UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Convective heat transfer in a rotary kiln Tscheng, Shong Hsiung 1978

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1978_A1 T82.pdf [ 11.87MB ]
Metadata
JSON: 831-1.0058792.json
JSON-LD: 831-1.0058792-ld.json
RDF/XML (Pretty): 831-1.0058792-rdf.xml
RDF/JSON: 831-1.0058792-rdf.json
Turtle: 831-1.0058792-turtle.txt
N-Triples: 831-1.0058792-rdf-ntriples.txt
Original Record: 831-1.0058792-source.json
Full Text
831-1.0058792-fulltext.txt
Citation
831-1.0058792.ris

Full Text

CONVECTIVE HEAT TRANSFER IN A ROTARY KILN by SHONG HSIUNG TSCHENG B.E., National Taiwan University, Taiwan, 19 6 8 M.S., West V i r g i n i a University, U.S.A., 1972 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of CHEMICAL ENGINEERING We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September, 1978 © Shong-Hsiung Tscheng, 1978 In presenting th i s thes is in p a r t i a l fu l f i lment of the requirements for an advanced degree at the Un ivers i t y of B r i t i s h Columbia, I agree that the L ibrary shal l make i t f ree l y ava i lab le for reference and study. I fur ther agree that permission for extensive copying of th is thes is for scho lar ly purposes may be granted by the Head of my Department or by his representat ives . It is understood that copying or pub l i ca t ion of th is thes is fo r f i n a n c i a l gain sha l l not be allowed without my wr i t ten permission. Department of (^$C*n< £VL^<y? -e^r> \PJ The Univers i ty of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date Skjde.r*t*r ^ 9 j /97# ABSTRACT Convective heat transfer i n a rotary k i l n was studied as a function of operating parameters. The experiments were carried out in a steel k i l n of 0.19 m i n diameter and 2.44 m. in length. The operating parameters covered included gas flow rate, s o l i d throughput, r o t a t i o n a l speed, degree of s o l i d hold-up, i n c l i n a t i o n angle, p a r t i c l e size and temperature. To mini-mize radiation e f f e c t s , a i r was used as the heating medium and maximum i n l e t a i r tempera'tures were limited to 650 K. Ottawa sand was used i n a l l the runs except i n the study of the e f f e c t of p a r t i c l e size where limestone was employed. The experiments v/ere conducted under conditions where the bed height along the k i l n was maintained constant and the bed was i n the r o l l i n g mode. Both • the heat transfer c o e f f i c i e n t s from the gas to the solids bed and the gas to the rotating wall were found to be s i g n i f i c a n t l y influenced by gas flow rate. Increasing rotation a l speed increases the gas to bed heat transfer, but decreases the gas to wall heat transfer. The former e f f e c t i s r e l a t i v e l y small. The e f f e c t of degree of f i l l was s l i g h t l y negative i n the gas to sol i d s bed heat transfer, and i n s i g n i f i c a n t i n the heat transfer from the gas to wall. The effects of i n c l i n a t i o n angle , solid-throughput , p a r t i c l e size and- temperature were found n e g l i g i b l e over the range tested. One of the major findings i n t h i s study i s that contrary to suggestions i n the l i t e r a t u r e , the c o e f f i c i e n t s for gas to bed heat transfer are about an order of magnitude higher than those for gas to wall. The higher c o e f f i c i e n t s for gas to sol i d s bed are attributed to two factors, the underestimation of the true area by basing c o e f f i c i e n t s on the plane chord area and the e f f e c t on the gas fi l m resistance of the rapid p a r t i c l e v e l o c i t y on the bed sur-face. The experimental data were correlated i n a form suitable for design purposes, and the res u l t s compared with meager data available i n the l i t e r a t u r e . A mathematical model was developed for convective heat transfer from the gas to a r o l l i n g solids bed. The mode] re-quires the knowledge of the gas to p a r t i c l e heat transfer co-e f f i c i e n t and the r o l l i n g v e l o c i t y of the aerated p a r t i c l e s . The model gives a reasonable prediction of the gas to bed c o e f f i c i e n t i n a rotary k i l n using values of the gas to p a r t i -c l e c o e f f i c i e n t taken from the l i t e r a t u r e . The' required data on the surface v e l o c i t y of p a r t i c l e s was obtained i n a l u c i t e k i l n of the same siz e . Residence time d i s t r i b u t i o n of p a r t i c l e s was also studied b r i e f l y to v e r i f y that so l i d s were nearly i n ax i a l plug flow. A simple mathematical model of a rotary k i l n -'heat ex-changer i s presented. This model predicts gas, sol i d s and wall-temperatures i n a k i l n as a function of the k i l n design and o p e r a t i n g p a r a m e t e r s u s i n g t h e ho.at t r a n s f e r c o r r e l a t i o n s d e v e l o p e d i n t h i s w o r k . TABLE OF CONTENTS ABSTRACT , i i ACKNOWLEDGEMENTS x v i L 1ST "OF TABLES" "" i x-LIST OF .FIGURES x i 1. INTRODUCTION 1 2. LITERATURE REVIEW , 8 2.1 Mechanism of Charge Movement 8 2.2 Retention Time and Holdup 15 2.3 Residence Time D i s t r i b u t i o n 21' 2.4 Surface Time . . . I 28 2.5 Heat Transfer 31. a. Conduction 3 2 b. Convection 40 c. Radiation » 44 3. SCOPE OF PRESENT WORK 47 4. APPARATUS AND MATERIALS 49 4.1 Apparatus 49 a. Kilns 49 b. Feeding System 54 v i . c. Receiving System . . . . . 4^ i d. A i r Heating System 56 1 e. Thermocouples 56 4.2 Materials 6 0 5. EXPERIMENTAL PROCEDURE 6 4 5.1 Retention Time and Solid Throughput . . . 4^ 5.2 Residence Time D i s t r i b u t i o n 65 5.3 Surface Time 6 7 5.4 Heat Transfer 6 9 a. Experimental Procedure 7 0 b. Preliminary Test 71 c. Operating Conditions . , , 6. RESULTS AND DISCUSSION 7 3 6.1 Types of Bed Movement 7 3 6.2 Lateral and Radial V e l o c i t y 7 3 6.3 Surface Time 7 8 6.4 S o l i d Throughput and Retention Time . . . 85 6.5 Residence Time D i s t r i b u t i o n , . 9 3 in? 6.6 Gas and Bed Temperatures J 6.7 Ax i a l Temperature D i s t r i b u t i o n 6.8 Calculation Method for Heat Transfer C o e f f i c i e n t s , 1 2 6.9 Bed to Wall Heat transfer 1 2 0 6.in Heat Transfer C o e f f i c i e n t s "1 o o a. Local Heat Transfer C o e f f i c i e n t s . . . v i i . b. E f f e c t of A i r Temperature 127 c. F f f e c t of Gas Flow 1 2 7 d. E f f e c t of Rotational Speed 130 e. E f f e c t of degree of F i l l , 135 f. Ef f e c t of Solid Throughput and Incli n a t i o n Angle 137 g. E f f e c t of P a r t i c l e Size 1 4 0 h. Comparison with Previous Work 144 6:111Correlation of Heat Transfer C o e f f i c i e n t s . 151 6.12 Scaleup 153 7. A MODEL FOR GAS TO BED HEAT TRANSFER 161 7.1 True Surface Area 161 7.2 Individual P a r t i c l e Heat Transfer 165 7.3 Gas to Bed Heat Transfer C o e f f i c i e n t . . . 168 7.4 Gas to P a r t i c l e Heat Transfer C o e f f i c i e n t 171 7.5 Comparison with Experimental Data 174 3. MODELLING OF ROTARY KILN HEAT EXCHANGER . . . . 182 9. CONCLUSIONS 200 10. RECOMMENDATION FOR FUTURE WORK 202 NOMENCLATURE 204 REFERENCES 2 09 APPENDIX A Ca l i b r a t i o n of Equipment 215 B Surface Area and Surface Veloci t y 223 C Sample Calculations . • 233 v i i i D Computer Programs E Data 244 - J ' 257 i x LIST OF TABLES Table 2-1 E f f e c t of K i l n Length on D and Pe . . . . 2-2 Radiant Heat Transfer C o e f f i c i e n t . . . . 4-1 Key to Figure 4-1 4- 2 Physical Properties of Ottawa Sand and Limestone 5- 1 K i l n Operating Conditions 6- 1 Relationship of V,/V vs N 6-2 Operating Conditions and Calculation Results of RTD Experiments . 6-3 Local Heat Flows and Heat Transfer C o e f f i c i e n t s 6-4 E f f e c t of Degree of F i l l on Heat Transfer -Rate and Bed Surface . . . 6-5 Gas to Solids Heat Transfer C o e f f i c i e n t -Limestone 6-6 Comparison of Air-Wall Heat Transfer C o e f f i c i e n t i n Empty Kilns 6-7 Result of Regression Analysis for Nu g to 6- 8 Result of Regression Analysis for Nu„„ 3 -1 gw 7- 1 Input Data for Equation 7-14 7-2 Calculation for Gas-Particle Heat Transfer C o e f f i c i e n t 7-3 Calculation of h „ from Equation 7-14 . . gs 29 46 51 63 72 84 94 124 138 143 148 154 156 176 177 180 X 8-1 Co e f f i c i e n t s for Equations 8-5 and 8-6 . . . . 186 8-2 Parameters i n Figure 8-2 1 9 0 Appendix A - l C a l i b r a t i o n of Thermocouples . . . 219 A-2 Thermocouple Data 220 C-l Tabulation of Calculation for RTD run (R2) . . 2 3 4 TABLE OF FIGURES Figure 1-1 Basic Components of Rotary K i l n 2 1- 2 Heat Transfer Modes i n Rotary K i l n 5 2- 1 Types of P a r t i c l e Movement i n Rotary K i l n . . 10 2-2 Mechanism of Slumping Charge i n a Rotary K i l n 11 2-3 Path of a P a r t i c l e i n an Ideal Rotary K i l n 11 2-4 Relationship of A x i a l Dispersion C o e f f i c i e n t and Rotational Speed 27 2-5 ' Bed-Wall; Keat Transfer by Conduction . . . . .33 2-6 Penetration Model for Bed-Wall Heat Transfer Proposed by Wachters and Kramers 3 3 2-7 Two-region Penetration Model for Ball-Wall Heat Transfer Proposed by Lehmberg et a l . . 39 2-8 Convective Heat Transfer C o e f f i c i e n t from Bed to A i r , Data of Wes et a l 4 3 4-1 Schematic Diagram of Apparatus 50 4-2 End Box and Seal System 53 4-3 Conical Receiver 55 4-4 Schematic Diagram of Thermocouple Arrangement 57 4-5 Diagram of Suction Thermocouple 59 4-6 Typical Response of Suction Thermocouple . . 59 4-7 Commutator Copper Rings 61 x i i 6-1 Photographs of Bed Motions -74 6-2 Trace of Individual P a r t i c l e i n K i l n 7 5 6-3 P a r t i c l e V e l o c i t y i n a Rotary K i l n 77 6-4 Retention Time and Surface Time vs. Rotational speed 8 0 6-5 Ratio of Surface Time to Retention Time vs. N/N 81 6-6 Surface Veloci t y vs. Rotational Speed . . . . 82 6-7 E f f e c t of Rotational Speed on Solid Throughput i n a Uniform Bed Depth Rotary K i l n 86 6-8 . E f f e c t of K i l n I n c l i n a t i o n on Solid Through-put i n a Uniform Bed Depth Rotary K i l n . . . . 87 6-9 Relationship of Solid Throughput and Degree of F i l l i n a Uniform Bed Depth Rotary K i l n . . 88 6-10 E f f e c t of Rotational Speed and In c l i n a t i o n Angle on Retention Time i n a Uniform Bed Depth Rotary K i l n 91 6-11 E f f e c t of Degree of F i l l on Retention Time in a Uniform Bed Depth Rotary K i l n 9 2 6-12 Cumulative Response Curve i n a Rotary K i l n . . 95 6-13 Residence Time D i s t r i b u t i o n (Pe=404) 9 7 6-14 Residence Time D i s t r i b u t i o n (Pe=371) 9 8 6-15 Residence Time D i s t r i b u t i o n (Pe=567) 9 9 6-16 Residence Time D i s t r i b u t i o n (Pe=382) l ° n 6-17 Relationship of D and N/Nc 101 6-18 Radial Solid Temperatures in Rotary K i l n Bed . 103 6-19 Radial Gas Temperature P r o f i l e 105 x d i i 6-20 Typical A x i a l Temperature P r o f i l e s along a Rotary K i l n 107 6-21 Reproducibility of A x i a l Temperature P r o f i l e s along Rotary K i l n 6-22 E f f e c t of A i r Flow Rate on A x i a l Temperature P r o f i l e s along K i l n 110 6-23 E f f e c t of Solid Throughput and Rotational Speed on A x i a l Temperature P r o f i l e s along Rotary K i l n I l l 6-24 E f f e c t of A i r Inlet Temperature on Ax i a l Temperature P r o f i l e 113 6-25 D i f f e r e n t i a l Section of Rotary K i l n H5 6-26 Correlation of Solids Bed to Wall Heat Transfer C o e f f i c i e n t . . . . 121 6-27 Local Heat Transfer C o e f f i c i e n t 1 2 6 6-28 E f f e c t of Gas Temperature on Heat Transfer C o e f f i c i e n t 128 6-29 E f f e c t of Gas Flow Rate on Heat Transfer C o e f f i c i e n t 129 6-30 E f f e c t of Rotational Speed on Heat Transfer C o e f f i c i e n t 131 6-31 E f f e c t of N on h i n Both Slumping and Rolli n g Beds . ? . . . . . 1 3 3 6-32 E f f e c t of Degree of F i l l on Heat Transfer C o e f f i c i e n t 136 6-33 Ef f e c t s of Solid Throughput and Inc l i n a t i o n Angle on Gas-Solids Bed Heat Transfer C o e f f i c i e n t 139 6-34 Ef f e c t s of Solids Throughput and Inc l i n a t i o n Angle on Gas-Wall Heat Transfer C o e f f i c i e n t . 141 6-35 Comparison of Experimental Data with Literature 145 x i v 6-36 Gas-to-Wall Heat T r a n s f e r C o e f f i c i e n t i n an Empty K i l n 1 4 7 6-37 V a r i a t i o n of L o c a l N u s s e l t Number i n Thermal E n t r y Region of a Tube w i t h Constant Heat Rate per U n i t of Length 1 5 0 7-5 E f f e c t of R o t a t i o n a l Speed on T h e o r e t i c a l B a s - S o l i d s Bed Heat T r a n s f e r C o e f f i c i e n t , 155 157 6-38 Comparison of Experimental Data w i t h P r e d i c t e d Values f o r Nu gs 6-39 Comparison of Experimental Data w i t h P r e d i c t e d Values f o r Nu gw • 6- 40 P r e d i c t e d Heat T r a n s f e r C o e f f i c i e n t f o r Scaleup 7- 1 Heat T r a n s f e r from Gas to S o l i d s Bed . . . . 1 6 2 7-2 A r r a y s of Surface P a r t i c l e s -*-^ 4 7-3 Reported R e s u l t s f o r G a s - P a r t i c l e Heat T r a n s f e r i n F i x e d Bed and Rotary Dryer . . . 112 7-4 Comparison of T h e o r e t i c a l Curve w i t h 1 7 5 Experimental Data 178 8-1 Flow Chart of Computer Program f o r Temperature P r o f i l e s 8-2 E f f e c t of Heat T r a n s f e r C o e f f i c i e n t on M o d e l l i n g of Rotary K i l n Heat Exchanger. . . 8-3 E f f e c t of Gas Flow Rate on M o d e l l i n g of T O T Rotary K i l n Heat Exchanger • L J J 8-4 E f f e c t of R e f r a c t o r y I n s u l a t i o n on M o d e l l i n g of Rotary K i l n Heat Exchanger . . 8-5 E f f e c t of K i l n Length on M o d e l l i n g of Rotary K i l n Heat Exchanger 8-6 E f f e c t of K i l n Diameter on M o d e l l i n g of 1 Q7 Rotary K i l n Heat Exchanger XV 8-7 E f f e c t of L/D on Modelling of Rotary K i l n Keat Exchanger 19 8 Appendix A A - l C a l i b r a t i o n of Thermocouple i n Metal Baths . . 216 A-2 C a l i b r a t i o n Curve of Thermocouples 217 A-3 A i r Flow Rate versus Reading on Rotameter Scale 221 A-4 Suction Rate versus Reading on Rotameter Scale 222 Appendix B B-l P a r t i c l e Configuration i n Surface Layers . . . 224 B-2 Emerging Ra-teof Pa-rtiieles from Bed Region to Surface Region 228 B-3 P a r t i c l e Velocity P r o f i l e i n Surface Region . 231 ACKNOWLEDGEMENTS The author wishes to thank Dr. Paul Watkinson f o r h i s guidance and advice throughout the course of t h i s study. The author would l i k e to thank the f a c u l t y members of Chemical E n g i n e e r i n g Department and the s t a f f o f the Chemical Engineer-i n g Workshop f o r t h e i r u s e f u l suggestions and h e l p . F i n a n c i a l a s s i s t a n c e was r e c e i v e d from the N a t i o n a l Research C o u n c i l of Canada, and from the Standard O i l Company of B r i t i s h Columbia L t d . i n the form of f e l l o w s h i p , f o r which the author i s r e a l l y g r a t e f u l . The author i s a l s o indebted to h i s w i f e , J i n j y , f o r her p a t i e n c e and c o n t i n u a l support throughout t h i s work. 1 CHAPTER 1 INTRODUCTION The rotary k i l n i s one of the most widely used i n d u s t r i a l reactors for high temperature processes involving s o l i d s . I t consists of a metal cylinder, l i n e d with brick, rotated about i t s i n c l i n e d axis as shown i n Figure 1-1. The s o l i d feed i s introduced into the upper end of the k i l n by various methods, including i n c l i n e d chutes, overhung screw conveyors and sl u r r y pipes. The charge then tra v e l s down along the k i l n by a x i a l and circumferential movements, due to the k i l n ' s i n c l i n a t i o n and rotation. K i l n i n c l i n a t i o n depends on the process with a t y p i c a l range of values from 0.02-0.063 m/m. Different r o t a t i o n a l speeds are used depending on the process and k i l n size from very low, i . e . , a p e r i p h e r i a l speed of 0.015 m/s, for a TiO^ pigment k i l n , to 0.227 m/s for a cement k i l n , to 0.633 m/s for a unit c a l c i n i n g phosphate material. The sizes of i n d u s t r i a l k i l n s range from 1.7 m.I.D. x 11.8 m long for f i r i n g l i g h t weight aggregate, to 5.9 m x 12 5 m for iron ore d i r e c t reduction. Rotary k i l n s are v e r s a t i l e reactors i n that p a r t i c l e size and s o l i d density are not r e s t r i c t e d as i n the case of f l u i d i z e d or spouted beds, d i r e c t f i r i n g or i n d i r e c t heating may be used, and the k i l n can operate i n either cocurrent or counter-current 2 INCLINED WITH HORIZONTAL Figure 1-1 Basic Components o f Rotary K i l n 3 flow. The l a t t e r feature i s important where high extent of s o l i d conversion i s required. Solids may be fed either i n the dry state, or as a wet paste. The main uses of rotary k i l n s are i n the processes of c a l c i n i n g , fusing, nodulizing, roasting, incinerating, and reducing of s o l i d materials. Lime, magnesia and alumina are calcined to release carbon dioxide and water, at temperatures in the ranges of 1260-1500 K. The nodulizing process i s applied to phosphate rock and certain iron ores with temperatures, 1500 to 1600 K. Roasting occurs at temperatures between 800 K and 1600 K, to oxidize and drive o f f sulfur and arsenic from various ores, including gold, s i l v e r , iron, etc. The rotary k i l n i s successfully used as a pre-combustion reactor for incineration of p l a s t i c s wastes (1). The temperatures i n t h i s process are i n the range of 570-970 K. Iron ore reduction i s t y p i c a l of reducing processes c a r r i e d out i n rotary k i l n s . The reaction temperatures are around 1300 K. Other major applications of rotary k i l n s include production of expanded aggregate, production of activated carbon (in two stages, carbonizing 670-770 K, and a c t i v a t i o n , 1170-1270 K), recovery of zinc from other metals (1200 K, Waelz process), and pro-duction of plaster of paris (382 to 404 K). A considerable portion of the k i l n length may be used to dry solids and bring them up to reaction temperature. In a t y p i c a l wet process cement k i l n , 60% of the 137 meter k i l n length i s required to dry the s l u r r y and heat s o l i d s to 1100 K, whereas the c a l c i n i n g zone and burning zones occupy 22% and 18% of the length, respectively. Stelco reported (2) perfor-mance data for i t s f i r s t commercial iron ore d i r e c t reduction k i l n i n the SL/RN process. About 70% of the 125 meter k i l n length i s used to preheat the solids up to 1120 K, leaving only 30% for reduction. The thermal design of a rotary k i l n i s thus obviously important. To design a k i l n one should calculate the length of each in d i v i d u a l zone for drying, heating, and chemical reaction based on heat transfer and k i n e t i c data. Unfortunately there are few detailed data-available in the l i t e r a t u r e for the c a l -culation of heat flow. The heat transfer process i s complex, p a r t i c u l a r l y i n a f i r e d k i l n i n which radiation, convection and conduction a l l provide contributions to the transfer of heat from and to the gas, the wall and the s o l i d s . The modes of heat transfer i n a f i r e d k i l n are shown i n Figure 1-2. The gas, a heat source, provides heat to the s o l i d s , a heat sink, and the wall, a regenerator. The wall, a f t e r receiving heat from the gas, transmits i t by d i r e c t r a d i a t i o n to the sol i d s bed surface, and by conduction when i t rotates to the underside of the bed. A portion of the heat the wall receives passes to the sur-roundings through i t s outer s h e l l as a heat loss. In a d i r e c t f i r e d k i l n of large diameter the major amount of heat that reaches the s o l i d bed i s transferred by radiatio n from the hot gas. Radiation from the exposed wall to the charge usually ranks next i n importance. Convection from the gas and con-duction from the underside wall provides less than one quarter of the t o t a l heat received by the s o l i d charge. However, i n 5 Hot Gases — Conduction Figure 1-2 Heat Transfer Modes i n Rotary" K i l n . 6 k i l n s used for bicarbonate c a l c i n a t i o n (3) where the tempera-tures are around 450-470 K, and i n the drying and parts of the heating sections of f i r e d k i l n s , convection and conduction contributions are expected to outweigh that of radiation. Also, Brimacombe and Watkinson (4) have shown that i n d i r e c t f i r e d k i l n s of small diameter operating at s o l i d temperatures up to 1100 K convection from the gas i s the primary mode of heat transfer to the s o l i d s . However, there i s no information available to determine under what conditions convection can be ignored i n a f i r e d k i l n . Recent investigators have attempted to simulate and model the performances of alumina k i l n s (5,6), cement k i l n s (7,8), iron ore reduction k i l n s (9,10), aggregate k i l n s (11) and simple heat exchanger k i l n s (12-17, 54). In these studies a number of d i f f e r e n t i a l equations were formulated to predict gas and s o l i d temperature p r o f i l e s along the k i l n . The important parameters of the models included heat transfer c o e f f i c i e n t s for gas to s o l i d s , wall to s o l i d s , and gas to wall. Unfortunately there are no detailed data on heat transfer c o e f f i c i e n t s to incorporate into the models. The values of the c o e f f i c i e n t s were either calculated by using equations the r e l i a b i l i t y of which i s to be v e r i f i e d , or values of the c o e f f i c i e n t s were assumed without further j u s t i f i c a t i o n . The paucity of data for rotary k i l n s was also recognized by a working party report of the Ins t i t u t e of Chemical Engineers in 1971 (18). The report c a l l e d for a comprehensive study of heat transfer processes over wide temperature ranges between soli d s bed, gas and wall i n rotary k i l n s . 7 T h e p u r p o s e o f t h e p r e s e n t w o r k was t o make a n e x p e r i -m e n t a l i n v e s t i g a t i o n o f c o n v e c t i o n h e a t t r a n s f e r i n t h e r e a c t i o n - f r e e s y s t e m o f a n o n - f i r e d r o t a r y k i l n . T h e s t u d y was t o c o v e r t h e e f f e c t s o f a v a r i e t y o f o p e r a t i n g p a r a m e t e r s o n h e a t t r a n s f e r c o e f f i c i e n t s . T h e s e p a r a m e t e r s i n c l u d e d g a s v e l o c i t y a n d t e m p e r a t u r e , s o l i d t h r o u g h p u t , i n c l i n a t i o n a n g l e , r o t a t i o n a l s p e e d , s o l i d b e d h o l d u p , a n d p a r t i c l e s i z e . The a i m was t o d e t e r m i n e w h i c h o f t h e s e f a c t o r s w e r e i m p o r t a n t i n g o v e r n i n g h e a t t r a n s f e r f r o m t h e g a s t o t h e s o l i d s i n r o t a r y k i l n s , a n d t o r e p o r t t h e r e s u l t s i n a m a n n e r s u i t a b l e f o r d e s i g n p u r p o s e s . 8 CHAPTER 2 LITERATURE REVIEW To investigate the heat transfer mechanisms from the gas to the s o l i d s bed, i t i s e s s e n t i a l to understand bed behavior and how i t i s affected by k i l n operating parameters. During the movement of free flowing material i n a rotating k i l n , two v e l o c i t y components appear: the r a d i a l motion of p a r t i c l e s of the charge material due to the k i l n ' s rotation and the a x i a l motion of p a r t i c l e s along the k i l n mainly due to i n c l i n a t i o n . The l a t t e r type of p a r t i c l e motion determines the residence time of s o l i d material i n the k i l n , whereas the former type of p a r t i c l e motion provides s o l i d mixing. 2.1 Mechanism of Charge Movement An excellent description of circumferential motion of the s o l i d bed i n a rotary drum was given by Rutgers (19). In a rotating cylinder a s o l i d p a r t i c l e i s taken up the wall to a p a r t i c u l a r height, depending on wall f r i c t i o n , s p e c i f i c gravity and shape. A mass of granules may be taken up higher on account of the i n t e r a c t i o n between the p a r t i c l e s and the r e s t r i c t e d r e l a t i v e movements of the i n d i v i d u a l grains within the mass. The center of gravity of the whole mass of the p a r t i c l e s i s displaced to a position eccentric to the axis of 9 the c y l i n d e r . The e c c e n t r i c i t y decreases w i t h i n c r e a s i n g l o a d i n g and i t becomes somewhat g r e a t e r w i t h h i g h e r speeds of r o t a t i o n . For each drum r a d i u s t h e r e i s a c r i t i c a l angular speed of r o t a t i o n where c e n t r i f u g i n g s t a r t s and a p a r t i c l e i s taken along w i t h the moving w a l l . T h i s i s gi v e n by = /g :/R or N c = 42.3//!) (2-1) where R, D i n meter. Below N , the c r i t i c a l rpm, s e v e r a l types of movement of d e c r e a s i n g i n t e n s i t y may be d i s c e r n e d . F i g u r e 2-1 g i v e s a c r o s s - s e c t i o n a l p i c t u r e o f these types of r a d i a l motion. In c a t a r a c t i n g , which takes p l a c e about 0.55 to 0.6 N c depending somewhat on p a r t i c l e shape, some of the p a r t i c l e s are showered through the upper s e c t i o n of the c y l i n d e r and f a l l downwards. At lower speeds of 0.1<N/N c< 0.6 cascading o c c u r s . Here the c r o s s - s e c t i o n a l f r e e s u r f a c e has the t y p i c a l l u n a r or kidney shape of F i g u r e 2 - l a . At speeds below 0.1 N , a r e l a t i v e l y t h i n l a y e r of p a r t i c l e s r o l l s down the l i n e a r s u r f a c e as shown i n F i g u r e 2-lb. I f the speeds are c o n s i d e r a b l y lower a slumping motion may occur where the p a r t i c l e s no lo n g e r r o l l down the s u r f a c e c o n t i n u o u s l y . The slumping phenomena, as d e p i c t e d i n F i g u r e 2-2, was d e s c r i b e d by Zablotny (20) and Pearce (16). During r o t a r y motion of the c y l i n d e r the s u r f a c e of the.charge g r a d u a l l y (a) 42.3 Nc (rpm) = (b) D ( m ) 1. CENTRIFUGING N > Nc 2. CATARACTING Nc > N > 0 . 6 Nc 3 CASCADING 0.6 N c > N > 0.1 Nc 4 ROLLING 0.1 Nc > N gure 2-1 Types of P a r t i c l e Movement i n Rotary K i l n (19). Figure 2-2 Mechanism of Slumping of Charge in a Rotary K i l n (20) . Figure 2-3 Path of a P a r t i c l e i n an Ideal Rotary K i l n (20) • moves from position C-C into the position marked by the straight l i n e A-A, forming the angle, A, with the horizontal, which was defined as the angle of repose by Sulli v a n (21) , or s t a t i c angle of s l i d e by Zablotny. In t h i s thesis the term s l i d i n g w i l l be r e s t r i c t e d to motion related to slippage at the wall of the k i l n and Zablotny's angle of s l i d e w i l l be ca l l e d the angle of repose. At the moment when the surface of the charge attains position A-A the surface layer of the charge i s detached in the upper part of the segment and then slumping of the material begins. The quantity of slumping material i s shown schematically i n Figure 2-2 by the A-O-B, which simultaneously forms the angle (J> , c a l l e d the shearing angle. After rapid slumping of that part of the material, the surface of the charge i s i n dynamic equilibrium, as i t i s situated under an angle defined as the dynamic angle of repose. A new surface B-O-B i s then moved up to A-O-A, which r e s u l t s in a second slumping. The shearing angle must be determined experimentally. It depends on the physical properties of the charge material as well as the r o t a t i o n a l speed. The shearing angle diminishes to zero as the r o t a t i o n a l speed increases u n t i l a continuous rather than periodic slumping occurs. This action i s referred to as r o l l i n g . Henein, Brimacombe and Watkinson (22) reported experi-mental results on slumping and r o l l i n g beds i n a 0.4 meter diameter rotary cylinder and k i l n . They indicated that the tr a n s i t i o n between slumping to r o l l i n g not only depends on rot a t i o n a l speed, but also on the l o c a l holdup r a t i o of material i n the k i l n , and on the size and shape of p a r t i c l e s . They have suggested that the mode of the bed behaviour may strongly influence the transfer of heat i n the k i l n . The c r i t e r i a for t r a n s i t i o n from slumping to r o l l i n g have not yet been well defined. In d u s t r i a l rotary k i l n s are rotated at speeds ranging from 0.4 to 3 rpm depending on processes and sizes. The diameters of t y p i c a l i n d u s t r i a l k i l n s are 1.8 to 5.9 m which, in turn, have apparent c r i t i c a l speeds N c of 32 to 17 rpm. Most i n d u s t r i a l k i l n s are thus operated at speeds of 0.1 > N/N c >. 0.01, where the surface of the bed i s expected to be in r o l l i n g motion. For instance the 5.9 m diameter Stelco k i l n (2) operates at a r o t a t i o n a l speed of 0.44 rpm or N/Nc = 0.0257. Themelis, et a l (23) stated that r o t a t i o n a l speed was the major factor of dynamic s i m i l a r i t y for scale-up. In view of the types of motion of p a r t i c l e s i n a k i l n described above, i t would be appropriate to say the f r a c t i o n of the c r i t i c a l speed instead of the r o t a t i o n a l speed may be a better factor to use, so that s i m i l a r i t y of bed motion be preserved i n scale-up. According to the l a t t e r c r i t e r i o n , to scale-up a laboratory k i l n of diameter 0.19 m with a r o t a t i o n a l speed of 3 rpm to an i n d u s t r i a l scale k i l n of 3.0 m diameter, the rot a t i o n a l speed has to be reduced to 0.75'r.pm, according to N = N 1 /ITyD" (2-2) This should maintain the same pattern of bed motion. Details of bed behaviour, s o l i d s motion, e f f e c t of p a r t i c l e size d i s t r i b u t i o n and shape i n k i l n sections of various diameters are under study by Henein, Brimacombe and Watkinson (22). Kilns used i n i n d u s t r i a l processes have i n c l i n a t i o n o angles of about 1-4 , that i s , considerably less than the dynamic angle of repose, which i s about 30-40 for most s o l i d materials. Thus the mass of material does not s l i d e a x i a l l y . During rotation of the k i l n , i n d i v i d u a l p a r t i c l e s of free-flowing material are reportedly (20) s h i f t e d along the axis of the k i l n i n flattened h e l i c a l motion, the components of which are the path of a p a r t i c l e i n the depth of the bed i n the plane of rotation and a path on the surface of the charge as shown i n Figure 2-3. A p a r t i c l e of material located i n the bottom layer of the charge at point 1, during rotation, moves together with the charge along the path arc 1-1'. Then by the ef f e c t of the force of gravity, that p a r t i c l e r o l l s a short a x i a l distance from point 1' along the slanting surface to point 2, from which i t again t r a v e l s together with the charge along the path 2-2', and emerges on the surface at point 2', etc. The progressive a x i a l transport of the entire charge re s u l t s , therefore, from the sum of the r o l l s of i n d i v i d u a l p a r t i c l e s over the surface ( i . e . , 1-1' and 2-2') along the k i l n However, t h i s picture i s probably v a l i d only for an i d e a l l y r o l l i n g bed. 2.2 Retention Time and Holdup One of the most important factors i n design of rotary k i l n s i s the retention time or residence time of the charge for heating or chemical reaction. As early as 1927, S u l l i v a n , Maier and Ralston (21) pioneered an extensive experimental study of the e f f e c t s of operating parameters on retention time in rotary k i l n s . The experiments were conducted i n 2.13 meter long k i l n s with varying diameters of 0.076, 0.152, 0.292 and 0.5 meters. The parameters covered i n c l i n a t i o n angle, ro t a t i o n a l speed, angle of repose, s o l i d feed rate, k i l n diameter, temperature, and discharge co n s t r i c t i o n s . A wide range of materials was employed i n t h e i r study, including Ottawa sand, coal, sawdust, and copper slag. They found that the retention time i s proportional to the square root of the s t a t i c repose angle of the s o l i d , and inversely proportional to k i l n diameter, r o t a t i o n a l speed, and i n c l i n a t i o n angle of k i l n . As expected the time of passage i s independent of temperature at least up to 1170 K. At fixed r o t a t i o n a l speed and i n c l i n a t i o n angle the retention time for a given material and k i l n size i s independent of the s o l i d feed rate over a considerable range. Under these conditions increasing feed rate r e s u l t s i n increasing hold-up of s o l i d s . The following empirical relationship was presented for a k i l n with no d i s -charge co n s t r i c t i o n s , t = 1.77 L /§Z a Q n D (2-3) For a k i l n with an end c o n s t r i c t i o n , a lengthy c o e f f i c i e n t was mul t i p l i e d to the above equation. Bayard (24) l a t e r proposed a formula based on his own data and that of Sullivan et a l . , t - °-31 ( ^ 4 + e ) L (2-4) a n D v ' This equation d i f f e r s from equation 2-3 i n the form of the dependence on the repose angle of the s o l i d . A n a l y t i c a l expressions for the relationship of re-tention time and other parameters were developed i n 1951 by Saeman (25) for l i g h t loading k i l n s , L s i n 9 (2-5) IF D n (a+ty cos0) K D > and by Pickering et a l . (2 6) •LsinG' IT D n sma (2-6) where 0 and 0' are s t a t i c and dynamic angle of repose, respectively. i s angle between bed surface and k i l n axis. Varentsov and Yufa (27) applied dimensional analysis to investigate role of various factors a f f e c t i n g the moving rate of s o l i d s i n a rotary k i l n . A series of experiments was conducted i n k i l n s 6 m long with inside diameters of 0.3 and 0.55 m. S o l i d material used i n these tests included marble chips, sand, coke and p y r i t e . Four p a r t i c l e size ranges were investigated: 0.35-0.56, 1.51-1.70, 3.81-4.40 and 7.07-7.28 mm The following equation was proposed: r J U L 0. 