} is virtually inert, the total number of moles in the gas mixture increases with rising temperature, as shown in Table 6.l. A slight drop in the N_{2} concentration is therefore observed.

$$
\text { 6.2.2 Effect of } \mathrm{P}_{\mathrm{A}}
$$

The percent of stoichiometric air (P_{A}) has a strong effect on product composition and sulphur yield. It may be reasoned that, for a given temperature, increasing P_{A} promotes the conversion of H_{2} to $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}$ to S_{2} and S_{2} to SO_{2}. Consequently, the concentrations of H_{2} and $\mathrm{H}_{2} \mathrm{~S}$ fall while those of SO_{2} rise with temperature. Likewise, the amounts of S_{2} (at temperatures below $1500^{\circ} \mathrm{K}$) and $\mathrm{H}_{2} \mathrm{O}$ exhibit a maximum corresponding to a P_{A} of about 70 (see Figs. 6.5 and 6.6). Since comparatively little H_{2} and $H_{2} S$ are available when P_{A} values exceed 70 , most of the oxygen reacts with the S_{2} to form SO_{2}, rather than with H_{2} or $\mathrm{H}_{2} \mathrm{~S}$. Consequently, the concentration of $\mathrm{H}_{2} \mathrm{O}$ and S_{2} drops while that of SO_{2} continues to rise.

TABLE 6.1
MOLES OF PRODUCT FORMED AT VARIOUS TEMPERATURES FROM 100 MOLES OF $\mathrm{H}_{2} \mathrm{~S}$ AND 238 MOLES OF AIR (STOICHIOMETRIC AIR)

Compound	Moles in Product		
	$.800^{\circ} \mathrm{K}$	$1300^{\circ} \mathrm{K}$	$1500^{\circ} \mathrm{K}$
H_{2}	0.06	4.81	10.84
$\mathrm{H}_{2} \mathrm{~S}$	29.16	17.94	13.54
SO_{2}	14.54	11.08	11.81
$\mathrm{~N}_{2}$	187.91	187.93	187.91
$\mathrm{H}_{2} \mathrm{O}$	70.46	77.19	75.52
$\Sigma \mathrm{~S}_{\mathrm{j}}$	19.52	34.61	36.34
Others	0.85	0.80	1.14
Total:	322.50	334.36	337.10

6.3. Causes of Deviation between Experimental and Theoretical Results

Excellent agreement between the experimental and theoretical compositions and yields was found for $H_{2} S$ dissociation ($P_{A}=0$). Furthermore, the H_{2} concentrations agree well with those of Raymont, ${ }^{47}$ as shown by Fig. 6.15.

When P_{A} is greater than zero, the experimentally determined compositions of $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$ and N_{2} tend to fall below their theoretical values. For $\mathrm{H}_{2} \mathrm{O}, \mathrm{S}_{2}$ and the sulphur yield, the experimentally derived results lie above the theoretical quantities; the difference is especially noticeable for the sulphur yields. Although the experimental data exhibit some scatter, their deviation from the theoretical predictions cannot be explained in this manner.

Six possible causes for the discrepancies between the theoretical and experimental sulphur yields are discussed below.

6.3.1 High Temperature Reversion

One possible explanation for the high experimental sulphur yields could be "reversion" at high temperatures. Although Gamson and Elkins ${ }^{5}$ suggested that
yields greater than the theoretical equilibrium at the flame temperature would be obtained if reaction continued during cooling until the equilibrium was frozen at a temperature where the reaction rates became slow,
they considered this unlikely because
the actual conversion corresponds to the equilibrium at a temperature of $300^{\circ} \mathrm{C}$ so that the reaction rates would have to be extremely rapid down to that temperature.

To test for possible reversion, the sampling time (the duration the solenoid valve is open) was varied from 0.5 to 10 seconds. Table 6.2 shows that the effect of sampling time on product compositions and

Figure 6.15. Effect of temperature on the concentration of H_{2} formed from $\mathrm{H}_{2} \mathrm{~S}$ dissociation.

TABLE 6.2
EFFECT OF SAMPLING TIME AND $\mathrm{P}_{2} \mathrm{O}_{5}$ AT $1200^{\circ} \mathrm{K}$

Time (sec)	$P_{A} \text { by }$ Mass Balance	Product Compositions (\%)						Sulphur Yield(\%)
		H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
0.5	98.8	0.7	4.0	2.1	55.8	25.4	12.0	79.7
1	99.5	0.7	3.8	2.2	56.0	25.4	12.0	79.8
2	99.1	0.8	3.9	2.2	55.9	25.3	11.9	79.5
2	100.2	0.7	4.8	2.8	56.2	24.3	11.1	74.1
2	99.7	0.8	4.6	2.6	56.1	24.5	11.4	75.9
2*	99.5	0.9	3.5	2.1	55.9	25.5	12.1	81.1
4	99.5	0.5	4.4	2.4	56.1	25.1	11.6	77.3
6	100.6	0.6	4.5	2.6	56.3	24.6	11.3	76.1
10	99.9	1.0	4.6	2.8	56.1	24.3	11.3	75.4

*No $\mathrm{P}_{2} \mathrm{O}_{5}$ present
sulphur yield was fairly small. Furthermore, since the experimental results for $\mathrm{H}_{2} \mathrm{~S}$ dissociation agree well with the theoretical values, the sampling time was probably sufficiently short to render reversion negligible.
6.3.2 $\mathrm{H}_{2} \mathrm{~S}-\mathrm{SO}_{2}$ Reaction at Low Temperatures

As mentioned before, the reaction

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2}=2 \mathrm{H}_{2} \mathrm{O}+3 / \mathrm{j} \mathrm{~S} \tag{6.1}
\end{equation*}
$$

is catalysed by water and proceeds rapidly, even at room temperature. If this reaction should occur during sampling, excessive sulphur yields would be noted. The gas samples were therefore passed through a tube filled with phosphorus pentoxide. Table 6.2 shows that the $\mathrm{P}_{2} \mathrm{O}_{5}$ reduced the apparent sulphur yield by about 5%. The effectiveness of the $\mathrm{P}_{2} \mathrm{O}_{5}$ was further confirmed by the sampling time experiments, since the sulphur yields would otherwise have increased substantially with sampling time.

To test for reaction of $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} in the gas chromatograph, known mixtures containing about $10 \% \mathrm{H}_{2} \mathrm{~S}, 10 \% \mathrm{SO}_{2}$ and $80 \% \mathrm{~N}_{2}$ were made up and analysed chromatographically. As seen from Table 6.3, the agreement is good and reaction in the G.C. column did therefore not occur to any significant extent.

Likewise, mixtures of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$ and N_{2} were analysed after passing them through a tube containing $\mathrm{P}_{2} \mathrm{O}_{5}$, to test for possible catalytic effects of the $\mathrm{P}_{2} \mathrm{O}_{5}$. As seen from Table 6.3, no significant effect of $\mathrm{P}_{2} \mathrm{O}_{5}$, was observed.

6.3.3 Sample Size

Insufficient sample size may cause errors in the sulphur yield. If not enough sample is taken into the gas bag GB_{2}, then air will be sucked

TABLE 6.3
CHECK FOR $\mathrm{H}_{2} \mathrm{~S}$ OR SO_{2} REACTION
AT LOW TEMPERATURES
a) In gas chromatograph

Gas composition (\%)			
from rotameter settings	from G.C. analysis		
$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	$\mathrm{H}_{2} \mathrm{~S}$	$\% \mathrm{SO}_{2}$
3.6	4.5	3.8	4.6
	2.9	3.7	3.1
6.1	11.4	6.6	11.2
10.2	4.7	10.0	4.8
10.2	6.3	10.5	6.2

b) In phosphorous pentoxide drier

Gas composition by G.C. analysis (\%)			
upstream of $\mathrm{P}_{2} \mathrm{O}_{5}$	downstream of $\mathrm{P}_{2} \mathrm{O}_{5}$		
$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}
1.8	-	1.4	-
3.0	-	2.9	-
6.0	-	6.2	-
11.8	-	11.6	-
-	3.8	-	3.0
-	6.7	-	6.4
-	11.4	-	11.4
5.0	5.0	4.2	4.4
5.6	5.8	5.0	5.3
9.4	3.5	9.4	3.9

into the syringe when it is removed from the septum S_{2}. Consequently, the compositions of $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2} will appear to be low, causing an apparently high sulphur yield. Tests showed that reliable results would be obtained with the syringe set at 5 ml , provided the gas bag GB_{2} contained at least 25 ml of the product mixture.

6.3.4 Trace Compounds

The assumption that the equilibrium vessel contains only $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$, $\mathrm{SO}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}$ and S_{2} may introduce errors. Theory predicts that $\mathrm{H}_{2} \mathrm{~S}_{2}$, HS, SO, $S_{2} \mathrm{O}$, and S_{3} to S_{8} all exceed 0.1% in the range of 800 to $1500^{\circ} \mathrm{K}$ and 0 to 200 percent air.

To examine the effect of omitting these compounds, the theoretical values of the compositions of $. \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$ and N_{2} were substituted into the mass balance equations. The concentrations of $\mathrm{H}_{2} \mathrm{O}$ and S_{2}, as well as the sulphur yield were then calculated. As seen from the dashed lines in Figs. 6.7 tc 6.14 the sulphur yields are up to 3% higher than the theoretical values.

6.3.5 Theoretical Data

Since the equilibrium constants are exponential functions of the free energies of formation, a small error in free energy can greatly affect the theoretical equilibrium compositions and sulphur yields. To examine the sensitivity of the results to the free energies, $\mathrm{F}_{\mathrm{T}}^{\circ}$ of each compound was raised by 10% in turn. Increasing $\mathrm{F}_{\mathrm{T}}^{\circ}$ of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and S_{2} (the most abundant species) caused the greatest changes in the sulphur yields; the results are shown in Table 6.4. Reducing the $\mathrm{F}_{\mathrm{T}}^{\circ}$ of SO_{2} by 2.88% at $1300^{\circ} \mathrm{K}$ brought the theoretical and experimental sulphur yields into good agreement. Similar results were obtained by altering $\mathrm{F}_{\mathrm{T}}^{\circ}$ of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}$ or S_{2} by appropriate amounts, as shown in Table 6.4.

TABLE 6.4
EFFECT OF CHANGES IN $\mathrm{F}_{\mathrm{T}}^{\circ}$ OF $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{O}$ OR S_{2} ON COMPOSITIONS AT $1300^{\circ} \mathrm{K}$:

Compound	Percent Change in $\Delta \mathrm{F}^{\circ}$	Product Compositions						Sulphur Yield
		H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
-	0	1.4	5.4	3.3	56.2	23.1	10.3	69.5
$\mathrm{H}_{2} \mathrm{~S}$	+10	0.4	16.2	8.3	57.9	14.1	3.0	-19.5
SO_{2}	+10	6.2	13.3	9.8	56.7	10.5	3.4	22.9
$\mathrm{H}_{2} \mathrm{O}$	+10	0.1	0.3	0.2	55.7	29.2	14.3	98.0
S_{2}	+10	1.4	2.3	1.9	55.8	25.9	12.7	85.4
Experimental		2.3	3.8	2.6	55.3	24.1	12.0	78.9
$\mathrm{H}_{2} \mathrm{~S}$	-2.57	1.8	3.3	2.5	55.9	24.5	11.6	78.9
SO_{2}	-2.88	0.9	3.5	2.0	56.1	25.5	11.6	78.9
$\mathrm{H}_{2} \mathrm{O}$	+1. 55	0.9	3.7	2.2	56.0	25.1	11.6	78.8
S_{2}	+5.13	1.5	3.6	2.5	55.9	24.7	11.7	78.9

*PA $=100$

Errors in the free energies of formation of SO_{2} and $\mathrm{H}_{2} \mathrm{O}$ alone, compounds which are not formed from $\mathrm{H}_{2} \mathrm{~S}$ dissociation, would result in the experimental and theoretical compositions being similar for $\mathrm{PA}=0$, but different for PA >0. Therefore the accuracy of the McBride data for these two compounds was examined. Tables 6.5 and 6.6 compare $\mathrm{F}_{\mathrm{T}}^{\circ}$ for SO_{2} and $\mathrm{H}_{2} \mathrm{O}$ generated by McBride coefficients with the original data listed by McBride et al. The average deviations for both SO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are less than 0.01% and thus indicate negligible error in the fit for the range $800-1500^{\circ} \mathrm{K}$. The errors in the original JANAF data were estimated by Eriksson and Rosén to be about $\pm 1 \%$ for both SO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Thus, the error in the data used in this thesis is expected to be under 1%.

6.3.6 Temperature Measurement

Table 6.7 shows the axial temperature profile of the furnace as measured by a chromel-alumel thermocouple inserted in the mullite tube. The maximum temperatune of $837^{\circ} \mathrm{C}$ is $100^{\circ} \mathrm{C}$ higher than that indicated by the platinum - platinum/13\% rhodium thermocouple attached to the controller. This is close to the limits of experimental errors of $\pm 3 / 4$ and $\pm 1 / 4 \%$ for chromel-alumel and $\mathrm{Pt}-\mathrm{Pt} / 13 \% \mathrm{Rh}$ thermocouples, respectively. The temperature is uniform to within $\pm 5^{\circ} \mathrm{C}$ for a distance of 150 mm instead of for 200 mm as stated by the furnace manufacturer. For the entire 200 mm , the temperature is uniform to within $\pm 10^{\circ} \mathrm{C}$.

6.3.7 Error Analysis

Errors in stoichiometric air, equilibrium vessel compositions and sulphur yields are estimated in Appendix F. For example, the estimated error in the sulphur yieid of about 12% compares with typical errors based on repeated measurements (see $100 \sigma / \bar{x}$ in Tables D. 1 to D. 8) of about 5%.

TABLE 6.5
COMPARISON OF $-\mathrm{F}_{\mathrm{T}}^{\mathrm{O}}$ FOR SO_{2} COMPUTED BY McBRIDE COEFFICIENTS WITH THAT LISTED IN McBRIDE ${ }^{8}$ OR IN JANAF ${ }^{7}$

$\underset{{ }^{\circ}{ }_{\mathrm{K}}{ }^{\text {Temp }}}{ }$	- $\mathrm{F}_{\mathrm{T}}^{\circ}$		Error, $\Delta \%$	$-\mathrm{F}_{\mathrm{T}}^{\circ}$ from Janaf	Error, $\Delta \%$
	$\begin{gathered} \text { by } \\ \text { coefficients } \end{gathered}$	$\begin{gathered} \text { from } \\ \text { McBride Table } \end{gathered}$			
800	121436.48	121435.8	-0.00056	121438.0	0.00125
900	128531.93	128531.1	-0.00065	128533.7	0.00137
1000	135769.78	135768.9	-0.00065	135772.0	0.00164
Mean error	-	-	-0.00062	-	0.00142
1000	135769.77	135768.9	-0.00064	135772.0	0.00164
1100	143137.87	143136.9	-0.00067	143140.3	0.00170
1200	150625.76	150625.0	-0.00051	150630.6	0.00321
1300	158224.56	158224.2	-0.00023	158230.0	0.00344
1400	165926.62	165926.9	0.00017	165933.0	0.00385
1500	173725.30	173726.4	0.00063	173734.0	0.00501
Mean Error	-	-	-0.00021	-	0.00314

TABLE 6.6
COMPARISON OF - $\mathrm{F}_{\mathrm{T}}^{\circ}$ FOR $\mathrm{H}_{2} \mathrm{O}$ COMPUTED BY McBRIDE COEFFICIENTS WITH THAT LISTED IN MCBRIDE ${ }^{8}$ OR IN JANAF ${ }^{7}$

Temp ${ }^{\circ} \mathrm{K}$	- $\mathrm{F}_{\mathrm{T}}^{0}$		$\begin{gathered} \text { Error, } \\ \Delta \% \end{gathered}$	$\begin{gathered} -\mathrm{F}_{\mathrm{T}}^{\circ} \\ \text { from JANAF } \end{gathered}$	Error, $\Delta \%$
	$\begin{gathered} \text { by } \\ \text { coefficients } \end{gathered}$	from McBride Table			
800	96269.42	96269.2	-0.00023	96269.1	-0.00033
900	101672.12	101671.8	-0.00032	101670.9	-0.00120
1000	107181.10	107180.8	-0.00028	107180.9	-0.00018
Mean error	-	-	-0.00027	-	-0.00057
1000	107181.10	107180.8	-0.00028	107180.9	-0.00018
1100	112788.79	112788.4	-0.00034	112787.4	-0.00123
1200	118489.06	118488.5	-0.00047	118487.1	-0.00165
1300	124276.66	124276.8	-0.00070	124274.3	-0.00190
1400	130147.03	130145.7	-0.00010	130142.7	-0.00333
1500	136096.10	136094.2	-0.00014	136091.4	-0.00345
Mean Error	-	-	-0.00070	-	-0.00196

TABLE 6.7

FURNACE TEMPERATURE PROFILES
(Temperature controller set to $827^{\circ} \mathrm{C}$)

Axial distance from centre of furnace mm	Temperature ${ }^{\circ} \mathrm{C}$
-280	379
-230	518
-180	670
-125	795
-100	816
-75	828
-50	837
-25	837
0	835
+25	835
+50	830
+75	826
+100	814
+125	789
+180	652
+230	481
+280	356

The difference is to be expected, since 12% represents the maximum possibite, rather than the most likely error in the sulphur yield. Similar statements may be made with respect to the chemical compositions and stoichiometric air (PA). The error analysis should, therefore, be regarded only as a means of comparing the relative importance of error sources.

In view of the reproducibility of the results and systematic trends of the dependent variables (such as sulphur yield and composition), the experimental measurements may be regarded as reliable. A certain degree of scatter in the data was unavoidable due to the limitations in the experimental technique and difficulties of investigating highly reactive chemical compounds at elevated temperatures.

CHAPTER 7

CONCLUSIONS

7.1 Theoretical Equilibrium Compositions and Yields

Equilibrium mixtures resulting from the reaction among $\mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}_{2}$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ and air at atmospheric pressure were found to contain the following compounds whose partial pressures exceeded $10^{-7} \mathrm{~atm}$. for at least some temperatures between 600 and $2000{ }^{\circ} \mathrm{K}: \quad \mathrm{N}_{2}, \mathrm{NH}_{3}, \mathrm{NO}, \mathrm{O}$, O_{2}, OH, H, $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{~S}_{2}, \mathrm{SH}, \mathrm{SN}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{~S}_{2} \mathrm{O}, \mathrm{S}$ to S_{8}, $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{COS}, \mathrm{CS}$ and CS_{2}. These compounds should therefore not be omitted from equilibrium calculations. It was shown that sulphur yields in Claus furnaces could be increased significantly by operating with PA less than 100 , since this suppressed the further oxidation of elemental sulphur. In practice, such ratios require preheating of the feed gases for the Claus furnace.

The presence of impurities, such as NH_{3} (below $1600^{\circ} \mathrm{K}$), $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} was shown to diminish the sulphur yields.

Between 600 and $1850^{\circ} \mathrm{K}, \mathrm{H}_{2} \mathrm{~S}$ dissociation was predicted to produce lower sulphur yields than did $\mathrm{H}_{2} \mathrm{~S}$ oxidation.

7.2 Claus Plant Mode1

Modelling a Claus plant consisting of a furnace and two catalytic converters, which operate adiabatically gave the following results:
--The maximum overall sulphur yield occurs when operating with

```
stoichiometric air.
```

--Enriching this air with oxygen causes the overall sulphur yield to fall.
--Preheating the feed to the furnace or converters enhances the sulphur yield only marginally.
--Recycling part of the first converter's feed back to the furnace improves the yield slightly; these minor gains are probably not worth the additional cost encountered in practice.

Consequently, it seems preferable to operate Claus plants with 100% of stoichiometric air, without oxygen enrichment and without recycle.

7.3 Experimental Equilibrium Compositions

Compositions of $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}$ and S_{2} and the sulphur yield were obtained experimentally at one atmosphere pressure and between 800 and $1500^{\circ} \mathrm{K}$. The experimental results followed the same trend as the theoretical ones, but did not coincide exactly with them. The sulphur yields were up to 15% higher than the theoretical ones; random error alone did not account for the difference. Six possible causes were investigated:
--high temperature reversion (unlikely);
--reaction of $\mathrm{H}_{2} \mathrm{~S}$ with SO_{2} at room temperatures, either in the sampling lines or in the gas chromatograph (possible, not not likely);
--taking insufficient sample (possible);
--neglecting important species (results in an apparent increase in yield of up to 3%);
--errors in the theoretical data (possible; but not likely);
--errors in temperature measurement (unlikely).

NOMENCLATURE

a	coefficient in Eq. 2.9
$a_{1}, a_{2}, \ldots, a_{7}$	McBride coefficients
$\mathrm{a}_{8}, \mathrm{a}_{9}, \mathrm{a}_{10}$	Lagrange multipliers
A	coefficient in Eq. 3.42
$\underset{\sim}{\text { A }}$	symmetric matrix of temperature summations
A_{i}	area under chromatographic peak
b:	coefficient in Eq. 2.9
$\mathrm{b}_{\mathrm{A}}, \mathrm{b}_{\mathrm{H}_{2} \mathrm{~S}}$	intercept of air and $\mathrm{H}_{2} \mathrm{~S}$ flowmeter calibration curve, respectively
B	coefficient in Eq. 3.42
b_{i}	intercept of GC calibration curve for compound i(H_{2}, $\mathrm{H}_{2} \mathrm{~S}$ or SO_{2})
c	coefficient in Eq. 2.9
$c_{p_{i}}^{\circ}$	standard heat capacity of a species i
C	coefficient in Eq. 3.42
d	coefficient in Eq. 2.9
${ }_{\sim}^{\text {d }}$	vector of thermochemical properties of species i
f_{k}	factor defined by Eq. 3.29 = (1-r)/(1-r' ${ }_{\mathrm{k}}$)
$\mathrm{F}_{\mathrm{T}}{ }^{\circ}$	standard free energy of a species at temperature T
$\Delta \mathrm{F}_{\mathrm{T}}^{\mathrm{O}}$	free energy of reaction at temperature T
$\underset{\sim}{\text { F }}$	diagonal matrix for scaling $\underset{\sim}{\text { A }}$
$\mathrm{H}_{\mathrm{T}}^{\circ}, \mathrm{H}_{\mathrm{T}_{\mathrm{R}}}^{\circ}, \mathrm{H}_{\mathrm{T}_{\mathrm{G}}^{\circ}}^{\circ}$	enthalpy of a compound at temperatures T, T_{R} and T_{G} respectively
H_{298}°	enthalpy of a compound at $298.16^{\circ} \mathrm{K}$

$\Delta \dot{H}_{\mathrm{f}, 298}^{\circ}$	standard enthalpy of formation of a compound at $298.16^{\circ} \mathrm{K}$ from its elements
i	compound number
j	number of atoms per molecule of sulphur vapour or number of atoms of element e in compound i
K_{T}	equilibrium constant at temperature T
$\mathrm{K}_{\mathrm{O}_{2}}$	equilibrium constant for the formation of O_{2} (Eq .3 .3)
$\mathrm{K}_{\mathrm{H}_{2}}$	equilibrium constant for the formation of H_{2} (Eq. 3.4)
$\mathrm{m}_{\mathrm{A}}, \mathrm{m}_{\mathrm{H}_{2} \mathrm{~S}}$	slope of air and $\mathrm{H}_{2} \mathrm{~S}$ rotameter calibration curve
m_{i}	slope of G.C. calibration curve for compound i $\left(\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}\right.$ or SO_{2})
$\begin{aligned} & M_{e, A}, M_{e, ~}, \\ & M_{e, C}, M_{e, D^{\prime}} \end{aligned}$	number of moles of element e ($\mathrm{C}, \mathrm{H}, \mathrm{H}, \mathrm{O}$ or: S) in streams A, B, C, D, E, and L, respectively of Fig. 3.1
$M_{e, E}, M_{e, L}$	
$m_{i, E}$	number of moles of compound i in stream E
$\mathbf{n}_{\mathbf{i}}$	number of moles of compound i present at the adiabatic flame temperature after reaction
${ }^{n} 0, i$	number of moles of compound i before reaction
N	total number of species
p	number of temperature intervals summed in obtaining McBride coefficients
$P_{A} \text { or } P A$	percent of stoichiometric air in the feed mixture ($=100 \mathrm{R}_{\text {OS }}$)
P_{i}	partial pressure of compound i (atm)
P_{S}	sum of the partial pressures of the various sulphur species
P_{T}	total pressure (= sum of the partial pressures of all the compounds)
P_{V}	vapour pressure of sulphur
$Q_{A}, \quad Q_{H_{2} S}$	flowrates oí air and $\mathrm{H}_{2} \mathrm{~S}$ respectively
r	fraction of stream D recycled
r^{\prime} r^{2}	modified fraction recycled defined by Eq. 3.20 correlation coefficient

R	gas constant $\left(=1.98726 \mathrm{cal} / \mathrm{mole} /{ }^{\circ} \mathrm{K}\right)$
$\mathrm{R}_{\mathrm{CS}} \dot{ }$	ratio of carbon to sulphur
R_{eS}	ratio of element e (carbon, hydrogen or nitrogen) to sulphur
R_{HS}	ratio of hydrogen to sulphur
R NO	ratio of nitrogen to oxygen
$\mathrm{R}_{\text {OS }}$	ratio of oxygen to sulphur
$\mathrm{S}_{\mathrm{T}}^{\circ}$	standard entropy of a species at temperature T
S_{T}	$=\Sigma_{j}\left[S_{j}\right] \quad \text { (Eq. 3.6) }$
. T	adiabatic flame temperature, ${ }^{\circ} \mathrm{K}$
T_{G}	guess of adiabatic flame temperature, ${ }^{\circ} \mathrm{K}$
T_{R}	temperatire of the reactants, ${ }^{\circ} \mathrm{K}$
T_{0}	common temperature for the two sets of McBride coefficients
$\stackrel{\text { ® }}{\sim}^{\text {i }}$	vector of McBride coefficents for compound i
${ }^{x_{A}},{ }^{x_{H}}{ }_{2} S$	rotameter float position for air and $\mathrm{H}_{2} \mathrm{~S}$, respectively
y_{i}	percent of compound i ($\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$ or $\left.\mathrm{SO}_{2}\right)$ in gas bag
Y	sulphur yield defined by Eqs. 3.5 and 3.8

Greek

α
proportionality constant in Eq. 3.22
constant in Eq. $3.28\left(=\mathrm{M}_{\mathrm{e}, \mathrm{A}} / \mathrm{M}_{\mathrm{s}, \mathrm{A}}\right)$

Subscripts
A, B, C, D, E, L streams in Fig. 3.1
e element (either $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}$ or S)
G guessed
HS hydrogen to sulphur
i . compound number
$k \quad$ iteration number
NO nitrogen to oxygen
OS oxygen to sulphur
R reactant
S sulphur
T total
V vapour
0 previous iteration

