UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Secondary dispersion of transition metals through a copper-rich bog in the Cascade Mountains, British… Lett, Raymond Ernest Wingrove 1979

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1979_A1 L48.pdf [ 23.41MB ]
Metadata
JSON: 831-1.0052874.json
JSON-LD: 831-1.0052874-ld.json
RDF/XML (Pretty): 831-1.0052874-rdf.xml
RDF/JSON: 831-1.0052874-rdf.json
Turtle: 831-1.0052874-turtle.txt
N-Triples: 831-1.0052874-rdf-ntriples.txt
Original Record: 831-1.0052874-source.json
Full Text
831-1.0052874-fulltext.txt
Citation
831-1.0052874.ris

Full Text

SECONDARY DISPERSION OF  TRANSITION  METALS THROUGH A COPPER-RICH CASCADE  BOG  IN THE  MOUNTAINS, BRITISH COLUMBIA by  RAYMOND ERNEST WINGROVE L E T T B.Sc, M.Sc,  University University  A THESIS SUBMITTED  o f L o n d o n . 1968 of Leicester.  1970  IN PARTIAL FULFILLMENT  THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  in THE FACULTY OF GRADUATE STUDIES (Department o f G e o l o g i c a l  We  accept to  this  thesis  the r e q u i r e d  Sciences)  as c o n f o r m i n g standard  THE UNIVERSITY OF B R I T I S H COLUMBIA October, ©  Raymond  Ernest  1978  Wingrove L e t t ,  19 78  In  presenting this  thesis  an a d v a n c e d  degree at  the L i b r a r y  s h a l l make  I  in p a r t i a l  the U n i v e r s i t y it  freely  fulfilment of of  British  available  for  f u r t h e r agree t h a t permission for e x t e n s i v e  the  requirements  Columbia, reference  copying of  I agree and this  of  this  representatives. thesis  for  It  financial  is understood that gain shall  not  written permission.  Department o f The U n i v e r s i t y  G e o l o g i c a l Sciences of  British  Columbia  2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5  Date  December 28th,  1978  copying or  that  study. thesis  f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e Head o f my D e p a r t m e n t by h i s  for  or  publication  be a l 1 owed w i t h o u t my  ABSTRACT H o r i z o n t a l and v e r t i c a l  variations  manganese, molybdenum, n i c k e l , studied ence  i n a s m a l l bog  i n the f o o t h i l l s  T h i s bog  consists  saturated,  till  almost  to 3 m  fetid  cobalt,  Mountains,  thickness of moderately  S o i l s w i t h more t h a n 167o o r g a n i c c a r b o n and sulphur are e n r i c h e d i n copper,  molybdenum.  Sympathetic  and b e t w e e n c o b a l t analysis soil ern to  of metal  profiles, end  and  but  copper  0.1%  nickel,  are demonstrated  sharply  i n the t i l l  by  and  100  ppm  molybdenum.  g e n e r a l l y h i g h e r i n the t i l l are l o c a l l y  copper-  zinc  and  and  zinc  correlation  increase  down o r g a n i c  except a t the westhave  up  I r o n and manganese a r e  than i n o r g a n i c s o i l  v e r y abundant  glacial  Hl-reduc-  o f t h e bog where s m a l l a r e a s o f c o n c e a l e d t i l l  0.57<> c o p p e r  metals  cobalt,  Metals generally  fall  decompos-  dykes.  r e l a t i o n s h i p s between n i c k e l  data.  Columbia  o r g a n i c m a t e r i a l u n d e r l a i n by  c o m p l e t e l y c o v e r s the c o n t a c t between  were  occurr-  British  m i n e r a l i z e d N i c o l a Group v o l c a n i c r o c k s and p o r p h y r y  ible  iron,  o r g a n i c c a r b o n and pH  t o a known c o p p e r - m i n e r a l  o f the Cascade  o f up  ed, w a t e r that  close  zinc,  of copper,  i n near  surface  although these fibrous organic  material. Reducing, olved  s u b s u r f a c e bog w a t e r s  i r o n , manganese and o r g a n i c c a r b o n , b u t  e n t s t h a n do  surface waters.  samples  t h e a r e a u n d e r l a i n by  to  1 ppm  flowing  from  copper.  and  from a probable f a u l t  i n acid,  lower  However, s e v e r a l copper-rich  copper  disscont-  s u b s u r f a c e water till  contain  up  C o p p e r i s a l s o v e r y a b u n d a n t i n springs w a t e r  d r a i n i n g humic g l e y s o l i c bog  g e n e r a l l y have h i g h e r  soils  semi-stagnant  zone w e s t o f t h e bog; s u r r o u n d i n g the west surface  water.  in  seepages  side of  the  Small,  irregularly  shaped g r a i n s o f p y r i t e , c h a l c o p y r i t e ,  covellite,  n a t i v e c o p p e r and  throughout  the o r g a n i c  grains are r e s t r i c t e d ends o f t h e bog al  pyrite,  soils  the  C o p p e r and of  soils. t o two  c o p p e r and iron  along  reduced  till  the  soils  cobalt, nickel,  i n the  discharges  and  t h r o u g h t h e bog complexes.  complexing  soil.  as  and  Authigenic  sulphate  simple  sulphide  sulphide  fibrous organic  denate i o n .  Abundant  sulph-  relationgrain  ion activity,  metal  abundance.  p o s s i b l y manganese f o r m c l o s e into  Molybdenum i s a l s o c o n c e n t r a t e d  l a y e r due  immob-  ions  Stability  carbon  to immobility  c o p p e r may  be  o f the  of  fulvic  iron  s u r f a c e where m e t a l - r i c h s o l u t i o n s d i s c h a r g e environment.  molybcomplex  i n d i c a t e t h a t the  possibly dissolved organic  acid  pH,  and  ions,  c o p p e r and  reduction.  iron minerals  o f i r o n and  gleysolic  t o s o l i d humic and  ion  oxidizing  by  bog  zinc i s probably  changes i n Eh,  t h e bog  grains.  A major p r o p o r t i o n  textures r e f l e c t  Hydrous o x i d e s  organic  the  z i n c , manganese, i r o n  a l s o form through r e a c t i o n o f metals w i t h  and  into  t h r o u g h humic  ides  activity  in  sulphide mineral  fractions  s h i p s b e t w e e n c o p p e r and  Framboid-  distribution  acid  produced from b i o g e n i c  western  derived through o x i d a t i o n  cobalt, nickel  a d s o r p t i o n and  depth.  copper  G r o u n d water,- p e r c o l a t i n g t h r o u g h  soluble metal-fulvate  i l i z e d by  native  i n the u n d e r l y i n g v o l c a n i c r o c k s ,  beneath organic  d i s s o l v e d copper,  3 m  spatial  copper-iron  zones.  denum w h i c h t h e n m i g r a t e  scattered  a t t h e e a s t e r n and  are p r i n c i p a l l y  fault  soils,dissolves  ions or  areas  ground water which then  concealed  are  C o p p e r s u l p h i d e and  a wider  sulphides,disseminated  circulating  pyrite  o c c u r r i n g b e t w e e n 1 and  however, has  than  framboidal  acid  adsorbed from the  to  the in  the  molyb-  metal-  rich  s u r f a c e water  forming  and  t h e c e l l - w a l l membrane.  relatively the  by p l a n t s  s t a b l e and  association during  i s t h e n bound to This  the metal w i l l advanced  form of copper i s  only  organic  proteins  be r e l e a s e d  diagensis.  from  V  TABLE OF CONTENTS Page ABSTRACT  i i  TABLE OF CONTENTS LIST  v  OF TABLES  viii  L I S T OF FIGURES LIST  x  OF PLATES  xiii  ACKNOWLEDGEMENTS  xvi  CHAPTER 1:  INTRODUCTION  1  1-1  Statement  o f the problem  1  1-2  Formation  and c l a s s i f i c a t i o n  1-3  Bog s e d i m e n t a t i o n a n d f o r m a t i o n o f humic s u b s t a n c e s  4  1-4  I n t e r a c t i o n o f m e t a l s w i t h humic s u b s t a n c e s  8  1-5  D i a g e n e s i s i n bogs  1-6  Studies of trace metal  1- 7  Summary  CHAPTER 2:  o f bogs  2 i n bogs  14distribution  i n bogs  17 22  DESCRIPTION OF THE STUDY AREA  24  2- 1  L o c a t i o n and a c c e s s  24  2-2  Physiography,  24  2-3  Effects  of glaciation  2-4  Geology  o f the study area  2-5  Mineral exploration history geochemical  2- 6  Pedology  CHAPTER 3:  d r a i n a g e and c l i m a t e and P l e i s t o c e n e d e p o s i t s  31 and p r e v i o u s  37  investigations  and f l o r a  o f the study area  SAMPLING AND ANALYTICAL TECHNIQUES  3- 1  Sampling  methods a n d f i e l d  3-2  Analysis  o f samples  3-3  Analysis  o f water  extractable  29  observations  f o r trace metals  samples  f o r 2-2 b i q u i n o l i n e  38 48 48 52 56  copper  3-4  Organic carbon a n a l y s i s  56  3-5  Sulphur a n a l y s i s  59  3-6  P r e p a r a t i o n o f p o l i s h e d mounts f r o m h e a v y  60  mineral  s e p a r a t e s and o r g a n i c s o i l  fragments  vi Page 3-7  Scanning  e l e c t r o n microprobe  microscope 3- 8  Trace in  61  GEOCHEMICAL RESULTS  64  and m i n o r e l e m e n t a b u n d a n c e s and pH  soils  and  64  till  4-2  Statistical  treatment  4-3  Statistical  c o r r e l a t i o n between m e t a l s ,  organic  60  studies  Analytical precision  CHAPTER 4: 4- 1  and e l e c t r o n  carbon  of the data  80 87  a n d pH i n s o i l s  4-4  Trace metals  i n v o l c a n i c ash  95  4-5  Trace metals  i n bog v e g e t a t i o n  97  4-6  Trace  4- 7  HI r e d u c i b l e s u l p h u r  elements i n ground and s u r f a c e bog w a t e r s  CHAPTER 5:  contents  of s o i l  and t i l l  106  SOILS  109  SULPHIDE MINERALS IN ORGANIC AND  97  TILL  5- 1  Introduction  109  5-2  Composition  109  5-3  Distribution  5- 4  Results o f microprobe  and t e x t u r e s o f s u l p h i d e m i n e r a l g r a i n s o f copper  and i r o n m i n e r a l g r a i n s analyses  of organic s o i l  121 126  fragments CHAPTER 6:  DISCUSSION  137  6- 1  Summary o f r e s u l t s  137  6-2  Development o f t h e bog and o r g a n i c d i a g e n e s i s  140  6-3  Accumulation  143  6-4  Bog w a t e r c h e m i s t r y  151  6-5  T h e o r e t i c a l models f o r water c h e m i s t r y  153  and 6-6  i n organic s o i l s  prediction of mineral  Stability in  of metals  organic  o f copper  solubilities  and i r o n m i n e r a l s  soils  6-7  A c o n c e p t u a l model f o r m e t a l  6-8  A p p l i c a t i o n s to mineral e x p l o r a t i o n  CHAPTER 7: BIBLIOGRAPHY  166  CONCLUSIONS  dispersion  176 179 183 185  vii Page APPENDICES Appendix  A:  Tabulated results Mn,  N i , Zn,  and Mo Mn,  and pH Appendix  B  B-l:  Cu,  o r g a n i c carbon,  in soils  Zn,  f o r Co,  and  till;  o r g a n i c carbon,  Fe,  195  pH  Cu,  SO^,  Fe, Ca  i n waters. O r g a n i c c a r b o n by  wet  202  Leco  203  oxidation B-2:  O r g a n i c c a r b o n by total  carbon a n a l y s e r  B-3:  Sulphate i n water  204  B-4:  Biquinoline  205  copper B-5:  i n water  Determination of sulphate in  soil  bismuth Appendix  C:  Probability  D:  by HI  reduction  207  and  colorimetry  graphs  c a r b o n and pH Appendix  extractable  f o r metals, organic  in soils  and  till  Example o f DIAG p r o g r a m o u t p u t f o r water  sample  74-RL-1429 and  distrib-  u t i o n o f aqueous s p e c i e s i n w a t e r samples and  74-RL-142S, 1439,  1444.  211  1442,  1443  230  V l l l  L I S T OF TABLES Table  3-1:  Instrumental for  PAGE  operating conditions  atomic a b s o r p t i o n  54  spectrophoto-  meters . Table  3-2:  Analytical precision.  Table  4-1  G e o m e t r i c mean  62  ( X ) , mean + 2 s t a n d a r d  82  d e v i a t i o n , mean + 1 s t a n d a r d d e v i a t ion of  and L o g s t a n d a r d  d e v i a t i o n (S)  p o p u l a t i o n s r e p r e s e n t i n g 89  soil  samples. Table  4-2:  G e o m e t r i c mean  ( X ) , mean + 2 s t a n d a r d  83  d e v i a t i o n , mean + 1 s t a n d a r d d e v i a t ion of  and L o g s t a n d a r d  d e v i a t i o n (S)  p o p u l a t i o n s r e p r e s e n t i n g 96  till  samples. Table  4-3:  Correlation matrix  for soil  samples  with organic carbon content  greater  t h a n 5%;  signific-  Table  4-4:  4-5  Correlation matrix  forsoil  samples  w i t h organic carbon content  greater  t h a n 16%;  signif-  r = 0.35  a t 957o c o n f i d e n c e  Metal  contents  in 4-6  ( n = 33;  icant  samples.  Table  r = 0.25  a t 957o c o n f i d e n c e l e v e l ) .  ant Table  ( n = 63;  88  88  level) . 96  of v o l c a n i c ash  Cu, Co, Mn, N i and Zn a r e  ppm; Fe i s i n % .  Metal  contents  i n ppm o f v e g e t a t i o n  96  samples. Table  4-7  A r i t h m e t i c means ( X ) , s t a n d a r d ions  (S) a n d r a n g e s  deviat-  (R) f o r e l e m e n t s  i n w a t e r . Cu, F e , Mn and Zn i n ppb; C and Ca i n ppm. P = 7o v a l u e s ection  limit.  det-  98  Table 4-8:  Surface and subsurface water samples analysed by atomic a d s o r p t i o n spectrophotometry and by 2-2  Page 103  biquinoline  colorimetry. Table 4-9:  Element contents i n s u r f a c e and sub-  105  s u r f a c e bog water samples. Table 4-10:  H y d r i o d i c a c i d r e d u c i b l e sulphur and  107  o r g a n i c carbon contents o f samples from f o u r p r o f i l e s . Table 5-1:  Metals and o r g a n i c carbon i n s o i l  127  samples used f o r microprobe a n a l y s i s . Table 6-1:  D i s t r i b u t i o n o f aqueous s p e c i e s i n  156  water sample 74-RL-1429 at Log oxygen a c t i v i t y o f -66.5. Table 6-2:  D i s t r i b u t i o n of aqueous  species i n  . 157  water sample 74-RL-1429 at Log oxygen a c t i v i t y of Table 6-3:  -66.0  D i s t r i b u t i o n of aqueous  species i n  158  water sample 74-RL-1429 at Log oxygen a c t i v i t y o f -65.5. Table 6-4:  E q u i l i b r i u m constants and r e a c t i o n  159  q u o t i e n t s f o r water sample 74-RL-1429 at Log oxygen a c t i v i t i e s o f -66.5, -6b.0  and -65.5  and at 25°C i n the  presence o f s o l i d c h a l c o p y r i t e and p y r i t e Table 6-5:  E q u i l i b r i u m constants, r e a c t i o n quot-  162  i e n t s and r e l a t i v e degree o f m i n e r a l s a t u r a t i o n i n c e n t r a l bog subsurface water samples a t Log oxygen  activity  of -66.5. Table 6-6:  P r o p o r t i o n o f metals t h e o r e t i c a l l y bound to the f u l v i c a c i d  fraction  i n subsurface bog water samples.  165  X  L I S T OF  FIGURES Page  Figure  1-1:  Fulvic  acid  Gamble and Figure  1-2:  s t r u c t u r e p r o p o s e d by Schnitzer  Figure  1-3:  (1973).  Schematic diagram f o r t r a c e metal interactions Reactions acid  i n organic  Location of  Figure  2-2:  O u t l i n e of the m i n e r a l l o c a t i o n of bogs.  Figure  2-3:  Geology of Mustard  study  the  area.  study  11  27 property  area  and  (after  28  32  1968).  Geological cross on  fulvic  fraction.  2-1:  2-4:  7  soils.  b e t w e e n c o p p e r and  Figure  Figure  7  figure  section. A  - A'  shown  36  2-3.  Figure  2-5:  Soil  Figure  2-5a:  Profile  A.  41  Figure  2-5b:  Profile  B.  42  Figure  2-5c:  Profile  C.  43  Figure  2-6:  C e n t r a l bog  drainage,  Figure  3-1:  Location of  soil  Figure  3-2:  Soil  Figure  3-3:  W a t e r sample l o c a t i o n s .  53  Figure  3-4:  Comparison of o r g a n i c  58  of  catena  and  through the  till  Figure  4-1:  Organic  Figure  4-2:  Variation sulphur  soils till  and  flora.  profiles.  loss  wet on  oxidation,  ignition  of metals,  and  organic  a f i b r i c mesisol  at  40  45 49 51  carbon analyses  carbon i n s o i l s  on  area.  sample l o c a t i o n s .  15 s a m p l e s by  method and  and  study  Leco 550°C.  till. c a r b o n and profile.  