01 -0.33 ,6.0.66 ,4^, 0.08 /*D.0.93 (2-7) where m* i s a c o e f f i c i e n t depending on the k i l n diameter. The value of m* was correlated by u t i l i z i n g the data of Sul l i v a n et a l . for various diameters. For D= 0.5 m, the value of m* i s 1.7 x 10~ 3; 0.75 x 10~ 3 for D = 1.0 m; 0.25 x 10~ 3 for D = 2.0 m. Gas v e l o c i t y , i n equation 2-7, has l i t t l e e f f e c t on retention time (t a Re^*^), and p a r t i c l e size doesn't exercise a s i g n i f i c a n t influence as seen i n the equation since the sum of the powers of p a r t i c l e s i z e , d , appearing i n Ga 1? (-d •3 ) , 4d 2 /TT D2 Y| and d /D, i s 0.1. I t was also concluded that p p ' P gas temperature doesn't a f f e c t the s o l i d throughput i n the k i l n The holdup, n , although appearing i n 4d 2/^D2"n, does not have a s i g n i f i c a n t e f f e c t on retention time either. Zablotny (20) also employed dimensional analysis and carried out experiments i n a k i l n of 3.55 m long and 0.352 m diameter. The following equation was presented, The retention time, obtained from the r a t i o of bed weight/discharge rate, gives the average time of sol i d s re-siding i n the k i l n by assuming uniform bed depth and constant a x i a l volumetric rate of sol i d s along the k i l n . These assumptions are not always v a l i d i n i n d u s t r i a l k i l n s where the bed depths along the k i l n are not uniform or the p a r t i c l e s change i n physical properties due to reaction or drying. Vahl and Kingma (2 8) showed that d i f f e r e n t i a l s i n bed height ex i s t along a horizontal rotating cylinder and thus solids can be transported continuously through i t . This contradicts the empirical equation of Su l l i v a n et a l . , according to which the transport would be n i l in horizontal rotary k i l n s . Vahl and Kingma derived a d i f f e r e n t i a l equation which related the s o l i d throughput to the bed height T with distance x from the feed for a horizontal cylinder. Based on t h i s equation Kramers and Croockewit (2 9) introduced the i n c l i n a t i o n angle and gave the following equation for rotary k i l n s : F 4 * (tana _ dr x _ j | V* ( 2 _ 9 ) 3 sinB dx R R By approximation of -,. . FsinG and introducing the dimensionless group, = n R 3 - ) - a n a and ®k ~ L tana ' a n c^ t^ i e boundary condition, x = x L for x = L, equation 2-9 becomes - 0.193 + 0.193 L-x RN<J> RN(j> X _ 0 _ 1 9 3 LN k (2-11) RN^ This equation shows, i n dimensionless form, the relat i o n s h i p of bed height =- (or holdup n) and distance —, and other K Li operating parameters. When ^ = 0.19 3, a constant height i s obtained over the whole length of the k i l n . After re-arrangement t h i s equation can be rewritten as F = 1.295 x L n D2 tana/ sin9 (2-12) x T i s the bed depth, which i s related to holdup by the L expressions n = ^ (3 - si n 3) and = i - cos % (2-13) where 3 i s the central angle of the sector occupied by the solids i n the cross-section of the k i l n . The retention time can be derived from the r a t i o of bed weight/solid throughput, IL 4" D2 Ln (2-14) Substitution of equations 2-12 and 2-13 into equation 2-14 and approximation of tan a - a yields - = LsinG n D a 1-cos f The retention time for a uniform bed depth i s thus not only a function of the group, LsinO/nDa, but also depends on holdup n. Saeman (25) obtained a sim i l a r a n a l y t i c a l expression for an i n c l i n e d k i l n with various degrees of loading, F = 4- n D 3 s i n 3 £ (i^cosG + a) / sinQ (2-16) b 2 For uniform bed depth, cos6 = o, and substitution of equation 2-13 into equation 2-11 gives - = LsinG _ n _ ^ ( 2 _ 1 7 ) nDa s i n 3 | The retention time i n t h i s equation has a d i f f e r e n t dependence of holdup term from equation 2-12. (Note that 3 i s function of n). From equation 2-9 one w i l l note that there are four operating parameters, which are i n t e r r e l a t e d i n a rotary k i l n operated at uniform bed depth: s o l i d throughput, holdup, r o t a t i o n a l speed and i n c l i n a t i o n angle. For example, at constant holdup and i n c l i n a t i o n angle, r o t a t i o n a l speed can not be increased without s o l i d throughput being increased. Thus, three of the four operating variables i n a uniform bed depth k i l n are independent. 2.3 Residence Time D i s t r i b u t i o n The conversion of so l i d s i n a rotary k i l n reactor depends not only on chemical parameters and the mean residence time of p a r t i c l e s i n the reactor but also, i n general, on the spread i n residence times and the way the spread i s brought about. It i s therefore important to know what spread in residence time d i s t r i b u t i o n i s caused by the flow pattern of the solids i n the k i l n . As indicated above, the p a r t i c l e s i n a rotary k i l n have v e l o c i t y components i n both the longitudinal (axial) d i r e c t i o n and the transverse (radial) d i r e c t i o n . Due to t h e i r more or less random behaviour, the movements are often described mathematically by a type of d i f f u s i o n or mixing c o e f f i c i e n t , i n the a x i a l and r a d i a l d irections. The a x i a l v e l o c i t y p r o f i l e as well as the a x i a l mixing c o e f f i c i e n t w i l l contribute to a spread i n residence time. Conversely, the r a d i a l mixing c o e f f i c i e n t w i l l diminish the e f f e c t of the a x i a l v e l o c i t y p r o f i l e and thereby reduce the spread i n residence time. In a rotary k i l n the r a d i a l mixing c o e f f i c i e n t causes a more or less uniform d i s t r i b u t i o n of element p a r t i c l e s over the cross-section of the k i l n , which tends to make the r a d i a l gradient of s o l i d concentration i n a reacting system zero. A survey of the mixing of granular materials i n rotary cylinders has been given by Rutgers (19) together with some experimental data on a x i a l dispersion. A 0.16 x 0.50 meter rotary cylinder was equipped with varying dimen-sions and shapes of the i n l e t and outlet sections, which resulted i n various holdups of the s o l i d s . His r e s u l t s showed that a x i a l dispersion c o e f f i c i e n t i s d i r e c t l y pro-portional to the square root of r o t a t i o n a l speed at constant residence time i n a horizontal cylinder, and approximately inversely proportional to the square root of holdup at constant r o t a t i o n a l speed. The Peclet number i n his work i s i n the order, of magnitude of two to three. Tracer methods are usually used to study residence time d i s t r i b u t i o n . In rotary k i l n tests tracer p a r t i c l e s i d e n t i c a l to the feed except for color are rea d i l y prepared by use of food dyes. If c , the i n i t i a l concentration of tracer par-t i c l e s , represents the number of tracer p a r t i c l e s injected divided by the t o t a l weight of p a r t i c l e s i n the holdup volume, x t -and c (C,z) i s the concentration at z = — and <; = — (t, L t average residence time), then the a x i a l dispersion model for the tracer i n dimensionless form i s (30, 31, 32): 3C(g,z) 3C(g, z) = 1 8 2C(g,z) (2-15) 3'C 9? Pe 9 z 2 where C(e.,z) = c ( e , z ) / c Q and Pe = uL/n Peclet number For an impulse input of tracers injected into the i n l e t of the rotary cylinder, which i n i t i a l l y contained no tracer, Abouzeid et a l . (30) presented the following set of i n i t i a l and boundary conditions C(o,z) = o ' a c ( c i ) = 9z where 6 (?) = 1 £ = o = o 5 > o Moriyama and Suga (32) replaced the second boundary condition, (2-16a) (2-16b) (2-16c) equation 16c, with C(C,°°) = f i n i t e (2-16d) and solved equation 2-15. This condition, they argued, corresponds to the fact that the mixing region of the par-t i c l e s i s lim i t e d to the surface region of the bed i n the k i l n and that t h i s region i s almost unaffected by the dam near the discharge end. boundary conditions (equations 2-16a, b or c) were lengthy and given i n the publication by Abouzeid et a l . (30). The Peclet numbers are usually derived from the variance o^ 2 or the r e l a t i v e variance OQ of the experimental residence time d i s t r i b u t i o n , instead of from the solution of equation 2-15. The r e l a t i o n -ship of r e l a t i v e variance and Peclet number i s obtained (19, 33) for a closed-closed system i n the a x i a l dispersion model: The solutions of equation 2-15 with i n i t i a l and 0 (2-17) (2-18) The values of Pe, i n rotary k i l n s , are large enough that the following approximation i s v a l i d . Pe - — - (2-19) 0-Moriyama and Suga (32) applied dimensional analysis to obtain the relationship of Pe and other operating variable Based on t h e i r data on a p l a s t i c horizontal cylinder (0.20 x 2.0 meter) and that of Matsui (34), the following equation was presented, i ,w^3^0.516 , T _ 0.524 ,„ ^ 5.55-0.604f Pe = 1.06 x 10 4 (F/D n) J J- U ( L / D ) u ' - ^ (&./D) (2-20) where f i s f r i c t i o n c o e f f i c i e n t (= tanO 1). The Peclet number in t h e i r studies are i n the range of 250-5000. A x i a l d i s -persion c o e f f i c i e n t s were found to be d i r e c t l y proportional to r o t a t i o n a l speed. The ef f e c t s of operating parameters i n addition to rot a t i o n a l speed on residence time d i s t r i b u t i o n were reported by Abouzeid, et a l . (30). The experiments were conducted i n a small scale cylinder of 0.08 x 0.24 m. It was found that the a x i a l dispersion c o e f f i c i e n t increases with increasing i n c l i n a t i o n angle, r o t a t i o n a l speed and s o l i d feed rate, but 26 i s independent of particle s i z e . Lu, et a l . (35) applied a multi-stage combined model to describe the mixing condition of p a r t i c l e s i n a rotating cylinder with cross a i r flow. The model consisted of a series of stages, each stage com-p r i s i n g a plug-flow reactor, a complete-mixing reactor with back flow and a dead volume. Although the model was claimed to f i t t h e i r experimental data well, the resultant equation i s probably too complicated to be p r a c t i c a l and requires too many parameters to be sp e c i f i e d . A study of the e f f e c t of p a r t i c l e segregation on p a r t i c l e motions was presented by Sugimota and co-workers (36-38). The e f f e c t of cross a i r flow was shown by Lu, et a l . (35). The transport of sol i d s i n rotary cylinder devices i s well represented by the a x i a l dispersion model according to several investigators, (30-32). Unfortunately there are no detailed data to predict the values of D except the co r r e l a -t i o n equation of Moriyama and Suga (equation 2-2 0) . This equation was established from the data obtained from laboratory scale horizontal cylinders of L/D - 10. The re s u l t s of several investigations on the r e l a t i o n -ship of a x i a l dispersion c o e f f i c i e n t and r o t a t i o n a l speed are compared i n Figure 2-4. As shown i n the figure there i s s t i l l no agreement on how the a x i a l dispersion c o e f f i c i e n t i s related to r o t a t i o n a l speed, i . e . whether D N or D <* / N or other types. As well, the dispersion c o e f f i c i e n t s d i f f e r by an order of magnitude depending on the physical properties of the CM E x o U J o X < 60 4 0 30 20 10 — i — i — i i n n 1 1 — i — i i t i n Matsui ,0.2m Dx 1.86 m. L , dp = 11.2 mm. Sugimoto,et a l , 0.255 x 0.6m, dp =13mm. Rutgers, 0.16 x 0.50m, dp = 1.9 mm. Moriyama a Suga, 0.20 x 2.0m., dp =2.87 mm. Abouzeid , et a l , 0.08 x 0.24 m., dp =.35 mm. UJ 8 8.0 6.0 •z. o 2 4.0 U J a- 3.0 CO o 20 1.0 0.8 0.6 • A V / • J__J L 3 5 10 20 30 ROTATIONAL SPEED, rpm. M M . 50 100 Figure 2-4 Relationship o f . A x i a l Dispersion C o e f f i c i e n t and Rotational Speed. particulate material (par t i c l e s i z e , i n t e r n a l f r i c t i o n , shape), k i l n dimensions, degree of f i l l , and s o l i d through-put. There are very few data points i n the r o t a t i o n a l speed region t y p i c a l of the rotary k i l n . As indicated i n equation 2-20 the r a t i o of L/D has a s i g n i f i c a n t e f f e c t on Peclet number. In t y p i c a l i n d u s t r i a l k i l n s (39) the r a t i o of L/D ranges from 14 for petroleum coke k i l n s to 30 for long lime k i l n s . However the experimental k i l n s used for the RTD experiments have a smaller L/D r a t i o , about 3 for cylinders of Rutgers, Abouzeid et a l . and Sigumoto et a l . , and about 10 for Matsui and Moriyama and Suga. These investigators did not study the influence of L/D. Wes et a l . (31) used an i n d u s t r i a l scale drum, 0.6 m I.D. x 9.0 m long to study the RTD. In t h e i r experiments the samples were taken at 3.65 m from the entrance and at the end of the rotating drum, which may represent two d i f f e r e n t L/D r a t i o s . The re s u l t s of t h e i r experiments are given i n Table 2-1. Pe increases from 55 to 204 at N=6 rpm, and from 46.9 to 145 at N=2 rpm, when L/D increases from 6.09 to 15. This suggests that the Peclet number i n i n d u s t r i a l k i l n s may be even higher. This high Peclet number then characterizes the s o l i d flow i n a rotary k i l n as e s s e n t i a l l y plug flow (33). 2.4 Surface Time The surface time i s the time the i n d i v i d u a l p a r t i c l e spends on the aerated surface layer before i t returns to the bed. After residing i n the bed and moving along with the wall, 29 TABLE 2-1 Ef f e c t of K i l n Length on D and Pe (Wes, et. al.) L L/D N n t D p e (m) (-) (rpm) (%) (s) (m2/s) (-) 3. 65* 6.08 6 20.1 2.33xl0 3 10.4xl0~ 5 55.1 6 20.0 2.26 12.3 47.9 2 35.4 3.97 7.15 46.9 9 15 6 19. 8 5. 63 7.05 204 6 19. 8 5.65 7.59 189 2 31.4 8.94 6.24 145 *The midway distance where samples were taken. i t returns to the surface layer. The time t h i s p a r t i c l e resides i n the bed i s referred as bed time. The sum of surface time and bed time i s c a l l e d the cycle time. Cycle time, surface time and bed time are functions of r o t a t i o n a l speed, holdup, k i l n diameter, p a r t i c l e physical properties and r a d i a l p o sition i n the k i l n . Since the p a r t i c l e travels along the k i l n i n a h e l i c a l motion, cycle time, surface time and bed time are defined as averages taken over a certain length of the k i l n . Surface time i s expected to be important i n heat transfer processes where p a r t i c l e s i n the surface layers are exposed to hot gases. Heat transferred from the gas phase to the surface layer of the so l i d s i s d i s t r i b u t e d to the bulk material by s o l i d mixing taking place i n the c i r c u l a t o r y bed. In a d i r e c t f i r e d k i l n i t has been estimated (18) that sur-face temperature w i l l r i s e by 8 0 K i n 0.1 seconds, and by 270 K i n one second, i n which l a t t e r period the surface i s renewed. At a depth of 1 mm below the surface layer the heat supply may account to only one percent of that radiated to the surface. Surface time i s also believed to play an im-portant role i n the convective heat transfer process. The experimental r e s u l t s of Wes et a l . (31) showed that some sort of penetration mechanism might exi s t for convection from the gas to the downflowing p a r t i c l e s . Thus, according to penetration theory, a short surface time gives a higher average heat transfer c o e f f i c i e n t . In addition a short time yiel d s more p a r t i c l e s flowing down the surface that c e r t a i n l y increases the heat flux. Although heat transmission by r a d i a t i o n and convection to the aerated surface layer i s important, there i s very l i t t l e information i n the l i t e r a t u r e about surface time except from the work of Hogg, Shoji and Austin (40). They reported that i n t h e i r rotary cylinder, 0.095 m i n diameter and 0.248 m long the f r a c t i o n of surface time to cycle time i s 0.49 at a rotating speed of 90 rpm or N/Nc =0.64. In a rotary k i l n where rotating speeds are operated below 6 rpm, the f r a c t i o n of surface time to cycle time i s far below 0.49. There i s also lack of information i n the l i t e r a t u r e about the thickness of the surface layer. It i s believed that the thickness depends on r o t a t i o n a l speed, i n t e r n a l p a r t i c l e f r i c t i o n , i n c l i n a t i o n angle, holdup, etc. In rotary soda calciners (3) the thickness of the layer was stated t h e o r e t i -c a l l y equal to the diameter of the p a r t i c l e s at 4 rpm where the r o l l i n g pattern s t a r t s . No sizes of the calciners and the p a r t i c l e s were given. In the present work some experiments are c a r r i e d out to study the influence of operating variables on surface time, and a f i l m study on the thickness of the surface layer i s reported. 2.5 Heat Transfer Bowers and Reed (41) correlated heat transfer data from four i n d u s t r i a l k i l n s : limestone c a l c i n a t i o n , dry cement burning, dolomite c a l c i n a t i o n and shale expansion. From the former two kilns-they concluded that the o v e r a l l gas-bed heat transfer c o e f f i c i e n t has the following rel a t i o n s h i p with k i l n diameter, U q = 18.6 D (2-21) where U q : o v e r a l l gas-solid heat transfer c o e f f i c i e n t (W/m3K) D : k i l n diameter (m) Equation 2-21 i s obviously unsatisfactory for design purposes and can only show the order of magnitude of heat transfer c o e f f i c i e n t s , because the co r r e l a t i o n was based on a lim i t e d number (6) of scattered data. It also excludes the ef f e c t s of r o t a t i o n a l speed, s o l i d and gas throughput, i n c l i n a t i o n angle, p a r t i c l e size and does not r e f l e c t the complexity of the actual process that occurs i n the k i l n . 2.5a Conduction Heat transmission by conduction occurs at the under-side of the bed which i s i n contact with the rotating wall. At the moment when the p a r t i c l e s return from the surface layer to the bed, i n which they become at rest r e l a t i v e to the wall and to t h e i r neighbours, the p a r t i c l e s adjacent to the wall receive heat from the wall (Point A i n Figure 2-5), N A R E A 0, =AREA 0 2 Tw i . AREA 0 2 I Ts I y = 0 y=d Figure 2-6 Penetration Model for Bed-to-Wall Heat Transfer Proposed by Wachters and Kramers (3). u n t i l they move up to the point (B i n Figure 2-5) and r o l l on the surface again. Therefore, Wachters and Kramers (3), Wes et a l . (42), Lehmberg et a l . (43) and Nikitenko (44) proposed an unsteady state penetration model for heat con-duction. The following assumptions were made: a) The temperature of the bulk material far from the wall i s constant during the contact time t c . b) The region at the wall i n which heat conduction takes place i s thin compared with the radius of the cylinder, so that the curvature may be neglected. c) Tangential heat conduction can be neglected. d) At t - o the contents of the wall layer are mixed with the bulk material. A heat balance for a circumferential element consisting of p a r t i c l e s adjacent to the wall y i e l d s where a i s the heat d i f f u s i v i t y of p a r t i c l e s , m2/s. The i n i t i a l and boundary conditions used by Wes et a l . were 9 2T (2-22) — = a at T(o,y) = T s T(t,o) = T w (2-23) T(t,°°) = T ' s Experimental measurements were made by Wes et a l . i n an i n d u s t r i a l scale drum of 0.6 x 9.0 m. Potato starch and yellow dextrine so l i d s with p a r t i c l e sizes of 15~100 ym, were used i n the heating process to determine heat transfer c o e f f i c i e n t s , h from the wall to the s o l i d s . The experi-ws mental re s u l t s were claimed to be i n agreement with the following equation, which i s derived from the simple penetration model with equation 2-2 3. 2 k ws h = - or 2 k /~"n~ (2-24) /uat b v a3 c Nikitenko (44) used the following set of i n i t i a l and boundary conditions. T (0,y) = T s T (t,0) = T (2-25) w dT (t,°°) = T (0,y) dy and obtained the following rel a t i o n s h i p . (2-26) No explanation was made of the use of the l a s t boundary condition, and no experimental re s u l t s were displayed i n his paper. In a study by Wachters and Kramers ( 3 ), experiments were conducted i n a 0.152 x 0.475 m copper cylinder and values of hi, were reported to be 1/3 to 1/2 of those ws c ' predicted from equation 2-24. They assumed that whereas the bulk of the granular bed has a uniform temperature there i s a thin layer at the wall always consisting of the same p a r t i c l e s arid that when these r o l l back, they only mix among themselves. Based on these assumptions, the wall layer d' i n thickness, was proposed that was i n i t i a l l y at a temperature T^ for o<y<d" as given i n Figure 2-6. The average temperature of the layer was assumed to not change during the time of contact, etc. Thus the following boundary conditions were used, T (o, o<y<d) = T (o, y>d) = T s T (t,o) = T w T (t,°°) = T„ Their experimental re s u l t s indicated that at higher speed (or lower t ) where d'> 4/at , the wall layer reduces the heat transfer c o e f f i c i e n t s by a factor of 3 with respect to that obtained from a simple penetration model, h 2 k. ws 3 /irat. 10 rpm < N < 40 (2-28) At r e l a t i v e l y low speed (high contact time, t c ) , h>-^  gradually changed according to h ws /iTatc 2 k. 2 k. d' -1 N < 10 (2-29) The^wall layer thickness, d', was obtained by extrapolating the experimental data from the above equation, d' = 1.12 x 10~ 3 /3 (2-30) The values of d' were 1.8 mm and 1.5 mm with 6=2.53 and 1.83 radians, respectively i n t h e i r experiments. However the dependence of d 1 in equation 2-30 on 3, the central angle of the s o l i d s bed, can not be p h y s i c a l l y explained. Recently Lehmberg et a l . (43) introduced the concept of the presence of a gas f i l m between the wall and the solids into the penetration model. The presence of a gas f i l m was also recognized by Epstein and Mathur (45) for wall to bed heat transfer i n the annulus of a spouted bed. In order to f i t t h e i r own experimental data Lehmberg et a l . proposed two heat transfer regions near the wall. The simple penetration model as given i n equation 2-24 was applied i n the region between the wall and 6 , the thickness at the contact point between wall and p a r t i c l e . The basis of the model i s i l l u s t r a t e d i n Figure 2-7. In the second region, bounded by 6^ and the p a r t i c l e radius, the gas f i l m was added to the model. In addition to the f i r s t parameter 6 , they introduced a second parameter h 1 , (termed the r e l a -t i v e heat transfer c o e f f i c i e n t ) , which i s the r a t i o of the gas f i l m heat transfer c o e f f i c i e n t h_' to the e f f e c t i v e thermal conductivity of s o l i d s , k . The o v e r a l l wall-bed J s heat transfer c o e f f i c i e n t s across these two regions was given i n lengthy form as follows: g h ws 1 + h'1/atT 2 2 exp (h1 at ) erfc (h' at ) c c where h 1 = h g (2-31) k s 39 I 9 ^ — i Figure 2-7 Two-region Penetration Model for Wall-Bed Heat Transfer Proposed by Lehmberg et a l . ( 43) By adjusting the values of h 1 and .6 equation 2-31 was reported i n good agreement with t h e i r own experimental data. 6^ was found equal to 9ym, compared to the p a r t i c l e sizes of 157, 323, 794 and 1038 um. The mean thickness of the gas f i l m ( V h 1 ) increases with increasing p a r t i c l e sizes; The parameters, h 1 and 6. were determined experimentally, therefore equation 2-31 for wall to bed heat transfer c o e f f i c i e n t i s not r e a d i l y used for design purpose. For long contact time, <$u was also reported to be a function of time. In addition equation 2-31 can not f i t the data of Wes et a l . unless h' -> °° (or Vh'-*- 0). Since no model yet proposed could s a t i s f a c t o r i l y represent a l l the published experimental data, an attempt was made in t h i s work to correlate a l l the available data within the frame of the penetration model. This c o r r e l a t i o n i s discussed i n Chapter 6. 2.5b Convection The following empirical rel a t i o n s h i p h = 0.0981 G ° ' 6 7 (2-32) gw g where G = gas mass flux kg/hr m2 (cross section kiln) i s recommended by Porter et a l . (46) for the convective heat transfer c o e f f i c i e n t from gas to wall i n a rotary k i l n , and i s also used to predict the gas to bed c o e f f i c i e n t . In an e a r l i e r publication (47) the same authors used an equation with a smaller exponent on gas mass flux, and which included the e f f e c t of k i l n diameter: h = 0.0608 G °' 4 6/D gw g ' (2-33) A t h i r d expression used for convective heat transfer c o e f f i c i e n t i n k i l n s i s a modified Nusselt type equation for heat transfer i n tubes, 2 k Du P u C n7Rfi /->o/i\ h = 5 . 2 x 1 0 " < _ i L - a . ^L_£g_)0-786 (2-34) gw VD ' u k g g Gygi (48) used t h i s expression to calculate convective heat transfer c o e f f i c i e n t for cement k i l n i n the preheating zone. However, no expression has been reported to evaluate heat transfer c o e f f i c i e n t from the gas to the s o l i d bed. Several investigators (5, 12) have used equation 2-32 for gas to wall convection to calculate heat flow from gas to charge. The area i s taken to be the chord length times the k i l n length This convective c o e f f i c i e n t i s apparently independent of the speed of rotation, p a r t i c l e s i z e , and i n c l i n a t i o n of the k i l n The equations h = h = 0.023 ^ R 0 - 8 P °' 4 were also used gs gw D e r for modelling iron ore reduction (9) and h = h = c(k D)^* gs gw g 0 8 (U /C ) for an alumina k i l n (6). In other modelling g pg studies s p e c i f i c values were used with no reported j u s t i f i -cation including h =22.8 W/m2K, h =28.4 W/m2K for wet ^ gs ' gw ' ' process cement k i l n s (7,8); h = h = 14.0 W/m2K for a ^ gs gw li g h t weight aggregate k i l n (11); and h =1.5 W/m2K for gs a rotary k i l n heat exchanger (15). Wes et a l . (42) published experimental values of 5.1 and 4.9 W/m2K for wall to a i r heat transfer c o e f f i c i e n t i n an empty drum equipped with f l i g h t s , with 550 and 336 kg/hr m2 a i r mass flux, respectively. They also reported l o c a l convective heat transfer c o e f f i c i e n t s from potato starch and yellow dextrine to cool a i r i n a horizontal rotating drum. The results are given i n Figure 2-8. Wes et a l . claimed there might exi s t a kind of penetration mechanism for the heat transfer to the down flowing so l i d s on the surface be-cause of a li n e a r r e l a t i o n s h i p of n S g . a between 3 rpm to 6.5 rpm. One can conclude from the work of Wes et a l . that the gas to so l i d s convection c o e f f i c i e n t i s roughly 12 to 2 5 times the magnitude of the gas to wall convection c o e f f i c i e n t i n a rotary k i l n with low f l i g h t s . Friedman and Marshall (49) gave h g g of 26.5 W/m2K at G g = 782 kg/hr m2 a i r mass rate, and of 20.4 and 38.2 W/m2K at G g = 15.60 kg/ hr m2 . Brimacombe and Watkinson (4) recently reported experimental data of 120 to 240 W/m2K for gas to solids convection c o e f f i c i e n t s . The experiments were conducted i n a p i l o t scale f i r e d rotary k i l n , which has 0.406 m I.D. and 4 3 LJ r r CM R £ Li- \ L U ^ O -o or LU u_ CO 2 < Q L U or co "~ Q ^ d L U C O X s g 150 100 9 0 80 70 60 50 4 0 Wg: Wes et al . Distance from Air Entrance: 3 0 1 1 15 2 3 4 5 6 ROTATIONAL SPEED N, rpm 8 Figure 2-8 Convective Feat Transfer C o e f f i c i e n t from Bed to A i r , Data of Wes, et a l (42) 5.5 m long. The gas flow rates ranged 545 to 820 kg/hr m2 with average temperature, 675 to 830 K, and the s o l i d throughput were 70 to 135 kg/hr. Their data show that heat transfer c o e f f i c i e n t increases with increasing gas tempera-ture and gas flow rate, and the e f f e c t of s o l i d throughput i s i n s i g n i f i c a n t . Chen et a l . (50) studied the e f f e c t of a i r cross flow on the gas to p a r t i c l e heat transfer i n a rotary dryer. The dryer was constructed with two concentric cylinders. The inside cylinder was o.l5 m in diameter and made of per-forated plate with 1.5 mm holes, 10 mm square p i t c h , covered by a screen of 150 mesh. Hot a i r was allowed to flow through the annualar space into the inside cylinder. The heat transfer c o e f f i c i e n t s between gas and p a r t i c l e s were found . to be i n the same range of the data i n the fixed bed. 2.5c Radiation The Stefan-Boltzmann equation has been widely used for the thermal analysis of a rotary k i l n , due to the lack of reported data. The radiative heat transfer c o e f f i c i e n t i s strongly dependent on the form, (1\ "*-T_. k ) / (T\-Tj ) . Table 2-2 l i s t s equations used for radiant heat transfer by several investigators who were modelling rotary k i l n s . A similar table was drawn up by Venkateswaren (54). The temperature dependence of Lyon et a l . was s i m p l i f i e d to 2(T^ 3 + T j 3 ) . These sets of equations have d i f f e r e n t values of factors which are dependent on e m i s s i v i t i e s of gas, s o l i d and wall. Kaiser and Lane (51) have recommended i n Saas 1 equations that the term fe i n h should be replaced by S W S / J*T the expression of Eckert and Drake (52) given i n Table 2-2 which take's into-account re-radiat'ion •.from- s o l i d s . T g , the sol bed temperature, was used i n the equations shown i n Table instead of the bed surface temperature. The l a t t e r may be larger than T g by a few hundred degrees as indicated by Luethge (53). Since radiation takes place to the aerated charge surface, the calculated value of h r based on the equations i n Table 2-1 would appear to overestimate the radiation contribution. TABLE 2-2 Radiant Heat Transfer C o e f f i c i e n t I n v e s t i g a t o r s h gw,r gs,r ws, r Saas (12) Lyons et a l . (7) Toyama et a l . (11) Manitius et a l . (6) Riffaud et a l . (5) pe (T -T h)/(T -T ) g g w " v g w' 2pe e (T 3+T 3) g w s w [ l+(l-e J (1-e J -M**£w£s L g 3'A-g w T - T g w 4.96xl0~8 e f e T "-E (T" )T "1 w ^ g g g w w J pe (T "-T ")/(T -T ) 9 9 w g w' pe (T ^-T ")/(T -T ) 9 9 s 9 s' 2pe e (T 3+T 3) p g s g s £ e e 1+(1-e )(1-e M s g L_ w A , _9 s_ T -T -9 s 4.96x10 e f e T s I g g g pe (T ' ' - T " ) / ( T - T ) g g s " s s <Ts)Ts*' 2 ( > ~ - z e (T 3+T 3) A s w w s ' s A T —T 4 £ e„e (1-e )--s- w s M S Wv g'A T - T 3 w w s 4.96x10 e e s w P E * ( T ; - T S - ) / ( W Wingfield et a l . (9) pe (T 1*-T ")/(T--T ) g s w • 1 g w Pe g(T g*-T sV(T g-T s) pe (T - T ) / (T -T ) s v w s ' w s' ( A £ s f i s recommended (47) by substitution of ^- + (— - 1) 1 ~ 1 ** M = 1 - (1-e ) (1-e )' w g , 1- (e + .e - e e ) s g s g A * e. function of e and e 1 s w CHAPTER 3 SCOPE OF PRESENT WORK As has been shown above few experimental data on heat transfer c o e f f i c i e n t s have been published for convection i n rotary k i l n s . No systematic study of the e f f e c t s of operating parameters on convective heat transfer could be found i n the l i t e r a t u r e . Some equations (46,4 7,48) have been proposed for the convection process, but none have had experimental v e r i f i c a t i o n , and included e f f e c t s of operating parameters other than gas v e l o c i t y . It was the objective of the present work, therefore, to make an experimental study of the influence of k i l n operating parameters on convective heat transfer c o e f f i c i e n t s i n a non-fired rotary k i l n . Conditions were chosen to mini-mize radiative e f f e c t s . The parameters to be studied included k i l n r o t a t i o n a l speed, i n c l i n a t i o n angle, gas v e l o c i s o l i d charge feed rate, degree of f i l l , p a r t i c l e size and tem perature. In order to understand the heat transfer process, knowledge of the p a r t i c l e motion i n the k i l n i s required. The secondary objective, therefore, was to study the r e l a t i o n ship of s o l i d charge feed rate, charge load, k i l n r o t a t i o n a l speed and i n c l i n a t i o n angle, e s p e c i a l l y under conditions of uniform bed depth along the k i l n . I t was also intended to investigate the factors influencing the time p a r t i c l e s spend on the surface of the bed. A b r i e f study of residence time d i s t r i b u t i o n i n the k i l n was also included i n t h i s work. With t h i s experimental information, a model of the convection process i n a rotary k i l n was to be formulated and design equations presented. 49 CHAPTER 4 APPARATUS AND MATERIALS 4.1 Apparatus A schematic diagram of the experimental system used for heat transfer and p a r t i c l e motion experiments i s shown in Figure 4-1. I t consists of f i v e primary components: the rotary k i l n , the s o l i d feeding system, the receiving system, the a i r heating system and the instrumentation and recording system. Two k i l n s of the same size were used. A l u c i t e cylinder was primarily used i n the investigation of p a r t i c l e motion i n the k i l n , and a steel cylinder was used for the heat transfer experiments. 4.1a Kilns The transparent l u c i t e rotary cylinder was 2.44 m i n length, 0.1905 m I.D. and 6.35 mm i n wall thickness, and provided with end flanges of 0.2 54 m diameter. The sol i d s i n l e t flange had an opening of 0.076 m diameter, whereas three d i f f e r e n t flanges with openings of 0.133, 0.114 and 0.089 meters were used at the sol i d s outlet end to maintain the desired bed depths. During the i n i t i a l experiments s l i p was found between the smooth k i l n wall and the sol i d s bed. Figure 4-1 Schematic Diagram of Apparatus. TABLE 4-1 to Figure 4-1 Rotameter End box Temperature c o n t r o l l e r Variable speed drive Soli d receiving cone Screw feeder Chain and sprocket E l e c t r i c furnace Rotary k i l n Funnel and chute Dam Suction pump Temperature recorder S l i p ring A i r temperature probe Solids bed temperature probe Wall temperature probe 2.54 cm s t e e l pipe Suction l i n e Potential transmitting l i n e Eight equally spaced s t r i p s were then glued along the i n t e r i o r surface of the cylinder, p a r a l l e l to i t s longitudinal axis. The s t r i p s were 4.80 mm wide and 3.2 mm high. The cylinder sat on six metal 0.067 m x 0.10 m long r o l l e r s , equipped with rubber 0-rings. The cylinder was rotated on the r o l l e r s by a f r i c t i o n b e l t driven by a h horsepower variable speed motor. The k i l n with the accessories was supported by a steel frame which could be adjusted to a desired i n c l i n a t i o n angle to the horizontal. The k i l n used for the heat transfer experiments was constructed of seamless, cold drawn mild s t e e l pipe. I t was the same size as the l u c i t e cylinder, 0.1905 m I.D. x 2.44 m long x 6.35 mm wall thickness. The L/D r a t i o was thus 12.8. The i n t e r i o r surface of the tube was coated with 1 mm thick layer of refractory cement, and was roughened to prevent the solids bed from s l i p p i n g during rotation. The outside wall was insulated with two layers of 3.2 mm thick ceramic paper, then covered with 0.2 08 m diameter, 0.076 m thick fiberglass pipe i n s u l a t i o n . The opening of the s t e e l i n l e t end plate was 0.076 m diameter. Three outlet plates with openings of 0.133, 0.114 and 0.089 m diameter allowed holdups of 6.5%, 11% and 17%, respectively. Both ends of the rotating k i l n were sealed with carbon rings i n 0.254 m dia-meter x 0.2 54 m long end boxes. The construction of the end boxes and carbon rings i s shown i n Figure 4-2. The k i l n was rotated on four metal r o l l e r s by a sprocket and chain driven by a h horsepower variable speed motor. The support for the CARBON RING ROTATING KILN END BOX Figure 4-2 End Box and Seal System (JO steel k i l n was the same construction as that for the l u c i t e cylinder. 4.1b Feeding System The feeding system consisted of a bulk material storage hopper, a screw feeder with a constant rate c o n t r o l l e r , and a feed chute. The feeding equipment was manufactured by Mechanical Development Corporation, Wisconsin, Model #400 SCR. The hopper capacity was 0.035 m3, and the maximum feed rate was 0.142 m3/hr. The feed rate was controlled manually by an adjustable c o n t r o l l e r capable of achieving an accuracy of 1 - 2% for most dry materials. The c a l i b r a t i o n of t h i s equipment for Ottawa sand and polystyrene i s given in the appendix. The material delivered by the feeder was dropped e s s e n t i a l l y instantaneously into the rotary k i l n through a feed chute, which was made of a funnel and a 4 5 degree 0.013 m diameter copper tube, bent into the end of the k i l n . 