Superscripts

T transpose of a vector
*
desired value in Eqs. 2.11 to 2.14 and 3.7

Miscellaneous
[]
partial pressure

REFERENCES

1. Anon, Hydrocarbon Process. 57 (1) 181 (1978).
2. Grekel, H., Kunkel, L. V., and McGalliard, R., Chem. Eng. Progr. 61 (9) 70 (1965).
3. Estep, J. W., McBride, G. T., and West, J. R., in McKetta, J. J. (ed.), Advances in Petroleum Chemistry and Refining, Vol. 6, Chapt. 7 Interscience, New York, Ny (1962).
4. Goar, B. G., Hydrocarbon Process, 47 (9), 248 (1968).
5. Gamson, B. W., and Elkins, R. H., Chem. Eng. Progr. 49, 203 (1953).
6. Kelley, K. K., U. S. Bur. Mines, Bull. 406 (1937).
7. Stull, D. R., and Prophet, H., (ed.) JANAF Thermochemical Tables, 2nd Ed., National Bureau of Standards, Washington, DC (1971).
8. McBride, B. J., Heimel, S., Ehlers, J. G., and Gordon, S., Thermodynamic Properties to $6000^{\circ} \mathrm{K}$ for 210 Substances Involving the First 18. Elements,. NASA SR-3001, Washington, DC (1963).
9. Valdes, A. R., Hydrocarbon Process. Petrol. Refiner, 43 (3) 104 (1964).
10. Opekar, P. C., and Goar, B. G., Hydrocarbon Process., 45 (6) 181 (1966).
11. Eriksson, G., and Rosén, E., Proceedings of the Symposium on Recovery of Pulping Chemicals, Helsinki (1968).
12. Boas', A. H., and Andrade, R. C., Hydrocarbon Process 50, (3) 81 (1971).
13. McGregor, D. E., Ph.D. Thesis, University of Alberta, Edmonton, Alta. (1971).
14. Neumann, K. K., Erdö1, Kohle, Erdgas; Petrochem. vereinigt mit Brennst. Chem., 25, 656 (1972).
15. Bennett, H. A., and Meisen, A., Can. J. Chem. Eng., 51, 720 (1973).
16. Bragg, J. R., 76th National AIChE Meeting, Tulsa, Okla, Mar 10-13, (1974).
17. Fischer, H., Hydrocarbon Process., 53 (10), 125 (1974).
18. Meisen, A., and Bennett, H. A., Hydrocarbon Process., 53 (11), 171 (1974).
19. Raymont, M. E. D., Ph.D. Thesis, University of Calgary, Calgary, Alta. (1974).
20. Kerr, R. K., and Berlie, E. M., Energy Process./Can., May-June, 42 (1977).
21. Maadah, A. G., and Maddox, R. N., Hydrocarbon Process, 57, (8) 143 (1978).
22. Mackle, H., and O'Hare, P.A.G. Trans. Faraday Soc., 59, 309 (1963).
23. Kellogg, H. H., Met. Trans., 2, 2161 (1971).
24. Rau, H., Kutty, T. R. N., and Guedes de Carvalho, J. R. F., J. Chem. Thermodynamics 5, 833 (1973).
25. Braune, H., Peter, S., und Neveling, V., Z. Naturforsch. 6a, 32 (1951).
26. Peter, S., und Woy, H., Chem. Ing. Techk., 41, 1 (1969).
27. Pasternak, R., Brennst. Chem. 50, 200 (1969).
28. Sawyer, F. G., Hader, R. N., Herndon, L. K., and Morningstar, E., Ind. Eng. Chem., 42, 1938 (1950).
29. Kerr, R. K., Energy Process/Can., July-Aug., 28 (1976).
30. Kerr, R. K., Paskall, H. G., and Ballash, N: Energy Process./Can., Sept-Oct., 66 (1976).
31. Kerr, R. K., and Paskall, H. G., Energy Process./Can., Nov-Dec., 38 (1976).
32. Kerr, R. K., Paskall, H. G., and Ballash, N., Energy Process./Can., Jan- Feb., 40 (1977).
33. Kerr, R. K., and Berlie, E. M., Energy Process./Can., July-Aug., 48 (1977).
34. Randall, M., and von Bichowsky, F. R., J. Amer. Chem. Soc. 40, 358 (1918).
35. Taylor, H. A., and Wesley, W. A., J. Phys. Chem., 31, 216 (1927).
36. Taylor, H. A., and Livingston, E. M., J. Phys. Chem. 35, 2676 (1931).
37. Murthy, A. R. V., and Rao, B. S., Proc. Indian Acad. Sci., 34A, 283 (1951).
38. Deo, A. V., Dalla Lana, I. G., and Habgood, H. W., J. Cata1. 21, 270 (1971).
39. Dalla Lana, I. G., McGregor, D. E., Liu, C. L., and Cormode, A. E., University of Alberta Report, Proceedings of the 5th European/2nd International Symposium on Chemical Reaction Engineering, Paper B (1972).
40. Diah, I. G., Ponter, A. B., and Shemilt, L. W., Ind. Eng. Chem. Process. Des. Develop., 11, 458 (1972).
41. Greke1, H., Oil Gas J., 57 (30) 76 (1959).
42. Fischer, H., Chem. Ing. Techk., 43, 1168 (1971).
43. Kopp, S. P., and Morin, M. M., Gas Conditioning Conference, Paper G (1977).
44. Meyer, B., Sulphur, Energy and Environment, Elsevier, Amsterdam (1977).
45. Levy, A., and Merryman, E. L., Combust. Flame, 9, 229 (1965).
46. Hyne, J. B., Alberta Sulphur Research Ltd. Report.
47. Raymont, M. E. D., Hydrocarbon Process., 54 (5) 177 (1975).
48. Raymont, M. E. D., Hydrocarbon Process., 54 (7) 139 (19.75).
49. Carmassi, M. J., and Zwilling, J. P., Hydrocarbon Process., 46 (4) 117 (1967).
50. Smith, D. E., and Funk, G. L., Gas Conditioning Conference, Paper Q (1977).
51. Zeleznik, F. J., and Gordon, S., NASA Tech. Note D-767 Washington, D.C. (1961).
52. West, J. R., Ind. Eng. Chem., 42, 713 (1950).
53. Tuller, W. N. (ed.), The Sulphur Data Book, McGraw Hill, New York, NY (1954).
54. Rau, H., Kutty, T. R. N., and Guedes de Carvalho, J. R. F., J. Chem. Thermodynamics 5, 291 (1973).
55. Supelco, Inc., Bellefonte, Pa., Priv. Comm. (1976).
56. Chromatographic Specialities, Ltd., Brockville, Ont., Priv. Comm. (1976).
57. Spherocarb, Analabs, Inc., North Haven, Conn (1977).
58. Robbins, L. A., Bethea, R. M., and Wheelock, T. D., J. Chromatogr. 13, 361 (1964).
59. Hodges, C. T., and Matson, R. F., Anal. Chem. 37, 1065 (1965).
60. Koppe, R. K., and Adams, D. F., Environ. Sci. Technol., 1, 479 (1967).
61. Jones, C. N., Anal. Chem., 39, 1858 (1967).
62. Obermiller, E. L., and Charlier, G. O., J. Gas Chromatogr., 6 446 (1968).
63. Obermiller, E. L., and Charlier, G. O., J. Gas Chromatogr., 7 580 (1969).
64. Appiebury, T. E., and Schaer, M. J., J. Air Pollut Contr. Ass., 20, 83 (1970).
65. Thornsberry, W. L., Anal. Chem. 43, 452 (1971).
66. Deactigel, Applied Science Laboratories, Inc,, State College PA (1971).
67. Bollman, D. H., and Mortimore, D. M., J. Chromatogr. Sci., 10, 523 (1972).
68. Bremner, J. M., and Banwort, W. L., Sulphur Inst. J., 10, (1), (1974).
69. Murdock, D. L., and Atwood, G. A., Ind. Eng. Chem. Process. Des. Develop.,13, 254 (1974).
70. de Souza, T. L. C., Lane, D. C., and Bhatia, S. P., Anal. Chem., 47., 543 (1975).
71. Bulletin 712A, Supelco. Inc., Bellafonte Pa. (1976).
72. Catalog 11, p 19, Supelco Inc, Bellafonte Pa. (1977).
73. International Critical Tables, Vol V, p. 213 McGraw Hill, New York, NY (1926).
74. Pearson, M. J., Hydrocarbon Process., 52 (2), 81 (1973).

APPENDIX A

EXPERIMENTAL PROCEDURE

The following section lists each step in operating the apparatus shown in Figs. 4.1 and 4.2 .
(i) Fill the gas sampling bag GB_{1} with the desired mixture of air and $\mathrm{H}_{2} \mathrm{~S}$.
(ii) Introduce this mixture into the equilibrium vessel.
(iii) After one hour (or more) sample the equilibrium vessel.
(iv) Calibrate the gas chromatograph. (This may be done between steps (ii) and (iii).)
(v) Analyse the sample.
(vi) Calculate the composition of the equilibrium vessel.

A. 1 Preparing the Feed Mixture

A gas bag is filled with a feed mixture of air and $\mathrm{H}_{2} \mathrm{~S}$ as follows:
(i) Set the $H_{2} S$ flow rate to at least 20 as indicated by the rotameter.
(ii) Set the air flowrate according to Eq. 4.6 to produce the desired P_{A}.
(iii) Evacuate gas bag GB_{1}.
(iv) Fill the bag with air and $\mathrm{H}_{2} \mathrm{~S}$.
(v) When the bag is full, connect it to the apparatus as shown in Fig. 4.1.

A. 2 Introducing the Mixture into the Equilibrium Vessel

The feed mixture is admitted into the equilibrium vessel as follows:
(i) Close all valves except $C, S T, S V, V_{2}$ and V_{5} of Fig. 4.1 , turn pump VP on, and evacuate the reaction vessel until its pressure falls below about $300 \mu \mathrm{Hg}$.
(ii) Close stopcock $S T$ then open valve V_{l} to admit the feed mixture into the vesse1. After about 10 seconds, close V_{1} again.
A. 3 Sampling the Equilibrium Vessel

After equilibrium has been attained, which may require an hour or more, the gases in the equilibrium vessel are sampled as follows:
(i) After closing valve V_{6} and opening valves $\mathrm{V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$ and V_{5}, evacuate the product gas bag and its container.
(ii) When the pressure falls below about $300 \mu \mathrm{Hg}$, open stopcock ST and close valve V_{2}. Take a sample by actuating the solenoid SV with the timer set for 2 seconds.
(iii) As soon as the solenoid closes again, close V_{4} and $S T$; turn off the vacuum pump and open release valve V_{6}.
(iv) Open valve V_{1} to admịt sufficient feed mixture into the equilibrium vessel to replace the volume withdrawn by sampling.
(v) Take a 5 ml sample from gas bag GB_{2} with a syringe; leave the needle in the septum for about thirty seconds to allow the syringe contents to reach atmospheric pressure.
(vi) Inject the sample into the gas chromatograph.

A. 4 Calibration of Gas Chromatograph

Separate calibration curves for $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2} were prepared for most experimental runs. Typical composition ranges used are: 0-10\% for $\mathrm{H}_{2}, 0-25 \%$ for $\mathrm{H}_{2} \mathrm{~S}$, and $0-1.0 \%$ for SO_{2}; the ranges vary, depending on the expected composition in the equilibrium vessel.

The chromatograph is calibrated for $\mathrm{H}_{2} \mathrm{~S}$ as follows:
(i) Set the $\mathrm{H}_{2} \mathrm{~S}$ and N_{2} (diluent) flow rates, and then allow about one minute for the lines to be purged by the $\mathrm{H}_{2} \mathrm{~S} / \mathrm{N}_{2}$ mixture.
(ii) From the rotameter float positions compute the percent $\mathrm{H}_{2} \mathrm{~S}$.
(iii) Insert syringe needle through septum S_{1}, withdraw a 5 ml sample, but leave the needle in the septum for about one minute to allow the pressure inside the syringe to reach one atmosphere.
(iv) Inject sample into gas chromatograph. Wait five seconds before withdrawing the needle, to avoid loss of sample through the G.C. septum.
(v) Measure the area of the gas chromatograph peak from the trace of the Disc integrator (built into the recorder) and plot this area against the corresponding percent $\mathrm{H}_{2} \mathrm{~S}$.
(vi) Repeat steps (i) to (v) at least three times for a range of flow rates and thus obtain a calibration curve. Then fit the points to a straight line using the program listed in Appendix B.
(vii) Repeat steps (i) to (vi) for H_{2} and then for SO_{2}.

APPENDIX B

CALCULATOR PROGRAMS AND SAMPLE CALCULATIONS

Programs were written for the Texas Instruments TI-58 programable pocket calculator to compute:
--gas chromatograph calibration constants;
--equilibrium vessel compositions for both $\mathrm{H}_{2} \mathrm{~S}$ oxidation and dissociation; --composition of a gas stream containing $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$ and N_{2}. The use of these programs is described in the following sections with results of sample calculations in brackets.

B. 1 Constants for Gas Chromatograph Calibration

Table B. 1 lists a TI-58 program which calculates the intercept and slope of the calibration curves for hydrogen, hydrogen sulphide and sulphur dioxide. The calibration constants are found as follows:
(i) Key in the program listed in Table B.I.
(ii) Key in the constants for the flowmeters:
--For N_{2} : -213.403 STO 18; 24.991 STO 19
--For H_{2} : -3.698 STO 16; 2.119 STO 17
(iii) Clear the statistical registers: press 2nd E'
(iv) Key in flowmeter float positions, x :

Key $\mathrm{X}_{\mathrm{H}_{2}}$ (5.5) press A, see $\mathrm{X}_{\mathrm{H}_{2}}$ (5.50)
Key $\mathrm{x}_{\mathrm{N}_{2}}$ (93.5), press B, see $\mathrm{X}_{\mathrm{N}_{2}}$ (93.50)
(v) Press 2nd C^{\prime}, see $\% \mathrm{H}_{2}$ (0.37)
(vi) Key in area under H_{2} peak (298), press 2nd D^{\prime} see $n(1.00)$, the number of points on the calibration curve entered so far.
(vii) Repeat steps (iv) to (vi) for each point on the calibration curve. (See Table B. 2 for the values.)

TABLE B. 1

TI-58 PROGRAM FOR CALCULATING G.C. CALIBRATION CURVE CONSTANTS AND FOR FINDING EQUILIBRIUM VESSEL COMPOSITIONS FOR $\mathrm{H}_{2} \mathrm{~S}$ OXIDATION

LEAF 168 OMITTED IN PAGE NUMBERING.

TABLE. B. 2
TYPICAL CALIBRATION DATA FOR THE GAS CHROMATOGRAPH (Run 77)

Gas	Float Positions		\% Gas	Peak Area
	Gas	N_{2}		
H_{2}	5.5	93.5	0.37	298
	9.5	94	0.76	1020
	16	95	1.38	1500
	14.5	66.5	1.83	2310
	14.5	46	2.81	3740
$\mathrm{H}_{2} \mathrm{~S}$	89	19.5	31.11	3000
	63	31	13.57	1365
	40	44.5	5.92	565
	27	61	2.87	255
	22	86	1.62	113
SO_{2}	84	21.5	20.68	5086
	65	37.5	8.42	2247
	46	56	3.94	1011
	21	68.5	1.64	450
	21	91	1.20	272

Gas	Intercept	Slope	Correlation Coefficient
H_{2}	-202.19	1381.05	0.9946
$\mathrm{H}_{2} \mathrm{~S}$	-17.19	97.72	0.9996
SO_{2}	49.00	245.82	0.9992

(viii) Compute correlation coefficient (r^{2}): press 2 nd $0 p 13$, see r^{2}. (0.99).
(ix) Calculate intercept and slope and store for use in the mass balance part of the programme: press 2nd Op 12, see intercept (-202.19), press STO 10; press $\mathrm{x} \overrightarrow{\mathrm{F}} \mathrm{t}$, see slope (1381.05), press STO 11.
(x) Key in the data for the calibration of the flowmeter for $\mathrm{H}_{2} \mathrm{~S}$: 1.789 STO 16; 1.370 STO 17.
(xi) Repeat steps (iii) to (ix) to calculate the intercept (-17.19) and slope (97.72) for the $\mathrm{H}_{2} \mathrm{~S}$ calibration curve, but store these in registers 12 and 13 respectively.
(xii) Key in the data for the calibration of the flowneter for SO_{2} : 5.262 STO 16; 0.9427 STO 17.
(xiii) Repeat steps (iii) to (ix) but store intercept (49.00) and slope (245.82) in registers 14 and 15 respectively.
(xiv) To calculate the percent of stoichiometric air (P_{A}) by flowmeter, key in flowmeter constants for $\mathrm{H}_{2} \mathrm{~S}$ and air respectively: 1.789 STO 16, 1.370 STO 17; -75.884 STO 18, 3.975 STO 19. Then key in float positions, x:

Enter $\mathrm{x}_{\mathrm{H}_{2} \mathrm{~S}}$ (36), press A , see $\mathrm{x}_{\mathrm{H}_{2} \mathrm{~S}}$ (36.00).
Enter x_{A} (54.5), press B, see x_{A} (54.50). Press 2nd C^{\prime}, see $\% \mathrm{H}_{2} \mathrm{~S}$ (26.64). Then press 2 nd A^{\prime} see P_{A} (115.67).

B. 2 Equilibrium Vessel Compositions

B.2.1 Hydrogen Sulphide Oxidation

The programme listed in Table B. 1 also calculates vessel compositions from the G.C. calibration data and mass balance equations as
follows:
(i) Ensure that the G.C. calibration data are in registers 10 to 15.
(ii) Key in the areas under the gas chromatograph peaks, A:

Key in $\mathrm{A}_{\mathrm{H}_{2}}$ (546), press A, see $\mathrm{A}_{\mathrm{H}_{2}}$ (546.00).
Key in $\mathrm{A}_{\mathrm{H}_{2} \mathrm{~S}}(412)$, press B , see $\mathrm{A}_{\mathrm{H}_{2} \mathrm{~S}}(412.00)$.
Key in $\dot{A}_{\mathrm{SO}_{2}}$ (2005), press C , see $\mathrm{A}_{\mathrm{SO}_{2}}$ (2005.00).
(iii) To calculate the composition of the equilibrium vessel, press E, see percent hydrogen ($\% \mathrm{H}_{2}$) in the vessel (0.4). Press R / S, see $\% \mathrm{H}_{2} \mathrm{~S}$, (3.1). Continue pressing R / S and see, in túrn, $\% \mathrm{SO}_{2}$ (5.6), $\% \mathrm{~N}_{2}(61.4), \% \mathrm{H}_{2} \mathrm{O}(21.4), \% \mathrm{~S}_{2}(8.1)$, \% sulphur yield (65.1) and P_{A} by mass balance (131.1).
(iv) Repeat steps (i) to (iii) for new $\mathrm{A}_{\mathrm{H}_{2}}, \mathrm{~A}_{\mathrm{H}_{2} \mathrm{~S}}$ and $\mathrm{A}_{\mathrm{SO}_{2}}$.

B.2.2, Hydrogen Sulphide Dissociation

The program listed in Table B. 3 calculates G.C. calibration curves for H_{2} and $\mathrm{H}_{2} \mathrm{~S}$ and computes the composition of the vessel for $\mathrm{H}_{2} \mathrm{~S}$ dissociation as follows:
(i) Key in the program.
(ii) Calculate and store calibration data for H_{2} and $\mathrm{H}_{2} \mathrm{~S}$ as described in Section B. l, steps (ii) to (xi). For Table D.4, run 83, the intercept and slope for H_{2} are 500.28 (STO 10) and 382.86 (STO 11), respectively; for $\mathrm{H}_{2} \mathrm{~S}$ the numbers are -42.46 (STO 12) and 53.35 (STO 13).
(iii) Key in the areas under the gas chromatcgraph peaks, A:

Key in $A_{H_{2}}$ (4560), press A, see $A_{H_{2}}$ (4560.00).
Key in $A_{H_{2} S}(4890)$, press B, see $A_{H_{2} S}$ (4890.00).
(iv) To calculate equilibrium vessel compositions: press E, see percent hydrogen (9.8). Press R / S, see $\% \mathrm{H}_{2} \mathrm{~S}$ (85.3). Continue pressing
R / S and see, in turn, \% $S_{2}(4.9), \%$ sulphur yield (10.3), and $\% \mathrm{H}_{2}+\% \mathrm{H}_{2} \mathrm{~S}$ in the syringe (103.1).

B. 3 Compositions of a Mixture of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$ and N_{2}

The program listed in Table B. 4 calculates the $\% \mathrm{H}_{2} \mathrm{~S}$ and SO_{2} in a mixture of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$ and N_{2}, as follows:
(i). Key in rotameter calibration constants:

For $\mathrm{H}_{2} \mathrm{~S}: 0.3219$ STO 10 ; 1. 3213 STO 11
For SO_{2} : 5.2624 STO $12 ; 0.9427$ STO 13
For $\mathrm{N}_{2}:-213.403$ STO 14; 24.991 STO 15.
(ii) Key in rotameter float positions, x :

Key $X_{H_{2} S}(25)$, press A, see $\mathrm{x}_{\mathrm{H}_{2} \mathrm{~S}}$ (25.00)
Key $X_{\mathrm{SO}_{2}}(60)$, press B, see $\mathrm{X}_{\mathrm{SO}_{2}}(60.00)$
Key $X_{N_{2}}(26.5)$, press C, see $X_{N_{2}}(26.50)$.
(iii) Calculate composition of mixture:

Press D see \% $\mathrm{H}_{2} \mathrm{~S}$ (6.13)
Press E see \% SO_{2} (11.36).

LEAF 174 OMITTED IN PAGE NUMBERING.

APPENDIX C
 CALIBRATION CURVES FOR ROTAMETERS

Four rotameters were required for the experiments: ChE 2912A and B (both Gilmont Instruments, Size 10), ChE 2600 (Gilmont Size 1), and ChE 3107A (Gilmont.Size 2). The rotameters were used as follows:
--ChE 2912B (calibrated for $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$, and SO_{2}) and ChE 3107A $\left(\mathrm{N}_{2}\right)$: for gas chromatograph calibration;
--ChE 2912B $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ and 2600 (air) : to set the ratio of air to $\mathrm{H}_{2} \mathrm{~S}$ for filling gas bags;
--ChE $2912 \mathrm{~A}\left(\mathrm{H}_{2} \mathrm{~S}\right), 2912 \mathrm{~B}\left(\mathrm{SO}_{2}\right)$ and $3107 \mathrm{~A}\left(\mathrm{~N}_{2}\right)$: to examine the reaction of $\mathrm{H}_{2} \mathrm{~S}$ with SO_{2}.

Rotameters ChE 2600 and ChE 2912A and B were calibrated with a stopwatch and a 50 ml soap bubble flowneter; ChE 3107, with a stopwatch and a 200 ml soap bubble flowmeter. The data are plotted in Figs. C.l to C.6. Linear regression was applied to find the best straight line for each plot; the data are fitted very well as the correlation coefficients (r^{2}) exceed 0.996.

Figure C.1. Calibration of rotameter Ch.E 2912B (Gi1mont Model F-2000, Size 10) for H_{2}.

Figure C.2. Calibration of rotameter Ch.E 2912B (Gilmont Model F-2000, Size 10) for $\mathrm{H}_{2} \mathrm{~S}$.

Figure C.3. Calibration of rotameter Ch.E. 2912B (Gilmont Model F-2000, Size 10) for SO_{2}.

Figure C.4. Calibration of rotameter Ch.E. 3107A (Gilmont Model F-1200, Size 2), for N_{2}.

Figure C-5. Calibration of rotameter Ch.E. 2600 (Gi1mont Model F-1100, Size 1) for air.

Figure C.6. Calibration of rotameter 2912A (Gilmont Model F-2000, size 10) for $\mathrm{H}_{2} \mathrm{~S}$.

APPENDIX D

EXPERIMENTAL RESULTS

TABLE D. 1
EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT $800^{\circ} \mathrm{K}$ FOR VARIOUS P_{A}

Run Code	$\mathrm{P}_{\text {A }}$			Product Compositions (\%)						Sulphur Yie1d(\%)
	Flow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$.	S_{2}	
83	-	-		0.6	99.0	-	-	-	0.3	0.6
	-	-		0.6	99.2	-	-	-	0.3	0.6
	-	-		0.4	99.4	-	-	-	0.2	0.4
	-	-		0.5	99.2	-	-	-	0.3	0.5
Mean, $\overline{\mathrm{x}}$	-	-	-	0.5	99.2	-	-	-	0.3	0.5
100 / $/ \mathrm{x}$	-	-	-	18.2	0.2	-	-	-	18.2	18.2
66	45.9									
	45.9	55.2		0.0	19.8	0.2	44.9	23.5	11.7	53.9
	43.0	54.8		0.0	20.0	0.2	44.7	23.5	11.7	53.6
	48.7	57.1		0.0	18.5	0.2	45.5	23.9	11.9	55.9
Mean, $\overline{\mathrm{x}}$	45.9	55.7	50.8	0.0	19.4	0.2	45.0	23.6	11.8	54.5
$100 \mathrm{\sigma} / \overline{\mathrm{x}}$	5.1	2.2	-	0.0	4.2	0.0	0.9	1.0	1.0	2.3
56	$\begin{aligned} & 70.6 \\ & 56.8 \\ & 64.8 \end{aligned}$									
Mean, \bar{x}	64.1	74.6	69.4	0.05	10.5	0.7	50.7	25.6	12.5	69.1
100 / $/ \bar{x}$	10.8	-	-	-	-	-	-	-	-	-
4	74.9									
	75.8									
	$\begin{aligned} & 76.8 \\ & 77.5 \\ & \hline \end{aligned}$									
Mean, $\overline{\mathrm{x}}$	76.3	70.6	73.5	0.0	12.4	0.7	49.7	25.1	12.2	65.2
100 / \bar{x}	1.5	-	-	-	-	-	-	-	-	-

Table D. 1 continued

Run Code	P_{A}			Product Compositions (\%)						Sulphur Yield (\%)
	Flow	M. B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
55		99.1		0.0	6.5	3.1	56.3	23.7	10.3	68.4
		98.7		0.0	5.7	2.6	56.1	24.6	11.0	72.5
		100.2		0.0	5.3	2.7	56.4	24.6	10.9	73.1
		100.9		0.0	6.0	3.2	56.6	23.8	10.3	69.2
		97.0		0.0	8.1	3.6	56.1	22.6	9.5	61.8
	99.1	100.5		0.0	6.7	3.4	56.7	23.3	9.9	66.3
	96.2	100.6		0.0	5.2	2.7	56.5	24.6	11.0	73.4
Mean, $\overline{\mathrm{x}}$	97.7	99.6	98.7	0.0	6.2	3.0	56.4	23.9	10.4	69.2
100 / \bar{x}	2.1	1.4	-	0.0	16.2	12.7	0.4	3.2	5.6	6.1
57	$\begin{aligned} & 117.2 \\ & 120.6 \\ & \hline \end{aligned}$									
Mean, $\overline{\mathrm{x}}$	118.9	121.1	120.0	0.0	3.4	4.5	60.0	22.9	9.2	70.0
$100 \mathrm{\sigma} / \mathrm{x}$	2.0	-	-	-	-	-	-	-	-	-
74 A	$\begin{array}{\|l} 197.6 \\ 205.2 \\ \hline \end{array}$	$\begin{aligned} & 170.3 \\ & 160.1 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|l} 0.0 \\ 0.0 \\ \hline \end{array}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.6 \\ & 6.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 65.8 \\ 64.7 \\ \hline \end{array}$	$\begin{array}{r} 19.8 \\ 20.8 \\ \hline \end{array}$	$\begin{aligned} & 6.1 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 59.5 \\ 64.8 \\ \hline \end{array}$
Mean, $\overline{\mathrm{x}}$	201.4	165.2	183.3	0.0	0.7	7.2	65.3	20.3	6.6	62.2
$100 \mathrm{\sigma} / \mathrm{x}$	2.7	4.4	-	0.0	0.0	7.9	1.2	3.5	9.7	6.0

TABLE D. 2
EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT $900^{\circ} \mathrm{K}$ FOR VARIOUS P_{A}