65 66  Page Figure  4- 3:  Variation and  of metals,  s u l p h u r on  organic  carbon  a humic m e s i s o l  Figure  4- 4:  Copper i n s o i l s  Figure  4- 5:  V a r i a t i o n of metals  and  dystric brunisol  profile.  till. and  67  69  pH  on  an  orthic  71  profile.  Figure  4- 6:  Cobalt  Figure  4- 7:  Manganese i n s o i l s  Figure  4- 8:  Iron  Figure  4- 9:  Nickel  Figure  4- 10:  Zinc  Figure  4- 11:  Molybdenum i n s o i l s  Figure  4- 12:  pH  Figure  4- 13:  Scatter  d i a g r a m f o r Log-^QCu a g a i n s t  organic  carbon.  Scatter  diagram f o r L o g ^ C o  against  91  diagram f o r Log-^Zn  against  92  Scatter  diagram f o r Log-^Zn  against  94  Log^Ni  ( 33  Figure  4- 14:  Log Figure  4- 15:  4- 16:  in soils  in soils  in soils  1()  1 Q  and  and  in soils  and  74  till.  till.  and  and  and  73  till.  75  till.  76  till. and  77 till.  78  till  79 90  Mn.  Scatter Log  Figure  in soils  Ni.  samples  ).  Figure  4- 17:  Cu  (ppb)  i n s u r f a c e water  Figure  4- 18:  Cu  (ppb)  i n subsurface water  Figure  5- 1:  Distribution organic  soils  samples. samples.  of mineral grains and  in  100 101 122  till.  Figure  5- 2:  Distribution  of framboidal  pyrite.  123  Figure  5- 3:  Distribution  of  covellite-  124  chalcopyrite  and  covellite,  n a t i v e copper  grains.  xii Page F i g u r e b-1:  Simplified mineral  Eh-pH d i a g r a m f o r  relationships  168  i n the  Cu-Fe-S-O-H s y s t e m a t 25°C and 1 atmosphere Figure  6-2a:  Stability  pressure.  relationships  copper m i n e r a l s and  Figure  6-2b:  1 atmosphere p r e s s u r e o f Log oxygen  sulphate  activity  Stability  Figure  6-3:  and  as a  activity, pH.  relationships  i r o n minerals  171  i n w a t e r a t 25°C  function  and  between  between  172  i n w a t e r a t 25°C  1 atmosphere p r e s s u r e  function  o f Log oxygen  sulphate  activity  C o n c e p t u a l model  and  as a  activity, pH  for dispersion  o f m e t a l s i n t h e bog.  177  xiii L I S T OF PLATES Page Plate  2-1  A west  looking  view o f t h e west  25  end o f t h e c e n t r a l b o g . Plate  5-1:  E l e c t r o n micrograph of a pyrite  framboidal  cluster i n a polished  110  mount  made f r o m a h e a v y m i n e r a l s e p a r a t e of Plate  5-2:  soil  sample  E l e c t r o n m i c r o g r a p h o f an i n d i v i d u a l pyrite  framboid  shown i n p l a t e Plate  5-3:  5-4:  Photomicrograph  5-5:  f r o m sample station Plate  5-6  from the c l u s t e r  of the framboid  Plate  5-7:  5-8  114  mount  114  74-RL-1127 c o l l e c t e d a t  Photomicrograph  depth.  of a polished  74-RL-1117  s t a t i o n G 1.0 a t 1.5 m Plate  112  5-1.  of a polished  G 1.5 a t 2.5 m  f r o m sample  fram-  74-RL-1119.  shown i n p l a t e  Photomicrograph  111  5-1.  f r o m sample  cluster Plate  ('A')  E l e c t r o n micrograph of p y r i t e boids  Plate  74-RL-1119.  depth.  of a  covellite  f r o m sample  Photomicrograph  116  collected at  Photomicrograph grain  mount  chalcopyrite-  of a grain  117  74-RL-1119. from  sample  117  74-RL-1119  119  74-RL-1113. Plate  5-9:  Photomicrograph showing  f r o m sample  chalcopyrite  intergrown with  covellite. Plate  5-10  Photomicrograph showing  f r o m sample  covellite  (Cv) f o r m i n g  inuous , roughly c o n c e n t r i c chalcopyrite (Cp).  74-RL-1119 discont-  layers i n  119  XIV  Page P l a t e 5-11  Photomicrograph sample  P l a t e 5-12  of a grain  Photomicrograph  of a polished  i n sample  Photomicrograph  P l a t e 5-17  P l a t e 5-18:  P l a t e 5-19  i n sample  i n sample  Photomicrograph  P l a t e 5-21:  P l a t e 5-22  P l a t e 5-23  P l a t e 5-24:  i n sample  i n sample  i n ' sample  Photomicrograph  P l a t e 5-25:  a  i n sample  133  73-RL-340. 135  73-RL-338  I n t e n s i t y p a t t e r n o f CuKa X-radiation  133  73-RL-340.  of a polished  mount made f r o m sample  133  73-RL-340.  I n t e n s i t y p a t t e r n o f FeKa X-radiation  132  73-RL-340.  Intensity pattern of SK X-radiation  131  73-RL-323.  I n t e n s i t y p a t t e r n o f CuKa X-radiation  131  73-RL-323.  of a polished  mount f r o m sample  131  73-RL-323.  I n t e n s i t y p a t t e r n o f FeKa X-radiation  P l a t e 5-20:  i n sample  I n t e n s i t y p a t t e r n o f SKa X-radiation  130  73-RL-323.  I n t e n s i t y p a t t e r n o f CuKa X-radiation  129  73-RL-340.  of a polished  mount f r o m sample  129  73-RL-340.  I n t e n s i t y p a t t e r n o f FeKa X-radiation  P l a t e 5-16  i n sample  129  73-RL-340.  I n t e n s i t y p a t t e r n o f SKa X-radiation  P l a t e 5-15:  i n sample  120  73-RL-340'  I n t e n s i t y p a t t e r n o f CuKa X-radiation  P l a t e 5-14:  120  74-RL-1127.  mount made f r o m sample P l a t e 5-13  from  73-RL-338.  136  XV  Page P l a t e 5-26:  I n t e n s i t y p a t t e r n of S K a  136  X - r a d i a t i o n i n sample 73-RL-338. P l a t e 5-27:  Intensity pattern of F e K a X - r a d i a t i o n i n sample 73-RL-338.  136  xvi  ACKNOWLEDGEMENTS The a u t h o r  i s sincerely  i d e d b y t h e "following p e o p l e Dr.  grateful during  W. K. F l e t c h e r who s u p e r v i s e d  this  advice,  manuscript.  encouragement  by D r . C. H. C r o s s on s o i l  omic g e o l o g y Colleagues  prov-  and e s p e c i a l l y t o D r s . M. A.  a n d L . E. Lowe  and c r i t i c a l l y  provided  reviewed  this  A d d i t i o n a l a d v i c e was o f f e r e d by D r . V. C. B r i n k  on p l a n t i d e n t i f i c a t i o n ,  ulich  study  the p r o j e c t .  B a r n e s , W. C. B a r n e s , A. J . S i n c l a i r continuous  f o rthe assistance  by D r . T. H. Brown o n t h e r m o d y n a m i c s ,  on o r g a n i c  classification,  geochemistry,  b y D r . A. E . S o r e g a r o l i o n e c o n -  a n d b y D r . H. V. W a r r e n o n  i n t h e Department  b y D r . L . M. L a v k -  biogeochemistry.  o f Geological Sciences  and M i n i n g  I n d u s t r y who m a t e r i a l l y c o n t r i b u t e d t o t h e p r o j e c t b y t h e i r helpful  d i s c u s s i o n i n c l u d e D r . G. A s h l e y ,  Duncan,  D r . P. J . D o y l e ,  and  Mr. D. W i l t o n .  Mr. M. B u s t i n ,  D r . S. J . Hoffman, Mr. J . M.  Mr. E . P e r k i n s  advised  Mr. I .  Morganti  o n computer  programm-  ing. Mr. A. D h i l l o n , Mr.  G. G e o g a k o p o u l o s , Mr. A. L a s c i s a n d M i s s .  assisted Myers  of  i n sample a n a l y s e s .  assisted, i n f i e l d  Coleman, and  typing services.  L. McDonald  Mr. I . Cameron a n d Mr. M. W a s k e t t -  s t u d i e s a n d sample c o l l e c t i o n .  Mr. A. M c G r e g o r  a n d M r s . Y. M i c h i e Accommodation  P r i n c e t o n , B.C., i s g r a t e f u l l y The a u t h o r  Dr.  M r s . A. W a s k e t t - M y e r s , Mr. M. W a s k e t t - M y e r s ,  i s indebted  provided  provided  M r s . D.  drafting  b y Mr. H.  Huff  appreciated.  t o Mr. C. D. B a t e s  (BP Canada L t d . ) ,  P. E . F o x ( F o x G e o l o g i c a l C o n s u l t a n t s ) , D r . C. J . Hodgson  (Amax E x p l o r a t i o n I n c . ) , D r . R. F. H o r s n a i l I n c . ) , Mr. T. N. M a c a u l e y  (Newmont M i n i n g  (Amax E x p l o r a t i o n  C o r p . o f Canada L t d . )  xvii and  Mr.  D.  K.  ion  relating  Mustard  (BP  Canada L t d . )  to the geology  for releasing  of the p r o j e c t a r e a  and  informatfor helpful  discussion. Financial  assistance during  f r o m E n e r g y M i n e s and 65-1674.and by ship. L-M  mutual  and  1974  was  Resources r e s e a r c h agreement  t h e E r n e s t i n e A.  L a t e r support  1973  M.  provided number  E. K a n i a M e m o r i a l  f o r t h e p r o j e c t was  provided  Scholar-  from  the  fund.  Finally  I should  encouragement d u r i n g  like the  t o t h a n k my  completion  of  wife this  f o r her thesis.  unfailing  1 CHAPTER 1 INTRODUCTION 1-1 STATEMENT OF THE PROBLEM Conventional geochemical e x p l o r a t i o n unsuccessful  i n glaciated  a r e a s where t h i c k t r a n s p o r t e d  b u r d e n may b u r y p o t e n t i a l l y Metals be  c a n , however, u n d e r  transported  lating  into  ground water  economic  the r e s u l t  metal  o f metal  ground water  by d e e p l y  accumulation from  dilute  especially i n  c o n c e n t r a t e d from weakly  o r s u r f a c e water  tance l a t e r a l l y  and those m e t a l s  sources beneath  t h e bog.  circu-  Interpretation of  i n bogs c a n be a p r o b l e m  s i d e r e d when i n t e r p r e t i n g  conditions  c o n c e n t r a t i o n s i n bogs  s o l u t i o n s by o r g a n i c matter.  d i s c r i m i n a t i n g between m e t a l s  over-  deposits.  favourable hydrologic  Enhanced  geochemical anomalies  alized  base-metal  the secondary environment  ground water.  are g e n e r a l l y  techniques are often  miner-  t h a t h a s moved some  i n t r o d u c e d from concealed  Important  factors  such anomalies  t h a t must be c o n ^  a r e complex  inter-  a c t i o n s o f m e t a l s w i t h o r g a n i c s u b s t a n c e s and r e a c t i o n s metals  and s u c h l i g a n d s  g a n i c and i n o r g a n i c i n bogs.  as s u l p h i d e and c a r b o n a t e .  associations w i l l  T r a c e and m i n o r  been s t u d i e d  i n a small  mineral occurrence.  d i s t r i b u t i o n patterns  t h e bog.  tend to immobilize metals  d i s t r i b u t i o n patterns  Results o f the i n v e s t i g a t i o n s  spatial  between  Both o r -  c o p p e r - r i c h b o g c l o s e t o a known  i n this  in  thesis  element  scribed  dis-  and m o d e l s a r e p r o p o s e d and t h e forms  have copper  a r e de-  to explain the  o f copper p r e s e n t  2 1-2 FORMATION The  AND  CLASSIFICATION OF BOGS  high content o f n a t u r a l  bogs h a s b e e n o b s e r v e d persion.  and c l i m a t i c  types w i l l  conditions.  usually  consists  be  dis-  reflect  different  of different  effect  on t r a c e  covered or f i l l e d  landforms  interations.  where, a l t h o u g h t h e w a t e r t a b l e  their  trace metal  Formation  t h e r e f o r e have a s i g n i f i c a n t  Bogs c a n be d e f i n e d as p e a t  is  influence  o f bog s e d i m e n t a t i o n , which can v a r y under  hydrological  metal  to strongly  agents i n  The n a t u r e o f t h e s e o r g a n i c s u b s t a n c e s w i l l  processes  bog  o r g a n i c complexing  little  i s close  standing water  ( T a r n o c a i 1970).  o f m i x e d undecomposed p l a n t  fragments,  decomposition, microorganisms,  classified  as an o r g a n i c s o i l .  to the surface, Peat  there which  products of  m i n e r a l s , and w a t e r , Normal s o i l  may  formation i s  c h a r a c t e r i s e d by a b a l a n c e between t h e r a t e o f o r g a n i c d e b r i s a c c u m u l a t i o n and r a t e o f t o t a l b i o l o g i c a l environment the carbon  o f peat  c y c l e where r a t e s  (Moore and B e l l a m y  d e s t r u c t i o n o f m a t e r i a l s ( G i v e n and  can d e p o s i t a r e p o t e n t i a l  1974).  Extent o f peat  the system  (Romanov 1961).  will  the land  and r e m o v a l  bog s i t e s  formation i n these  depend on t h e b a l a n c e b e t w e e n p l a n t  r a t e o f decomposition  raise  are f a r  l a n d f o r m s w h i c h impede s u r f a c e w a t e r movement t o  l e v e l s where s e d i m e n t  lation,  o f organic accumulation  1975).  Physical  areas w i l l  The  f o r m a t i o n , however, r e p r e s e n t s a b r e a k i n  g r e a t e r than the t o t a l Dickinson  decomposition.  r e s i d u e accumu-  of the products  High organic accumulation  s u r f a c e and l i m i t  from  rates  upward p o r e w a t e r move-  3 merit t o p l a n t r o o t s . nutrients is  As. t h e v e g e t a t i o n  from the m i n e r a l  is; unable to  s o i l b e n e a t h the  organic material i t  t h e r e f o r e f o r c e d to o b t a i n elements from the  peat.  Trace  unless  metals: become d e p l e t e d  continuously  s u p p l i e d by  i n the  lateral  developing  organic  material  dominantly  t h r o u g h g r o u n d w a t e r movement h a v e b e e n c l a s s i f i e d ,  Drozdova ed may  (1968).  When n u t r i e n t f l o w  ely to  s u p p l i e d by l o w e r pH  activity rates is  and  of the  result  for plant  i n c o n v e x bog  m a i n c l a s s e s can Vegetation  be may  matter accumulation metals,  provide  Metals  e n e r g y and  (Nason and  McElroy  accumulations  can  1970)  role  important  trace metal and  catalyse various  are  tends  growth material are  class-  (Manaskaya of  both  transitional.  i n both  concentration.  sulphur  organic Transition  essential for plant  enzyme s y s t e m s w h i c h  f o r m amino a c i d s , p r o t e i n s Large apparently  form i n the  type  characteristic  play  1963).  Higher  o r r a i s e d bogs  termed  an  adequat-  microorganism  Bogs o f t h i s  o b s e r v e d bogs a r e  and  be  Moss g r o w t h a l s o  decomposition.  Where f e a t u r e s  carbon, n i t r o g e n  metabolism.  trace  low  and  decreas-  t h r i v e at very  m o r p h o l o g i e s where o r g a n i c  (Tarnocai  (1968) .  is  bogs,  layers suppressing  f i b r o u s sphagnum p e a t .  Drozdova  Tarnocai  i n mineralotrophic  Necessary n u t r i e n t s w i l l  surface  as o m b o t r o p h i c  by  to p l a n t roots  surface p r e c i p i t a t i o n .  responsible  largely  ified  typical  r e p l a c e d by mosses w h i c h can  element c o n c e n t r a t i o n s .  supplied  o r t e r m e d l o w e r b o g s by Manaskaya  the monocotyledon f l o r a , be  host  i n f l u x o f ground water.  Bogs where t r a c e e l e m e n t n u t r i e n t s a r e  ( 1 9 7 0 ) , as m i n e r a l o t r o p h i c  draw  and non  vitamins t o x i c metal  t i s s u e s of c e r t a i n plants  espec-  4 tally  species: growing  example, o b s e r v e d of  copper  rich  that  ground  t h e moss, P o h l i a n u t r a n s , f r o m t h e water seepages  c o n t a i n e d up t o 3.87. c o p p e r . 0.67o z i n c twig  C o n c e n t r a t i o n s o f 0.3% c o p p e r ,  a n d 0.067, l e a d were a l s o  accumulations  copper  i n plant  found by Salmi  tissues  (1969).  portant  levels  Metal release  (1967) i n  L o c a t i o n o f these  i s uncertain although  a n d z i n c may b e i m m o b i l i z e d i n l e a f  thereby preventing t o x i c  area  i n a New B r u n s w i c k b o g ,  a s h o f t h e b o g s h r u b Ledum P a l u s t r a .  metal  ner  F r a s e r (1961) , f o r  i n bog environments.  cell  wall  membranes  forming a t metabolic s i t e s  during decomposition  i n formation o f d i f f e r e n t  (Tur-  c o u l d be im-  organic products.  1-3 BOG SEDIMENTATION AND FORMATION OF HUMIC SUBSTANCES Organic  sediments  i n bogs a r e f o r m e d  down o f p l a n t m a t e r i a l c u l a r weight tivities  from  observed  for  of fungii,  Most  e.g.  (Kuznetsov Different  be a t t a c k e d by s p e c i f i c m i c r o o r g a n i s m s .  digested lignin.  cellulose  and range  decomposition by  and a e r o b i c b a c t e r i a has been  to occur i n surface layers  that  i n transi-  et al.(1964)  intensive plant  G i v e n a n d D i c k i n s o n 1975).  flow,  n i t r o g e n , and type  Sedimentation rates  actinomyces  example, e s t a b l i s h e d  a t which these a c -  as s u r f a c e water  bogs have b e e n e s t i m a t e d b y G r o s s e  the a c t i o n  will  1972).  0.1 t o 1.6mm/year.  1968;  factors  break-  o f dark, h i g h mole-  Rates  t o microorganisms  vegetation (Flaig  tional  products.  depend o n s u c h  supply o f n u t r i e n t s of  and the a c c u m u l a t i o n  decomposition  proceed  by m i c r o b i a l  1963; plant Moore  Flaig tissues  (1969),  t h e fungus M e r u l i u s Lacrymans  and h e m i c e l l u l o s e , b u t would n o t break  down  5 C e r t a i n microorganisms vironments.  may be r e s t r i c t e d  Abundant f u n g i i  e.g. Fusarium  layers  o f m i n e r a l o t r o p h i c bogs.  groups  Peniallium  ombotrophic  a r e , however, more common i n  F u n g i a l populations decrease i n s i z e  w i t h p r o g r e s s i v e depth i n bog sediments centrations  are found i n s u r f a c e  Smaller populations o f the  and C l o d o s p o r i u m  environments.  t o d i f f e r e n t en-  (Waksman a n d S t e v e n s  due t o l o w e r o x y g e n  1929).  A c t i v i t y also  on t h e h u m i d i t y o f t h e p e a t a n d h a s b e e n o b s e r v e d , b y ( 1 9 6 1 ) , t o r e a c h a maximum a t 30°C w i t h a w a t e r  con-  depends  Koronova  c o n t e n t o f 60-  80%. Products  formed  plant materials cules  as a r e s u l t  include  low m o l e c u l a r weight  sulphide.  These  inorganic  carbohydrates substances,  and s u l p h a t e .  ammonia a n d  small organic molecules O r g a n i c components  fulvic bogs,  f u l v i c s u b s t a n c e s , amines a n d p o l y s a c c h a r i d e s c a n  these substances are developed  i s uncertain.  substances occur widely i n n a t u r a l lake  such as  such as humic  f o r m a l t h o u g h , however, t h e p r e c i s e mechanism  which  mole-  a r e formed m a i n l y t h r o u g h t h e b i o -  genic reduction o f n i t r a t e s ,  for  decomposition o f  s u c h as methane, c a r b o n d i o x i d e , h y d r o g e n ,  hydrogen  also  o f advanced  sediments  and marine  sediments.  through Humic a n d  environments  including  V a r i o u s mechanisms  t h e f o r m a t i o n o f humic s u b s t a n c e s h a v e b e e n e x t e n s i v e l y r e -  viewed  by F e l b e c k  ated by m i c r o b i a l  (1971) and r a n g e  from r e a c t i o n paths  a c t i v i t y to reaction parths involving  polymerization of small organic molecules. tivity  and p o l y m e r i z a t i o n r e a c t i o n s  different  dominchemical  Both m i c r o b i a l a c -  are probably involved at  s t a g e s i n t h e g e n e s i s o f humic and f u l v i c s u b s t a n c e s .  Products of plant trace ic  decomposition which could i n t e r a c t  m e t a l s i n bogs i n c l u d e  acids,  c a r b o h y d r a t e s and  soluble  will  S t e v e n s o n and of  be  in considerable  only b r i e f l y  Butler  described  detail  in this  and  trary  acid  mineral  fractions  acid  soluble extract  will  be  solvents. in dilute  are  acid  acid  i n the  different  separation of  fractions  the  or  fractions  a medium g e n e r a l l y Amorphous h u m i c  yellow coloured humic a c i d  used acid  organic solution  i s known as  have lower m o l e c u l a r w e i g h t s ,  i n aqueous s o l u t i o n s  t h a n humic a c i d iations  acid  and  the  fraction.  Fulvic solubility  main humic  dark c o l o u r e d a l k a l i n e , The  any Arbi-  in alkaline  fulvic  sodium h y d r o x i d e ,  a c i d i f i e d w i t h HCl.  which remains a f t e r fulvic  solubility  B o t h h u m i c and  when t h e  two  series  molecular  organisms.  the  humic s u b s t a n c e s f r o m s o i l .  precipitated  extracts  i s b a s e d on  into  a  d i s s i m i l a r to  in living  d i v i s i o n o f humic s u b s t a n c e s  fulvic  are  compounds o c c u r r i n g  their  thesis.  a c i d i c , yellow-to black coloured, moderately high  other organic  organ-  Humic  (1969) d e f i n e h u m i c s u b s t a n c e s as  weight polymers w h i c h have c h a r a c t e r i s t i c s  to  simple  humic p o l y m e r m o l e c u l e s .  s u b s t a n c e s have been s t u d i e d properties  amino a c i d s ,  with  fractions properties  types of  and  larger  (Manaskaya and of  the  acid  organic matter  greater  carbon-hydrogen  Drozdova 1968).  fractions  may  ratios Var-  reflect  f r o m w h i c h t h e y were  extracted.  S e v e r a l w o r k e r s h a v e employed X - r a y d i f f r a c t i o n t o  investigate  humic and  that  basic  fulvic  units  Khan 1 9 7 2 ) . proposed f o r  acid  c o u l d be  structures. polymerized  Three dimensional the  acids  by  Pauli  Results  suggest  carbon l a t t i c e s  the  (Schnitzer  'cage' s t r u c t u r e s  have a l s o  (1968) .  side  Various  and been  chains  Figure and  1-1:  F u l v i c a c i d s t r u c t u r e p r o p o s e d by  Schnitzer  Gamble  (1973).  Rocks and minerals  weathering MCh e (Insoluble complexes)^*— M  Higher plants MCh  Organic s o i l pore water Mx (Sorption by clays; insoluble precipitates) Figure in  1-2:  Schematic  organic s o i l s  diagram  Micro organisms  f o r trace metal  (adapted from L i n d s a y ,  1972).  interactions  8  attached  t o t h e n u c l e u s may  carbonyl  and  o x y l and  phenolic  and  groups  i s responsible  metal complexing p r o p e r t i e s Gamble and  for  the  fulvic  1-4  INTERACTION OF  aqueous p h a s e s  since although  minerals.  fulvic  are  i n organic  organic  system i n m i g r a t i n g  different  soils  are  dynamic  (Lindsay  substances  ions  and  of metals  the  system suspended i n s u r f a c e  Schnitzer  and  Khan  (1972) s u g g e s t e d t h a t  humic s u b s t a n c e s  coagulation  of  c o u l d be  soluble organic  groups  to the  charged ions  l a r g e l y due o r by  C o m p l e x i n g and covalent  formation  c h e l a t i o n are  of  involves  authigenic  donation  o f e l e c t r o n s by  detritus  exchange, peptiza-  a t t r a c t i o n of  covalent  humic o r  the  t o humic f u n c t i o n a l  terms o f t e n u s e d t o  b o n d i n g b e t w e e n m e t a l s and  Complexing  ion  electrostatic stronger,  ses-  water.  molecules or  Bonding of metals  be  mineral  plant  i n t e r a c t i o n be-  by  t i o n o f humic c o l l o i d s .  to  to c l a y s ,  p r e c i p i t a t i o n of  O r g a n i c and  in Fig.  state is rar-  o r m o l e c u l e s w i l l move t h r o u g h  ground water.  and  1972)  i n t e r a c t i o n s change i n r e s p o n s e  also enter  can  1-1.  solid  approach e q u i l i b r i u m t h i s  Metal  Soluble  chelation,  fract-  structure  p o s s i b l e i n bogs i s i l l u s t r a t e d  t h e y may  tween m e t a l s and  carb-  acidic  acid  (1973) h a v e p r o p o s e d one  uptake from water, a d s o r p t i o n and  f o r the weakly  o f humic and  o f m e t a l s between the  ely maintained.  quioxides  Ionization of  METALS WITH HUMIC SUBSTANCES IN BOGS  that  Reactions  nutrient  Schnitzer  hydroxyl,  a c i d f r a c t i o n w h i c h i s shown i n F i g .  Partitioning  1-2.  phenolic  a l c o h o l i c f u n c t i o n a l groups.  ions .  can  carry carboxyl,  linkages. describe  fulvic fractions. single active  ligand  t o a m e t a l s i o n and may  be  shown i n t h e f o l l o w i n g  example,  +  +  MtMetal  A - M  4A' ( L i g a n d )  - A  (Complex)  A Where an o r g a n i c m o l e c u l e h a s ting  groups  a c h e l a t e may  be  several potential  +  +  2A-A(Ligand)  = 1  v  \ /  A  M  A'  trace metals w i l l  fractions. increase copper  form complexes  Broadbent  in optical  and O t t  density,  \A s  ine oxyl  sediment. groups,  copper  i n infrared  to solutions  t o g e t h e r , was  due  to  form-  (1973)  s p e c t r a o c c u r r i n g when c u p r i c  o f humic s u b s t a n c e e x t r a c t e d  ions  f r o m a marthat  linked  Goodman  however, c o n c l u d e d f r o m r e s u l t s  to nitrogen  carb-  and  of  the copper  generally  small proportion  of t o t a l  less copper  compared t o t h a t Davis  eleci n peat  a s s o c i a t e d with, h e t e r o c y c l i c  N i t r o g e n c o n t e n t o f p e a t humic a c i d s  b e e n f o u n d t o be  ( E n n i s 1962,  large  and  R a s h i d and L e o n a r d  r e s o n a n c e measurements t h a t  phyrin molecules.  to n i t r o g e n  the  a t t a c h e d t o humic s u b s t a n c e s , f o r m e d bonds w i t h  (1973;1976),  was  fulvic  They c o n c l u d e d from t h e s e v a r i a t i o n s  t r o n paramagnetic samples  demonstrate  w i t h humic and  and were i m p o r t a n t i n m e t a l r e t e n t i o n .  Cheshire  to  o b s e r v e d when h u m i c a c i d  a t i o n o f copper-humate complexes.  were added  (Chelate)  (1957) c o n c l u d e d t h a t  s u l p h a t e s o l u t i o n s were m i x e d  studied variation  +  /  S e v e r a l e x p e r i m e n t a l methods h a v e b e e n u s e d that  dona-  formed, A  M(Metal)  electron  than 5 percent.  A  e t a l . (1969).  has  relatively  i n o r g a n i c m a t t e r may  a s s o c i a t e d w i t h humic  por-  be  bound  fractions  10 Carboxylic  and  b e e n shown t o p l a y ing.  Ennis  of peat  a significant  d e c r e a s e d by  which r e a c t e d with metal complexing  60%  by  specific  reagents  f o r 307 and o  from metal  'block'  acid.  hydroxyl  Lewis.and  saturated  that groups of p h e n o l i c ,  flected  acidity  c o p p e r and  The  authors  to c o n t r o l the CuOH  cupric  extent  ions  zinc  g a t e humic and Khanna and  c a r b o x y l i c and  Schnitzer  carboxyl  for phenolic  which  C r o s s 1975).  This  Sigmoidal that  the  Monovawith  sites. investi-  (Beckwith  1959;  technique added  to  absence  of  curves  i n the  h u m i c and  fulvic  acid fractions  i n nature.  (1973) c o n c l u d e d f r o m s t u d i e s o f p r o t o n  two  shown  titration  b o t h monobasic or p o l y b a s i c  s o l u t i o n that  re-  also  v a r i a t i o n a f t e r known v o l u m e s o f b a s e s a r e  suggest  trace  groups  Gamble  and  release  d e c r e a s e ) o c c u r r i n g when c o p p e r i o n s were added t o fraction  for  have o f t e n been u s e d to  complexing r e a c t i o n s  from  unidenti-  S o l u t i o n pH  t o bond w i t h  titrations  f u l v i c metal  humic s o l u t i o n s .  and  t o w h i c h m e t a l s were c o m p l e x e d .  S t e v e n s o n 1962;  m e a s u r e s pH  exchange,  concluded  f u n c t i o n a l g r o u p s was  demonstrating preference  Potentiometric  c o u l d be  the  i o n s were t h o u g h t  +  metal ions  type of  that  groups  p e a t , humic a c i d  i n humic s u b s t a n c e s . and  their  Broadbent  s t r o n g l y a c i d l i g a n d s were l a r g e l y r e s p o n s i b l e  metal complexing  lent  a d d i t i o n of organic  continuous  synthetic phenol-carboxylic  fied  capacity  Experimental r e s u l t s indicated  (1961;1961) s t u d i e d  data  complex-  c a t i o n exchange  exchange c a p a c i t y .  hydrogen i o n s ,  their  the  the  f u n c t i o n a l groups to  ability.  total  f u n c t i o n a l groups have  r o l e i n humic-metal  g r o u p s were r e s p o n s i b l e  of the  workers  hydroxyl  (1962) o b s e r v e d t h a t  c o u l d be  carboxyl  phenolic  r e a c t i o n s were p o s s i b l e .  a fulvic  (pH acid  These i n -  11  Figure  1-3:  fraction  R e a c t i o n s b e t w e e n c o p p e r and f u l v i c  (Gamble and S c h n i t z e r  1973).  acid  12 v o l v e bonding The  o f copper  c a r b o x y l groups  groups  are ortho r e l a t i v e  a t t a c h e d to the f u l v i c  a c t i o n s w i t h copper sidered  obtained  a c i d molecule.  found  (Beckwith  that  from r e a c t i o n  resembled  Two  1959;  the sequences of d i f f e r e n t  Irving  Stevenson  m e t a l s w i t h humic  decreases  (1966;1967), however, f o u n d  m e t a l - h u m a t e complex s t a b i l i t i e s ,  that  (1948).  solutions  lead>  S c h n i t z e r and  relative  strengths of 3.5,  They found  d i d not  the order to  c o p p e r > i r o n > n i c k e l > l e a d > c o b a l t > z i n c > manganese.  o b s e r v e d v a r i a t i o n s between measured humate-metal o r complex s t a b i l i t i e s  be  due  to d i f f e r e n t  or  different  and  source m a t e r i a l  example, d e m o n s t r a t e d  a c t i o n s o f c o p p e r w i t h humic a c i d the curves r e f l e c t e d  soils  humic f r a c t i o n  these r e s u l t s  solutions  that  (1975),  that  t h e shape o f Davis et a l .  the exchange c a p a c i t y o f a  e x t r a c t e d f r o m p e a t was  exchange c a p a c i t y o f t h e o r i g i n a l  Cross  curves obtained f o r r e -  of varying maturity.  (1969) f o u n d t h a t , u s i n g c o p p e r ,  could  i n determinations  f o r humic s u b s t a n c e s .  in titration  The  fulvate-  the I r v i n g - W i l l i a m s s e r i e s  e x p e r i m e n t a l methods u s e d  com-  Relative  i n the o r d e r of  m e a s u r e d a t pH  f o l l o w the I r v i n g - W i l l i a m s sequence.  for  1962;  of p o t e n t i o m e t r i c - curves  c o p p e r •> n i c k e l > z i n c > cadmium>iron> manganese.  metal  re-  and number 1 i s c o n -  Khanna and  and W i l l i a m s  s t r e n g t h o f complex s t a b i l i t i e s  be  possible  the t h e o r e t i c a l order of o r g a n o - t r a n s i t i o n metal  e s t a b l i s h e d by  Skinner  groups.  t h e most p r o b a b l e .  1969)  plexes  carboxyl  to the p h e n o l i c h y d r o x y i  a r e shown i n F i g . 1-3  S e v e r a l workers Khan  t o p h e n o l i c h y d r o x y i and  g r e a t e r t h a n t h e maximum  peat.  d u r i n g the a l k a l i n e  They c o n c l u d e d  from  e x t r a c t i o n o f t h e humic  13 fraction  additional  ing with  copper.  The  e x c h a n g e s i t e s were made a v a i l a b l e  f o r m a t i o n o f humate and  fulvate  complexes  m o b i l i t y of metals  through s e v e r a l p o s s i b l e  R a s h i d and L e o n a r d  (.1973) o b s e r v e d t h a t h u m i c a c i d  w i l l markedly  i n c r e a s e the s o l u b i l i t y  p h i d e s , h y d r o x i d e s and the s o l u b i l i t y and  copper  carbonates.  of t r a n s i t i o n metal Baker  (1973) f o u n d  that  acid  C o a g u l a t i o n o f h u m i c and  Schitzer  ions  a r e added  fulvic  acid  solutions  comm-  to these substances.  (1972) s u g g e s t e d t h a t  coagulation  charged h y d r o p h i l i c  i s due  colloids.  to  The  concentration of d i f f e r e n t metals necessary to peptize  and  i s related Bisque  to i o n i c valence, i o n i c  (1968) p r o p o s e d  explain relative mobility  that  o f m e t a l humate and  t h e humic macro m o l e c u l e s , a r e a l m o s t t h e p r e s e n c e o f low  cation  ion concentrations w i l l ,  with metal ions.  Foss e f f e c t  colloid  shape  due  groups.  attached to  result  i n the c o l l o i d  changing  phobic  state  f o r m due structural  repulsion  change  to the  groups from  attraction  change w i l l  from a h y d r o p h i l i c  i n the p r o c e s s , c o a g u l a t i n g .  metal  of these  i s a structural  This  can  colloids.  Increasing  to the bonding  to a c o i l e d  between the d i f f e r e n t  and,  groups,  however, d e c r e a s e t h e m u t a l  groups  a stretched  fulvate  and  completely dissociated  activities.  between t h e f u n c t i o n a l The  strength  the Foss e f f e c t  C a r b o x y l i c and p h e n o l i c h y d r o x y l f u n c t i o n a l  in  sul-  i n c r e a s e d w i t h the a d d i t i o n o f f u r t h e r humic  these c o l l o i d s Ong  solutions  zinc  formation of negatively  pH.  increase  interactions.  o f metal-humates o f such metals  o n l y o c c u r s when m e t a l  critical  can  as l e a d ,  solution.  Khan and  f o r bond-  also  to a hydro-  14 1-5  DIAGENESI.S IN BOGS Reactions  ing  between m i n e r a l s , m i c r o o r g a n i s m s  f l u i d s which occur  after  the  s e d i m e n t has  b u t b e f o r e metamorphism a r e t e r m e d d i a g e n e s i s Photosynthesis,  f e r m e n t a t i o n and  anaerobic  basic  d i a g e n e t i c r e a c t i o n s which occur  ments  (Berner  living bolic  1971).  processes.  producing  bases  (1969) o b s e r v e d such  decrease  as  i n pH  falling  t o b e l o w 5.0.  aerobic bacteria Reducing  also  are important  decompositions. anions  such  as  acetic pH.  neutralizing  through  show  p r o g r e s s i v e consumpthe pore water  by  sediments.  the removal  of anaerobic b a c t e r i a .  of  These bacother  organic  c a t a l y s e the r e d u c t i o n of  f o r corresponding processes  simple o r g a n i c s u b s t r a t e s such  Stumm and Morgan  substances  s e d i m e n t w a t e r s can The  meta-  s u l p h a t e under c o n d i t i o n s which are t h e r -  Energy f o r these b i o l o g i c a l  genic reactions w i l l  as  pore water  i n the deeper  B a c t e r i a l processes  sedi-  oxygen f o r t h e i r  i n f e r m e n t a t i o n r e a c t i o n s and  m o d y n a m i c a l l y unfavourable  of  Eh  c o n d i t i o n s , produced  oxygen, f a v o u r the a c t i v i t y  various  use  downward t h r o u g h  decreases  are  aquatic plants,  t h a t i n the absence of  t i o n o f oxygen d i f f u s i n g  teria  and  dioxide decreases  amines o r c a l c i u m , bog  1969).  decomposition  T h e s e r e a c t i o n s decompose o r g a n i c  carbon  enclos-  deposited,  (Bluck  low m o l e c u l a r w e i g h t o r g a n i c a c i d s s u c h  a c i d which, w i t h Berner  layers,  been  the  i n o r g a n i c r i c h bog  Aerobic bacteria  i n s u r f a c e pore water  and  inorganic reactions.  i s o b t a i n e d by o x i d a t i o n  as g l u c o s e .  Different  o n l y o c c u r w i t h i n c e r t a i n Eh  (1970) d e m o n s t r a t e t h a t i n t h e pH  and  pH  bioranges.  range 7 to  and w i t h a b u n d a n t o r g a n i c s u b s t r a t e , n i t r o g e n i s i n i t i a l l y  re-  8  15 duced to e l e m e n t a l  nitrogen,  the hydrogen s u l p h i d e t o methane. sity  as  This  a result  and  finally  upward t h r o u g h t h e occur  dation  occurs  form r e l a t i v e l y ducing  organic  Several  The  s e d i m e n t a r y column may  the  o f bogs where s t r o n g l y  re-  i n contact  sulphides  during  with  the  atmosphere.  marine sediment  Rickard  and  1970;  B u b e l a 1970;  c e r t a i n metal  diagenesis,  are  framboids,  Bass B e c k i n g  sulphide  consist of  small  accumulations of m i c r o c r y s t a l l i n e p y r i t e , (1963) o r i g i n a l l y  proposed that  bacteria colonies.  demonstrated that  t h e y may  be  f o r m e d by  1970;  Berner  and  Moore  commonly syngen-  These t e x t u r a l  (; 50um) s p h e r o i d a l  galena  or s p h a l e r i t e . represented  s t u d i e s , however, h a v e precipitation,  c o n d i t i o n s , without presence of b a c t e r i a Rickard  and  evidence f o r  framboids  More r e c e n t  Ramm  textures,  deposits.  form-  diagensis  L o v e 1963;  o f t e n u s e d as  o f many s e d i m e n t a r y o r e  f o r m s , known as  K a p l a n 1973;  termed  surface  are  This  oxi-  c l o s e to the  Presence of  formed d u r i n g  oratory  be  q u a n t i t i v e models have been p r o p o s e d f o r the  1974;  fossil  at which  can  Lambert  Love  point  a  boundary  Bella  origin  species  1969).  K a p l a n 1973;  etic  of reduced  diff-  (Berner  (Sweeney and  1961).  and  boundary  soils  a t i o n of metal  Eh.  d i f f u s e i n t o pore waters having  d i s s o l v e d oxygen c o n c e n t r a t i o n .  oxidation-reduction  a c t i v e at a c e r t a i n  Oxidation  higher  in a vertical  dioxide  i n c r e a s e p o r e w a t e r pH  sediment.  when t h e s e p r o d u c t s  carbon  sulphate  also p a r a l l e l ecological  b a c t e r i a are  reactions  of  of  i n c r e a s i n g e l e c t r o n den-  o f e a c h r e a c t i o n and  Products of r e d u c t i o n  will  by* r e d u c t i o n  reduction  sequence r e f l e c t s  ranges i n which d i f f e r e n t  use  followed  1969;  under  (Sweeney  Kallioskoski  and 1969;  lab-  16 Kribek  1975).  Framhoidal  pyrite  textures, although g e n e r a l l y  a s s o c i a t e d with, m a r i n e environments-, in  l a k e sediments  1973)  and  bogs  Papunen water  (Papunen  (1966) s u g g e s t e d  that framboid  i n v o l v e d the  s p h e r i c a l humic c o l l o i d s .  m i n e r a l s w h i c h w o u l d be shape.  pated  i n t h e mechanism by  tion  the  framboid  no  sites  of metal  concentration  and  phate contents  the  sulphide spherpartici-  form.  for formation  of  finally be  pyrite.  involved  indirectly,  V a r i a b l e s which  relative  to  control  sulphate  and  diffusion  the r a t e of b a c t e r i a l  rates  sulphate  In o r g a n i c r i c h marine sediments the extent o f  formation w i l l  studied  and  to  sulphur, i n addi-  sulphides include cation  of p r e c i p i t a t i o n  much l o w e r  framboid  are e s s e n t i a l ,  of sulphide anions.  ferric  iron-hydrox-  i n t e r a c t i o n may  substrate concentrations, their  reduction. phide  developing  biological  formation bacteria  precipitation  to  colloidal  demonstrated t h a t elemental  direct  provide a source  organic  reduced  i r o n m o n o s u l p h i d e , m a c k i n a w i t e , and  Although in  stable  i n fresh  e n t e r e d a zone  characteristic  to the hydrogen s u l p h i d e i s e s s e n t i a l  initially  of  t h a t humic a c i d s o n l y  forming  systems which p r o t e c t e d the (1969) a l s o  Where t h e s e  i r o n w o u l d be  Papunen c o n c l u d e d  formation  association  r e t a i n e d i n the  oidal  Berner  (Miedema  1966).  rich, i n hydrogen s u l p h i d e the  ide  identified  ( V a l l e n t y n e 1962) , e s t u r i n e s e d i m e n t s  sediments i n i t i a l l y  ions with  have a l s o b e e n  than  be  ionic  a f u n c t i o n of the a v a i l a b l e metal diffusion  of freshwater  rates  sediments,  i n marine environments.  sources  (Berner  1971).  sul-  ion Sul-  however, a r e g e n e r a l l y Ramm and  Bella  (1974)  f o r h y d r o g e n s u l p h i d e commonly f o u n d  in re-  17 duced, i n t e r t i d a l  sediments.  They d e t e r m i n e d ,  experimentally,  t h a t - b e l o w d i s s o l v e d s u l p h a t e c o n c e n t r a t i o n s o f 300 ppm, rate o f sulphate  r e d u c t i o n , by b a c t e r i a ,  concentrations o f sulphate carbohydrate  (which  Minnie's ester  a n d amine.  ranged from  ation, total  sulph-  0.17 t o 0.217.) i n p e a t samples f r o m  ( s u l p h u r i n a C-Q-S l i n k a g e , o f t e n t e r m e d HI r e d -  a n d 17o was p y r i t i c  sulphur.  Lowe  1977) r e p o r t e d t h a t undecomposed sulphur  higher  t h a t 257> o f t h e t o t a l  l a k e , O k e f e n o k e e swamp, G e o r g i a was i n t h e f o r m o f  sulphate  ucible)  depends o n r e l a t i v e  and o f o r g a n i c s u b s t r a t e s such as  C a s a g r a n d e e t a l . (1977) f o u n d ur  the  than  ranging  contents  (private  sedge p e a t  communiccan have  f r o m 1 t o 1.67o w h i c h i s s i g n i f i c a n t l y r e p o r t e d b y C a s a g r a n d e a_t a l .  1-6 STUDIES OF TRACE METAL DISTRIBUTION IN BOGS Many f a c t o r s may c o n t r i b u t e t o t h e f i n a l metals  i n bogs.  D i s c r i m i n a t i o n b e t w e e n anomalous t r a c e  d i s t r i b u t i o n s which could r e f l e c t and  h i g h background  cult.  Usilk  i n peatlands  levels  geochemical  chemical  Trace metals to  o f background  geomorphological,  characteristics  i n peat have been found  (1958) d e t e r m i n e d  data  hydro-  o f bogs.  t o r a n g e f r o m 1 ppm  s e v e r a l p e r c e n t where bogs a r e l o c a t e d i n m i n e r a l i z e d  Walsh and Barry  diffi-  p r o s p e c t i n g methods  that determination  and e c o l o g i c a l  metal  sources  i norganic materials i soften  (1968) r e v i e w e d and concluded  significant mineral  would r e q u i r e knowledge o f g e o l o g i c a l , logical,  concentration of  t h a t t h e copper content  areas. of or-  g a n i c m a t e r i a l s f r o m s e v e r a l I r i s h b l a n k e t bogs d i d n o t e x c e e d 20 ppm a n d v a l u e s  f o r a l l elements p r o g r e s s i v e l y decreased  with  18 depth.  This trend  to the system  suggested that  through surface p r e c i p i t a t i o n  ground water.  Similar,  v e r y low,  c o n t e n t s were f o u n d by K o c h e n o v a result  t h e m e t a l s were i n t r o d u c e d  o f numerous m e t a l  rather  transition  and r a r e  of the metals ogy.  Other  ships.  distribution  studies  i n o r g a n i c m a t e r i a l would r e f l e c t i n v e s t i g a t i o n s have demonstrated  increased  Coope  from l e v e l s  the g l a c i o l a c u s t r i a n also  (1966) f o u n d t h a t  b e l o w 50 ppm  i n peat  clays beneath  i n c r e a s e d w i t h d e p t h and  surficial  clays  distribution  underlying geol-  similar copper  and  t o above 200  levels.  low  copper  primarily,  C o p p e r d i s t r i b u t i o n was  also  t a n c e f r o m u n d e r l y i n g basement and  zinc ppm  Soil  in pH  (1967) n o t e d t h a t v a l u e s i n  concluded that  sphagnum p e a t s were r e l a t e d ,  relation-  and  an O n t a r i o bog.  Salmi  as bogs.  s e v e r a l Finnish bogs r e f l e c t e d u n d e r l y i n g g r a n i t e s Manaskaya e t a l . ( 1 9 6 0 )  earth  i n Russian  and p e a t were c o m p a r a t i v e l y t h i n ,  G l e e s o n and  by  f t a l . (1967); Tarakanova(1971)  Tarakanova o b s e r v e d , however, t h a t p r o v i d i n g between b e d r o c k  than  c o n t e n t s i n sedge  t o low  thought  degree  or limestones.  bedrock  t o depend on  o f ground water  dis-  migra-  tion. T r a c e m e t a l s may  e n t e r bogs by  diffusion  through u n d e r l y i n g  sediments,  l a t e r a l movement o f m i n e r a l i z e d g r o u n d w a t e r  face water  transport  1971; bog  Borovitskii1970).  system  organic  of clay  to  and  detrital  A r e a s where w a t e r  can c o r r e s p o n d t o l a r g e  sediment  v a l u e s up  sized  especially  grains  The  discharges into  trace metal  a  accumulation i n  a t t h e edge o f b o g s .  source of metal,  sur-  (Tarakanova,  8.87o were f o u n d , by Cannon (1955) i n p e a t  f r o m bog m a r g i n s .  or  Zinc samples  t r a n s p o r t e d to the  bog  19 by g r o u n d w a t e r , was a s m a l l b a s e - m e t a l hosted  i n dolomite.  sulphide  concentration  (1961) a n d B o y l e (1977) f o u n d t h a t  Fraser  h i g h c o p p e r v a l u e s a p p r o a c h i n g 17o i n a New B r u n s w i c k b o g were related  to entry  Mehrtens  et a l .  o f ground water  through springs  and seepages.  (1973) t r a c e d s i m i l a r c o p p e r l e v e l s  s m a l l W e l s h b o g t o movement  o f ground water  (27>) i n a  through a b u r i e d  stream channel. Different ate d i r e c t i o n ized  trace metal patterns  c a n o f t e n be used  o f g r o u n d w a t e r movement  source.  Maximum c o n t r a s t  i n p e a t f r o m a Finnish  and l o c a t i o n o f a miner-  o f copper and n i c k e l  b o g sampled  to indic-  by Nieminen  anomalies  and Y l i r u o k a n e n  (1976) f o l l o w s a h o r i z o n t a l l a y e r a t a n i n t e r m e d i a t e d e p t h i n the bog.  This  ground water  distribution  solutions  till  covered bog f l o o r .  that  copper,  reflected  Eriksson  l e a d and z i n c  exposed  close  bedrock  and E r i k s s o n  anomalies  s i d e above t h e b o g .  on t h e  (1976) o b s e r v e d  i n t h e H i n s o n b o g , Sweden, sulphides outcropping  Higher lead  and copper v a l u e s  t o t h e edge o f t h e b o g , b u t z i n c was c o n c e n t r a t e d  i n peat a t a greater entry.  from p a r t a i l l y  lateral migrationof  d r a i n a g e from w e a t h e r i n g m e t a l  on t h e h i l l occurred  reflects  Relative  distance  from the p o i n t  distribution  ground water  f l o w and m o b i l i t y  migration.  The e v e n ,  vertical  o f ground  o f these metals  water  indicate  that  o f m e t a l - h u m a t e complexes distribution  o f copper  Whipsaw c r e e k bogs s t u d i e d b y G u n t o n a n d N i c h o l  control  i n the  (1975) s u g g e s t e d  s i g n i f i c a n t m i n e r a l sources below the c o p p e r - r i c h  materials.  V e r t i c a l m i g r a t i o n o f c o p p e r was n o t a p p a r e n t l y strongly influenced",  20 by v a r i a t i o n  i n the g r g a n i c matter content.  Vegetation,  environment  pH  and Eh may  have a s t r o n g  on t r a c e m e t a l d i s p e r s i o n t h r o u g h b o g s . ed t h a t  the d i f f e r e n c e  bdenum and tion  lead  of nickel,  erent  considermoly-  bogs f r o m c o n c e n t r a -  t i t a n i u m and v a n a d i u m a t d e p t h r e f l e c t e d  diff-  s o l u b i l i t i e s when m e t a l i o n s m i g r a t e d t h r o u g h z o n e s He  a l s o observed accumulation of copper  z i n c r e a c h i n g 3000 ppm l e v e l s b e l o w 300 relationship  ppm  f o r these metals  o f copper  central  (1966). B.C.  has been d i s c u s s e d ,  located  and E l l i o t t close  fibrous  surface peat.  tween t h e s e m e t a l s was  The  t o pH  in detail,  (1971) s t u d i e d  by  several  d e p l e t i o n o f copper i n  A reverse relationship  be-  o b s e r v e d , however, i n d e e p e r , more  composed o r g a n i c s e d i m e n t s .  