4.1c Receiving System For the heat transfer experiments a cone of about 0.04 m3 volume was attached to the discharge end box. The construction i s shown i n Figure 4-3. The bottom side of the discharge box was welded with a 0.102 m diameter short pipe with a flange at the other end of the pipe. The cone was sealed and clamped to the discharge flange. Under the average s o l i d throughput the cone became f u l l every t h i r t y minutes. Then the cone was replaced with another empty one. The interchange took only a few seconds so that i t would not disturb the system. For residence time d i s t r i b u t i o n studies, the conical receivers were not used. 4.Id A i r Heating System An e l e c t r i c furnace was used to heat a i r before i t entered the k i l n . The furnace was constructed of a 0.0635 m diameter and 0.62 m long stai n l e s s s t e e l tube, packed with 0.0177 m ceramic Berl saddles. The tube was heated by two semi-cylinder heating elements, each having 3.6 kW capacity. The system, then, was insulated i n a 0.30 m x 0.30 m x 0.76 m long f i r e brick box. The furnace was controlled by an on-off temperature c o n t r o l l e r which had a temperature deviation = 2K. 4.1e Thermocouples Twenty thermocouples were used to measure the tempera-tures of so l i d s bed and a i r at f i v e a x i a l locations along the k i l n - three for solids bed and one for a i r at each location. The arrangement of the thermocouples i s shown schematically in Figure 4-4. The o r i g i n a l purpose of the i n s t a l l a t i o n of the three thermocouples for s o l i d s bed at one location was to measure r a d i a l temperature d i s t r i b u t i o n in the bed. The thermocouples were constructed of 3 0 gauge iro n -constantan, and supported by a 0.012 7 m diameter, 2.54 m long s t e e l tube. The probes were situated at the distances, |«0.2I m * | - « — 0 . 5 1 m » * f * - 0 . 5 3 m — s * | -« * -0 .53 m * * f « — 0 . 5 3 m — * - | RECORDER 5 0 8 m m 7 6 . 2 m m TO RECORDER Figure 4-4 Schematic Diagram of Thermocouples Arrangement 0.21, 0.72, 1.25, 1.78 and 2.32 meters from the s o l i d feed end of the k i l n . A l l the probe wires were extended through the supporting tube out of i t s two ends to the recorder. The supporting tube was passed through the center of the rotary k i l n . The thermocouples were calibrated in a white o i l constant temperature bath up to 400 K. They were also c a l i -brated i n freezing t i n (504.8 K) and zinc (692.4 K) baths. The c a l i b r a t i o n data given, i n the appendix showed a maximum deviation of 1.8 K against the ASTM standard table (55). The a i r temperature probe was shielded, and a i r was sucked through i t by a pump located outside the k i l n . The construction of the s h i e l d and suction system i s shown i n Figure 4-5. The design of the shi e l d suction thermocouples was modified from the design of H i l l s et a l . (56). In t h e i r study the minimum suction rate for the e f f i c i e n t operation of a 1.5 mm — 6 pt - pt/Rh thermocouple was 15 x 10 m3/s at an a i r flow rate of about 1.5 x 10 m3/s. A similar curve was obtained for the iron-constantan thermocouples used i n t h i s study. -6 q The minimum necessary suction rate was about 25 x 10 m /s, as shown i n Figure 4-6. At a t y p i c a l k i l n operation i n t h i s study the suction rate was about 0.6% of the a i r flow rate through the k i l n . The wall temperatures were measured by four iron-constantan thermocouples which were i n s t a l l e d on the k i l n wall at positions, 0.31 m, 0.91 m, 1.52 m and 2.13 m from the s o l i d charge end. Since t h e . k i l n rotated i t was necessary to construct commutator rings to transmit the thermocouple potentials to a suitable measuring device. The f*-*| 6.4 mm TJM G A S S U C T I O N r-¥-i T H E R M O C O U P L E S U C T I O N 12.7 mm B E D T H E R M O C O U P L E gure 4-5 Diagram of S u c t i o n Thermocouple 5 0 0 i JO- Q. •o-UJ QC Z> < or UJ a. UJ 4 5 0 4 0 0 2 0 0 SUCTION RATE slO® m 3 / s gure 4-6 Typical Response of Suction Thermocouple construction of commutator rings i s shown i n Figure 4-7. Eight suitable rings, 0.254 m O.D., made of 6.35 mm diameter copper wire, were constructed and mounted i n e l e c t r i c a l and thermally i n s u l a t i n g p l a s t i c rings attached to the k i l n wall. Copper s t r i p s were then used to connect the commutator r i n g and iron-constantan wires to a multipoint recorder. C a l i -bration of t h i s device indicated i t s error within -2 K. The v a r i a t i o n which was noted was believed to be caused by thermal and e l e c t r i c a l e f f e c t s i n the commutator assembly. Four additional thermocouples were i n s t a l l e d i n the ins u l a t i o n layer at the same a x i a l locations as the wall thermocouples. The thermocouples were located at 6.35 mm from the outside wall. The temperature measurements by these thermocouples permit a c a l c u l a t i o n of the wall heat loss. 4.2 Materials In the residence time d i s t r i b u t i o n (RTD) experiments transparent STYRON polystyrene p a r t i c l e s supplied by Dow Chemical of Canada Ltd were used. These p a r t i c l e s are of e l l i p t i c cylinder shape with dimensions of 1.9 x 3.1 x 3.6 mm and apparent density of 653 kg/m3. Tracer p a r t i c l e s were colored by a red food dye and thus w e r e n o t d i f f e r e n t in physical properties from the bulk material. Alumina was used i n a f i l m study of p a r t i c l e l a t e r a l and r a d i a l v e l o c i t y . To obtain the p a r t i c l e v e l o c i t y an individual p a r t i c l e was i d e n t i f i e d at a location in the k i l n ' s cross section and was traced for a certain time. Thus large F i g u r e 4-7 Commutator Copper Rings 62 p a r t i c l e s o f opaque alumina of 6.35 m i n diameter were used. In the major p a r t of the heat t r a n s f e r study i n e r t Ottawa sand was used. The p a r t i c l e s i z e was 20-30 mesh (average diameter 0.73 mm). The p h y s i c a l p r o p e r t i e s of Ottawa sand have been r e p o r t e d by others (46, 57) and are l i s t e d i n Table 4-2. Limestone was used to study the e f f e c t of p a r t i c l e s i z e on heat t r a n s f e r . Limestone was s i e v e d i n t o three s i z e s , 10-20 mesh, 20-28 mesh and 28-35 mesh. The average p a r t i c l e s i z e s were 1.26, 0.73 and 0.51 mm, r e s p e c t i v e l y . P h y s i c a l p r o p e r t i e s are a l s o given i n Table 4-1. No gas flow was used d u r i n g the p a r t i c l e motion study, s i n c e the e f f e c t of gas flow on the p a r t i c l e throughput i n a r o t a r y k i l n was r e p o r t e d (21, 27) to be n e g l i g i b l e . In the heat t r a n s f e r experiments where c o n v e c t i o n i s of primary i n t e r e s t preheated a i r was used r a t h e r than combustion gases because o f i t s t r a n s p a r e n t p r o p e r t y to r a d i a t i o n . Since a i r c o n t a i n s o n l y minimal amount o f water vapor and carbon d i o x i d e , gas to w a l l and gas to s o l i d s r a d i a t i o n can be n e g l e c t e d . Measurement o f moisture i n the incoming a i r showed a p a r t i a l p r e s s u r e of water of 0.004 atm. At the temperatures o f the p r e s e n t study, g a s / w a l l r a d i a t i o n c o e f f i c i e n t s were about 0.07 W/m2K, a f a c t o r of 35 to 70 times l e s s than the c o n v e c t i v e c o e f f i c i e n t s measured. A i r t r a n s p o r t and thermodynamic p r o p e r t i e s are g i v e n i n the l i t e r a t u r e (46, 58, 59) . TABLE 4-2 Physical Properties of Ottawa Sand and Limestone Ottawa sand (49, 59) Thermal conductivity Bulk density P a r t i c l e density S p e c i f i c heat 0.268 1650 2627 0.775 0. 821 W/m K kg/m3 kg/m3 kJ/kg K at 3 73 K kJ/kg K at 44 8 K Limestone Thermal conductivity (58) Bulk density* S p e c i f i c heat* 0.692 W/m K 1680 kg/m3 0.914 kJ/kg K at 373 K 0.966 at 423 K 1.018 at 473 K *Measured CHAPTER 5 EXPERIMENTAL PROCEDURE 5.1 R e t e n t i o n Time and S o l i d Throughput P o l y s t y r e n e p a r t i c l e s were used f o r s o l i d throughput runs i n the l u c i t e c y l i n d e r , w h ile Ottawa sand was used i n the s t e e l c y l i n d e r . In t h e ? l a t t e r runs the end boxes and the long tube f o r thermocouples were removed. Before s t a r t i n g , the c y l i n d e r was set a t a predetermined i n c l i n a t i o n angle. Then the end p l a t e s were a t t a c h e d a t the both ends of the c y l i n d e r . The c y l i n d e r was r o t a t e d a t a f i x e d r o t a t i o n a l speed. The s o l i d m a t e r i a l was then f e d i n t o the cy-l i n d e r through the screw feeder u n t i l the d e s i r e d holdup was reached. Mass throughput was measured by c o l l e c t i n g and weigh-i n g the m a t e r i a l l e a v i n g the d i s c h a r g e end i n a d e f i n i t e time i n t e r v a l (1~5 minutes depending on flow r a t e ) . R o t a t i o n was < continued u n t i l a steady s t a t e c o n d i t i o n was a t t a i n e d . T h i s was achieved when the constant d i s c h a r g e r a t e became equal to the feed r a t e from the screw feeder. About 30~60 minutes were r e q u i r e d to reach steady s t a t e i n most cases. To ensure t h a t a uniform bed depth was o b t a i n e d the bed depth had to be c o n s t a n t l y monitored a t both ends o f the c y l i n -der. I f the bed depth was not uniform, adjustments were made to the feed rate. When the uniform bed depth at steady state condition was obtained, the feeder was switched o f f and the ma-t e r i a l in the cylinder was removed, and weighed to determine the holdup. The retention time was then calculated by di v i d i n g the bed weight by the s o l i d throughput. 5.2 Residence Time D i s t r i b u t i o n P r i o r to introduction of tracer material steady state flow conditions for the uniform bed depth were assured as des-cribed i n the previous section. A known number of colored t r a -cer p a r t i c l e s was injected into the feed chute at an a r b i t r a r y zero time and samples were taken as soon as the f i r s t tracer arrived at the end of the cylinder. It was assumed that the tracer was injected over a s u f f i c i e n t l y small time i n t e r v a l that the i d e a l i z e d impulse stimulus was r e a l i z e d . Separate samples were taken over t h i r t y seconds in t e r v a l s u n t i l a l l the tracer material had discharged from the k i l n . The rotation was then stopped and the material holdup was determined. Tracer concentration i n each of the discharge samples was evaluated by d i r e c t counting of the colored p a r t i c l e s and weigh-ing of the t o t a l sample. This gave information on the concentra-tion c ( t ^ ) , at a number of discrete times, tj_, i = 1,2, . . . .M, where M denotes the l a s t sampling i n t e r v a l i n which tracer appeared in the discharge. The relationships are given below of the mean, t, and 2 variance, a^, of the residence time d i s t r i b u t i o n for the tracer as functions of the e x i t age d i s t r i b u t i o n function E. Thus, t = j'Q t E ( t ) d t (5-1) and .' 2 a t = f " (t - t) E ( t ) d t (5-2) The above equations can be approximated (30) f o r the d i s c r e t e system M t = I t . E ( t i ) A t (5-3) i = l and 2 M - 2 a t ~ X ( t i - t ) E ( t i ) A t (5-4) i = l where E(t±) = C ( t i } "S (5-5) E c ( t i ) A t i i = l About 1.0 g t r a c e r was used i n a 0.08 m x 0.24 m drum^of Abouzeid e t a l (30) a t a s o l i d throughput of 8.64 kg/hr and r o t a t i o n a l speed o f 42 rpm. In t h i s study the t r a c e r weight was 13.7 g. Only one of the runs used 115 g of t r a c e r m a t e r i a l . The r e l a t i v e variance and Peclet number were then c a l -culated as outlined i n Chapter 2: 2 a"* t _ z. t (2-17) and Pe T (2-19) a, The second equation allowed the ca l c u l a t i o n of a x i a l dispersion c o e f f i c i e n t , n , according to _ uL D ~ Pe where u i s the average a x i a l v e l o c i t y , u = ^ t 5.3 Surface Time Steady state flow was f i r s t achieved as described i n Section 5.1. A limited number of colored p a r t i c l e s were dropped into the cylinder through the feed chute. A length of 0.2 m in the middle of.the lucite cylinder was chosen as the test- section. When the colored p a r t i c l e reached the test section, the time count was started and the number of the cycles which t h i s colored p a r t i c l e reappeared on the surface was noted u n t i l i t passed the other end of the test section. The above procedure was repeated at leas t f i v e times and the average value was taken. The average a x i a l distance the p a r t i c l e advanced on the surface for each cycle was (5-6) the length of test section the t o t a l number of cycles in the section and the cycle time, t f c , i . e . the time the p a r t i c l e spent for each cycle was calculated by d i v i d i n g the t o t a l time in the test section by n^ _. To obtain the surface time t s , the time the p a r t i c l e residing i n the bed,t^,' must be known > and t h i s was ob-tained with the following equation t b = 3/2Trn (5-7) where "t " where 6 i s the central angle the solids bed occupied. The surface time, therefore, was obtained by t s = t t - t b (5-8) The p a r t i c l e a x i a l speed on the surface was calculated as: v = d / t a a s (5-9) This value represents the actual a x i a l speed of the i n -di v i d u a l p a r t i c l e on the surface. The l a t e r a l speed was equal to that of the bed width divided by t . V n =l./t 1 s s 5.4 Heat Transfer 5.4a Experimental Procedure The k i l n was f i r s t adjusted to the desired i n c l i n a t i o n angle and the conical s o l i d receiver was attached at the d i s - • charge end. The a i r system was then turned on and the a i r flow was measured by a calib r a t e d rotameter. The e l e c t r i c furnace was switched on and the temperature c o n t r o l l e r was set at a desired temperature. The k i l n was allowed to heat up for about 3 to 4 hours before rotation of the k i l n was started and the feeding began. The feed rate was determined according to F i -gure 6-9. The temperatures of the a i r , the bed and the wall were continuously recorded. The conical receiver was f i l l e d up every 15~45 minutes at 50~18 kg/hr s o l i d throughput. Just before the receiver was f u l l , i t was removed and replaced by another empty one. The exchange of the cones was done within a few seconds and there was no fl u c t u a t i o n of a i r temperature observed i n the measure-ments. About one hour was required for the s o l i d flow to reach the steady state condition. Then the material i n the conical receiver was emptied and weighed, and the s o l i d discharge rate calculated. The s o l i d flow was assumed to be at steady state i f both the feed rate and the discharge rate were equal. The recordings of the temperature readings were continued u n t i l the steady conditions prevailed. Then the suction pump was switched on and the readings of a i r temperature taken once the temperatures l e v e l l e d o f f . A complete run usually took 5 to 8 hours. 5.4b Preliminary Tests In early heat transfer tests, the k i l n was insulated with 6.35 mm ceramic insul a t i o n paper, and covered with 3.2 mm asbes-tos c l o t h and 25.4 mm thick f i b e r g l a s s i n s u l a t i o n material. Heat balances on these tests indicated that as much as 50% of the heat given up by the a i r was l o s t through the k i l n wall. To reduce these large heat losses from the k i l n , f i b e r g l a s s was replaced with 0.203 m fibred asbestos pipe in s u l a t i o n , 51 mm thick. The k i l n end boxes and discharge system were also insu-lated. By t h i s procedure the heat loss under most operating conditions was reduced to less than 20% of the t o t a l heat given up by the a i r i n passing through the k i l n . A similar problem was indicated by Friedman and Marshall (49) for heat transfer experiments in a rotary cylinder. In addition the heat loss was found to be non-uniform along the k i l n making interpretation of the data subject to some error. This was due to the presence of the sprocket, r o l l e r s and s l i p rings which could not be i n -s u l a t e d . The commutator was l o c a t e d between 1.0 2 and 1.22 meter from the charge end. The c e n t r a l s e c t i o n o f the k i l n between 1.25 m and 1.78 m was chosen as the t e s t s e c t i o n of the k i l n s i n c e t h i s s e c t i o n was f a r enough away from the two ends of the k i l n to minimize the end e f f e c t s on heat t r a n s f e r and par-t i c l e motion, and d i d not s u f f e r from non-uniform heat l o s s because of the presence o f sprocket, r o l l e r or s l i p r i n g . 5.4c Operating Range Table 5-1 shows the range of o p e r a t i n g v a r i a b l e s covered i n t h i s study. A i r throughput ranged from 18.6 to 95 kg/hr. On an empty k i l n b a s i s the a i r f l u x was from 650 to 3300 kg/hr-m which i s about i n the range of i n d u s t r i a l k i l n s . The i n l e t a i r temperature was v a r i e d from 373 K to 650 K. The s o l i d feed r a t e 2 was i n the range o f 11~66 kg/hr o r 400~1750 kg/hr-m . The r a t i o of a i r / s b l i d feed r a t e ranges from 0.5 to 5 which compares with 1~2 t y p i c a l f o r i n d u s t r i a l k i l n s . R o t a t i o n a l speeds covered a range o f 0.9 to 6.0 rpm. The k i l n bed was always in. the r o l l i n g mode a t these r o t a t i o n a l speeds. One run was c a r r i e d out a t 0.4 rpm d u r i n g which the bed was i n the slumping s t a t e . The slope o f the k i l n was v a r i e d from 1.36° to 4.1° and the degree of f i l l was s e t i n the range o f 6.5 to 17% . Table 5-1 K i l n Operating Conditions A i r throughput A i r mass v e l o c i t y * A i r i n l e t temperature Solids used p a r t i c l e sizes solids throughput solids mass v e l o c i t y * Rotational speed K i l n slope percent f i l l 18.6 - 95 kg/hr 650 - 3300 kg/m2 hr 373 - 650 K wa - sand and limestone 0.51 - 1.26 mm 11 - 50 kg/hr 400 - 1750 kg/hr m2 0.9- 6 rpm 1.36°-4.1° 6.5 - 17% S u p e r f i c i a l empty k i l n - based on cross-sectional area of 73 CHAPTER 6 RESULTS AND DISCUSSIONS P a r t i c l e Motion 6.1 Type of Bed Movement F i g u r e 6.1 g i v e s a s e r i e s of photographs showing d i f f e r e n t types o f bed movement i n the c r o s s s e c t i o n o f r o t a t i n g c y l i n d e r . The photographs were made u s i n g a bed of p o l y s t y r e n e p a r t i c l e s a t v a r i o u s r o t a t i o n a l speeds. As shown i n the f i g u r e the r o l l i n g type o f movement i s seen a t a r o t a t i o n a l speed of N/N l e s s than 0.1.. Showering of p a r t i c l e s i s observed a t r o t a t i o n a l speeds above N/N c = 0.6. The r e s u l t s are i n agreement with the o b s e r v a t i o n and d e s c r i p t i o n by Rutgers (19). The f i r s t t h ree photographs f o r the r o l l i n g type of p a r t i c l e movement give a measured value of the dynamic angle of repose of 27° f o r p o l y -styrene . 6.2 L a t e r a l and R a d i a l V e l o c i t y A f i l m study of p a r t i c l e movement i n the c r o s s s e c t i o n was made. Alumina spheres of 6.35 mm diameter were used. The r o t a t i o n a l speed was s e t at 4.78 rpm, which gave a r o l l i n g bed at the holdup r a t i o of 26%. F i g u r e 6-2 shows t r a c e s o f the p o s i -t i o n s o f two i n d i v i d u a l p a r t i c l e s with time. The f i r s t p a r t i c l e was taken on the aerated s u r f a c e about 0.06 m from P o i n t A as N/Nc=0.031 0.056 R o l l i n g 0.091 N/Nc=0.135 N/N =0.684 c 0.387 Cascading 0.747 Cataracting 0.526 0.808 Figure 6-1 Photographs of Bed Motions Figure 6-2 Trace of Individual P a r t i c l e s in K i l n U1 shown i n the figure. It took 0.4 6 seconds to r o l l a distance of 0.11 m down the surface (at a speed of 0.24 m/s) before i t returned to the bed. Once in the bed, adjoining the wall i t rotated at the same angular speed as did the k i l n . It spent almost 5 seconds to t r a v e l a distance of 0.23 m (at a speed of 0.046 m/s) before i t returned to the bed surface. It stayed on the top of the surface layers for a while, then entered a second layer, i n which i t t r a v e l l e d at a lower v e l o c i t y than i t did i n the f i r s t layer. However i t did not return to the bed at the same location as the f i r s t time. The l a t e r a l v e l o c i t y of p a r t i c l e s decreased from 0.24 m/s i n the f i r s t layer to 0.107 m/s i n the second layer. Thus i t i s i n t e r e s t i n g to see the p a r t i c l e v e l o c i t y p r o f i l e across the surface layers. A second p a r t i c l e was traced which t r a v e l l e d i n the surface layer near the boundary between the surface layers and the bed as seen i n Figure 6-2. It took more time to t r a v e l even a shorter distance than the f i r s t one. The v e l o c i t y was 0.042 m/s. Figure 6-3 plots both r a d i a l and l a t e r a l v e l o c i t y pro-f i l e s against k i l n radius position. The ordinate i s the k i l n radius along the centerline, OB, of the bed as shown i n F i g -ure 6-3. There are two regions, evident i n Figure 6-2 and i n Figure 6-3, the surface region i n which p a r t i c l e s r o l l down the i n c l i n e d bed, and the bed region where p a r t i c l e s move as a r i g i d body with the k i l n rotation. The boundary between them i s defined as the d i v i d i n g l i n e , beyond which the p a r t i -cles on both sides move in opposite d i r e c t i o n s . The boundary i s shown in Figure 6-2 and Figure 6-3, and i s approximated by T RADIAL POSITION , (m ) Figure 6-3 P a r t i c l e Velocity i n a Rotary K i l n . 2.5 p a r t i c l e diameters below the surface. The p a r t i c l e v e l o c i t i e s i n the surface region and the bed region are referred as l a t e r a l v e l o c i t y and r a d i a l v e l o c i t y , respectively. In the region of surface layers the v e l o c i t y drops s i g n i f i c a n t l y from the aerated surface to the boundary. This is attributed to "the. internal, friction of surface layer particles. The f r i c t i o n a l force exerted on the p a r t i c l e increases substantially with the distance down from the aerated surface. Inside the bed the p a r t i c l e s move together with neigh-bouring p a r t i c l e s at the angular speed. Their l i n e a r r a d i a l speeds are represented by V = 2ir-nr (6-1) r which agrees with the measured speed as given i n Figure 6-3. 6.3 Surface Time It has been postulated above, that the surface time or p a r t i c l e v e l o c i t y on the surface plays an important role on heat transfer and- chemical reaction. Inasmuch as the r e l a t i o n -ship of retention time with the operating parameters i s well established, i t i s worthwhile to obtain a rela t i o n s h i p of re-tention time and surface time. A set of experiments using colored polystyrene as tracers in a bed of the same material was carried out by v i s u a l obser-vation using a stopwatch. The r o t a t i o n a l speed was varied and the s o l i d flow rate also varied in such a way that the holdup r a t i o was maintained constant. Retention time and surface time 79 were c a l c u l a t e d by the procedures d e s c r i b e d i n Chapter 5. The r e s u l t s p l o t t e d i n F i g u r e 6-4 show the r e l a t i o n s h i p o f r e t e n t i o n , time and s u r f a c e time to r o t a t i o n a l speed. Re t e n t i o n time, as expected v a r i e s as N--*-, whereas s u r f a c e time i s p r o p o r t i o n a l to r o t a t i o n a l speed to the power -0.5. I t i s a l s o o f i n t e r e s t to know the e f f e c t o f r o t a t i o n a l speed on the r a t i o of s u r f a c e time to r e t e n t i o n time. F i g u r e 6-5 shows the r e p l o t o f F i g u r e 6-4 and i n c l u d e s the data of Hogg e t a l (40) f o r comparison. Hogg e t a l c a l c u l a t e d a value of 0.49 f o r the r a t i o o f s u r f a c e time t o r e t e n t i o n time a t a much high e r r o t a t i o n a l speed, 90 rpm, which r e s u l t e d i n a c a t a -r a c t i n g type of bed i n t h e i r 0.09 5 x 0.248 m r o t a r y cyM-ncLer. The data of the prese n t study were ob t a i n e d i n both r o l l i n g and cascading types o f beds. As seen i n F i g u r e .6,-5 an i n c r e a s e of r o t a t i o n a l speed r e s u l t s i n a higher f r a c t i o n o f time the i n d i -v i d u a l p a r t i c l e s are exposed,.to the f l u i d f o r heat t r a n s f e r and • chemical r e a c t i o n . However, i t a l s o reduces r e t e n t i o n time and s u r f a c e time i n a given l e n g t h o f the k i l n as a t t e s t e d by F i g -ure 6-4. The i m p l i c a t i o n o f t h i s r e s u l t i s important f o r a n a l -y s i s o f chemical r e a c t i o n and heat t r a n s f e r . F i g u r e 6-6 g i v e s a p l o t of l a t e r a l v e l o c i t y and a x i a l v e l o c i t y o f the p a r t i c l e s on the aerated s u r f a c e versus r o t a -t i o n a l speed. The l a t e r a l v e l o c i t y i n F i g u r e 6-6 r e p r e s e n t s an average v a l u e . The slo p e s f o r both of l a t e r a l v e l o c i t y and a x i a l v e l o c i t y vs. r o t a t i o n speed i n the l o g - l o g p l o t are about 0.5. L a t e r a l v e l o c i t y , shows much high e r v a l u e s than a x i a l v e l o c i t y , V . However, the r a t i o o f V /V i s l i t t l e a f f e c t e d by r o t a t i o n a l 4 0 0 3 0 0 2001 — i — i 1 1 r Kiln = 0.19m x 2.44 m Material = Elliptic Polystyrene Degree of Fill = 17.1% Test Section Length = 0.52 m Inclination Angle = 1.58° - \ 100 70 50 30 | O. w \ • 20 1 5 7 10 20 30 40 ROTATIONAL SPEED, rpm. Figure 6-4 Retention Time and Surface Time versus Rotational Speed. 6 0 5 0 4 0 ' - 3 0 U J o U J •\— U J or \ U J U J 8 DC ZD CO 20 A O This Experiment , Nc = 96.9 (rpm) A Hogg et al (38) , Nc =137 (rpm) J_ .03 .05 .07 0.1 0.2 N/Nc 0.3 0.4 0.5 1.0 Figure 6-5 The Ratio of Surface Time to Rotation Time versus N/N 0 0 0.31 " I — I — ' I ' M E >-H O O _ J U J > 0.2 0.15 0.1 0.08 0.06 0.041 0 Kiln = 0.19m x 2.44m Material = Elliptic Polystyrene Degree of Fill = 17.1 % Inclination Angle = L58° 0 0 2 0.01 0.006 G o i _ I I - L - J . 5 7 10 20 30 ROTATIONAL SPEED, rpm. 50 Figure 6-6 Surface Velocity versus Rotational Speed. speed as given in Table a n a l y t i c a l r e s u l t (25), 6- 1. This i s in agreement with the sine V a a-+ iJ;cos( (6-2) where 0 i s the dynamic angle of repose, a the angle of i n c l i -nation and i> the angle between the surface of the p a r t i c l e and the cylinder axis. For the present experiments the dynamic angle of repose i s 2 7° and a i s 1.5 8°. By assuming ^ = 0, a value of V /V , J. a 16,5 i s obtained. This value i s a l i t t l e higher than the values given in Table 6-1. Equation 6-2 gives the e f f e c t of i n c l i n a t i o n angle, a, on the r a t i o of V j _ / v a ' The i n c l i n a t i o n angle, the angle of the k i l n axis to the horizontal i s obviously a major factor for a x i a l transport of p a r t i c l e s , V^. The e f f e c t of a on i s expected to be i n s i g n i f i c a n t . Table 6-1 Relationship of V./V vs. N N V./V 1 a (rpm) ( - ) 5 16.3 6.9 16.0 10 15.1 14 14.5 15.4 13.8 85 6.4 S o l i d Throughput and R e t e n t i o n Time Although the e f f e c t s of r o t a t i o n a l speed and i n c l i n a t i o n angle on s o l i d throughput were s t u d i e d t h e o r e t i c a l l y and e x p e r i -mentally 'in .the' literature,- none-of these studies reported the' effects'.on- solid throughput i n a system i n which the bed h e i g h t or degree of f i l l i s uniform along the k i l n . The degree of f i l l i s thought to be one of major f a c t o r s i n f l u e n c i n g the heat t r a n s f e r processes s i n c e i t r e l a t e s to the s u r f a c e area f o r heat t r a n s f e r . One i n d u s t r i a l k i l n was r e p o r t e d (2) to have 5% f i l l a t the charge end up to 31% a t the d i s c h a r g e end. The l o c a l heat t r a n s f e r processes are t h e r e f o r e expected to be a f f e c t e d by the degree of f i l l a long the k i l n . rIn o rder to e l i m i n a t e t h i s e f f e c t the bed h e i g h t should be maintained as uniform as p o s s i b l e along the k i l n . An attempt was made i n a s e r i e s of experiments to determine the throughput with v a r y i n g i n c l i n a t i o n angle and r o t a t i o n a l speed. The ex-periments were c a r r i e d out under c o n d i t i o n s of uniform bed h e i g h t along the k i l n by c a r e f u l l y m o n i t o r i n g bed depth a t the two ends of the k i l n . In a l l experiments the angle, \\>, between the bed s u r f a c e and the k i l n a x i s was no l a r g e r than 0.0014 ra d i a n s or about 0.1 degree. Ottawa sand was used. The experimental r e s u l t s under these c o n d i t i o n s are de-p i c t e d i n F i g u r e s 6-7, 8, and 9. F i g u r e 6-7 i l l u s t r a t e s the e f f e c t of r o t a t i o n a l speed with varying i n c l i n a t i o n angle. The e x t r a p o l a t i o n of the l i n e to a r o t a t i o n a l speed of zero g i v e s no throughput of s o l i d s . The l i n e a r r e l a t i o n s h i p of the through-1 1 1 1 — Kiln = 0.19 m x 2.44m Material = Ottawa sand 2 0 - 3 0 mesh Degree of Fill 11% \\f < 0.0014 KILN ROTATIONAL SPEED, rpm. Figure 6-7 E f f e c t of Rotational Speed on S o l i d Throughput i n a Uniform Bed Depth Rotary K i l n . Kiln = 0.19 x 2.44 m Ottawa sand 2 0 - 3 0 mesh KILN INCLINATION, degree. Figure 6-8 E f f e c t of I n c l i n a t i o n Angle on S o l i d Throughput i n a Uniform Bed Depth Rotary K i l n . SOLID FEED RATE, kg/hr Figure 6-9 Relationship of S o l i d Throughput and Degree of F i l l i n a "Uniform Bed Depth Rotary K i l n . put and r o t a t i o n a l speed i s in agreement with previous work (19-21, 24-29, 40, 60-62). It has been shown above that i n -creasing r o t a t i o n a l speed increases the frequency.of the s o l i d p a r t i c l e appearing on the bed surface. Since a x i a l movement of parti c u l a t e material takes place only on the bed surface, the increasing frequency of appearance of p a r t i c l e on the bed sur-face increases a x i a l movement i n a given time, which increases a x i a l v e l o c i t y . Since the s o l i d throughput i s equal to a x i a l v e l o c i t y m u l t i p l i e d by the cross section area which i s uniform along the k i l n , the s o l i d throughput correspondingly increases in a way that i t i s l i n e a r l y proportional to ro t a t i o n a l speed. The s o l i d l i n e s i n Figures 6-7 and 6-8 represent the following equation (25) 3 Q W = t nD pasin^B / sine (2-16) S 6 The experimental data are found in good agreement with the theory. The e f f e c t of i n c l i n a t i o n angle on the s o l i d throughput i s given i n Figure 6-8. The l i n e a r i t y of the relat i o n s h i p can be explained as follows. Increasing i n c l i n a t i o n angle increases the a x i a l displacement of the p a r t i c l e while i t i s on the surface. It also means that a x i a l v e l o c i t y increases i n proportion. Degree of f i l l i s plotted against s o l i d throughput i n Figure 6-9 for a uniform bed-depth k i l n at various r o t a t i o n a l speeds and i n c l i n a t i o n angles. In order to operate at a higher degree of f i l l , the s o l i d feed r a t e must be i n c r e a s e d to maintain the uniform bed depth. In p r e v i o u s work (19-21, 24-29, 40, 60-62) the s o l i d throughput was determined by s e t t i n g two o p e r a t i n g v a r i a b l e s , r o t a t i o n a l speed and i n c l i n a t i o n angle. In doing so the degree of f i l l might vary s i g n i f i c a n t l y from one end of the k i l n to the other. The average degree of f i l l was u s u a l l y e x p e r i m e n t a l l y determined by removing the holdup out of the k i l n and d i v i d i n g the volume of holdup by the k i l n volume. Although a t h e o r e t i c a l a n a l y s i s was done (29), the equation f o r the degree of f i l l was lengthy and complex. By o p e r a t i o n under c o n d i t i o n s f o r uniform bed depth i n the heat t r a n s f e r study, four independent o p e r a t i n g v a r i a b l e s , s o l i d throughput, r o t a t i o n a l speed, degree o f f i l l , and i n c l i n a -t i o n angle, are reduced to three through equation 2-16. There-f o r e i f one s e t s r o t a t i o n a l speed and feed r a t e , t here i s o n l y one i n c l i n a t i o n angle t h a t w i l l g i ve a c e r t a i n uniform bed depth. The r e t e n t i o n time was simply o b t a i n e d by d i v i d i n g the bed weight by s o l i d throughput. The r e s u l t s f o r the same s e r i e s of experiments are g i v e n i n F i g u r e 6-10. As expected the r e t e n -t i o n time i s i n v e r s e l y p r o p o r t i o n a l to the r o t a t i o n speed. How-ever degree of f i l l has l i t t l e impact on r e t e n t i o n time f o r a uniform bed k i l n as shown i n F i g u r e 6-11. I n c r e a s i n g degree of f i l l r e q u i r e s an i n c r e a s e of feed r a t e to maintain the bed a t the same h e i g h t . As a r e s u l t , r e t e n t i o n time, as a r a t i o o f bed weight to s o l i d throughput remains constant. 91 o I-z: IxJ P 0.75 h LL! 0.25 h 0 0.4 0.6 l /N . r p m - 1 Figure 6-10 E f f e c t of Rotational Speed and In c l i n a t i o n Angle on Retention Time i n a Uniform Bed Depth Rotary K i l n . O N =1.5 (rpm) , a = 1.36° A N =30 (rpm) , a = 1.36° • N =3.0 (rpm) , a = 2.62° 9.2 14.2 •O O — Parameter = Ws (kg/hr) 18.0 25.2 A -A-19.8 34.3 51-3 8 12 16 20 DEGREE OF FILL, (%) igure 6-11 E f f e c t of Degree of F i l l on Retention Time i n a Uniform Bed Depth Rotary K i l n . 6.5 Residence Time D i s t r i b u t i o n For modelling of heat transfer and/or chemical reaction in a rotary k i l n i t i s generally assumed that s o l i d moves i n plug flow i n the a x i a l d i r e c t i o n and i s completely mixed i n the r a d i a l d i r e c t i o n . The v a l i d i t y of the former assumption can be examined by the use of the a x i a l dispersion model. The Peclet number was reportedly (30, 31, 38) high enough (above 50) that the s o l i d flow i n a x i a l d i r e c t i o n can be considered as plug flow In t h i s study four RTD runs were conducted i n the l u c i t e cylinder. The impulse stimulus method was used. The experiment a l conditions are l i s t e d i n Table 6-2 and the r e s u l t s are given in Figure 6-12, plotted as the F-curve versus time. The tracer of 115 g was used i n Run Rl whereas about 13.7 g was used i n other runs. Based on the experimental r e s u l t s the standard deviation, Peclet number and a x i a l dispersion c o e f f i c i e n t were calculated and also are given i n Table 6-2. The r e s u l t s i n d i -cate the Peclet numbers are i n the range 371 to 567 and increase with decreasing r o t a t i o n a l speed. However decreasing r o t a t i o n a l speed decreases a x i a l dispersion c o e f f i c i e n t . Now i t i s of in t e r e s t to compare the experimental data with that calculated from the a x i a l dispersion model with the obtained Peclet numbers. The a x i a l dispersion model was represented by equation 2-15. Moriyama and Suga (32) solved t h i s equation with i n i t i a l and boundary conditions as given in equations 2-16a, b and d. The l a s t boundary condition describes a rotary k i l n having Table 6-2 Operating Conditions and Calculation Results of RTD Experiments Run No. Rl R2 R3 R4 Tracer weight (kg) Bed Weight (kg) Rotation speed (rpm) Solid Throughput kg/hr Inclination angle (degree) 0.115 0.0137 0.0138 0.0136 8.7 28.7 1.5 9.4 6.87 15.6 61. 