Run Code	P_{A}			Product Compositions (\%)						Sulphur Yield (\%)
	F1ow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}		$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
83	-	-		2.1	96.8	-	-	-	1.1	2.1
	-	-		2.2	96.7	-	-	-	1.1	2.2
	-	-		2.1	96.9	-	-	-	1.0	2.1
	-	-		2.0	97.0	-	-	-	1.0	2.0
	-	-		1.9	97.2	-	-	-	0.9	1.9
	-	-		1.8	97.3	-	-	-	0.9	1.8
Mean, $\overline{\mathrm{x}}$	-	-	-	2.0	97.0	-	-	-	1.0	2.0
100 / $/ \mathrm{x}$	-	-	-	7.3	0.2	-	-	-	8.9	7.3
66	45.9	49.7		0.2	23.8	0.4	42.8	21.9	10.8	47.2
	43.0	46.6		0.2	26.0	0.4	41.6	21.3	10.5	44.3
	48.7	50.1		0.2	23.5	0.4	43.0	22.0	10.9	47.7
Mean, $\overline{\mathrm{x}}$	45.9	48.8	47.4	0.2	24.4	0.4	42.5	21.7	10.7	46.4
$100 \mathrm{~F} / \mathrm{x}$	5.1	3.9	-	0.0	5.6	0.0	1.8	1.7	1.9	4.0
52	70.6	71.1		0.1	13.5	1.4	50.0	23.8	11.3	60.2
	56.8	74.9		0.1	13.4	2.2	51.1	22.8	10.4	57.1
	64.8	70.2		0.1	14.9	1.9	49.9	22.7	10.5	55.4
Mean, $\overline{\mathrm{x}}$	64.1	72.1	68.1	0.1	13.9	1.8	. 50.3	23.1	10.7	57.6
$100 \mathrm{\sigma} / \mathrm{x}$	10.8	3.5	-	0.0	6.0	22.0	1.3	2.6	4.6	4.2
50	-	73.4		0.1	12.5	1.5	50.6	24.0	11.3	61.8
	-	77.9		0.1	11.0	1.6	51.7	24.2	11.3	64.2
Mean, $\overline{\mathrm{x}}$	-	75.7	-	0.1	11.8	1.6	51.2	24.1	11.3	63.0
$100 \sigma / \bar{x}$	-	4.2	-	0.0	9.0	4.6	1.5	0.6	0.0	2.7

Table D. 2 continued

Run Code	$\mathrm{P}_{\text {A }}$			Product Compositions (\%)						Sulphur Yield (\%)
	F1ow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
54		88.6		0.1	7.9	2.1	54.1	24.6	11.3	69.3
	95.7	86.5		0.1	9.5	2.6	53.8	23.5	10.5	63.5
	98.2	87.2		0.1	8.8	2.3	53.9	24.0	10.9	66.3
Mean, $\overline{\mathrm{x}}$	97.0	87.4	92.2	0.1	8.7	2.3	53.9	24.0	10.9	66.4
$100 \mathrm{~F} / \mathrm{x}$	1.8	1.2	-	0.0	9.2	10.8	0.3	2.3	3.7	4.4
57		123.1		0.0	4.1	5.1	60.4	22.0	8.4	64.8
		120.7		0.0	4.1	4.8	60.0	22.4	8.8	66.6
	117.2	123.5		0.0	3.8	5.0	60.4	22.2	8.6	66.1
	120.6	122.3		0.0	4.0	4.9	60.2	22.2	8.7	66.0
Mean, $\overline{\mathrm{x}}$	118.9	122.4	120.7	0.0	4.0	5.0	60.3	22.2	8.6	65.9
$100 \mathrm{\sigma} / \mathrm{x}$	2.0	1.0	-	0.0	3.5	2.6	0.3	0.7	2.0	1.2
93		130.3		0.0	3.6	5.6	61.4	21.4	7.9	63.3
	170.1	127.5		0.0	3.8	5.4	61.0	21.6	8.1	64.0
	170.1	126.2		0.0	3.7	5.2	60.8	21.9	8.3	65.1
	167.6	126.6		0.0	4.4	5.6	61.0	21.2	7.8	61.1
	167.6	125.4		0.0	4.3	5.5	60.8	21.4	8.0	61.9
Mean, $\overline{\mathrm{x}}$	168.9	127.2	148.1	0.0	4.0	5.5	61.0	21.5	8.0	63.1
$100 \mathrm{\sigma} / \mathrm{x}$	0.9	1.5	-	0.0	9.2	3.1	0.4	1.2	2.4	2.5
70	184.7									
	168.0	154.0		0.0	2.7	7.3	64.4	19.5	6.1	54.7
	168.0	164.5		0.0	3.1	8.4	65.6	18.1	4.8	45.7
Mean, $\overline{\mathrm{x}}$	173.6	159.3	166.5	0.0	2.9	7.9	65.0	18.8	5.5	50.2
$100 \mathrm{\sigma} / \mathrm{x}$	5.6	4.7	-	0.0	9.8	9.9	1.3	5.3	16.9	12.7

TABLE D. 3
EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT $1000^{\circ} \mathrm{K}$ FOR VARIOUS P_{A}

Run Code	$\mathrm{P}_{\text {A }}$			Product Compositions (\%)						Sulphur Yie1d(\%)
	F1ow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
83	-	-		5.1	92.3	-	-	-	2.6	5.3
	-	-		5.2	92.3	-	-	-	2.6	5.3
	-	-		5.2	92.1	-	-	-	2.6	5.4
	-	-		5.1	92.4	-	-	-	2.5	5.2
	-	-		5.0	92.4	-	-	- -	2.5	5.2
	-	-		5.2	92.3	-	-	-	2.6	5.3
Mean, $\overline{\mathrm{x}}$	-	-	-	5.1	92.3	-	-	-	2.6	5.3
$100 \% / \bar{x}$	-	-	-	1.6	0.1	-	-	-	2.0	1.4
63A	$\begin{aligned} & 49.7 \\ & 49.7 \end{aligned}$									
Mean, $\overline{\mathrm{x}}$	49.7	54.8	52.2	0.5	21.0	1.0	44.8	21.9	10.7	49.4
3.00 / $/ \mathrm{x}$	0.0	-	-	-	-	-	-	-	-	-
50	-	77.3		0.3	11.1	1.7	51.5	24.0	11.3	63.9
	-	71.9		0.3	12.9	1.4	50.2	23.9	11.4	61.3
	-	74.9		0.3	. 10.8	1.0	50.8	25.0	12.1	6.7 .4
	-	70.9		0.4	12.8	1.2	49.8	24.2	11.7	62.5
	-	70.6		0.4	12.8	1.1	49.7	24.3	11.8	62.9
Mean, $\overline{\mathrm{x}}$	-	73.1	-	0.3	12.1	1.3	50.4	24.3	11.7	63.6
$100 \mathrm{\sigma} / \mathrm{x}$	-	4.0	-	16.1	8.6	21.7	1.5	1.8	2.8	3.6
86		83.2		0.2	9.5	2.0	53.0	24.2	11.2	66.0
		83.6		0.2	9.1	1.9	53.0	24.4	11.4	67.3
		83.5		0.2	8.9	1.7	53.0	24.7	11.6	68.5
		85.5		0.1	8.4	1.8	53.4	24.8	11.5	69.2
	96.0	85.2		0.1	8.5	1.8	53.4	24.7	11.5	68.9
	96.0	85.8		0.1	8.0	1.7	52.5	25.1	11.7	70.9
Mean, $\overline{\mathrm{x}}$	96.0	84.5	90.3	0.2	8.7	1.8	53.2	24.7	11.5	68.5
$100 \mathrm{\sigma} / \mathrm{x}$	0.0	1.4	-	'36.5	6.2	6.4	0.5	1.3	1.5	2.5

Table D. 3 continued

Run Code	$\mathrm{P}_{\text {A }}$			Product Compositions (\%)						Sulphur Yield (\%)
	Flow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
79	96.9	106.6		0.1	6.1	4.0	57.8	22.7	9.4	65.0
	96.9	105.3		0.1	5.8	3.7	57.5	23.1	9.7	67.0
Mean, $\overline{\mathrm{x}}$	96.9	106.0	101.5	0.1	6.0	3.85	57.7	22.9	9.6	66.0
$100 \sigma / \bar{x}$	0.0	0.9	-	0.0	3.6	5.5	0.4	1.2	2.2	2.1
97		120.9		0.1	4.0	4.8	60.0	22.3	8.8	66.8
	123.8	118.3		0.0	3.8	4.4	59.5	23.0	9.3	69.6
	122.2	117.0		0.0	3.6	4.1	59.3	23.3	9.6	71.5
	120.7	120.4		0.0	3.1	4.3	59.8	23.3	9.5	71.9
Mean, \bar{x}	122.2	119.2	120.7	0.0	3.6	4.4	59.7	23.0	9.3	70.0
100 /x	1.3	1.5	-	200.0	10.7	6.7	0.5	2.1	3.8	3.3
93		132.4		0.3	2.7	5.5	61.5	21.8	8.3	66.9
	170.1	129.3		0.3	2.9	5.3	61.1	22.0	8.5	67.5
	170.1	137.8		0.3	3.1	6.2	62.3	20.7	7.4	61.2
	167.6	132.9		0.3	3.2	5.8	61.7	21.3	7.9	63.8
	167.6	128.7		0.2	3.0	5.2	61.0	22.0	8.5	67.5
Mean, $\overline{\mathrm{x}}$	168.9	132.2	150.6	0.3	3.0	5.6	61.5	21.6	8.1	65.4
$100 \sigma / \bar{x}$	0.9	2.7	-	16.0	3.4	7.3	0.8	2.6	5.8	4.3
74	-	152.0		0.1	1.4	6.6	63.9	20.8	7.2	64.3
	-	148.6		0.1	1.4	6.3	63.5	21.2	7.5	66.3
	-	158.4		0.1	1.5	7.1	64.6	20.1	6.5	60.2
	-	153.0		0.1	1.5	6.7	64.0	20.6	7.0	63.0
Mean, $\overline{\mathrm{x}}$	-	153.0	-	0.1	1.5	6.7	64.0	20.7	7.1	63.5
100 / \bar{x}	-	2.7	-	0.0	6.9	4.9	0.7	2.2	6.0	4.0
72	200.1									
	197.1	183.1		0.1	0.4	8.3	66.9	18.9	5.4	55.2
	197.1	178.2		0.1	0.3	8.0	66.4	19.4	5.8	58.1
Mean, $\overline{\mathrm{x}}$	198.1	180.7	189.4	0.1	0.4	8.2	66.7	19.2	5.6	56.7
$100 \sigma / \bar{x}$	0.9	1.9	-	0.0	20.2	2.6	0.5	1.8	5.1	3.6

TABLE D. 4
EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT $1100^{\circ} \mathrm{K}$ FOR VARIOUS P_{A}

Rur. Code	${ }^{\text {P }}$ A			Product Compositions (\%)						Sulphur Yield (\%)
	Flow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
83	-	-		9.8	85.3	-	-	-	4.9	10.3
	-	-		9.7	85.4	-	-	-	4.9	10.2
	-	-		9.5	85.7	-	-	-	4.8	10.0
	-	-		9.8	85.4	-	-	-	4.9	10.3
	-	-		9.6	85.7	-	-	-	4.8	10.0
Mean, $\overline{\mathrm{x}}$	-	-	-	9.7	85.5	-	-	-	4.9	10.1
$100 \mathrm{\sigma} / \mathrm{x}$	-	-	-	1.3	0.2	-	-	-	1.1	1.5
63A		53.8		0.9	19.8	0.2	44.2	23.1	11.9	54.3
		55.3		0.9	18.8	0.2	44.8	23.3	12.0	55.7
	49.7	57.7		0.8	17.8	0.4	45.6	23.4	11.9	56.7
	49.7	57.2		1.0	18.7	0.8	45.5	22.6	11.4	53.9
Mean, $\overline{\mathrm{x}}$	49.7	56.0	52.9	0.9	18.8	0.4	45.0	23.1	11.8	55.2
$100 \mathrm{\sigma} / \mathrm{x}$	0.0	3.2	-	9.1	4.4	7.1	1.5	1.5	2.3	2.3
48	70.9	78.1		1.1	10.1	1.8	51.5	23.8	11.6	66.0
	68.5	77.3		1.1	10.9	2.0	51.4	23.4	11.2	63.6
	74.4	78.5		1.1	9.9	1.7	51.6	24.1	11.7	66.9
Mean, $\overline{\mathrm{x}}$	71.3	78.0	74.7	1.1	10.3	1.8	51.5	23.8	11.5	65.5
$100 \sigma / \bar{x}$	4.2	0.8	-	0.0	5.1	8.3	0.2	1.5	2.3	2.6
46		101.2		1.4	4.4	3.1	56.3	23.7	11.0	74.6
		99.0		1.5	4.2	2.7	55.8	24.3	11.5	77.0
		100.3		0.6	4.1	2.4	56.2	25.1	11.6	78.1
	99.1	99.8		0.6	4.2	2.3	56.1	25.2	11.7	78.3
	99.9	99.8		0.6	4.2	2.4	56.1	25.1	11.6	77.9
Mean, $\overline{\mathrm{x}}$	99.5	100.0	99.8	0.9	4.2	2.6	56.1	24.7	11.5	77.2
$100 \mathrm{o} / \mathrm{x}$	0.6	0.8	-	49.7	2.6	12.7	0.3	2.7	2.4	2.0

Table D. 4 continued

TABLE D. 5
EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT $1200^{\circ} \mathrm{K}$ FOR VARIOUS P_{A}

Run Code	$\mathrm{P}_{\text {A }}$			Product Compositions (\%)						Su1phur Yield (\%)
	F1ow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
84	-	-		12.4	81.3	-	-	-	6.2	13.3
	-	-		13.0	80.5	-	-	-	6.5	13.9
	-	-		13.3	80.1	-	-	-	6.6	14.2
Mean, $\overline{\mathrm{x}}$	-	-	-	12.9	80.6	-	-	-	6.4	13.8
$100 \cdot \sigma / \bar{x}$	-	-	-	3.6	0.8	-	-	-	3.2	3.3
63		54.8		2.4	18.0	0.5	44.3	22.6	12.2	56.9
	47.3	54.7		2.4	18.2	0.5	44.2	22.5	12.2	56.7
	46.4	55.7		2.4	17.7	0.6	44.6	22.5	12.2	57.1
	44.9	51.1	.	2.7	19.8	0.4	42.8	22.1	12.2	54.8
Mean, $\overline{\mathrm{x}}$	46.2	54.1	50.2	2.5	18.4	0.5	44.0	22.4	12.2	56.4
100 / \bar{x}	2.6	3.8	-	6.1	5.1	16.3	1.8	1.0	0:0	1.9
48		78.0		2.4	8.3	1.5	51.1	24.1	12.5	71.9
		77.0		2.5	8.7	1.5	50.9	24.0	12.5	70.9
		76.4		2.6	9.5	1.9	50.8	23.3	12.0	68.0
	70.9	75.7		2.6	9.6	1.8	50.6	23.4	12.1	68.0
	68.5	76.6		2.1	8.8	1.3	50.8	24.3	12.6	71.3
	74.4	75.8		2.2	8.9	1.2	50.6	24.4	12.7	71.5
Mean, $\overline{\mathrm{x}}$	71.3	76.6	74.0	2.4	9.0	1.5	50.8	23.9	12.4	70.3
$100 \mathrm{~F} / \mathrm{x}$	4.2	1.1	-	8.7	5.5	17.8	0.4	1.9	2.3	2.5
46		97.6		1.7	5.0	3.0	55.6	23.5	11.1	73.5
		96.8		1.8	4.9	2.9	55.4	23.7	11.3	74.3
		97.3		1.9	4.7	2.9	55.5	23.7	11.3	74.9
	99.1	97.6		1.8	4.4	2.8	55.5	24.0	11.5	76.3
	99.9	96.2		1.8	4.5	2.6	55.2	24.2	11.7	76.9
Mean, $\overline{\mathrm{x}}$	99.5	97.1	98.3	1.8	4.7	2.8	55.4	- 23.8	11.4	75.2
100 / \bar{x}	0.6	0.6	-	3.9	5.4	5.3	0.3	1.2	2.0	1.9

Table D. 5 continued

Run Code	$\mathrm{P}_{\text {A }}$			Product Compositions (\%)						Sulphur Yield (\%)
	Flow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
58		120.8		0.3	2.0	3.9	59.7	23.2	10.2	77.4
		119.9		1.5	2.6	4.7	59.4	22.3	9.5	72.3
	123.9	117.4		0.5	2.7	3.9	59.2	23.6	10.1	75.4
	117.2	122.2		0.5	3.1	4.7	60.0	22.5	9.2	70.1
	123.9	121.9		0.5	3.0	4.6	59.9	22.7	9.3	71.0
Mean, $\overline{\mathrm{x}}$	121.7	120.4	121.1	0.7	2.7	4.4	59.6	22.9	9.7	73.2
$100 \mathrm{\sigma} / \mathrm{x}$	3.2	1.6	-	72.3	16.1	9.7	0.6	2.3	4.8	4.2
68		129.9		0.2	1.7	4.7	61.0	23.1	9.3	74.5
		126.9		0.2	1.4	4.2	60.5	23.8	9.9	77.8
	147.3	128.7		0.2	1.6	4.5	60.8	23.4	9.5	75.9
	141.1	126.1		0.2	1.5	4.2	60.4	23.8	9.9	77.5
Mean, \bar{x}	144.2	127.9	136.1	0.2	1.6	4.4	60.7	23.5	9.8	76.4
$100 \mathrm{\sigma} / \mathrm{x}$	3.0	1.3	-	0.0	8.3	5.6	0.5	1.4	3.1	2.0
72	201.1	152.5		0.2	0.6	6.3	63.8	21.4	7.7	69.0
	197.1	158.7		0.3	0.7	6.9	64.5	20.6	7.0	65.2
	197.1	157.8		0.3	0.7	6.8	64.4	20.7	7.1	65.5
Mean, $\overline{\mathrm{x}}$	198.1	156.3	177.2	0.3	0.7	6.7	64.2	20.9	7.3	66.6
100 / \bar{x}	0.9	2.1	-	21.7	8.7	4.8	0.6	2.1	5.2	3.2

TABLE D. 6
EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT $1300^{\circ} \mathrm{K}$ FOR VARIOUS P_{A}

Run Code	$\mathrm{P}_{\text {A }}$			Product Compositions (\%)						Sulphur Yield(\%)
	Flow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
84				18.5	72.3	-	-	-	9.2	20.4
	-	-		20.9	68.7	-	-	-	10.4	23.3
	-	-		20.5	69.3	-	-	-	10.2	22.8
	-	-		18.5	72.3	-	-	-	9.2	20.3
	-	-		19.2	71.2	-	-	-	9.6	21.3
Mean, $\overline{\mathrm{x}}$	-	-	-	19.5	70.8	-	-	-	9.7	21.6
$100 \mathrm{\sigma} / \overline{\mathrm{x}}$	-	-	-	5.8	2.4	-	-	-	5.7	6.4
63		55.5		3.1	16.2	0.2	44.3	23.1	13.0	61.2
		56.5		3.1	15.5	0.2	44.6	23.4	13.2	62.7
	47.3	50.6		3.9	18.8	0.4	42.4	21.8	12.7	57.1
	46.4	53.4		3.5	17.2	0.3	43.5	22.5	12.9	59.5
	44.9	51.9		3.9	17.8	0.3	42.9	22.2	12.9	58.7
Mean, $\overline{\mathrm{x}}$	46.2	53.6	49.9	3.5	17.1	0.3	43.5	22.6	12.9	59.8
$100 \sigma / \bar{x}$	2.6	4.6	-	11.4	7.6	29.9	2.1	2.9	1.4	3.6
48		73.5		2.8	8.8	1.0	49.8	24.5	13.1	72.9
		75.0		2.6	7.9	0.8	50.2	25.0	13.4	75.4
		76.6		3.4	7.2	1.2	50.5	24.4	13.3	76.0
	70.9	75.0		3.7	7.7	1.3	50.0	24.1	13.3	74.7
	68.5	73.2		4.2	8.4	1.4	49.5	23.4	13.1	72.7
	74.4	73.5		4.1	8.1	1.3	49.6	23.7	13.2	73.8
Mean, $\overline{\mathrm{x}}$	71.3	74.5	72.9	3.5	8.0	1.2	49.9	24.2	13.2	74.3
100 / \bar{x}	4.2	1.8	-	19.1	6.9	19.3	0.8	2.4	0.9	1.8
46	99.1	97.7		2.0	3.6	2.4.	55.4	24.5	12.1	80.0
	99.9	97.0		2.6	3.9	2.8	55.2	23.7	11.8	77.8
Mean, \bar{x}	99.5	97.4	98.5	2.3	3.8	2.6	55.3	24.1	12.0	78.9
$100 \sigma / \bar{x}$	0.6	0.5	-	18.4	5.7	10.9	0.3	2.3	1.8	2.0

Table D. 6 continued

Run Code	${ }^{\text {P }}$ A			Product Compositions (\%)						Sulphur Yield(\%)
	Flow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
58	123.9	120.1		0.6	2.1	4.0	59.5	23.7	10.2	77.1
	117.2	118.6		0.6	1.8	3.6	59.2	24.2	10.6	79.6
	123.9	118.0		0.7	2.0	3.7	59.1	24.0	10.5	78.7
Mean, $\overline{\mathrm{x}}$	121.7	118.9	120.3	0.6	2.0	3.8	59.3	24.0	10.4	78.5
$100 \mathrm{\sigma} / \mathrm{x}$	3.2	0.9	-	9.1	7.8	5.5	0.4	1.1	2.0	1.6
68		124.7		0.3	1.2	3.9	60.2	24.1	10.3	79.9
		124.3		0.3	1.2	3.9	60.1	24.2	10.3	80.1
	147.3	122.4		0.3	1.2	3.6	59.8	24.5	10.6	81.4
	141.1	127.0		0.3	1.5	4.3	60.5	23.5	9.8	77.0
Mean, $\overline{\mathrm{x}}$	144.2	124.6	134.4	0.3	1.3	3.9	60.2	24.1	10.3	79.6
$100 \mathrm{\sigma} / \overline{\mathrm{x}}$	3.0	1.5	-	0.0	11.8	7.3	0.5	1.7	3.2	2.3
91		136.1		0.5	0.7	4.9	61.7	23.0	9.3	76.8
		131.6		0.5	0.8	4.5	61.1	23.5	9.7	78.5
	173.0	139.0		0.5	0.9	5.3	62.1	22.4	8.8	74.0
	177.8	137.4		0.2	1.0	5.1	62.0	22.8	9.0	74.7
	163.3	134.5		0.2	1.0	4.8	61.6	23.2	9.3	76.3
Mean, $\overline{\mathrm{x}}$	171.4	135.7	153.6	0.4	0.9	4.9	61.7	23.0	9.2	76.1
$100 \mathrm{\sigma} / \mathrm{x}$	4.3	2.1	-	43.2	14.8	6.2	0.6	1.8	3.7	2.3
72	200.1	157.2		0.4	0.7	6.8	64.3	20.7	7.2	65.8
	197.1	163.6		0.4	0.7	7.3	65.0	20.0	6.5	61.9
	197.1	155.0		0.4	0.7	6.6	64.1	20.9	7.3	66.8
Mean, $\overline{\mathrm{x}}$	198.1	158.6	181.8	0.4	0.7	6.9	64.5	20.5	7.0	64.8
100 / $/ \mathrm{x}$	0.9	2.8	-	0.0	0.0	5.2	0.7	2.3	6.2	4.0

TABLE D. 7
EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT $1400^{\circ} \mathrm{K}$ FOR VARIOUS P_{A}

Run Code	$\mathrm{P}_{\text {A }}$			Product Compositions (\%)						Sulphur Yie1d (\%)
	Flow	M. B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
84	-	-		27.3	59.0	-	-	-	13.7	31.7
	-	-		27.0	59.5	-	-	-	13.5	31.2
	-	-		26.8	59.9	-	-	-	13.4	30.9
	-	-		26.0	61.0	-	-	-	13.0	29.8
	-	-		26.4	60.5	-	-	-	13.2	30.4
	-	-		26.6	60.1	-	-	-	13.3	30.7
Mean, $\overline{\mathrm{x}}$	-	-	-	26.7	60.0	-	-	-	13.4	30.8
$100 \mathrm{\sigma} / \mathrm{x}$	-	-	-	1.7	1.2	-	-	-	1.8	2.1
88A	46.4	67.2		4.6	8.4	0.3	47.6	24.7	14.5	76.9
	44.1	65.5		4.8	8.9	0.3	47.0	24.5	14.5	76.1
	45.2	65.9		4.8	8.6	0.2	47.1	24.6	14.6	76.7
	46.4	69.7		3.4	8.1	0.2	48.5	25.5	14.4	77.6
Mean, $\overline{\mathrm{x}}$	45.5	67.1	56.3	4.4	8.5	0.3	47.6	24.6	14.5	76.8
$100 \mathrm{\sigma} / \overline{\mathrm{x}}$	2.4	2.8	-	23.7	4.0	23.1	1.4	0.4	0.6	0.8
95		61.6		5.6	10.6	0.5	45.8	23.3	14.2	71.7
	52.2	62.0		5.5	10.4	0.5	45.9	23.4	14.2	72.3
	49.9	62.3		5.4	10.3	0.4	46.0	23.6	14.3	72.8
	54.1	65.8		4.1	9.6	0.3	47.3	24.5	14.1	74.0
	53.4	65.8		4.0	9.6	0.3	47.3	24.6	14.2	74.1
Mean, $\overline{\mathrm{x}}$	52.4	63.5	56.9	4.9	10.1	0.4	46.5	23.9	14.2	73.0
$100{ }^{\circ} / \bar{x}$	3.5	3.3	-	16.2	4.6	25.0	1.7	2.6	0.5	1.4
98		62.4		5.1	10.9	0.6	46.1	23.4	14.0	71.0
		62.7		5.1	10.6	0.5	46.2	23.5	14.0	71.6
		63.6		4.9	10.2	0.5	46.5	23.8	14.1	72.7
	50.3	69.1		4.1	8.7	0.7	48.3	24.3	13.9	74.6
	50.3	71.1		3.9	8.0	0.6	48.8	24.7	14.0	76.5
	48.7	70.1		4.1	7.8	0.5	48.5	24.9	14.3	77.5
	49.9	68.2		4.2	8.6	0.4	48.0	24.6	14.2	75.7
Mean, $\overline{\mathrm{x}}$	49.8	66.7	58.3	4.5	9.3	0.5	47.5	24.2	14.1	74.2
100 / $/ \mathrm{x}$	1.5	5.6	-	11.7	$13.8{ }^{\text {' }}$	18.0	2.5	2.5	1.0	3.4

Table D. 7 continued

Run Code	$\mathrm{P}_{\text {A }}$			Product Composition (\%)						Sulphur Yield(\%)
	Flow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
90A		77.3		3.5	5.6	0.6	50.4	25.5	14.2	82.0
		76.9		3.7	5.4	0.6	50.3	25.6	14.4	82.7
	75.1	78.7		3.1	5.6	0.7	50.9	25.7	14.0	81.6
	74.0	78.8		2.9	5.9	0.8	51.0	25.6	13.9	80.6
	69.9	78.5		3.0	5.7	0.7	50.8	25.7	14.0	81.5
	65.8	80.1		2.5	5.9	0.8	51.4	25.7	13.7	80.2
Mean, $\overline{\text { x }}$	71.2	78.4	74.8	3.1	5.7	0.7	50.8	25.7	14.0	81.4
100 / $/ \mathrm{x}$	6.0	1.5	-	13.8	3.4	12.8	0.8	0.2	1.7	1.1
88B	101.0	89.8		1.7	4.5	1.5	53.8	25.7	12.9	81.3
	98.0	95.0		2.2	3.3	2.0	54.7	25.1	12.7	82.7
	87.4	93.9		2.1	3.4	1.8	54.5	25.3	12.8	83.1
Mean, \bar{x}	95.5	92.9	94.2	2.0	3.7	1.8	54:3	25.4	12.8	82.4
$100 \sigma / \bar{x}$	7.5	2.9	-	13.2	17.8	14.2	0.9	1.2	0.8	1.1
81C	93.1	101.8		0.8	3.5	2.4	56.4	25.1	11.8	79.9
	93.1	100.1		1.2	3.5	2.4	56.0	25.0	11.9	80.3
	88.1	102.2		1.8	3.8	3.1	56.3	23.7	11.2	76.5
Mean, $\overline{\mathrm{x}}$	91.4	101.4	96.4	1.3	3.6	2.6	56.2	24.6	11.6	78.9
$100 \sigma / \bar{x}$	3.2	1.1	-	39.7	4.8	15.3	0.4	3.2	3.3	2.6
77		136.1		1.2	1.5	5.7	61.7	21.5	8.5	70.4
	115.7	132.7		1.1	1.4	5.3	61.2	22.0	8.9	72.8
	122.2	130.6		0.9	1.5	5.0	61.0	22.5	9.2	74.0
	120.6	128.2		0.8	1.3	4.6	60.6	23.0	9.6	76.3
Mean, x	119.5	131.9	125.7	1.0	1.4	5.2	61.1	22.0	9.1	73.4
$100 \mathrm{\sigma} / \overline{\mathrm{x}}$	2.8	2.5	-	18.3	6.7	9.0	0.7	2.3	5.1	3.4