From t h e r e s u l t s  geochemical p r o s p e c t i n g program  of  t o m i n e r a l o c c u r r e n c e s , and  f o u n d a c c u m u l a t i o n o f molybdenum, b u t acid,  and  i n the host peat.  and molybdenum i o n m o b i l i t i e s  Horsnail  bogs,  of  i n t h e Ledum s h r u b t w i g ash. compared t o  secondary environment  Hansuid-  the  (1960)  o f manganese, i r o n ,  i n s u r f a c e p e a t o f Finnish  d e c r e a s i n g pH.  the  in distribution  Salmi  effect  of a  de-  regional  conducted through c e n t r a l  B o y l e et. a l . (1975) c o n c l u d e d t h a t molybdenum a c c u m u l a t e d a l k a l i n e b o g s , w h e r e a s , c o p p e r v a l u e s were g r e a t e r  B.C. in  i n acid  swamp s. Effect on who  copper  o f environment,  vegetation  a c c u m u l a t i o n has been s t u d i e d  investigated  the Tantramer  material  f r o m an e x p o s e d  a small,  open c l e a r i n g  c o v e r and o r g a n i c m a t t e r i n d e t a i l by F r a s e r  swamp, New  p e a t bank r e s t i n g  c o n t a i n e d up  t o 10%  Brunswick. on  sandy  copper.  (1961)  Organic loam  within  Copper  21 values reaching collected  1%  occurred  i n samples o f t h e  c l o s e t o ground water  seepages.  sandy  Copper  loam contents  b e l o w 17o, however, were f o u n d  i n s u r f a c e m a t e r i a l f r o m an  of  surrounded  swampy f o r e s t w h i c h p a r t l y  sharply ers  increased, with  three feet  that  the  below the  original  destroyed  r e a c h i n g 5%  swampy f o r e s t  clearing  the primary  of the peat  depth,  bank e v a p o r a t i o n  swampy f o r e s t  tree  cover.  a r e due  Low  reflect  Larger  into  minerals dizing,  Following  copper values  decreased  accumulation induced  i n surface layers of  evaporation beneath  Absence of v i s i b l e  a l k a l i n e nature  of the  thought  c o m p l e x e s was  o r g a n i c n i t r o g e n f o r m s may  considered  other  tation  from d i l u t e  and  conditions.  Native fine  (1949) i n a C o l o r a d o  c o p p e r a l s o i n an o r g a n i c  due  the  copper  of  i n the peat.  effect. precipi-  from 1 to  g r a i n e d p y r i t e were i d e n t i f i e d occurrence  accumulation  has  fac-  metals  s o l u t i o n s under f a v o u r a b l e  An  nit-  Later  f o r m i n bogs by  copper g r a i n s r a n g i n g  bog.  oxi-  the major  a s s o c i a t i o n of  may  sol-  Formation t o be  however,  to the  a r e l a t i v e l y minor  iron minerals  ground water  associated with  be  syngenetic  t o be  environment.  s t u d i e s , however, have shown t h a t t h e  Eckel  s p r i n g water  c o n c e n t r a t i o n of copper i n  t o r r e s p o n s i b l e f o r copper accumulation  size  concluded  from i t s exposed s u r f a c e  i n o r g a n i c s e d i m e n t was  C o p p e r and  lay-  copper abundances i n deeper l a y e r s ,  the peat.  rogen bonded m e t a l  pH  Fraser  t o l a t e r a l movement o f c o p p e r - r i c h g r o u n d w a t e r  utions  with  Values  copper i n peat  floor.  growth.  upward m i g r a t i o n o f s o l u t i o n s and  the  clearing.  f o r m e d when c o p p e r r i c h  forest  the o r g a n i c m a t e r i a l .  the  area  by  of native  been r e p o r t e d  by  Eh 10mm  22 Lovering identified  (1928).  Cannon  l e a d and z i n c  more t h a n 87o z i n c  from  (1955), u s i n g X - r a y  sulphides i n peat  the Bergen  bog,  (1966)  described framboidal p y r i t e  exposed  i n a Finnish p e a t bog.  the presence and  of iron  i r o n phosphate  that  (vivianite)  from  New Y o r k  state.  Papunen  sulphide layer  (1977) a l s o r e p o r t e d  s u l p h i d e (mackinawite).,  iron  carbonate  i n a D a n i s h r i v e r bog.  t h e pH o f t h e o r g a n i c r i c h  s u l p h i d e ranged  samples c o n t a i n i n g  i n an i r o n  Postma  diffraction  sediments  He f o u n d  containing the iron  5.5 t o 7.4 a n d t h e E h r a n g e d  +100  from  to +250 mv. 1-7 SUMMARY Factors which c o u l d i n f l u e n c e m o b i l i t y include  the nature o f the peat  changes p r o d u c e d substances ces.  forming environment,  through o r g a n i c d i a g e n e s i s , f o r m a t i o n o f humic  Numerous i n v e s t i g a t o r s h a v e d e m o n s t r a t e d lead', c o b a l t , n i c k e l  complexes w i t h humic and f u l v i c ility  o f t h e s e complexes w i l l  bonding ions,  between the m e t a l s  pH a n d i o n i c  physical  and z i n c  acid  reflect  relative  substanmetals  strong  i ns o i l .  Stab-  strengthof  a n d t h e humic o r f u l v i c  strength of solutions  acid  c o n t a i n i n g the  fractmetals.  c o l l o i d s may a l s o  o f the m e t a l - o r g a n i c complexes.  p r o p o r t i o n o f the metals n i t r o g e n groups.  that  form  fractions  s t a t e o f the humic and f u l v i c  affect mobility  i n bogs  chemical  a n d i n t e r a c t i o n o f m e t a l s w i t h t h e s e humic  such as copper,  The  o f metals  A small  c o u l d a l s o b e s t r o n g l y bound t o s o i l  Authigenic metal  reducing organic accumulations  s u l p h i d e s can occur i n  although organic sulphur  forms  a r e most a b u n d a n t i n p e a t . M e t a l d i s t r i b u t i o n p a t t e r n s i n bogs h a v e b e e n  frequently  23 studied found  d u r i n g the p a s t  t h a t the metals  organic matter  from  thirty  years  and  investigators  were g e n e r a l l y c o n c e n t r a t e d by  dilute  r e t a t i o n of geochemical  ground water s o l u t i o n s .  anomalies  however, o f t e n c o m p l i c a t e d by i n t e r a c t i o n s which lead  have  the Interp-  a s s o c i a t e d w i t h bogs i s ,  t h e complex c h e m i c a l  to the accumulation  of  and  metals.  physical  CHAPTER 2 DESCRIPTION OF 2-1  LOCATION AND The  part  from  British  a r e a c o v e r i n g r o u g h l y one  Columbia  ( F i g . 2-1).  ding r e g i o n a l topography relief  to the e a s t .  change c o r r e s p o n d i n g ,  reflects  Locally roughly,  e l e v a t i o n are r o l l i n g , valleys.  d i s s e c t e d by  deep v a l l e y s Relief  ce g r a d i e n t s r a n g e f r o m The  ion of g e o l o g i c a l  the  t h e r e i s a marked to the  1350  wooded h i l l s  m  r e g i o n and The  10  Above  m,  and  however, a r e o f t e n  m  and  land  e.g. surfa-  study  area i s  i n t o Whipsaw c r e e k  through  reflect  i s through order  bogs w h i c h a r e r e l a t i v e l y  range from  topographic  degrees.  E x t e r n a l property drainage  small h i l l s i d e  Thompson  with gentle slopes  surface  or zones o f h i g h e r r o c k  First  surroun-  which flow major streams  These probably  faults  the  contour.  t h e p r o p e r t y i s 200  5 t o 40  network o f s m a l l streams.  area.  m and  i n t h e w e s t and  streams which f l o w south  steep w a l l e d v a l l e y s .  summer  creek.  g e n t l e u n d u l a t i n g p l a t e a u n o r t h of the  d r a i n e d by  property  t r a n s i t i o n between h i g h e r  through  on  Princ-  of g r a v e l l e d  a r e a i s 158  L a n d s u r f a c e s b e l o w 1350  Whipsaw c r e e k .  sity.  19 km  of  forms  CLIMATE  study  of the Cascade mountains  plateau  broad  to the  w h i c h f o l l o w t h e e a s t s i d e o f Whipsaw  Mean e l e v a t i o n o f t h e  kilometre  northwest  Access  h i g h w a y i s by  PHYSIOGRAPHY, DRAINAGE AND  this  square  c l a i m g r o u p l o c a t e d 29 km  the Hope-Princeton  roads  STUDY AREA  ACCESS  of a mineral  eton,  2-2  study  THE  fracture  den-  a subdendritic  streams o f t e n r i s e common t h r o u g h o u t  to s e v e r a l thousand  l o c a t i o n o f t h e c e n t r a l bog,  express-  square  the o u t l i n e  in the  metres i n of  the  Plate bog. the  2-1:  A west  looking  S t a t i o n G 1.0 open a r e a  v i e w o f t h e w e s t end  i s approximately  shown i n t h e  foreground  located of  the  of  the  i n the  central  center  photograph.  of  26 study  a r e a and o t h e r bogs on t h e p r o p e r t y The  c e n t r a l bog o c c u p i e s  depression ient.  surrounding  e l e v a t i o n s correspond  irregularly  i n P l a t e 2-1.  Larger  ably r e f l e c t water r i s i n g Water a l s o d i s c h a r g e s collared  on t h e h i l l  First areas  order  streams  bog  s u r f a c e and r e f l e c t  the  stream  grees with  Shallow,  over  terior  on  dendritic  semi-stagnant  stream  on t h e  ponds a r e a l s o common o n t h e  the v e r y poor i n t e r n a l  drainage  a single  of the  channel  a shallow  which  valley;  i n c r e a s e s f r o m 10 t o 15 de-  d r a i n i n g the n o r t h e r n bog.  o f the study  area r e f l e c t s  a transition  o f the c o a s t a l mountains,  environment.  Annual p r e c i p i t a t i o n  from  high  to a semi-arid, i n of roughly  70 cm a t  e l e v a t i o n i s r e p r e s e n t e d b y s e v e r a l m e t r e s o f com-  snow w h i c h c a n p e r s i s t fluctuations  the i n t e r f l u v e  from t h i s  hole  seepage  p a t t e r n o f channels  p a r t o f the b a s i n through  typical  the p r o p e r t y pacted  zones.  1000 m d i s t a n c e f r o m t h e b o g m a r g i n t o c o n f l u e n c e  Climate  Large  f l o w from s p r i n g s and marshy  gradient i n this valley  a larger  rainfall,  fault  f r o m one diamond d r i l l  The s t r e a m s combine i n t o  t h e lower  s i d e from the  s i d e n o r t h o f the bog.  floor.  drains  discharge  s p r i n g s n o r t h w e s t o f t h e bog prob-  continuously  bog  soil.  Several  to p o i n t s o f ground water  t o the s u r f a c e through  to form a meandering,  organic  grad-  the main d e p r e s s i o n a t s l i g h t l y  from the break i n s l o p e s e p a r a t i n g the steep h i l l concave bog b a s i n .  shaped  a t a 5 t o 10 d e g r e e  features are i l l u s t r a t e d  s m a l l e r marshy a r e a s higher  an e l o n g a t e  s l o p i n g to the southeast  Surface  a r e shown i n F i g . 2 - 2 .  on t h e g r o u n d u n t i l  o f water t a b l e , south  accumulation  observed  o f t h e bog, r e f l e c t early  i n t h e summer.  late  June.  i n a deep sample p i t aquifer  recharge  Stream water  flow  27  S C A L E 1:15.640.000 OR ONE INCH TO 2 5 0 MILES MILES  K)0  • iLOMrrR£$  Figure  50 100  2-1. L o c a t i o n  0 0  10(3 100  (•)  200  200 300  900 400  500  <OQ KOO  500 700  o f the study  000  HilCS Kli.OME.TRES  area.  28  Figure  2-2:  O u t l i n e of mineral location  of  bogs.  property  anci  29 decreases order  f r o m a J u n e maximum and  channels  during  late  may c e a s e c o m p l e t e l y  in  first  summer.  2-3 EFFECTS OF GLACIATION AND PLEISTOCENE DEPOSITS O r i e n t a t i o n of g l a c i a l two  possible Pleistocene  1960).  Thick  land is  and  c o n t i n e n t a l i c e sheets  deposited  surface.  the bogs. 2.5Y may  outcrop  covering  2500 m a b o v e s e a  extensive  basal  Average b a s a l  2 t o 3 m and  and  till  till  basal  till  c o n s i s t i n g of  5Y 3/2)  layer  1 t o 2 m t h i c k immediately below the  and  v o l c a n i c rock  north  and  have l o n g This  The  types  cropping  and  flow  of  the  fabric  s i l i c a t e minerals,  weathered to c l a y s .  The  till  to boulders  than quartz, is visible  comminuted g r a n o d i o r i t e  Elongate,  lenses  occur  the  and may  com-  sheet.  i s deeply  weathered preserved,  have  complet-  i n trenches  g r a n o d i o r i t e i s weathered to a depth of  o r i g i n a l bedrock surface.  to  layers reflects  i s frequently  other  effect  interface.  granitic  below the moving i c e  bedrock s u r f a c e beneath the rock  till-bog  t i l l - b e d r o c k contact.  i n deeper t i l l  till  dark  forms a  over a wide area  t o the  loam  Reduced,  schistose,  They r a n g e f r o m p e b b l e s  although v e s t i g i a l  the E a g l e  out  area  colour  sandy  sandy c l a y t i l l  dominantly  axes a l i g n e d p a r a l l e l  most o f t h e ely  are  o r i e n t a t i o n of c l a s t s  pression  and  east.  till  study  (Munsell  clasts.  grey  i n the  (Mathews  c r e s t s t o 12 m b e l o w  olive  Rock c l a s t s  colour  r e g i o n may  i n the  sandy c l a y or  c o n t a i n up t o 507o s u b a n g u l a r r o c k (Munsell  level  thickness  ranges from 1 m on r i d g e  the  (Hills  on a mature weathered  M o d e r a t e l y o x i d i z e d o l i v e brown  5/4)  shape i n d i c a t e  i c e advances from the n o r t h e a s t  have r e a c h e d e l e v a t i o n s o f 1944)  straie  3 m below  where the  h i g h l y weathered, within  the b a s a l  till.  The  30 l e n s e s have s h a r p dip  angle  contacts, w i t h  to the h i l l  till  slope gradient.  l a t i o n s h i p between l e n s e s and c e n t r a l bog  the  till  w h i c h have a  example o f t h e  re-  from a t r e n c h n o r t h o f  the  i s shown i n F i g . 2-5a.  An  similar  The  l e n s e s were  probably  s u r f a c e bedrock, l a y e r s w h i c h were removed by m o v i n g i c e forced  into  the b a s a l t i l l  Communication During drainage  occupied  occurred  developed and  the  Hills  Streams r i s i n g  (1960)  a melt  1430  .... e l e v a t i o n l o c a t e d  m_  fill  and  water channel  the  A  1600  dis-  m of  progressive  clay,  exposed  h i g h w a y , may  re-  deposits. of the  land surface north of Bogs s t a r t e d  where g r o u n d w a t e r d i s c h a r g e d i n these  R e g i o n a l l y , the  depressions  east-west  d r a i n i n g creeks.  the  to develop to  are a c t i v e l y  channel  systems  dominated P r e - P l e i s t o c e n e topography have been r e p l a c e d north-south  due  succession  silty  has  which  irregularly  g r a v e l s above t h e  drainages.  sloping depressions  area.  and  Copper Creek.  extensive white  Pleistocene u p l i f t  surface.  creek v a l l e y  s i d e c l o s e t o the Hope-Princeton  area rejuvenated  gently  lake  i n t h e Whipsaw v a l l e y w i t h an  normal  A proglacial  during this period.  glacio-lucustrine  Post  Personal  through  sorted,subsurface  of g l a c i e r s  the v a l l e y  (Ashley,  i c e , glaciers blocked  Terraced  have b e e n d e p o s i t e d  study  into  a s m a l l pass at the  lakes probably  ing  south  of the p r o p e r t y .  present  of the  i c e dams i n t h e u p p e r Whip saw  that this  tributed.,w e l l  on  retreat  initially,  suggested  wasting  planes  i n s e v e r a l of the major v a l l e y s .  