2 1.5 8.4 5.5 19.8 1.5 9.3 4.8 19. 8 1.5 a Qx 1 0 + 2 (-) 7.04 7. 34 5.94 7.24 Pe (-) 404 371 567 382 D x 10 5 (m.2/s). ,.r:28 2.91 0.69 0.90 1001 TIME AFTER TRACER FED, min. 8 9 10 II 12 g tt j — z: O o o Lul > 8 0 6 0 & 4 0 3 O 20 I ? J L 16 17 18 19 20 22 24 26 28 30 32 34 36 TIME AFTER TRACER FED, min. Figure 6-12 Cumulative Respon.se Curve i n a Rotary K i l n . 96 ^  c o n s t r i c t i o n at the discharge end more reasonably than equation 2-16c proposed by Abouzeid et a l (30). The solution of Moriyama and Suga for large Pe ( >50 ) i s given i n equation 6-3. C(£) = 5_ 1 Peg Exp 1+5 V T - (1-g) zPe 4£ (6-3) In t h i s equation Pe, the only parameter in the model, i s determined from the experimental data and i s given i n Table 6-2. Figures 6-13, 14, 15 and 16 compare the experimental data and equation 6-3. The figures show a reasonable agreement, how-ever the peak concentration i s underestimated i n each case. Since s o l i d transport through a rotary k i l n can be repre-sented by the a x i a l dispersion model, i t i s useful to i n v e s t i -gate the e f f e c t s of k i l n operating parameters on Peclet number or the a x i a l dispersion c o e f f i c i e n t D. The e f f e c t of operating parameters, e s p e c i a l l y r o t a t i o n a l speed, on n has been studied by many investigators (19,30-32, 34, 36, 62). The rel a t i o n s h i p between D and N/Nc based on the present experiments i s shown in Figure 6-17, along with the experimental re s u l t s of other i n -vestigators. D i s plotted against N/N , instead of N, because N/Nc i s able to indicate the flow pattern of p a r t i c l e s i n a rotary cylinder, as described i n Section 2-1. As discussed i n Section 2-3 and seen i n Figure 2-4 there has been l i t t l e agree-ment on the relationship between D and N. The experimental res u l t s of Abouzeid, et a l (30), Rutgers (19) and Sugimoto et Figure 6-13 Residence Time Di s t r i b u t i o n (Pe = 404) vO 0 . 7 0 . 8 0 . 9 1.0 1.1 1.2 1.3 DIMENSIONLESS TIME Figure 6-14 Residence Time Distribution (Pe = 371) 9 L 1 . 4 DIMEN5I0NLE55 TIME Figure 6-15 Residence Time Dist r i b u t i o n (Pe = 567). -o 9 L CX O CE LU (_) o CJ CO CO o I—i CO LLJ i—i a 8 L 7 6 5 4 3 2 1 0 0.7 <!> PECLET N0.= 382 ^ EXPERIMENTAL DflTfl EQURTION 6- 3 0 0.8 0.9 1.0 DIMENSIONLESS TIME Figure 6-16 -Residence Time Dist r i b u t i o n (Pe = 382) 1 .3 1 . 4 Cr O <=> 30 l -2 20 10 6 4 © This work a Sugimoto et al x Rutgers o Morigama 8t Suga A Abouzeid, et al v Matsui < 2 0.6 h 0.01 0.02 0.04 0.07 Ql 0.2 N / N c 0.4 0.7 Figure 6-17 Relationship of D and N/N . a l (36-38) indicated that D was proportional to the square root of rotation speed, however those of Matsui (34) and Moriyama and Suga (32) reported D was d i r e c t l y proportional to rotation speed. The r e s u l t of the present experiments agree with Matsui, and Moriyama and Suga. The discrepancy in slopes seems to be related to differences i n flow regimes of bed p a r t i c l e s . Figure 6-17 c l e a r l y indicates that D i s d i r e c t l y proportional to N at N/Nc < 0.1 where the r o l l i n g type of bed movement was obtained, whereas for the cascading bed, N/Nc > 0.1, D i s proportional to the square root of N. The high Peclet numbers obtained indicate that the s o l i d flow can be considered as plug flow i n k i l n s of the size used in t h i s study. Heat Transfer 6.6 Solid and Gas Temperature 6.6a Soli d Temperature The bed temperature i n r a d i a l d i r e c t i o n i s usually as-sumed uniform i n the modelling of a rotary k i l n although the surface temperature i s l i k e l y to be higher. The former assump-tion was confirmed i n t h i s study by measurements with three r a d i a l l y spaced thermocouples inserted into the bed. The r a d i a l bed temperatures along the k i l n i n two sets of data are given i n Figure 6-18. Temperatures at d i f f e r e n t bed depths are within + 2 K, and the bed can be taken as radially isothermal-in the bulk. E f f e c t i v e r a d i a l mixing i s a major contribution to uni-103 550 5 0 0 4 5 0 Distance below Bed Surface A 4.6 mm O I 6.3 mm • 29.0 mm Bed Height = 4 3 mm 4 0 0 350 30Q © ® t o 0.5 1.0 1.5 2.0 DISTANCE FROM CHARGE END, m 2.5 Figure 6-18 Radial Solid Temperature i n the Bed 104 formity of r a d i a l bed temperatures. The r a d i a l s o l i d flows are i n the r o l l i n g pattern under conditions tested. Heat i s transferred from a i r to the exposed surface layer which i s well mixed when r o l l i n g down to the foot of the bed surface. Immed-i a t e l y a new fresh layer repeats the same phenomena as the previous layer. With such fast turnover of s o l i d material and short exposure time on the surface, the material appears to be thermally mixed when i t emerges into the bed. Thus, a single bed temperature can adequately represent the s o l i d temperature at a given a x i a l p o s i t i o n . 6.6b Gas Temperature The calculations of heat balance and heat transfer require the average gas temperature at a given a x i a l p o s i t i o n . To de-termine a true bulk temperature both r a d i a l gas temperature and ve l o c i t y p r o f i l e s would be required along the k i l n . Figure 6-19 shows a r a d i a l gas temperature p r o f i l e taken at 1.7 m from the gas entrance using a portable shielded probe. In the absence of gas v e l o c i t y data, the average gas temperature was calculated assuming plug flow of gas using the following equation: T (x) = "I T (x,r) A./EA. g . g. I I (6-3a For the present test, the average gas temperature was 409.2 K, compared to the centerline gas temperature of 412.5 K. If a ve l o c i t y d i s t r i b u t i o n that accounted for the v e l o c i t y decrease near the wall were used to calculate a bulk temperature, the value would be even closer to the centerline temperature. The wall and solids temperatures are shown as 347K and 376K respectively. The 105 U J or tr LU o_ L U I -co < 4 3 0 420 410 4 0 0 390 380 370 Wg = 50 kg/hr -Tg =420.8 K x O , J Q 3 4 kg/hr ^ \ Q | G ^ 4 1 2 . 5 K -o-18.6 kg/hr •o —o-386.8 K 1 1 O i l < 1 Q \ Q 0 10 20 30 40 50 60 70 80 90 100 RADIAL POSITION , mm Figure 6-19 Average Radial Temperature P r o f i l e 106 appropriate d r i v i n g forces for heat transfer are thus AT^ w = 409.2-347=66.2 K and AT = 409.2-376=33.2 K. Experimental gs d i f f i c u l t i e s precluded the routine measurement of both r a d i a l arid a x i a l temperatures. Instead the temperature 25.4 mm from the centerline was used to approximate the average temperature at a given a x i a l p o s i t i o n . This w i l l give a s l i g h t l y larger c a l -culated AT for both gas/solids and gas/wall c o e f f i c i e n t s . In the present case the AT -412.5-376=36.5 K, and AT = 412.5-367= c gs gw 65.5 K. Thus reported heat transfer c o e f f i c i e n t s w i l l be conserv-at i v e . The e f f e c t of using the near-centerline temperature rather than the bulk temperature w i l l be small since on average AT^s~67K and AT =70 K. However a 3K deviation i n T w i l l make c o e f f i c i e n t s gw g about 10% low at low percentage f i l l , and low solids throughputs where AT^ s are about 30-40 K. On average the reported c o e f f i c i e n t s w i l l be about 4% low. 6.7 Axial Temperature D i s t r i b u t i o n Figure 6-20 i s a t y p i c a l curve of the a x i a l temperature d i s t r i b u t i o n s found along the k i l n . A i r temperatures and sand temperatures were taken at f i v e locations, whereas wall tempera-tures were taken at four locations. The smooth curves along experimental curves were obtained by the use of spline functions. For most runs the sand temperature i s higher than the wall temp-erature u n t i l they approach each other near the discharge end. This r e f l e c t s the greater rate of heat transfer to the bed than to the wall, and the r e l a t i v e l y high heat loss through the wall. In t h i s t y p i c a l run as shown i n Figure 6-20 the temperature pro-f i l e s are not l i n e a r and the temperature difference between gas and solids temperature i s f a i r l y constant along the k i l n at about 55 K. The temperature d r i v i n g force w i l l be reduced to 107 6 0 0 5 5 0 h 500 UJ or ZD \-< tr UJ o_ U J I -4 5 0 h 400 350 3 0 0 h Run No. = A23 Air Flow Rate = 3 4 . 0 Sand Feed Rate = 15.0 Rotational Speed = I .5 Inclination Angle = I .2 Holdup = 17.0 Tg Ts A-A ^ T w kg/hr kg/hr rpm o % _L 0.0 0.5 1.0 1.5 2.0 DISTANCE FROM SOLID FEED END, m 2.5 Figure 6-20 .Typical A x i a l P r o f i l e s along a Rotary K i l n 108 53 K i f the average gas temperature as d i s c u s s e d i n the p r e v i o u s s e c t i o n i s used. T h i s r e s u l t s o n l y i n 4% i n c r e a s e of heat trans-f e r c o e f f i c i e n t i f the average gas temperature i s used i n s t e a d of the c e n t e r l i n e temperature. F i g u r e 6-21 shows the r e p r o d u c i b i l i t y of temperature readings f o r two runs a t the same o p e r a t i n g c o n d i t i o n s c a r r i e d out two days a p a r t . The data were r e p r o d u c i b l e w i t h i n 2.5 K f o r s o l i d s temperature, 1.5 K f o r w a l l temperature and 1.0 K f o r gas temperature. The e f f e c t of a i r f l o w r a t e on temperature d i s t r i b u t i o n i s d e p i c t e d i n F i g u r e 6-22. The a i r e n t e r i n g the k i l n f o r these two runs was kept at the same temperature. The temperatures of a i r , sand and w a l l f o r h i g h a i r f l o w r a t e were found t o be h i g h e r than those f o r lower f l o w r a t e . The reason can be e x p l a i n e d as f o l l o w s . The heat t r a n s f e r c o e f f i c i e n t from gas to s o l i d s i s a f u n c t i o n of gas f l o w r a t e as h <* W^ . where n i s l e s s than u n i t y . Then an i n c r e a s e of gas f l o w r a t e i n c r e a s e s the heat flow r a t e from gas to s o l i d s a c c o r d i n g l y i f T - T remains about the same. Since Q W C AT , thus AT , g s g pg g g the gas temperature drop, becomes depending on gas f l o w r a t e i n — ( 1 — n ) a form of w . T h e r e f o r e i n c r e a s i n g gas f l o w r a t e decrease g the gas temperature drop. The e f f e c t of r o t a t i o n a l speed and sand throughput on the temperature p r o f i l e s i s given i n F i g u r e 6-23. The tempe-r a t u r e s of a i r , sand and w a l l f o r a h i g h e r r o t a t i o n a l speed were found to be lower than those f o r a low speed. These e f f e c t s are e x p l a i n e d below. As noted i n S e c t i o n 6.4, i n order to main-109 550 5 0 0 h Run No. A21 Run No. A 23 Air Flow Rate Sand Feed Rate Rotational Speed Inclination Angle Degree of Fi l l 34.0 kg/hr 15.0 kg/hr 1.5 rpm 1.2 degree 17.0 % 450 U J c e ZD U J a . U J 4 0 0 k 3 5 0 h 300r-I I I I I I 0.0 0.5 1.0 1.5 2.0 2.5 DISTANCE FROM SOLID FEED END, m F i g u r e 6-21 R e p r o d u c i b i l i t y of A x i a l Temperature P r o f i l e s along Rotary K i l n 110 1 1 Air Flow Rate 81 kg/hr Air Flow Rate 34 kg/hr 550 500 Sand Throughput Rotational Speed Inclination Angle Degree of Fill = 3 6 kg/hr = 3 .0 rpm = 2 . 0 degree = 11.0 % * 450 L x J QC or UJ a . 4 0 0 UJ h-350 3 0 0 1 0.0 0.5 1.0 1.5 2.0 DISTANCE FROM CHARGE END, m 2.5 F i g u r e 6-22 E f f e c t o f A i r Flow Rate on A x i a l Temperature P r o f i l e s along Rotary K i l n I l l 550 5 0 0 (  Sand Throughput Rotational Speed Sand Throughput Rotational Speed 15 kg/hr 1.5 rpm 3 4 kg/hr 3.0 rpm Air Flow Rate Inclination Angle Degree of Fil l = 3 4 kg/hr = 1.36 degree = 17 % Ixl or z> $ DC IxJ Q. UJ 4 5 0 400 350 300 1 0.0 0.5 1.0 L5 2.0 DISTANCE FROM CHARGE END , m 2.5 F i g u r e 6-23 E f f e c t of Sand Throughput and R o t a t i o n a l Speed on Temperature D i s t r i b u t i o n tain a uniform bed depth along the k i l n , doubling r o t a t i o n a l speed requires a double sand feedrate. Meanwhile an increase of r o t a t i o n a l speed increases the gas to solids heat transfer c o e f f i c i e n t as w i l l be demonstrated i n Section 6.10, which re-sults in an increase in heat flow from gas to sands accordingly. Since Q « w AT , the gas temperature drop i s expected to be g q higher for a higher r o t a t i o n a l speed at a constant gas flowrate, W . Thus the s o l i d temperature i s also expected to be lower for a high r o t a t i o n a l speed. Figure 6-24 shows the e f f e c t of a i r i n l e t temperature. A i r temperature near the discharge end drops much more quickly for the high i n l e t temperature run than for the low temperature run. 6.8 Calculation Method for Heat Transfer C o e f f i c i e n t The c a l c u l a t i o n of heat transfer c o e f f i c i e n t s was based on a simple but r e a l i s t i c equation with the following assumptions 1. The gas phase i s i n plug flow and at uniform temperature at each a x i a l position. 2. Since the s o l i d bed temperature i s r a d i a l l y uniform, therefore, the s o l i d temperature i s a function of a x i a l distance only. Solids move i n plug flow. 3. The wall temperature i s taken to be independent of angle and time. The experimental re s u l t s show i n s i g n i f i c a n t fluctuations of wall temperature under conditions used. 4. The bed surface i s assumed f l a t , and i n the c a l c u l a t i o n of gas/bed c o e f f i c i e n t s i t s area i s taken equal to the 113 6 0 0 550 h 500 UJ or ZD -or w 450 U J H 400 350 n r Run No. AI3 Run No. AI4 Air Flow Rate = 24 .6 kg/hr Sand Throughput = 2 5 . 0 kg/hr Rotational Speed Inclination Angle Degree of Fill = 3.0 rpm = 1.36 degree . 0 0.5 1.0 1.5 2.0 DISTANCE FROM CHARGE END , m 2.5 Figure 6-24 E f f e c t of A i r Inlet Temperature on Temperature D i s t r i b u t i o n chord l e n g t h times the bed l e n g t h . The above assumptions are v a l i d f o r the whole l e n g t h o f the k i l n except the zone of the s o l i d i n l e t , where the p a r t i c l e f a l l from the fe e d i n g chute and shower through the a i r stream. In t h i s r e g i o n the temperature of the p a r t i c l e s r i s e s r a p i d l y . From an enthalpy balance taken over an incremental a x i a l l e n g t h of k i l n as i l l u s t r a t e d i n F i g u r e 6-25, the f o l l o w i n g equations can be e a s i l y derived: 1/. Gas phase dH = <WX> + qgw(K) ( 6 ' 4 ) S o l i d phase dH = ^ g s ( x ) " q s w ( x ) <6-5> The second term i n equation 6-5 i s w r i t t e n w i t h the s i g n a p p r o p r i a t e to the case where T g > T . H i s the enthalpy and i s d e f i n e d as and H = W C (T - T ) (6-6) 9 g pg. g g r H s = W s C P s ( T s - T s r ' <6-7> zzzzzzzzzzz n w » ) f { m u m n in GAS f SOLIDS '//////////. Tviyi I I 11 I 1 TTTT I Figure 6-25 D i f f e r e n t i a l Section of Rotary K i l n . 116 where T g r , T S r are r e f e r e n c e temperatures f o r gas and s o l i d r e s p e c t i v e l y and q r e p r e s e n t s a heat flow per u n i t l e n g t h . The s u b s t i t u t i o n o f equations 6-6 and 6-7 i n t o equations 6-4 and 6-5 r e s p e c t i v e l y , g i v e s dH : C W dT _ g = p g . g _ a , f i _„x dx dx ( 6 8 ) dH C W dT S = ^ -PS- s s air P dx~ ( 6- 9) The heat t r a n s f e r terms, q (x), q (x) and q (x) are ^gs ^gw ^sw d e f i n e d i n terms of heat t r a n s f e r c o e f f i c i e n t s , V ( x ) = V ( x ) V T g " Tw } ( e - 1 1 ) *sw ( x ) = h s w ( x ) V ( T's " Tw) < 6" 1 2> With equations 6-8 to 6-12, equations 6-4 and 6-5 become C W c\ T pg g g = h ( x ) i (T - T )+h ( x ) i (T - - T , 7 < ) dx gs s g s' gw w s w' (6-13) C p s W S d T s =h ( x ) l ( T - T . ' ) - h ( x ) l , (T • -T. ) * — gs s g s sw w1 s w dx (6-14) I n t h e s e two e q u a t i o n s , T^, Ts a r e o b t a i n e d f r o m e x p e r i m e n t a l dTcj d T s measurements and t h e a x i a l g r a d i e n t s , — — and -=— a r e c a l c u -x l a t e d f r o m t h e t e m p e r a t u r e d i s t r i b u t i o n a l o n g t h e k i l n by use o f s p l i n e f u n c t i o n s . However, t h e r e a r e t h r e e unknown v a r i a b l e s h ( x ) , h (x) and h (x) i n e q u a t i o n s 6-13 and 6-14. I n o r d e r gs gw sw ^ t o e v a l u a t e t h e h e a t t r a n s f e r c o e f f i c i e n t s f r o m gas t o s o l i d , and gas t o w a l l , one must know h ( x ) , t h e h e a t t r a n s f e r c o -^ sw e f f i c i e n t f r o m s o l i d t o w a l l . F o r t u n a t e l y t h e s o l i d b e d - w a l l h e a t t r a n s f e r c o e f f i c i e n t s a r e a v a i l a b l e i n t h e l i t e r a t u r e and t h e s e e x p e r i m e n t a l d a t a have been c o r r e l a t e d u n d e r t h e frame o f p e n e t r a t i o n m o d e l . The r e s u l t i s g i v e n i n t h e n e x t s e c t i o n . Once h (x) i s known, t h e n h e a t t r a n s f e r r a t e f r o m gas t o s o l i d sw b ed i s c a l c u l a t e d by q a s ( x ) = + q q w ( x ) (6-i5) gs d x sw t h a t , i n t u r n , i s u s e d t o c a l c u l a t e h e a t t r a n s f e r r a t e f r o m gas t o w a l l , q (x) by ' ^sw 1 V ( x ) = ^ - q g s ( x ) ( 6 - 1 6 ) q ( x ) , q (x) a r e l o c a l h e a t t r a n s f e r r a t e s . The a v e r a g ^gs ^gw ^ h e a t t r a n s f e r r a t e p e r u n i t l e n g t h o f k i l n c a n be c a l c u l a t e d as 11H <3gs = ) * g s ( X ) d X 7 U 2 " X l } (6-17) X l and V = / X \ w ( x ) d X / ( X2 " Xl> ( 6 " 1 8 ) The logarithmic mean heat transfer c o e f f i c i e n t s for gas to sol i d s and gas to wall are represented by h • = q / 1 (T - T-) , (6-19) gs ^gs ' s g s' lm h = q / 1 (TCT - T w ) . (6-20) gw g^w w y v / lm respectively, where (VTs>lm " ( V ^ x z " <Tg " Vx,; In ( Tg~ Ts)x2 (T -T ) and (VTw)lm (T -TV) - (T J-T' •) v x g 'W^ x,, v ± g V ' x i In-' 9 W x ? ( T g - T w ) x -119 The heat l o s t through the k i l n wall to the surroundings can be estimated by the heat conduction equation for the i n s u l a t i o n material 2 k.(T -T. ) , , a. v in q-^x) = In (D. /D) (6-21) m w where k.: thermal conductivity of i n s u l a t i o n material. D , l J w D^n, diameters where temperature probes for wall and i n s u l a t i o n material. - ,.-.>. From experimental measurements of wall temperature and the temperature of i n s u l a t i o n material the heat loss through the wall may be calculated. A heat balance over a section of the wall y i e l d s q l ( x ) = V ( X ) + q s w ( x ) ( 6 " 2 2 ) The subtraction of equation 6-4 from equation 6-5 also gives the sum of q ix) + q (x) ^gwx ^sw ^ " = q ^ i X ) + q S w U ) ( 6 " 2 3 ) These two equations are used to check the heat loss through the wall. A l o c a l heat balance deviation was defined: 120 L o c a l D e v i a t i o n = 100 q s (x)+q 1 (x)-q„(x) / q g ( x ) Thus negative d e v i a t i o n s i n d i c a t e d t h a t more heat was l o s t from the gas than was gained by the s o l i d s and l o s t through the w a l l . 6.9 Bed to Wall Heat T r a n s f e r In o r d e r to eva l u a t e heat t r a n s f e r from gas to s o l i d s bed and w a l l , heat t r a n s f e r from s o l i d s bed to w a l l or v i c e v e r s a must be known. Although some experimental data f o r w a l l to s o l i d s bed heat t r a n s f e r (3, 42, 43), together w i t h proposed models are a v a i l a b l e i n the l i t e r a t u r e , ,.as d e s c r i b e d i n Chapter 2 no proposed model y e t s a t i s f a c t o r i l y r e p r e s e n t s a l l the p u b l i s h -ed experimental data. An attempt was made to c o r r e l a t e the data w i t h i n the frame of the p e n e t r a t i o n model. The simple p e n e t r a -t i o n model wi t h I.C. and B.C. as given i n equations 2-23 leads to the f o l l o w i n g dimensionless equation = 2 /nR^32_ ( 6 _ 2 4 , k ^ a s F i g u r e 6-26..plots the p u b l i s h e d data (3, 42, 43) i n terms of h 1 , nR 2g sw w k s versus • The c o r r e l a t i o n i n the f i g u r e shows a very i n t e r e s t i n g r e s u l t . The Nusselt number, h 1 , increases 3 sw w k s A W a c h t e r s & K r a m e r s v Wes e t a l d p = 15 - 1 0 0 vm L e h m b e r g e t a l 9 s o d a o s a n d • m "• d « = 137 v m 1 5 7 3 2 3 7 9 4 1038 A A A M A A A _ B g B g s C i B B B o • 3 0 10' 10* n R 2 ^ 10 10" 6 x 1 0 Figure 6-26 Correlation of Solids Bed-to-Wall Heat Transfer C o e f f i c i e n t . 122 2 with increasing nR B/a according to the following equation, h 1 , sw w' k = l x - 6 s nR 2B n 0.3 2 nR I < 10 4 (6-25) 2 4 At values of nR B/a > 10" the dependence of h 1 ,/k on ^ sw w* s 2 nR 3/a becomes stronger, then n s w - ' - w i / - c s approaches a l i m i t i n g value which depends on p a r t i c l e sizes. The data with coarse 2 4 p a r t i c l e s tend to l e v e l o f f quickly beyond nR B/a = 10", where-as with fine p a r t i c l e s , h 1 ,/k continues to increase. The ^ sw w1 s values of h 1 ,/k estimated from equation 6-25 are lower than sw w' s ^ those from the simple penetration model from-which equation 6-24 i s derived. The negative deviation can be re a d i l y ex-plained by the presence of a gas f i l m near the -wall, as postu-lated by B o t t e r i l l et a l (63) for the f l u i d i z e d bed, Epstein and Mathur (4 5) for the spouted bed and Lehmberg et a l (43) for the rotary k i l n . Ernest (64) carried out experiments on moving beds with d e f i n i t e contact time, t , using p a r t i c l e sizes 100 pm - 700 p . A l i m i t i n g value of heat transfer c o e f f i c i e n t between wall and bed was found at very short contact time, t < 0.1 second. The l i m i t i n g value depended on p a r t i c l e s i z e . The contact time bet-ween the wall and the p a r t i c l e s near the wall i s approximately of the order of ten seconds under conditions of t h i s study. The 2 3 4 range of nR B/a i s from 10 to 10 . Therefore equation 6-25 i s used to calculate the heat transfer c o e f f i c i e n t s for the solids bed and the wall. 6.10 Heat Transfer C o e f f i c i e n t s 6.10a Local Heat Transfer C o e f f i c i e n t The length of the k i l n taken to be the test section i n t h i s study i s the central 0.53 meters which gives a x/D r a t i o of 2.78. The test section i s situated between 1.25 m (L/D = 6.56) from the s o l i d charge end and 0.66 m (L / n = 3.46) from the discharge end of the k i l n . The l o c a l heat flow per unit length from the gas and to the solids was calculated as described i n Section 6.8. Table 6-3 shows the re s u l t s of heat flow determination within the test section from a t y p i c a l experiment. In the test section the gas gives up the o v e r a l l heat of 211.2 W of which about 73% goes to heat up the s o l i d s . The heat flow from the solids to the wall accounts for the one t h i r d of the heat l o s t through the wall. The l o c a l heat balance deviation varies from -5,9% towards the charge end to +5.1% i n the middle of the test sec-tion, then to -12.4% near the hot end. However the o v e r a l l heat balance i n the test section deviates only -1.4%. In th e i r high temperature experiment i n the p i l o t k i l n , Brimacombe and Watkinson (4) reported the l o c a l heat balance deviation of +20% near the charge end to -20% near the hot end. mhe change i n deviation, i n th e i r r e s u l t , from negative to posi t i v e was thought to be due to the neglect of downstream ra d i a t i o n . The l o c a l heat transfer c o e f f i c i e n t s from the gas to 124 Table 6-3 Local Heat Flows and Heat Transfer C o e f f i c i e n t s x (m) 1. 25 1. 30 1. 40 1.50 1. 60 1. 71 T g (K) 462. 0 464 . 3 469 . 3 474.6 480. 4 492. 0 T s (K) 374. 0 377. 0 384 . 1 392.2 400. 9 417. 0 T w (K) 369 . 2 372. 9 380. 3 388.0 395 . 7 410. 5 T c (K) 343. 6 346. 1 351. 5 357.7 364 . 7 380. 5 q (W/m) ^sw ' 57. 2 50. 0 45. 1 50.1 61. 4 77. 9 q s (W/m) 169 . 2 190. 8 226. 5 252.1 267 . 3 26 8 . 1 q g s (W/m) 226. 4 240. 8 271. 7 302.2 328 . 7 345. 9 q g (W/m) 322. 6 335. 0 361. 5 390.6 422. 2 485. 3 q g w (W/m) 96. 3 94. 1 89. 9 88.4 93. 4 139. 4 c3gw + (3 Sw ( W / m ) 153. 6 144. 1 135. 0 138.5 154. 8 217 . 3 q 1 (W/m) 134. 0 140. 2 150. 7 158.6 162. 2 157 l o c a l deviation, ( % ) -5. 9 -1.. 2% A. 3 5.1 1. 3 -12. 4 h (W/m2 y l o c a l h (W/m 9 w l o c a l K) K) 16. 2. 13 53 .. 17.. 2. 351 '20 J 2. 0 47 .' 2 300 2.49 25. 2. 9 69 28 . 4. 9 1' the solids and to the wall were calculated based on equations 6-10 and 6-11. The ca l c u l a t i o n r e s u l t s are included i n Table 6-3 and shown i n Figure 6-27' i n which the l o c a l heat transfer c o e f f i c i e n t s are plotted against x, the distance from the charge end and against the r a t i o of x/F). As shown i n Figure 6-27 both h (x) and h (x) increase as x increases towards the hot end. gs gw 2 2 The h g s ( x ) gradually increases from 16.1 w/m K to 28.9 W/m K. The same trend was also obtained hy Brimacombe and Watkinson (4) i n t h e i r p i l o t k i l n . In a t y p i c a l run of t h e i r experiments the l o c a l heat flow received by the sol i d s doubled from one end of the test section to the another end. Since the temperature difference, (T^-T^) remained the same over the test section i n thei r study, the l o c a l heat transfer c o e f f i c i e n t s , thus, doubled from one end of the test section to another end. The shape of the increasing h g w ( x ) as shown i n Figure 6-26 i s found consistent with that for hot gas flowing through a tube near the entry region. As reported by Rohsenow and Hartnett(65) the l o c a l Nus-s e l t number increases sharply towards the gas entry region. Comparisons of the present re s u l t s with those i n the l i t e r a t u r e are given i n section 6-10h. The logarithmic mean heat transfer c o e f f i c i e n t s h and gs h over the test section are calculated by equations 6-19 and gw -r 6-20. The values of h and h are 22.4 W/m2K and 3.0 W/m?'K gs gw ' respectively for the t y p i c a l run as given i n Table 6-3. 126 <NJ 4 0 E * 3 0 H Z Ul o 2 0 U_ U. 8 O o r it! 1 0 CO z < 5 X < o Q D I S T A N C E F R O M GAS E N T R A N C E , L - X D 12 10 8 6 4 2 0 l | i i i l 1 1 1 1 1 1 1 -— s — — — y — Test Sect ion / / — _ RUN AI6 / / / — — — — — — Q > I i i 1 i I 1 1 1 1 1 1 2 4 1 1 6 1 8 X / D 1 10 1 12 ! 0 0.5 1.0 15 2 0 2 D ISTANCE F R O M SOLID C H A R G E E N D X , m Figure 6-27 Local Heat Transfer C o e f f i c i e n t 127 6.10b E f f e c t o f A i r T e m p e r a t u r e F i g u r e .6-28 shows t h e e f f e c t o f a v e r a g e a i r t e m p e r a t u r e on h e a t t r a n s f e r c o e f f i c i e n t . A i r t e m p e r a t u r e s , i n t h i s i n v e s -t i g a t i o n , r a n g e f r o m 350 F. t o 570 K. The a i r t e m p e r a t u r e has no e f f e c t on t h e gas t o s o l i d s bed h e a t t r a n s f e r c o e f f i c i e n t . W a t k i n s o n and Brimacombe (63) r e p o r t e d a s i g n i f i c a n t e f f e c t o f gas t e m p e r a t u r e , r a n g i n g 650 K t o 830 K, i n a d i r e c t - f i r e d r o -t a r y k i l n . The a v e r a g e c o n v e c t i v e g a s - s o l i d c o e f f i c i e n t s , i n 2 t h e i r r e s u l t s , a r e i n t h e r a n g e o f 120 t o 240 W/m K. T h e s e 2 v a l u e s a r e much h i g h e r t h a n t h e v a l u e s , 18-53 W/m K o b t a i n e d i n t h e p r e s e n t s t u d y f o r a n o n - f i r e d k i l n . F i g u r e 6-28 a l s o shows t h a t a i r t e m p e r a t u r e has l i t t l e e f f e c t on h . The v a l u e s gw o f h a r e a b o u t an o r d e r o f m a g n i t u d e h i g h e r t h a n h . T h i s gs •' ^ gw d i f f e r e n c e i s d i s c u s s e d below. 6-10c E f f e c t o f Gas F l o w r a t e The e f f e c t o f gas f l o w r a t e on h e a t t r a n s f e r c o e f f i c i e n t s f o r b o t h g a s - s o l i d s and g a s - w a l l was s t u d i e d a t c o n s t a n t s o l i d s t h r o u g h p u t , r o t a t i o n a l s p e e d and i n c l i n a t i o n a n g l e , w h i c h , i n t u r n , r e s u l t s i n c o n s t a n t d e g r e e o f f i l l . The gas f l o w r a t e was v a r i e d o v e r t h e r a n g e o f 18.6 t o 95 k g / h r , o r 653 t o 3334 2 kg/hr-m ( k i l n c r o s s s e c t i o n ) . The R e y n o l d s number i n t h e gas phase v a r i e d f r o m 1600 t o 7800. The h e a t t r a n s f e r c o e f f i c i e n t s , h and h , a r e p l o t t e d a g a i n s t gas f l o w r a t e i n F i g u r e 6-29. gs gw f -a As e x p e c t e d , r a i s i n g t h e gas f l o w - r a t e i n c r e a s e s b o t h gas t o s o l i d s and gas t o w a l l h e a t t r a n s f e r c o e f f i c i e n t s . 128 CM £ v. CM E JC 30 20 10 10 0 o • • o • • • Wg = 186 kg/hr Ws =36.0 kg/hr O Wg =24.6 kg/hr Ws =14.2 kg/hr A Wg =24.6 kg/hr Ws =25.0 kg/hr • • O 350 400 450 500 550 600 AVERAGE GAS TEMPERATURE, K Figure 6-28 E f f e c t of Gas Temperature on Heat Transfer C o e f f i c i e n t 129 1.0 2 0 40 60 GAS RATE Wg, kg/hr Figure 6-29 E f f e c t of Gas Flow Rate on Heat Transfer C o e f f i c i e n t 130 As was noted above the valu e s of h are about an order gs of magnitude higher than h . The higher v a l u e s of h are gw ^ gs a t t r i b u t e d to two r e l a t e d f a c t o r s . ^he c o e f f i c i e n t f o r the gas to s o l i d s heat t r a n s f e r i s based on the chord l e n g t h of a plane bed s u r f a c e . However the t o t a l s u r f a c e area o f p a r t i c l e s on top of a s t a t i c bed can be more than twice the plane s u r f a c e area depending on p a r t i c l e arrangement. The other s i g n i f i c a n t f a c t o r c o n t r i b u t i n g to higher h g S ; i s r a p i d p a r t i c l e motion i n l a t e r a l d i r e c t i o n , which would p r o h i b i t the development of a v i s c o u s l a y e r t h a t would e x i s t even on a rough p l a t e , or on the k i l n w a l l s , and would pres e n t an even l a r g e r s u r f a c e area f o r heat t r a n s f e r . I f the thermal r e s i s t a n c e of the gas/bed i n t e r f a c e i s p i c t u r e d as c o n s i s t i n g of two r e s i s t a n c e s i n s e r i e s , one on the gas s i d e , and the other on the s o l i d bed s i d e , then the strong dependence of h g g on gas flow r a t e suggests the major r e s i s t a n c e f o r heat flow from the gas phase to the bed i s on the gas s i d e . Any means t h a t c o u l d reduce t h i s r e s i s t a n c e would d e f i n i t e l y i n c r e a s e the heat flow. At the normal r o t a t i o n a l speed of the r o t a r y k i l n the p a r t i c l e s r o l l on the s u r f a c e a t speeds much g r e a t e r than the c i r c u m f e r e n t i a l speed of the k i l n . Thus, the i n t e r f a c e c o n s i s t s of a r o l l i n g mass of p a r t i c l e s which would c r e a t e t u r b u l e n c e i n the gas phase near the bed s u r f a c e . 6.10d E f f e c t o f R o t a t i o n a l Speed F i g u r e 6-30 shows the e f f e c t of r o t a t i o n a l speed on the 131 to J C in m d 5 CP JC I f ) d 8 6 0.8 0.6 f 0.4 0.2 Degree of Fill •  A 6 .5% O 11.0% Ws : 5 8 - 66 kg/hr A X 0 J I JL I l  0.4 0.6 08 I 2 4 6 ROTATIONAL SPEED, rpm Figure 6-30 E f f e c t of Rotational Speed on Heat Transfer C o e f f i c i e n t . 132 heat transfer c o e f f i c i e n t s , h and h . The e f f e c t of gas flow gs gw ^ 0575 o 1 7 ^ rate i s excluded by div i d i n g h and h with W " and W gs gw g g respectively. As seen i n the figure r o t a t i o n a l speed has a s l i g h t l y p o s i t i v e e f f e c t on h , and a s i g n i f i c a n t negative e f f e c t on gs J 3 h . The s l i g h t l y p o s i t i v e e f f e c t of N on h _ can be explained gw u It gg tr as follows. When heat i s transferred from the gas to a sta t i o n -ary bed, heat f i r s t has to reach the bed surface by convection through a gas f i l m and then penetrate into the bed by conduction. The convective heat transfer c o e f f i c i e n t to a stationary bed can be estimated by the equations (66,67) developed for gas flowing over a rough f l a t plate or through a rough empty tube. As the k i l n starts to rotate at low speed, the bed slumps as described i n Chapter 2 . In a slumping bed the bed surface remains tranquil between slumps. On the tranquil surface heat i s transferred to the exposed burden surface from the gas to create a thin hot layer of pa r t i c u l a t e material. When the bur-den slumps the gas "f i l m " near the bed surface i s suddenly agitated and the hot s o l i d layer would mix with a layer mass of cooler material, leaving a fresh top surface to absorb heat during the next slump period. mhe periodic function of gas "fil m " disturbance and s o l i d mixing c e r t a i n l y increases the heat transfer rate from the gas to the s o l i d bed compared with that i n a stationary bed. Under the slumping condition, the bed mixing i s then expected to control the heat uptake by the bed. Figure 6-31 i l l u s t r a t e s the expected e f f e c t of N on h _ 13 3 Figure 6-31 E f f e c t of FI on h i n Both Slumping and Rolling Beds g with several types of bed movement. The c o e f f i c i e n t h i s J ^ gs expected to increase substantially with increasing M u n t i l at a speed i s reached where r o l l i n g s t a r t s . Once r o l l i n g begins the dominating thermal resistance i s thought to s h i f t to the gas side. P a r t i c l e l a t e r a l v e l o c i t y on the bed surface i s high enough to convey any heat received through the gas " f i l m " as described before. In the r o l l i n g bed an increase of r o t a t i o n a l speed increases the l a t e r a l v e l o c i t y of surface p a r t i c l e as <* N as shown i n Figure 6-6. Since r o t a t i o n a l speeds i n t h i s study range from 1 to 6 rpm, the l a t e r a l v e l o c i t y increases by about 2.5 times, which apparently does not a l t e r the gas side r e s i s t -ance markedly. As a r e s u l t increasing r o t a t i o n a l speed i n the r o l l i n g bed increases the heat transfer c o e f f i c i e n t s from gas to s o l i d s bed only s l i g h t l y . The negative e f f e c t of increasing the r o t a t i o n a l speed on the gas to wall c o e f f i c i e n t appeared somewhat surprising. However, Cannon (68) reported the same e f f e c t of r o t a t i o n a l speed on convective gas-wall beat transfer. His experiments were carried out with a i r flowing through an 1.52 m long empty rotating pipe, 0.0254 m i n diameter. Laminar and t r a n s i t i o n regions of gas flow were investigated. The most s i g n i f i c a n t e f f e c t of rotation was found to be i n the t r a n s i t i o n region. He concluded that pipe rotation tends to s t a b i l i z e the laminar flow so that t r a n s i t i o n occurs at higher Reynolds numbers. 135 This-: would suggest t h a t , a t constant flow c o n d i t i o n s (same Reynolds number), i n c r e a s i n g r o t a t i o n a l speed would decrease the heat t r a n s f e r c o e f f i c i e n t i n the t r a n s i t i o n r e g i o n . Rey-nolds number i n gas phase v a r i e d from 1600 to 7800 i n t h i s study, of which most data are i n the range of 2000 to 4000 which i s not i n the f u l l y t u r b u l e n t r e g i o n . 