Table D. 7 continued

Run Code	P_{A}			Product Compositions (\%)						Sulphur Yield(\%)
	Flow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
9.1	173.0	140.2		0.7	0.7	5.4	62.2	22.2	8.7	74.1
	177.8	137.4		0.7	0.8	5.2	61.9	22.4	9.0	74.8
	163.3	132.8		0.5	0.8	4.6	61.3	23.3	9.6	77.9
Mean, x	171.4	136.8	154.1	0.6	0.8	5.1	61.8	22.6	9.1	75.6
$100 \cdot / \bar{x}$	4.3	2.7	-	18.2	7.5	8.2	0.7	2.6	5.0	2.7
74	-	187.8		0.3	0.6	8.8	67.3	18.1	4.8	50.4
	-	201.9		0.4	0.6	9.7	68.4	17.0	3.9	42.7
	-	194.8		0.3	0.6	9.2	67.9	17.6	4.3	46.9
Mean, $\overline{\mathrm{x}}$	-	194.8	-	0.3	0.6	9.2	67.9	17.6	4.3	46.7
$100 \sigma / \bar{x}$		3.6	-	17.3	0.0	4.9	0.8	3.1	10.4	8.3

TABLE D. 8
EXPERIMENTAL RESULTS OF HYDROGEN SULPHIDE OXIDATION AT $1500^{\circ} \mathrm{K}$ FOR VARIOUS P_{A}

Run Code	$\mathrm{P}_{\text {A }}$			Product Compositions (\%)						Sulphur Yield(\%)
	Flow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
84	-	-		32.0	52.0	-	-	-	16.0	38.1
	-	-		31.7	52.4	-	-	-	15.9	37.7
	-	-		32.0	52.0	-	-	-	16.0	38.1
	-	-		32.6	51.1	-	-	-	16.3	38.9
	-	-		32.5	51.2	-	-	-	16.3	38.8
	-	-		32.6	51.1	-	-	-	16.3	39.0
Mean, $\overline{\mathrm{x}}$	-	-	-	32.2	51.6	-	-	-	16.1	38.4
100 / $/ \mathrm{x}$	-	-	-	1.2	1.1	-	-	-	1.2	1.4
88A		65.4		6.4	7.5	0.4	46.7	24.1	15.1	79.4
		67.6		6.0	6.5	0.2	47.3	24.7	15.2	81.9
	46.4	68.0		6.0	6.3	0.2	47.4	24.9	15.3	82.6
	44.1	66.2		6.5	7.0	0.4	46.8	24.2	15.2	80.5
	45.2	66.5		6.4	6.7	0.3	46.9	24.4	15.3	81.5
	46.4	64.8		7.1	6.7	0.2	46.3	24.1	15.5	81.7
Mean, $\overline{\mathrm{x}}$	45.5	66.4	56.0	6.4	6.8	0.3	46.9	24.4	15.3	81.3
100 / \bar{x}	2.4	1.9	-	6.3	6.2	34.7	0.9	1.4	0.9	1.4
95		62.1		6.0	9.7	0.4	45.8	23.5	14.6	74.2
		62.8		5.8	9.4	0.4	46.1	23.7	14.6	74.8
	52.2	63.4		5.8	9.1	0.4	46.2	23.8	14.7	75.6
	49.9	63.7		5.7	9.2	0.4	46.3	23.8	14.5	75.0
	45.1	64.9		5.4	8.8	0.4	46.8	24.1	14.5	75.9
	53.4	65.2		5.4	8.5	0.3	46.8	24.2	14.7	76.8
Mean, $\overline{\mathrm{x}}$	50.2	63.7	57.0	5.7	9.1	0.4	46.3	23.9	14.6	75.4
100 / $/ \mathrm{x}$	7.3	1.9	-	4.2	0.9	10.6	0.9	1.1	0.6	1.2

Table D. 8 continued

Run Code	P_{A}			Product Compositions (\%)						Sulphur Yie1d(\%)
	F1ow	M. B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
98		62.8		6.7	9.0	0.6	45.9	23.2	14.7	75.4
		63.2		6.5	8.7	0.5	46.0	23.4	14.7	76.1
	50.3	63.8		6.4	8.5	0.5	46.2	23.7	14.8	76.8
	50.3	67.2		6.1	7.8	0.8	47.3	23.6	14.5	77.2
	48.7	67.0		6.0	7.8	0.7	47.3	23.7	14.5	77.4
	49.9	67.3		6.0	7.6	0.7	47.3	23.9	14.6	77.9
Mean, $\overline{\mathrm{x}}$	49.8	65.2	57.5	6.3	8.2	0.6	46.7	23.6	14.6	76.8
$100 \sigma / \bar{x}$	1.5	3.3	-	4.7	7.0	19.1	1.5	1.1	0.8	1.2
90		80.1		3.9	4.3	0.7	51.0	25.7	14.4	85.3
		79.7		3.9	4.3	0.6	50.9	25.8	14.5	85.5
		78.3		4.2	4.6	0.7	50.5	25.5	14.5	84.5
		80.8		4.2	3.7	0.7	51.1	25.7	14.6	86.6
		80.6		4.2	3.3	0.5	51.0	26.1	14.9	88.5
		83.5		2.7	4.4	0.8	52.1	26.0	13.9	84.1
	75.1	81.9		3.1	4.4	0.8	51.6	25.9	14.2	84.5
	74.0	80.6		3.4	4.8	0.8	51.3	25.7	14.1	83.3
	69.9	83.5		3.4	3.9	0.9	51.9	25.8	14.2	85.6
	65.8	83.2		3.4	3.4	0.6	51.7	26.3	14.5	87.9
Mean, $\overline{\mathrm{x}}$	71.2	81.2	76.2	3.6	4.1	0.7	51.3	25.9	14.4	85.6
$100 \mathrm{\sigma} / \overline{\mathrm{x}}$	6.0	2.2	-	14.3	12.4	16.9	1.0	0.9	2.0	1.9
81	93.1	103.6		1.6	2.8	2.7	56.5	24.6	11.7	80.8
	93.1	105.8		1.3	1.6	2.3	56.8	25.6	12.4	86.5
	88.1	104.6		1.2	1.3	1.9	56.6	26.3	12.8	88.7
Mean, $\overline{\mathrm{x}}$	91.4	104.7	98.1	1.4	1.9	2.3	56.6	25.5	12.3	85.3
$100 \mathrm{\sigma} / \overline{\mathrm{x}}$	3.2	1.1	-	15.2	41.8	17.4	0.3	3.4	4.5	4.8
77		136.9		1.2	1.1	5.6	61.8	21.7	8.7	72.2
	115.7	134.2		1.2	1.0	5.3	61.4	22.0	9.0	74.0
	122.2	134.1		1.3	0.9	5.3	61.3	22.0	9.0	74.4
	120.6	130.4		1.3	0.9	4.9	60.8	22.6	9.5	76.7
Mean, $\overline{\mathrm{x}}$	119.5	133.9	126.7	1.3	1.0	5.3	61.3	22.1	9.1	74.3
100 \%/Ex	2.8	2.0	-	4.6	9.8	5.4	0.7	1.7	3.7	2.5

Table D. 8 continued

Run Code	P_{A}			Product Compositions (\%)						Sulphur Yield (\%)
	F1ow	M.B.	Avg.	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	N_{2}	$\mathrm{H}_{2} \mathrm{O}$	S_{2}	
91		150.8		0.8	0.9	6.5	63.5	20.7	7.5	67.1
	173.0	139.8		0.8	0.7	5.5	62.2	22.1	8.7	73.7
	177.8	154.4		0.8	0.9	6.9	64.0	20.3	7.2	64.9
	163.3	141.8		0.8	0.8	5.7	62.4	21.9	8.5	72.4
Mean, $\overline{\mathrm{x}}$	171.4	146.7	159.1	0.8	0.8	6.2	63.0	21.3	8.0	69.5
$100 \sigma / \bar{x}$	4.3	4.8	-	0.0	11.6	10.7	1.4	4.2	9.2	6.0
74A		178.4		0.2	0.6	8.1	66.5	19.1	5.6	56.1
		170.6		0.2	0.5	7.6	65.7	19.8	6.2	60.3
		179.0		0.4	0.6	8.3	66.5	18.8	5.5	55.2
		173.5		0.4	0.6	7.9	66.0	19.2	5.9	58.0
		184.5		0.5	0.6	8.7	67.0	18.2	5.0	51.9
		177.1		0.5	0.6	8.2	66.3	18.8	5.5	55.5
Mean, $\overline{\mathrm{x}}$	-	177.2	-	0.4	0.6	8.1	66.3	19.0	5.6	56.2
$100 \sigma / \bar{x}$	-	2.7	-	37.3	7.0	4.6	0.7	2.8	7.2	5.0

APPENDIX E
COMPUTER PROGRAMS

1

TABLE E. 1
$\mathrm{H}_{2} \mathrm{~S}$ DISSOCIATION
\$CREATE S23
\$GET S23
\$HIMBER
\$ 5 COMPILE TIME=500
COMPTTER PROGRAMME 1
CLAUS COMBTSTION CHAMBER EQUILIBRIA TITH 23 SPECIES CONTAINING C, H, N AND S DOUBLE PRECISION CPD MEAL NSERP, N2EX, NSD, NS. N, NSNSD DIMENSIOM CPD $(25), \mathrm{P}(25,20), \mathrm{C}(25,20)$, $\operatorname{NCV}(20)$ DAFA NCPD/23/. ND/24/, NCPDP2/25/, NSNSD/1.0/, CSCSD/1.0/
READ (5.100) (CPD (NC), NC=1,NCPDP2) *DATA A* READ (5, 101) PERT, NSERR, HSFRR, CSERR, N2EX, H2SEX, S2EX, CH4EX *DATA B* READ $(5,102)((C(N C, N T), N C=1, N C P D)$, NT=6,20) *DATA C* READ (5,103) NITERS, LOHT, KAOT, NEEEDS, NH3BYP, KART *DATA 11 NTEMP $=$ KAOT - LOHT +1 LOMTPT=LOWT+7 LOHTP9=LO日T+8 IF (NTEMD. LT. 9) LOWTPT=KAOT CALL TRAPS $(0,0,9000)$ URITP (6.104) NITERS, PERR. N2EX, LOHT, NSERE, H2SEX.
1 KAOT, HSERR, S2EX, NPERDS, CSERR, CH4EX, NH3BYP
COMPITRR DOES NOT PRINT. EQUILIBRIDM CONSTANTS IFGVRT .EQ. O
IP (KVRT - DQ. 0) GO TO 3

$$
\text { HRITE }(6,105)
$$ WRITE (6.106) (KT, KT=6,13) DO $1 \mathrm{NC}=1, \mathrm{NCPD}$

1 GRITE $(6,107)$ NC, $C P D(N C),(C(N C, N T), N T=6,13)$ GRITE $(6,108)$ WRITE (6, 106) (KT, KT=14,20) DO $2 \mathrm{NC}=1, \mathrm{NCPD}$
2 KRITE $(6,107) \mathrm{NC} ,\mathrm{CPD}(N C),(C(N C, N T), N T=14,20)$
COMPOSITION OF THRSE ARE GURSSRD: N2 2 H 2 S S2 CH4
3: IF (NHABYP - EQ- O) READ (5, 109) (P(2,NT), P(5,NT), P(10,NT),P(19,NT) EDATA $2 Q$ 1 - MAO, NT=LOKT, KAOT)
COMMENCE CH4 AND NH3 ITERATIONS
DC 9 I=1, NPERDS
READ $(5,101)$ POTMH3, PCTCH4 $\quad \therefore \quad \therefore \quad$ *DATA 32 BRITE(2, 101) PCTNH3, PCTCH4 NRITE **
 1 , HAO, NT=LOHT, KAOT)
COMPOSITION OP INITIAL MIXTURE IS FOUND--BASED ON PCTNH3 MOIES OF NH3, ET CETRAA AH2S $=100.0-$ PCTNH $3-$ PCTCH 4
CALCULATE DESIRED RATIOS
$N S D=\mathrm{PCTNH} 3 / \mathrm{AH} 2 S$
HSD $=(2.0 * A H 2 S+3.0 * P C T N H 3+4.0 * P C T C H 4) / A H 2 S$
$\operatorname{CSD}=\operatorname{PCTCH4/AR2S}$
COMMENCE TEMPERATURE ITPRATIONS
DO $8 \mathrm{NT}=\mathrm{LOWT}$,KAOT
COMMENCE ITERATIONS TO OBTAIN CONVERGENCE AT GIVEN NH $3+C H 4$ AND TEMPERATURE
DO $7 \mathrm{NI}=1$, NITERS
$\mathrm{S} 2=\mathrm{P}(10, N T)$
S5=52**0.5
$\mathrm{N} 5=\mathrm{P}(2, \mathrm{NT}) \neq * 0.5$
$\mathrm{H} 2=\mathrm{P}(5, \mathrm{NT}) / \mathrm{C}(5, \mathrm{NT}) / \mathrm{S} 5$
H5 = H2**0.5
$P(1, N T)=C(1, N T) * N S * H 2 * * 1.5$
$P(3, N T)=C(3, N T) * H S$

COMPUTP TOTAL MOLES NITROGEN (N) HYDROGEN (H), SULPHISR (S) AND CARBON (CC)
$N=P(1, N T)+2.0 * P(2, N T)+P(8, N T)+P(17, N T)+2.0 * P(18, N T)$
$H=3.0 * P(1, N T)+P(3, N T)+2.0 *(P(4, N T)+P(5, N T)+P(6, N T))+P(7, N T)+$
${ }^{1 .} \mathrm{SL} 5(17 . N T)+4.0 * P(19, N T)+2.0 * P(20, N T)+4.0 * P(21, N T)$

$1 \quad 5.0 * P(13 . N T)+6.0 * P(14, N T)+7.0 * P(15, N T)+8.0 * P(16, N T)$
$\mathrm{S}=\mathrm{SLOST}+$ SRPCOV
$C C=P(17, N T)+2.0 * P(18, N T)+P(19, N T)+2.0 * P(20, N T)+$
$12.0 * P(21, N T)+P(22, N T)+P(23, N T)$
COMPUTE TOTAL PRESSUBE
$P(N D, N T)=0.0$
DO $6 \mathrm{NC}=1$, NCPD
$6 \quad P(N P, N T)=P(N P, N T)+P(N C, N T)$
PTPTD=P(NP,NT)
IF (NSD.GT. 1.0E-06) NSNSD $=\mathrm{N} / \mathrm{S} / \mathrm{NSD}$
IF (CSD . GT. 1.0E-06) CSCSD=CC/S/CSD
HSHSD $=\mathrm{H} / \mathrm{S} / \mathrm{HSD}$
$\operatorname{NCV}(N T)=N I$
IF (ABS (DTPTD-1.0) •CT. PRRR) GO TO 61
IF (ABS (NSNSD-1.0) .GT. NSERR) GO TO 61
IF (ABS (ASHSD-1.0) -GT- HSERR) GO TO 61
IF (ABS (CSCSD-1.0) -GT. CSERR) GO TO 61
GO TO 75
COMPUTE NPW N 2 , H2S, S2 AND CH4

CALCULATE PERCENT RECOVERY
$8 \quad \mathrm{P}(\mathrm{NCPDP2.NT)}=\operatorname{SaECOV} / \mathrm{S} * 100.0$
日GIME $(6,110)$ AT2S. PCTNH3. PCTCH4
GRITE (6.106) (RT, KT=LOHT, LOHTP7)
DO $83 \mathrm{NC}=1$, NCPDP 2
83 RRITE $(6,107) \mathrm{NC} ,\mathrm{CPD}(N C)$, (P(NC,NT), NT= LOHT,LOYTP7)
HRITE $(6,111)(N C V(N T), N T=L O N T, ~ L O R T P 7)$
COMPUTPR HPITES OUTPUT IN THO SECTIONS IF NTEMP IS GREATER THAN 8
IF (NTEMP.LT. 9) GO TO 9
日RITF $(6,108)$

```
RRITE (6,106) (KT, KT=LOHTP8,KAOT)
DO }85\mathrm{ NC=1,NCPDP2
85 WRITE (6,1.07) NC, CPD(NC), (P(NC,NT), NT= LOTTP8,NAOT)
9 FRITE (6,111) (NCV (NT), NT=LOHTP8,KAOT)
MRITE (6,105)
STOP
100 FORMAT (10A8)
101 PORMAT (10P8.0)
102 PORMAT (1P4E20.8)
103 FORMAT (6I5)
104 FORMAT(: NITERS=', I5.
1 F7.3/, LOWT =', I3.'00%, 15X, 'NSERR =',
    2 P7.3/, HIGHT =', [3,.00', 15X, 'HSERR=', F10.3, 13X, ' S2PX =',
    3.F7.3/ NPZEDS=', I5, 15X, 'CSERR=', P10.3, 13X, 'CH4EX = ',
    4 P7.3/ ' #H3BYP=1. I5)
405 FORGAT ('IEQOILIERIOM CONSTANTS FOR THE PORMATION OF COMPONNDS'/N
106 FORMAT (' COMPOIND'. 8{I11, '00 K'))
107 FORMAT (14, I2, 1X, A8, (1P3:15.5))
108 FOQMAT (//)
109. PORMAT (1PE15.7, 15X, 3E15.7, T5)
110 FORMAT (1&1, 10X, 'RQUILIBRIUM PARTIAL PRESSORES IN ATMOSPGERES ''
    10OR 23 COMDOUNDS PRODUCED FROM HYDROGEN SDLPHIDE DISSOCIATION'/37X
    2.'THE ACID GAS PEED CONTAINS',F6.1, % H2S,',
    3 F5.1, %NG3 AND',F5.1, % CH4'/)
111 FORMAT (1R,' ITERATIONS', 4X, I4, 7(11X, I4))
    END
```



```
IONNDMBER
SCREATE D23
\$GET D23
\$NUMBER
```

4. $16273800 \mathrm{E}-02$
1.78501300p 05
5. $57305100 \mathrm{P}-16$
1.25130300F 05
2.64267600E-11
1.03633300 E 09
1.00000000 P 00
1.56400000 E 03
1.00000000 E 00
6. 38653200 E 04
$4.44312400 \mathrm{E}-05$
2.88050800E-09
2.87781400E-12 4.03865700E-05 $3.000519000-01$ 1.50721600 R 02 1.00000000 E 00 1.246829005 07 3. 16529400p-12 1.27101000E-11
6.26114600E-02
$3.90628200 \mathrm{E}-01$
7. $91374000 \mathrm{E}-13$

$4.58864600 \mathrm{E}-17$
$7.30341100 \mathrm{E}-07$
$4.92304500 \mathrm{E} \quad 00$
1.82596800 E 09
1.00000000 E 00
$8.74355700 \mathrm{E}-10$
$2.59746400 \mathrm{~F}-16$
$6.22555600 \mathrm{E}-15$
5.17212600 E 00
1.63128500 E 06
$6.48061300 \mathrm{E}-17$
$2.99851500 \mathrm{E}-03$
$2.10270800 \mathrm{E} \quad 03$
$8.15645600 \mathrm{E}-12$
5.63423700 E 00
$2.19395100 \mathrm{E}-05$
$1.13982800 \mathrm{E} \quad 05$
1.0000000 E 00
1.85200000 E 01
1.00000000 E 00
$7.71857600 \mathrm{E}-01$
$2.38960500 \mathrm{E}-04$
$4.43958800 \mathrm{E}-05$
$2.31682100 \mathrm{E}-19$
2.06227600 召-17
1.46199700002
1.57758500 P 11
$5.40597400 \mathrm{E}-20$
$9.38238900 \mathrm{R}-03$
$1.42215700=04$
$7.74272100 \mathrm{E}-14$
4.02831500 E 02
$6.16598200 \mathrm{E}-08$
5.87138900 E 06
1.00000000 E 00
1.31000000 O 2
1.00000000 E 00
6.94609900 E 01
$1.13674900 \mathrm{E}-04$
$6.45076500 \mathrm{E}-07$
8. $16,110300 \mathrm{R}-10$
9. $53286100 \mathrm{E}-04$
10. $18734700 \mathrm{E}-01$
11. $10412900 \mathrm{E}-01$
1.00000000 E 00
6.57708100 E 05
12. $84712900 \mathrm{E}-04$
1.41555600E 02
13. $61691800 \mathrm{E}-09$
$1.53069000 \mathrm{E}-02$
14. $97550500 \mathrm{E}-02$
4.39243800 E 02
1.00000000E 00
1.10400000 P 00
1.0 .000000 E 00
1.21213700E-03
7.21415700E-04
2.151412000-02
1.96115700E-07
"2. 19801600E-03
1.88379500E-02
$1.90636900 \mathrm{E}-05$
1.00000000 E 00
1.83.389400E 03
$8.60745700 \mathrm{P}-08$
$4.72730500 \mathrm{P}-08$
$5.89338800 \mathrm{E}-04$
$4.16356500 \mathrm{R}-08$
1.86826400E-08
8.62130100E-05
6.32032100 E 00
$1.01252800 \mathrm{P}-05$
$2.08943200 \mathrm{E}-05$
1.34426800e 03
15. $36714700 \mathrm{E}-01$
1.00000000 P 00
$3.73900000 \mathrm{E}-02$
1.00000000 00
$6.45227700 \mathrm{E}-07$
$2.83190900 \mathrm{P}-03$
3.65025000 E 01
$5.40765600 \mathrm{E}-05$
$1.61594300 \mathrm{E}-02$
$4.82209000 \mathrm{E}-03$
$9.22392400 \mathrm{E}-09$
1.00000000 00
2.43445500E 01
$1.99948800 \mathrm{e}-05$
3.70657000E-06
$5.32818600 \mathrm{P}-05$
1.12903000R-11
$3.73411600 \mathrm{R}-06$
$2.96152100 \mathrm{~F}-0.5$
1.12271400 ? 00
$6.65079300 \mathrm{E}-04$
6.05226300B-07
2.84605000 E 05
16. $11724100 \mathrm{E}-02$ 1.00000000 e 00 5.25599900p-03 1.00000000 E 00
$9.74672000 \mathrm{E}-09$
$6.38268500 \mathrm{E}-03$
2.63662100 E 03
1.00000000 E 00
3.91100000 F 00
1.00000000R 00
17. $18161900 \mathrm{P}-02$
$4.37130600 \mathrm{P}-04$
1.32536000E-03
2.568819002-08
$1.06481900 \mathrm{E}-03$
18. 10563500E-02
$3.26183000 \mathrm{E}-04$
1.00000000 E 00
9.25999600 E 03
1.26010700p-08
$1.01108800 \mathrm{E}-08$
1.39937200E-03
19. $11406700 \mathrm{P}-07$
2.83966200E-09
$1.24846200 \mathrm{P}-04$
1.150076008 01
20. $38648400 \mathrm{E}-06$
21. 29714500E-05
2.10397500E 02
2.52053100E 00
1.00000000 E 00
22. $27099700 \mathrm{R}-02$
1.00000000R 00
23. 768259 noE-06
2.15667600e-03
8.47486500 E 00
1.75079000E-05
1.084839008-02
24. $32162300 \mathrm{E}-03$
$4.13955800 \mathrm{E}-08$
1.00000000 P 00
5.78416100 E 01
6.59149000E-06
1.52723800p-06
8.63344600R-05
25. $84685300 \mathrm{E}-11$
26. 27535800e-06
3.68588900e-05
1.60064600e 00
27. $80634900 \mathrm{E}-04$
28. $24190400 \mathrm{E}-06$
9.47120000 E 04
29. $39101600 \mathrm{E}-02$
1.00000000 E 00
30. $92200100 \mathrm{E}-03$
1.00000000 E 00
31. $30081400 \mathrm{E}-08$
5.381450008-03
1.08467600e 03
32. $89743100 \mathrm{E}-04$
$4.16016900 \mathrm{E}-02$
33. $55151600 \mathrm{E}-03$
34. $82178900 \mathrm{E}-10$
1.00000000 E 00
3.17278200 E 00
$2.25432400 \mathrm{E}-09$
$4.45121400 \mathrm{E}-04$
$5.67152600 \mathrm{E}-02$
1.01790800E-02
1.00000000 E 00
6.28695100 E 04
$1.30559800 \mathrm{R}-09$
$1.63446700 \mathrm{e}-09$
$3.91529500 \mathrm{E}-03$
2.79277100 -05
$3.05872600 \mathrm{E}-10$
1.92058500 E-04
2.31327900 E 01
35. $43379500 \mathrm{e}-07$
$3.17781900 \mathrm{R}-04$
36. 42555200 E 01
1.05857200 P 01
1.00000000 E OO
1.56599800E-01
1.00000000 E 00
$1.51032800 \mathrm{E}-05$
$1.57869000 \mathrm{E}-03$
1.57050100 E 00
37. $835330008-06$
$6.87248200 \mathrm{E}-03$
$8.62468700 \mathrm{E}-03$
$2.34229200 \mathrm{E}-07$
1.00000000 E 00
1.55905300 E 02
$1.87912600 \mathrm{E}-06$
$5.59675000 \mathrm{E}-07$
1.49753900 P-04
3.84822800:-10
3.76196200p-07
$4.72354100 \mathrm{E}-05$
2.38998600 E 00
$1.06376100 \mathrm{E}-04$
2.80760000 ᄅ-06
2.73654800E 04
$9.99176500 \mathrm{E}-02$
1.00000000 E 00
38. $24999900 \mathrm{E}-02$
1.00000000 E 00
6.06850000E-08
$4.45109600 \mathrm{E}-03$
4.00998700 E 02
3.56426600E-04
3.14476600r-02 $3.07367000 \mathrm{E}-03$
$7.83902900 \mathrm{E}-10$
$1.00000000 E 00$
$5.79164400 \mathrm{~F} \quad 00$
1.29837900E-04
$1.65051300 \mathrm{E}-05$
39. $38312300 \mathrm{E}-05$
$7.30105300 \mathrm{E}-13$
40. $28135300 \mathrm{E}-05$
$2.04416400 \mathrm{E}-05$
$8.65231900 \mathrm{E}-11$
$1.83516200 \mathrm{P}-10$
1.35688700E-02
2.00244200:-03
41. $10570300 \mathrm{E}-11$
3.19231300E-04
42. 2761.3000 ロ 01
6.07971600R-08
$1.83477600 \mathrm{E}-03$
1.89487100 Z 00
5.76318900? 01
1.00000000 E 00
43. $8.3400000 \mathrm{E}-01$
1.00000000 O 00
$1.11551600 \mathrm{e}-04$
44. $10118900: 3-03$
45. 19842000 R-01
1.09984900E-06
$4.06003303 \mathrm{E}-03$
1.23598900ロ-02
$1.76513000 \mathrm{E}-06$
1.00000000 P 00
4.91373200 E 02
$4.48429300 \mathrm{E}-07$
46. $77570400 \mathrm{E}-07$
$2.82240300 \mathrm{E}-04$
3.34629700 E-09
47. $35100900 \mathrm{e}-08$
48. $24345200 \mathrm{E}-05$
3.76198000 E 00
49. $54778000 \mathrm{E}-05$
50. 13309500 $2-06$
6.71846000 E 03
51. $53619600 \mathrm{~F}-01$
1.00000000 E 00
2.08900000:-02
1.00000000 E 00
$1.92704100 \mathrm{z}-07$
52. $59749300 \mathrm{R}-03$
53. 30373900 E 02
$1.46619000 \mathrm{E}-04$
54. $29317800 \mathrm{P}-02$
$3.80083100 \mathrm{E}-03$
$2.48527700 \mathrm{E}-09$
1.00000000 E 00
55. 13679500 E 01
$5.36322600 \mathrm{E}-05$
$8.15407300 \mathrm{E}-06$
3.47974700:-05
56. $65039300 \mathrm{E}-12$
9.70020200 E-06
2.43559900 E-05
57. $16794200 \mathrm{E}-01$
$1.44046000 \mathrm{P}-03$
58. $19916500 \mathrm{E}-07$
7.61286800 E 05
59. $10294100 \mathrm{E}-02$
1.00000000 E 00
60. $61847700 \mathrm{E}-03$
61. $35426500 \mathrm{E}-02$
2.15615000E-03
1.13572900E-10
1.00000000 E 00
1.84918400E 00 SUNNTMBER
$2.87799600 \mathrm{E}-04$
$3.11499600 \mathrm{E}-05$
1.69909300e-05
62. $31928600 \mathrm{E}-13$
4.91821800e-05
$6.14210000 \mathrm{E}-01$
$2.89144900 \mathrm{E}-03$
$1.81146500 \mathrm{E}-07$
1.84275100 E 06
6.13585800E-03
63. $64600000 \mathrm{E}-03$ 1.00000000 E 00 $4.53513400 \mathrm{E}-09$
$7.44399000 \mathrm{E}-03$ 5.85400700 E 03