drained,  may  shear  1976).  final  formed b e h i n d  south  along  and  by  in the erod-  which  31 2r,4 GEOLOGY; OF THE The  STUDY AREA  study area i s on the western margin of a 2000km l i n e a r  b e l t of T r i a s s i c and Lower J u r a s s i c v o l c a n i c s and known as the Quesnel Trough.  sediments  These r o c k s , r e f e r r e d to as  N i c o l a - T a k l a - S t u h i n i v o l c a n i c assemblage, are bounded by Omineca C r y s t a l l i n e B e l t , to the e a s t , and by the Coast ine  B e l t , to the west.  the  the Crystal-  V o l c a n i c l i t h o f a c - i e s of the N i c o l a  Group rocks are dominated by c a l c - a l k a l i n e b a s a l t and a n d e s i t i c flows which were formed during subaqueous e r u p t i o n s from r e g i o n al faults.  Sedimentary l i t h o f a c i e s are r e p r e s e n t e d by  argillite,  limestone,  c h e r t , q u a r t z i t e and t h i n interbedded v o l c a n i c  members.  P y r o c l a s t i c and e p i c l a s t i c rocks, complex i n t r u s i v e s ,  breccias- and dyke swarms are a s s o c i a t e d w i t h the development of l a r g e v o l c a n i c centers d u r i n g a l a t e stage o f the v o l c a n i c c y c l e . Economic copper-molybdenum-precious metal d e p o s i t s , stockwork and disseminated  s u l p h i d e d e p o s i t s are c l o s e l y r e l a t e d to  a l k a l i c i n t r u s i v e s e.g.  Copper Mountain.  Sulphides were  em-  p l a c e d during l a t e stage f u m a r o l i c a c t i v i t y c l o s e to v o l c a n i c centers.  (Barr et al-. 1976)  Other types of d e p o s i t s i n the Quesnel Trough i n c l u d e skarn, v e i n and  small copper occurrences  porphyry stocks or dykes.  associated with  Copper s u l p h i d e s , hosted by N i c o l a  v o l c a n i c s , c l o s e to a small porphyry stock on the Whipsaw Creek p r o p e r t y may  be t y p i c a l of m i n e r a l i z a t i o n which, was  r e l a t e d to  the emplacement o f i n t r u s i o n s along f a u l t s d u r i n g l a t e r p e r i o d s of  deformation.  Geology of the study area and  e r a l c l a i m s , shown i n F i g . 2-3,  surrounding  has been compiled  g e o p h y s i c a l data and diamond d r i l l i n g  min-  from mapping,  r e s u l t s which were o b t a i n -  32  F i g u r e 2-3:  Geology  o f the m i n e r a l  property  ( a f t e r Mustard  1968)  33  ed  during  (Mustard  a property 1968).  Oldest volcanic  This  represented  are  grained b i o t i t e phases.  along  of the  and  amphibole  schists.  i n the w e s t e r n p a r t o f the the  i n t r u s i v e Eagle i n age  and  consists of  granodiorite with marginal  Both the  skarn  schists.  lenses  base metal s u l p h i d e s  pro-  pluton.  g r a n o d i o r i t e and  pale  aplite  aplite  a 150-160 d e g r e e s t r i k e w h i c h i s p a r a l l e l  adjacent  pegmatites,  the  and,  i s Jurassic-Cretaceous  pegmatitic  that  a r e metamorphosed N i c o l a Group  chlorite  also i n contact with  course  foliated  out  by  strongly foliated  intrusive  grey, and  rocks which crop  rocks  These are perty,  e v a l u a t i o n c o n d u c t e d by AMAX EXPLORATION  are to  Coarse f e l d s p a r - q u a r t z - b i o t i t e  containing epidote,  a l s o occur  i n the  g r o s s u l a r i t e and  intrusive  i n a d d i t i o n to  aplite. A transition  istic  of the  Nicola  c o n t a c t between the E a g l e  schists.  to east  and,  a related  Eagle  chloritic  finally  t o be  chlorite  dyke swarm has  late  stock  granodioritic occasional  schists.  A  age  aplite  small porphyry  occurs  at i n t e r v a l s  along  t o mid  intrusion  is  Tertiary  (Anderson  1974).  include feldspar-biotite  i n a matrix the  stock  of this  A b r e c c i a , c o n s i s t i n g of s c h i s t ,  a l t e r e d porphyry fragments  in  layers, i n -  porphyry,  b i o t i t e p o r p h y r y , q u a r t z - f e l d s p a r - b i o t i t e p o r p h y r y and porphyry.  west  a l s o i n t r u d e d t h e N i c o l a GroupThe  Cretaceous  Rock t y p e s w i t h i n t h e  of v o l c a n i c rocks  schists with  granodiorite contact.  thought  the  i n sequence through a t y p i c a l  a l t e r n a t i n g v o l c a n i c and  gneisses,  stringers with  Rock t y p e s  g r a n o d i o r i t e and  s e c t i o n are g r a n o d i o r i t e , r a f t s  granodiorite, jection  zone s e v e r a l h u n d r e d m e t r e s w i d e i s c h a r a c t e r -  intrusive  quartz  granodiorite  o f comminuted contact.  and  porphyry  Leucocratic  34 q u a r t z - f e l d s p a r - b i o t i t e porphyry  i s most common and  on  a r i d g e n o r t h and w e s t o f t h e  c e n t r a l bog.  in  dykes and  that the  these  interpretation  have intruded  crops  It also  o f g e o p h y s i c a l d a t a has  chloritic  out  occurs  suggested  s c h i s t s which extend  beneath  bog. Porphyry  this  process  litic and  r o c k s have been a l t e r e d h y d r o t h e r m a l l y s e v e r a l m i n e r a l assemblages  alteration  resulted  i n the  c h l o r i t e which are v i s i b l e  alteration with from m i n e r a l s  developed.  the development o f k a o l i n i t e rocks  c o n t a c t w i t h t h e N i c o l a Group s c h i s t s . ation  Local,  breccia  close to  Quartz  chlorite their  sericite  commonly i n t e n s e , s i l i c i f i c a t i o n  i s associated with  Copper, l e a d , z i n c , identified  alter-  on  granodiorite.  Pyrite  fracture  as  coarse  yritic  fillings  copper  associated with  occurs  porphyry,  over  i n schist,  schist  skarn  aplite  schist  and  o r as  aplite.  interval  have been found  up  l e n s e s i n the  s u l p h i d e and  or marginal  occurs  porphyry  t o 207 v o l u m e o f o  or  porph-  Chalcopyrite, closely associated  disseminated  one , s i x m  galena, c h a l c o p y r i t e  i s t h e most abundant  schistose rocks.  with pyrite, breccia,  Sphalerite,  disseminations comprising  and  and  concentration of sulphide minerals.  the p r o p e r t y . are found  as  of a p l i t e s  i r o n and molybdenum s u l p h i d e s h a v e b e e n  and m o l y b d e n i t e  Group  Argillic  i s g e n e r a l l y c o n f i n e d to the q u a r t z - f e l d s p a r - p o r p h y r y  dykes.  itic  epidote  types.  and m i n o r  occurs  during  Propy-  f o r m a t i o n o f abundant  i n a l l porphyry  i n the p o r p h y r i t i c  and  fracture Assay  fillings  values  of exposed b r e c c i a  adjacent  to the  of and  in 1% chlor-  porphyry-Nicola  contact. Bornite,  less  abundant t h a n  chalcopyrite,  o n l y occurs  as  35 f i n e d i s s e m i n a t i o n s i n porphyry or, at one l o c a t i o n , i n b r e c c i a . T h i n b l e b s or rounded c o a t i n g s of c o v e l l i t e and c h a l c o c i t e on c h a l c o p y r i t e are found i n the porphyry dykes c r o p p i n g out west of  the c e n t r a l bog.  Molybdenite i s , i n g e n e r a l , c l o s e l y asso-  c i a t e d w i t h the porphyry stock margins and forms f i n e on f r a c t u r e s and i n q u a r t z v e i n s . in ure  coatings  Magnetite i s c o n c e n t r a t e d  the c h l o r i t e s c h i s t c l o s e to the porphyry c o n t a c t , as f r a c t fillings  i n b r e c c i a , as d i s s e m i n a t i o n s i n the porphyry and  as massive lenses i n s c a m .  Hematite g e n e r a l l y occurs as  d i s s e m i n a t i o n s i n f e l d s p a r porphyry and  feldspar-biotite  porphyry rocks Three diamond d r i l l h o l e s , completed i n 1969, are l o c a t e d w i t h i n the study area. the  A g e o l o g i c a l cross s e c t i o n f o r p a r t o f  a r e a beneath the c e n t r a l bog has been c o n s t r u c t e d from  logs f o r these h o l e s and from g e o p h y s i c a l data. c o l l a r e d west  Hole #  drill W-2,  o f the bog, i n t e r s e c t e d a sequence o f green  c h l o r i t i c s c h i s t , a l t e r e d f e l d s p a r porphyry dykes, b i o t i t e f e l d s p a r porphyry dykes and t e r m i n a t e d i n grey banded canics.  vol-  at a v e r t i c a l depth o f 40 m ( F i g . 2-4). Average  grade o f the rocks was  0.2%  copper  and a 3 m i n t e r v a l o f q u a r t z v e i n e d  c h l o r i t i c s c h i s t assayed 0.57 copper and 0.167, molybdenite. o  A s i m i l a r sequence o f rocks w i t h comparable  copper grade  was  a l s o found i n diamond d r i l l h o l e #69-4, c o l l a r e d on the western edge of the c e n t r a l bog. m wide c u t t i n g the d r i l l of  large f a u l t s .  F r a c t u r e d zones up to one  core at i n t e r v a l s i n d i c a t e the presence  These have a l s o been i d e n t i f i e d from a i r  photographs and appear to be normal, s t e e p l y d i p p i n g w i t h a northwest s t r i k e .  S e v e r a l of the f a u l t s i n t e r s e c t i n  Geological Section A - A ' East  West  2a / / /  D.D.H 69W3  / /  0  / / /  / , Q / V \ to \ j ;if * \  /  ' /  y '  I,  1  /  '50ft  3d  /  J - L  _L_I_  Horizontal Scale 200m 0  1000ft  reO  MOm  '///  Ic  V ' V  Vertical Scale  37 the  r e g i o n o f t h e c e n t r a l bog.  2-5 MINERAL EXPLORATION HISTORY AND PREVIOUS GEOCHEMICAL INVESTIGATIONS Copper-molybdenum m i n e r a l o c c u r r e n c e s were f i r s t d i s c o v e r e d by T e x a s  G u l f S u l p h u r i n 1968 f o l l o w i n g  ment s a m p l i n g p r o g r a m . c l a i m s was c o n d u c t e d Exploration. to  during  the to  diamond d r i l l i n g  i n t r u s i o n o f the porphyry  orientation  m i g r a t i n g ground water sulphides humic  and t r e n c h i n g  copper.  soil  Amax  sampling,  they concluded  s u l p h i d e s was c l o s e l y  stock.  that  related  Further exploration  tar-  c o n t a c t s b u r i e d beneath the  Horsnail  studies  (1968) c a r r i e d  out applied  o v e r t h e bogs and c o n c l u d e d  transported metal  ions  from  that  weathering  o r g a n i c m a t e r i a l where c o p p e r was a c c u m u l a t e d b y  diamond d r i l l i n g ,  by Texas  tailed  radiating  described  G u l f i n 1969.  geological  molybdenite,  Anderson  and p e t r o l o g i c a l  pyrite,  chalcopyrite,  i n S e c t i o n 2-4, was c a r r i e d (1971) who c o m p l e t e d  study o u t l i n e d sphalerite  outwards from a q u a r t z stockwork  west o f t h e study a r e a . duced  close  substances. The  out  into  bogs  b u t n o t i n v e s t i g a t e d , were s u g g e s t e d t o be i n  and n o r t h e r n b o g s .  geochemical  that  exploration of the property  a r e a on N i c o l a G r o u p - p o r p h y r y  central  established  c o n t a i n e d abundant  c o n c e n t r a t i o n o f base-metal  sedi-  G u l f and Dome  From g e o l o g i c a l m a p p i n g , d e t a i l e d  gets proposed, the  sampling  additional  stream  examination o f the mineral  1960 t o 1964 b y T e x a s  stock margins  conducted  1968.  geophysics,  from  Geochemical  the porphyry  Exploration  Detailed  a regional  polarization  concentric  and g a l e n a  1500 m  sampling,  zones  north-  R e s u l t s o f diamond d r i l l i n g ,  s u r v e y and g e o c h e m i c a l  a de-  an i n -  c a r r i e d out  38 by- Newmont Mines- i n 1972 porphyry- s t o c k o u t l i n e d  over the n o r t h e r n margin a broad  zone o f c o p p e r  of  the  s u l p h i d e miner-  a l i z a t i o n with, copper  a s s a y v a l u e s t o 0.287 .  Gunton  analysed t i l l  c o l l e c t e d by  drilling  beneath  and  samples  the c e n t r a l  ganic s o i l s  from  found  over-burden  and n o r t h e r n b o g s .  t h e c e n t r a l bog  organic matter  dance was  o  by  loss  on  to decrease  A possible  ignition.  was  suggested  2-6  PEDOLOGY AND Nature  external esis.  source  d i r e c t l y below the FLORA OF  THE  T h i s may  t y p e s on  a relief  be  of those  d e f i n e d by b r u n i s o l i c , The  spatial  in  Fig.  abun-  bog beneath  bog.  surface r e l i e f , vegetation, influencing  A  soil  s o i l s w h i c h have f o r m e d strongly reflect  catena through and  gen-  from  physio-  different  soil  the study area i s  organic soils  r e l a t i o n s h i p between t h e s e  soils,  the  ( F i g . 2-5). characteristic  s u r f a c e drainage p a t t e r n s are  shown  2-6.  Brunisolic  s o i l s w i t h medium i n t e r n a l  gently undulating ridge Solum t h i c k n e s s v a r i e s  crests from  20  mature growth of l o d g e p o l e p i n e Spruce  central  often  gleysolic  f l o r a w h i c h t h e y s u p p o r t and  the  h i g h i n the t i l l  i l l u s t r a t e d by r e l a t i n g  catena.  manganese,  STUDY AREA  t h e same p a r e n t m a t e r i a l w i l l graphy.  iron,  through  time are a l l f a c t o r s  Characteristics  analysed or-  to e x p l a i n the h i g h v a l u e s  o f the parent m a t e r i a l s ,  c l i m a t e and  from  Organic matter  down p r o f i l e s  copper  also  f o r copper,  where as c o p p e r v a l u e s o f t e n r e m a i n e d t h e bog.  He  (1974)  and  convex p a r t s o f h i l l  t o 40  cm  and  the s o i l  (Pinus c o n t o r t a ) ,  ( P i c a e n g e l m a n n i i ) , White Spruce  A l p i n e F i r (Abies l a s i o c a r p a ) .  d r a i n a g e f o r m on  The  the  slopes.  supports  Englemann  (Pica glauca)  characteristic  and  soil  i s an  39 orthic  d y s t r i c b r u n i s o l w h i c h may  other great low  soil  base s t a t u s  groups b y (pH  t h i n Ah  5.5).  A  s t u d y a r e a is- shown i n F i g . Alpine  the  bog.  thin,  distinguished horizons  typical  with  soil  open, grassy- h i l l s i d e  horizon  crests.  have a l s o  ridge  sult  from poor i n t e r n a l drainage at  G l e y e d d y s t r i c and the  Humic g l e y s o l s h a v e d e v e l o p e d on  Water t a b l e surface.  o  A  sols  characteristic soil horizon  matter. are  profile  also v i s i b l e  is illustrated  having the  base of h i l l and  10  B and  peaty phases.  generally  l e s s t h a n 10  to  of  20  cm  horizons-.  i n F i g . 2-5b.  Humic  typical  of mineralotrophic  bog  surface.  environments  gley-  (Ledum  albiflorum),  t o 40  material  s q u a r e m e t r e s i n s i z e , where the  and  occasionally  h u m i c g l e y s o l s w i t h up  at  the  gleysol  between 3  T h e s e h a v e f o r m e d i n seepage  ground water i s d i s c h a r g i n g  parts bog.  C soil  (Rhododendrum  and  central  ( L y s i c h i t o n kamtschatcemse), White Spruce Orthic  re-  gleysols.  o r t h i c humic  a c c u m u l a t i o n o f m o d e r a t e l y decomposed o r g a n i c known as  undula-  lower, concave  within  a  slopes  humic  containing  i n the  of  s o m b r i c brunisols  the  i s an  ( 8cm)  g l a n d u l o s u m ) , W h i t e Rhododendrum  Englemann S p r u c e .  