0.575 By r e g r e s s i o n a n a l y s i s the slope of n g S / ^ g * v s - N i s 0.091, and t h a t of h /w 0 , 4 7 5 vs. N i s -0.297. gw' g 6.10e E f f e c t of Degree of F i l l The e f f e c t s of degree of f i l l on h and h are q i v e n ^ gs gw 0 575 0 091 i n F i g u r e 6-32. The.ordinate are h /W ' N and h / ^ gs' g gw 0 4 7 5 — 0 2 9 7 W ' M " which exclude the e f f e c t s of gas flov; r a t e and g J r o t a t i o n a l speed. I t appears i n the f i g u r e t h a t h ^ s decreases very s l i g h t l y as the degree of f i l l i n c r e a s e s w h i l e h ^ w i s independent o f the degree of f i l l . The n e gative e f f e c t of n on h can be e x p l a i n e d as J gs f o l l o w s . As d e s c r i b e d above, i n the r o l l i n g bed, the t r a n s f e r of heat from the gas to the s o l i d s bed can be thought of as comprising two s t e p s . Heat i s f i r s t t r a n s f e r r e d to the s u r f a c e p a r t i c l e s which mix w i t h p a r t i c l e s of other s u r f a c e l a y e r s be-f o r e the mixture r e t u r n s i n t o the bed. The mixed p a r t i c l e s w i l l remain i n the bed u n t i l they emerge again on the bed s u r -f a c e . T h i s suggests t h a t the r a t i o of bed s u r f a c e to bed v o l -ume i s an important f a c t o r i n the heat t r a n s f e r p r o c e s s . The bed s u r f a c e a v a i l a b l e f o r gas-bed heat t r a n s f e r i n c r e a s e s a t a g i v e n s i z e of k i l n as the holdup i n c r e a s e s a c c o r d i n g to en 6.0 5.0 — o d z 4.0 — 1 0 8 . 30 — o OJ d i 2.0 1.0 0.9 0.8 0.7 0.6 0.4 0.3 Gas to Solid Bed o o o N a Ws 18.6 ~ 95.5 kg/hr. 0.9 ~ 6.0 rpm I. 4 ^ 4 . | ° II. 3 — 66.3 kg/hr Gas to Wall 8 o 8 8 12 18 DEGREE OF FILL, % Figure 6-32 E f f e c t of Degree of . F i l l on Heat Transfer C o e f f i c i e n t . 137 0. 27 A a n 0.04 < n < 0.30 however, the r a t i o of bed surface to bed volume decreases s i g n i f i c a n t l y as Bed surface _ n -.^  QC U • / J Bed volume Although the heat transfer rate, qg S, i s d i r e c t l y pro-portional to the bed surface area, experimental data i n Table 6-4 for' various degrees of f i l l at the same operating conditions show a much weaker dependence of q g g on A g. In addition, the temperature differences, (T - T s ) l m " / were found about the same in these three runs. Thus, the heat transfer c o e f f i c i e n t s , according to q -gs h —!S«. A AT, s lm have a s l i g h t l y negative dependence on the degree of f i l l . The slope of hgS/Wg* ^^^N^" 9^''" vs. n i n the log-log p l o t as shown i n Figure 6-32 i s -0.171. It i s expected that the gas to wall heat transfer coef-f i c i e n t s are independent of the degree of f i l l , 6.10f E f f e c t o f . S o l i d Throughput and Incl i n a t i o n Angle e oo n 4. 4- u / r 70. 575 -0 .171 0. 091 Figure 6-33 plots the term, h /W^  n N against s o l i d s throughput with i n c l i n a t i o n angle as parameter, Table 6-4 Ef f e c t of Degree of F i l l on Heat Transfer Rate and Bed Surface A22 A36 A47 n, % 17 11 6.5 A s(m 2) 0.084 0.075 0.065 q r T C (W) 165 150 147 gt> AT l m( K) 65 63 66 h„„ 30.2 31.7 34.4 W 34 ~ 36 kg/hr g N 3 rpm W 34 ~ 36 kg/hr 139 o 8.0 6.0 4.0 m m en _ _ 2.0 inclination Angle A 1.36° O 2.6° • 4.1° • • 10 20 40 60 80 Ws , kg/hr Figure 6-33 F f f e c t s of S o l i d Throughput and In c l i n a t i o n Angle on Gas-Solids Bed Heat Transfer C o e f f i c i e n t 0 ^75 -0 297 while the plot of n g w / w g " ~ N " ' vs. s o l i d throughput i s given i n Figure 6-34. The res u l t s of regression analysis show that both s o l i d throughput and i n c l i n a t i o n angle have i n s i g n i -cant effects on h „ and h In a r o l l i n g bed, i n c l i n a t i o n gs gw 3 ' angle would be expected to have no e f f e c t on heat transfer. Solid p a r t i c l e s move through a rotary k i l n as a r e s u l t of cont-inuous a x i a l movements of p a r t i c l e s on the bed surface. A x i a l v e l o c i t y of p a r t i c l e s i s about one order of magnitude less that l a t e r a l v e l o c i t y as seen i n Figure 6-6 when p a r t i c l e s r o l l on the bed surface,. The e f f e c t of t h i s slow a x i a l movement on heat transfer i s ne g l i g i b l e compared with rapid l a t e r a l movements of p a r t i c l e s , which are caused by the k i l n s rotation. The regression analysis leads to the following equations for gas-solids heat transfer, h = 2.44 W 0.575n-0.171N0.091 ( 6 _ 2 6 ) gs g and for gas to wall, h = 0.822 W °' 4 7 5N 0 , 2 9 7 (6-27) gw g 6.10g E f f e c t of P a r t i c l e Size Limestone with three d i f f e r e n t p a r t i c l e sizes was used to study the e f f e c t of p a r t i c l e s i z e . The three sizes used were 10-20, 20-38 and 28-35 Tyler mesh which corresponds to 141 1 — r sz C M b i m b 2.0 1.0 0.8 0.6 Inclination Angle A 1.36° O 2.6° V 4.1 ° o o o 0.4 0.251 10 20 30 40 Ws , kg/hr 60 100 Figure 6-34 E f f e c t of Solid Throughput and I n c l i n a t i o n Angle on Gas-Wall Heat Transfer C o e f f i c i e n t average p a r t i c l e s i z e s o f 1.26, 0.72 and 0.51 mm, r e s p e c t i v e l y . Three runs of experiments were c a r r i e d out f o r each of two d i f -f e r e n t a i r flow r a t e s , 18.6 kg/hr and 34.0 kg/hr. The e x p e r i -ments were c a r r i e d out a t temperatures much below c a l c i n i n g c o n d i t i o n s . During the experiments a l a r g e amount of f i n e dust was c r e a t e d when limestone was fed i n t o the k i l n . The s o l i d feed r a t e was o r i g i n a l l y s e t a t 34 kg/hr, however the s o l i d out-put a t d i s c h a r g e end was measured o n l y 24-27 kg/hr. The dust accounts f o r 20-30% of feed r a t e . Most of t h i s dust was im-mediately c a r r i e d away when limestone dropped i n t o the bed from the chute and then d i d not enter the k i l n . Over the range co-vered, the e f f e c t of p a r t i c l e s i z e on heat t r a n s f e r i s i n s i g n i -f i c a n t as seen i n Table 6-5. The narrow s i z e range of p a r t i c l e s may be the reason f o r the i n s i g n i f i c a n t p a r t i c l e s i z e e f f e c t . However Brimacombe and Watkinson (69) have a l s o r e p o r t e d l i t t l e e f f e c t on heat flow to limestone i n a r o t a r y k i l n c a l c i n e r over p a r t i c l e s i z e range of 0.75 to 2.65 mm. Change i n p a r t i c l e s i z e by a f a c t o r of 2.5 ap p a r e n t l y n e i t h e r generates f u r t h e r t u r b u -lence i n the gas " f i l m " , nor produces s i g n i f i c a n t i n c r e a s e i n a c t u a l s u r f a c e area per plane chord s u r f a c e area a v a i l a b l e f o r heat t r a n s f e r i n a closed-packed a r r a y . The B i o t numbers f o r the three s i z e s of p a r t i c l e s are very s m a l l , 0.036, 0,021 and 2 2 0.015 (h = 20 W/m K, k = 0.692 W/m K assumed), t h e r e f o r e the p s temperature w i t h i n the p a r t i c l e s becomes uniform a f t e r about one second of exposure to heat t r a n s f e r . Heat t r a n s f e r c o e f f i c i e n t s from a i r to the limestone bed 143 Table 6-5 Gas to Solids Heat Transfer C o e f f i c i e n t - Ottawa Sand Limestone d P (mm) 0.7 3 1.26 0.73 0.5 Wg (kg/hr) 18.6 20.6-21.6 * 28.9 23.7 22.4 34 30.6-34.6 34.1 34.7 31.4 Wg (limestone) 24.4 -27 kg/hr Ws (Ottawa Sand) 34 -36 kg/hr N : 3 rpm * W/m2K are about the same as the case of Ottawa sand. 6.10h Comparison with Previous Work A comparison was made of the experimental data i n the present study on the ef f e c t of gas flowrate with two equations recommended i n Perry's Chemical Engineering Handbook: h = 0.0981 G 0 , 6 7 (2-32) g and h = 0.0608 G g ° ' 4 6 / D (2-33) G g r e p r e s e n t s the gas f l o w r a t e per c r o s s s e c t i o n area of the k i l n . Equations 2-32 and 2-33 are p l o t t e d i n F i g u r e 6-35 wit h the experimental data obtained i n t h i s study.- In-cluded i n F i g u r e 6-35 are the data of Friedman and M a r s h a l l (49) i n a r o t a r y d r y e r . The data were f o r the c o n d i t i o n s t h a t no f l i g h t s were used. The heat t r a n s f e r c o e f f i c i e n t s p r e d i c t e d by equations 2-32 and 2-33 l i e between the experimental data f o r h g s and h g w> Equation 2-32 was giv e n based on the assumption t h a t a t high temperature the w a l l - f i l m r e s i s t a n c e to c o n v e c t i o n heat t r a n s f e r from the gas to the w a l l i s l i m i t i n g and t h a t a t any p o i n t the bed temperature approaches the w a l l temperature. Although equations 2-32 and 2-33 were recommended f o r gas to w a l l heat t r a n s f e r , these equations have been used f o r gas to s o l i d s bed. In f a c t , the presen t work shows t h a t h g g i s about Figure 6-35 Comparison of Experimental Data on Heat Transfer C o e f f i c i e n t s . one o r d e r o f m a g n i t u d e h i g h e r t h a n h g w as s e e n i n F i g u r e 6-35. A l t h o u g h h g W shows more s c a t t e r t h a n h g S ' t h e m a g n i t u d e o f h g w i s t h e same as t h a t f o r a i r f l o w i n g t h r o u g h a n o n - r o t a t i n g t u b e . F i g u r e 6-36 d e p i c t s t h e h e a t t r a n s f e r d a t a by K r e i t h (55) f o r a i r f l o w i n g t h r o u g h a 25.4-mm-ID, 1.52-m-long t u b e . The r a t i o o f L/D o f t h e t u b e he u s e d was 60. I n a t y p i c a l c a s e an a i r f l o w r a t e o f 34 k g / h r a t t e m p e r a t u r e 400 K t h r o u g h an empty k i l n o f 0.19 m ID (G = 1200 k g / h r - m 2 ) , t h e s i z e u s e d i n t h i s s t u d y , r e s u l t s i n a g a s - t o - w a l l h e a t t r a n s f e r c o e f f i c i e n t 2 1.7 W/m K a c c o r d i n g t o F i g u r e 6-36 (Nu = 10, Re = 2900). T h i s c a l c u l a t e d v a l u e o f h i - s t h e same o r d e r o f m a g n i t u d e a s , how-gw 2 e v e r , l o w e r t h a n t h e e x p e r i m e n t a l h g w , 2~4.7 W/m K, as g i v e n i n F i g u r e 6-35. The h i g h e r e x p e r i m e n t a l v a l u e s may r e s u l t f r o m t h e s h o r t l e n g t h o f t h e t e s t s e c t i o n (L/D =2.8) i n t h e k i l n , compared w i t h t h e l o n g t u b e (L/D = 60) u s e d by K r e i t h . To r a t i o n a l i z e t h e e f f e c t o f t h e s h o r t l e n g t h on h e a t t r a n s f e r t h r e e r u n s were c a r r i e d o u t i n t h e empty k i l n . T a b l e 6-6 shows t h e r e s u l t s f r o m t h e s e t h r e e r u n s , t o g e t h e r w i t h t h e d a t a from Wes, e t a l f o r a 0.6-m-ID, 9.0-m-long empty drum. The h e a t t r a n s f e r c o e f f i c i e n t s i n t h i s work were c a l c u l a t e d o v e r a t e s t s e c t i o n o f 0.53 m l o n g , 0.66 m f r o m t h e gas e n t r y e n d. Thus, t h e t e s t s e c t i o n was l o c a t e d between t h e d i s t a n c e o f x/D = 3.47 and x/D =6.25 f r o m t h e end o f t h e k i l n . The a i r f l o w r a t e s f o r t h e t e s t r u n s o f t h i s s t u d y and Wes e t a l were i n t h e t r a n s i t i o n r e g i o n w i t h R e y n o l d s number, r a n g i n g f r o m 2160 4140. The t r a n s i t i o n f l o w may c o m p l i c a t e t h e e x p l a n a t i o n o f 3.0xl0 2 5 7 i o 5 2 3 4 5 6 7 8 I 0 4 2 3 Re Figure 6-36 Gas-to-Wall Heat Transfer Coefficient in an Empty K i l n Table 6-6 Comparison of Air-Wall Heat Transfer Coefficients in Empty Kilns W G This work*** kg/hr kg/hr-m' Re ( - ) gw W/m2K Nu gw ( - ) 34.0 1193 34.0 1193 50.5 1772 2647 2980 4140 5.40 5,66 6,67 32,2 34 .2 39.8 Nu f ( - ) 8.2 10.2 15.0 Nu gw Nu, 3.9 3.4 2.7 Wes et a l * * 95.0 155.0 336. 3 548 . 5 2160 3520 4.9 ' 5.1 80.1 83.4 5.5 12.5 14.6 6.7 Taken from Kreith (58) for a i r flowing through a 25.4-mm-IP, 1.52-m-long heated tube (L/D = 60) For a 0.6-m-ID, 9-m-long empty drum (L/D = 15) For a test section of 0.53-m-long 0 0 t h e e f f e c t o f t h e e n t r y s e c t i o n . The g a s t o w a l l h e a t t r a n s -f e r c o e f f i c i e n t s were f o u n d a b o u t t h e same f o r Wes, e t a l and t h i s s t u d y , however Wes e t a l had t h e much h i g h e r N u s s e l t num-b e r b e c a u s e o f l a r g e r v a l u e o f k i l n d i a m e t e r . The v a l u e s o f NUj i n T a b l e 6-6 a r e c o n s i d e r e d f o r a f u l l y - d e v e l o p e d f l o w and t a k e n f r o m F i g u r e 6-36. The N u s s e l t numbers i n t h i s s t u d y were f o u n d a b o u t 2.7 t o 3.9 t i m e s Nu^. The r e a s o n f o r t h i s h i g h e r number i s m a i n l y due t o t h e e n t r a n c e e f f e c t . F i g u r e 6-37 p l o t s t h e v a r i a t i o n o f t h e l o c a l N u s s e l t number v e r s u s x/D i n t h e combined t h e r m a l and h y d r o d y n a m i c e n t r y r e g i o n o f a t u b e w i t h c o n s t a n t h e a t r a t e p e r u n i t o f l e n g t h . The c u r v e i s f o r l a m i -n a r f l o w (Re = 2100). The t e s t s e c t i o n o f t h e k i l n u s e d i n t h i s s t u d y f a l l s between x/D = 3.47 and 6.25 shown i n F i g u r e 6-37. T h i s r e g i o n g i v e s an a v e r a g e N u s s e l t number o f 11.3 2 W/m K w h i c h i s 2.6 t i m e s t h e N u s s e l t number, N u f = 4.36, f o r t h e f u l l y - d e v e l o p e d f l o w i n a t u b e . T h i s number, 2.6, o f Nu /Nu, i s f o r t h e l a m i n a r f l o w however, i t may w e l l be t h a t «-gw f . -t h e same m u l t i p l e e x i s t s , f o r t h e t r a n s i t i o n f l o w . X / D "Figure 6-37 Variation of Local Nusselt Number i n Thermal Entry Region of a Tube with Constant Heat Rate Per Unit of Length (65) 151 6.11 Correlation of Heat Transfer C o e f f i c i e n t s Cannon (68) studied the heat transfer from f l u i d flow-ing through a rotating pipe. In his analysis the heat trans-fer c o e f f i c i e n t i s a function of the variables l i s t e d i n the following equation h = fl ( a,, - L, u g, y g , p g, C p g, D, k g) Dimensional analysis of t h i s group of variables y i e l d s Nu = f2 (Re, Re w, L/D, Pr) 2 where Re = D Wp /y , the r o t a t i o n a l Reynolds number. y y In a rotary k i l n heat transfer i s more complicated than that in an empty tube. The heat transfer c o e f f i c i e n t i s expected to depend on the following group of variables h = f 3 (D, L, N, Wg, y g f C p g, k g, p g , Ws, d p, k s, C p s , p s , n , a ) Dimensional analysis leads to the following equation, 2 hD _ jr / D p.t* VI L C y W k p • C \ _® - fl*l_B. _2 > __r Pg 9, n , a , _s, _ s , l s , _^s \ ( 6 _ 2 8 ) k V D y D k W k p C g g e g g g g g p g where D g i s the equivalent diameter 152 4A-- ." . . , , 2 T T - 3 + s i n 3 D _ c r o s s s e c t i o n - H ( j (6-29) e Wetted Perimeter g . . g T T - y + s i n | -Operating v a r i a b l e s are of major i n t e r e s t i n t h i s study. Since o n l y one f l u i d ( a i r ) and s o l i d s (Ottawa sand and limestone) of s l i g h t l y d i f f e r e n t k /k. , C /C and p / p were used i n the ^ 2 s g ps pg K s g experiments, the terms, C u /k , k /k , p / p ' and C /C can pg g g s g s g ps pg be n e g l e c t e d i n equation 6-28. In a d d i t i o n , the experiments were c a r r i e d out i n a k i l n o f s i n g l e s i z e , and the r e s u l t s show th a t Wg and a have no e f f e c t s on heat t r a n s f e r . T h e r e f o r e equation 6-28 i s s i m p l i e d to equation 6-30. Nu = a oRe a. 1Re> a 2 T 1 a 3 (6-30) where a Q , a l f a 2 , a 3 • are c o e f f i c i e n t s to be determined. Equa-t i o n 6-30 i s a p p l i c a b l e to both g a s - s o l i d and gas-wall heat t r a n s f e r . M u l t i p l e l i n e a r r e g r e s s i o n was used to c o r r e l a t e the experimental data. The data of N u g S y i e l d the f o l l o w i n g equa-t i o n f o r gas to s o l i d bed, In Nu = -0.777+0.535.'lnRe+0.104 InRe -0.341 l n n (6-31) gs a) • t h a t i s n ACT, 0.535,, 0.104 -0.341 Nu •= 0.46Re Re n (6-32) gs ui 153 "The r e s u l t of r e g r e s s i o n a n a l y s i s f o r Hu i s gi v e n i n Table 6-7. F i g u r e 6-38 shows the comparison of the experimental data w i t h c a l c u l a t i o n s based on equation 6-32 f o r g a s - s o l i d s bed heat t r a n s f e r . The same procedure was c a r r i e d out f o r the c o r r e l a t i o n of g a s - t o - w a l l N u s s e l t number. The r e s u l t a n t equation i s , _ 0.575 _ -0.292 ,, 1.54 Re Re (6-33) w The r e g r e s s i o n a n a l y s i s f o r equation 6-33 i s given i n Table 6-8. The degree of f i l l i s i n s i g n i f i c a n t f o r a 95% conf i d e n c e l i m i t . The comparison of the experimental data w i t h equation 6-33 i s giv e n i n F i g u r e 6-39. The data f o r N u g W i s r e l a t i v e l y s c a t t e r e d . T h i s i s not s u r p r i s i n g f o r experiments i n a flow range c o v e r i n g the t r a n s i t i o n r e g i o n . 6.12 Scaleup For purposes of design and m o d e l l i n g , i t i s of i n t e r e s t to examine p r e d i c t e d heat t r a n s f e r c o e f f i c i e n t s f o r l a r g e r s i z e k i l n s u s i n g equations 6-32 and 6-33. Both equations were obtained from experimental r e s u l t s i n a k i l n of s i n g l e s i z e , 0.191m. . i n diameter. The p r e d i c t i o n of the e f f e c t of k i l n s i z e from these two equations should be c o n s i d e r e d as a pro-j e c t i o n only, and i s s u b j e c t to experimental v e r i f i c a t i o n i n l a r g e r s i z e k i l n s . Equation 6-32 f o r Nu may be r e w r i t t e n i n the form, g s Nu gw Table 6-7 Result of Regression Analysis for Nu J 1 gs Equation 6-31 In Nu „ = bn+bi lnRe+b2lnRe tb ^ l n tbi+lna gs u 1 u). 95% confidence i n t e r v a l 1. For In Nu gs R 2 = 0.9185 Standard error = 0.1063 F - pr o b a b i l i t y = 0.00 2. For independent variables S i g n i f i c a n t variables C o e f f i c i e n t s Standard F-ratio F-probability '•' "• .... terror ./ constant -0.777 0.356 4.769 0.033 In Re 0.535 0.039 185.4 0.000 In Re 0.104 0.031 11.25 0.002 In n -0.341 0.057 35.8 0.000 Ins i g n i f i c a n t variable P a r t i a l c o r r e l a t i o n In a 0.054 F-ratio F-probability 0.1137 0.7344 155 ^ 0 60 70 80 90100 150 200 250 300 400 500 NUSSELT NUMBER. PREDICTED Figure 6-38 Comparison of Experimental Data with Predicted Values for N ugs 156 Table 6-8 Result of Regression Analysis for Nu gw Equation 6-33 In Nu = a n+aiInRe+aolnRe +a^ln n +a uln a gw u i 0) 3 • H For In Nu gw R 2 = 0.6390 Standard error = 0.2624 F - p r o b a b i l i t y = 0.00 Si g n i f i c a n t variables C o e f f i c i e n t Standard F-ratio F-probability error constant In Re In Re 0.432 0.575 -0.292 0.8779 0.0807 0.0731 0.2426 50.79 15.91 0.6303 0.000 0.003 Ins i g n i f i c a n t variables In n In a P a r t i a l c o r r e l a t i o n F-ratio 0.1322 0.7118 0.1465 0.8769 F-probability 0.4085 0. 3575 157 NUSSELT NUMBER. PREDICTED Figure 6-39 Comparison of Experimental Data with Predicted Values for N ugw whence the dependence of h .-on D i s ^ gs e . ^ -0.257 ... hgs " D e ( f i " 3 4 ) S i m i l a r l y the dependence of h g w on D g i s given as hgw « D e _ 1 ( 6" 3 5) Since the equivalent diameter i s d i r e c t l y proportional to the k i l n diameter, D G 2TT - 3 + sing — = = constant for fixed n D T T - J + s i n f therefore, the predicted dependence of h and h on the k i l n L ^ gs gw diameter are . n-0.257 n • cc D gs h - D - 1 gw For forced convection i n an empty non-rotating tube, the heat transfer c o e f f i c i e n t s are dependent on the tube diameter as -0 2 h « D for turbulent flow (6-36) — 0 67 h oc D " for laminar flow (6-37) Figure 6-40 plots h g s- and h g w versus D based on equations 6-32 and 6-33 at constant mass flux and temperature. The gas mass flux i s t y p i c a l of i n d u s t r i a l k i l n s , where with larger diameters, the gas flow i s i n the f u l l y turbulent region. In-cluded i n the plo t are the equations recommended i n Perry's handbooks (14, 15) h = 0.0981 G g ° ' 6 7 (2-33) and n A f. h = 0.0608 G / D (2-32) y The above two equations were given to predict the heat transfer c o e f f i c i e n t from gas to refractory wall i n i n d u s t r i a l k i l n s , and have subsequently been used for gas to s o l i d bed by many investigators. As seen i n Figure 6-40 equation 2-33 i s about one order higher than equation 2-32 for i n d u s t r i a l scale k i l n s . The predicted gas to so l i d s c o e f f i c i e n t s by equation 2-32 and by equation 2-33 are close to each other at large diameter, The predicted gas to wall c o e f f i c i e n t by equation 6-33 are about one half those predicated by equation 6-32. 160 0.2 0.5 1.0 2.0 5.0 KILN DIAMETER, m Figure 6-40 Predicted Heat Transfer C o e f f i c i e n t s for Scaleup CHAPTER 7 A MODEL FOR GAS TO BED HEAT TRANSFFR The experimental results show that the convective heat transfer c o e f f i c i e n t from the gas to so l i d s i s about one order of magnitude higher than that from gas to wall. The higher c o e f f i c i e n t s are attributed to two factors: the motion of p a r t i c l e s on the bed surface and the use of a plane surface area rather than the true surface used i n the c a l c u l a t i o n of the heat transfer c o e f f i c i e n t . 7.1 True Surface Area Figure 7-1 shows the heat transfer path from the gas to the s o l i d bed. The heat transfer rate i s defined as Q = h A (T -T ) (7-1) vgs. gs s g s' where A i s the plane area of bed surface and. T i s the bed s s temperature. In t h i s equation T g and T g are measurable and A g i s only function of k i l n radius and the degree of s o l i d f i l l , Therefore, hg g i s calculated i f Q g s can be measured. However, t h i s equation expresses only an i n d i r e c t representation of the actual heat transfer mechanism. A d i r e c t expression for gas-.162 Figure 7-1 Heat Transfer from Gas to Solids Bed s o l i d heat t r a n s f e r r a t e should be • i i Q = h A (T -T ) (7-1A) gs gs s v g s' v ; where A g i s the t r u e exposed s u r f a c e area of the bed, which i s i f u n c t i o n o f p a r t i c l e s i z e , shape and a r r a y , and T g i s the bed su r f a c e temperature. Since T g i s about the same as T g i n the present experiments as w i l l be seen l a t e r , the r e l a t i o n s h i p of • h „ and h „ becomes gs gs • i A h = h — (7-2) gs gs s i The r a t i o of A /A i n equation 7-2 i s o b v i o u s l y important s s • i n determining heat t r a n s f e r c o e f f i c i e n t . The va l u e s o f A /A s s depend on the types o f p a r t i c l e a r r a y s , and i s about 1.78 f o r a c u b i c a r r a y as i n F i g u r e 7-2A to 2.42 f o r a s t r u c t u r e as shown i n F i g u r e 7-2B. The f i l m study ( S e c t i o n 5.2) shows t h a t F i g u r e 7-2B can bes t d e s c r i b e the a r r a y of l a r g e r alumina par-t i c l e s o f d =6.35 mm. However a c u b i c a r r a y mav be used to p approximate the c o n d i t i o n f o r Ottawa sand of 0.7 3 mm. The second f a c t o r which c o n t r i b u t e s t o the higher gas-s o l i d heat t r a n s f e r c o e f f i c i e n t i s the motion of s u r f a c e p a r t i -c l e s . As d e s c r i b e d i n Chapter 6, the p a r t i c l e s r o l l down on the s u r f a c e a t a speed much higher than the k i l n c i r c u m f e r e n t i a l v e l o c i t y . The moving p a r t i c l e s not o n l y a g i t a t e the gas boundary l a y e r adjacent to the bed s u r f a c e , but a l s o c o n t i n u o u s l y remove If (a) Side View Figure 7-2 Array of Surface P a r t i c l e s the heat received by the p a r t i c l e s themselves. These phenomena are expected to increase the heat transfer c o e f f i c i e n t from the gas to the bed over that of a f l a t plate for example. 7.2 Individual P a r t i c l e Feat Transfer F i r s t consider an in d i v i d u a l p a r t i c l e i n the f i r s t layer, just coming out of the bed with a temperature, T . It receives heat from the gas while i t i s r o l l i n g on the surface. Part of the received heat may be transferred by conduction to the par-t i c l e s of the adjacent layers. In a low temperature process the conduction heat may compose only a small f r a c t i o n of the t o t a l heat received by the p a r t i c l e . The equation governing the heat balance of a single p a r t i c l e r o l l i n g down the surface i s given, dT ' V P C • — = h S. (T -T) - h,S, (T-T ) (7-3) p p p p d t p i g d i v s ; where V , p , C are volume, densitv and s p e c i f i c heat of P yP P p p a r t i c l e , respectively. • S-^  and S^ are exposed and covered surface area of par-t i c l e i n the f i r s t layer, The l a s t term of Equation (7-3) accounts for heat trans-fer to p a r t i c l e s below. Since the experiments i n t h i s study were carried out at low temperature, the conduction term i s neglected r e l a t i v e to the gas to p a r t i c l e convection. It i s of inter e s t to know whether the temperature within the p a r t i c l e becomes uniform afte r the p a r t i c l e surface tempera-ture suddenly changes. The thermal d i f f u s i v i t y of Ottawa sand — 6 2 i s 0.277 x 10 m /s and the p a r t i c l e diameter i s 0.73 mm. The time (surface time, t_ ) for the p a r t i c l e exposed to the gas s l stream i s about one second. Thus, the value of Fourier modulus 2 a ts l / r p i s 2.08. This value shows the p a r t i c l e center tempera-ture i s immediately raised to the surface temperature according to Carslaw and Jaeger (70). ^Let T'! : be the p a r t i c l e temperature before i t returns "Sl . c i to the bed, and t i s the surface time of the p a r t i c l e s in s i the f i r s t layer. Integration of equation 7-3 with the following conditions, t = 0 T = T s t T = T s i s i (7-4) gxves = 1 " exp - t (7-5) T - T V V p C 1 ' g s P ^ P P P -3 Ottawa sand used for the experiments has a diameter of o.73x10 m which gives V = 0.204xl0~ 9 m3 and ST = 0.837xl0~ 6 m2. The P 1 3 values of C , and p for the sand are 0.603 J/gK and 2527 kg/m , P P respectively. The gas to p a r t i c l e heat transfer c o e f f i c i e n t hp, and the surface time, t g i are reasonably assumed at 15 W/m (Section 7.4) and 1 second respectively. The substitution of the above values y i e l d s h S, P 1 p p Pp t. s i s 0.04 Thus, equation 7-5 can be approximated as T - T h S,t si s = p 1 si (7-6) T - T V p C-o g s P P and equation 7-6 i s rewritten as V p C n (T - T ) = h S,t (T - T ) (7-7) p pp Pp' si s' p 1 si g s ; v ; The left-hand side of t h i s equation represents the heat accumulated by a p a r t i c l e while i t stays on the aerated bed surface, and the right-hand side represents the heat received by the p a r t i c l e by convection from the gas. For a temperature driving force, T g ~ T s = 50 K, the p a r t i c l e temperature i s raised only 2 K. Considering the low thermal conductivity of Ottawa sand and the temperature difference of 2 K heat transfer to the p a r t i c l e s underneath by conduction w i l l be i n s i g n i f i c a n t 1 6 8 However, c o n d u c t i o n s h o u l d n o t be n e g l e c t e d f o r m a t e r i a l o f h i g h t h e r m a l c o n d u c t i v i t y , s u c h a s m e t a l p e l l e t s i n h i g h t e m p e r a -t u r e p r o c e s s e s . A s i m i l a r d e r i v a t i o n f o r p a r t i c l e s i n t h e s e c o n d a r y l a y e r o f t h e s u r f a c e r e g i o n w h i c h i g n o r e s h e a t r e c e i v e d and t r a n s f e r r e d by c o n d u c t i o n r e s u l t s i n T - T h S_ §• = 1 - exp ( - -2-1 t ( 7 - 8 ) T - T V P C ? / g s P P p tr The p a r t i c l e s i n t h e s e c o n d l a y e r w i l l have d i f f e r e n t s u r f a c e t i m e and e x p o s e d s u r f a c e a r e a f r o m t h a t i n t h e f i r s t l a y e r . 7 . 3 Gas t o Bed Heat T r a n s f e r C o e f f i c i e n t I t i s assumed t h a t no p a r t i c l e s b elow t h e f i r s t two a e r a t e d l a y e r s o f t h e s u r f a c e r e g i o n r e c e i v e h e a t by c o n v e c t i o n f r o m t h e g a s , where t h e t e m p e r a t u r e s o f t h e a e r a t e d s u r f a c e p a r t i c l e s a r e r a i s e d t o T , and T f r o m T . The h e a t e d p a r t i -^ S 1 S2 S ^ c l e s t h e n mix w i t h t h e p a r t i c l e s i n t h e o t h e r s u r f a c e l a y e r s as t h e y r e t u r n t o t h e b e d . The number o f p a r t i c l e s e m e r g i n g f r o m t h e bed t o t h e s u r f a c e r e g i o n p e r u n i t t i m e i s Fm = ^ A X - n ( l s 2 - 8 R K C O S | ) ( 7 - 9 ) where M i s t h e number o f p a r t i c l e s p e r u n i t volume and •< i s t h e t h i c k n e s s o f t h e s u r f a c e r e g i o n . Ax i s a s h o r t d i s t a n c e of k i l n length. The detailed derivation of equation 7-9 i s given in the appendix. If the r o l l i n g rates of p a r t i c l e s i n the f i r s t and second layers respectively are expressed as, and F = m 1A 3cV 1 1 F~= m.AxVn 2 2 12 (7-10) then a thermal balance of the mixing process can be expressed as F (T - T ) = F,(T - T ) + F„(T - T ) (7-11) m sm s 1 s i s 2 s 2 s where T i s the temperature of the mixture before i t returns sm c to the bed. After rearrangement, equation 7-11 becomes, F F 1 2 T - T •= — ( T -T ) + — (T -T ) sm s „ v s i s ; _ V S 2 S ; F F m m The following equation i s obtained after substituting equations 7-4 and 7-8 i n the above equation, T -T sm s T -T g s m 1-exp , h S1 V p c p p pr .0 h S_ fi P 2 + | l-exp.(f rm k W p C P P PT (7-12) Therefore, the heat absorbed by the r o l l i n g p a r t i c l e s i s represented by Q „ = F p C V (T - T ) gs nrp Pp P sm s (7-13) Combining equations 7-1, 7-9, 7-12 and 7-13, and l e t t i n g A£ Ax'l , one w i l l obtain h = P P P p m-V. gs 1 [ 1 l i s 1-exp ^ h S. _ P 1 V p Cp p p p p 'si + m 2 V l 2 1-exp ^ h S. _ P 2 V p C D p p Pp S2 (7-14) In order to evaluate h , V. (or t„) and h must be gs I s p determined. Unfortunately there i s no information i n the l i t e r a t u r e on the r e l a t i o n s h i p of to other operating para-meters. For an i d e a l system the following equation i s derived (see Appendix) K V l l = ^~ n ( 1s " 8 R K C O £ 4 ) (7-15) where < i s the thickness of surface region. The v e l o c i t y , , of p a r t i c l e s i n the second layer can be approximated by d V l 2 = ( 1 - -£ ) V 1 1 (7-16) K according to Figure 5-2. In equation 7-15, K and V are related to r o t a t i o n a l speed N and the degree of f i l l . Furthermore, the experimental results in Figure 5-5 show V]_1 - JN (7-17) However, there i s s t i l l a need to know K , which i s also unavail-able in the l i t e r a t u r e . Based on the f i l m study V^1= 0.24 m/s was observed for alumina sphere at 4.78 rpm. It seems reason-able to assume V,, n o r i , . _ - _ , , . .11 = 0.20 m/s at 3 rpm for Ottawa sand and t h i s value w i l l be used to calculate K and h gs 7.4 Gas to P a r t i c l e Heat Transfer C o e f f i c i e n t No information on the heat transfer c o e f f i c i e n t from gas to r o l l i n g p a r t i c l e s , h p, for a system similar to rotary k i l n was reported i n the l i t e r a t u r e . Since the bed i n rotary k i l n i s close to the fixed bed system, heat transfer data for the fixed bed w i l l be used as a guide, although the gas flow pat-tern i s d i f f e r e n t as described below. Kunii and Levenspiel (71) reported a c o r r e l a t i o n of heat transfer data for fixed bed i n terms of Nu versus Re , P P which i s reproduced i n Figure 7-3. Nu^ and Re p are defined as, u p d o. g p Re = P Figure 7-3 Reported Results for Gas-to-Particle Heat Transfer i n Fixed Bed. (Kunii & Levenspiel, 71). and Nu = - i £- (7-18) p k g respectively. U q i s the r e l a t i v e v e l o c i t y between the p a r t i c l e and the f l u i d . To use t h i s approach for the surface of the bed in the k i l n where the aerated p a r t i c l e s are r o l l i n g perpendi-cular to the gas flow, U q i n equation 7-18 i s defined as 2 . 2 Uo V U g + V l i ( 7 " 1 9 ) where u g i s the gas s u p e r f i c i a l v e l o c i t y through the empty space of the k i l n . G TTR2(1 - n ) The value of u i s expected to be higher than that of the true y gas v e l o c i t y near the bed surface. The gas i s flowing over the bed i n the rotary k i l n whereas in the fixed bed the gas i s flowing through the bed. So, the effectiveness of gas-particle heat transfer i n a rotary k i l n i s expected to be lower than that i n a fixed bed. ^he value of t h i s effectiveness i s not known. In a fixed bed each p a r t i c l e has adjacent p a r t i c l e s surrounding i t , however, in rotary k i l n about the half surface area of the aerated p a r t i c l e s i s exposed to the gas stream. It i s , therefore, l i k e l y that hp for the aerated p a r t i c l e i n a rotary k i l n i s roughly a fr a c t i o n of h , i n a fixed bed. pf Chen et a l (50) reported the gas to p a r t i c l e heat trans fer in a rotary dryer. In the i r experiments hot a i r , instead of flowing through the dryer, was passed through the bed from the wall which was made of plate with holes and pitch covered with a screen. The data of the heat transfer c o e f f i c i e n t s bet ween gas and p a r t i c l e s were found to be i n the range of .fixed bed. The data are also shown i n Figure 7-3. 7.5 Comparison with Experimental Data The comparison of the experimental data with equation 7-14 i s given i n Figure 7-4 where h^ s i s plotted versus W^ . A l l the experimental data are included. The input data for ca l c u l a t i o n for equation 7-14 are given i n ^ able 7-1 and the calculated r e s u l t s are given i n Table 7-2. Three curves with h are taken as h, h and 1 times that for a fixed bed. The P curve with % h c f i t s the data better than the other two. The Pf value of h taken as one half of h c seems reasonable since P Pf only half of surface area of the aerated p a r t i c l e i s exposed to the gas stream. If the value of h^ for the aerated p a r t i c l i s taken from Nu g = 2 which corresponds to an is o l a t e d sphere at low Reynolds number thi s results i n a much higher value of heat transfer c o e f f i c i e n t than h c, and the prediction of h pf r gs would be considerably higher. In equation 7-14 the exponential terms are found to be — I 1 — I I I I I 20 30 4 0 50 60 80 W g , k g / h r Comparison of Theoretical Curve with Experimental Data. Table 7-1 Input data for Equation 7-14 For P a r t i c l e (Ottawa sand) d — 0.73 x 10 3 m P PP ' - 2527.3 kg/m3 CPP = 0.603 J/gK -9 3 V — 0.204 x 10 m P -6 2 S l 0.837 x 10 m S2 - 0.042 x 10"~6 2 m l = m2 - 2.17 x 106 no. of pa r t i c l e s / i For a i r (at 422 K) Operating conditions N n v l i = 2.369 x 1 0 _ J kg/m-s 0.833 kg/m3 0.031 W/m-K 3 rpm .11% 0.20 m/s Table 7-2 Calculations for Gas-Particle Heat Transfer Wg kg/hr 18.6 34 50 7 0 V g m/s 0.245 0.447 0.657 0.92 V 1 + m/s 0.20 0.20 0.20 0.20 V Q m/s 0.316 0.490 0.687 0.942 Re 8.1 12.6 17.6 24.2 N U p = N U p 0 , 4 4 ° ' 6 2 ° - 9 0 1-4 h p W/m2K 9.3 13.1 19.1 29.3 hgs W / m 2 R 1 7 • 7 24.8 35.8 55,2 Nu - JsNu * 0.22 0.31 0.45 0.70 h p W/m2K 4.65 6.55 9.55 14,65 h W/m2K 8.85 12.4 17.9 27.6 y & Nu p = i;Nup* 0.11 0.16 0.23 0.35 2 h p W/m K 2.33 3.28 4.28 7.33 hgs w / m 2 R 4 - 4 3 6.2 8.95 13.8 3 K x 10- m 0.369 0.369 0.369 0.369 + assumed * taken from Figure 7-3 quite small. Thus, V 1 11 = 0.042 1 = 0.005 p p Pp V 12 for '= 0.20 m/s at N= 3 rpm. The r a t i o of these two terms indicates that the top layer probably receives about 8 times as much as heat from the gas than does the second layer, and the second layer could probably be ignored i n the above analy-s i s . equation 7-14 i s shown i n Figure 7-5. The calculated r e s u l t s are given i n Table 7-3. The slope of h versus N i s 0.1 gs which coincides roughly with the experimental data. The mathematical model for gas-solid heat transfer has been established from a single p a r t i c l e . In the model two fac-tors which s i g n i f i c a n t l y a f f e c t the gas to s o l i d bed heat trans-fer are the p a r t i c l e array on the top bed layer and the gas to r o l l i n g p a r t i c l e heat transfer c o e f f i c i e n t . The cubic packing array was assumed for Ottawa sand bed. The gas-to-r o l l i n g p a r t i c l e heat transfer c o e f f i c i e n t , taken as one-half value of that for fixed bed, yi e l d s a reasonable prediction for the rotary k i l n . To make the model more adaptable further The e f f e c t of r o t a t i o n a l speed on h gs calculated from 179 CVI E 10 9 8 7 6 50 40 30 t o ? 