TABLE E． 2
$\mathrm{H}_{2} \mathrm{~S}$ OXIDATION
\＄CREATE S 36
\＄GET S36
SNTMBER
$\$ 3$ COMPILP TIME $=500$
COMPUTER PROGRAMAE 14
二LAIS CGEBOSTION CHAMBER EQOILIRPIA GITA 36 SPECIES INCLUDING CARBON SPECTES DOUBLE PRECISION CPD
BRAL NS，N，NO，NONOD，NOFRRR， $\mathbb{R} 2, N 2 E X$, NOD DIMENSTON CPD（38）， $\mathrm{P}(38,20), \mathrm{C}\{38,20\}, \operatorname{NCT}(20)$
DATA NCPD／36／，NP／37／，NCPDP2／38／，CSCSD／1．／．NONOD／1．／．R／1．0E10／

```
        READ (5,100) (CPD(NC), NC=1,NCPDP2)
```

 READ \((5,101)\) PRRR, NOERR, HSERR, HOERE, CSERR, N2PX, G2OEX, H2SEX, *DATA B*
 1 S2EX, CO2EX
 READ. (5,102) ((C(NC,NT), NC=1,NCPD), NT=6,20) \&DRIA C*
 READ (5,103) NITERS, LOMT, KAOT, NEEEDS, IARBYP, KMRT *DATA 11
 NTRMD = KAOT - LORT +1
 LOWTPT \(=\) LOHT + ?
 LOATP8=LORT+8
 IF (NTEMP. LT. 9) LOGTP8=IOKT
 CALI TEADS \((0,0,9000)\)
 HRITE \((6,104)\) NITERS, PERE, N2EX, LOQT, NOERR, H2OEX,
 1 KAOT, HSERR, H2SEX, NFEEDS, HORRR, S2EX, IARBYP, CSERR, CO2EX
 COMPOTER DOES NOT PRINT EQUIIIBRIUM CONSTANTS IF KHRT. EQ. 0
 If (K日RT. EQ. O) GO TO 3
 HEITR \((6,105)(K T, K T=6,13)\)
 DO \(1 \mathrm{NC}=1\), NCPD
 1 WRTTE \((6,106)\) NC, \(\operatorname{CPD}(N C),(C(N C, N T), N T=6,13)\)
 HRITE \((6,105)\) (KT, KT=14,20)
 DO \(2 \mathrm{NC}=1\), NCPD
 2 WRITE \((6,106) \mathrm{HC}, \mathrm{CPD}(\mathrm{NC}),(\mathrm{C}(\mathrm{MC}, \mathrm{NT}), ~ \triangle T=14,20)\)
 3 IF (IARBYP - EQ. O) READ (5, 107) (P(3,NT), P(9,NT), P(10,NT), \#DATA 20
 \(1 \mathrm{P}(19, \mathrm{NT}), \mathrm{Q}(34, N T)\), MAO, NT=LOMT,KAOT
 COMMENCE NH3 AND CH4 ITERATIONS
 DO \(9 \mathrm{I}=1\), NPEEDS
 READ (5, 101) PCTAIR, PこTNH3, PCTR20, PCTCH4, PCTCO2 *DATA 32
 URITE(4, 101) PCTAIR, PCTNH3, PCTH20, PCTCH4, PCTCO2 , RRITE **
 IF (PCTAIR -GT. 1.0Z-06) \(R=200.0 / P C T A I R \quad\) S2, CO2, IS GURSSED

1 O(19,NT), $\quad(34, N T), M A O, N T=L O H T, K A O T)$
COMPOSITION OF INITIAL MIXTURE IS POUND--BASED ON PCTCH 4 MOLRS OP CH4, ET CETERA
AH2S $=100.0-$ PCTNH3-PCTH20-PCTCH4 - PCTCO2
AO2 $=0.005 *$ AH $25 *$ PCTAIR $+0.75 *$ PCTNH3 + $2.0 *$ PCTCRA
AN2 $=3.76 *$ AO2
ATOTAL $=100.0+$ AO2 + AN2
PN2 $=$ AN2/ATOTAL
PO2 $=$ AO2/ATOTAL
PH2S = AH2S/ATOTAL
PNH $3=$ PCTNH3/ATOTAL
PH2O=PCTH20/ATOTAL
PCH $4=$ PCTCH4/ATOTAL
PCO2=PCTCO2/ATOTAL
CALCILATE DESIRED RATIOS
$O X Y=2.0 * P O 2+\mathrm{PH} 20+2.0 * \mathrm{PCO} 2$
$\mathrm{HOD}=(2.04 \mathrm{PN} 2+\mathrm{PNH} 3) / O X I$
SOD $=\mathrm{PH} 2 \mathrm{~S} / \mathrm{OXY}$
CSD $=(P C H 4+\mathrm{PCO}) / \mathrm{PG} 2 S$
HSD $=(2.0 * P R 2 S+3.0 * P N H 3+2.0 * P H 20+4.0 * P C H 4) /$ PH2S

```
COMMPNCF TEMPERATURE ITERATIONS
    DO 8 NT=LORT,KAOT
COMMENCE ITERATIONS TD OBTAIN CONVEGGENCE AT GIVEN AIR AND TEMPERATORE
    DO 7 NI=1,NYTERS
    N2= P(3,NT)
    * 5=N2**0.5
    S2=P(19,NT)
    S5=S2**0.5
    O2 = (C (5,NT) * P (9,NT) *S5 / P(10,NT))**2
    05=02**0.5
    H2 = C( 8,NT) # P(9,NT) / 05
    H5= 42**0.5
    P(1,NT) = C(1,NT)*N5 * H2**1.5
    P(2,NT)=C(2,NT)*NS*OS
    O}(4,NT)=C(4,NT)*0
    P( 5,NT) = 02
    P( 6,NT) =C(6,NT)*05** * * 
    P(7,NT) =C(7.NT)*HS
    P( 8,NT) = H2
    P(11,NT) = C(11,NT)*H2*S2
    P(12,NT)=C(12,NT) * S5 * H5
    P(13,NT)}=C(13,NT)*S5*N
    P(14,NT)=C(14,NT)*S5*05
    D(15,NT)=C(15,NT) *S5*02
    P(16,NT)=C(16,NT)*S5*02**8.5
    P(17,NT)}=C(17,NT)*S2*0
    P(18,nT)=C(18,nT) * S5
    D(20,NT)}=C(20,NT)*S2**1.
    P(21,NT) = C(21,NT) * S2**?
    D (22,NT) = C(22,NT) * S2**2.5
    P(23,NT) = C(2,3,NT) * S2**3
    P(24,NT) = C (24,NT)*S2**3.5
    D(25,NT) = C(25,NT) * S2**4
    P(26,NT)}=C(26,NT)/O2*P(34,NT)*N5*H
    D(27, NT) = C (27,NT) / H2 * P (26,NT)**2
    P(36,NT)}=\textrm{C}(36,NT)/\textrm{N}(9,NT)**2*P(34,NT) * P(10,NT)**
    P(29,NT)}=C(29,NT)/S2**2*P(36,NT)**2* H2
    P}(29,NT)=C(28,NT)*D(29,NT)**0.5*H2**1.5
    P}(30.NT)=C(30,NT)*P(29.NT)*H
    P(31,NT)=C(31,NT)*P(30,NT)*05
    P(32,NT)=C(32,NT)/05*P(34,NT)
    D(33,NT)=C(33,NT) / P(9,NT) * P(34,NT) & P(10,NT)
    P(35,NT)=C(35,NT)/P(9,NT) * P(33,NT) * H2
COMPUTP TOTAL MOLES NITROGRN N, HYDPOGEN.H, OXYGEN O, SULPHUR S, AND CARBON CC
    N=P(1,NT)+P(2,NT)+2.0*P(3,NT)+P(13,NT) + P(26,NT) + 2.0*P(27,NT)
    H = 3.0*P(1,NT) + P(6,NT) + P(7,NT) + 2.0 * (D(8,NT) + P(9,NT) +
    1P(10,NT)+P(11,NT)) + P(12,NT) + P(26,NT) + 2.0*P(29,NT) +
    2 4.0 * (P(28,NT) + P(30,NT)+p(31,NT))
    0=P(2,NT)+ P P(4,NT)+2.0*P(S,NT) + P(V,NT) + P( P,NT) +
    2P(32,NT) + P P(33,NT) + 2.0*P(34,NT)
    SLOST= P(10,NT)+2.0*P(11,NT)+P(12,NT)+P(13,NT)+P(14,NT)+P(15,NT)+
    SRRCOY = P(18,NT) + 2.0*P(19.NT) + 3.0*P(20.NT) + 4.0*P(21.NT)
    1 5.0*P(22,NT) + 6.0*P(23,NT) + 7.0*P(24,NT) + 8.0*P(25,NT)
    S = SLOST + SRECOV
    CC=P(26,NT)+2.0*P(27,NT)+P(28,NT)+2.0* (P(29,NT)+P(30,NT)+
    TP(31,NT))+P(32,NT)+P(33,NT)+P(34,NT)+P(35,NT)+P(36,NT)
```

```
C
C
COMPUTF TOTAL PRESSURE
        P(ND,NT)}=0.
        DO 6 NC=1,NCPD
6. P(NP,NT)=P(NP,NT) + P(NC,NTY
        PTPTD=P(NP,NT)
        IF (NOD -GT. 1.OE-08) NONOD=N/O/NOD
        HSHSD=H/S/HSD
        SOSOD=S/O/SOD
        IF (CSD .GT. 1.OF-08) CSCSD=CC/S/CSD
        NCV (NT)=NI
        IP (ABS(PTPTD-1.0) . הT. PERP) GO TO 61
        IF (ABS (NONOD-1.0).GT. NORRR) GO TO 61
        IF (ABS(HSHSD-1.0) . GT. HSERR) GO TO 61
        IF (ABS(SOSOD-1.0) .GT. HORRR) GO TO 61
        IP (ABS (CSCSD-1.0) .GT. CSFRR) GO TO 61
        GO mo 75
COMPITP NPR N2, H2O, H2S, S2, CO2
61 P( 3,NT) = P( 3,NTT * (PTPTD*NONOD) ** N2EX
    P(9,NT) = P(9,NT) * PTPTD * * R2OEX
    P(10,NT)=P(10,NT) * (PTPTD*HSHSD) ** H2SEX
    E(19,NT) = P(19,NT) * (PTDTD*SOSOD) ** S2EX
7. P(34,N2)=P(34,NT)* (PTPTD*CSCSD) ** CO2EX
CONVPRGFNCP ITRRATIONS PND AT STATEMENT 7, TEMPERATIRR AT 8 AND NPEEDS AT }
75 UEITE (4,107) P(3,NT), P(9,NT), P(10,NT), P(19,NT), P(34,NT),NI
CALCULATE PFRCEN" RECOVERY
8 D (NCPDP2,NT)=SRECOV/S*100.0
COMPUTER WRITRS DUTPUT ON THO PAGES IF NTEMP IS GREATER THAN 8
        IF (NTEMP .LT. 9) GO TO 84
        HRITR (6,108) NCPD, R, PCTAIR, PCTNH3, PCTH20, PCTCH4, PCTCO2,
    1. PH2S, PO2, PN2, PNH3, PH2O, PCH4, PCO2, (KT, KT=LOWT, LOWT P7)
    DO 33 NC=1.NCPDP2
    GRITP (6,106) NC, CPD(NC), (P(NC,NT), NT= LOHT,LOKTP7)
    WRITE (6,109) (NCV(NT), NT=LOWT,LOHTP7)
44 WRITE (6,108) NCPD, R, PCTAIR, PCTNH3, PCTH20, PCTCH4, PCTCO2,
    1. PH2S, PJ2, PN2, PNH3, PH?O, PCH4, PCO2, (KT, KT=LORTP8,RAOT)
        DO }85\mathrm{ NC=1, NCPDP2
    QRITE (6,106) N二, CPD(NC), (P(NC,NT),NT=LONTP8,NAOT)
85 NRITE (6,106) Nこ, CPD(NC), (P(NC,NT),N
        #RITE (6,105) KWRT
        STOP
100 FORMAT (10A8)
101 FORHAT (10F8.0)
102 FORMAT (104E20.8)
103 PORMAT (6I5)
104 FORMAm\'NTTERS=?, I5, 15X, ' PERR=', 口10.3, 13X, 'N2EX=',
    1 FT.3/, TIOG =', I3, 00', 15X, 'NORRR =, , P10.3, 13X, 'H2OEX=',
    2F7.3/, THIGH=', I3, O0', 15x, YSPRR=', F10.3, 13X, 'H2SEX =',
    3 F7.3/, NFEEDS=1, I5, 15X, 'HOERR=1, P10.3, 13X, , S2EX=1,
    4 F7.3/, IARBYD=1, [5,15X,'CSERH =', P10.3, 13X, 'CO2EX=', F7.3/)
10.5 FORMAT (1G1, 28X,'ESUILIBRIUM CONSTANTS POR TGE FORMATION OF COMPO
    10NDS'/// * COMPOJND', 8(I11, '00 K'))
106 FORMAT (1H, I2, 1又, AB, (1P8P15.5))
107 FORMAT (1PSE15.7. I5)
108 EORYAT {1H1; 10X, EQUILIBRITY PABTIAL PRESSURES IN ATMOSPHERES OP
    1%. I3, COMPOUNDS DRODUCRD PROM HYDROGFN SULPHIDE COMBUSTION'/ 1H
    20, 35x. 'H2S/O2 RATIJ IS ', F8.3.' (%, P5.1.' % STOICHIOMETRIC AIB
```


\$5Data	-		-	0	02		OH			H2		H20		
NH3	So		${ }_{5}$	S3	SO2		SO3		520	s		S2		
H2S2	SH		SN	S3	S8		HCN		C 2 N 2	CH		C2H2		
C2440	Co		\cos	CO2	cs		cs2		total	\%	YIELD			
0.00		0.001				0.001		-0.5			-0.5		-0.5	-0

SCREATE P1

SCREATE K 36
\$GET K 36

SNOMEER
4. 162738000-02
4. $13566300 \mathrm{E}-14$
4.31625600 E 18
2.06227600E-17
6.44970800 E 12
1.46199700802
1.57758500 E 11
5.40597500R-20
1.38865500R-03
$9.38238900 \mathrm{E}-03$
$3.69405800 \mathrm{E}-12$
3.84990500 E 15
6.22555600E-15
3.15320400810
5.17212800 E 00
1.63128500 E 06
6.48061300E-17
$3.73537600 \mathrm{P}-03$
$2.99851500 \mathrm{E}-03$
1.07699500E-10
1.95238900 F 13
$4.52717600 \mathrm{E}-13$
5.84835800 E 08
4. 288 10400F-0 1
2.99861800 E 02
$1.29559700 \mathrm{E}-14$
$7.85576900 \mathrm{E}-0.3$
1.21491400E-03
$1.49106300 \mathrm{E}-09$
3.15926300 E 11
1.27101000E-11
2.63109200E 07
6. $26114600 \mathrm{~F}-02$
$3.90628200 \mathrm{E}-01$
$7.91374000 \mathrm{E}-13$
1.39822200e-02
$5.84712900 \mathrm{E}-04$
1.22478900?-08
$6.15287900 \mathrm{E}-08$
$2.45845500 \mathrm{E}-03$
1.78501300 E 05
1.95099000E 05
1.573951008-16

1. 25130300 P 05
$4.29793200 \mathrm{E}-45$
1.08633400 F 09
1.000000009 00
2. $18828300 \mathrm{P}-07$
$7.57841300 \mathrm{E}-03$
1.42215700 E 04
$3.72959100 \mathrm{~F} \quad 04$
7.74272100E-14
4.02831500 E 02
$1.59834200 \mathrm{E}-38$
5.87138900 E O6
3. 00000000 E 00
5.70892000R-06
1.75751400R-02
4. 107709008 03
1.07358000E 04
5. $15545600 \mathrm{E}-12$
. $5.63423700 \mathrm{~F} \quad 00$
1.34930900E-33
6. 13982800 05
1.00000000 E 00
7. $58523900 \mathrm{E}-05$
8. $37149900 \mathrm{E}-02$
4.71070500 F 02
9. 10595300\% 03
$3.06869300 \mathrm{E}-10$
2.09011000p-01
10. $15264100 \mathrm{E}-30$
5.21619700 R 03
11. 00000000 R 00
$8.65483700 \mathrm{E}-05$
$5.66045400 \mathrm{E}-02$
1.00000000 E 00
$4.58964600 \mathrm{E}-17$
4.30200000 E 04
6.01277100 E 27
1.00000000 E 00
6.17250300 E 07
$1.30429700=-05$
9.26735000 E 04
$6.52103200 \mathrm{E}-10$
1.00000000 E 00
$2.50874800 \mathrm{E}-14$
1.56400000E 03
1.61092100 E 23
1.00000000 F 00
2.39653200 F 04
$4.44312400 \mathrm{~F}-05$
4.40074200 E 03
$2.22011100 \mathrm{E}-08$
1.00000000 E 00
$2.87781400 \mathrm{E}-12$
1.31000000 R 02
6.72882600 E 19
1.00000000 E 00
6.94609800 E 01
$1.13674800 \mathrm{E}-04$
4.49515600 P 02
12. $05324500 \mathrm{E}-07$
1.00000000 E 00
13. $16110300 \mathrm{P}-10$
1.85200000 E 01
1.58254400 E 17
1.00000000 E 00
$7.71857600 \mathrm{E}-\mathrm{C} 1$
$2.38960500 \mathrm{R}-04$
7.62276900 E 01
14. $30229400 \mathrm{E}-06$
1.00000000 F 00
$2.25432400 \mathrm{E}-09$
2.651835008-19
15. $31682100 \mathrm{E}-19$
16. $30341100 \mathrm{E}-07$
2.53102200 E 31
4.92304500 E 00
1.82597000 E 09
17. 21493700 E 10
18. $14811300 \mathrm{E}-21$
$4.43569700 \mathrm{E}-07$
19. $53587700:-16$
20. $59746400 \mathrm{E}-16$
21. $24.545700 \mathrm{E}-06$
4.64740600225
$9.92678100 \mathrm{E}-01$
1.57675500 E 0.5
$7.81828100 \mathrm{E} \quad 07$
$2.74268301 \mathrm{E}-17$
22. $21651400 \mathrm{E}-06$
$7.88591700 \mathrm{~F}-14$
23. 12192100 P- 14
$4.03865700 \mathrm{E}-05$
2.33650000 E 21
$3.00059900 \mathrm{E}-01$
1.50721600 E 02 1.09231100806
$1.20668900 \mathrm{E}-14$
$1.42227000 \mathrm{E}-05$
$5.32437800 \mathrm{E}-12$
24. $16529400 \mathrm{E}-12$
$1.53286100 \mathrm{E}-04$
$1.06413800 \mathrm{E} \quad 13$
25. 187347008-01
26. $10412900 \mathrm{E}-01$
3.84973500 E 04
27. $36816400 \mathrm{~F}-12$
$4.49455100 \mathrm{P}-05$
28. $55513100 \mathrm{E}-10$
$8.65231900 \mathrm{E}-11$
1.15575800 E 10 $1.83516300 \mathrm{E}-10$ 2. 20435000 E 06 1.35688700E-02 $2.00244200 \mathrm{E}-03$ 2.10570300R-11 2. $21531900 \mathrm{E}-02$ 3. $19.231300 \mathrm{E}-04$ 6.888586002-08 7.65932000 E 08 1.63446700R-09 2.90305100 E 0.5 $3.9 .1529 .00 \mathrm{E}-0.3$ 2.79277100E-05 3.05872600E-10 $3.21942000 \mathrm{E}-02$ 1.92058500E-04 2.91498100t-07 7.93582800 E 07
$1.01108800 \mathrm{E}-08$ 5.37249100 D 04 1.309372008-03
29. $11406700 \mathrm{E}-07$
2.839.662008-09
$4.38679300 \mathrm{E}-02$
$1.24846200 \mathrm{E}-04$
$9.89923100 \mathrm{E}-07$
1.16178200 E 07
$4.72730500 \mathrm{E}-08$
1.29801000 P 04
$5.89339800 \mathrm{E}-04$
30. $16356500 \mathrm{E}-08$
1.86826500E-09
31. $59517900 \mathrm{E}-02$
$8.62130100 \mathrm{E}-05$
$2.83423100 \mathrm{E}-06$
2.23000500 F 06
1.77570400E-07
3.79494700 E 03
32. $82240300 \mathrm{E}-04$
33. $34629700 \mathrm{E}-09$
$3.35100900 \mathrm{E}-08$
34. $10269800 \mathrm{E}-02$
6.24845200E-05
7.06926100R-06
5.32161100 E 05
$5.59675000 \mathrm{E}-07$
1.31776600ㅇ 03
$1.49753900 \mathrm{E}-04$
$3.84822800 \mathrm{E}-10$
3.76196200P-07
8.59531100~-02
$4.72354100 \mathrm{E}-05$
$1.57536100 \mathrm{E}-05$
$1.51710600 \mathrm{E} \cdot 05$
$1.52723800 \mathrm{E}-06$
5.21609100E 02
8.63344600 ㄹ-05
35. 41555600 P 02
1.89706400E 03
36. $61691800 \mathrm{E}-09$
1.53069000E-02
1.062864002-26
4.39243800 E 02
1.00000000 E 00
37. $32703600 \mathrm{R}-04$
38. $63711800 \mathrm{E}-02$
39. 27613000E 01
1.00906200 E 03
$6.07971600 \mathrm{E}-08$
$1.83477600 \mathrm{E}-03$
3.41470500E-24
5.76318900 e 01
1.00000000 E 00
5.30311400E-04
1.22571400E-01
2.31327900 F 01
5.96023300 E 02
4.4.3379500F-07
40. 17781900E-04
$4.19020900 \mathrm{E}-22$
1.05857200 E 01
1.00000000 E 00
1.06613500E-03
41. $64569600 \mathrm{E}-01$
1.15007600F 01
3.81613500 E 02
42. $38648400 \mathrm{E}-06$
7.29714500E-05
$2.45423900 \mathrm{E}-20$
2.52053200R 00
1.00000000 E 00
1.93966800E-03
43. 117747008-0
6.32032100 E 00
44. 60682800 E 02
1.01253000E-05
$2.08943200 \mathrm{E}-05$
8.03079900E-19
$7.36714700 \mathrm{E}-01$
1.00000000 P 00
$3.25718100 \mathrm{E}-03$
45. $6.3067000 \mathrm{E}-01$
3.76198000 E 00
1.87293700 E 02
46. $54778000 \mathrm{E}-05$
47. $13309500 \mathrm{E}-06$
1.65107700E-17
48. 5.3619700E-01
$1.00000000 \% 00$
49. $12646500 \mathrm{~F}-03$
50. 18042200E-01
51. 38999600 E 00
1.40199400 E 02
$1.06376100 \mathrm{E}-04$
2.80760000E-06
3.91100000 00
1.24940400E 15
1.00000000200
52. $13161900 \mathrm{~F}-02$
$4.37130600 \mathrm{E}-04$
1.85222600 01
$1.14334500 \mathrm{e}-05$
1.00000000 E 00
$2.56881900 \mathrm{E}-08$
1.10400000 E OO
2.33533900 E 13
1.00000000 00
$1.21213700 \mathrm{P}-03$
7.21415700E-04
5.85025400 E 00
53. 19449600 -05
54. 00000000 E 00
1.96115700E-07
$3.83400000 \mathrm{E}-01$
8.81250700E 11
1.00000000 E 00
1.115516008-04
$1.10118900 \mathrm{E}-03$
55. 24661500 E 00
$1.22717400 \mathrm{E}-04$
1.00000000 E 00
$1.09984900 \mathrm{E}-06$
i.56599800E-01
5.41212500 E 10
1.00000000 E 00
$1.51082800 \mathrm{E}-05$
$1.57969000 \mathrm{E}-03$
1.00309900 P 00
$3.02378700 \mathrm{E}-04$
1.00000000 E 00
$4.83533000 \mathrm{E}-06$
$7.27099700 \mathrm{E}-02$
4.95858400 E 09
1.00000000 E OO
$2.76826900 \mathrm{E}-06$
$2.15667600 \mathrm{E}-03$
5.03824700E-01
$6.50546900 \mathrm{E}-04$
1.00000000 E 00
$1.75078000 \mathrm{P}-05$
$3.73900000 \mathrm{E}-02$
6.25870300 E 08
1.00000000 E 00 $6.45227700 \mathrm{E}-07$
$2.83190900 \mathrm{E}-03$
56. $78321300 \mathrm{E}-01$
$1.25734900 \mathrm{E}-03$
1.00000000 F 00
$5.40765600 \mathrm{E}-05$
$2.08900000 \mathrm{E}-02$
1.02 .289000 E 08
1.00000000 E 00
$1.82704100 \mathrm{E}-07$
$4.45121400 \mathrm{E}-04$
57. 27289900 P 15
58. $67152600 \mathrm{E}-02$
$1.01790800 \mathrm{E}-02$
2.61534500003
59. $99511500 \mathrm{E}-11$
60. $12493700 \mathrm{E}-04$
$2.47056900 \mathrm{E}-09$
1.30559800 R-09
1.06481900E-03
1.49580900? 13
61. $10568500 \mathrm{E}-02$
62. $26189000 \mathrm{E}-04$
2.87008000 E 02
63. $31519500 \mathrm{E}-09$
64. $37002500 \mathrm{E}-04$
$2.48166700 \mathrm{E}-08$
1.26010700E-08
65. 19801600?-03
66. 28165000 E 11
$1.88379500 \mathrm{E}-02$
1.906.36900E-05
4.53103900 E 01
1.71795300 $\mathrm{E}-08$
$4.38415200 \mathrm{E}-04$
1.752037007:07
$8.60745700 \mathrm{E}-08$
$4.06003300 \mathrm{E}-03$
6.65450900 E 09
1.23598900 E-02
$1.76513000 \mathrm{E}-06$
9.48049900 F 00
$1.50715300 \mathrm{E}-07$
67. $35772700 \mathrm{P}-04$
$9.37675500 \mathrm{E}-07$
4.48429300 :-07
$6.87248200 \mathrm{E}-03$
3.22967800E O8
68. $62468700 \mathrm{P}-03$
$2.34229200 \mathrm{E}-07$
2.47502100 P 00
9.66415400r-07
$1.13978300 \mathrm{R}-03$
$4.01785100 \mathrm{E}-06$
$1.87912600 \mathrm{E}-06$
$1.08483900 \mathrm{E}-02$
69. 35508000 R 07
6.32162300 P-03
$4.13955800 \mathrm{E}-08$
7.72200200 E-01
$4.82399300 \mathrm{E}-06$
1.66165900 E-03
$1.43756500 \mathrm{E}-05$
70. $591497.00 \mathrm{E}-06$
$1.61594300 \mathrm{R}-02$
2.38752300 E 06
$4.82209000 \mathrm{E}-0.3$
$9.22392400 \mathrm{E}-09$