the  horizons  s u p p o r t abundant growth o f M o u n t a i n L a b r a d o r Tea  Skunk Cabbage  from  c l e a r i n g s west  P r o m i n a n t o r a n g e - r e d and  (B)  a  (A)  t u r f y Ah  form a margin around the  i n t h i s area i s generally  mottles  typical  and  a t h i c k Ah  organic  black  slopes  The  w h i c h has 307  profile  d e v e l o p e d on  f o r m a t r a n s i t i o n between o r t h i c brunisols  hill  the  and  D e g r a d e d d y s t r i c brunisols , i d e n t i f i e d by  e l u v i a t e d , Aej  the  ( 5 cm)  thicker,  ting  of  from  2-5a.  d y s t r i c brunisols  form beneath small,  be  and cm are  areas, appreciable  Vegetation, includes  sedge  PROFILE A Orthic Dystric Brunisols  Degraded Dystric Brunisols  Gleyed Dystric Brunisols  PROFILE B Orthic Humic Gleysols PROFILE C Fibric. Mesisols  F i g u r e 2-5: S o i l c a t e n a through t h e study area, o  41  Depth  Horizon L-F-H  p:W":O'.0.v  0-4 cm; Moss fragments and pine needles.  Ah  4-6 cm, Dark brown (10YR4/3D) medium loam w i t h weak granular s t r u c t u r e . High density,of'roots i n horizon.  Bm  6-30 cm; Yellow brown (10YR5/6M) medium loam with weak granular structure containing 10-20% subangular pebble to cobbr l e sized c l a s t s . pH - 4.8  .O-,T<J..O>PJO'  20 cm  D e s c r i p t i o n of horizon  O'O-A.  40 cm BC  30-40 cm; Gradual change of colour and texture.  60 cm IC  80 cm  40-110 cm; Brown yellow(10YR6/6M) coarse sandy loam with massive to weakly blocky structure containing 20-30% subangular to rounded cobble s i z e d c l a s t s . pH - 4.9.  100 cm  110-120 cm; Yellow: brown (10YR5/8M) f i n e sandy loam containing scattered medium d i s t i n c t mottles (2.5Y5/4) and f i n e textured sand s t r i n g e r s .  120 cm IIC 140 cm  120-165 cm; Yellow . brown (5YR5/8D). coarse sandy loam l a r g e l y c o n s i s t i n g of comminuted or c l o s e l y packed, very weathered granodiorite fragments. D i s t i n c t i r r e g u l a r boundary w i t h IC horizon. 145-150 cm; Gradually changes i n t o a f i n e clay loam with f l e c k s of malachite.  160 cm IIIC  165-170 cm; Light o l i v e brown (2.5Y5/4M) medium textured loam Figure  2-5.a P R O F I L E A.  Depth 0  Horizon L-F-H  5-40 cm. Very dark grey brown (10YR3/2W) granular organic r i c h loam with low f i b e r content except for plant roots. Light grey-brown (2.5YR6/2M) sandy loam textured volcanic ash at 15 cm and 45 cm depth Ash layers have sharp boundaries with enclosing organic s o i l . D i s t i n c t dark red (2.5YR3/6) i r o n - r i c h layer 1-2 cm thick at base of Ah horizon.  Bmg  Brown (10YR4/3M) fine s i l t y loam with weak granular structure and having coarse prominant dark red (2.5YR3/6M) mottles (42-50 cm) which gradually disappear with depth (50-55 cm)  40 cm  "•o  BC 60 cm  55-120 cm. Dark o l i v e grey (5Y3/2M) fine sandy clay t i l l . Massive s t r u c t ure and containing 20-30% subangular pebble to cobble sized c l a s t s .  80 cm  k*r:-.o-p-p o.-^ : >o:-o^  o.o:.-.„:^-.• C J o-^iSn  Moss and grass fragments; Rootlets and pine needles (0-5 cm)  Ah 20 cm  PS*  Description of horizon  100 cm  120 cm Colour gradually changes to o l i v e (5Y5/4M) at 110-120 cm depth.  . .  « ...  w  Figure  2-5b ;PR0FTLE B.  43 Depth  Horizon/layer  .s  Description of horizon/layer Loose undecomposed sedge and sphagnum moss fragments.  IlillllSilfi; Of  20 cm  0-20 cm; Brown (10YR4/3W) to yellow brown (10YR5/6D compact.peat consisting of moderately to s l i g h t l y decomposed sedge and sphagnum moss f i b e r s . D i s t i n c t boundary between Of and Om-Oh layers.  40 cm  Om-Oh  60 cm  80 cm  20-120 cm; Very dark grey brown (10YR3/2W) to brown (10YR4/3D) granular peat consisting of 50-60% unrubbed f i b e r content and 15-20% rubbed f i b e r content. Sandy loam textured volcanic ash layers at 40 and 100 cm. Large preserved wood fragments and pine needles abundant i n s o i l which has a strong odour of hydrogen sulphide when freshly sampled.  100 cm  120 cm  140 cm  h m m  Dark o l i v e grey (5Y3/2M) sandy clay t i l l with strong granular structure and sharp contact with Om-Oh layers.  F i g u r e 2-5cPROFILE C.  44 (Carex s p . ) , H o r s e t a i l Labrador Tea Sphagnum  a r e v a n s e ) , Skunk Cabbage,  (Ledum g r o e n l a n d i c u m )  and mosses  including  Sp.  Organic cation  (Equiseturn  soils  f o r Canada  are defined  i n the System o f S o i l  (Canadian Department o f A g r i c u l t u r e  t h i c k and  c o n t a i n more t h a n 307o o r g a n i c m a t t e r .  ification  of these s o i l s  into  A control  section profile  t h i c k and  consists  a s o i l middle 90  t o 130  cm  unrubbed sodium the  tier.  solution  A profile,  and humic  the is  fibric  (Oh)  a lower  cm cm  depth,  tier  from  suborders are defined  fiber  c o n t e n t s and  extracts  from the middle and  607,  from  soil  5/6  from  colour  samples  of of  index of  i n a central fiber  a sodium  on t h e M u n s e l l s c a l e . soil  the  content,  pyrophosphate Based  of the  on  least  ( O f ) above more m a t u r e m e s i c Beneath  bog  i s a humic m e s i s o l .  i n F i g . 2^-5c, c o n s i s t s  layer  layers.  tier  unrubbed  c o n t e n t and has  the c h a r a c t e r i s t i c  illustrated  decomposed,  part  fiber  c o l o u r o f 10YR  these c r i t e r i a  d e p t h and  section.  i s 130  f r o m 0 t o 30  feat-  decomposition of the o r g a n i c s o i l .  c o n t a i n s b e t w e e n 50 rubbed  cm  tier  T h i s method p r o v i d e s a r o u g h  of n a t u r a l  t o 207.  extract  t o 90  contents, rubbed  Typical material  15  surface  Organic s o i l  pyrophosphate  profile  30  from  depth.  fiber  middle  degree  tier  known as t h e c o n t r o l  cm class-  on t h o s e  t h r o u g h t h e c e n t r a l bog  of a s o i l  as  Further  suborders i s based  in a typical profile  1974)  a r e g r e a t e r t h a n 40  t h o s e s o i l s where o r g a n i c a c c u m u l a t i o n s  ures observed  Classifi-  a s m a l l area i n the  (Om)  northwest  o f t h e bog where t h e r e i s a b u n d a n t Sphagnum moss g r o w t h fibric  ( O f ) l a y e r may  then c l a s s i f i e d  r e a c h 50  as a f i b r i c  cm  thickness  mesisol.  The  soil  Total thickness  C E N T R A L  B O G D R A I N A G E . S O I L SA N D  F L O R A  D R A I N A G E CH ANNUL  Figure 2-6: Central bog soils,  drainage and flora  46 of  fibric,  ranges  mesic  from  a n d humic l a y e r s  1.5 t o 2 m.  i n t h e humic m e s i s o i s  Accumulation of organic s o i l  however, r e a c h 4 m i n t h e a r e a o f f i b r i c nds  t o prominant  may,  m e s i s o i s and c o r r e s p o -  depressions i n the organic s o i l -  till  inter-  face . The  c e n t r a l bog i s a m i n e r a l o t r o p h i c ,  vegetation phases  i s , i n general, similar  i n humic g l e y s o l  i s m i x e d w i t h Sedges  soil.  occur.  west p a r t  Hemlock  Scattered  environments.  the  humocky moss c o v e r e d s u r f a c e  profiles of  The w a t e r  grey-brown  ash.  submicroscopic, s i l k y ,  with small quantities  with  and also and soil  and L o d g e p o l e  soil  i n this  transluscent  o f magnetite,  glass  fragments  hornblende  of fine  i n organic  these layers  consist mixed  and a g r e e n min-  They commonly o c c u r i n  a t two i n t e r v a l s b e t w e e n 20 t o 40 cm  Presence  that volcanic  soil  The l a y e r s h a v e s h a r p c o n t a c t s  Two d i s t i n c t  o c c u r i n t h e Ah h o r i z o n o f h u m i c g l e y s o l i c  suggests  or raised  2.5Y 5/6) l a y e r s  Samples f r o m  a l s o b e t w e e n 70 t o 180 cm d e p t h .  a t 40 cm d e p t h .  north-  area.  found a t i n t e r v a l s  a n d a r e 1 t o 4 cm t h i c k . profiles  Pine  t a b l e may be up t o 50 cm b e l o w  may be h y p e r s t h e n e .  the s o i l  organic  stands o f Englemann  o f ombotrophic  (Munsell colour  textured material  are volcanic  e r a l which  growth  A b u n d a n t Sphagnum moss g r o w t h i n t h e u p p e r ,  bog  sandy-loam  Sphagnum moss  (Tsuga mertensiana)  o f t h e bog i s c h a r a c t i s t i c  Light  on p e a t y  ( P h y l l o d o c e m p e t r i f o r m i s ) and B l u e -  ( V a c c i n i u m membranceum).  Spruce, Mountain also  Restricted  formed  type and  ( S a x i f r a g a Sp.), Cotton g r a s s , Labrador Tea,  Skunk Cabbage, Red H e a t h e r berry  to that  hillslope  o f two d i s t i n c t  soil  depth  layers a t 20 cm  layers  i n the  a s h may h a v e c o v e r e d t h e b o g s u r -  47 f a c e a t two, s e p a r a t e t i m e i n t e r v a l s . ers  i n t h e hog c a n n o t be d e m o n s t r a t e d ,  Continuity-of  the lay-  however, due t o t h e s m a l l  number o f samples- a v a i l a b l e  f o r mineralogi.cal a n a l y s i s .  a d d i t i o n t h e ash. w h i c h  on t h e b o g s u r f a c e may have b e e n  reworked  fell  by stream water  action  Two s e p a r a t e a s h f a l l s British  Columbia  i n Recent  an e a r l y , w i d e s p r e a d  soon a f t e r  times.  ash deposit,  M u l l i n e a u (1974)  This originated  also  The a s h f r o m t h i s  b l e n d e and c u m m i n g t o n i t e  w i t h minor  later eruptions  deposited ash, but  eruption  pyroxenes.  dic  suggests that  Upper l a y e r s  ash f a l l s  i n the  (1965).  a l o g y o f one sample f r o m t h e d e e p e r  eruption.  S t . Helens ash  60 km w e s t o f t h e s t u d y a r e a  Source o f t h e a s h i n t h e bog i s u n c e r t a i n  gleysol profile  contained horn-  a t 85 cm d e p t h i n a p e a t b o g l o c a t e d  O t t e r Creek v a l l e y r o u g h l y F u l t o n and -Armstrong  i n the present Crater  Repeated,  f r o m Mount S t . H e l e n s i n W a s h i n g t o n  has b e e n i d e n t i f i e d  from the p r e -  The a s h c o n t a i n e d a s m a l l p r o p o r t i o n o f  h y p e r s t h e n e , b u t no h o r n b l e n d e .  over a small area.  described  d a t e d b y c a r b o n 14 isoto/pe  h i s t o r i c Mount Mazama w h i c h was l o c a t e d Oregon, a r e a .  deposition.  have been d e p o s i t e d over s o u t h e r n  method, a t 6,600 y e a r s B.P.  Lake,  In  layer  although miner-  exposed  i n a humic  i t may r e p r e s e n t t h e S t . H e l e n s  i n s o i l may a l s o be r e l a t e d  w h i c h were r e l a t e d  t o the event.  to perio-  CHAPTER 3 SAMPLING AND ANALYTICAL TECHNIQUES 3-1 SAMPLING METHODS AND F I E L D Soil  and t i l l  from v e r t i c a l  samples were c o l l e c t e d b y s e v e r a l methods  profiles  metres apart along ling  at stations  sented  on t h e h i l l s l o p e s  type,  rock type,  clast Till  channel  and d e t a i l e d  down p r o f i l e s ex-  sample c o l o u r , sample c o n s i s t e n c y  one m e t r e were  auger. this  an a t t e m p t the t i l l  was made t o c o l l e c t  through  materi  bedrock i n t e r f a c e . compact  c o r e s were o b t a i n e d a t 50 t o 100 cm  This till.  inter-  the t i l l .  s o i l m a t e r i a l was c o l l e c t e d u s i n g a H i l l e r  Continuous  equipment  A complete  obtained  s a m p l e r mounted on a C o b r a p r e c u s s i o n  t h e Boro sampler from  down p r o f i l e s  clast  o r i e n t a t i o n were made a t e a c h  samples d e e p e r t h a n  At each l o c a t i o n  Organic  soils  cut i n the w a l l of the p i t  was o f t e n u n s u c c e s s f u l owing t o t h e v e r y h a r d ,  vals  Mineral  o b s e r v a t i o n s o f environment,  shape and c l a s t  a Boro o v e r b u r d e n  cm l o n g t i l l  and sample  E a c h sample r e p r e -  a t 30 t o 40 cm i n t e r v a l s  topography,  location.  drill.  above t h e b o g .  a 10 cm l o n g v e r t i c a l  posed i n the p i t s  using  Profile  samples were o b t a i n e d b y e x c a v a t i n g p i t s a t  Samples were t a k e n  soil  the property.  a r e shown i n F i g . 3-1 a n d F i g . 3-2.  shallow t i l l  stations  Ten  Samp-  c o n t r o l was p r o v i d e d b y a g e o p h y s i c a l g r i d w h i c h h a d b e e n  locations  with  l o c a t e d between 10 and 60  t r a v e r s e s c r o s s i n g t h e c e n t r a l bog.  p r e v i o u s l y e s t a b l i s h e d over  and  OBSERVATIONS  peat  40 t o 50 cm l o n g c o r e s were o b t a i n e d  a t 50 cm i n t e r v a l s  c o r e was f o u n d  down p r o f i l e s  t o be n e c e s s a r y  dried material f o r analysis.  with  i n t h e bog.  to provide  sufficient  Subsamples were however  taken  CENTRAL BOG DRAINAGE.SOILS AND FLORA  Figure 3-1: Location of soil and t i l l profiles  50 f r o m t h e c o r e when c o n s p i c u o u s t e x t u r e o r c o l o u r c o u l d be s e e n w i t h i n soil,  mineral s o i l  sampler t o K r a f t bulk organic  cold  soil  samples,  organic  taminated stem  soil  cores.  samples  samples  bog.  from the  and a l l o w e d t o a i r d r y .  Several  each c o n s i s t i n g  cartons,  to Princeton  combined  quickly  and s t o r e d  These  transin a  study area  fault  samples  L e a f and  i n the c e n t r a l  water  and s t o r e d  o f t y p i c a l bog f l o r a were a l s o p r e -  identification. were c o l l e c t e d  ( F i g . 3-3). exposed  and w a t e r  These  discharging  included  from  from water flowing  till-  from p r o b a b l e  f r o m a diamond d r i l l  s o i l s were a l s o  hole  from the a r e a  sampled.  A  number  accumulating i n semi-stagi n streams  S u b s u r f a c e bog w a t e r s were sampled  bore holes at t e n l o c a t i o n s w i t h i n  of sources i n  seepages  S p r i n g s and s e e p a g e s  by h u m i c g l e y s o l i c were c o l l e c t e d  f r o m a number  i n trenches, springs  n a n t bog p o o l s and f r o m w a t e r floor.  uncon-  s e a s o n a l growth., were t a k e n f r o m  were washed w i t h d i s t i l l e d  n o r t h o f t h e c e n t r a l bog. dominated  mixed  and u l t i m a t e l y o n l y two r e l a t i v e l y  Specimens  interfaces  zones  commonly  s h r u b and sphagnum moss g r o w i n g  samples  paper bags.  bedrock  The a s h , however, was  were a n a l y s e d f o r t r a c e m e t a l s .  W a t e r samples  bog  of several  were o b t a i n e d f r o m l a y e r s : e x p o s e d i n  r e p r e s e n t i n g new  served f o r l a t e r  of  organic  transferred  container  a s h samples  Ledum g l a n d u l o s u m  the  m a t e r i a l was  collected  s t o r a g e a t -5°C.  with organic material  in  Freshly  i n a c i d washed p l a s t i c  i n an i n s u l a t e d  Volcanic the  and t i l l  p a p e r bags  c o r e s were p l a c e d ported  an i n t e r v a l .  