2.5 2.0h 1.5 .0 T A Calculated from Equation 7—14 Tf = 11% Wg = 34 kg/hr hp =1/2 h p f 1 1 1 2 3 4 5 6 ROTATIONAL SPEED, rpm Figure 7-5 E f f e c t of Rotational Speed on Theoretical Gas-Solids 'Bed Heat Transfer C o e f f i c i e n t Table 7-3 Calculation of h gs from Equation 7-14 N (rpm) 1.0 3.0 6 . 0 V m/s g 0.447 0.447 0.447 V1 m/s 0.116 0.20+ 0.283 V m/s o ' 0.462 0 . 490 0.529 Re P 11.8 12.6 13.6 Nu * P 0.60 0.62 0.66 Nu = h Nu * P P 0.30 0.31 0. 33 h W/m2K P 12.7 13.1 14 . 0 K x 10"^ , m 0.221 0.369 0.5 04 h W/m2K gs 23.8 2 4.8 26.5 + assumed * taken from Figure 7-3 n = 11% W =34.0 kg/hr 181 , work on the thickness of the mixing zone and the p a r t i c l e l a t e r a l v e l o c i t y i s required. Both K and are used to determine the temperature of the mixing p a r t i c l e s i n the surface region. 182 CHAPTER 8 MODELLING OF ROTARY KILN HEAT EXCHANGER As noted i n the f i r s t two chapters a number of studies on rotary k i l n modelling have been published (5-14), however, there was a lack of experimental data on heat transfer to i n -corporate into the models. Although Watkinson and Brimacombe (4) reported some res u l t s on heat transfer i n a d i r e c t - f i x e d k i l n , 0.406 m inside diameter, their data are s t i l l not i n a form r e a d i l y adapted for scaleup to i n d u s t r i a l size k i l n s . Kern (15) established a model for heat transfer i n a rotary heat exchanger. In his model , the rotating wall temp-erature i s formulated i n terms of gas and s o l i d temperatures by taking into account the periodic cooling and heating of the wall. By eliminating the wall temperature, he obtained dT "g _ dx a i T s + a 2 T g + a 3 dT, dx = b i T s + b 2 T g + b 3 183 where a and b are functions of the mass flow rates, r o t a t i o n a l n n speed and the heat transfer c o e f f i c i e n t s . The heat transfer co-21 _ 2 e f f i c i e n t s were assumed, h Q = 5 W/m'K , h g g _ 1.5 W/m K (for s o l i d bed to gas), and h /h =3. The assumed values of heat ^ ' sw' wg transfer c o e f f i c i e n t s do not seem to be r e l i a b l e i n terms of the measured values reported in the present study. A model of a rotary k i l n heat exchanger i n the low temp-erature range where radiation effects can be neglected i s pre-sented here. The heat transfer c o e f f i c i e n t s ' e s t a b l i s h e d i n Chapter 6 can be used i n the model. Thus, the equations used e a r l i e r to calculate heat transfer c o e f f i c i e n t s from temperature p r o f i l e s are just inverted to calculate temperature p r o f i l e s from heat transfer c o e f f i c i e n t s . The equations governing the heat balances on gas and s o l i d phases over a small d i f f e r e n t i a l distance are given as dT W C — a = h 1 (T -T ) + h 1 (T -T ) (8-1) g pg d x gs s v g s' gw wv g w; dT - , W C = h 1 (T -T ) - h 1 (T -T ) (8-2) s ps d x gs s v g s ; sw w s wy The heat capacities, C and C , are assumed constant over the pg P s temperature range of i n t e r e s t . The wall temperature, T , i s assumed circumferentially constant at a p a r t i c u l a r location. This simplifying assumption i s j u s t i f i e d by the experimental res u l t s given i n Chapter 6, and by those of reference (4). The inside refractory temperature ( i f there i s a l i n i n g material in the k i l n ) , T , i n eguations 8-1 and 8-2 must be w known in order to obtain the gas and s o l i d temperature p r o f i l e s Therefore a heat balance over the wall i s set up to obtain Tt "v/ Gas to Wall Solids to Wall Feat loss through + convection convection Wall by Conduction 2irk (T -T ) h i (T -T ) + h 1 (T -T ) = W W (8-3) gw w g w' sw w s w ^ ( R ^ ) where T w Q i s the outside l i n i n g temperature. It i s further assumed that there i s no temperature drop across the metal k i l n s h e l l . Therefore, the heat loss through the k i l n s h e l l to the surroundings i s given by 2fTk (T -T ) w w wo In (R2/R±) = h 1 (T - T ) o o wo o (8-4) Substitution of equations 8-3 and 8-4 into equations 8-1 and 8-2 yi e l d s two f i r s t order li n e a r equations for gas and so l i d s temperatures which can be rewritten as; dT - 2 . = D l T g - D 2T s - D 3T o (8-5) and = E,T - E„T + E„T (8-6) 1 8 5 where z = x/L, and the c o e f f i c i e n t s D and E are f u n c t i o n s of n n mass flow r a t e and heat t r a n s f e r c o e f f i c i e n t s as given i n Table 8-1. Kern (15) o b t a i n e d somewhat s i m i l a r equations f o r the gas and s o l i d s temperature. Equations 8-5 and 8-6 can be s o l v e d i f a s e t of boundary c o n d i t i o n s are gi v e n . In t h i s study both the i n l e t gas and s o l i d temperatures are f i x e d as z = 0 T s = T s o z = 1 T = T _ ( 8 " 7 ) g gL The heat t r a n s f e r c o e f f i c i e n t s used i n Table 8-1 are c a l c u l a t e d from the f o l l o w i n g equations, i , n AC R g r, ° - 5 4 T> ° - 1 0 - 0 . 3 4 ,, h = 0 . 4 6 —a- Re Re ri ( 6 - 3 1 ) gs D w 1 e i CA g „ n - 5 8 „ - 0 . 2 9 h„ i T = 1.54 Re Re gw w e ( 6 - 3 2 ) k nR 2B °' 3 and h s w = 11. e - 3 - , ( ) ( 6 - 2 6 ) w a I t i s f u r t h e r assumed t h a t the bed h e i g h t along the k i l n i s uniform. For a non-uniform bed system, Kramers and Croockewit (29) developed a formula f o r bed he i g h t along the k i l n as f u n c t -i o n of o p e r a t i n g parameters. Since the g a s - s o l i d heat t r a n s f e r c o e f f i c i e n t s depend on the degree of f i l l , the assumption of 186 where Table 8-1 The C o e f f i c i e n t for Equations 8-5 and 8-6 D l - = B l + B2 ~ B 2 A 5 D 2 = B ] l + A 2A 5B 2 D 3 = A 4A 5B 2 E x = B 3 + B 4A 5 E2 = B3 + B4 " A 2 A 5 B 4 E3 = B 4 A 4 A 5 ' h o l Q l n ( R 2 / R l ) A l A 3 A3 h 1 ln(R„/R, ) gw w T 1' 1 A 4  2 k 1 + A-w 1 h i ' 1 ' 1 V ' A2 + *4 2 k w v, i T h 1 L h a s 1 s L 9S s B = - S 2 - § _ B 3 = w c w c g pg s ps h 1 L , . gw. v/ h 1' L B2 = 2 — B4 SW wW C WsCps g pg *>^\?o 187 u n i f o r m bed d e p t h makes t h e p r o b l e m s i m p l e r . Once t h e o p e r a t i n g p a r a m e t e r s (N, a, n , D) a r e f i x e d , t h e s o l i d t h r o u g h p u t f o r a u n i f o r m bed s y s t e m c a n be c a l c u l a t e d f r o m t h e f o l l o w i n g e q u a t i o n : W =.77. 7i, ND 2p ; tana/sanO (2-12) s •L s -where TT = 5- ( 1 - cos-t- ) and n = 1 ( 3 - s i n g ) (2-13) 2 IT The gas and s o l i d t e m p e r a t u r e p r o f i l e s c a n be o b t a i n e d by s o l v i n g e q u a t i o n s 8-5 and 8-6 w i t h e q u a t i o n 8-7. E q u a t i o n 8-7 g i v e s t h e b o u n d a r y c o n d i t i o n s a t o p p o s i t e ends o f t h e k i l n , w h i c h makes an a n a l y t i c a l s o l u t i o n d i f f i c u l t . T h e r e f o r e , Runge K u t t a method w i t h t r i a l and e r r o r was u s e d . F i r s t , T was ' go assumed a t z = 0 and e q u a t i o n s 8-5 and 8-6 were s o l v e d w i t h b o u n d a r y c o n d i t i o n s T = T . T^ = T„„ a t z = 0. Gas t e m p e r a -s so g go L t u r e a t z = 1 was t h e n c a l c u l a t e d and compared w i t h T g L as g i v e n i n e q u a t i o n 8-7. I f t h e c a l c u l a t e d gas t e m p e r a t u r e was n o t e q u a l t o T g L ' a n o t h e r v a l u e f o r T g o was assumed and t h e , p r o c e d u r e r e p e a t e d u n t i l t h e c a l c u l a t e d gas t e m p e r a t u r e e q u a l t o T g L - A f l o w c h a r t f o r computer p r o g r a m i s g i v e n i n F i g u r e 8-1. I f b o t h t h e b o u n d a r y c o n d i t i o n s a r e s e t a t t h e same end o f t h e k i l n , e q u a t i o n s 8-5 and 8-6 c a n be s o l v e d a n a l y t i c -a l l y . A k i l n , 3 m I.D. by 80 m l o n g w i t h 0.15 m t h i c k r e f r a c t -Figure 8-1 Flow Chart of Computer Program for Temperature P r o l i l e s ( START ) T assumed go Calculate W s Equation 2-12 Calculate D , 1 e w 1', l e . Re, Re w s w h assumed o Calculate h's equations 6-31,32,33 Calculate D & E n n in Table 8-1 [Solve equations 8-5 8-6 by KK method obtain T' 9l± Yes PRINT T , T g s, vs x T = T + T go go - go ( STOP ~~) o r y l i n i n g i s s e l e c t e d t o i l l u s t r a t e t h e m o d e l . The r o t a t i o n a l s p e e d , i n c l i n a t i o n a n g l e and t h e d e g r e e o f f i l l a r e c h o s e n so t h a t t h e s o l i d s t h r o u g h p u t i s a b o u t t h e same o r d e r as an i n d u s -t r i a l l i m e k i l n . The n e c e s s a r y p a r a m e t e r s f o r m o d e l l i n g a r e c o l l e c t e d i n T a b l e 8-2. The i n l e t gas t e m p e r a t u r e i s k e p t a t 500° K, w h i l e t h e i n l e t s o l i d t e m p e r a t u r e a t t h e o t h e r end o f t h e k i l n i s f i x e d a t 350 K. E q u a t i o n s 8-5 and 8-6 f o r t e m p e r a t u r e p r o f i l e a r e s o l v e d w i t h t h e a i d o f T a b l e 8-1 f o r t h e c o e f f i c i e n t s . H e a t t r a n s f e r c o e f f i c i e n t s a r e c a l c u l a t e d f r o m e q u a t i o n s 6-26, 31 and 32, w h i l e s o l i d t h r o u g h p u t i s c a l c u l a t e d f r o m e q u a t i o n 2-12. The r e s u l t s f o r gas and s o l i d t e m p e r a t u r e p r o f i l e s a r e d e p i c t e d i n s o l i d l i n e s i n F i g u r e 8-2. The t e m p e r a t u r e s a r e e x p r e s s e d i n d i m e n s i o n l e s s f o r m , (T-T ) / ( T .-T ) . ou y i bu I n c l u d e d i n F i g u r e 8-2 a r e t h e t e m p e r a t u r e p r o f i l e s w i t h h e a t t r a n s f e r c o e f f i c i e n t s c a l c u l a t e d f r o m t h e e q u a t i o n s recommended i n P e r r y ' s C h e m i c a l E n g i n e e r i n g Handbook (46, 47). h = 0.0981 ( -3- ) (.2-32) A c -and h = 0.061 I -3- j / (2-33) 1 A / c As e x p e c t e d t h e l o c a l s o l i d s t e m p e r a t u r e i n c r e a s e s c o n s i d e r a b l y as t h e h e a t t r a n s f e r c o e f f i c i e n t s i n c r e a s e . The gas t e m p e r a t u r e d r o p s a c c o r d i n g l y . Table 8-2 Modelling Parameters Solid phase : Ottawa sand Gas phase : A i r D = 3 m L = 80 m T _ = 500 K T 350 K gL so h = 10 W/m2K k = 0.043 W/m2K o ' w ' N = 1 rpm a =. 0.7° n =" 11% W S A — = 2130 kg/hr-m (kil n cross section) 191 hgs =11.1 (W/m2 K) hgw = 1.84 (W/m 2 K) from Equations 6 - 3 1 and 6 - 3 2 hgs = hgw = 16.6 (W/m2 K) from Equation 2 - 3 2 X / L Figure 8-2 E f f e c t of Heat Transfer C o e f f i c i e n t on Temperature P r o f i l e s Figure 8-3 gives the e f f e c t of gas flow rate on the i : temperature p r o f i l e . The res u l t s are also as expected. In-creasing gas flow rate increases both gas-solid and gas-wall heat transfer c o e f f i c i e n t . As a r e s u l t , the s o l i d temperature increases repidly, however, the gas temperature drops are small due to the high gas flow rate. The wall temperature for the operating conditions given in Table 8-2 i s i l l u s t r a t e d i n Figure 8-4. Wall temperatures are consistently higher than the s o l i d temperatures along the k i l n due to the presence of the thick refractory l i n i n g , and low heat los s . For comparison, a rotary k i l n of the same dimension having no refractory l i n i n g i s assumed. The k i l n wal i s 0.051 m i n thickness, made of mild steel having thermal conductivity 45.2 W/m-K. In t h i s case, the wall temperature drops below the s o l i d temperature, and the gas temperature also drops due to high heat loss through the wall. This type of behaviour was found i n the present experimental study. The e f f e c t of k i l n length on the temperature p r o f i l e i s given i n Figure 8-5 . For a lime k i l n equipped with a preheater, the k i l n length of the 3 m I.D. k i l n i s t y p i c a l l y about 50 m. For a short k i l n , the e x i t gas temperature i s expectedly, higher than that for a long k i l n i f the entering gas tempera-tures are maintained the same for, both cases. The e f f e c t of k i l n diameter i s of most i n t e r e s t to the designer of the k i l n . The switch of k i l n diameter involves a change of heat transfer c o e f f i c i e n t s and s o l i d throughput. It may also a l t e r the flow pattern i f the ro t a t i o n a l speeds are 193 X / L Figure 8-3 E f f e c t of Gas Flow Rate on Modelling of Rotary K i l n . X / L Figure 8-4 E f f e c t of Refractory Insulation on Modelling of Rotary K i l n . X / L Figure 8-5 E f f e c t of K i l n Length on Modelling of Rotary K i l n . maintained the same. In order to compare the e f f e c t of k i l n diameter the s o l i d flow pattern i n k i l n s of d i f f e r e n t diameters should be kept the same, which can be accomplished by maintain-ing the same Froude number, N N1 . , - = — = constant or N N 1 c c D1 ^ ^ : constant D Therefore, the r o t a t i o n a l speed must be adjusted accordingly i f the change of the k i l n size i s necessary. The second fac-tor that should be taken into account i s the s o l i d throughput per k i l n cross area. This factor w i l l govern the residence time in k i l n s of the same length. In t h i s calculaton, the s o l i d throughputs per k i l n cross section are maintained constant at varying k i l n diameters. According to equation 2-12, the i n c l i n -ation angle must be adjusted to keep the same degree of s o l i d f i l l . Fortunately, the e f f e c t of i n c l i n a t i o n angle on heat transfer i s n i l . Figure 8-6 shows the e f f e c t of three d i f f e r e n t k i l n diameters, 3 m, 2 m and 1 m for a 50 m long k i l n . Both the r a t i o of N/N and s o l i d residence time are kept constant. As seen in the figure, small diameter k i l n s show high heat transfer e f f i c i e n c y . This i s due to higher heat transfer c o e f f i c i e n t s for small k i l n s . Figure 8-7 gives the e f f e c t of k i l n diameter at fixed L/D r a t i o . Although small k i l n s have a shorter k i l n igure 8-6 E f f e c t of K i l n Diameter on Modelling of Rotary K i l n Heat Exchanger X / L Figure 8 - 7 F f f e c t of K i l n Diameter on Temperature P r o f i l e at Fixed L/D r a t i o length, the strong e f f e c t on heat transfer c o e f f i c i e n t s over-comes the negative e f f e c t of short length. The model of the rotary k i l n heat exchanger has been developed for low temperature and non-reacting systems. The high temperature process requires a radiative term added into Equations 8-1 and 8-2 which w i l l r e s u l t i n non-linear f i r s t -order equations. For a reaction system an additional term, the heat of reaction, should be added, and the equation for material balance should be supplemented as well. CHAPTER 9 CONCLUSIONS Convective heat transfer from gas to so l i d s bed and wall has been studied experimentally as a function of operating para-meters. The parameters covered included temperature l e v e l , gas flow rate, s o l i d throughput, i n c l i n a t i o n angle, r o t a t i o n a l speed, degree of f i l l and p a r t i c l e s i z e . Tests were done on both limestone and Ottawa sand. It was found that the heat transfer c o e f f i c i e n t from the gas to solids bed based on the plane chord area i s roughly an order of magnitude higher than that from gas to wall. The experimental results show that both s o l i d throughput and i n c l i n a t i o n angle have no influence on heat transfer c o e f f i c i e n t s and the e f f e c t of degree of f i l l on the gas to wall heat transfer c o e f f i c i e n t i s i n s i g n i f i c a n t . The e f f e c t of p a r t i c l e size i s n e g l i g i b l e , which possibly r e s u l t s from the narrow range of p a r t i c l e sizes tested. The following dimensional equations have been obtained for the c o r r e l a t i o n of experimental data for Ottawa sand. . 0 T 7 0 . 575 ...0.091 -0.171 h = 2.44 W N gs g . n and v, - n w 0-475. -0.297 hgw - ° - 8 2 W g N The higher gas to s o l i d s bed heat transfer c o e f f i c i e n t s partly r e s u l t from the underestimation of the true surface area used in the c a l c u l a t i o n of the c o e f f i c i e n t . The actual exposed surface area i s about^ twice as much as the plane chord area. Rapid p a r t i c l e v e l o c i t y on the bed surface contributes s i g n i f i -cantly to high gas-solids bed heat transfer. It not only a g i t -ates the gas adjacent to the bed surface, but also convects heat by v i r t u e of mixing of the f a s t - r o l l i n g p a r t i c l e s into the. bed. A mathematical model has been developed to describe the i n -fluence of p a r t i c l e movement for a r o l l i n g bed. Since the motion of aerated p a r t i c l e s was thought to be important for heat transfer, exploratory experiments on measure-ments of surface time and surface v e l o c i t y were made. In the r o l l i n g bed the l a t e r a l v e l o c i t y of p a r t i c l e s on the bed surface increases with the square root of the r o t a t i o n a l speed. Residence time d i s t r i b u t i o n i n a rotary k i l n was studied b r i e f l y . The results show that the s o l i d flow i n a rotary k i l n ,can be assumed as. a plug flow a x i a l l y and-well-mixed r a d i a l l y . A simple model of a rotary k i l n heat exchanger was cons-tructed to i l l u s t r a t e the e ffects of k i l n parameters on tempera-ture p r o f i l e s i n a low temperature k i l n . CHAPTER 10 RECOMMENDATION FOR FUTURE WORK F u t u r e work on c o n v e c t i v e h e a t t r a n s f e r i n a r o t a r y k i l n s h o u l d e n t a i l g a t h e r i n g more d a t a r e l a t i n g t o p a r t i c l e m e c h a n i c s - p a r t i c u l a r l y p a r t i c l e v e l o c i t y on t h e bed s u r f a c e . B e s i d e s r o t a t i o n a l s p e e d , d e g r e e o f f i l l may a l s o be a m a j o r f a c t o r on s u r f a c e t i m e , r a t i o o f s u r f a c e t i m e t o r e t e n t i o n t i m e and t h i c k -n e s s o f s u r f a c e l a y e r s . The t h i c k n e s s o f s u r f a c e l a y e r s and i t s a s s o c i a t e d p a r t i c l e v e l o c i t y i n e a c h l a y e r s h o u l d be i n v e s -t i g a t e d t o t h o r o u g h l y u n d e r s t a n d t h e h e a t t r a n s f e r mechanism, • p a r t i c u l a r l y i n h i g h t e m p e r a t u r e p r o c e s s e s s u c h as t h e d i r e c t -f i r e d k i l n . The e x p e r i m e n t s c o u l d be c a r r i e d o u t i n a l u c i t e k i l n u s i n g a h i g h s p e e d camera. I n i n d u s t r i a l k i l n s t h e s l u m p i n g t y p e o f p a r t i c l e move-ment may a l s o o c c u r . S i n c e i t has been i n d i c a t e d t h a t i n c r e a s e d bed s u r f a c e v e l o c i t y i s one o f t h e m a j o r f a c t o r s t h a t e n h a n c e s h e a t t r a n s f e r c o e f f i c i e n t s , i t i s t o be e x p e c t e d t h a t gas t o s o l i d s bed h e a t t r a n s f e r w i l l i n c r e a s e s i g n i f i c a n t l y as t h e s l u m p i n g f r e q u e n c y o f p a r t i c l e mass i n c r e a s e s u n t i l t h e bed r e a c h e s t h e r o l l i n g mode. F u r t h e r work i s a l s o s u g g e s t e d t o i n v e s t i g a t e t h e h e a t t r a n s f e r i n t h e s l u m p i n g b ed, p a r t i c u l a r l y t h e i n f l u e n c e o f s l u m p i n g f r e q u e n c i e s w h i c h i n t u r n a r e a f f e c t e d by r o t a t i o n a l speed. Although the c o r r e l a t i o n equations for convective heat transfer c o e f f i c i e n t s for both gas to bed and gas to wall have been obtained i n the present study, i t i s s t i l l inadequate for scaleup and design for i n d u s t r i a l k i l n s . It i s thus, suggested that the k i l n s of at least two sizes larger than one used i n the present study be tested, so that the effects of diameter, and length to diameter r a t i o can be demonstrated. 204 NOMENCLATURE A area 2 m A s plane area of bed s u r f a c e 2 m A ' s a c t u a l area of bed s u r f a c e m 2 A n c o n s t a n t s , d e f i n e d i n Table 8-1 -a heat d i f f u s i v i t y m 2/s B n c o n s t a n t s , d e f i n e d i n Table 8-1 -C dimensionless c o n c e n t r a t i o n -Cp s p e c i f i c heat j/gK c number of p a r t i c l e s per u n i t weight k g " 1 D k i l n diameter m constan t s , d e f i n e d i n Table 8-1 -D a x i a l d i s p e r s i o n c o e f f i c i e n t m 2/s d a d i s t a n c e per c y c l e m dp p a r t i c l e diameter m d' t h i c k n e s s of w a l l l a y e r m E e x i t gas d i s t r i b u t i o n s - 1 E n c o n s t a n t s , d e f i n e d i n Table 8-1 -F s o l i d v o l u m e t r i c flow r a t e m^/s F m emerging r a t e of p a r t i c l e s from bed r e g i o n to s u r f a c e r e g i o n s-1 G g gas mass f l u x based on empty k i l n kg/h: g a c c e l e r a t i o n of g r a v i t y m/s 2 H heat flow r a t e W h heat t r a n s f e r c o e f f i c i e n t W/m2] conductive heat t r a n s f e r c o e f f i c i e n t W/m2] hgs' gas-to-bed heat t r a n s f e r c o e f f i c i e n t based on a c t u a l s u r f a c e area W/m2] h' r e l a t i v e heat t r a n s f e r c o e f f i c i e n t m-1 k thermal c o n d u c t i v i t y W/mK L k i l n l e n g t h m I t l e n g t h of t e s t s e c t i o n m Is bed s u r f a c e area per u n i t l e n g t h m2/m 1 w exposed w a l l area per u n i t l e n g t h m2/m 205 V covered wall area per unit length m^ /m M number of p a r t i c l e s per unit volume m~3 m number of p a r t i c l e s per unit area m~2 N ro t a t i o n a l speed rpm N C c r i t i c a l r o t a t i o n a l speed rpm n r o t a t i o n a l speed rps Q heat transfer rate W q heat transfer rate per unit length W/m R k i l n radius m r radius position m S exposed area of p a r t i c l e surface m2 S' covered area of p a r t i c l e surface m2 T temperature K Tgo entering gas temperature K T g i e x i t gas temperature K sm p a r t i c l e mixing temperature K t retention time or residence time S t b bed time s t c contact time s t s surface time. s t t cycle time s t x retention time s U average a x i a l v e l o c i t y m/s v e l o c i t y defined i n equation 7-19 m/s Uo o v e r a l l gas-solid heat transfer c o e f f i c i e n t W/m3K v a a x i a l v e l o c i t y on bed surface m/s V l l a t e r a l v e l o c i t y on bed surface m/s V r r a d i a l v e l o c i t y i n the bed region m/s w mass flowrate kg/hr X distance m z x/L -206 Greek l e t t e r s a K i l n i n c l i n a t i o n angle radian a 0 K i l n i n c l i n a t i o n angle degree 3 Central angle of the sector occupied by the s o l i d bed radian e s t a t i c angle of repose radian e • dynamic angle of repose radian e 0 dynamic angle of repose degree ? dimensionless time -n degree of s o l i d f i l l -X Angle between i n c l i n e d bed & horizontal radian Ug gas absolute v i s c o t i y Ns/m2 vg gas kinematic v i s c o s i t y m2/s Ps p a r t i c l e bulk density kg/m^ P P p a r t i c l e true density kg/m^ p g gas density kg/m^ T bed height m TL bed height at x=L m a Stefan-Boltzmann constant W/m2K4 , (5.67xl0 - 8) absolute variance s ° e r e l a t i v e variance -shearing angle radian Angle between bed surface and k i l n axis radian angular v e l o c i t y radian/s u c c r i t i c a l angular v e l o c i t y radian/s 6 U parameter defined i n Equation 2-31 m e g gas emissivity -e s s o l i d emissivity -ew wall emissivity -K Thickness of surface region m Dimensionless Groups Bi hD/ks Biot number Fo at/r Fourier number P Fr N / N c Froude number d p ag G a 1— G a l l i l e o number y R cos 9 Nj, defined i n Chapter 2 L tana N, Nu F sm0 — 3 nR tana hD k~ defined i n Chapter 2 Nusselt number NUp ^Pf^P p a r t i c l e Nusselt number Pe uL/D Peclet number Pr C y/k Prandtl number P 9 Re uDp^/y g Reynolds number R e p uo Pg^p p a r t i c l e Reynolds number 2 D ojp Re^, _J;—9 Rotating Reynolds number y Taylor number y 208 Subscripts: g gas p p a r t i c l e s bulk s o l i d material, bed w exposed wall w1 covered wall gs gas to s o l i d bed gw gas to wall sw s o l i d bed to covered wall p a r t i c l e in the f i r s t exposed layer p a r t i c l e i n the second layer 209 REFERENCES 1. Sugishima, W., ' P l a s t i c s Wastes I n c i n e r a t i o n by Rotary K i l n ' , F u e l S o c i e t y of Japan, 51 (4), 233 (1972). 2. Wilson, K., 'The SL/RN Process at the G r i f f i t h Mine', presented a t 16th Conference of M e t a l l u r g i s t s , Vancouver, Canada, August 22-24, 1977. 3. Wachters, L.H.J, and Kramers, H., 'The C a l c i n i n g of Sodium Bicarbonate i n a Rotary K i l n ' , Proc. 3rd European Symposium Chemical Reaction E n g i n e e r i n g , 77 (1964). 4. Brimacombe, J.K. and Watkinson, A.P., 'Heat T r a n s f e r i n a D i r e c t - F i r e d Rotary K i l n : I, P i l o t P l a n t and Experimentation, I I , Heat Flow R e s u l t s and T h e i r I n t e r p r e t a t i o n ' . Accepted f o r P u b l i c a t i o n Trans. A.I.M.E.. (1978) . 5. R i f f a u d , J.B., Koehret, B. and Coupal, B., 'Modelling and S i m u l a t i o n of an Alumina k i l n ' , B r i t . Chem. Engr. & Proc. Tech., 17_ (5) , 413-418 (1972). 6. M a n i t i u s , A., Kurcyuse, E., and Kawecki, W. ,• 'Mathematical Model of the Aluminum Oxide Rotary K i l n ' . IF.C, Process Des. Develop., 13(2), 132-142 (1974). 7. Lyons, J.W., Min, H.S., P a r i s o t , P.E., and P a u l , J.F., ' 'Experimentation w i t h a Wet-Process Rotary Cement K i l n v i a the Analog Computer', I & EC Proc. Design and Development, 1 (1), 29-33 (1962). 8. Min, H.S., P a r i s o t , P.E., Paul, J.F., and Lyons, J.W. 'Computer S i m u l a t i o n of Wet-process Cement K i l n O p eration', N o m e t a l l i c M i n e r a l s P r o c e s s i n g , 35-39, September 1962. 9. W i n g f i e l d , S.L., Prothero, A. and Auld, J.B. 'A Mathematical .Model of a Rotary K i l n f o r the P a r t i a l Reduction of Iron Ore'. J o u r n a l of the I n s t i t u t e of F u e l , 64-72 March, 1974. 10. Tukamoto, T., Simada, S., Taguchi, T., and H i g u c h i , J . 'A Mathematical Model of the S i n t e r i n g P r ocesses'. Tetsu-to-Hagane, 5_6, 661 (1970), A l s o BISI 9050. 11. Toyama, S. and Sugeta, T. 'Simulation and Design Study on Rotary K i l n of F i r i n g L i g h t Weight Aggregate'. Togako Kogako, 3_3 (10) , 1019-1023 (1969) . 12. Sass, A., 'Simulation of the Heat-Transfer Phenomena i n a Rotary K i l n ' , I & EC Process Design and Develop-ment, 6 (4), 532-535 (1967). 210 13. Imber, M. Ph.D. Thesis 1A Mathematical Analysis of the Rotary K i l n Heat Exchanger 1, Columbia University (1958). 14. V a i l l a n t , A., Ph.D. Thesis 'Thermal Analysis of the Direct F i r e d Rotary K i l n ' . Columbia University (1965). 15. Kern, J., 'Heat Transfer i n a Rotary Heat Exchanger'. Int. J. Heat Mass Transfer, 17, 981-990 (1974). 16. Pearce, K.W., 'A Heat Transfer Model for Rotary Ki l n s ' , Journal of the Institute of Fuel, 362, December, 1973. 17. Rosa Von J., 'Mathematical Formulation of the Heat Transfer in the Rotary K i l n ' , Zement-Kalk-Gips, Val 2 3 (8), 368 (1970) . 18. Roberts, F., Taylor, R.F. and Jenkins, T.R., 'High Temperature Chemical Reaction Engineering', The Institute of Chemical Engineers, London, 1971. 19. Rutgers, R., 'Longitudinal Mixing of Granular Material Flowing through a Rotating Cylinder', Chemical Engineering Science, 20_ (1965), Part I. Descrip-tive and Theoretical, p. 1079, Part II. Experi-mental, p. 1089. 20. Zablotny, W.W., 'The Movement of the Charge in Rotary Ki l n s ' , International Chemical Engineering, _5 (2), 360 (1965). 21. Sullivan, I.D., Maier, CG. and Ralston, D.C., 'Passage of Soli d P a r t i c l e s through Rotary Cylinder K i l n s ' , U.S. Bureau Mines Technical Report, No. 384, (1972). 22. Henein, H., Brimacombe, J.K. and Watkinson, A.P., The University of B r i t i s h Columbia, unpublished research. 23. Themelis, N.J., Donaldson, J.W., and Udy, M.C., 'Use of the S i m i l a r i t y P r i n c i p l e i n Predicting the Optimum Performance of Iron Reduction K i l n s ' , The Canadian Mining and M e t a l l u r g i c a l , B u l l e t i n , p. 434, A p r i l , 1964. 24. Bayard, R.A., 'New Formula Developed for K i l n Time', Chemical and Met a l l u r g i c a l Engineering, 5_2, 100 March 1945. 25. Saeman, W.C., 'Passage of Solids through Rotary K i l n s ' , Chemical Engineering Progress, 4_7 (10) , 508 (1951) . 211 26. Pickering, R.W., Feakes, F. and Fi t z g e r a l d , M.L., 'Time for Passage of Material through Rotary K i l n s ' , Journal of Applied Chemistry, 1(1) A7 (1951). 27. Varentsor, P.V., Yufa, M.S., 'The Movement of a Bed of Sol i d P a r t i c l e s i n Rotary K i l n s ' , International Chemical Engineering, 1(1), 88 (1961). 28. Vahl, L. and Kingma, W.G., 'Transport of Solids through Horizontal Rotary Cylinders', Chemical Engineering Science, 1(6), 253 (1952). 29. Kramers, H. and Croockewit, P., 'The Passage of Granular Solids Through Inclined Rotary Ki l n s ' , Chemical Engineering Science, 1(6), 259 (1952). 30. Abouzeid, A.Z.M.A., Mika, T.S., Sastry, K.V. and Fuerstenau, D.W., 'The Influence of Operating Variables on the Residence Time D i s t r i b u t i o n for Material Transport in a Continuous Rotary Drum', Powder Technology, 10, 273 (1974). 31. Wes, G.W.J., Drinkenburg, A.A.H., and Stemerding, S., Solids Mixing and Residence Time D i s t r i b u t i o n i n a Horizontal Rotary Drum Reactor', Powder Techno-logy, 13, 177 (1976). 32. Moriyama, A., and Suga, T., 'Axial Dispersion and Residence Time Di s t r i b u t i o n of Spherical P a r t i c l e s i n Rotary K i l n ' , Tetsu-to-Hagane, £0(9), 1283 (1974). 33. Levenspiel, 0., Chemical Reaction Engineering, Wiley, N.Y., 2nd Edition, 1972, Chapter 9. 34. Matsui, Graduation Thesis from Nagoya Institute of Techno-logy, Japan, 1972. 35. Lu, W.M., Shiau, C.Y. and Chen, C.C., 'Study on Mixing of Solid P a r t i c l e s i n a Rotary Cylinder with Cross A i r Flow', Journal of Chinese Institute of Chemi-cal. Engineering, 4_, 52 (1973). 36. Sugimoto, M., Endoh, K., and Tanaka, T., 'Behavior of Granular Materials Flowing through a Rotary C y l i n -der - Eff e c t s of Segregation Zones on the Residence Time Di s t r i b u t i o n of P a r t i c l e s ' , Kagaku Kogaku, 3_1 (2) , 145 (1967) . 37. Sugimoto, M., 'Effect of the B a l l i n g F i l l i n g on the Residence Time Distributions of P a r t i c l e s Flowing through a Rotary Cylinder' , Kagaku Kogaku, 32 (2) , 196 (1968) . 212 38. Suginioto, M., 'An Estimation of the Residence Time Dis t r i b u t i o n of P a r t i c l e s Flowing through a Rotary Cylinder'. Kagaku Kogaku 32 (3), 291 (1968). 39. Kennedy Van Saun Corporation, Danville, Pa., 'Rock Talk Manual', 1974. 40. Hogg, R., Shoji, K. and Austin, L.G., 'Axial Transport of Dry Powders i n Horizontal Rotating Cylinders', Powder Technology, 9_, 99 (1974) . 41. Bowers, T.G. and Read, H.L., 'Heat Transfer i n Rotary K i l n ' , Chemical Engineering Progress Symposium ser ie s . 6_1(57) , 340 (1968) . 42. Wes, G.W.J., Drinkenburg, A.A.H., and Stemerding, S. 'Heat Transfer i n a Horizontal Rotary Drum Reactor', Powder Technology, 13_, 185 (1976). 43. Lehmberg, J., Hehl, M., and Schugerl, K., 'Transversal Mixing and Heat Transfer i n Horizontal Drum Reactors', presented at the International Confe-rence SPIRE i n Arad, I s r a e l , November 30, December 5, 1975. 44. Nikitenko, G.N. 'Heat Transfer from the wall to the Loose Material i n Rotary Drum-Type Ki l n s ' , Khimicheskaia Promyshlennost Ukrainy 5_, 29-32 (1969) . 45. Epstein, N. and Mathur, K.B., 'Heat and Mass Transfer i n Spouted Beds - A Review', Canadian Society of Chemical Engineering, 4_9, 467 (1971) . 46. Perry & Chilton (Editors-in-Chief) Chemical Engineering Handbook, 4th Edit i o n , p. 20-36, 1973. 47. Perry, J.H. (Editor-in-Chief) Chemical Engineering Handbook, 3rd Ed i t i o n , p. 831, McGraw-Hill, New York 1950. 48^ :, Gygi, H. , 'The Thermal E f f i c i e n c y of the Rotary Cement K i l n ' . Cement and Lime Manufacture, p. 82, A p r i l , 1938. 49. Friedman, S.J. and. Marshall, W.R.J., 'Studies i n Rotary Drying, Part II Heat and Mass Transfer', Chemical Engineering Progress, 45(9), 573 (1949). 50. Chen, C.C., Lu, W.M. and Teng, L.T., 'Heat Transfer i n the Through Flow Rotary Dryer', J. of Chinese Institute of Chemical Engineers, 5, 1-6 (1974). 213 51. Kaiser, V.A. and Lane,J.W., correspondence to Saas 'Simu-l a t i o n of the Heat Transfer Phenomena in a Rotary K i l n ' , I & EC Process Design and Development, 1_ (2) 318 (1968). 52. Eckert, E.R.G., and Drake,. R.M., 'Heat and Mass Transfer', McGraw H i l l , New York, 1959, p. 405. 53. Luethge, J.A., 'Measurement and Control of Temperatures i n Rotary Ki l n s ' , Instrumentation Technology, 46, March 1968. 54.- Venkateswaran,V.,. M.A.Sc. Thesis, 1976, The University of B r i t i s h Columbia. 55. 1974 ASTM Standard book, E-220 and E-230. 56. H i l l s , A.W.D. and Paulin, A., 'The Construction and Calibrat i o n of an Inexpensive Microsuction Pyrometer', Journal of S c i e n t i f i c Instruments (J. of Physics E) 2, 713 (1969). 57. Brinn, M.S., Friedman, S.J., Gluckert, F.A. and Pigford, L.R., 'Heat Transfer to Granular Materials', Ind. Eng. Chem., 4£, 1050 (1948). 58. Kreith, F., 'Principles of Heat Transfer 1, International Textbook Co., Scranton, Pa. (1969). 59. Irvine, T.F. J r . and Hartnett, J.P., 'Steam and A i r Tables in SI Units', Hemisphere Pub. Co., Washington (1976) 60. Friedman, S.J. and Marshall, J r . , W.R., 'Studies i n Rotary Drying - Part I - Holdup"arid;Dusting', Chemical Engineering Progress, 45(3), 482 (1949). 61. Shevtsov, B.I., Kubyshev, N.N., Cherepivskii, A.A. and Bogdanov, Yu.Yu., 'Determination of the Rate of Movement of the Charge i n Rotary K i l n by means of Radioactive Isotopes', International Chemical Engineering, .11(2) , 252 (1971) . 62. M i s k e l l , F., and Marshall, J r . , W.R., 'A Study of Retention Time in a Rotary Dryer', Chemical Engineering Progress, 5_2(1) , 35 (1956). 63. B o t t e r i l l , J.S., Butt, M.H.D., Cain, G.L. and Redish, K.A., Proc. Eindhoven F l u i d i z a t i o n Symposium, p.442 (1967) . 64. Ernest, R. , 'Warmeubergang anJ'.Warmeaustauschern i n Moving Bed', Chem, Ing. Techn. 3j2, 17 (1960). 214 65. Rohsenow W.M. and Hartnett, J.P. (Editors-in-Chief), 'Handbook of Heat Transfer', McGraw-Hill Inc., N.Y., N.Y. (1973). 66. McAdams, 'Heat Transmission', McGraw-Hill Book Co., 1954. 67. Schlichting, H., 'Boundary Layer Theory', p. 407, McGraw-H i l l Book Co. Inc., N.Y., 1957. 68. Cannon, J.N'.., 'Heat Transfer from a f l u i d flow inside .a Rotating Cylinder', Ph.D. di s s e r t a t i o n , Stanford University, 1965. 69. Brimacombe and Watkinson, 'Calcination of Limestone i n a Rotary K i l n ' , 17th Conference of Metallurgists, CIM, Vancouver, August,•1977. 