TABLE E. 3
CLAUS PLANT

ECREATE S28 SIZE=20P
\$GET S2.8
5WUMBER
\$SCOMPII.E
COMPITER PROGRAMME 28 S
 CLADS PORNACE-CAT CONYERTER EQUILIBRIA HITH 36 SPECIES AND NUNITS-I CONVERTERS CALCULATP ADIABATIC FIAME TEMPERATURP IN FURNACE AND IN CATALYtIC CONVERTERS COMPOUND NAMES ARE READ IN--H2S IS COMPOUND 10

Com	ND N	ARE	-	3	4	5	6	7	8	9
c	0	1	2	3	${ }^{\circ}$	02.	OH	H	H2	H20
c 0		NH3	NO	N 2	0	02	Ot	-	n2	
C 1	H2S	H2S?	SH	SN	So	SO2	503	S20	S	
C 2	S3	54	S 5	56	S7	S8	HCN	C 2 N 2	CH4	C2H2
$\therefore 3$	C.244	C2R40	CO	cos	$\mathrm{CO2}$	CS	CS2	TOTA		

CARDS IN FILP 'S' ARP: C
CARDS IN FILE 'A' ARE:
CARDS IN *SODRCE* ARE: C

HEATS OP FORMATION AT 298.15 K FOR 36 COMPOUNDS
ERR, EXPN2, EXPH20, EXPH2S. EXPS2, EXPCO2
MCBRIDE CORFPICIENTS FOR 36 COMPOUNDS
MPREDS, NONITS, NAFTI, NRRI, NEQMI, TERR
LIMIT, LOG, ISIMP, (STEP(I), I=1, 4i, EPS
CARDS IN FILE 'P' ARE:
EARD 1: PCTAIR, PCTHH3, PCTH20, PCTCH4, PCTCO2
CARD 2: NOU, KRPADP, KAO, TA, TE, TC, RR
 CARD 4: FLAST, HSD. SOD, CSD, SLS
CARDS 5. 6,7 (FOR CATALYTIC CONYERTER \#1): SIMILAR TO 2, 3, 4 (FOR FURNACE) * COMPUTER PROGRAM COMPITTES UP TO 6 CAT CONV ZRTERS-ADD MORR SETS OF 3 CAFDS EACH*

DOITSIE PRECISION CPD
PEAL $K, N, N O, N O D, N O N O D, N 2, N S$
DIMENSION CPD (69), TEAPAP(7), ITERS(4), BM(37), DM(37), FM(37),
$1 \quad A(36,2,7), B(36,2,7), X(4), \operatorname{STEP}(4), K(36)$
COMMON DHF(36), AM(37), CM(37), EM(37), P(41), C, H, N, O, S,
1 AC, AH, AN, AO, AS, CSD, HSD, NOD, SOD, SLS, EXPN2, EXPH2O,
2 RXPE2S, EXPS2, EXPCO2, RR, TPRR, ADHF, OMRR, HTA, K, KMRT

COMPOTND NAMES, HEATS OF FORMATION, RRROR AND EXPONENTIALS AND ITER PARAMETERS $\begin{array}{llll}\text { READ } & (5,1010) & \text { (CPD (NC), } & \text { NC }=1,69) \\ \text { READ } & (5,1020) & \text { (DHP }(N C), & N C=1,36)\end{array}$ READ $(5,1020)$ ERR, EXPN2, EXPH20, EXPH2S, EXPS2, EXPCO2 RPAD $(5,1030)((\langle A(N C, L H, J), J=1,7), L H=1,2), N C=1,36)$ PEAD $(5,1040)$ NFEEDS, NUNITS,NIRAT, NAFTI, NRRI, NEQMI, K日RT, TERR READ $(5,1045)$ LIMIT, LOG, IA, IB, (STEP(I), $I=1,4)$, EPS

COMPUTER WRITES ERRORS AND EXPONENTS AMD ITPRATION PARAMETERS HRITE $(6,1050)$ ERR, EXPN2, EXPR20, EXPH2S, EXPS2, EXPCO2. 1 NFERDS, NUNITS, NAFTI, NRRI, NECMI, TERR

CONVERT CORFPICIENTS OE EXPANSION FOB H TO GIVE IT THE SAME FORM AS THAT POR CP

C HT/R H B1+B2*T+E3*T**2+B4*T**3+BS*T**4+B6*T**5
DO $10 \mathrm{NC}=1,36$
DO $10 \mathrm{~L} \cdot \mathrm{H}=1,2$
$B(N C, L H, 1)=A(N C, L H, 5)$ $B(N C, L H, 2)=A(N C, L H, 1)$ $\mathrm{B}(\mathrm{NC}, \mathrm{LH}, 3)=\mathrm{A}(\mathrm{NC}, \mathrm{LH}, 2) / 2.0$ $B(N C, L H, 4)=A\{N C, L H, 3) / 3.0$ $B(N C, L H, 5)=A(N C, L H, 4) / 4.0$
$\mathrm{B}(\mathrm{NC}, \mathrm{LH}, 6)=\mathrm{A}(\mathrm{NC}, \mathrm{L}, \mathrm{H}, 5) / 5.0$
CONSTANT AG IS SET TO ZERO SINCR CPT/R EXPANSION HAS NO T**5 TERM
CONSTANT BI IS USED IN SUBROUTINE KP SINCE BI=A1 BEPORE A1 1 AS SET EQGAL TO ZERO $10 A(N C, L H, 6)=0.0$

DO 130 NFDS $=1$, NFEEDS
COMPOSITION OP INITIAL MIXTORE IS FOUND-BASED ON 100 MOLES OF ACID GAS
DO $20 \mathrm{NC}=1.36$
$A M(N C)=0.0$
$D M(N C)=0.0$
$20 \quad P(N C)=0.0$
$P(38)=0.0$
$P(41)=0.0$

COMPOSITION OP FPRD TO PTRNACE IS BFAD AT THE BEGINNING OP EACH FERD ITERATION
COMPITER READS: PCTAIR, PCTNH3, PCTH20, PCTCH4, PCTCO2
PEAD (5, 1020) PCTAIR, AM (1), AM (9), AS (28), AM (34)
WIITE(4, 1020) PCTAIR, AM (1), AM (9), AM (28), A: (34)

$A M(10)=100.0-A M(1)-A M(9)-A M(28)-A M(34)$
$A M(5)=0.005 * A M(10) \neq$ PCTAIR $+0.75 * A M(1)+2.0 * A M(28)$
$A M(3)=3.76 * A M(5)$
$A M(37)=100.0+A M(3)+A M(5)$
PNH3 $=\mathrm{AM}(1) /$ AM (37)
$\mathrm{PN2}=\mathrm{AM}(3) / \mathrm{AM}(37)$
PO2 $=A M(5) / A M(37)$
$\mathrm{PH} 20=\mathrm{AM}(9) / A M(37)$
PH2S $=A M(10) / A M(37)$
PCHA $=A$ S (28) $/ \mathrm{AS}$ (37)
$\operatorname{PCO2}=A M(34) / A M(37)$
KUNITS $=1$
$\mathrm{KIO}=0$
IF (NAPTI FRQ. 1) KIT=8

こOMMENCF UNTT ITERATIONS BY READING GUESS OF APT, COMPOSITION AND ATOMIC RATIOS
DO $130 \mathrm{NU}=1$, NUNITS
IF (KUNITS . EO. KU) STOP
こALCULATE VARIOUS RATIOS OF THR FOLLOMING ATOMS TA THE FEED STEAM: C, H, N, O, S
$A C=A M(26)+2.0 * A M(27)+A M(28)+2.0 *(A M(29)+A M(30)+A M(31))+$
$1 \quad A M(32)+A M(33)+A M(34)+A M(35)+A M(36)$
$A H=3.0 * A M(1)+A M(5)+A M(7)+2.0 *(A M(8)+A M(9)+A M(10)+A M(11))$
$1+A M(12)+A N(26)+2.0 * A M(29)+4.0 *(A M(23)+A M(3))+A(31))$
$A N=A M(1)+A M(2)+2.0$ \#AN (3) $+A M(13)+A M(26)+2.0 \# A M(27)$
$A O=A M(2)+A M(4)+2 . O A M(5)+A M(6)+A M(9)+A M(14)+$
$12.04 A M(15)+3.0 \% A M(16)+A M(17)+A M(31)+A M(32)+A M(33)+$
2.0 *AM(34)
$A S=A M(10)+2.0 * A M(11)+A M(12)+A M(13)+A M(14)+A M(15)+$
$1 \mathrm{AM}(16)+2.0 * A M(17)+A M(18)+2.0 * A M(19)+3.0 * A M(20)+$
2 4.0*AM(21) +5.0*AM(22) + 6.0*AM(23) + 7.0*A: (24) +
3 8. O*AM(25) + AM(33) +AM(35) + 2.0*AM(36)
$C S D=A C / A S$
HSD $=A H / A S$
NOD $=A N / A O$
$S O D=A S / A O$
PEAD (5. 1045) NOT, KEZADP, KAO, IES, TA, TENEA, TC, RR
READ $(5,1060) P(3), \quad \mathrm{P}(9), \mathrm{P}(10), \mathrm{P}(19), \mathrm{P}(34)$
IF (RR.GT. $1.0 E-06)$ READ $(5,1060)$ FLAST, HSD, SOD, CSD, SLS

OMRR=1.0-RR

CAlCULATE The heat op formation of me beactants of streaf a
$\mathrm{ADHF}=0.0$
DO 30 NC=1, 36
$30 \quad \mathrm{ADHF}=\mathrm{ADHP}+\mathrm{AM}(\mathrm{NC}) * D H F(\mathbb{N C})$
CALCILATE HEAT CONTENT OP STREAM A ENTERING FCE (NU=0) OR CAT CONVERTER (NO>O)
CALL CPH (AM, B, 298. 15; HOA)
CALL CPH (AM, B, TA, HTA)
HTA = HTA- HOA

COMMFNCE ADIABATIC PLAME TEMD ITERATIONS FOR FURNACE OR CATALYTIC CONVRRTERS •*
CONVERGENCP. CRITERIA IS INITIALLY SLACK-ONLY 9 OF THP 36 CPDS ARE CONSIDEBED
$\operatorname{ImPRS}(1)=0$
$\operatorname{ITERS}(4)=0$
35 ERROR=ERR
IF (KAO - EO. O) ERROR $=10.0 * E R R$
DO $70 \mathrm{NF}=1$, NAFTI
$\operatorname{TTERS}(1)=\operatorname{ITERS}(1)+1$
TE=TENET
CALL KP(TE, A, B, K)
CALCOLATP EQUILIBQIUM COYPOSITIONS IN THE CATALYTIC CONVEBTEBS DO $50 \mathrm{NRR}=1$, NRRI
IF (IES.LE. 0) CALL EQA (NEQMI, KAO, ERR, JEQMI, X, SUMSQ, 1)
IP (IES .LT. O) GO TO 45
IF (JEQMI - LT. NEQMI) GO TJ 45
CALCULATE THE STARTING POINT FOR THE HILL-CLIEBING SUBROUTINE HOOKB
$\mathrm{E}=1.0 \mathrm{E}-06$

$X(1)$	SORT(P) 3)	P
$X(2)$	SQRT (P (9))	E
(${ }^{(3)}$	SQPT (P(10))	E
X (4)	SQPT (P (19))	8

WRITE $(6,1090)$
पRITE $(6,10$ (i0) $\mathrm{D}(3), \mathrm{P}(9), \mathrm{P}(10), \mathrm{P}(19), \mathrm{P}(34)$
WRITE $(6,1060) X(1), X(2), X(3), X(4)$
CALL HOOKE (Y, X, 4, LTMIT, STEP, LOG, EPS)
IF (Y -LT. 1.OE-02) GO TO 40
CALL ROOKPI(Y, $X_{0} 4$, LIMIT, STEP, LOG, EPS)
40 CALL EQM (NEQMI, KAO, ERR, JEQMI, X, SUMSQ, 1)
45 ITERS (2) =NRR
TTERS (3) =JEOMI
$\operatorname{ITERS}(4)=\operatorname{ITERS}(4)+\operatorname{ITERS}(3)$
CONVRRGRACE MAY NOT HAVE BREN OBEAINED FOR EQUILIBRIUM ITERS AT THIS TEMPERATURP
CEASE FURTHER ITERATIONS BUT PRINT RESULT OBTAINED SO FAR
IF (ITERS(3) -GE. NEQMI) GO TO 55
 $\mathrm{FC}=0.0$
$D E N=4.0$
$\mathrm{KCON}=1$
IF (C.IT. 1.OE-06) GO TO 46
$P C=A C / O M R R / C$
DEN $=5.0$
$46 \quad \mathrm{PH}=\mathrm{AH} / \mathrm{OMRR} / \mathrm{H}$
$\mathrm{FN}=\mathrm{AN} / \mathrm{OMRR} / \mathrm{N}$
PO = AO / OHRR / O
$P S=A S /(1.0-R R * S L S) / S$
PAVG $=(F C+E H+P N+F O+F S) / D E N$
FAVGRR=PAVG\#RR
CALCULATE MOLES OF EACH SPPCTES IN STRRAM E (EQUILIBRIUM) AND C (RECYCLE)

Do 47 NC=1, 36
$\mathrm{EM}(N C)=P(N C) \neq F A Y G$
$47 C M(N C)=P(N C) * P A \nabla G R R$
CONDENSE ALL TRE ELEMENTAL SUL PYMR FROA STREAB C
DO $48 \mathrm{NC}=18,25$
$48 \quad C M(N C)=0.0$
DO $49 \mathrm{NC}=1.36$
$49 \quad B M(N C)=A M(N C)+C M(N C)$
CALCULATE RATIOS OF THE FOLLOHING ATOMS IN THE FEEDS TO EACH UNIT: C, H, N, O, S
$B C=B M(26)+2.0 * B M(27)+B M(28)+2.0 *(B M(29)+B M(30)+B M(31))+$
$\begin{aligned} & 1 \quad B M(32)+B M(33)+B M(34)+B M(35)+B M(36) \\ & B H\end{aligned}=3.0 * B M(1)+B M(6)+B M(7)+2.04(B M(8)+B M(9)+B M(10)+B M(11))$

$B N=P M(1)+B M(2)+2.0 * B M(3)+B M(13)+B M(26)+2.0 * B M(27)$
$B O=B M(2)+B M(4)+2-0 * B M(5)+B M(6)+B M(9)+B M(14)+$
$\begin{aligned} & 12.0 * B M(15)+3.0 * B H(16)+B M(17)+B M(31) \\ & 2\end{aligned} 2.0 \mathrm{BM}(34)+B M(32)+B M(33)+$
$2.0 * B M(34)+2.0 * B M(11)+B M(12)+B M(13)+B M(14)+B M(15)+$
$\begin{aligned} & 1 \quad B M(16)+2.0 * B M(17)+B M(18)+2.0 * B A(19)+3.0 * B M(20)+ \\ & 6.0 * B M(23)+7.0 * B M(24)+\end{aligned}$
$24.0 * P M(21)+5.0 * B M(22)$
$38.0 * B M(25)+B M(35)+2.0 \neq B M(36)$
CALCULATE NEM GUESS OF RATIOS OR ATOMS
$B C S D=B C / B S$
$B H S D=B H / B S$
$B N O D=B N / B O$
$B S O D=B S / B O$
$P C S D=1.0$
IF (BCSD.GT. 1.OE-08) $\quad \mathrm{PCSD}=\mathrm{BCSD} / \mathrm{CSD}$
IF ($A B S(P C S D \quad-1.0)$.GT. PRP) GO TO 495
IF (ABS (BHSD/HSD-1.0) .GT. FRR) GO TO 495
IF (ABS (BNOD/NOD-1.0) .GT. ERA) GO TO 495
IF (ABS (BSOD/SOD-1.0) .GT. ERR) GO TO 495
GO TO 60
calcolate neh desired matios in stream b (entering the fornace)
495 CSD=BCSD
$\mathrm{HSD}=\mathrm{BASD}$
NOD $=$ BNOD
$50 \quad S O D=3 S O D$

CEASE PURES HAS NOT REPN IN ALL UNITS BUT PRINT RESULT OBTAINED SO PAR
55 KTNTTS=0
CONYRRGPD AT TGP GIVEN RECYCLE RATIO AND TEMPERATHRE
COMPTTE NEW GUESS OF THE ADIABATIE FLAME TPMPERATURE (APT)
60 CALL AFT (TC, TE, A, B, NAFTI, TPNEY, XCONV)
CORRENT VALIE OF TEMPERATIRE IS WRITTEN
IF (KCONV - RO. 0) KONTTS $=0$
IF (KONITS -FO. O) GO TO 80
IF (ABS (TE-TENEG). LE. TERR) GO TO 65
70 CONTINUP ITERATING ON 9 COMPOUNDS (KAO=0) OR 36 COMPOUNDS (KAO=1)
$\begin{array}{ll}\text { CHECK TO SEE IF ITERATING ON } 9 \\ 65 & \text { IF (KAO EQ. 1) GO TO } 80\end{array}$
$K A O=1$
GO TO 35
 CALCULATE TOTAL MOLES IN EACH STREAM

80 DO $85 \mathrm{NC}=18.25$
85 DM (NC) $=E M(N C)$
$A M(37)=0.0$
$B M(37)=0.0$
$C M(37)=0.0$
$D M(37)=0.0$
PM (37) $=0.0$
$P M(37)=0.0$
DO $90 \mathrm{NC}=1.36$
$P M(N C)=E M(N C)-D M(N C)-C M(N C)$
$A M(37)=A M(37)+A M(N C)$
$B K(37)=B M(37)+B M(N C)$
$C M(37)=C M(37)+C M(N C)$
$D M(37)=D Y(37)+D M(N C)$
$\mathrm{BH}(37)=E M(37)+E M(N C)$
$90 \quad \operatorname{FM}(37)=P M(37)+F M(N C)$
COMPITE PERCENT RECOVERY, BASED ON EOUILIRRIUK AND NCID GAS STREAMS RPSPECTIVELY
$p(39)=P(38) /(1.0-R P *(1.0-9(38)))$
$P(40)=P(39) *(1.0-P(41))$
$D(41)=P(40)+P(41)$

HRITE (4, 1045) NU, KREADF, RAO, IES, TA, TR, TC, RR
ORIPP $(4,1060) P(3), P(9), P(10), P(19), P(34), N(1)$
IF (RQ.GT. $1.0 E-06)$ GRITE (4.1060) NOD, $H S D$. SOD, CSD, SLS, NT
COMPDTER HRITES HEADINGS POR RITAER PURNACE OR CATALYTIC CONVERTER RESULTS
IF (NU -LT. NUWRT) GO TO 115

1 AM(34), PH2S, PNH3, PO2, PH2O, PN2, PCH4. PCO2
NUM $1=$ NO- 1
IF (NU . GT. 1) KRITE $(6,1090)$ NOM 1
hPITE $(6,1100)$ TA. TE
DO $100 \mathrm{NC}=1,37$
100 NPTTE $(6,1110)$ NC, $C P D(N C), P(N C), A M(N C), C M(N C), B M(N C), E M(N C)$,
1 DM(NC). FM(NC)
DO $110 \mathrm{NC}=38,41$
110 YRITS $(6,1120) \mathrm{CPD}(N C), C P D(N C+4), C D D(N C+8), C P D(N C+12), C P D(N C+16)$,
$1 \quad \mathrm{P}(\mathrm{NC}), \mathrm{C}$? $1(\mathrm{NC}+201, \mathrm{CPD}(\mathrm{NC}+24), \mathrm{CPD}(\mathrm{NC}+28)$; ITERS (NC-37)
CHECK IF STIPRIP HAS CONDENSED-IY IT HAS, MRTTE S DRESSURE AND S VAPOMR PRESS
C**********
DO $120 \mathrm{NC}=18.25$
$120 \mathrm{PS}=\mathrm{PS}+\mathrm{P}(\mathrm{NC})$
$V P=3.77978+1.91809 \mathrm{E}-06 * T \mathrm{TE} \mathrm{TE}-796.138 / \mathrm{TE}-1883640.0 / \mathrm{TE} / \mathrm{TE}$
$V P=E X P(V D)$
IF (DS GT. VP) प्रRITE (6.1130) PS, TE, VP
Change notation: strean f becomes stream a opthe next unit
DO $125 \mathrm{NC}=1,36$
$125 \quad \mathrm{AM}(\mathrm{YC})=\mathrm{PM}(\mathrm{NC})$
130 CONTINUE
STOP
1010 PORMAT (10A8)
1020 POAMAT (8P10.4)
1030 FORMAT (20X, 3E20.8/ 4E20.8)
1040 FORMAT (7I5, F10.2)
1045 PORMAT (4I5, 5P10.2)
1050 PORMAT (10 EXPN2 EXPH20 EXPR2S EXPS2 EXP
$1 \mathrm{CO}^{1} \%$ P10.3, SP10.2,$~ 0$ NPERDS NUNITS NAFTI NRRI
2 NEQMI TEREI/, IB, 3I10, I11, F10.2)

RMAT (1P5E15.7, I5)
FORMAT ('1 EQUILIRRIUM PARTIAL PRESSURES IN ATMOSPHRRES OP 36 COMP

3 14X, "THE ACID GAS FEED CONTAINS', P5.1, \% \%H3', P5. i,

 1090 FORMAT ('1 EOUILIBRIUM PABTIAL PRESSURES IN ATMOSPRERES OF 36 COMP 1OUND PRODICED IN CATALYTIC CONVERTER'.I2////)
2 NC MOLRS IN B MOLES IN E MOLES IN D MOLES IN P')

```
1110 FORMAT (1H, I2, 1X, A8, (1P7E15.4))
```


1130 FORMAT (//"****SULDHUR GAS CONDENSED****SULPHUR PARTIAL PRESSURE
1LS '. P8.4, VAPOUR PRESSSURE OF S AT'. R7.1, KRLVIN IS', P9.4)
END
SUBROUTINE EOM (NEQAI, KAO, ERR, JEQMI, $X, S U M S Q, ~ I)$
REAL K, N, NO, NOD, NOMOD, N2; N5
DIGENSIOM A $(36,2,7)$, $B(36,2,7), K(36), X(4), S U A S Q(5)$
COMAON DRP(36), AM(37), CM(37), EM(37), P(41), C, H, N, O, S,
1. AC, AH, AN, AO, AS, CSD, HSD, NOD, SOD, SLS, RXPN2, EXPH20,
2 EXPH 2 , EXPS2, EXPCO2, RR, TERR, ADHF, OMBR, HTA, K, KHRT
$\operatorname{cscs} D=1.0$
IF (NEQMI - RE. 1) GO TO 10
$E=1.0 E-06$
$P(3)=(X(1)+E) \neq * 2$
$P(9)=(X(2)+E) \neq * 2$
$p(10)=(X(3)+E) * * 2$
$P(19)=(X(4)+E) * * 2$
DO $60 \mathrm{NI}=1$, NEQHI
$\mathrm{N} 2=\mathrm{P}(3)$
$\mathrm{N} 5=\mathrm{N} 2 * * 0.5$
S2=P(19)
$\mathrm{S} 5=\mathrm{P}(19) * * 0.5$
$02=(\mathrm{K}(5) * \mathrm{P}(9) * \mathrm{~S} 5 / \mathrm{P}(10)) * * 2$
$05=02 * * 0.5$
$\mathrm{H} 2=\mathrm{K}(8) * \mathrm{P}(9) / 05$
$\mathrm{H} 5=42 * * 0.5$
$P(1)=K(1) * N 5 * H 2 * * 1.5$
$P(2)=K(2) * N 5 * 05$
$P(4)=K(4) * 05$
$P(5)=02$
$P(6)=K(6) * 05 * H 5$
$\mathrm{P}(7)=K(7) * H 5$
$\mathrm{P}(8)=\mathrm{H} 2$
$P(11)=K(11) * H 2 * S 2$
$\mathrm{D}(12)=K(12) * S 5 * \mathrm{H} 5$
$P(13)=K(13) * S 5 * N 5$
$P(14)=K(14) * 55 * 05$
$D(15)=K(15) * 55 * 02$
$\mathrm{P}(16)=\mathrm{K}(16) * 55 * 02 * * 1.5$
$\mathrm{P}(17)=\mathrm{K}(17) * 52 * 05$
$P(18)=K(18) * S 5$
$P(18)=K(20)=K(20) * S 2$ 該 1.5

```
    P(21)=K(21)*S2**2
    P(23) = K(23)*S2**3
    P(24)}=\textrm{K}(24)*S2**3.
    P(25) = K(25) * S2***
    P(26)=R(26)/02*P(34)*N5* H5
    P(27)=K(27)/H2 * P(26)**2
    P(36)=K(36)/P(9)**2*P(34)*P(10)**2
```



```
    P(28)}=\textrm{K}(28)*P(29)**0.5* H2**1.
    P(30) = K(30) *P(29) * H2
    P(34)}=K(39)*P(30.)*0
    P(32) = K(32) / 05 * P(34)
    P(33)}=\textrm{K}(33)/P(9)*P(34)*P(10
    P(35)=K(35) / O(0) *P(33)*H2
```


$\begin{aligned} & C= P(26)+2.0 * P(27)+P(28)+2.0 *(P(29)+P(30)+P(31))+P(32)+ \\ & P(33)+P(34)+P(35)+D(36)\end{aligned}$
$N=P(1)+P(2)+2.0 * P(3)+P(13)+P(26)+P(14)+2.0 * P(15)+$
$0=P(2)+P(4)+2.0 * P(5)+P(6)+P(9)+P(3)$
$1=P(2)+P(4)+2.0 * P(17)+P(31)+P(32)+P(33)+2.0 * P(34)$
SLOST $=P(10)+2.0 * P(11)+P(12)+P(13)+P(14)+P(15)+$
1. $P(16)+2.0 * P(17)+P(33)+P(35)+2.0 * P(36)$
SBECOV $=P(18)+2.0 * P(19)+3.0 * P(20)+4.0 * P(21)+$
$15.0 * \mathrm{P}(22)+6.0 * \mathrm{P}(23)+7.0 * \mathrm{P}(24)+8.0 * \mathrm{P}(25)$
compite total pressube
$P(37)=0.0$
DO $30 \mathrm{NC}=1,36$
$30 \quad P(37)=P(37)+P(N C)$
PTPTD=D(37)
$\mathrm{s}=\mathrm{SI.OST}+\mathrm{SRRCOV}$
SLS $=$ SLOST/S
IF (CSD . GT. 1.0e-08) $\operatorname{cScsD}=\mathrm{C} / \mathrm{S} / \mathrm{CSD}$
HSHSD=H/S/HSD
NOHOD = N/O/NOD
SOSOD=S/O/SOD
$\operatorname{SFQMI}=\mathrm{NI}=(P T P T D-1.0) * * 2+($ NONOD-1.0 $) * * 2+($ HSUSD -1.0$) * * 2+$
$1(\operatorname{SOSOD}-1.0) * * 2+(\operatorname{CSCSD}-1.0) * * 2$
IF (NEQMI - EQ. 1) RETURN
IF (NI. ER. NEOMT) YRITE $(6,1)$ SUMSQ (I), PTPTD,NONOD, HSHSD,SOSOD, CSCSD