70. Carslaw, H.S. and Jaeger, J . c , 'Conduction of Heat i n Solids'. 1947, Oxford. 71. Kunii D. & Levenspiel, O, ' F l u i d i z a t i o n Engineering', Hohn Wiley & Sons, Inc., New York. 1969. APPENDIX A CALIBRATION OF EQUIPMENT 1.. T h e r m o c o u p l e C a l i b r a t i o n The i r o n - c o n s t a n t a n t h e r m o c o u p l e s were c a l i b r a t e d i n an o i l b a t h e q u i p p e d w i t h Haake thermo r e g u l a t o r (Model FS) f o r t e m p e r a t u r e s up t o 400 K. The m i l l i v o l t r e a d i n g s were r e c o r d e d on Watanabe M u l t i c o r d e r r e c o r d e r (Model 641) . I n a d d i t i o n , t h e t h e r m o c o u p l e s were a l s o c a l i b r a t e d a t two temp-e r a t u r e s , t h e m e l t i n g p o i n t s f o r t i n and z i n c (504.8 K and 692.75 K ) . The m e t a l g r a n u l e s were f i r s t h e a t e d i n t h e b a t h u n t i l t h e y m e l t e d and t h e h e a t was t h e n s h u t o f f . The thermo-c o u p l e was t h e n d i p p e d i n t o t h e m e t a l b a t h . The m i l l i v o l t r e a d i n g s were t a k e n and r e c o r d e d . The r e s u l t s were shown i n F i g u r e A - l . The r e a d i n g s 12.60 mV and 23.00 mV, were o b t a i n e d f o r t i n and z i n c r e s p e c t i v e l y . F i g u r e A-2 shows t h e r e s u l t s o f t h e r m o c o u p l e c a l i b r a t i o n i n t h e c o n s t a n t t e m p e r a t u r e b a t h s o v e r t h e t e m p e r a t u r e r a n g e o f 300 t o 700 K. The m i l l i v o l t r e a d i n g s f o r e a c h t h e r m o c o u p l e were f i t t e d by l e a s t s q u a r e s t o a q u a d r a t i c e q u a t i o n o f t h e form, T = a + b ( m i l l i v o l t s ) + c ( m i l l i v o l t s ) Figure A - l Ca l i b r a t i o n of Thermocouple i n Metal Baths. 217 Figure A-2 C a l i b r a t i o n of Iron-Constantan Thermocouples. The constants for the above equation are given i n Table A - l , along with the deviations of the calibrated values from meas-ured values at two temperatures. The measured values were also compared with those tabled i n the ASTM Standard manual (55) with the maximum deviation of + 1.8 F. The thermocouple data in the manual are given i n Table A-2. 2. C a l i b r a t i o n of Rotameter The rotameters were calibr a t e d against gas meters, The c a l i b r a t i o n curves are given i n Figures A-3 and A - k . \ 219 Table A - l C a l i b r a t i o n of Thermocouples THERMOCOUPLE D e v i a t i o n K NO. a b c 34 3°K 504. A 279.21 17.9 61 o.oooo . 0.36 0.70 B 279.55 17.935 0.0003 0.08 0.79 C 278.11 18.187 -0.0111 0.29 0 .35 D 277.72 18.197 -0.0108 0.30 0.39 E 277.75 18.425 -0.0224 0.27 0. 65 F 280.03 17.875 0.0020 -0.53 0.78 G 278.08 18.158 0.0005 0.30 0 .33 H 280.32 17.327 0.0324 0.32 0.80 I 279.87 17.553 0.0062 0.17 0.87 J 277.55 18.189 -0.0101 0.29 0.33 K 279.12 17.681 0.0266 -0.03 0.41 L 276.28 18.736 -0.0346 0.14 0.28 M 278.38 18.047 -0.0022 0.71 0.61 N 269.60 20.980 -0.1348 0.23 -0>.-81 0 282.91 16.707 - 0.0367 0.71 0.92 P 277.70 18.104 -0.0034 0.58 0 . 47 Q 284.13 16.078 0.0910 0.54 0.98 R 273.89 19.869 -0.0529 0.61 -0.10 S 277.80 17.931 0.0108 0.06 0.65 T 268.41 20.874 -0.1174 -0.11 -1.00 T (K) = a + b ( m i l l i v o l t s ) + c ( m i l l i v o l t s ) Table A-2 Thermocouple Data Voltage m i l l i v o l t 1. 019 1.536 2. 058 2.585 3.116 3.649 4.186 4.725 5.268 6 . 359 7.457 8.560 9.667 10.777 12.998 15.217 16.325 18.537 Temperature C 20 30 40 50 60 70 80 90 100 120 140 160 180 200 240 280 300 340 Reference Temperature at 0 ' C. Temperature K 293.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15 373.15 393.15 413.15 433.15 453.15 473.15 513.15 553.15 573.15 613.15 SCALE OF ROTAMETER, % gure A-3 A i r Flow Rate versus Reading on Rotameter Scale (Rotameter 2854). 0 20 40 60 80 100 120 140 160 180 200 220 240 260 READINGS Figure A-4 Suction Rate versus Reading on Rotameter Scale (Rotameter 2487). APPENDIX B SURFACE AREA AND SURFACE VELOCITY 1. D e t e r m i n a t i o n o f A'/A s/ s The r a t i o o f A 1 / A i s i m p o r t a n t i n d e t e r m i n i n g h e a t t r a n s f e r c o e f f i c i e n t . The s u r f a c e r e g i o n c o m p r i s e s s e v e r a l s u r f a c e l a y e r s . However, o n l y t h e f i r s t two l a y e r s seem t o be e x p o s e d t o gas s t r e a m . I n o r d e r t o c a l c u l a t e t h e r a t i o o f A g / A s , t h e e x p o s e d s u r f a c e a r e a o f i n d i v i d u a l p a r t i c l e s i n e a c h o f t h e f i r s t two l a y e r s have t o be d e t e r m i n e d . The d i f f e r e n t i a l s u r f a c e a r e a o f a s p h e r i c a l p a r t i c l e i s d 2 dS = -P— d e s i n c dt, ( B - l ) 4 The a r r a y o f p a r t i c l e s i n t h e f i r s t two l a y e r s i s e i t h e r a c u b i c a r r a n g e m e n t a s g i v e n i n F i g u r e 7-2B, o r a s t r u c t u r e a s g i v e n i n F i g u r e 7-2A. In t h e l a t t e r a r r a y , t h e p a r t i c l e s i n t h e f i r s t l a y e r s a r e shown i n F i g u r e B - l . T h e r e f o r e , t h e e x p o s e d s u r f a c e o f i n d i v i d u a l p a r t i c l e c a n be o b t a i n e d by i n t e g r a t i n g t h e f o l l o w i n g e q u a t i o n . 225 S, = 2 r 2TT 5 f V* d e sin? d.c, 0 J 0 TTd 1 + I T (R-2) Sim i l a r l y , the exposed area of the second layer par-t i c l e i s d 2ir 2 r2-n r T S-, = 4 J d e 0 J 0 sin? d? 3 ir , 2 — • d 8 P (B-3) Consider a plane surface with dimension 3d^ by ( 1 + -Jf_ )d 2 P as shown i n Figure 7-2A. There are two p a r t i c l e s i n the f i r s t layer and 6 p a r t i c l e s i n the second layer. Thus, the r a t i o of A ' / A i s s s A J 3 A o 3d (1-^ ") d s P v T' p 2S 1 + 6S 2 = 2.42 (B-4) In a cubic array as shown i n Figure 7-2A the aerated area of in d i v i d u a l p a r t i c l e i n the f i r s t layer i s represented by Sn = L d 2 1 2 p (B-5) It i s assumed that a l l the space other than that occupied by the f i r s t layer p a r t i c l e s are aerated by the second layer p a r t i c l e s . Therefore, the t o t a l exposed area of the f i r s t layer p a r t i c l e s i n a plane area, 4 d x 4d i s P P ^ d p 2 x 16 = 8 i r d p 2 CB-6) and that of the second layer p a r t i c l e s are 4d x 4d - 16 - d 2 = 4(4 - TT )d 2 (B-7) P P 4 P P The r a t i o of A /A for a cubic array i s s s J A' 8ird + 4 (4 - IT ) d -2. = P. P_ = 1 > 7 8 ( B _ 8 ) A e 16 d 2 s p 2. P a r t i c l e exchange rate between the bed region and the surface region The temperature of the aerated surface p a r t i c l e s w i l l be raised from T g to T before they return into the bed re-gion. Just before they return to the bed the heated p a r t i c l e s 227 mix with the p a r t i c l e s i n the other surface layers, which receive no heat from the gas stream. In order to f i n d the temperature of the mixture the rate of the p a r t i c l e s emerging out of the bed region must be determined. Assume the k i l n rotates at a speed, JI, as shown in F i g -ure B-2. The angular v e l o c i t y w i l l be w = 2im (radians/s). The v e l o c i t y of the p a r t i c l e s normal to the bed surface i s V N = ur sin? (B-9) Let l s ' be the length of the boundary between the sur-face region and the bed, and M, the number of p a r t i c l e s per 1' unit volume. For a plane area, Ax — s , the emerging rate of 2 the p a r t i c l e s i s represented by V/2 V dy (B-10) 0 where y i s the distance from the central l i n e , OA1 as shown 1 in Figure B-2. Let h^ , be equal to OA'. Then y = h R ' tan? • and r = h R ' sec? (B-ll) The f i r s t equation i s derived with respect to ? and the following equation i s obtained Figure B-2 Emerging Rate of P a r t i c l e s from Bed Region to Surface Region 229 dy = h ' s e c ? d? (B-12) T h e r e f o r e , e q u a t i o n B-10 i s r e w r i t t e n and i n t e g r a t e d as f o l l o w s : F_ = MAx m f 2 7 2 wh'" t a n ? s e c t, d? = MAxuh 0 ,2 B 3s s e c ? = JsMAxcjh' 2 tan 2-^-' B o -T£1AXUV1s 1 7 . / . A T ' 2 — nMAxlc 4 S (B-13) The term, l s ' , i s t h e l e n g t h o f t h e b o u n d a r y l i n e , and r e l a t e d t o k i l n d i a m e t e r and d e g r e e o f f i l l . L e t K be t h e t h i c k n e s s o f t h e s u r f a c e r e g i o n . Then hg = h B + K By t a k i n g s q u a r e on b o t h s i d e s , e q u a t i o n B-14 i s o b t a i n e d ' 2 2 (B-14) Since v., 2 2 and equation B-14 can be rewritten as l s ' 2 = Is - 8 R K C O S - | + K 2 (B-15) 2 By neglecting K , equation B-13 for F m becomes-F M = - MAxn(l 2 - 8 R K C O S | - ) ( B - 1 6 ) 4 As indicated i n Figure 6-3, the p a r t i c l e v e l o c i t y i n the surface region can be approximated by a lin e a r function as V = V, (B-17) < x where t, i s the distance outv/ard from the boundary between two region as shown i n Figure B-3, and i s the surface v e l o c i t y of p a r t i c l e s i n the f i r s t layer. For a width Ax of the k i l n the rate of the p a r t i c l e s r o l l i n g on the bed surface i s re-presented by Figure B-3 P a r t i c l e V e l o c i t y P r p f i l e i n Surface Region. 2 . 3 2 F,. = MAx m K f 0 = kMAxKV x (B-18) By e q u a t i n g e q u a t i o n B-16 and e q u a t i o n B-18, one o b t a i n a r e l a t i o n s h i p o f K and as f u n c t i o n s o f n. K V = - n ( l s 2 - 8 R K C O S | ) (B-19) 2 I n a d d i t i o n , - t h e s u r f a c e v e l o c i t y , was f o u n d as a f u n c t i o n o f s q u a r e r o o t o f r o t a t i o n a l s p e e d , t h e t h i c k n e s s i s t h e n d e p e n d i n g on t h e r o t a t i o n a l s p e e d and d e g r e e o f f i l l by t h e f o l l o w i n g e q u a t i o n 1 K — + 8Rcos^ l s U n APPENDIX C SAMPLE CALCULATIONS 1. Calculation of residence time d i s t r i b u t i o n The sample calculations for mean residence time, v a r i -ance, Peclet number and dispersion c o e f f i c i e n t are presented. The experimental data for run R2 i s given i n the f i r s t two columns i n Table C - l . The concentration, C(t^) represents no. of tracer i n the sample no. of t o t a l tracer used C ( t ± ) = wt. of sample wt. of bed In t h i s run, the weight of t o t a l color tracer used was 13.7 gm (939 i n d i v i d u a l t r a c e r s ) . The f i r s t sample was c o l l e c t e d at t = 8 minute. After the tracers were fed. The weight of the sample was 243.9 g i n which 5 tracers were found. The bed weight was 9.4 kg. Thus C(t^) for the f i r s t sample i s C(t.) = — 5 / 9 3 9 = 0.205 1 243.9/9^00 With the same procedure the values of C ( t . ) , i = 2, 3 M 234 Table C-l Tabulation of Calculation for RTD run (R2) t. 1 c ( t i ) F ( t ± ) F ( t . ) t . A t . 1 1 l E ( t i ) ( t ± -(min) ( - ) (min)" 1 8. 00 0.205 2.09xl0 - 2 0.042 0.0072 8. 25 2. 300 23.40 0.483 0 . 0 4 9 5 8.50 5.159 54.58 1.158 0.0612 8 . 75 6.731 6 8.47 1.498 0.0302 9. 00 9 . 571 97.37 2.190 0.0703 9 . 25 5.924 60.26 1. 394 0.OHIO 9.50 3.543 36.04 0.859 0.0098 9. 75 1.582 16.09 0.392 0.0135 10.00 1.360 13.84 0 . 346 0.0238 10.25 0.622 6.33 0.162 0.0185 10.50 0.580 5.9 0 0.155 0.0261 10.75 0.402 4.09 0.102 0.0255 11. 00 0 . 360 3.66 n. i n i 0.0307 11.25 0.345 3.51 0.099 0,0380 11.50 0.268 2.73 0.079 0.0371 11. 75 0.194 1.97 0.058 0.0328 12. 00 0.160 1.63 0.041 0.0326 9.17 (min) 0.453 (min) are calculated and the r e s u l t s are l i s t e d i n Table C - l . From equation 5-5, the e x i t age d i s t r i b u t i o n function E(t^) i s defined as C(t. ) E ( t i ) = = — EC (t.)At. 1 l l where EC(t.)At = 9.83 (min) i Therefore F(t.) for the f i r s t sam.Dle i s I E(t.) = 0 , 2 0 5 = 0.0209 (min) 1  1 9.83 and E(t^) for a l l the samples are calculated and tabulated in the second column in Table C - l . Then the mean residence time and variance can be calculated from M t - E t.E(t.)At (5-3) i = l 1 1 and M a t 2 = Z ( t ± - t ) 2F, ( t ± ) At (5-4) i = l The values of E ( t ^ ) t ^ A t ^ for each sample i s calculated and tabulated i n the fourth column in Table C - l . Since the time i n t e r v a l for each sample At^ = 0.25 min, the summation of the values in the fourth column gives n t = E F, (t. ) t. At i=l 1 1 = 9.17 (min) _ 2 The mean residence time allows the ca l c u l a t i o n of (t^-.t) E(t^) for each sample. The res u l t s are l i s t e d i n the same table. Therefore, 6 2 = 0.453 (min) 2 The r e l a t i v e variance and Peclet number are then calculated as j 6 2 0.453 6 „ = -A, = = 5.39x10 (9.17) 2 and Pe = ^ = 371 Then the a x i a l dispersion c o e f f i c i e n t , D i s Pe tPe 2 44^" -S 2 = = 2.91x10 m/s 9.17x60x371 2. Calculation of the heat transfer C o e f f i c i e n t The computer program that was used routinely for these calculations i s appended. The sample c a l c u l a t i o n i s done for run A16. The a i r flow rate and the s o l i d feed rate for the run were 24.6 kg/hr and 14.2 kg/hr respectively. The r o t a t i o n a l speed was 1.5 rpm, the i n c l i n a t i o n angle was 1.2 degree and the s o l i d holdup was 17%. The temperatures of a i r , sand and wall were measured at x= 1.25 m and 1.78 m from the solid, entrance .end. The temperature were then interpolated and given i n the table i n Appendix E. The l o c a l heat flows for so l i d s to wall, gas to so l i d s and gas to wall at a given a x i a l loca-t i o n are calculated. The determination of heat flow from solids to bed requires the knowledge of so l i d s to bed heat transfer c o e f f i c i e n t which are obtained from Figure 6-26. The -6 2 d i f f u s i v i t y of Ottawa sand, a = 0.225x10 m /s, the thermal conductivity of Ottawa sand, k g = 0.268 W/mK. The center angle for occupied solids i s g = 1.98 radians. Thus, the value of 238 2 ^ r 5 - x ( 0 . 0 9 5 2 5 ) 2 x 1 . 9 8 = 22 1 = 1 9 8 7 a 0 . 2 2 6 x 1 0 From equation 6-25, the Nusselt number i s h i ' sw w 0 3 = 11.6 (1987) J' J = 113.2 k s and 1 = BR = 0.189 m. Thus, the value of h i s w ' sw h g w = 113.2 x 0.268/0.189 = 160.5 W/m2K Since there i s a layer of cement about 1 mm thick on the wall, and i t s thermal conductivity i s 0.294 W/mK the equi-valent heat transfer c o e f f i c i e n t across t h i s layer i s 0.294/ -3 2 1.0x10 = 294 W/m K. The o v e r a l l heat transfer c o e f f i c i e n t i s h = = 103.8 W/m2K sw,o 1 1 1605 2940 Then the l o c a l heat flow from so l i d s bed can be calculated at a given a x i a l location by < W x ) = ^ w^w ( T s - V 239 For instance at x = 1.25 m, T g = 374.0 K and = 369.2 K, the value of q (x) at x = 1.25 ni i s 57.2 W/m. The heat re-ceived by the sol i d s i s calculated by dH (x) C W dT s _ ps s s j dx dx where C = 0.653 + 0.215xlO"3T (J/gK) ps Thus C p = 0.733. . ' The value of dT g/dx was obtained by the Spline function dT --S- = 57.3 K/m dx Therefore, the heat received by the solids i s dH (x) kg 1000 |L — - = 14.2 — x x 0.733 J/gK x 57.3 K/m dx hr 3600 =-hr = 16 6. W/m From equation 6-15, the heat transferred from the gas to the sol i d s i s dH (x) g (x) = " " 5 " + q (x) -gs d x 240 = 223.2 W/m Then, the heat which the gas gives up i s calculated from equation 6-8 dH (x) G W dT g _ pg g g dx dx where C = 1.0017 + 0.042 T/lfffco pg . ' C =1.0 21 J/gK pg and by the Spline function, dT —2- = 4 5.9 K/m dx Therefore, dH (x) , 1000 — 2 = 24.6^ x : £2. x 1.021 J/gK x 45.9 K/m dx n r 3600 p^ r = 320.4 W/m From equation 6-16, the l o c a l heat flow from the gas to the wall at x = 1.25 m i s q gw dH g(x) dx - q (x) ^gs = 320.4-223.2=97.2 W/m With the same procedures, the l o c a l heat flows at x = 1.30, 1.40, 1.50, 1.60 and 1.78 m are also calculated. The re s u l t s are given i n the table on page 261. The average heat transfer rate per unit length for the test section, q and q can be calculated from equations ^gs g^w ^ 6-17 and 18, respectively. r x 2 = 291.5 W/m and r x 2 q = q (x)dx/(x~ - x, ) Mgw I Jgw ' 2 1 J x i = 10 7.0 W/m where x^, x 2 are locations for two ends of the tes t section. x 0 - x-, = 0.53 m. Therefore, the logarithmic mean heat transfer c o e f f i -cients for gas to sol i d s and gas to wall are represented by h = q / l (T - T J , gs ^gs s g s lm and h = q / l (T - T ) n gw ^gw w g w lm respectively, where (462.0 - 374.0) - (492.0 - 417.0) ( T g T s ; l m 462.0 - 374.0 492.0 - 417.0 = 81.3 K and _ . _ (462.0 - 369.2) - (492.0 - 410.5)  1 g w'lm 462.0 - 369.2 492.0 - 410.5 8 7.0 K In addition, 1 = 2R sin-?-1 no = 2 x 0.09525 s i n i ^ 2 - =0.175 m 243 and 1 = (2TT -g)R w = (6.28 - 1.98)x0.09525 = 0.410 m Thus, the heat transfer c o e f f i c i e n t s from gas to sol i d s and gas to wall are h g s = 291.5/0.175/81.3 = 22.5 W/m2K and h = 107.0/0.41/87.0 =3.0 W/m2K COMPUTER PROGRAMS THIS PROGRAM MODELS THE ROTARY KUN BASED ON EQUATIONS 8-1 AND 8-2, USING THE CORRELATED HEAT TRANSFER COEFFI-CIENTS. N U ( G S I = 0 . 4 6 « R E * * { 0 . ! 3 5 ) * R E W * * ( 0. 104)*FI L L * * (-0.341) NU(GWI=1.54*RE**(0.575)*REW**(-0.292) THE CHARGE TEMPERATURE IS FIXED AT 350 K WHILE AIR INLET TEMPERATURE IS 500 K DIMENSION Y(3) ,F(31,0(3) ,TG(100) ,TSt100) ,TW(10C),Z(IOC I COMMON D1,02,D3,E1,E2,E3,T0 REAL L , K W , K S , N , L l . L 2 , L S , L 0 PI=3.14159 Y(1)=0.0 JJ = 10 STFP=0.01 M=10 11*0.0 NN = 3 J = 0 KILN DIMENSION R0=1.15 RI=1.0 D=2.C*Rl . L=r /3 .0*50. KS SOLID THERMAL CONDUCTIVITY, W/M K. KW REFRACTORY THERMAL CONDUCTIVITY. DIFF DIFFUSIVITY, M2/SEC DENS SCLIO BULK DENSITY, KG/M3 KS=0.268 KW=0.043 0TFF=0.225E-C6 0ENS=1.602E+03 N ROTATIONAL SPEED, RFM. FILL OEFREE OF F I L L . ALPH INCLINATICN ANGLE, DEGREE. BETA CENTRAL ANGLE OF THE OCCUPIED BED, RADIAN. N=1.225 FILL=0.11 ALFH=0.B570 BETA=1.68 WRITE(6,149) 149 FCPVATP READY FOR TGO, TSO IN FCRMAT 2F5.1 ' ) P F » ( M 5 . 1 5 1 > Y (2) ,Y(3) TS1=Y(3) 151 F O F « A T ( 2 F 5 . 1 l « lPt-» = ALPH/57.32 BEE=BETA/2. BE E=COS(BEE• HP=RI*(1.0-BEE) C C WS : SOLID THROUGHPUT, CALCULATED BY C C WS=1.295*HB*D**2*ALPHA*DENS*N/SIN(THETA) C WS*1.295*HB*D**2.0 VS = t«S*ALPHA/0.454 KS=WS*nENS*60.*N APE»=PT*R1 *RI WG = WS PPf=PFTA/2.0 BP E = SIN(BBE) C C CE: EOUIVALENT DIAMETER. C DE-(2 . *PI-BETAI*RI*2 . *RI*BBE DF=P!*RI*Rt*(1.0-FILL)/DE DE=4.*DE T0=2S3. C C CALCULATE THE CCNTACT AREA PER UNIT LENGTH. C L i : EXPOSED AREA. C 12: COVERED AREA. C LS: BED SURFACE AREA. C L1-(2 . *PI-RETA)*R! L2=PET8*RI LS=2.0*RI*eEE C C CALCULATE OF HEAT TRANSFER COEFFICIENTS C HOMC.O c-c c NNNN=3 24 IF(NNNN-IO) 21.21,22 21 T=(Y(2)-273.)/10C0. TT=(Y(3)-273.1/1000. NO n x o z II •-4 0 •»t LU U- CJ LU 3: LU t • a * * w * • to 0 * tn tl z II IL II », CO 0 a Ul • CO X — »-* Ul z m • fSJ — z 1-a II UJ . II <I 0 z • CO X • =3 O - 0 » n •• • P-4 PvJ LU • P I 0 LU CD • 00 • to • m *• •> • 0 jr O UJ in • z LU — «-i • m 0 > < * u. UJ * 3: • II CC 0 LU LU LU * rvi * P I c * • » to • UJ z CJ - J • • PI II O Li-i in UJ w <r to 0 • II gj • LO j * CD < LU m ul » *. II _ J u. CL LU * _J • m » • x x Ul JE u * u. O I <I X. » ro u> UJ t- -a-• •> » LO » a — X LU 0, ^: CC H • II -J cr • rg •v. O - z « + • • • • a - •M II » X LL. <i * z ft m pi P I * *v LU O » > • < * * a •. X z * * * * O • o et I/) •. Ul LU 1- * (-0 a z 0 - J C"i U. or rvj » e L.« LU • Ui a Ul a D. O- a » > z * LU O X LJ cr 0 2. Ul MM o o o o or o to • LU 1— — t- • • • KI * K . "V. v. >s. * * a Cf • v- II LU O LU LU <r to • eg o e Ul ui IT* <\J j z n • (_> UJ • I < zr X CL »- _1 < JE 2 * Jt QU m LU • 0. O a: a. <i LU m • K 0 * + v. "N. * # * m — X o • «— 0 «-< — LU _j — a — < ~- II => -3 • a _ J - J * o LL 0 CC LU O CL 0 <x O in O LLl O UJ :^ —) U- LU # * « # CP <i CD < < pi o o • 0 a • O O O a O • O X O a » B K — Ul CM 1 « * * l * to • ru • m •«• in X CC LU -^ > CO (NI - J —1 (M •4- II II <NJ O It — * — * « * » a) < < a" < II «e tn O w • *c 0 w 0 — *0 z w V ) 3 Ul + + * • + # o — K CC C w ^ • w *- w K >— < CC KI II 11 II o o o t/i m Pi LU <2 - J U. LU «t LU «l LU <k u, <i LU < • 0: tJ a. II — X X X cu ca < a; CD cu -> 2 3L • k- 2' t— 3'. X 1- 2 0 ^ —J + -> — to-. H H n II I I it I I li It I I «-> t— (X U. «— CC ^ ~ CL »—• u. iX- • a. "-• LU 1  pi t—i rsj p. <M pi UL a o • Ct LJ a. 0 U. Ql U cx l _ a 0 O. LJ UJ UJ 11 —' c; Ui JK CC CO a. o c UJ Hi LU ^* 2 U- • LL. LL 3E LL 2 LL V u. 3 LL • 0 u - j Ki K! • -P> o O c O O 0 O m o O 0 O O 0 O m »4 CM m >f tn «o CD u u u u u UJ < o I X u 3 (- > M l / l <^ t/> C K C I U U VJ c/1 =) (/) o — > 2 » c UJ «^ t- t- - J 3 « « Q u i V z u. C I « x: t-v i t/i < < < c u e . V ) * o — fc- JJt > > < rg — O # • 1. • • z * * O ~ O « 0 — * » LL O * * * X ># t U- O CM 00 U l • •v * Jt II rg p- 9-1 0 0 Z U J U J O JE - * CD 3 z # # CC CL Ul rg • • 2 < UJ * * <l X < 4^ 0 £ *3" 00 *-1 + + » Ul • m m • CD K- UJ l ~ l - « JK O m LU • • 0 O CC tn * a * * ru # LU X ^ 0 0 0 0 0 in l • rg * 0 •4" Ct UJ # # * • cr • •-• + 0 u> go 0 LU CO 0 O *r UJ © •-•«•« 0 * 0 O CC LU rg <\ 1 v f~ 1 Ul 0 1 • CL LU LU # * * • * I * CJ • UJ c * u* •v. « LU X • LU « l to-• cc a LU LU » 0 0 m • —1 m 0 it tr 0 r\l O V . • CC _ J CL • # * O O 0 - J * JK a • • 4 • + • X + 4 ">V "V JT •—• * * * O • lO - r — . r~ ^ 4 m 4^ Pi LU l_> Ul gj m Ul * *. LL z • * n * 1- « »~ rg •It rg 1- -J *v • • C) O « « ("g * 0 * « O • r* ui •-• P 1 i_> m <I «t • > O <-> ^ tn Ul u> CG 0 JC • 7 • z • z • ^ z " • • - J CJ • II II -1 z • O O • O Ul Ul Ul > 3 — -> =1 rg <. z> CD U) 3 0 rg X X X ^ I X W; X II (1 II tl I I 1  It c z JX n o w II II II II II II 11 II It II X I I to 1/1 U l at ac u- O c? Ul —1 UJ II JE X St U l JC Ul V I u« JE .JL JC JE JK *— X . a CL 4 X UJ LU k. Z 0 O O Ul Ul Ul u. Ul > > ^ > > > < < u u U H CC Ct < « X X O X X X X X X X X X 31 ^ ^ • ~* • -v -J »- ^ 1 "V — a - J JX — -4-N» O < < • J I + 4-(M O N • rg S I J < « X • * rg » • ' < CJ - J • — P I — . _j • a. *s a o # J t t v 1 V O u Wi • • . O -J X X CM <l ~* • a. - i it tt 11 it 11 I II l) rt IM CI 4 <f> I < < <1 <t < < <I O O O O O o o o o 0 0 0 0 0 0 0 0 WRTTF(6,7C0) Z U l . T G t H ,TS(I»tTH ( t» IF f I . N E . J J ) GO TO 24 700 FCOWMI IX,F10.3,3(5X,F10.2>) 10 CONTIK'U? T T T » T G ( J J ) - T S 1 or 11 1=1,JJ Zt I » = ZtI>/L TC(TI=(TG(I)-TS1)/TTT T S ( I I » ( T S ( I I - T S l ) / T T T T W » I ) = ( T W ( I 1 - T S 1 ) / T T T V.PITF (6,701 ) It 1 ).TG( I ) , T S U J .TWU) 701 F O B M A T ( I X , « F 1 0 . « » 11 CTNTINUE STOP ENO SUBRCUTIKE AUXRKs EQUATIONS FOR RK CALAUIATION SURfCUTTNE AUXRKtY.F) DIHEKSICN Y(3) ,F<3> COMMON 0 1 , D 2 , D 3 i E l . E 2 , F 3 , T 0 F ( 2 ) « D 1 * Y ( 2 » - D 2 * Y < 3 ) - D 3 * T 0 F ( 3 > « E l * Y < 2 ) - E 2 * Y ( 3 > * E 3 * T O FETUfN FNC EXECUTIC* TERMINATED *SIGNCFF c C THIS PROGRAM IS WRITTEN FOR HEAT TRANSFER IN ROTARY C KILN. A KILN OF 8 INCHES 00, T .5 ID IS USEO FOR C EXPFRIMENT TO OBTAIN TEMPERATURE PROFILES OF AIR C SANC AND WALL ALONG THE KILN. C THE MAIN OBJECTIVE IS TO EVALUATE HEAT TRANSFE C COEFFICIENTS RASED ON EXPERIMENTAL DATA. C NU SSELT AND REYNOLDS NUMBERS ARE ALSO CALULATED. C C C INPUT CATA: C RUN,WA,ROT,WS.RIN,HCLDUP C MEASURED TEMPERATURES. C C THE INTERPOLATED TEMPERATURES ARE CALCULATED BY C THE USE OF SPLINE FUNCTIONS. C c 01 MENS ION X(30),LW(7),L<(7) , T WE ( 7 J , T ! E« 7) ,T SE (7) . TAE (7) DIMENSION TWI30),T!t30) ,TS(30) ,TAt30l .TSOI30) ,TA0I30I OIMENSION 51(30),S2<30),S3(30 I DIMENSION QSW(3C),0GS(30),0GW(30) DIMENSION OA(30),0S(30I,HTCGS(30),HTCGW(30) EOUIVALENCEISl,0A) ECUIVALENCEtS2,0S) ECU I VALENCE(S3,CGW) COMMON /A/LW,LS»TWE»TIE«TSE«TAE REAL K,LW,LS,NU EXTERNAL FCT TATA D f l T / l H . / , C0R/1HI/ C C RUN RUN NUMBER C WA AIR FLOW RATE THROUGH KILN, KG/HR C VS SAND FEED RATE, KG/HR C ROT ROTATATtONAL SPEED, RPM C BIN INCLI NAT ICNAL ANGLE, DEGREE C HCLDUP T C DC 1111 1111=1,44 R E A D I S . l l l ) RUN,WA,ROT,WS , R IN , HCLDUP 111 FORMAT( I X , A 4 , F 5 . 1 , F 6 . 2 . F 4 . I , ? X , F 4 . 2 , F 4 . I » WRITE(6,112) RUN»WA,ROT,WS»"IN,HOLDUP 112 FCPMAT(1H1//////22X,7HRUN NO.,2X,A5//4X,16HAIR FLOW RATE 1.F5.1.6H KG/HR, 10X, 17HR0TAT IONA L SPEED ,F4 .1 ,4H RPM/4X, 216HSAN0 FEED RATE .F5 .1 .6H KG/HR,10X,19HINCLI NATION ANGLE 3.F4.1.7H DEGREE/4X.16HHCLDUP , F5 .1 , IX , 1H J/) PER=H0LDUP/100. C C LW THERMOCOUPLE LOCATION FOR WALL TEMPERATURE FROM C CHARGE END, M. C LS THERMOCOUPLE tOCATlCN FOR AIR AND SOLIDS C TEMPERATURES, M C TfcE MEASURED WALL TEMPERATURE C TIE MEASURED INSULATION TEMPERATURE C TSE MEASURED SANO TEMPERATURE C TAE MEASURED AIR TEMPERATURE C LW(2)=0.31 LW(3)=0.91 L W » 4 ) = 1 . 5 2 LW<5)=2.13 LSt2) = 0.21 IS(3)=0.72 LS(4I=1.25 LS(5) = 1.78 LS(6I=2.32 C C READ MEASURED TEMPERATURES . C RFADI5.10) (TWE(I),1=2,5),(TIE(I) ,1=2,5 I PEAC(5,10) (TSF(I) . I=? ,6) , tTAE(I) , I=2.6) RE AD(5,10) TA0.TA6.TSO,TS6.TW0.TW5 00 16 l=?,6 WRITE(6, 171) LSI I) ,DOR,TAE(I),TSE(I),DOR 171 FCRM6T(7X,F4.2,2X,A1,2(F6.0,2X1,16X,A1) I F d . E 0 . 6 t GO TO 16 WRITFI6.172) LW(I) ,DOR,TWE( I) ,T IE( I l.DOR 172 FCRMAT(7X,F4.2 ,2X,Al ,16X,2(F6.0 ,2Xl f Al> 16 CCNTINUE WRITE(6,173) 173 FORMAT!/) Xtl)=0.0 X125I=2.4 11 = 24 -IM=II+I DO 200 1=1,5 52 tIt = L St 1*1) 200 TAC(I)=TAE(I*1) DO 201 1=1,5 201 TSniIt=TSE(1*1) TAEtl )=TAO TSEtl)=TSO TSE(7)=TS6 T « E ( 7 ) = T A 6 DO 202 1=1,4 53 (I ) = LH (1 + 1 > 202 ThCl I I= TWE( 1*1 ) 00 2C3 1=1,4 203 TSOtI)=TIF(1*1 ) TfcE(l)=TWO ho -P> 0 0 TWE(6)=»TW5 TIE( l )=SAINT(4 ,S3 .T$D,X l l ) , 3 , S l ) TIE161=SAINTI4,S3,TSD,XI25) ,3,S1> LSI1I=XI1 ) LSI7)=XI25) LM1)=XI1I LWI6) = XI25> A = 0 . l DC 11 1=1,11 IFIt .EO.13) GO TO 11 IFI I .EC . l f l ) GO TO 11 1FM.E0 .12) 00 TO 204 IF II .E0 . 1 7 ) GO TO 205 " X I I » I ) = X I I I * A GO TO 11 204 XI 1*1 ) = 1.25 • • XI1*2)=1.3 GO TO 11 205 XII*1I=1.78 XII*2)=1.8 II CONTINUE C C TO FIND INTERPOLATED TEMPERATURES BASED ON C MEASURED DATA C CALL SPLINE(LW,TWE,S2.6,X,TW,S1 ,If,1001 I CALL SPLINE(LW,TIE,S2.6,X,TI ,S1,IM,1001) CALL SPLINEILS,TSF,S2,7,X,TS,TSD,IM,1001) CALL SPLINEILS .TAE,S2 .7 ,X ,TA,TAC, IM, 1 001 I C C SLNA=0. ' SUMB=0. SUf1=0.0 SUM2=0.0 SUM3=0.0 EPS=l.0E-C5 XST=1.0 IFND=50 C C CALCULATE THE CENTRAL ANGLF OF THE BED WITH SUBROUTINE C THETA. C CALL THETAIZ tFiDERF,FCT,XST,EPS,IEND.IER,PER> C KILN RADIUS IS 0.09525 M RAC=C.CS525 C C CE EQUIVALENT DIAMETER, M C SGI CONTACT LENGTH BETWEEN GAS ANO SOLIO BED, M C .SGL=RA0*SINIZ)*2.0 ARC=2.*I3.142-Z)*RA0 *RE*=3.142*RA0*RAD DE=4.*AREA*I1.-PER I/1SGL+ARC) C C C CALCULATE HEAT TRANSFER COEFFICIENTS FROM BED TO WALL» HTCSW. C A HEAT DIFFUSIVITY OF SOLID, 0.225X10E-6 M2/SEC FOR C OTTAWA SAND . C c A=C.225E-06 AA = R0T/6C. *RAD**2 /A*2 . *Z AA = AA**0 .3 AA=11.6*AA C C TK THERMAL CONDUCTIVITY, 0.268 W/M K FOR OTTAWA SAND C TK=0.268 EL=?.*Z*RA0 HTCSW=AA*TK/EL AAA=HTCSW C ASSUME THERMAL CONDUCTIVITY OF CEMENT 0.294 W/M K ANO ITS C THICKNESS IS 2 MM. ECHTC=0.294/1.0*1000. HTCSW=1./HTCSW*1./ECHTC HTCSW=1./HTCSW WRITEI6.175) Z.SGL,ARC,OE,EL,AAA,EOHTC,HTCSW 175 FORMAII^X , 1 l = ',*S.2,' SGL = ' .F5 .2 .< ARC='.F5.2, 1' nE=',F5.2,< E L = ' , F 5 . 2 / ' HTCSW=',F6.1, 2« F O H T C - ' , F 6 . 1 , • HTCSW OVER ALL = ' , F 6 . 1 / / / ) C -DC 150 MM=1,IM C OA IS AMOUNT OF HEAT RELASED BY AIR , W/M T=TAIMM»/1000. CP=1.0017*0.042*T T C P = C . C 4 2 » ( T - 0 . 2 S 8 ) SA=(CP*TCP)*TAi:(MM) CA (MV ) = 1 . / ? . 6 * S « * W A C OS IS THF AMOUNT OF HEAT RECEIVED BY SOLIDS. W/M T=TS(MM)/1000. CP=0.t?3*0.?15*T TCP=C2l5*!T-0.298> SS=ICP*TCPI*TSD ( M M | 0S(MMI=1./3.6*SS*WS C C TO CALCULATE HEAT FLUX FROM BED TO WALL.OSW OSMMM)=HTCSW*FL*(TS(MMI-TWIMM) ) C TO CALCULATE HE'T FLUX FROM GAS TO BED, 0G3IMM) K3 OGS|MM»=OSWIMM»*OSIMM1 C TO CALCULATE HEAT FLUX FROM GAS TO WALL. OGW(MM) OGWI»<M)=QAIMM|-QGS(MM) C C TO CALCULATE HTC C HTCGS LCCAL HEAT TRANSFER COEFFICIENTS. W/M2 K C HTCGW HEAT TRANSFER COEFFICIENT, W/M2 K HTCGS(MM)=QGSIMM)/SGL/(TA(MM)-TSIMM)I HTCGW|MM)=QGW(MMI/ARC/(TAI MM)-TW(MM II J = MM WPITE(6,115> XIJI,TA1JI,TS< J),TW( J) ,TIC J l . Q S W U I , K S ( J ) ,OGS(JI l . C M J l . C G W U ) 115 FCPMATI2X.F4. 2, 4(F6 .1 .2X1,51-0PF7. 1,2X11 C 150 CONTINUE 10 FORMAT!10F8.31 C 11 = 1 JJ = 25 *PITEt6,1831 183 FCRMATI1H1///1 00 500 1 = 11 .JJ TSDII l=OS(I>/<TAUt-TSt l l l /SGL T « P ( I 1 = 0 A I I l - Q S I I I TAC! I ) = T A D ( I » / ( T A ( I)-Twmi / A R C W P I T E ( 6 , 1 1 6 » X ! I t .HTCGS(I l ,HTCGWCI) ,TSOII l ,TAOUl 500 CCNTINUE 116 FrFMATI2X,F4.2.4F12.2l KK=IE 11 = 13 KKK=KK-1 SUM4=0.0 SU*5=0.0 SUM6 = C.C CO 153 I=II,KKK C S E G = » t 1 * 1 1 - X ! I 1 « V G = ( H T C G S I I I + H T C G S I 1 * 1 1 1 / 2 . 0 SUM«=SUMA*AVG*SEG AVG = (HTCGW(II*HTCGW(l + lI 1/2.0 SUM6=SUME*AVG*SEG AVC=(0GS(Il+OGS!1*111/2.0 SLM1=SUM1*AVG*SEG AVG=IOGW!Il+QGW!1*1(1/2.0 SUM2=SUM2*AVC*SEG AVG = (CSU) *CSI 1*11 I/2.0 SUM4=SUM4*AVC*SEG C=(CMII*Oa(I + l ) 1/2. SL'M5 = SUM5*C.*SEG A « O A ( I l - O S ! 1 1 B=0ACl+l l-OSI 1 *1» A V G = ( A » P » / 2 . 0 SUM3=SUM3+AVG*SEG 153 CCNTINUF OSWT = HTCSW*EL*(TSU 6 »-TW(16 11*0.53 SU«7=QSV.T*SUM4 SUM8=SUM5-SUM7 WRITE!6,176 1 QSViT,SUM4,SUMT,SUM5,SUV8 176 FCRMAT!/2X, ,0SWT=',E10.4,> OST= • ,E 10.4, ' O G S T » » , 1E10.4, ' O G T = - , E 1 0 . 4 , » OGWT=«.E10.4) *EAN PAS/SCLID HTC DERIVED FROM INTEGRATION OF LOCAL HTC DIVIOEO BY KILN TEST SECTION LENGHT. MEAN GAS/WALL HTC DERIVED FROM INTEGRATION CF LOCAL HEAT TRANSFER COEFFICIENTS. JJ = KK PP = X( J J1-XHI) AHA=SUMA/BB AHP=SUMR/9B A = T A ! U I - T S f i l l B=TA( J J l -TS! JJ1 C * « - P D = A/B IF1A.E0.BI GO TO 161 T=C/«LOGID) GC TC 162 161 T= A HRS LOGARITHM MEAN GAS/SOLID HTC HBW LOGARITHM MEAN GAS/WALL HTC. 162 HPS=SUM1/T/SGL/BB HP S2=SUM4/1/SGL/BB HBS7=SUM7/T/SGL/BB WRITE(6,177) A.B.T.HBS7 177 FCRMAT(/2X,'AIR - SCLIO: DEL T l - ' . F S . l , * DEL T 2 » « , F 5 . 1' LOG T * » , F 5 . 1 , » AIP-SCLIO H T C = « . F 5 . 2 1 A=TA(JJ)-TW(JJ) R=TMI! l-TW! II 1 C = A-B c=A/e IFfA.EO.BI GO TO 163 T=C/ALOG(D» GC TO 164 163 T = A 164 HBW3=SUM3/T/ARC/BB HPV=SUM2/T/ARC/BB AHA AHB PATSUM=SUM4/SUM5 HPW8=SUH8/T/ARC/BB WRITEI6.178) A,8,T,HBH8 178 FCPMATI/2X,*AIR - WALL I OEF T l = • f F 5 . 1 , • OEL T 2 » « , F 5 . 1 1' LCG T = ' , F 5 . l , « AIR - WALL H T C » ' , F 5 . 2 ) WRITEI6.173) WRTTFI6.10I HBS,HBW,«HA,AHB,HBS2,H8W3,RATSUM,HBS7,HBW8 C C C TFE FOLLCWING IS TO CALCULATE NUSSELT NUMBER C ANC PFYNCLCS NUMBER. C C AK AIR THERMAL CONDUCT!VITY, J/S M K C VIS AIR VISCOSITY, N S/M2 C T AIR AVERAGE TEMPERATURE IN TEST SECTION C PE REYNOLDS NO., V*OEN*DE/VIC C = WA/VIC/DE/4./PIE/1600. C NU NUSSELT NC. , HETRA*OE/AK C DE EQUIVALENT DIAMETER OF KILN, M C C T=(TA( JJ (*TA(II M / 2 . 0 TAA = T TSS = (TS<H) + TS( J J ) ) /2 .0 TWW=tTW(11)*TW(JJ I I /2 .C T=ITAA*TSS)/2.0 CALL PROPTYtT,AK.VIS.OEN) C PIE=3.142 REW=E./6C.*PIE*DE *OE *ROT*DEN/V!S RE = WA/VIS/P !E/OE/3*600.*4. NU = I-PS*CE/AK TTT=(TAA*TWW»/2.0 CALL PRrPTY(TTT,AK,VIS,DENl WNU=HBW*OE/AK WRITEI6.126I P.E.NU.WNU 126 FCPMAT(///5X,12HREYNOLOS N0. .1PE12.3/ 15X,12HNUSSELT NO.,1PE12.3,1PE12.31 WPITEIIO,121) RUN,WA,ROT,WS.RIN,HCLDUP 121 F O P « A T ( l X , A 5 , F 5 . 1 , F 6 . 2 , 3 X . 3 F ? . l ) WP.ITFI 11,122) RUN,HBS7,HBW8,RE,NU,WN'U,REW 122 F0PMAT(1X,A5,6F12.2) 1111 CONTINUE WRITEI6.129) 129 FORMAT 11H1) C C C PICT TEMPERATURE PROFILES VS. KILN LENGTH. C CALL KILNPLOT(RUN,WA,ROT.WS,RIN,HOLOUP) C 1001 STOP END C c C SUBROUTINE THETA TO CALCULATE CENTRAL ANGLE OF THE BED. C c SUBROUTINE THETAIX,F,DERF.FCT,XST,EPS,I END,IER,PER) IFR = 0 X=XST TCL=X CALL FCTITOL,F,OERF,PER I TOLF=100.*EPS CC 6 I=1,1END IF(F) 1,7,1 1 IF(DERF)2,8,2 2 C X = F/PER F X=X-0X TOL = X CALL FCT(TCL,F,DERF,PER) TCl=EPS A=A8<(X ) IF (A- l .O) 4,4,3 3 TCl=TCL*A 4 !FtARS(nx>-TOL) 5,5,6 5 IFI«eS(F)-TOLF) 7,7,6 6 CCNTINUE IFR=1 . 7 RETURN 8 IFR = ? RETURN END C C C FUNCTION FOR CENTRAL ANGLE CALCULATION. C C SUBROUTINE FCTIX,F,DERF,PER) PIE=3.14159 F=X-SIN(2.*X)/2.0-PER*P!E DERF=1.-C0S(2.*X) RETURN END C C C SUBROUTINE PROPTY TO CLACULATE AIR PROPERTY. C c NO SUBROUTINE PROPTYIX,AKK,AVIS,ADEN I DI»"ENSICN TI2Ol,OENI2O),CPGI2OI,VIS(20l,VKS(20) CIMENSION PI2O),AKl20l,PRI2C>.YF(2O) DC 20 1=1,11 20 REACI7,22I TI I 1 ,DE M J ) ,CPG (f I , VIS I I» ,VKS I I ) , AK (I » , PR 22 FCFMATI7F10.4) DC 25 1=1,11 VI S(It = VI SI I l » 1 . 0 E - C 5 VKS( I )=VKS(I)*l .0E-03 25 CONTINUE CO 3C 1=1,12 Tl H = (T( I 1*460.1/1.8 OEM T)=OEN(ll*16.018 CPCII)=CPG(I)*0.41B68E*C4 V IS II I = VIS111*1.4882 VKSI II =V*S( I )*0.C929C3 AK 11 )= AK 11 1*1.7308 30 CONTINUE AKK=5A!NT{11,T,AK,X,5,YF1 AV!S=SAINTI l l ,T ,VIS ,X ,5 ,YFI ADEN=SA!NTI11,T,DEN,X.5.YF) RETURN . END C C c C THIS SUBROUTINE PLOTS THE TEMPERATURE PROFILES C FOR AIR, SANO AND WALL VS. KILN LENGTH POSITION. SUBROUTINE KILNPLOT(RUN,WA.ROT,WS,RIN.HOLDUPI C C . DIMENSION XI301,TAI301,TSI30I.TWI301,T!1301 CCMMCN /A/LW,LS,TWE,TIE,TSE,TAE DI"ENSIGN TAEI 81 ,TSE181,TWE18 I,TIEI 81,LSI 81,LWI 8 I DIMENSION S1I30I ,521301 REAL LS.LW ILM = 1 1002 A=2.C B = 0.0 CCC=7.0 CCC=CCC+A CALL PLOT (8 .0 ,0 .0 ,-31 CALL PLOTIC.C ,2 .0 , *1 I CALL PL0TI5.0.A.+21 CALL F L C T ( 5 . C , C C C , * l I CALL PL0T(B,CCC, + 1 I CALL PL0TIR,A,*11 C 00 111=1,6 XX=I-1 CALL SYMBOL IXX,A,0.14,14,180.0,-11 Z=XX*0.5 *>*=XX-0.15 CALL NUMBER IXXX, I .7 ,0 .14 ,Z .0 .0 .1 ) 11 CONTINUE C C Z=250. DC 20 1=1,7 Y=t*l CALL SYMBOL 10.0,Y,0.14,15,180.0,-11 Z=Z+50. IFI I . F O . l 1 GO TO 20 Y=Y-0.14 CALL NUMBER(-0.15,Y,0.14,Z.90. .-11 20 CONTINUE C CALL PL0TIC.40,1 .5 , *3) CALL SYMBOL 10.40,1.2.C.14, 'DISTANCE FROM SOLID FEED END,' 1' METER',0.0,351 CALL SPLINE(LS,TSE,S2,7,X,TS,S1,IP,10011 CALL SPL!NF(LS,TAE,S2,7,X,TA,S1,IM,10011 C AAAA=3CC. DC 5C 1 = 1.25 XII ) = X ( I ) « X ( I ) TAII ) = (TAU )-AAAA)/50.*A TS 111=(TS!I1-AAAA1/50.+A TMI > = ( TWII I-AAAA1/50. + A T i l I l = ITI( I l -AAAAI/50 . + A 50 CONTINUE C c OC 40 1=2,6 LSIII=LS(I)+LSII1 TAE I 11 = 1TAEI 1 l-AAAA I/50.+A TSE 111=(TSEI Il-AAAA1/50.*A CALL SYVBOLILSI11,TAE(11,0.14,30,0.0,-1 I CALL SYMROLILSIIl.TSEII 1.0.14,3,0.0,-11 IFII.EQ.6I GO TO 40 LW(II=LW(I)*LW(I) TWEI 11=1TWEIIl-AAAA1/50.*A CALL SYMBOL(LWII 1 .TWEII 1,0.14,2,0.0,-1) 40 CONTINUE C c CALL PL0T(0.0,TA(l) ,+3) CALL LINE(X,TA,25 , - l ) CALL PLOT(0.0,TS(11,+3) CALL L!NEIX,TS,25,-1) N3 CALL PLOT(0.0,TW(1),*3) CALL LlNF(X,TW,25,-l) WWW=B.S CALL SYMPOL(0.5,WWW,0.14,'RUN N O . 1 , 0 . 0 , 3 1 ) CALL SYMBOL(2.96,WWW, 0.14.RUN,0.0,4) www*www-o.2 C A I L SY"BCL(C.5,WWW,0.14 , 'AIR FLCW RATE l . C . 0 , 3 1 ) CALL MJMBER(2.96.WWW.0.14,WA,0.0.1I WWW=WWW-0.2 CALL SY*ROL(0 .5 ,WWW,0.14 , 'SAND THROUGHPUT 1.0 .C.31) CALL NUMBER I 2. <36, WWW. 0. 14 . VS ,0. C , I ) WWV=WWW-0.2 CAIL SY"B0L(0 .5.WWW,0.14, 'ROTATICKAL SPEED 1 , 0 . 0 , 3 1 ) CALL MIMRER(2.96,WWW,0.14,ROT,0.0,1) WWV<=WWW-0. 2 CALL SYMPOHO.5,WWW,0.14,'INCLINATION ANCLE 1.0 .C31 ) CALL N ,UMBFR(2.96,WWW, 0. 14 , RI N , 0 .0 , I ) WWW=WWW-0.2 CALL JYWBOL (0.5,WWW,0.14, 'DEGREE CF F I L L 1 . C . C . 3 1 I CALL Nll»PER (2.96,WWW, 0. 14, HOLDUP, 0.0, 11 WH.-WWW-0.4 V V V ' C . 5 VVW=0.9 CALL SYMROL(VVV,WWW,0.14,30,0.0,-1) CALL SYMBOL ( W W , WNW.O. 14, 'A IR ',0.0,41 VWW=WWW-0.2 CALL SYMBOL!VVV,WWW,0.14,3,0.0,-1) CALL SYMROL(VVW,WWW,0.14.'SANO',0.0,4) WWW»WV>W-0.2 CAIL SYMBOL!VVV,WVW,0.14,2,0.0,-11 . CALL SYMBOLIVVW.WWW.O.H.'WALL'fO.O,*) C c c c IF(ILH.EC.4( GO TO 1001 1LP«ILM*1 CC TO 1002 1001 CALL PLOTNO STOP ENO ' • ' EXECUTION TERMINATED KC/HR • KG/HR • RPM • DEGREE' X • tSIGNOFF K3 THIS PBCGBAB PREDICTS GAS-TO-BED BEIT TRAHSFER COIPIICIEHTS BASED OR TBEOHETICAL EQOATIOH 7-14. PEJI KA,H1,B2,K,»,L,R0P AIR TEN PERATORE AT 422 K, AIR PEOPERTIES ARE AS FOLLOWS... PI = 3.14159 PR=0.71 VISA=2. 369E-05 KG/B S DE»A=0.833 KG/H3 KA=0.O31 , W/fl K PHTSTCAL PROPERTIES OP OTTAWA SARC ARE AS FOLLOBS.... F=0.09525 DP=0.73E-03 VP=PI/6.0*DP**3 DEKF=2527.3 KG/B3 CPP=0.603 J/G K FItI.=0.065 EETA=1.535 BETB=BETA/2. BETC=COS(BETB) BETD=SIN (BETB) . H1=2.17E*06 . B2 = BT DBIT OP B1, B2 , RO. OP PARTICLES / H2 ASSURE B=3BPS, R=5.0E-03 B AT 11* OP FILL WRITE(6,21) FORMAT {• BEAD B Ig RPfl ARD RG IH KG/HR , BOTH If FORHAT P5i READ (5, 22) N.SG FORB AT ( 2F5. 2) SR=N/60.0 I=2.*R*8ETD VL3=0.20 AREA=PI*R*R AREA=AREA*( 1 .-FILL) HG=SG/DESA/3600. VG=»G/ARIA RAlIC=H/3.0 VL=VL3*BATIO**0.5 . K=PI/4.0»SN*L**2 K=F/(VL*2.*PI*SN*BETC*R) VLL=VL C c VDC=VP*DEHP*CPP*1.0E*03 S1=PI/2.0*DP*DP S2= (1.-PI*DP*DP/«.0*B1)/B2 C VL=VL**2+VG**2 VL=VL**0.5 RE=CF*VL*DENA/VISA SRITE(6,10) RE,VG,VLL,VL 10 FCFBATf REP=',F5. 