1. FORMAT (1P6E18.8)
IF (AES (HSMSD-1.0) .GT. ERR) GO TO 50
IF (ABS (SOSOD-1.0) -GT. RRR) GO TO 50
IF (ABS (NONOD-1:0) GT. ERA) GO TO 50
If (ABS (PTPTD-1.0) GT. ERR) GO TO 50

$\mathrm{p}(38)=\mathrm{SRECOV} / \mathrm{S}$
RETORA
COMPDTE NEG N2, H2O, H2S, S2, CO2

$P(9)=P(9) *$ PTPTD $\quad \begin{aligned} & * * E X P H 2 O \\ & P(10)\end{aligned}=P(10) *(P T P T D * H S H S D) * * \operatorname{PPH} 2 S$
$P(19)=P(19) *($ PTPTD*SOSOD)**EXPS2
$60 \mathrm{P}(34)=\mathrm{P}(34) *($ PTPTD*CSCSD $) *$ EXPCO2

RETURN

END

SUBROOTINE KP(T, A, B, EQMK)

CALCOLATE EQOILIBRIOM CONSTANTS, KP, FOR 36 SPECIES AT ANY TEMPERATURE, T KELVIN
C P(NC) IS FREP ENERGY OP FORMATION OF COMPOUND NC
C R (NC) IS FRER ENEPGY OP THP REACTION THAT FORMS COHPOOND NE
CORRESPONDING EQUILIBRIOA CONSTAMT AT TEMPERATURE, T IS GIVEN BY EOMK(NC)
REAL K, N, NO, NOD, NONOD, N2, NS
DIMQNSION A $(36,2,7), B(36,2,7), F(36) * R(36), \operatorname{EOMX}(36), H 298(36), K(36)$
COMMOM DHP(36), AM (37), CM(37), EM(37), P(41), C, H, N, O. S,
1 AC. AR, AN, AO, AS, CSD, HSD, NOD, SOD, SLS, EXPN2, EXPH2O,
2 PXPY2S, EXPS2, EXPCO2, RR, TERR, ADHP, OMRR, HTA, K, KYRT
DATA KSKIE/O/
ALNT=ALOG (T)
TLNT=T*ALNT
$\mathrm{L} \mathrm{H}=1$
IF (T.GT. 1000.0) LH=2
CALCOLATE FETE ENERGIES OF FORMATION DIVIDPD BY R USING MCBRIDE'S CORPPICIENTS IF (KSKIP - EỌ. 1) GO TO 30
KSKIP=1
CALCOLATR ENTHALPY AT 298.15 KELVIN POR 36 COMPOONDS
DO $20 \mathrm{NC}=1,36$
$T 0=298.15$
$T 2=T 0 * * 2 / 2.0$
$T 3=T 0 * * 3 / 3.0$
$T 4=T 0 * * 4 / 4.0$
$T 5=T 0 * * 5 / 5.0$
CONSTANT B1 HAS BEEN SET EQUAL TO AG IN THE MATN PROGRAMME
20 H298(NC) $=(A(N C, 1,1) * T 0+A(N C, 1,2) * T 2+A(N C, 1,3) * T 3+$

$30 \quad \mathrm{~T} 2=\mathrm{T} / 2.0$
$T 3=T * * 2 / 6.0$
$\mathrm{T} 4=T * * 3 / 12.0$
T5=7**4/20.0
$\mathrm{RT}=1.98726 * T$
DO $40 \mathrm{NC}=1,36$
$40 \quad F(N C)=A(N C, L H, 1) *(1.0-A L N T)-A(N C, L H, 2) * T 2-A(N C, L H, 3) * T 3-$
$1 A(N C, L H, 4) * T 4-A(N C, L H, 5) * T 5+B(N C, L H, 1) / T-A(N C, L H, 7)+$
2. (1000.0*DHP(NC) - H298(NC)) / RT

COMPUTE PRBE ENFRGIES OF REACTION
FN2 $=F(3)$
$\mathrm{PO} 2=\mathrm{P}(5)$
$\mathrm{FH} 2=\mathrm{P}(8)$
$P S 2=P(19)$
$\mathrm{PN}=0.5 * \mathrm{PN} 2$
$\mathrm{PO}=0.5 * \mathrm{PO} 2$
$\mathrm{PH}=0.5 * \mathrm{PH} 2$
$\mathrm{PS}=0.5 \neq \mathrm{FS} 2$
$\mathrm{Q}(1)=\mathrm{F}(1)-\mathrm{PN}-\mathrm{PH} 2 \neq 1.5$
$\mathrm{R}(2)=\mathrm{P}(2)-\mathrm{ON}-\mathrm{PO}$
$R(3)=0.0$
$P(4)=F(4)-P 0$
$R(5)=F(10)+F O-F(9)-P S$
$R(6)=P(6)-P O-P H$
$R(7)=P(7)-P R$
$R(8)=P(8)+P O-P(9)$
$R(9)=0.0$
$R(10)=0.0$

```
    \(R(11)=P(11)-P H 2-F S 2\)
    \(B(12)=F(12)-P S-P H\)
    \(R(13)=P(13)-E S-P N\)
    \(P(14)=P(14)-P S-F O\)
    \(R(15)=P(15)-P S-P 02\)
    \(\mathrm{R}(16)=\mathrm{F}(16)-\mathrm{FS}-\mathrm{FO} 2 * 1.5\)
    \(Q(17)=F(17)-F S 2-F D\)
    \(R(18)=F(18)-P S\)
    \(R(19)=0.0\)
    \(R(20)=F(20)-1.5 * P S 2\)
    \(R(21)=P(21)-2.0 * F S 2\)
    \(R(22)=P(22)-2.5 * F S 2\)
    \(\mathrm{R}(23)=F(23)-3.0 * F S 2\)
    \(R(24)=F(24)-3.5 * F S 2\)
    \(R(25)=F(25)-4.0 * F S 2\)
    \(R(26)=F(26)+F O 2-F(34)-P N-F H\)
    \(R(27)=F(27)+F R 2-2.0 * F(26)\)
    \(P(36)=F(36)+2.0 * F(9)-F(34)-2.04 F(10)\)
    \(R(29)=F(29)+2.0 * F S 2-2.0 * F(36)-P H 2\)
    \(R(28)=F(28)-0.5 * F(29)-1.5 * P H 2\)
    \(R(30)=F(30)-P(29)-P H 2\)
    \(P(31)=F(31)-F(30)-F O\)
    \(P(32)=F(32)-F(34)+F 0\)
    \(P(33)=P(33)+P(9)-P(34)-P(10)\)
    \(P(34)=0.0\)
    \(R(35)=P(35)+P(9)-F(33)-P B 2\)
COBPUTE EOJILIERIUM CONSTANTS FROM FREE ENERGY OF REACTION
```

 DO \(80 \mathrm{NC}=1,36\)
 80. EQMK (NC) $=\operatorname{EXP}(-R(N C))$
RETORN
END
STBROUTINP AFT (TC, TE, A, B, NAFTL, TENEV, KCONY)
-ALCULATE ADIABATTC FLAME TEMPFRATURE OF CLAUS FORNACE OR CATALYTIC CONVEREER
REAL K, N, NO, NOD, NONOD, N2, NS
DIMRNSION A $(36,2,7)$, $B(36,2,7)$, $K(36)$
COMMON DHP(36), AM(37), CM(37), DM(37), P(41), Cs, H, N, S,
1 AC, $A H, A N, A D, A S, C S D, H S D, N O D, S O D, S L S, ~ E X P N 2, ~ Z X P H 2 O$,
2 EXPH2S, EXPS2, FIPCO2, RR, TFRR, ADHF, OMER, HTA, K, KKRT

COMPOSITIONS OF STREAMS C AND R GAVP NOW bEEN CALCULATED FOR THIS TEMPERATIAE
CAN NOH FIND PLAME TEMPERATORE RESULYING PRJM RECYCLE RATIO AMD INITIAL COMP

DHR $=-A D H F$
DO $50 \mathrm{NC}=1.36$
50 DHR $=$ DHE + DHP $(N C) *(E M(N C)-C M(N C))$
$D H R=$ DHR $\$ 1000.0$
CALE CPH (CM, B, 299.15, HOC)
CALL CPH (EM, B, 293.15, HOE)
CALL COH (CM, B, TC, HTC)
$\mathrm{HTC}=\mathrm{HTC}-\mathrm{HOC}$
COMPUTE TMPROVED GOESS OP PLAME TEMPERATURE BY ITPRATING AT CONSTANT COMPOSITIOA
TEN EW=TE
DO 60 NDT $=1,100$
CALCOLATE HPAT CONTENT AND BEAT CAPACITY FOB RECYCLE STREAM E
CALL CPH (EM, B, TENEH, HTE)
CALL CPH (EM, A, TENEQ, CPTE)
$\mathrm{HTE}=\mathrm{HTE}-\mathrm{HOE}$
```
Calculate teqperature difrerence from hta + htC - dhr = hte + Cpte*dt
    DT = (HTA + HTC - DHR - HTE) / CPTE
    IP (NAFTI - EQ. 1) GO TO 65
    TENPH=TENEK+DT
    IP (ABS(DT) .LT. TERR) RETUQN
50 CONTINOE
Constamt composition adimbatic flame temperatore Iterations have not conterged
65 Kconv=0
    RETORN
    END
    surroutine cph (ymoles, A, t, hta)
computes either cp or ht depending on array a
C CPT/R=A1+A2*T + A3 *T**2 + A4 *T**3 + A5 *T**4 + 0.0*T**5
c HT/R = A6 + A 1*T + A 2/2*T**2 + A 3/3*T** 3 + A 4/4*T**4 + A 5/5*T**5
    = B1 + B2*T + B - *T**2 + B4
    RRALK, N, NO, NOD, NONOD, N2, NS
    DIMENSION A (36,2,7), XMOLES(36), HT(36), K(36)
    COMMOiN DHF(36), AM(37), CM(37), EM(37), P(41),C,H,N, O, S,
    1.AC, AH, AN, NO, AS, CSD, HSD, NOD, SOD, SLS, EXPN2, EXPH2O.
    2 EXPH2S, EXPS2, EXPCO2, RR, TERR, ADHF, ONRR, HTA, K, KYRT
    LH=1
    IP (T .GT. 1000.0) LH=2
    DO 10 NC=1,36
calculate the heat content op each of the 36 species at memperature t
    HT(NC) = A(NC,LH,1)
    D0 10 J=2,6
10 HT(NC) = HT (NC) + A(NE,LH,J)*T**(J-1)
calculate ybat content of stream x
    HTX = 0.0
    DO 20 NC=1,36
20 HTX = HTX + XMOLES (NC)*HT(NC)
    HTX = 4TX*1.98726
    RETURN
    END
    SUBROUTINE RSP (T, X, N, JRSP)
    DIMRNSION X(4), Y(N)
    JPSP=JRSP+1
    CALL EQS (1, 1, 0.001, JEQMI, X, Y, N)
    RETURN
    RND
    SUBROUTINP hookR (Yo, X, N, NRSPI, DElta, kGRT, EPS)
comptites mintmum of fCN dSing obdinaty hoore and Jeeves method (HJ)
Calls Stbroutine fSo(y, X, N, MbSP)
```


DO $20 \mathrm{I}=\mathrm{i}, \mathrm{N}$
$\left.20 \quad \operatorname{XINITI}_{\substack{\mathrm{NT}=1 \\ \mathrm{R}=0}} \mathrm{I}\right)=\mathrm{X}(\mathrm{I})$
$K=0$
COMPUTE INITIAL RESPONSE
$\mathrm{NRSP}=0$
CALL RSP ($10, X_{0} 1$. NRSP)
NTRLS = ARSPI/N
DO 200 NTRL=1, NTRLS
IF (KMRT. LT. 1) YBITP (5,1010) NT, NRSP, YO (1) ((X (I) , $I=1, N$)
COMMENCE LOCAL EXPLORATION IN THE XI DIRECTION
$X(1)=X(1)+\operatorname{DELTA}(1)$
CALI RSP (Y, X, 1, NPSP)
IF (Y(1).LT. YO(1)) GO TO 30
$X(1)=X(1)-2.0 * D R L T A(1)$
CALL RSP ($\because, X, 1, \operatorname{NRSP})$
IF (Y'(1).ET. YO(1)) GOTO 30
$X(1)=X(1)+D R L T A(1)$
$Y(1)=Y O(1)$
COMMENCE LOCAL EXPLORATION IN THE $X(I)$ DIRECTION
30 IF (KURT.LT. 0) URITE $(6,1020)$ NRSP. $Y(1)$. (X $(I), I=1, N)$
IP (NRSP GE. NRSPI) GO TO 210
DO $50 \quad I=2, N$
$X(I)=X(I)+D E L M A(I)$
CALI RSP (Y, $X, I, N B S P)$
IF (Y (I) LT. $Y(I-1))$ GO TO 40
$X(I)=X(I)-2.0 * D E L T A(I)$
CALL BSP (Y, X, I. NRSP)
IF (Y(I).LT. Y(I-I)) GO TO 40
$X(I)=X(I)+D E L T A(I)$
$Y(I)=Y(I-1)$
40 IF (KHRT.LT. 0) WRTTE $(6,1020)$ NRSP, $Y(I),(X(J), J=1, N)$
IF (NRSP.GE. NRSPI) GO TO 210
50 CONTINTE
COMPUTE PATTERN MOVE
$N T=N T+1$
IP (K . GT. 0) GO TO 160
60 DO $70 \mathrm{I}=1 . \mathrm{N}$
$70 \quad \mathrm{~B}(\mathrm{I}, \mathrm{NT})=\mathrm{X}(\mathrm{I})$
IF (NT.GT. 2) GO TO 90
DO $80 \mathrm{I}=1$, N
$80 \mathrm{~B}(\mathrm{I}, 1)=\mathrm{XINIT}(\mathrm{I})$
90 DO $100 \mathrm{I}=1 . \mathrm{N}$
$100 \times(\mathrm{I})=2.0 * B(I, N T)-B\left(I_{p} N T-1\right)$
CHECK TO SEE If PATTERN MOVE HAS BEEN MADE
DO $110 \mathrm{I}=1 \mathrm{~F}$ N
IP (ABS (X(I) - B(I,NT)) .GT. 1.0E-03) GO TO 130
110 CONTINUE
CUT STEP SIZP IN HALP
DO $120 \mathrm{I}=1, \mathrm{~N}$
DELTA(I) = DELTA (I) *RHO (I)
IF (DELTA (I) -LT. EPS) RETURN
120 CORTINIE
MRITE (6, 1030) (DRLTA(I), $I=1, N)$
GO TO 200
130 CALL RSP (YO, X, 1. NRSP)
IF (YO (1) -LT. $\mathrm{Y}(\mathrm{N})$) GO TO 150
$K=1$

```
        YROLD = Y(N)
        GO TO 200
        K=-1
        GO TO 200
        160. IF (Y(N).LT. YNOLD) GO TO 60
        DO 180 I=1,N
180 B(I,NT)=B(I,NT- i)
    DO 190 I= 1.N
190 X(T) = B (I, /T)
    YO(1)= YNOLD
    K=-1
200 CONTINTS
210 WRITE (6,1010) NT,NRSP, Y(1), (X(I), I=1,N)
    RETIRN (IHO, , THE COORDINATRS OF THE STARTING POINT AREO,
    1 5F12.6/ (43P, 5F12.6))
1010 FORMAT (1H, 2IS, 126E16.7/, (27X, 5E96.7))
1020 FORMAT (1H, I10. 1PGE16.7/, (27K, 5E16.7)}
1030 FORMAT (1P5E16.7)
    BNDOROTMINE HOOKPY (YO, X,N, NRSPI, DELTA, KRRT, ERS)
    COMPOTES MTNIMUM OP PCN USING MODIPIED PFRTURBATION METYOD
    DIMPNSION X(N), XO(5),Y(S), YO(N), DELTA(N)
    NRSP=-.1
    DO 40 NTRLS=1.4
    COMHUTE INITIAL. FCN VALTE AND STZP SIZES AT START OP RACH SET OF N PEBTGRBATIONS
            DO 10 I= 1,N
            XO(I) = X (I)
    10 DFLTA (I) = 0.005*X(I)
            DELTA(3)=0. 1* X(3)
            CALL RSP(YO, XO, 1, NRSP)
```



```
            DO }30\textrm{I}=1.
            DO 25 NXI=1,100
            X(I) = X (I) + DELTA(I)
            CALL RSP(Y, X, 1, NRSP)
            IF (V(1) -GE. YO(1)) GO TO 20
            YO(1)=Y(1)
            XO(I)=X(I)
            NXIO=NXI
            DELTA(I) = 2.0*DELTA(I)
            GO TO 25
            X(I) = X(I) - DELTA(I)
            DELTA(I) = - 0.5*DELTA(I)
            IP (ABS(DELTA(I)) .LT. EPS) GO TO 26
            CONTINDP
25 CONTINOR
                                X(I)=XO(I) NO, 0) URITE (6;1010) NXIO, NRSP, Y(1), (X(J), J=1,N)
30 IF (KHRT, LE, 0) URITE (6,1010) NXIO, NXIO,NRS, Y(1), (X(J),J=1,N)
                RETURN
1010 FORAAT (1H, 2I5, 106E16.7)
            END
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \$8DATA & & & & 02 & OH & & H2 & H 20 & H2S \\
\hline NH3 & 00 & N2 & 0 & 02 & \(\mathrm{SO}_{3}\) & S20 & 5 & S2 & \\
\hline H2S2 & S \({ }^{\text {B }}\) & SN & S0 & SO2 & HCN & C2N2 & CH4 & C2H2 & C2H4 \\
\hline 54 & S5 & S6 & S7 & S8 & HCN & C2N & & & \\
\hline
\end{tabular}
```

C2H40	Co cos	CO2	CS CS	TOTAL YIRLD	BAYIELD BAYIELD BA
YIELD	O OFSED ON ESED On	1 FSED ON	P CLAUS PQ	BRIEED TO TEED TO	
HIS U	UNITLAOS PLALUDING	G TSITIGN	ONLY NT	HIS UNITTOTA	
TOTAL	L PQAME ITRYCLE	ITETILIBRI	UUILIBEIURA	ONS RATION M ITER	$\begin{array}{ll}\text { M ITERS } \\ 52.100 & 0.000\end{array}$
	$10.970 \quad 21.580$	0.000	59.559	$0.000 \quad 9.432$	52.100 -94.590
	$57.798-4.880$	3.830	34.600	$63.000 \quad 1.640$	-70.947 -94.590
	$13.500 \quad 66.680$	30.840	33.810	$34.840 \cdot 26.140$	24.360 -12.580
	$24.200 \quad 32.300$	73.870	-17.895	54.190 12.540	-12.580-26.417
	33.080 -94.054	55.000	27.980		
	$0.001-0.5$	-0.5	-0.5	$-0.5-0.5$	
UNNTMBER					
\$TRDN	NCATE S28				
SCRFATP A SIZE					
\$GET	A				
1 N 1	1 H 3 (G)		716198 E 00	-4.8521.368E-04	1.4654049? 00
	-9.5678898E-09		$313236 \mathrm{P}-12$	-6.7280933E 03	-2.2695193E-06
1 N 1	1 H3 (G)		493986E 00	$6.4928521 \mathrm{P}-03$	$-2.2695193 E-06$ 9.2389071 E
	3.7393857p-10	-2.3	605554E-14	-6.4019615P-03	$9.6922467 \mathrm{E}-06$
2 N 1	101 (G)	4.1	469476 E 00	-4.1197237E-03	2.5694290 只 00
	-7.8633639P-09		309512E-12	9.74059955P-03	-5.7078462 5 -07
2 N	101 (G)	3.1	529360 E 00	$1.4059955 \mathrm{E}-03$	-5.9446465 E 00
	1.0628209E-10	-7.3	720783P-15	$9.8522048 \mathrm{E}-3$	2.6503100E-06
3 N 2 (G) $7680341 \mathrm{~F}-10$		3.	916148 F 00	-1.3332.52E-03	2.2874980E 00
		2.8545761 E 00		-1.0628336E ${ }^{1} 5$	-5.2566254:-07
$3 \mathrm{~N} 2(\mathrm{G})$				1.5976316F-03	$\text { 6. } 3902379 \mathrm{E} 00$
	1.13158498-10	-7.6897070E-15		-8.9017445E 02	
401	1 (G)	3.0218894F 00		-2.1737249E-03	3.7542203E-06
	-2.9947200E-09	9.07775475-13		2.9137190 E O4	
401	01 (G)	2.5372567E 00		-1.8422190E-05	$-8.8017921 \geq-09$
	5.9643621E-12	$-5.574 .3603 E-16$3.7189946 E		-2.5167288E-03	$8.5837353 \mathrm{E}-06$
502	02 (G)			-1.0576706E 03	$-2.2386670 \mathrm{P}-07$
	8.	3.5975129 F 00		7.814560.3F-04	
502	O2(G)			-1.1927918E 03	$-2.2386670 \mathrm{P}-07$ 3.7492659 P
		-3.8234709P 00		-1.1187229E-03	1.2466319E-06
	: $-2.1035896 \mathrm{E}-10$	-5.2546551E-14		3.5852787 E 03	
60	0181(G)	2.8895544 E 00		$9.9835061 \mathrm{E}-04$	
	1.9802785 P-11	-3.8452940E-16		-0.8811792E	$\begin{array}{r} -2.1873904 E-07 \\ 5.5597016 \mathrm{E} 00 \end{array}$
7 H	H 1 (G)	2.5000000 E 00-0.50000000		2.5470497E 04	-0.
	-0.			$-4.6001096 \varepsilon-01$	
7 R	R1 (G)			-0.5470497e 04	$-4.6001096 E-01$
	-0.	2.8460849 P 00			
	H2 (G)			4.1932116R-03	$-9.6119332 \mathrm{E}-06$
	9.51226628-09	$-3.3093421 \mathrm{E}-12$3.0436897 E 00		$\begin{array}{r} -9.6725372 \mathrm{E} 02 \\ 6.1187110 \mathrm{E}-04 \end{array}$	-7.3993551E-09
	H2 (G)			-8.5491002E 02	
	-2.0331907E-11	$2.4593791 \mathrm{E}-15$			$\begin{array}{r} -1.6481339400 \\ 5.6982316 \mathrm{E}-06 \end{array}$
9 H	H201(5)	$4.1565016 \mathrm{E} 00$$1.4233654 \mathrm{E}-12$		$\begin{aligned} & -1.7244334 \mathrm{E}-03 \\ & -3.0283770 \mathrm{E} 04 \end{aligned}$	$-6.8616246 \mathrm{E}-01$
	-4.5930044E-09			$3.0317115 \mathrm{E}-03$	
	H201 (G)	$2.6707532 \mathrm{E} \quad 00$			$\begin{array}{r} -8.5351570 \mathrm{E}-07 \\ 6.8838391 \mathrm{E} 00 \end{array}$
	1.1790853E-10		$1973569 E-15$	- $3.51886715-04$	$4.2191312 \mathrm{E}-06$
10 H	H2S 1 (G)		$3.9163074 \mathrm{E} 00$	-3.6095585E 03	$\begin{array}{r} 2.3660042 \mathrm{E} 00 \\ -1.5044898 \mathrm{E}-06 \end{array}$
	-2.7453665E-09			-3.6095585 E $4.0131914 \mathrm{E}-03$	
10 H	H2S 1 (G)	$\begin{array}{r} 2.7657149 \mathrm{E} 00 \\ -1.7967689 \mathrm{E}-14 \end{array}$		$-3.3859808 \mathrm{PE} 03$	$\begin{array}{r} 7.9327186000 \\ -3.37794300-05 \end{array}$
	2.6807998E-10		7967681E-14	- $1.8270295 \mathrm{D}-02$	
11 月	H2S2 (G)	$\begin{array}{r} 2.9938408 D 00 \\ -1.1334427 D-11 \end{array}$		-1.5049306004	$\begin{array}{r} 1.0121993001 \\ -4.48429870-05 \end{array}$
	3.1916041D-08		00637580 00	3.8259025D-02	

```
    2.2766275D-08
12 H1S1(G)
            3.8324212E-09
12 H1Si(G)
            7.9044628E-11
13 स1S1(G)
            -9.5089130E-09
13 N1S1(G)
            5.8053531E-11
14 S101(G)
            -3.9518236E-09
14 S101(G).
            6. 3513293E-11
15 S102(G)
            -4.2206766E-09
15 S102(G)
            1:6636523E-10
16 5103(5)
            4.9787393R-09
16 5103(G)
                    2.7322076E-10
17 520(G)
                7.6175958D-09
17 S20(G)
                1.06566870-10
18 S1(G)
                3.1382439E-09
18 S1(G)
            -5.18685 20R-11
19 S2(G)
                6.5393276E-09
19 S2(G)
                3.03680 10p-11
20 S3(G)
                3.6930520D-08
20 S3(G)
                            2.4455268D-11
21 S4(G)
    6.3491648D-08
21S4(G)
                            4.9969144D-11
22 S5(G)
                            9.1984957D-08
22 S5(G)
                            6.73359920-11
23 56(G)
                            1.06874 17D-07
23 S6(G)
    7.8730883D-11
24 S7 (G)
                            1.1358385D-07
24 S7(G)
                            8. 2012996D-11
25 S(8)
                    9.7442361D-08
25 S(8)
                            1.2118311D-10
26. H101N1(G)
```

-4. $1196181 \mathrm{D}-12$
4.2585855: 00
-2.0252030R-12
2.9882040 P 00
$-5.0575843 E-15$
4.06221512 00
3. $2843034 \mathrm{P}-12$
$3.8404466 E 00$
$-4.0693848 \mathrm{E}-15$
3.1364326E 00
1.6540306E-12
$3.8116451 \mathrm{E} \quad 00$
$-4.5139892 \mathrm{E}-15$
3.2257132E 00
2.1392733E-12
5. 1982451E 00
-1.1847837E-14
2.2848661 E 00
$-2.0664641 \mathrm{E}-13$
7.0246624 E 00
$-1.9404513 \mathrm{E}-14$
2.9814487 D 00
$-1.6326458 \mathrm{D}-12$
5.9047410000
$-7.6705767 \mathrm{D}-15$
2.9137258 E 00
$-1.1708983 \mathrm{E}-12$
2.9145770 E 00
3.27099.32E-15
2.6999349 E 00

- $1.7802232 \mathrm{E}-12$
4.18969322 00
-2.1795849p-15 1.9945500000 -1.2163804D-11 6.1926722000 $-1.69314100-15$
1.4194155000
-2.2643419D-11 9.0873363D 00 $-3.5475839 \mathrm{D}-15$ 1.8897767 D 00 $-3.0426968 \mathrm{D}-11$ 1.2164866 D 01 $-4.7932 .239 \mathrm{D}-15$
3.1119561 D 00 - 3. 53280000-11
1.5077601001
$-5.60209310-15$
4.9778233000
-3.7491378D-11
1.7773466001
$-5.8018355 \mathrm{D}-15$
8.1343806D 00
-3.1350711D-11 2.0746770 D 01
$-9.6368670 \mathrm{D}-15$ 2.1681150 E 00
$-1.3521122 \mathrm{D} 04$
-1.2783317E-03
1.7022862 E 04
$1.3585811 \mathrm{E}-03$
1.7385935 E 04
$-2.8190179 \mathrm{E}-03$
3.0872668 F 04
$7.4574590 \mathrm{E}-04$
3.0785184 E 04