1,3E14.4) KRITE (6,23) 23 FOBBATC RHAC NOP IN F5.2, VALUE TAKER FROH KBHII S • 1'LEVENSPIET. BOOK, P. 212') PEAC(5,11) NOP 11 FCRHAT(F5.2) HF=NOP*KA/DP C C CALCOIATE PARTICLE VELOCITY AT SECOHD LATER UI=VLL* (1.-DP/K) C A1=-HP*S1*L/VDC/VLL B1=-HP*S2*L/VDC/OL A=EXP(A1) B=EXP(P1) «BITE(6,15) A1,E1,A,B 15 EORHAT(HE12.U) A=1.-A E=1.TB A=B1*VLL*A B=B2*0L*B HGS=VDC/L*(A+B) ') WRITE(6,12) N.K.BP.HGS 12 FOBBATC H=',F4.1,« ^'.EIO.*,' HP« • ,E10. 4 , • HGS=« ,E10.4) STOP END EXECOTICK TERBINATED SSIGHOF? to c c C THIS PHOGHAH IS POH & PLOT OF MtJGS(EXP) VS. HOGS(PRBD) C AND FOB HUGH(EXP) VS. NUGW (PP.ED) . C THB PLOTS ARE SHOIIH IB FIGURES 6-34 6 6-35. C DI HENSION Y (50) ,X (50) , AA (50) , SS (50) BEAD<5,11) (Y (I) ,X(I) .1=1,44) 11 FORMAT(6X,E12. 4, 12X,B12. 4) CC=2.0 A=0.0 B=5.757 C=0.0 D=5.757 C=C*CC D=D+CC CALL PL0T{3.0,2.0.-3) CAIL PLOT(»,C,*3) CALL PLOT(B,C,*2) CALL PLOT(B,D,*2) CALL PLOT (A, D,*2) CALL PLOT(A,C,»2) AA(1)=5.0 DO 21 1=1,15 AA (1*1) = AA(I) • 1. 0 21 CONTINUE A» ( 17) =25.0 AA (18)=30.0 AA(19) = 40.0 AA(20) = 50.0 AA(21) = 60.0 AA(22)=70.0 DO 85 1=1,»a T(I)=I<I)/50. Y (I) =ALOG (Y (I) ) *2. 5*CC X(I)=X(I)/50. 1(1) =ALOG (X (I)) »2.5 85 CONTINUE C DO 80 1=1,20 SS(I)=AA(I)/AA(1) SS(I)=AL0G(SS(I))*2.5 80 CONTINUE c DO 90 1=1,20 CALL SIBBOL(SS(I),C,O. ia,ia,180.0,-1) ZZ = »A(I)*10. GO TO (2,2,2,2,2.2.4,4,4,4,2,4,4,4,4,2,2,2.2.2>.I 4 GO TO 7 2 TX=SS(I)-0. ia TT=CC-0.20 CALL BOBBER (TX.TY.O. 14,ZZ,0.0,-1) 7 SS (I)-SS(I) »CC CALL STHBOL(A,SS (I) ,0. 14,15,180.0,-1) GO TO (3,3,3,3,3,3,5,5,5,5,3,5,5,5,5,3,3,3,3.3) ,I 5 GO TO 90 3 TX=A-0.14 TY = SS(I)-0.14 CALL NUMBER (TX,TY,0. 14,ZZ, 90. ,-1) 90 CONTINUE CALL SYHBOL(-0. 60,3.0,0.11,'NUSSELT NUMBER, EXPERIMENTAL' 1,90.,28) CALL SYMBOL (1.0,1.2,0. 11,'NUSSELT BOMBER, PHEDICTED',0. 0 ,25) AA(1)=AA(1) *10.0 DO 95 1=1,15 CALL SYMBOL (X(I) ,1(1) ,0. 14, 1,0. 0,-1) 95 CONTINUE DO 96 1=16,34 CALL SYMBOL (X (I ),Y(I),0.14,0,0.0,-1) 96 CONTINUE DO 97 1=35,44 CALL SYMBOL(X(I) ,Y(I) ,0. 14,2,0.0,-1) 97 CONTINUE CALL PLOT(A,C, »3) CALL PLOT(B,D,*2) DD=C»2.0 BB=B-2.0 EE=EB»0.20 CALL SYMBOL(BB.DD.O.14,1,0.0,-1) CALL SYHBOL.(EE, DD,0. 14, • 17X FILL ',0.0,10) DD=DD-0.25 CALL SYNBOL(BB,DD,0. 14,0,0.0,-1) CALL SYMBOL (EE,DD,0. 14 , ' 1 U • ,0.0,3) DD=DD-0.25 CALL SYMBOL(BB,DD,0.14,2,0.0,-1) CALL SYMBOL (EE, DD, 0. 1 4, ' 6. 5* ' , 0. 0, 4) CALL SYMBOL(0.5,6.8,0. 14,'GAS/SOLID HEAT TR ANSFER " , 0. 0, 23 ) FEAD(5,12) (Y (I) ,X (I) ,1=1,44) 12 FORHAT(42X,E12. 4, 12X.E12.4) ' C C CC=2.0 A=0.0 B=6.2 C=0.0 D=6.2 C=C*CC D=D*CC NO c 99 CONTINUE CALL PLOT(3.0,2.0,-3) CALL PLOT (A, C, • 3) CALL PLOT(B.C.*2) CALL PLOT(B,D, *2) CALL PLOT (A,D,+ 2) CALL PLOT (A.C, *2) AA (1) =5.0 CALL PLOT(A,C,*3) CALL PLOT(B, D,*2) CALL SYBBOL (0.5,6. 8,0.11,'GAS/WALL HEAT TBAHSPEB'.0. 0,23) CALL PLOTND STOP END EXECUTION TERMINATED DO 22 1=1,15 22 AA (I*1)=AA(I)+1.0 CONTINUE AA (17)=25.0 $COPY *SKIP AA(18) = 30.0 AA (19)=«0.0 AA(20)=50.0 AA (21) =60.0 AA(22)=70.0 DO 91 1=1,20 ZZ=AA(I) CA LL SYBBOL (SS (I),C,0.11,11,180.0,-1) GOTO (1, 1, 1, 1, 1, 1, 6,6,6*6, 1,6,6,6,6,1,1,1,1,1) ,I 6 GO TO 10 1 TI=SS(I) TY=CC-0.20 CALL NUMBER(TI,TY,0.14,ZZ,0.0,-1) 10 SS (I) =SS (I) *CC . CALL SY NBOL (A,SS(I) ,0. 14,15,1 80.0,-1) GO TO (8,8,8,8,8,8,9,9,9,9,8,9,9,9,9,8,8,8,8,8),I 8 GO TO 91 8 TX=A-0. 14 TY = SS(I) CALL NUBBBR(TX,TY,0.14,ZZ,90. ,-1) 91 CONTINUE CALL SYBBOL (-0. 60,3.0,0. 14,'NUSSELT HOHBEB, EXPERIMENTAL' 1,90.,28) CALL SYMBOL (1.0,1.2,0. 14,' NL3SELT BDHBEH, PBEDICTED', 0. 0, 25) DO 94 1=1,44 X(I)=X (I)/AA(1) Y(I)=Y(I)/AA(1) X (I)=ALOG (X (I) ) *2.5 I (I) = ALOG (Y (I) ) *2. 5+CC 94 CONTINUE DO 99 1=1,44 CALL SYBBOL (X(I) ,1(1), 0.14,2,0.0,-1) C 81 DO 81 1=1,20 SS (I) =AA (I) /AA (1) SS (I) = ALOG(SS(I)) * 2 .5 CONTINUE C EXPERIMENTAL DATA Run No. . A 1 1 A 1 2 A 1 3 A 1 4 A 1 5 A 1 6 A 1 7 A 1 8 A 1 9 A 2 0 A 2 1 A 2 2 A 2 3 A 2 4 A 2 5 A 2 6 A 2 7 A 2 8 A 2 9 A 3 0 A 3 1 A 3 2 A 3 3 A 3 4 A 3 5 A 3 6 A 3 7 A 3 8 A 3 9 A 4 0 A 4 1 A 4 2 A 4 3 A 4 4 A 4 5 A 4 6 A 4 7 A 4 8 A 4 9 A 5 0 A 5 1 A 5 2 A 5 3 A 5 4 W 2 4 . 6 2 4 . 6 2 4 . 6 2 4 . 6 2 4 . 6 2 4 . 6 2 4 . 6 1 8 . 6 1 8 . 6 1 8 . 6 3 4 . 0 3 4 . 0 3 4 . 0 3 4 . 0 3 4 . 0 3 4 . 0 5 0 . 5 5 0 . 5 5 0 . 0 5 0 . 0 5 0 . 5 8 1 . 0 6 5 , 5 7 3 . 0 8 1 . 0 3 4 . 0 3 4 . 0 3 4 . 0 3 4 . 0 1 8 . 6 1 8 . 6 1 8 . 6 1 8 . 6 5 0 . 0 6 5 . 5 3 4 . 0 3 4 . 0 6 5 . 5 6 5 . 0 9 5 . 5 9 5 . 5 3 4 . 0 9 5 . 5 8 1 . 0 N 3 . 0 0 3 . 0 0 3 . 0 0 3 . 0 0 1 . 5 0 1 . 5 0 1 . 5 0 3 . 0 0 1 . 6 0 1 . 6 0 1 . 5 0 3 . 0 0 1 . 5 0 6 , 0 0 1 . 5 0 3 . 2 0 3 . 2 0 3 . 1 0 3 . 1 0 1 . 6 0 6 . 0 0 3 . 0 0 3 . 0 0 3 . 0 0 3 . 0 0 3 . 0 0 3 . 0 0 3 , 0 0 3 . 0 0 3 . 0 0 3 . 0 0 3 . 0 0 3 . 0 0 3 . 0 0 0 . 9 0 1 . 0 0 3 . 0 0 3 . 0 0 0 . 9 0 3 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 0 . 9 5 1 . 2 0 1 . 2 0 1 . 2 0 1 , 2 0 1 . 2 0 1 . 2 0 1 . 2 0 1 . 2 0 2 . 2 0 1 . 2 0 1 , 2 0 1 . 2 0 1 . 2 0 1 . 2 0 3 . 4 0 2 . 2 0 2 . 2 0 3 . 0 0 1 . 2 0 2 . 2 0 2 . 2 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 n 1 7 . 0 1 7 . 0 1 7 . 0 1 7 . 0 1 7 . 0 1 7 . 0 1 7 . 0 1 5 . 0 1 7 . 0 1 7 . 0 1 7 . 0 1 7 . 0 1 7 . 0 1 7 . 0 1 7 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 1 1 . 0 6 . 5 6 . 5 6 . 5 6 . 5 6 . 5 6 . 5 6 . 5 6 . 5 6 . 5 6 . 5 W 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 1 4 . 2 1 4 . 2 1 4 . 2 2 1 . 0 2 9 . 1 1 5 . 0 1 5 . 0 3 4 . 0 1 5 . 0 5 0 . 5 3 9 . 0 3 4 . 6 3 4 . 0 5 2 . 7 1 9 . 4 1 8 . 2 6 6 . 3 3 6 . 0 3 6 . 0 3 6 . 0 3 6 . 0 3 6 . 0 3 6 , 0 3 6 . 0 3 6 . 0 3 6 . 0 3 6 . 0 3 6 . 0 3 6 . 0 3 6 . 0 1 2 . 0 1 3 . 3 3 5 . 8 3 5 . 8 1 1 . 7 3 5 . 8 1 5 . 8 1 1 . 3 1 6 . 1 1 2 . 0 P u n . N o . A l l A12 A13 A 14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 • A28 A29 A 30 A31 A3 2 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A 43 A44 A45 A46 A47 A48 A49 A50 A51 A52 A53 A54 Ta]_ 450.0 425.0 '402.0 372.0 330.6 414.0 470.0 351.5 350. 0 365. 0 380.0 368. 0 383.0 357.0 361.0 370.0 369.0 361.0 376.0 378. 0 353.0 407.0 393.0 396.2 396. 8 366. 7 420.0 395. 0 420.6 385.6 358.3 351.7 375. 6 3 98.0 412.0 382. 1 367.8 400.0 419.0 404.0 406. 6 384. 0 403,3 419.0 Ta 2 486.0 460.0 423.0 392.0 340.0 438.0 505.0 378.9 3 75.1 392.8 393 .0 388.0 400.8 374.0 377.2 385.0 380. 0 371.0 386 .0 388. 0 365.0 417 407 412 411 380 446 .4 417.0 446.5 417.0 376. 0 360.0 400.0 416.7 425.0 397.2 332.2 408.0 427.0 410.2 412 3 98 409 42 7 T a 3 524.0 489.0 457.0 411.0 348.3 462.0 543. 0 412.2 405.0 427.2 418.0 407.0 418.0 390 391 393 388 381 396 .0 399. 0 375.6 426.1 418. 3 423.3 422.2 395.6 476.7 44 0.6 475.0 461 .1 410. 6 384.4 440.0 433.9 434.4 413.3 398.9 420.6 435. 0 417.2 41 7.6 416.7 414.4 434.4 T3^ 574.0 535.0 493.0 436.0 358.8 494 594 44 5 44 3 464 435 428.0 437.0 407 .0 410.0 414.0 401 .0 395.0 405 .0 410.0 387.5 437 .5 431.0 436.0 433 .0 415.0 513.3 471 .0 512.3 510.0 447. 0 413.5 473 .3 452.5 441.1 427.3 416.0 432 .3 442.3 424.0 422 .3 428.0 413.5 442 .0 T a 5 635.3 592.0 538.0 457.3 372.0 535 .0 652. 0 488.0 497 .3 507. 0 455.0 455.3 456.0 430.0 430.0 43 7.0 4L3.3 41 0.0 417.0 420.5 404. 5 45 0.0 445.0 44 8.9 4 4 4.4 441 .0 560.0 535.3 55 9. 0 550.0 505. 0 460.0 5 3 5.3 475.0 44 8.3 4*4.3 441. 0 447.0 44 8.0 431.0 42 7 .0 443. 0 422.8 45 0.0 T S 1 334.0 323.0 321.0 314.0 306. 7 341.0 364. 0 313.9 312.2 330.5 335.0 320.6 337. 8 308.3 305.6 313.8 316.7 312.8 328.9 329.4 308. 3 333 .3 326.1 3 31.7 326.7 311. 1 322.8 318.9 32 3.9 318.3 308.9 306. I 313.3 323.9 361. 1 333.3 312. 8 327.8 368.9 375.0 370.6 335.5 374.4 37 3.3 Ts 2 356.0 3 39.0 3 37.0 3 2 7.0 3 08.9 356.0 3 83.0 325. 6 322.2 3 40.3 346. 1 331.1 348.9 3 15.0 313.6 323. 3 326.1 318.9 339.4 341.1 3 13.9 350.6 341 .7 347. 2 348.9 322. 2 343. 3 334.4 343. 3 331.7 317.8 312. 2 325.0 3 38. 9 373.9 345.6 322.8 341.1 378.3 3 77. 8 3 77.2 348.9 375. 6 381.7 T S 3 378.3 356.0 354.0 341.3 312.8 374.0 410.3 338. 9 332.2 352.8 360. 3 341 .7 365. 0 322.2 322 .2 333.3 334.4 327.9 353.9 357.2 321. 5 366.7 358 .3 362. 7 366.7 3 34.4 369.4 355 .0 369.4 352.0 3 32.2 321.7 345.0 360. 0 391.7 361.7 336.1 360 .0 397 .3 391. 7 390.6 368. 3 388.9 397 .2 Ts 4 431.0 397. 0 392.0 368.0 326. 7 417.0 473.3 363. 9 355.5 3 83.3 384.4 363.3 385.6 3 36.7 333.9 350. 0 351.7 341. 370. 373, 331. 391.1 383. 6 385. 8 388.9 352.2 399.7 3 80.0 400.0 377.8 343.3 336. 1 365.0 384.2 416.7 385.7 352 . 8 332.0 419.4 407. 2 402.7 391.7 4 04.4 413.9 T s 5 521.0 473.3 447.0 405 .0 34S.3 473.0 554.0 402.8 391 .7 4 2 4 . i 411.1 393 .0 412.3 360.0 352.1 376. 1 373 .9 358.9 391.1 394 .4 350.0 417.3 407 .2 412.2 414.2 378 .1 443.0 415.3 44 5.> 428.0 387 .2 366.7 412 .2 419.4 434.4 411.1 380.0 409.4 433 .3 418. 9 418.3 418.9 415.6 435 .3 320.0 3 14 313 308 331 324 341.3 308.0 304.0 315.5 319.4 311.0 321.3 302. 0 330.0 306.0 3 06 . 8 304 320 323 332 321.1 3 13.3 315.8 3 15.8 304.5 312.6 312.4 312.3 311.0 333 .4 299.0 306.0 312.3 339.8 3 14.0 335.3 318.0 349 .6 355. 0 351.4 3 19.3 347.0 351.3 TW2 351.0 333.3 333.0 326.0 305 .3 347.0 373.3 3 2 3.0 317.0 331.3 336. 0 326.6 338 .3 311.6 313.4 321 .6 323.0 315.5 338.8 339.0 313.6 347.4 338 .4 344.0 345.0 321 .7 341 .1 335.4 344.0 333. 0 317.6 312.6 325.0 338 .3 365.0 338.4 323.6 340.2 374.4 374.0 372 .2 341 .5 369. 0 364.4 0V3 397.0 372 .3 353. 0 352.0 316.0 387. 5 425.0 349.0 341.0 363.0 355 .8 349. 6 365 . 3 330. 0 331.0 340.0 341.6 333.3 350.0 363.0 326.0 3 75. 5 367.4 370.0 375. 5 339.3 380. 4 361. 0 383.0 364. 0 335.0 3 2 7.0 352.0 371.3 400.0 369.4 344.2 369. 0 402 .5 395.0 393. 3 373.0 395.0 400.0 TW4 500.0 445 .3 429.3 395. 0 333 .0 447. 0 520.0 335 .3 377. 0 407.0 431 .3 378.0 43 0.0 355.0 360.0 354 .8 366. 0 353.0 330.0 387. 0 346.5 407.0 395.0 402 .3 404. 0 368.0 425. 5 401. 0 425 .5 413.0 372.8 35 5 .8 397. 5 437.0 428 .0 400. 370. 395. 430. 415 .0 413. 0 435.0 413.3 430.0 N3 260 RUN NO. A l l dT dT g s V * > T s ( x ) V X ) dx~ d l T q « C X > q g s ( K ) q a ( x ) qgw ( x ) 1.25 520.0 378.0 373.2 34.8 65.1 339.5 446.5 598.4 151.3 1.30 524.4 381.5 377.0 91.9 73.0 381.9 481.1 649.0 167.3 1.40 534.2 389.5 385.4 103.0 87.6 460.3 552.8 728.0 175.1 1.50 544.9 398.9 394.9 109.9 100.4 530.2 619.6 777.4 157.8 1.60 556.0 409.5 405.9 112.6 111.3 591.4 671.2 797.1 125.3 1. 7 8 5 7 6 . 0 4 3 1 . 0 4 3 0 . 4 1 0 6 . 8 1 2 6 . 4 6 7 9 . 5 6 9 3 . 5 7 5 7 . 4 6 3 . 9 I Z = 0.99 SGL= 0.16 ARO 0.41 DE= 0.17 EL= 0.19 \ QSWT=0.4739E+02 QST=0.2801E+03 QGST=0.3275E+03 Q3T=0.3939E+03 0GWT=0.6641E+02 HTCGS=27.0 HTCGW= 2.1 ) RE=2.013F+03 NU=1.202E*02 NUW=1.048E+01 / RUM NO. A12 1.25 489.0 356. 0 353.9 66.9 48. 3 248. 7 1.30 4Q2.5 35 8. 5 356.8 71.4 53.2 274. 7 314. 3 5C2.9 188. 6 1 . 40 500.0 364. 4 363. 1 79.6 63.7 329.7 359. 1 561.1 202. 0 1.50 503.4 3 71.3 370.4 8 6.9 74. 8 389.0 409. 2 6 12.3 203. 5 1.60 517.4 3 79.4 378.9 93.2 86.7 452. 6 46 1.9 657.9 195. 9 1.78 535.0 397. 0 397. 5 102.2 109.7 578.5 566. 5 722.0 155.. 5 Z= 0. 99 SGL = 0.16 ARC = 0.41 0E= 0. 17 EL= 0. 19 1 QSWT = 0. 1072F+02 QST=0.2141E+03 QGST=0.2248E+03 QGT =0.3 240E+03 QGWT-0. 9912F+02 HTCGS = 1 9. 6 HTCGW= 3.4 1 RE=2. 108E+03 NU=9 .350E+01 NUW=1.630E+01 RUN NO. A13 1.25 452.0 354.0 349.9 66.5 48.3 248.6 341.2 466.4 125.2 1.30;455. 4 3 56. 5 3 5 2 . 9 6 9 . 1 5 3 . 5 2 7 5 . 9 3 58. 5 435.C 12 6.5 1.40 462.5 362.4 359.3 73.8 63.2 326.7 395.4 518.2 122.8 1.50 470.1 369.1 366.5 77.7 71.3 372.6 432.2 546.2 114.1 1.60 478.1 376.7 374.4 8C.9 79.3 413.4 465.1 569.0 103.9 1.73 493.0 392.0 390.6 84.8 90.1 473.9 506.3 596.9 90.7 Z = 0 . 9 9 S O T = 0 . 1 6 A R C =0.4 1 D E = 0 . 1 7 E L= 0.19 QSWT=0.3160E+02 QST=0.1974E+03 QGST=0.2 290E+03 QGT=0.2879E+03 QGWT=0.5891E+02 HTCGS=27.2 HTCGW= 2.7 * RE=2.181E+03 NU=1.354E+C2 NUN=1.325E+01 261 RUN NO. A14 1 . 25 411.0 341. 0 33 8.7 40.5 36.8 188. 1 220. 7 283.2 62 .5 1 .30 413.1 342.9 340.9 42.1 40. 2 205. 3 234. 8 294.8 60.0 1 . 40 417.4 347. 3 345.6 45.0 46.3 2 37.6 261.0 3 15.3 54.3 1 . 50 422. 1 352. 2 350.9 47. 5 51.4 264. 5 282. 5 33 2.2 49 .7 1 .60 426.9 357. 5 356.6 49.3 55.5 286.4 297.0 345.6 48. 7 1 . 78 436.0 368. 0 368.7 5 1 .5 60.4 313.3 z = 0 .99 SGL = 0.16 ARC = 0.41 DE= 0. 17 EL = 0. 19 QSWT=0. 9579E+01 QST=0. 1336E+03 QGST = 0.1482 E + 0.3 QGT=0. 1748E+03x QGWT=0.2658E+02 HTCGS=25.4 HTCGW= 1.8 \ RE=2.330E+03 NU = 1 .327F + 02 NUW=9.943E+00 /_ I / RUN NO. A15 i 1.25 348 .3 312.8 310.4 19.8 15.6 44.6 73. 1 137.7 64. 6 1.30 349. 3 313. 6 311.3 2 1 .3 17.3 50.8 79. 1 14 3.4 69. 3 1 .40 351 .6 315.6 313.2 23.6 21.9 62 .7 91.6 164.6 73.0 1. 50 354.0 318.0 315.5 2 5.0 2 5.9 74.1 104.2 1 74.0 69.3 1.60 356.6 320. 8 318 . 2 2 5.4 29.6 85.0 115.9 176.6 60.7 1.73 361.0 326.7 324.0 23.5 35 .9 103. 3 135.0 1 c4.0 29.1 Z= 0.99 SGL= 0.16 ARC= 0.41 0E= 0.17 E L= 0.1.9 QSWT=0.1597F+02 QST=0.3979E+02 QGST=0.5576E+02 QGT=0.8792E+02 QGWT=0. 3216E+02 HTCGS=18.9 HTCGW=4.0 RE=2.593F+03 NU = 1.1 10E+02 NUW= 2•3 36E +01 RUN NO. A16 1. 462.0 374. 0 369. 2 45.9 57.2 169. 2 226.4 322.6 96.3 1. 30 464. 3 37 7.0 3 72 .9 4 7.7 64.4 190.8 1. 40 469.3 384. 1 3 80.3 51.4 76.2 226.5 271. 7 361.5 39.9 1. 50 474. 6 392.2 333 .0 55.5 34.4 252. 1 302. 2 3 c, 0 . 6 33.4 1. 60 400.4 400. 9 3 95 .7 60.0 89.0 267.3 328.7 422.2 93.4. 1. 78 492. 0 417. 0 410. 5 68.9 88.5 268. 1 345. 9 4 85.3 139 .4 Z = 6 . 9 9 S G L = 0 . 1 6 A R C = 6 . 4 1 D E =0. 17 EL= 0.19 QSWT = 0. 2655F+02 Q 5T = 0. 12 79E + 03 QGST = 0. 1545E+ 03 QGT=0.2 112E+03 QGWT=0. 5669E + 02 HTCGS = 22. 5 HTCGW= 3.0  RE=2.134E+03 NU=1.119E+02 NUW=1.368E+01 262 RUN NO. A17 1 .25 543.0 410.0 395.9 82.5 81.5 246. 1 523. 3 5E3..5 60.2 1 .30 547.2 414.3 400. 7 85.6 90. 2 272.9 540.9 605. 7 64.7 1 .40 5 56. 1 42 4. 1 411.0 9 1.3 10 5.9 322. 2 579. 8 6 4 6.4 66.6 1 . 50 565.4 435. 4 422 .5 96.3 119.5 365.9 613.6 6 6 2.4 63. 8 1 . AO 575.3 447. 9 435.3 10 0.7 131.0 403 .7 651.8 713.7 61.8 1 .78 594.0 473.0 461.2 106.7 146. 2 4 57.0 68 3. 3 757.9 69.6 z = 0. 99 SGL = 0.16 ARC = 0.41 DE = 0. I 7 E L= 0.19 QSWT = 0. 1.340E+03 QST=0. 19 3 1 E«-03 OG ST= 0. 3 2 70E +03 QG T =0. 3610 E+03 QGWT=0.3397E+02 HTCGS=30.5 HTCGW= 1.1 RE=1.930E+03 NU=1.323E+C2 NUW=4.959E+00 RUN NO. A18 1.25 410.0 338.9 336.3 60.8 32.1 137.5 193.0 32 1 .6 1 .30 413. 1 340. 6 338. 6 6 2. 1 34.6 143.2 191. 1 .3 2 8 .3 ,137. 3 1.40 419.4 344.3 343.2 64.3 39.9 171.4 194. 1 34G .4 146. 3 1. 50 425. 9 348. 6 348.0 66.2 45.7 196. 8 208. 2 350 .6 142 . 3 1.60 432.6 3 53.4 352.9 67.7 52.0 224.6 235.7 358 . 9 123. 2 1.78 445.0 363.9 362.3 69.6 64.6 280.9 316.0 ,365 .2 53. 2 Z= 0. 95 SGL = 0.15 ARC = 0 .42 0E= 0. 17 EL = 0. 18 / QSWT = 0. 6056E+01 QST=0.1031E+03 QGST=0 .1 142E + 03 QGT = 0. 1.8 52E+03 QGWT = 0. 7107E+02 HTCGS = 18.3 HTCGW= 4.1 RE=1.730E+03 NU = 1 .044E+02 NUW=2.003E+01 RUN NO. A19 1. 25 405.0 3 32. 2 329.2 68.5 29.9 176.7 235. 9 36 1 .9 125 .9 1. 30 408.5 333.3 331 .3 7 1.9 33.7 199.3 249. 1 380 .4 131 .3 1. 40 4 16.0 3 3 7. 5 335. 6 77.8 40. 1 238.2 2 76-0 411 .7 135 .7 1. 50 4 24.0 341. 8 340.1 82.3 45. 1 263. 3 301. 8 435 .6 133 .7 1. 60 432.4 346.5 344.7 85.3 48.6 289. 7 323. 8 451 .9 128 .0 1. 78 448.0 355. 5 353.9 87. 1 51.0 306.0 33 8. 0 462 .1 124 .1 z= 0.99 i SGL = 0.16 ARO 0.41 DE= 0. 17 EL= 0. 19 0SWT=0.1778E+02- QST=0.1381E*03 QGST = 0. 1559E + 03 QGT = 0.2 272E+03 QGWT=0.7127E+0? ' HTCGS=22.4 HTCGW= 3.9 ; •RE = 1. 776E + 03 NU=1.211E+02 NUW=2.006E+01 RUN NO. A20 1. 25 42 7. 2 352.8 347.2 6 9.0 41.1 126.9 239. 1 365. 6 126. 6 1. 30 430.7 355.0 350.0 69. 1 45. 8 141. 6 241. 5 36 5. 8 124. 3 1. 40 43 7.6 360.0 3 55.7 69.1 53.6 166.2 250. 1 3c6. 5 116. 5 1. 50 444. 5 365. 6 361.8 69.3 59.3 1 84 . 4 261. 2 367. 6 106. 5 1. 60 451.4 371. 8 368.0 69.6 62. 9 196. 4 2 71. 8 369. 1 97. 3 1. 78 464.0 383.3 3 79.7 70.2 64. 1 201.5 272.2 3 12. 100. 6 z = 0. 99 SGL = 0.16 ARC = 0.41 DF= 0. 1 7 FL = 0. 19 GSWT=0.4067F+02 QST = 0.9447E + 02 QGST=0.1351E+03 QGT^O. 1952E+03 QGWT=0.6008E+02 HTCGS=20.6 HTCGW= 3.4 PE=1.700E+03 NU=1.076E+02 NUW=1.656E+01 RUN NO. A21 1 . 25 418.0 360.3 351.2 3 5.8 36.3 112. 6 29Q. 7 346.6 55 .9 1.30 419.8 362.2 353. 8 35.2 38.8 120. 5 235. 1 34C.9 55 . 8 1. 40 423. 2 366. 3 359. 1 3 4.3 43.0 133.9 27 4.6 331.3 57 .3 1.50 426.6 370. 8 364.7 33.7 46. 3 144.2 263. 8 32 5. S 62 .0 1.60 430.0 3 75 . 5 370.4 33.3 48.5 151.5 2 51.3 322.9 71 , 1 1. 78 436.0 384.4 380.9 3 3.6 49.9 156. 8 224.6 3 25.4 100 .8 Z= 0.99 SGL = 0.16 ARC = 0.41 0E= 0.17 EL= 0. 19 \ QSWT = 0. 6340E+02 Q ST =0.7490E+02 QGST = 0.1384E+03 QGT = 0.1745E+03 QGWT = 0. 3611E+02 HTCGS =30. 0 HTCGW = 2.7 RE = 3. 15 1E+03 NU = 1 . 550E+02 NUW=1.445E+01 RUN NC. A22 1.25 407.0 341.7 339.0 34.9 29.5 204.8 264.7 337.5 72.8 1 7 3 0 4 0 8. 3 3 4 3 . 3 3 4 1 . 0 3 5 . 5 3 2 . 7 2 2 7 . 6 2 7 8 . 5 3 4 2 . 9 64 .4 1.40 412.4 346.3 344.9 36.9 33.1 265.7 308.1 357.0 48.9 1.50 416.2 350.3 343.8 33.8 42.0 293.6 333.4 375.2 36.8 1.60 420.1 355.2 352.7 41.1 44.5 311.4 367.1 397.7 30.6 1.78 428.0 363.3 359.8 46.4 45.1 317.5 395.1 448.9 53.9 Z = 0 . 9 9 S G L = 6.16 AR C = 6.41 0E= 0.17 EL= 0.19 QSWT=0.2375E+02 QST=0.1503E+03 QGST=0.1740E + 03 QGT = 0.2 035E+03 QGWT = Q.2941E+02 HTCGS =31. 7 HTCGW= 2.0  RE=3.247E+03 NU=1.737E+02 NUW=8.804E+00 Z04 RUN NO. A23 1.25 418.0 355.0 355.7 33.2 32.9 102.2 285.3 321.2 35.9 1.30 419.7 366.6 357.8 33.7 33.1 102.8 275.8 326.3 50.5 T740 423.1 370.0 362.3 34.7 34.3 107.0 258.0 336.3 78.3 1.50 426.6 373.6 367.0 35.7 36.9 115.2 243.4 346.0 102.5 1.60 430.2 377.4 372.0 36.7 40.7 127.4 234.6 355.4 120.8 1.78 437.0 385.6 381.0 38.4 50.8 159.8 250.6 7= 0. 99 SGL = 0.16 ARC= 0.41 DE= 0.17 EL= 0.19 QSWT = 0.6797E+0? QST =0.6471E+02 QGST=O.1327fE + 03 QGT =0.1839E+03 QGWT = 0.5125E+02 HTCGS = 30. 1 HTCGW= 4.0 RE = 3. 140E+03 NU=1. 562F+02 NUW=2.050E+01 RUN NO. A24 1.25 390.6 322. 2 321 .1 38.6 1. 30 392. 6 323. 2 322. 7 41.1 21.1 215.6 227.9 397.2 169 .3 1.40 396.9 325. 5 326.0 44.7 24. 6 2 51.7 2 38. 8 431.7 193 o, . V.' 1. 50 401 .5 328.1 329 .3 46.3 27.6 282.5 251.7 447.6 195 .9 1. 60 406. 1 331.0 332.6 46.0 30. 0 307.9 266. 6 444 .9 178 .3 1.78 414.0 336.7 338.9 4 0.6 33.0 340.0 285. 7 3 92.7 107 .0 Z= 0. 99 SGL = 0.16 ARC = 0.41 0E= 0. 17 E L = 0. 19 QSWT^  -. 1634F+ 02 GST=0. 1482E+03' QGST=0 . 1319E + 03 1 QGT =0.2247E+03 QGWT = 0.9282E+02 HTCGS = 21.4 HTCGW= 5.9 RE=3.379E+03 NU=1 .212E+02 NUW=3.169E+0l RUN MO. A25 1.25 391.5 322.2 322.3 29.3 22.0 173.5 170.6 283.1 112.5 1 . 3 0 3 9 3 . 0 3 2 3 . 3 3 2 3 . 8 3 0 . 5 2 3 . 8 1 8 7 . 8 1 7 9. 1 2 9 4 . 2 1 15.1 1.40 396.2 325.9 326.9 32.7 27.4 216.5 197.5 315.5 118.0 1.50 399.5 328.8 330.3 34.7 31.0 245.2 216.3 335.6 116.8 1.60 403.1 332.1 334.1 36.7 34.6 273.9 235.5 354.6 119.1 1.78 410.0 333.9 341.8 39.9 40.9 325.7 263.1 385.9 117.8 1 = 0 . 9 9 S G L = 0 . 1 6 A R C = 0 . 4 1 0 E = 0 . 1 7 E L = 0.19 QSWT=~. 1507E+02 QST = 0. 1 323E+03 QGST = 0.1172E+03 QGT=0. 1786E+03 QGWT = 0.6144F+C2 HTCGS=19. 8 HTCGW= 4. 1 RE=3.331E + 03 NU=1 .084E + 02 NUW=2.313E + 01 265 RUN NO. A26 A 1 .25 398.9 33 3. 3 331 .4 24.6 22. 1 155.7 195. 3 237.6 42.3 1 . 30 400. 1 334.4 332. 9 24. 5 23.3 164. 0 195.3 236.9 41 .1 1 .40 402.6 336.9 336.0 2 5.2 26.2 184. 9 203. 0 24 3.2 40. 1 1 . 50 405.2 339.7 339.3 26.9 29.9 211.5 219. 5 259.8 40.3 246.2 266.8 40.7 1 .78 414.0 350.0 349.6 37.4 44.6 317.2 Z = 0.84 SCO 0.14 ARO 0.44 0E = 0.17 EL= 0.16  QSWT=0.4212E+01 QST=0.1185E+03 QGST=0.1228E+03 QGT=0.1467E+03 QGWT = 0.2396E+-02 HTCGS=25.1 HTCGW= 1.6 RO3.159E + 03 NU=1.472E+02 NUW= 7. 930E + 00 RUN NO. A2T 1. 25 388.9 334.4 333.2 2 1.3 1. 30 390 .0 335.9 334.7 22.7 31.0 214.8 233. 0 3 2 6.0 88. 1 1. 40 392.4 339. 2 337.8 24.5 35.3 245.3 273. 5 351.8 • 78.3 1. 50 394.9 342. 8 341.0 24. 8 36. 5 253. 7 291.9 3 5 5.1 63 .2 1. 60 3 97.3 346. 4 344. 1 2 3.4 34.4 239.9 286. 3 3 3 6.0 49. 7 1. 78 401.0 351. 7 350.3 1.7.1 22.7 158,7 188. 3 245.0 56 .7 Z= 0.84 SGO 0.14 ARO 0.44 DE= 0.17 EL= 0.16 QSWT-0.2025E+02 QS T = 0. 1 1 87E + 03 QGST=0.1389E+03 QGT=0.1719E+0 3 QGWT=0.3295F+02 HTCGS=35.6 HTCGW= 2.7 RE=4.74?E+03 NU = 2 .024E + 02 NUW=1.643E+01 RUN NO. A23 38.9 1 .30 382.3 329. 0 326.7 23.5 49.6 1 .40 384.7 331. 3 329.5 25.1 23.9 2 55.9 293. 7 359.6 66.0 1 . 50 387.3 333.8 332 .4 26.4 25.6 274.2 30 2. 6 3 7 8 .2 75.6 1 .60 390. 0 336. 4 335.5 2 7.4 27.4 2 94. 4 314. 3 392.8 73 .5 1 .78 395.0 341.7 341 . 3 28.5 31.2 335. 6 344. 7 4C8.6 64.0 Z=0. 8 4 S G l . = 0 . 1 4 A R O 0 . 4 4 6 . 6 = 0.17 E O 0.16 Q.SWT=0. 1505F + 02 QST=0. U82E + 03 QGST=0. 1633E+03 QGT = 0. 1989E+03 QGWT=0.356?F+02 HTCGS =40.7 HTCGW= 2.8 RE = 4. 81 7E+03 NU = 2 ..390E + 02 NUW= 1. 645E+ 01 zoo RUN NO. A29 1.25 396.0 353.9 351.0 19.0 30.0 119.9 178.4 270.4 92.0 1.30 397.0 355.4 352.8 19.0 30.4 121.3 174.9 270.3 95.4 1.40 398.9 358.5 356.2 19.0 30.9 123.9 170.3 269.6 98.8 1.50 400.7 361.6 359.4 18.9 31.5 126.3 171.5 263.6 97.2 1.60 402.6 364.8 362.4 18.8 32.0 128.5 177.6 267.3 39.7 1 . 7 3 4 0 6 . 0 3 7 0 . 6 3 6 7 . 5 1 8 . 6 3 2 . 7 , 132.0194. 6 2 6 4 . 0 6 9 . 4 Z= 0.84 SGl.= 0.14 ARO 0.44 0E= 0.17 E L= 0.16  QSWT=0.2393E+02 Q S T= 0 . 67 C0E + 02 QGST=0.9093E+02 QGT=0.1420E+03 0GWT=0.5110E+02 HTCGS=31.2 HTCGW= 5.3 RE=4.573E + 03 NU=1.824E+02 NUV* = 2 . 800E+ 01 RUN NU. A~30 1. 2 5 3 9 9 . 0 3 5 7 . 2 3 4 9 . 3 2 2 . 2 3 0 . 7 1 1 5 . 1 2 4 9 . 8 3 1 5 . 4 6 5 . 6 1.30 400.1 353.7 351.5 21.8 30.2 113.6 244.6 310.2 65.5 1.40 402.3 361.7 355.1 21.2 30.0 112.7 232.1 3C1.1 69.0 T750 404.. 3 364. 7 359. 1 2~077 30T5 114.8 216.3 2 9 3.3 77 .5 1.60 406.4 367.8 363.6 20.3 31.7 119.9 197.5 263.3 90.8 1.78 410.0 373.9 372.1 19.9 36.0 136.5 163.9 282.8 113.9 Z= 0.84 SGL= 0.14 ARO 0.44 DE = 0.17 EL= 0.16 QSttT = 0. 5376E+Q2 QS T^=0 .6322 E + 02 QGST = 0. 1 1 70E+03 QGT=0. 1 564E+03 QGWT = 0. 3947F. + 02 HTCGS=39.9 HTCGW= 3.9 RE=4.541E+03 NU=2.148E+02 N'JW= 2. 472E + 01 RUN NO. A31 1. ?5 375.6 321.5 320. 1 2 1.3 16. 7 223.9 255. 1 3 04.7 49.6 i . 30 3 76.7 322.4 321.1 22.2 17. 3 232.2 I . 40 3 79. 0 324. 1 3 2 3.2 23.4 18. 4 247.0 267. 5 334.6 67.1 i . 50 331.3 326.0 325. 5 23.6 19. 3 259. 5 271. 1 3 27.9 66.8 i . 60 383.7 323.0 3 23.0 22.9 20. 1 269. 7 269. 1 327.9 58.7 I . 78 387. 5 331. 7 33 3.2 19.3 21. 0 282.3 247. 7 276.1 28 .4 2 = 0 . 3 4 S G L = 0 . 1 4 : A R C = 0 . 4 4 D E = 0 . 1 7 E L = 0 . 16 QSWT=0.6145E+0l QST=0.1363E+03 QGST=0.1430E+03 QGT=0.1695E+03 QGWT = 0.2649E + 02 HTCGS=34. 5 HTCGW= 2.1  RE=4.891L + 03 MU=2.011E + 02. NUW=1.392 E +01 267 RUN NO. A3? 1. 25 426. 1 366. 7 3 62.9 17.8 38.3 285.7 36 2. 2 41 1.2 48 .9 -1. 30 427.0 368. 7 365. 2 1 8.9 40. 8 305.1 375.2 43 5.9 60 .7 1. 40 429.0 373.0 369.9 20.7 44.9 3 36. 1 399. 4 476.8 77 .4 1. 50 431. 1 377. 6 374.6 2 1 .9 47. 5 3 56. 5 413.4 5 06.3 37 .8 43 3. 4 382.4 3 79.3 22.7 48. 6 366.3 4 2 8. S 5 24.3 95 .3. 1. 78 437.5 391. 1 3 88.2 22.9 z= 0. 84 SGL = 0.14 ARC = 0.4 4 DE = 0. 17 FL= 0. 16 QSWT=0.3232E+02 QST=0.1026£ +03 QGST=0.2155E+03OGT=0.2622E+03 QGWT=0.4671E+02 HTCGS=54.3 HTCGW= 3.6 RE=7.053E+03 NJ = 2 .944E + 02 NUW=1.908E+01 RUN NO. A33 1.25 413.3 358.3 3^4.8 2 1.8 36.4 1 .30 419.4 360. 2 357.2 22.5 37.9 282.2 342.0 418.7 76 .6 1. 40 421.7 364. 1 3 61. 9 23.5 40.6 302.6 346.9 438.5 91 .6 1 . 50 424. 1 363. 3 3 66. 5 24.3 42.6 313.2 3 5 3. 9 452.3 9 3 .4 1.60 426.5 372.6 371.0 24.7 43.9 329.2 362.2 460. 1 97 .9 380. 6 370.9 24.6 44. 8 336.8 371. 2 459.1 37 .9 Z= 0. 84 SGL = = 0.14 ARC = 0 .44 DE= 0.17 EL= 0 . 16 QSWT = 0. 1890E+02 QST=0.1664E+03 QGST=0. 18 53E+03 . QGT = 0.2364E+03 QGWT = 0. 5106E+0 12 HTCGS =44. 7 HTCGW= 3.8 RE=5. 803E + 03 NU= 2.487E+02 NUW=1.972E+01 RUN NO. A34 1.25 423.3 362.7 358.4 21.1 35.7 266.2 354.5 437.6 83.1 1 . 3 0 4 2 4 . 4 3 6 4 . " 5 3 6 0 . 4 2 2 . 6 3 7 . 7 2 8 1 . 1 3 6 4 . : 9 4 5 8 . 1 9 3 .2 1.40 426.7 368.5 364.6 23.6 41.1 307.5 385.7 490.1 104.4 1.50 429.1 372.7 369.1 24.5 44.0 329.3 403.8 510.2 106.3 1.60 431.6 377.3 373.S 24.9 46.1 346.6 415.9 518.3 102.4 1.78 436.0 385.8 383.1 24.2 48.5 365.9 420.8 502.9 82.1 Z = 0 . P 4 S G L = 0 . 1 4 A R C '=6' . 4 4 D F = 0 . 1 7 E L =0. 16 QS^T=0.3949E+02 QST=0. 1729E+03 QGST=0.2124E+03 QGT =0. 2631E+03 QGWT=0. 5078E+02 HTCGS = 51 . 0 HTCGW= 3.7  RE=6.404E+03 MU=2.756E+02 NUW=2.072E+01 268 RUN NO. • A35 1.25 422.2 366.7 362.3 19.7 34.4 256.6 346.0 454.5 108.5 1.30 423.2 368.5 364.8 19.8 35.9 268.3 342.9 457.1 114.2 1.40 425.2 372.2 369.7 20.1 38.8 290.9 341.5 462.5 121.0 1.50 427.2 376.2 374.5 20.3 41.6 312.6 346.7 468.5 121.8 1.60 429.2 380.5 379.3 20.6 44.3 333.4 353.3 474.9 116.7 1. 7 8 4 33. 0 3 8 8. 9 3 87. 7 2 1 . 1 4 8 . "7368. 5 3 9 3 . 0 4 8 7 . 8 9 4 . 8 Z = 0.84 SGL= 0.14 ARP 0.44 DE = 0.17 EL= 0.16  QSWT=0.1805F+02 QST=0. 1667E+03 QGST=0.1848E+03 QGT =0. 249 IE+ 03 QGWT=0.6435E+02 HTCGS=49.5 HTCGW= 5.3 RE=7.096E+03 NU=2.739E+02 NUW=2.706E + 01 RUN NO. A36 1 .25 395.6 334.4 330.6 3 1.7 1.30 397.2 335. a 33 2.0 32.6 29. 0 212.3 2 89. 1 314.8 25.7 1.40 400.6 338. 8 335.0 34.4 31. 5 231. 4 309. 4 332.3 22.9 1 . 50 404. 1 342. 1 333.3 36.3 33. 7 248.0 325. 3 3 5 0.3 25.0 1 . 60 407. 3 345. 6 342. 0 3 8.2 35. 5 262. 1 334.3 368.9 34 .6 1.78 415.0 352.2 349. 8 41.7 38. 0 281.2 3 30. 9 403.8 72.9 Z= 0.84 SGL= 0.14 ARC= 0.44 DF= 0.17 EL= 0.16 QSWT=0.409SE+02 QST=0.1309E+03 QGST = 0.17 19E+03 QGT=0. 1875E + 03 QGWT=0.1562E+02 HTCGS=36.8 HTCGW= 1.0 RE=3.157E+03 NU=2.066E+02 NUW=7.145E+00 RUN NO. A37 1.25 476.7 369.4 362.1 62.1 52.1 390.0 537.2 604.1 66.9 1. 3 6 4 7 9 . 8 3 7 2 . 0 3 6 5 . 5 6 2 . 9 5 2 . 1 3 9 0 . 5 5 2 3 . 1 6 11 .4 33.3 1.40 466.2 377.3 372.2 64.8 53.1 398.7 500.9 630.4 129.5 1.50 492.8 382.7 379.0 67.3 55.3 416.4 490.0 655.4 165.4 1.60 499.7 338.4 385.9 70.5 58.7 443.8 494.2 686.5 192.3 1.78 513.0 399.7 398.4 77.7 68.1 517.9 544.3 757.5 213.2 Z = 0 . 8 4 S G L = 6 . 1 4 A R C = 0 . 4 4 D E = 6 . 1 7 E L= 6.16 QSWT=0.3904E+0? 0ST=0.2293E+03 QGST=0.2683E+03 QGT=0.3538E+03 QGWT--=0.8550E + 02 hTCGS=32.3 HTCGW= 3.2  RE=2.789E+03 NU=1.650E+02 NUW=1.604E+01 269 RUN NO. A33 1.25 440. 6 355. 0 348.4 50.5 • 42. 1 312.6 446.3 469.9 43 .6 1 .30 44 3.2 357. 1 350. 5 52.2 42. 5 315.3 44 9. 2 506. 0 56 .8 1.40 448.5 361.4 355.0 55.1 43.7 3 25. 5 455. 6 534. 7 79 . 1 1 . 50 454. 2 365. 9 359. 9 57.6 45.8 342.0 462. 5 558.8 96 .2 370. 6 365.4 59.6 48.7 364. 7 470. 0 578.3 108 .3 1. 78 471 .0 380.0 376.5 61.9 z= o .84 SGL = 0.14 ARO 0.44 DE= 0. 17 EL = 0. 16 QSWT = 0. 6391E+^2 GS T=O.1872E+03 QGST=0 .2511E+03 QGT= 0.2947E+03 QG WT = 0. 4353E+02 HTCGS = 37. 8 HTCGW= 2.0 NU = 1 .980E + 02 NUW=1.183E+01 RUN NO. A39 1 . 2 5 4 7 5 . 0 3 6 9 . 4 3 6 3 . 2 5 T . ™ 5 4 9 . 3 3 7 2 . 1 4 9 3 . 3 5 6 3.5 70.3 1.30 477.9 371.9 366.2 59.4 49.2 368.8 484.9 577.2 92.3 1.40 484.0 376.8 372.3 62.4 50.2 377.1 469.5 6G6.6 137.1 1.50 490.5 382.0 378.7 67.0 53.8 405.6 473.1 652.3 179.2 1.60 497.5 387.7 385.4 73.3 60.1 454.4 500.2 714.1 214.0 1.78 512.0 400.0 393.4 88.9 78.2 594.8 626.6 866.6 240.0 Z= 0.84 SGL= 0.14 ARC= 0.44 DE= 0.17 EL= 0.16 QSWT=0.3579H+02 QST=Q.2324E+03 QGST=0.2632E+03 QGT=0.3614E+03  QGWT=0.9320E+02 HTCGS=32.7 HTCGW= 3.6 RE=2.792E+03 NU=1.672E+02 NUW=1.791E+01 RUN NO. A40 1. 25 461 .1 352. 0 3 43.3 87.9 38.2 282. 5 353. 0 1. 30 465. 7 353. 9 350. 9 95.0 1. 40 47 5.7 3 57.7 356.5 10 4 . 8 39.3 291. 8 316.4 1. 50 486.4 361 . 9 362 .7 108.6 44.0 327. 6 3 10.7 1. 60 497.2 366. 6 369.5 106. 5 51.9 337.3 3 2 3. 8 1. 78 515.0 377.8 383.2 87.6 74.0 556. 1 447. 1 z = 0. 84 SGL = 0.14 ARO 0.44 0. 16 466.6 108.6 50 4.7 164.1 557.3 240.9 5 7 8.1 267.4 567.2 238.4 4 6 7.1 20.0 QSWT=-.R945E+01 QST=0.1942E+03 QGST=0.1853E+03 QGT=0.2845E+03 QGWT = 0.992 1E + 02 HTCGS=20. 1 HTCGW= 3.5  RE=1.558E+03 NU=1.032E+02 NUW=1.851E+01 270 RUN NO. A41 1. 25 410.6 332. 2 325.7 64. 1 22. 1 162. 1 294.5 338.9 44 .4 1.30 413.7 333. 3 327.0 60.9 20.2 147.6 273. 7 322.3 48 .6 1 .40 419. 7 33 5.2 330. 2 5 8.6 19.7 144.2 246.0 3 10.1 64 . 2 1.50 425.6 337.3 334. 1 6 1.6 23.9 175.2 240.9 3 26.0 85 . 1 1.78 44 7.0 348. 3 349.7 Z= o .84 SGL = 0.14 ARC = 0 .44 DE= 0. 17 EL = 0. 16 QSWT =0.34836+02 QST =0.1210L+03 QGST=0.1553E+03 QGT — 3. 19 49 E+0 3 QGWT =0.3909E+02 HTCGS = 23. 5 HTCGW= 1.9 NU=1 . 277E+02 NUW=1. 16 IE+ 01 RUN NO. A42 1 .25 384.4 321.7 1.30 3 37.1 322.7 320.6 53.6 19. 1 139. 1 175.7 282.8 107 . 1 1.40 392.4 324. 6 3 23.4 5 2.6 20.7 151. 1 176.9 2 77.7 100 .8 1.50 3 97./ 326.9 326.3 53.0 24.3 177.0 187. 7 2 6 0.3 92 . 5 1.60 403.1 329. 5 329.9 54.9 29.7 216.8 209.2 290.3 31 . 1 336. 1 337.8 61.9 44.2 324. 1 289. 5 327.5 38 .0 Z= 0.84 SGL = 0.14 ARC= 0.44 DE= 0.17 EL= 0 .16 QSWT=0.5679F+01 Q ST=0.1062E+03 QGST=0. 1 119E+03 QGT =0.1543E+03 QGUT=0.4242E+02 HTCGS=21.3 HTCGW= 2.6 RE=l.765E+03 NU= 1.216E+02 NUW=1.612E+01 RUN NO. A43 1.25 440.0 345.0 338.4 74.3 32.4 239.2 372.2 396.6 24.4 1 . 3 0 4 4 3.7346. 6 3 4 0 . 7 7 2 . 3 3 0 . 5 2 2 5 .2344." 4 3 83.3 38. 9 1.40 450.7 349.5 345.5 69.1 29.6 218.6 300.0 366.9 66.9 1.50 457.6 352.6 350.9 68.6 32.5 240.4 275.9 364.1 88.2 1.60 464.5 356.2 356.8 70.6 39.2 291.0 278.3 374.E 96.5 1.73 478.0 365.0 368.9 80.6 61.0 455.4 375.7 428.5 52.8 Z=6 . 8 4 S G L = 6 . 1 4 A R C = 6 . 4 4 D E = 6.17 EL= 0.16 QSWT=0.1880E+02 QST=0.1505E+03 QGST=0.1693E+03 QGT=0.20 28E+03 QGWT=0 . 3350F + 02 HTCGS = 21. 7 HTCGW= 1.4  RF = 1.616E + 03 NU=1. 139E + 02 NUW=8.217E+00 2 7 1 RUN NO. A44 1. 25 433.9 360. 0 356.1 3 1.6 40.2 298.9 3 7 3. 9 45C.4 71. 5 1. 30 435. 5 3 62. 0 353. 8 32.0 39.7 295.2 359. 5 4 5 6.4 96.9 1. 40 43 3.7 36 6.0 364.4 33.1 40. 1 299. 5 331. 6 4 71.7 140.2 1. 50 442. 1 370. 1 369 .9 3 4.5 42.7 319.3 323.0 49 1.6 168.6 1. 60 445. 7 374. 6 3 75.3 3 6.2 47.3 354.7 339.2 516.C 176.3 1. 73 452.5 334.2 385.2 40. 1 60. 8 458. 5 439. 1 571.5 132.4 z= 0.84 SGL = 0.14 ARC = 0.44 DE= 0. 17 E L = 0.16 QSWT=0.1965E+01 QST=0.1824E+03 GGST=0.1844E+03 QGT=0.2655E+03 QGWT=0.3111E+02 HTCGS=34.4 HTCGw= 4.8 RF=4.33 7E+03 NU=1.896E + 02 NUW=2.449E+01 RUN NO. A45 1. 25 434. 4 391.7 3 83.7 14.0 42.5 107.3 224. 3 262.0 37.7 1 , 30 435. 1 393. 9 386.7 14.0 44.6 1 12.8 217. 3 261.6 43.8 1 .40 436.5 398.5 392 .8 13.7 47.7 120.8 204. 8 2 5 6 .3 51.5 1. 50 437. 8 403.4 398. 8 13. 1 49.0 124. 6 191. 3 245.1 53.8 1 .60 439. 1 40 8. 3 404.7 12.2 48. 8 124. 3 176. 5 228.0 51.4 1.78 441 . 1 416. 7 414.5 9.8 44. 1 112.9 145.1 182.4 37.3 Z= 0. 70 SGL = 0.12 ARC = 0.47 DE= 0. 18 EL = 0. 13 QSWT = 0.3534F+02 QST =0.6325E+02 QGST=0 .9358E+02 QGT =0.1246E+03 QGWT = 0.2605E+O2 HTCGS= 46. 6 HTCGW= 2.3 RE=5.345E+03 NU = 2. 551E+0 2 NUW=1.499E+01 RUN NO. A46 1. 25 413. 3 361. 7 355.6 28.2 40. 9 112. 6 20 3. 5 273.2 69.7 1. 30 414.7 363.8 358.2 27.6 43.6 120.0 204.0 266.5 62.5 1. 40 417.4 368.4 363.3 26.5 47.4 130.9 206.4 2 56.4 50 .0 1. 50 420.0 373. 2 363.4 2 5.9 49.3 136.5 203. 7 250.8 42. 1 1. 60 422.6 378. 2 373.4 2 5.8 49.3 136.8 203. 5 249.7 41.2 1. 78 42 7.3 386. 7 382. 2 26.7 44. 4 123.9 190.8 2 58.9 68.1 1= 0.70 SGL = 0.12 ARC = 0.47 DE= 0.18 EL = 0.13 QSWT=0.3827F+02 QST=0.6386E+02 QGST=0.1071E+03 QGT=0.1358E+0 3 QGWT=0.2367E+02 HTCGS=36. 1 HTCGW= 2.3  RE=2.90 5E+03 NU=2.068E+02 NUW=1.245E+01 272 RUN NO. A47 1. 25 398.9 336. 1 334.9 31.1 27.3 199.4 222.0 300.0 78.0 1. 30 400.4 337. 5 336. 5 30.5 27.6 201.2 217.9 294.2 76.3 1. 40 403 .5 340. 3 340 .0 30.1 28.6 208.8 214.1 290.6 76.4 1. 50 40 6.5 343. 2 3 43.5 30.8 30.3 2 2 2.0 217.0 297.5 80.5 409.6 346.4 347. i 3 2.6 32. 8 240. 7 227. 5 3 15.0 87.6 1. fti 416.0 352. 6 354.0 z= 0. 70 SGL = 0.12 ARC = 0.47 0E= 0. 18 EL = 0. 13 QSWT=-.2667E+01 QST=0.1228 E + 03 QGST=0.1202E+03 QG T = 0. 1661E+03 QGWT=0.4592E+02 HTCGS=29.5 HTCGW=3.0 RF=3.036E+03 NU=1.751F + 02 NUH= 1 .JlJiEirtl RUN NO. A48 1.25 413.0 360. 0 356. 5 24. 1 40.4 298.4 1.30 419.2 362.0 359.0 25.1 40.6 300.9 356.0 46 7.4 111 .4 1.40 421. 8 366. 1 3 63.7 26.5 41 .2 305.4 343. 2 49 3.1 144 .9 1.50 424. 5 370. 3 363. 2 27.2 41.6 309. 3 346. 9 5C6.3 159 .5 1.60 427.2 374.4 372.1 27.2 41.9 312.4 354. 0 5G7. C 153 .0 1. 73 432.0 382. 0 378.7 25.5 42.2 316.2 376. 6 476.7 100 .1 Z = 0. 70 SGL = 0.12 4RC= 0.47 0E= 0. 18 EL= 0. 13 QSWT = 0. 1992E+02 QST=0.1637E+03 QGST=0 . 1836E+03 QGT =0.2 601E+0 3 QGWT = 0. 765 1F + 02 HTCGS = 52. 6 HTCGW= 5.4 RE=5. 5 8 8E + 03 NU = 3.064E+02 NUW=2.870E+01 RUN NO. A49 435.0 397.8 390. 1 15.1 41.6 102.7 214.9 279.3 64.4 1. 30 435.8 399. 9 392.4 1 5.0 1. 40 4 37.2 404. 1 397. 1 14.7 41. 7 10 3.5 206. 0 2 71.7 65.7 1. 50 438.7 408. 2 401 .7 14.1 41.3 102. 7 193. 5 261.6 63.2 1. 60 440. 1 412.3 406.3 13.4 40. 5 100.9 189.0 247.6 5 3.7 1. 78 442.3 419.4 414.6 11.5 38.0 95.0 165. 7 212.5 46.7 Z=0. 7 0 S G L = 0 . 1 2 A R C = 6 . 4 7 D E = 0 . 1 8 E L = 0.13 QSWT=0.5073F+02 QST=0.5360E+02 QGST=0.1044E+03 QGT=0.1349E+03 QGWT=0.3056E + 02 HTCGS =54. 7 . HTCGW= 3.5  RE=5.279E + 03 NU = 2.925E + 02 NUW=1.97 IE + 01 115 RUN NO. ' A50 1.25 417.2 391. 7 385.5 1 1.9 25. 1 189.4 301.3 322.9 21.7 1 .30 417.8 392.9 337.2 1 1.2 23. 1 174. 1 277. 1 304.6 27.6 1 .40 418.3 395. 1 390.7 10.4 20. 1 152.0 231.2 2*1.4 50.1 1.50 419.9 397.0 394. 3 1 0.2 18.7 141.2 190.4 275.9 85.5-398.8 398.0 10.6 18.8 141.9 156. 8 288.2 131.4 1. 73 423.0 402. 5 4 04. 8 13.1 22.7 171.9 Z = 0. 70 SGL = 0.12 ARP 0.47 DE= 0. 18 EL = 0. 13 QSWT=0. 2607E+02 QST = 0. 82 44E+ 02 QGST=0 . 1 085E +-03 QGT =0 . 1 590E+03 QGWT = 0. 5044E+02 HTCGS=73.1 HTCGW= 8.4 RE=7.978E+03 NU = 3 .903E+02 NUW=5.085E + 01 RUN NO. A51 1 .25 417.6 390. 6 333.9 9.5 24.2 1 . 30 418. 1 391. 8 385.7 9.2 22.6 75. 1 166. 3 249. 1 82.8 1 .40 419.0 393.9 389. 1 8.6 20. 7 69.0 141. 1 233.8 92.8 1 . 50 419.3 396. 0 392 .6 8.2 20.6 68. 8 119. 3 222.4 103. 1 1 . 60 420. 6 398. 1 396.2 7.9 2 2.3 74.4 103. 4 2 14.9 111.5 1 . 78 422.0 402. 7 402.6 7.8 29.7 99. 3 101. 3 211.3 109.9 Z= 0.70 SGL= 0.12 ARC = 0.47 0E= 0.18 EL= 0.13 QSWT=0.2677F+0? QST=0.4077E +02 QGST = 0.6754E + 02 QGT =0.1 199E+03 QGWT=0.5232E+C2 HTCGS=45.5 HTCGW= 8.2 RE=7.933E+03 NU=2.495E+G2 NUW=4.643E+01 RUN NO. A52 1 . 2 5 414.0 368.3 353.9 31.4 42. 6 99.9 239. 7 3C3.4 63.8 1 . 30 415.6 370. 5 361. 6 31.5 43. 5 102. 1 70.6 1 .40 413.7 374.9 366 .9 31.4 44. 6 105. 1 2 2 4.4 3 C 4 . 2 79. 8 1 . 50 421.8 3 79. 4 3 72 .0 30.9 45. 1 106.4 216.2 298.9 82.7 1 .60 424.9 383.8 376.9 2 9.8 44. 7 105. 8 209. 6 288.8 79.2 1 .78 430.0 391. 7 385.5 2 6.7 42. 1 100.1 192. 7 258.8 66. 1 Z=6.7 0 S G L = 0.12 ARC= 6.47 DE= 0.18 EL= 0.13 QSWT=0.5821E+02 QST=0 . 55 12 E + 02 QGST=0 . 11 3 3 E+-03 QGT =0 . 1 545 E+0 3 QGWT=0. 411 5E + 0? HTCGS=41. 8 HTCGW= 3.4  RE=2.333F+03 NU=2.376E+02 NUW=1.862E+01 274 RUN MO. ' A53 1.25 414.4 388.9 384.3 7.5 31.2 105.4 174.7 2G4.3 29.5 1.30 414.B 390.5 386.4 7.2 30.9 104.6 165.0 194.7 29.7 1.40 415.5 393.5 390.5 6.9 30.3 102.7 147.3 166.2 38.3 1.50 416.2 396.5 394.3 7.1 29.5 100.3 133.4 191.7 58.3 1.60 416.9 399.4 397.6 7.8 28.6 97.4 124.2 211.3 87.1 1 . ' 7 8 4 1 3 . 5 4 0 4 . 4 4 0 2 . 6 1 0 . 4 2 6 . 6 9 C . 9 1 1 7 . 5 2 81.9164 .4 Z = 0.70 SGL= 0.12 ARC= 0.47 DE = 0.18 EL = 0.13  QSWT=0.1750E+02 QST=0.5261E+02 QGST=0.7011E+02 QG T =0.1 124E+03 QGWT=0.4234E+02 HTCGS=56.3 HTCGW= 7.7 RE=8.910E+03 NU=3.259E+C2 NUW=4.040E+01 RUN NO. A 54 1 7 2 5 4 3 5 . 6 3 9 7 7 2 3 8 2 . 4 1 3 . 6 3 3 . 9 9 8 . 4 316.7 314.7 2.0 1.30 435.7 399.2 385.6 13.3 40.6 103.0 303.3 306.9 3.1 1.40 437.0 403.4 392.1 12.9 42.3 103.8 275.3 297.2 21.9 1. 50 438.3 40.7.7 1.60 439.5 412.0 1.78 442.0 418.9 3 98.7 12.3 405.1 13.1 415.9 14.4 43.2 110.0 41.7 106.5 34.5 88.4 243. 2 207. 3 133. 3 295.4 52 301.3 • 94 3 31.7 198 .2 .0 .4 Z= 0.70 SGL= 0.12 ARC = 0.47 QSWT=0.7056E+02 Q5T=0.5494E +02 DE= 0.18 EL= QGST=0.1255E+03 0. 13 QG T = 0.1622E+03 QGWT=0.3668E+02 RE=6.582E+03 NU= HTCGS=64.9 HTCGW= 3-9 3.463E+02 NUW=2.257E+01 RUN MO. A55 1 .25 431.1 394.4 3 8 3.5 18.9 46. 1 56.4 19 2. 9 269.6 76.7 1 .30 432.0 396. 7 3 86.3 18.3 45.0 55. 1 83.5 1 .40 43 3. 9 401. 1 393.3 1 8.2 42.7 52.4 149. 8 259.3 109 .6 1 . 50 435 .7 405. 2 399.4 17.3 40.4 49.6 122.0 24 6.8 124.8 1 .60 43 7.3 409. 1 405.0 16.1 38.0 46.9 9 3.0 2 29.3 131.3 1 .78 440.0 415.6 413.9 13.2 33. 8 41.7 63.4 187.6 124.2 Z=6.7 0 S G L = 6 7 1 2 A R C = 0 . 4 7 DE= 6.18 EL- 0.13 QSWT=0.3834E+02 QST=0.2606E+02 QGST=0.6440E+02 QGT=0.1265E+03 QGWT = 0.6206E + 02 HTCGS=33.0 HTCGW= 7.0  RE=4.085E+03 NU=1.809E+02 NUW=3.816E+01 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0058792/manifest

Comment

Related Items