1. $3080689 \mathrm{E}-03$
$-3.4572672 \mathrm{~F} 02$
$7.8966107 \mathrm{E}-04$
$-5.9599488 \mathrm{E} 02$
$5.6551207 \mathrm{E}-03$
$-3.6704476 \mathrm{~F} 04$
2. $0595095 \mathrm{E}-03$
$-3.7541457 \geq 04$
$1.6691404 \mathrm{E}-02$
-4.8341587E 04 3.2795509E-03
$-5.0133303 \mathrm{~F} 04$ 1.1177869D-02
-8.0742255003
1.2358188D-03
$-8.7753344 \mathrm{D} 03$ 3. $1294061 \mathrm{E}-04$ 3.2568272E 04
-5.6619390E-04
3. 2604940 E 04
$6.27495498-03$
1.4504935 E OH
3.8469704E-04
1.4188133E 04
2.2142854D-02
1.57381520 .04
4. $2815064 \mathrm{D}-04$
1.5037963004
4.0145224D-02
1.5894574D 04
9.3431550D-04
1.4614621004
5.3439612D-02
1.0967167 D 04
5. $1892483 \mathrm{D}-04$
9.2670434 D 03
$6.2103074 \mathrm{D}-02$
9.4447165003
$9.8626199 \mathrm{D}-04$
7.46 .37886 D 03
6.64861250-02
1.0154422004
1.2854026D-03
8.0403715 D 03
$6.2010762 \mathrm{D}-02$
7.8307163 D 03
$1.4229802 \mathrm{D}-03$
5.5892652 D 03
1.0728954E-02
4.5197966001
$-8.3785906 \mathrm{E}-07$
$-3.53673035-01$
-4. $7105335 \mathrm{E}-07$
6.3482781 E 00
9.3158088E-06
4.0612628 P 00
$-3.0578184 \mathrm{E}-07$.
4.4723207 E 00
6. $1837364 \mathrm{E}-06$
$8.3570292 \mathrm{~F} \quad 00$
$-3.2986127 \mathrm{E}-07$
4.5442232 Z 00
$-2.4970208 \mathrm{E}-07$
9.8177036500
$-8.6254450 \mathrm{P}-07$
$-3.3059963 \mathrm{E}-01$
$-1.4510560 \mathrm{E}-05$
1.3480117 F 01
$-1.4202267 E-06$
-1.0922853 Z 01
$-1.3450125 \mathrm{D}-05$
1.2316628D 01

- $5.45313900-07$
-2.2896825000
$-2.6092508 \mathrm{E}-06$
3.5681154 E OO
$2.8497584 \mathrm{E}-07$

3. $7640850: 00$
$-9.2870775 \mathrm{E}-06$
1.0534222 F 01
$-1.5566633 \mathrm{E}-07$
3.2930300 E 00
-4.1990531.D-05
1.6000899001

- 1.3004522 D-07
-3.3527720000
$-7.7553565 \mathrm{D}-05$
2.0179984001
-2.5876835D-07
-1.5120701001
- 1.0408985 D-04
1.4282674 D 01
$-3.47806120-07$
$-3.3011300 \mathrm{D} 01$
-1.2103100 D-04
1.0832292 D 01
-4.0678901D-07
$-4.4250365 \mathrm{D} 01$
$-1.28847740-04$
5.3569959D 00
-4.2640406D-07
-5.3579567001
- 1.1457934 D-04
-8.7973170000
$-6.2534047 \mathrm{D}-07$
$-6.7705210 \mathrm{D} 01$
$-1.5088089 \mathrm{E}-05$

1. $1933018 \mathrm{E}-08$

26 H101N1(G)
2. $1691615 \mathrm{~B}-10$

27 C2W2(G) 2. $1968412 \mathrm{E}-08$

27 C2N2(G)
$3.0947405 \mathrm{E}-10$
28
C1H4 (G)
$-2.9715432 \mathrm{E}-08$
28 C. 1 H. (G) 7. $1370281 \mathrm{P}-10$

29-C2日2(G) 2. $7950550 \mathrm{E}-08$ $29 \mathrm{C} 2 \mathrm{H} 2(\mathrm{G})$ 3. $1054295 E-10$
$30 \mathrm{C} 2 \mathrm{H}^{4}(\mathrm{G})$
$-1.1560272 \mathrm{~B}-08$
$30 \mathrm{C} 2 \mathrm{H} 4(\mathrm{G})$
7.9452132E-10
$-3.97685180-08$
1.05824680-09
$32 \mathrm{C101}(\mathrm{G})$
$-3.4737726 E-09$
$32 C 101(G)$

1. $1350336 E-10$

33 C101S1(G)

1. $5062439 \mathrm{E}-08$

33 C101s1(G)
$1.8787369 \mathrm{E}-10$
34 C102(G)
6. $3459175 \mathrm{~g}-09$

34 C102 (G) $2.4147446 \mathrm{~B}-10$
35 C1S1 (G)
-7.0858714E-09
35 C1S1(G)
$7.4392024 \mathrm{E}-11$
36 C1S2 (G)
$1.0567832 \mathrm{E}-08$
36 C1S2 (G) $1.3744760 \mathrm{E}-10$
SUNNUMBFR
struncate a
$-3.7007453 \mathrm{E}-12$
3.6538032 E 00
$-1.42963118-14$
3.4026925E 00
$-7.0872074 \mathrm{E}-12$
$6.50242648 \quad 00$
$-2.1482992 \mathrm{E}-14$
$4.2497678 \mathrm{E} \quad 00$
9. $5103580 \mathrm{E}-12$

1. $1795744 \mathrm{E} \quad 00$
$-4.7490353 \mathrm{E}-14$
$7.9033340 E-0.1$
$-8.4484125 \mathrm{P}-12$
4.4965644 F. 00
$-2.0004309 \mathrm{E}-14$
1.1202436E 00
5.23869298-12
2. 5023516E 00
$-5.3235681 \mathrm{E}-14$
9.7491815D-01
$1.6576402 \mathrm{D}-11$
4.3416262000
-7.3375816D-14 3.7871332 E 00 $7.7216841 \mathrm{E}-13$ 2. 9511519000
$-7.7892732 \mathrm{E}-15$ 2.0885523 E 00
$-4.4468532 \mathrm{E}-12$ 5.2063373 E 00
$-1.3103525 \mathrm{E}-14$ 2. 1701000 E 00
$-1.6280701 \mathrm{E}-12$ $4.4129266 \mathrm{E} \quad 00$
-1.6742986E-14 3.3981992E 00 2. $6157526 \mathrm{E}-12$ 3.6765152E 00
$-5.2475514 \mathrm{~B}-15$
2.9174620 E 00
$-2.7944978 \mathrm{E}-12$
$5.9491526 \mathrm{E} \quad 00$
$-9.6838965 \mathrm{E}-15$
1.4682900 E 04
3. $4436455 \mathrm{E}-03$
1.4421804 E 04
$1.7756299 \mathrm{E}-02$
3.5550207 E 04
$4.0532184 \mathrm{P}-03$
3.4904749 E 04
$-6.9126562 \mathrm{E}-03$
$-1.0186632 \mathrm{E} 04$
$1.0950594 \mathrm{E}-02$
$-9.3555627 \mathrm{E} 03$
2.3466122E-02
2.6254844 E 04
4. $2693321 \mathrm{E}-03$
2.5637191E 04
1.3905716 E-02
5.3328836 E 03
5. $1592101 \mathrm{E}-02$
4.4543960 P .03
6. $2001058 \mathrm{D}-02$
$-7.0992211 \mathrm{D} 03$
$1.4234332 \mathrm{D}-02$
$-8.5337119 \mathrm{D} 03$
$-2.1709526 \mathrm{E}-03$
$-1.4363508 \mathrm{~F} 04$
7. $5.525567 \mathrm{R}-03$
$-1.4231827 \mathrm{E} 04$
1.4613989E-02
$-1.7524238 \mathrm{~F} 04$
2.4717661E-03
$-1.8327771 \mathrm{E} 04$
1.0378115E-02
$-4.8352602 \mathrm{E} \quad 04$
8. 1922896E-03
-4.8944043204
$-5.892 .3594 \mathrm{R}-04$
2.6483370 E 04
9.2679896E-04
2.6292309 F 04
$1.2498700 \mathrm{E}-02$
$1.2777076 \mathrm{E} \mathrm{O4}$
$1.7245610 \mathrm{E}-03$
1.2053749 E 04
9.2810199: 00
$-1.2585128 \mathrm{E}-06$
9. 3726015E 00
$-2.5860559 \mathrm{P}-05$
5.4122791 E 00
-1.6639966E-05
$-9.4419093 \mathrm{P} 00$
10. $1602134 \mathrm{E}-05$
-9.17549919-01
-4.0622131E-05
1.2505934 E 01

- 3. $5541928 \mathrm{E}-05$
1.4005228 P 09
$-1.8402608 \mathrm{E}-06$
$-3.1448152 \mathrm{E} 00$

2. $6568374 \mathrm{~g}-06$
1.58.37760 01
$-4.4745225 E-06$
2.4667528E 00
2.4042816D-05
1.9331317001
$-5.7342526 \mathrm{D}-06$
-7.1698486D-01
$5.0757337 \mathrm{E}-06$
2.6335459 己 00
-6.191141112-07
6.5314450 E 00
$-2.0465884 \mathrm{E}-05$
1.2367372 E 01
-1.0011287E-06
$-2.9133306 \mathrm{E} 00$
$-1.0733938 \mathrm{E}-05$
1.0664338 ? 01
-1.2978230 2-06
-7.28757695-01 5.9449817E-06
5.9195268200
-3.8873364E-07
3.9156151 ? 00
$-1.6109132 \mathrm{E}-05$ 8.8763491 E 00
$-7.2111106 \mathrm{E}-07$
$-6.20 .51076000$

TABLE E. 4
McBRIDE COEFFICIENTS
\$Create s22
\$GET S22
\$ MUMEEB
\$5COMPILE
COMEOTER PROGBAMEE 22
CALCULATE SIMULTANEOUS LEAST SQUARES FLT OF CP, HT AND ST FOB H2S2, S20, S2, S8, C 2H40. WHICH YIELDS COEPFICIENTS OP GCBRIDE'S POKEB SEBIES

REAL*8 TO, R. F, C43, A, T10, T20, T30, T40, T50, T60, T70, T80,

2 TT, CP, ST, HT, D, B, Y, X, TE, DET, DELOAT, DLOG
DIMENSION LOXT (2), KAOT (2), F(10), A(10, 10), TT(50), CP(50),
1 ST $\{50\}, \operatorname{HT}(50), \mathrm{D}(10), \mathrm{B}(10,6), \mathrm{Y}(10,6), \mathrm{X}(7), \mathrm{TE}(10,10)$ 。
2 IPEEM(20)
Data nCPDS/3/, LOWT/3.10/, KaCT/10,50/
DATA E/1.OD-07, 1.0D-09, 1.OD-12, 1.0D-15, 1.0D-18,
11 1.0D-03, 1.0D-06, 1.0D-06, 1.0D-05, 1.0D-05/
$\mathrm{T} 0=1000.0$
$\mathrm{B}=1.98726$
C $43=4.0 / 3.0$
DO $80 \mathrm{KT}=1,2$
LOW=LOTT (KT)
KAC=KAOT (KT)
DO $20 \quad L=1.10$
DO $20 \mathrm{~J}=1,10$
$A(I, j)=0.0$
T $10=0.0$
T20 $=0.0$
$\mathrm{T} 30=0.0$
$T 40=0.0$
T50 $=0.0$
$\mathrm{T} 60=0.0$
T $70=0.0$
$T 80=0.0$
TM 2 $=0.0$
$T M 1=0.0$
$\mathrm{P}=0.0$
T02 $=$ T0** 2
T03=T0** 3
T04=TO**4
DO $40 \mathrm{NT}=\mathrm{LOH}, \mathrm{KAO}$
$\mathrm{T}=\mathrm{DFLCAT}(\mathrm{NT}) * 100.0$
$\mathrm{T} 2=\mathrm{T} * * 2$
T3=T** 3
$\mathrm{T} 4=\mathrm{T} * * 4$
$\mathrm{A}(1,1)=\mathrm{A}(1,1)+2.00+(\operatorname{DLOG}(\mathrm{T}))^{* * 2}$
$A(2,1)=A(2,1)+(1.50+\operatorname{DLOG}(T) \quad) * T$
$A(3,1)=A(3,1)+(C 43+\operatorname{DLOG}(T) / 2.0) * T 2$
$A(4,1)=A(4,1)+(1.25+\operatorname{DLOG}(T) / 3.0) * T 3$
$A(5,1)=A(5,1)+(1.20+\operatorname{DLOG}(T) / 4.0) * T 4$
$A(6,1)=A(6,1)+1.0 / T$
$A(7,1)=A(7,1)+\operatorname{DLOG}(T)$
$T 10=T 10+T$
$\mathrm{T} 20=\mathrm{T} 20+\mathrm{T} 2$
T30 $=T 30+T 3$
$\mathrm{T} 40=\mathrm{T} 40+\mathrm{T} 4$
$\mathrm{T} 50=\mathrm{T} 50+\mathrm{T} * * 5$
$T 60=T 60+T * * 6$

```
    T70= 270 + T#*7
    T80=T80 +T*$8
    TM2 = TM2 + 1.0/T2
    TM1 = TM1 + 1.0/T
    P=P+1.0
    A(8,1)=1.0
    A(9,1) = 1.0
    A(10,1)= DLOG(TO)
    A(2,2)=9.0/4.0*T20
    A(3,2)}=5.0/3.0*T3
    A(4,2) = 35.0/24.0*T40
    A(5,2)=27.0/20.0*T50
    A(6.2) = P/2.0
    A(7,2) = T10
    A (8,2) = T0
    A(9,2) = T0/2.0
    A(10,2)=T0
    A(3,3)=49.0/36.0*T40
    A (4,3) = 5.0/4.0%750
    A(5,3)=143.0/120.0*T60
    A(6,3) = T 10/3.0
    A(7.3)=120/2.0
    A(8,3)=T02
    A(9,3)= 102/3.0
    A(10,3)=T02/2.0
    A(4,4)=169.0/144.0*T60
    A(5,4)=17.0/15.0*270
    A(6.4)=T20/4.0
    A(7.4) = T 30/3.0
    A(8,4)=T03
    A(9,4)=T03/4.0
    A(10,4)= 103/3.0
    A(5.5) = 441.0/400.0*T80
    A (6,5)=T30/5.0
    A(7.5)=240/4.0
    A(8,5)=T04
    A(9,5)=T04/5.0
    A(10,5)=104/4.0
    A(6.6) = TM2
    A(7,6)=0.0
    A(8.6) = 0.0
    A(9,6) = 1.0/T0
    A(10,6)=0.0
    A(7,7)=P
    A (8,7) = 0.0
    A(9,7)=0.0
    A(10,7)=1.0
    DO }30I=8,1
    DO 30 J=8,10
    30 A(I,J) = 0.0
    CALCULATE OTHEG ELEMENTS OF SYMMETBIC MATRIX
    DO }40\textrm{I}=1,1
    DO 40 J=1,10
    40 A(I,J)=A(J,I)
COMPUTER WRITES MATRIX BEPORE INVEBTING IT
    #RITE (6,1000)
    ERITE (6,1010) ((A (I,J), J=1,10), I=1,10)
    HRITE (3,1010) ((A (I,J), J=1,10), I=1,10)
COMPOTER SCALES MATAIX BEFORE INVEETING IT
    DO 45 I=1.10
    DO 45 J=1,10
    45 A(I,J)=A(I,J) *F(I)
    #BITE (6,1010) ((A (I,J), J=1,10), I=1,10)
CALCOLATE VECTOR D, WHICH IS A FONCTION OF CR. HT AND ST
    DO 65 NCPD=1.NCPDS
    READ (5,1030) DHP298
    GRITE(6,1030) DHF298
    READ (5,1030) (TT(NT), CP(NT), ST(NT), HT(NT), NT=LOQ;KAO)
```

YRITR $(6,1030)(T T(N T), C P(N T), S T(N T), H T(N T), N T=L O R, K A O)$
DO $55 I=1,10$
$D(I)=0.0$
DO. $60 \mathrm{NT}=\mathrm{LOH}, \mathrm{KAO}$
$T=$ DFLOAT (NT) * 100.0
CONTEBT ENTHALPY EROM KILOCALORIES/MOLE TO CALOEIES/HOLE AND DIVIDE EY TEAP $\mathrm{HT}(N T)=(\mathrm{HT}(\mathrm{NT})+\mathrm{DHF} 298) * 1000.01 \mathrm{~T}(\mathrm{ST}(\mathrm{NT}) * D L O G(T)$
$\mathrm{D}(1)=\mathrm{D}(1)+\mathrm{CP}(\mathrm{NT})+\mathrm{HT}(\mathrm{NT})$

$D(3)=D(3)+(C P(N T)+(C P(N T)+H T(N T) / 4.0+S T(N T) / 3.0) * T * 3$
$D(4)=D(4)+(C P(N T)+H T(N T) / 5.0+S T(N T) / 4.0) * T * * 4$
$D(5)=D(5)+(C P(N T)+H(N)$
$D(6)=D(6)+H T(N T) / T$
$D(7)=D(7)+S T(N T)$
$D(8)=C P(10)$
$D(9)=H T(10)$
$D(10)=S T(10)$
COMPUTEE DIVIDES D BY
GAS CONSTANT G AND SCALES D IN SAGE MANNER AS BATBIX A
DO $65 \mathrm{I}=1,10$
$65 E(I, N C P D)=D(I) * F(I) / R$
WRITE $(0,1050)(D(I), I=1,10) 10, B, Y$ IPEBM, 10, TR, DET, JBXP)
CALL SLE $(10,10, \mathrm{~A}, \mathrm{NCPDS}, 10, \mathrm{~B}, \mathrm{l}, \mathrm{ICEA}$,
HRITE $(6,1060)$ DET, JEXP $, ~ I=1,10), ~ N C P D=1, ~ N C P D S)$

CHECK COEPEICIENTS OBTAI
DO 80 NCPD=1, NCPDS
DO $70 \mathrm{I}=1.7$.
70

$$
X(I)=Y(I, N C D D)
$$

$T=298.15$
T2=T** 2
$\mathrm{T} 3=\mathrm{T} * * 3$
$\mathrm{T} 4=\mathrm{T} * * 4$
$\mathrm{HT}(2)=(\mathrm{X}(1) \quad+\mathrm{X}(2) * \mathrm{~T} / 2.0+X(3) * \mathrm{~T} 2 / 3.0+X(4) * T 3 / 4.0$.
$1 \quad X(5) * T 4 / 5.0 * X(6) / T) * B * T$
DO $80 \mathrm{NT}=\mathrm{LO}, \mathrm{KAO}$
$T=$ DFLOAT $(N T) * 100.0$
$\mathrm{T} 2=\mathrm{T} * * 2$

$1_{1 .}^{C P(N T)=} \quad X(5) * T 4+X(2) * T / 2.0+X(3) * T 2 / 3.0+X(4) * T 3 / 4.0 *$

$\begin{aligned} \mathrm{ST}(N T)= & X(1) * \operatorname{LOG}(T)+X(2) \\ & X(5) * T 4 / 4.0+X(7)\end{aligned}$
$C P(N T)=C P(N T) * B$
CONVERT ENTHALPY FROM KILOCALOEIES/MOLE TO CALORTES/MOLE
$\mathrm{HT}(N T)=\mathrm{HT}(\mathrm{NT}) \neq \mathrm{R}+\mathrm{T} / 1000.0-\mathrm{HT}(2) / 1000.0$
$S T(N T)=S T(N T) * R$
80 HRITE $(6.1030) \mathrm{T}, \mathrm{CP}(\mathrm{NT}), \mathrm{ST}(\mathrm{NT}), \mathrm{HT}(\mathrm{NT})$ WSITE $(6,1010)$ HT (2).
STOR
1000 FORMAT ('0')
1010 FOGMAT (//(1210013.5))
1030 FORMAT (4F10.3)
1040 FORMAT (20X, 1P3E20.7/ 1P4820.7)
1050 FOBMAT (/(1P5D26.16))
1060 FORMAT (D20.8. 15)
END
\$\$DATA
SUANUMBEB

APPENDIX F

ERROR ANALYSIS

The maximum errors, not the most probable ones are estimated in this appendix. Two rules were used in the estimation:
--When variables are added or subtracted, their absolute errors are added.
--When variables are multiplied or divided, their percent errors are added.

The absolute errors of directly measured variables were obtained from the specifications of instrument manufacturers. The other errors listed in Tables F1 and F2 were calculated from the following equations:

$$
\begin{align*}
& P A=42\left(m_{A} x_{A}+b_{A}\right) /\left(m_{H_{2}} S_{H_{2}} S+b_{H_{2} S}\right) \tag{F.1}\\
& Q_{i}=m_{i} x_{i}+b_{i} \tag{F.2}\\
& y_{i}=Q_{i} /\left(Q_{i}+Q_{N_{2}}\right) \tag{F.3}
\end{align*}
$$

where $\mathrm{i}=\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$ or SO_{2}
The errors in the compositions, sulphur yield and PA by mass balance were estimated from Eqs. 4.12 to 4.21 .

TABLE F. 1

Estimate of errors in stoichiometric air, PA, by flow meters (Run 77)

Variable	Typical Value	Absolute Error*	Percentage Error*
$\mathrm{x}_{\text {A }}$	54.5	1	1.83
m_{A}	3.975	0.02	0.5
$\mathrm{m}_{A} \mathrm{X}_{\mathrm{A}}$	216.64	5.05	2.33
b_{A}	-75.844	0.38	0.5
$m_{A} x^{+b}{ }^{+b}$	$140.796 \mathrm{ml} / \mathrm{min}$	$5.43 \mathrm{ml} / \mathrm{min}$	3.86
42	42	0	0
$42\left(m_{A} x_{A}+b_{A}\right)$	5913.432	228.26	3.86
$\mathrm{X}_{\mathrm{H}_{2} \mathrm{~S}}$	36	1	2.78
$\mathrm{m}_{2} \mathrm{~S}$	1.370	0.01	0.5
$\mathrm{m}_{\mathrm{H}_{2}} \mathrm{~S}^{\mathrm{x}} \mathrm{H}_{2} \mathrm{~S}$	49.32	1.62	3.28
$\mathrm{b}_{\mathrm{H}_{2} \mathrm{~S}}$	1.789	0.01	0.5
$\mathrm{m}_{\mathrm{H}_{2}} \mathrm{x}_{\mathrm{x}_{2} \mathrm{~S}}+\mathrm{b}_{\mathrm{H}_{2} \mathrm{~S}}$	$51.11 \mathrm{ml} / \mathrm{min}$	$1.63 \mathrm{ml} / \mathrm{min}$	3.19
PA	115.70	8.16	7.05

* The errors may be positive or negative.

TABLE F. 2
Estimates of errors in chemical compositions and sulphur yield

Variable	Typical Value	Error	Percent Error
	12.0	1	8.33
	2.119	0.01	0.5
	25.43	2.25	8.83
b	-3.698	0.02	0.5
$\mathrm{Q}_{\mathrm{H}}=\mathrm{m}_{\mathrm{H}} \mathrm{x}_{\mathrm{H}}+\mathrm{b}_{\mathrm{H}}$	$21.73 \mathrm{ml} / \mathrm{min}$	$2.27 \mathrm{ml} / \mathrm{min}$	10.45
	48.20	1	2.07
m_{H}	1.370	0.01	0.5
	66.03	1.70	2.57
	1.789	0.01	0.5
$\mathrm{Q}_{\mathrm{H} \mathrm{S}}=\mathrm{m}_{\mathrm{H}} \mathrm{S} \mathrm{x}_{\mathrm{H}} \mathrm{S}+\mathrm{b}_{\mathrm{H}}$	$67.82 \mathrm{ml} / \mathrm{min}$	$1.71 \mathrm{ml} / \mathrm{min}$	2.52
x_{SO}	47.4	1	2.11
$\mathrm{m}^{\text {S }}$	0.9427	0.005	0.5
	44.68	1.17	2.61
$\mathrm{b}^{\text {S }}$	5.262	0.03	0.5
$\mathrm{Q}_{\mathrm{SO}_{2}}=\mathrm{m}_{\mathrm{SO}_{2}} \mathrm{x}_{\mathrm{SO}_{2}}+\mathrm{b}_{\mathrm{SO}_{2}}$	$49.95 \mathrm{ml} / \mathrm{min}$	$1.20 \mathrm{ml} / \mathrm{min}$	2.40

TABLE F. 2 Continued

Variable
Typical Value
Error
Percent Error

TABLE F. 2 Continued

Variable	Typical Value	Absolute Error	Percent Error
$\mathrm{n}_{\mathrm{H}_{2}}=\mathrm{y}_{\mathrm{H}_{2}}$	0.5 moles	0.05 moles	10.45
$\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}=\mathrm{y}_{\mathrm{H}_{2} \mathrm{~S}}$	4.7 moles	0.12 moles	2.52
$\mathrm{n}_{\mathrm{SO}_{2}}=\mathrm{y}_{\mathrm{SO}_{2}}$	7.1 moles	0.17 moles	2.40
$\mathrm{n}_{\mathrm{N}_{2}}=\mathrm{y}_{\mathrm{N}_{2}}$	87.7 moles	2.26 moles	2.58
$0.532 \mathrm{n}_{\mathrm{N}_{2}}$	46.66 moles	1.20 moles	2.58
${ }^{2 \mathrm{n}} \mathrm{SO}_{2}$	14.20 moles	0.34 moles	2.40
$\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=0.532 \mathrm{n}_{\mathrm{N}_{2}}^{-2 \mathrm{n}_{\mathrm{SO}}^{2}}$	32.46 moles	1.54 moles	4.75
2	25.86 moles	1.76 moles	6.81
${ }^{n_{S}}$	12.93 moles	0.88 moles	6.81
$\mathrm{n}_{\mathrm{T}}=\mathrm{n}_{\mathrm{H}_{2}}+\mathrm{n}_{\mathrm{H}_{2}} \mathrm{~S}^{+\mathrm{n}_{\mathrm{SO}}^{2}}$	145.39 moles	5.02 moles	3.45
P_{H}	0.0034 atm	0.0005 atm	13.90
$\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}$	0.0323 atm	0.0019 atm	5.97
$\mathrm{P}_{\mathrm{SO}_{2}}$	0.0488 atm	0.0029 atm	5.85
$\mathrm{P}_{\mathrm{N}_{2}}$	0.6032 atm	0.0364 atm	6.03
$\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}$	0.2233 atm	0.0194 atm	8.70
$\mathrm{P}_{\mathrm{S}_{2}}$	0.0889 atm	0.0091 atm	10.26

Variable	Typical Value	Error	Percent Error
${ }^{2 n} S_{2}$	25.86 moles	1.76 moles	6.81
$\left(2 \mathrm{n}_{\mathrm{S}_{2}}+\mathrm{n}_{\mathrm{H}_{2}} \mathrm{~S}^{+} \mathrm{n}_{\mathrm{SO}_{2}}\right)$	37.66 moles	2.05 moles	5.44
$\mathrm{Y}=200 \mathrm{n}_{\mathrm{S}_{2}} /\left(2 \mathrm{n}_{\mathrm{S}_{2}}+\mathrm{n}_{\left.\mathrm{H}_{2} \mathrm{~S}+\mathrm{n}_{\mathrm{SO}_{2}}\right), ~}^{\text {(}}\right.$	68.67\%	8.41\%	12.25
Temperature	$1200{ }^{\circ} \mathrm{C}$	$12^{\circ} \mathrm{C}$	1\%

[^0]: *Table E. 1 of Appendix E.

[^1]: $1.67024 \mathrm{D}-02$
 $2.05000 \mathrm{D}-02$
 2.05000001
 4. 10000D 04
 1.06600008 3.24720D 11
 8. 53650D-06 $0.00000 \mathrm{D}-01$ $0.00000 \mathrm{D}-01$
 $0.00000 \mathrm{D}-01$ $0.00000 D-01$
 $1.00000 D-03$ $0.00000 \mathrm{D}-01$

[^2]: The legend is on page 58 .