variations  the bog.  c r o s s i n g the through cased  H o l e s were c a s e d  w i t h 3cm d i a m e t e r PVC p i p e t o d e p t h s r a n g i n g f r o m 1 t o 2 m.  51  52 At  some o f t h e  till the  locations: t h i s  interface. c a s i n g and  Water was  of  the  A  tube  r e p r e s e n t e d the o r g a n i c  allowed  they- c o m p l e t e l y  s m a l l h a n d pump. s m a l l e r PVC  depth  to accumulate to the  finally  collected  a t t a c h e d t o t h e pump and  lowered  w a t e r samples were f i l t e r e d  i n the  through, a 0.45 um m i l l i p o r e membrane f i l t e r , s t o r e d i n 125  pH was  ml  o r 500  ml  b o r e h o l e s was electrode  field  The  pH  under  bottom  site with  a t t a c h e d t o an O r i o n m o d e l 404  British  meter.  from  w a t e r s a m p l e s , one water from  instrument.  the long l e a d  The  Eh  g r o u n d w a t e r sample and  a freshly  sampled c o r e was  content  o f s e v e r a l w a t e r samples was  a barium  chloride  ANALYSIS OF Mineral  a mortar before  platinum-  instrument.  and  determined  Sulphate  till  and  Mineral soils  s i e v e d through  an  vegetation and  till  samples  samples were  80 mesh n y l o n  to g r i n d the organic s o i l  s u f f i c i e n t m a t e r i a l c o u l d be  Vegetation  i n the  TRACE METALS  organic s o i l ,  o f t e n found necessary  sieving.  a  B.  g e n t l y disaggregated  in  interstitial  t u r b i d i m e t r i c method d e s c r i b e d i n A p p e n d i x  a t 110°C.  was  the  by  SAMPLES FOR  It  of s e v e r a l s u r f a c e  field  soil,  were o v e n d r i e d  instru-  connecting  measured w i t h  e l e c t r o d e a t t a c h e d t o t h e O r i o n 404  cased  Problems  mental d r i f t  the e l e c t r o d e to the  Drug  glass-reference  d e t e r m i n a t i o n owing t o  possibly resulting  Water  o f the water i n the  measured u s i n g a combination  HCl,  bottles.  o c c u r r e d with, t h i s method o f pH  3-2  a  pressure  a c i d i f i e d with  a c i d washed PVC  g e n e r a l l y m e a s u r e d a t e a c h sample  Houses U n i v e r s a l I n d i c a t o r .  glass  a  through to the  of  casing.  All  and  top  removed s e v e r a l t i m e s w i t h  sample was  soil-  screen. samples  obtained f o r  samples were g r o u n d i n a W i l e y m i l l .  A  CENTRAL BOG DRAIN AGE.SOILS AND FLORA W A T E R  S A M P L E  L O C A T I O N S  LEGEND FIERK MfSlSOLS, SlWLAR FLDR& TO KUMlC MES60LS WITH HUWOCKY SPHAGNUM MOSS HUMIC MESISOIS.ENGLEMANN SPRUCE, MOUNTAIN HEMLOCK,LOOGEPOLE PINE JCOT TON GRASS,°ED HE AT HER,LABRADOR TEA GLEVEO DYSTRC ORUNISOLS.ORTHIC l U M C GLEYS015 WITH LOCAL PEATY PHASES: WH'TE AND ENGLEMANN SPRUCE .MOUNTAIN LABRADOR TE A.WHITE RHODODtNDROM ALPINE OYSTRIC RRUN1SOLS.GRASS • COVERED HIO.SIDE CLEARING ORTI4IC DYSTPIC BRUNTSOLS WiTH DEGRADED DTSTRIC BRUNfSOLS.ENGLCMaNN SPRUCE, WHITE SPRUCE,LOOOtPOLE PINE,  Figure. 3-3: Water sample locations. Samples 69 to 234 are 73-RL-; Samples 1207 to 1511 are 74-RL- .  ALPINE FIR D R A I N A G E CHANNEL  Element Ca  Flame  Wavelength  Air-acetylene  (A)  Current(mA)  4226..7  Slit  4  100  20  300  (u)  Background No  Correction a  Co  11  2410  Cu  II  3247,.5  3  50  No  a  Yes  Fe  it  3719, .9  5  25  No  a  Mn  •i  2794,.8  10  50  No  a  Mo  Nitrous oxideacetylene  3132, .0  5  100  No  a  Ni  Air-acetylene  2324  20  300  Yes  6  100  No  11  Zn  a  - Varian  b  - Perkin-Elmer  2138, .6  Techtron  IV  303  Table  3-1:  Instrumental operating atomic absorption  conditions  for  spectrophotometers  a  b  b  55 weighed p o r t i o n o f t h e s i e v e d digested chloric air  f o r twelve hours acids.  At  b a t h a t 200°C,  soil,  till  i n a 3:1  or ground  mixture of n i t r i c  t h e end o f t h i s  digestion,  o f 6M H C l  ions  t o 10 ml w i t h d i s t i l l e d  nickel  and  The  z i n c by  atomic  and  water.  cobalt,  per-  o u t on  an  This residue  f o r s e v e r a l minutes  i o n s were t h e n a n a l y s e d f o r c o p p e r ,  and  carried  a dry r e s i d u e i s obtained.  l e a c h e d w i t h 2 ml then d i l u t e d  v e g e t a t i o n was  iron,  the The  was  solutsolut-  manganese,  absorption spectrophotometry.  s o l u t i o n s were a l s o  a n a l y s e d f o r molybdenum by  atomic  a b s o r p t i o n spectrophotometry, but w i t h a n i t r o u s o x i d e - a c e t y l e n e flame r a t h e r solutions to  each  t h a n an a i r - a c e t y l e n e  200 mg  10 m l  aluminium  of aluminium  as a r e l e a s i n g  c h l o r i d e was  conditions  Appendix  A and  atomic  water  and  flask,  was by  zinc.  and  microsyringe  0  are  in Table  3-2.. .  -  directly  into  the  a n a l y s e d f o r copper,  lanthanum  t h e s o l u t i o n made up  solution  t h e sample p o r t  sample  i n a 50  t o 50 ml w i t h  atomic  50 u l o f t h e f i l t e r e d ,  sample i s c a r r i e d by  of  are given i n  ml  distilled  absorption spectro-  D i s s o l v e d o r g a n i c carbon content of water  into  added  A 10 ml p o r t i o n o f e a c h w a t e r o f 57  the  Operating  f o r elements  f o r elements  m e a s u r e d u s i n g a Beckmann m o d e l 915 injecting  same p r o p o r t i o n  were a s p i r a t e d  a n a l y s e d f o r c a l c i u m by  photometry.  The  results  precision  samples  a l s o mixed w i t h 2 ml  volumetric  ( h e x a h y d r a t e ) were  absorption spectrophotometers  a b s o r p t i o n spectrophotometer  i r o n , manganese and was  agent.  analytical  analytical  F i l t e r e d water  chloride  Before analysing  a l s o added t o the s t a n d a r d s .  f o r the atomic  g i v e n i n T a b l e 3-1,  flame.  total  carbon a n a l y s e r  a c i d i f i e d water  of this  with a  instrument.  a s t r e a m o f o x y g e n gas  samples  The  through a furnace  56 heated The  t o 950°C where t h e  c o n c e n t r a t i o n of carbon d i o x i d e evolved  measured u s i n g to  carbon i s o x i d i z e d to carbon  the  total  instrument  carbon a n a l y s e r .  was-  standards-. 3-3  a Beckmann m o d e l 865  calibrated with  Analytical  ANALYSIS OF  of  are given  WATER SAMPLES FOR  2-2  was  attached  samples were a n a l y s e d  a series  results  f r o m e a c h sample  Infrared analyser  Before  dioxide.  sucrose  the  solution  i n Appendix  A.  BIQUINOLINE EXTRACTABLE  COPPER Approximate p r o p o r t i o n s as n a t u r a l o r g a n i c that the  d e s c r i b e d by  Stanton  complex and  depend on  the  terminations sisting  1:1  in  a test  vents  a r e made by  is  then  tube.  The  o f a 0.02?  o  added and  c o l o u r of the a standard  Larger  intensity  adding  copper bound  a method b a s e d  technique  i s based  b i q u i n o l i n e forming  of t h i s  coloured  1 ml  ( t e t r a h y d r a t e ) and  20  of the  100  complex  will  water  and  a l u m i n i u m and  2-2  biquinoline solution  the  tube  stoppered  immiscible  and  acid  sample  to  6.0.  alcohol  s h a k e n f o r 30  seconds.  alcohol layer i s visually  compared  f r o m 5 ppb  c o p p e r c o n c e n t r a t i o n s were m e a s u r e d b y distilled  pot-  , pre-  +  a d j u s t s pH  i n iso-amyl  de-  con-  g of  b u f f e r s o l u t i o n r e d u c e s Cu^+to C u  of iron  The  g of a s c o r b i c  filtered  on pink  of a b u f f e r s o l u t i o n ,  (trihydrate),  on  a  copper i n s o l u t i o n .  series generally ranging  w a t e r sample w i t h 3-4  2-2  g o f sodium a c e t a t e  precipitation  ml  to  and  This  o f d i s t i l l e d w a t e r t o 20 ml  One  The  ions  +  the  assium sodium t a r t r a t e in  (1966).  c o n c e n t r a t i o n o f the  o f 200  c o p p e r and  complex were d e t e r m i n e d b y  r e a c t i o n between C u  coloured  of i o n i c  to  100  diluting  ppb.  the  water.  ORGANIC CARBON ANALYSIS Soil  and  till  samples were a n a l y s e d  f o r organic  carbon  by  57  a m o d i f i e d S c h o l l e n b e r g e r wet  o x i d a t i o n method (Royal School of  Mines, Geochemical P r o s p e c t i n g Research Center, potassium  1962).  A  d i c h r o m a t e - s u l p h u r i c a c i d s o l u t i o n i s used to o x i d i z e o  the carbon  i n the sample at roughly 100  C.  The potassium  dich-  romate which i s not used d u r i n g the r e a c t i o n i s measured by titrating  the s o l u t i o n w i t h f e r r o u s ammonium sulphate u s i n g  d i p h e n y l a n a l i n e as an i n d i c a t o r .  A d d i t i o n d e t a i l s of the  method are o u t l i n e d i n Appendix B. S e v e r a l previous s t u d i e s have e s t a b l i s h e d t h a t between 60 and 807, of the t o t a l carbon present w i l l be o x i d i z e d to C O 2 by the dichromate.  R e s u l t s o b t a i n e d by wet  o x i d a t i o n methods are  t h e r e f o r e g e n e r a l l y a d j u s t e d by a c o r r e c t i o n f a c t o r to compensate f o r the p a r t i a l carbon r e c o v e r y .  The  correction  factor  used to c a l c u l a t e o r g a n i c carbon values g i v e n i n the present study was  determined  by a n a l y s i n g a group of samples by  Leco combustion technique.  A c o r r e c t i o n f a c t o r of 1.3  the was  obtained by comparing r e s u l t s of o r g a n i c carbon analyses by o x i d a t i o n and Leco combustion methods. compared to t h a t of 1.12 1.33  T h i s f a c t o r can  f o r the Walkley-Black  f o r the S c h o l l e n b e r g e r method.  wet  be  method and  to  Analytical precision for  the two methods at the 957, confidence l e v e l s i s 18.27, f o r the wet  o x i d a t i o n technique and  8.87, f o r the Leco combustion method. o  Loss of weight a f t e r sample i g n i t i o n at 550 determined  i n the same samples analysed by wet  Leco techniques.  A s c a t t e r diagram ( F i g . 3-4)  strong l i n e a r v a r i a t i o n between wet ion  analyses and between wet  yses of i d e n t i c a l samples.  C was  also  o x i d a t i o n and indicates a  o x i d a t i o n and Leco combust-  o x i d a t i o n and l o s s on i g n i t i o n  ana-  Loss on i g n i t i o n i n samples w i t h  58  % 60  P  50  h  40  h  •A 30  A A*  20  A  A 10  A  h  0  0  10  A%0rganic  20  30  40  50  c a r b o n by wet  oxidation  against  % c a r b o n by  • ? 0 r g a n i c c a r b o n by wet  oxidation  against  % L o s s on 1.724  o  Figure samples ion  at  3-4:  Comparison  by wet 550°C.  Leco ignit.  of o r g a n i c carbon analyses of  oxidation,  L e c o m e t h o d and  loss  on  %  15  ignit-  59 less  than  trend  10%  carbon,  suggesting  the weight  loss,  during  ignition,  o x i d a t i o n and  t h a t they  differ  similar  t o t h e Van  organic  carbon values  3-5  sulphur  content and  (Kowalenko and  soils.  110°C  by  soil  loss  on  ignition  a mean r a t i o of  of  1.724  1.8  to  A  results which i s  used to  convert  contents.  and  till  samples were  a hydriodic acid  Bremner 1970)  f o l l o w e d by  analysed  reduction  technique  bismuth  colorimetry  Lowe 1972), d e s c r i b e d i n A p p e n d i x B. sulphate  T h e s e forms a r e  with  a mixture  and  reduced  mineral  stream i n t o  o f h y d r i o d i c and  a solution  sulphide i s precipitated  and  This  sulphate  fractions  to hydrogen s u l p h i d e  at  hypophosphorous a c i d s .  hydrogen sulphide which i s generated  nitrogen uth  r e l e a s i n g water.  to o r g a n i c m a t t e r  method m e a s u r e s o r g a n i c  The  linear  SULPHUR ANALYSIS  (Tabatabai  in  by  from the  could also contribute  by  Bemmelen f a c t o r  A number o f o r g a n i c for  shows a d e p a r t u r e  that clay minerals  c o m p a r i s o n o f wet indicates  however,  is carried  in a  o f b i s m u t h n i t r a t e where b i s m the  concentration of  suspended  bismuth s u l p h i d e i s measured i n a spectrophotomer a t a waveleng t h o f 400  nm.  957> c o n f i d e n c e Total  Analytical l i m i t was  sulphur  p r e c i s i o n f o r t h i s method a t  58.567,.  analyses  were a l s o a t t e m p t e d u s i n g  f l u o r e s c e n c e , b u t were l a r g e l y u n s u c c e s s f u l o f sample p r e p a r a t i o n . m a t e r i a l mixed w i t h  Pressed  bakelite resin  two  mylar  were a t t e m p t e d w i t h films  i n the  owing t o  d i s c s of the o r g a n i c  X-ray problems soil  t e n d e d t o f r a c t u r e when  were removed f r o m t h e h y d r a u l i c p r e s s Analyses  the  used to prepare  the  these discs.  the o r g a n i c m a t e r i a l h e l d between  samples h o l d e r  of the  instrument.  This  60 approach, maypared with rocks.  i n t r o d u c e unknown v a r i a t i o n s when r e s u l t s  those  obtained  Semiquantitative  samples r a n g e f r o m 0.5 3-6  from standards  PREPARATION OF SEPARATES AND  soil  rock  Till  abundances i n o r g a n i c  ORGANIC SOIL FRAGMENTS  and  f r a c t i o n was till  separated  separated  minus  (S.G.  from o r g a n i c  the m i n e r a l s .  were i n i t i a l l y e x a m i n e d u n d e r a b i n o c u l a r  fragments  slides  i n epoxy-resin  from s e v e r a l o f the  samples were thawed, a i r d r i e d  and  d r y i n g o f t h e m a t e r i a l was  by  mineral  microscope. samples were  at about  110°C.  f r o z e n bulk, o r g a n i c  a l s o mounted i n  this  appreciable  Heavy  separates  80-  2-9).  soils  s a m p l e s , however, commonly c o n t a i n e d  mounted on m i c r o s c o p e  Freeze  f r o m 100  samples u s i n g h r o m o f o r m  Small p o r t i o n s from f i f t y of the m i n e r a l  Organic  rich  0  f l o u r which, s e p a r a t e d w i t h  separates  crushed  t o 2.17 .  M i n e r a l g r a i n s were e a s i l y method.  from  com-  POLISHED SECTIONS FROM HEAVY MINERAL  A heavy m i n e r a l mesh s i z e d  sulphur  prepared  are  soil  epoxy-resin.  a l s o attempted to minimize  damage t o remnant p l a n t s t r u c t u r e s when f r a g m e n t s were mounted. This  a p p r o a c h was  u n s u c c e s s f u l because the v e r y  d r i e d m a t e r i a l tended  t o d i s p e r s e on  resin.  M i n e r a l g r a i n and  polished  and  3-7  then  organic  friable  contact with  soil  the  freeze  epoxy-  f r a g m e n t mounts were  examined under a r e f l e c t i n g  SCANNING ELECTRON MICROPROBE ANALYSES AND  microscope. ELECTRON  MICROSCOPE STUDIES S e v e r a l o f t h e p o l i s h e d mounts c o n t a i n i n g m i n e r a l and  organic  sulphur with  soil  f r a g m e n t s were a n a l y s e d  f o r copper,  an A p p l i e d R e s e a r c h L t d . , S c a n n i n g  probe Quantometer.  This instrument  i s capable  grains  iron  and  Electron Microof  spectro-  61 chemical a n a l y s e s ; f o r e l e m e n t s by- d i r e c t i n g polished,  i n areas; as.- s p a l l  a f i n e l y - f o c u s e d e l e c t r o n beam o n t o  c a r b o n c o a t e d mounts  o r g a n i c fragments-.  containing  ties  s p e c t r a o f these elements of X-rays  a t CuK  the m i n e r a l g r a i n s spectrometers erite  a  FeK  a  originate.  characteristic Relative  and SKa wave l e n g t h s p r o d u c e d  c a l i b r a t e d w i t h pure  intensities  cathode  contrasting  light  posing polaroid  i r o n , pure  quired  o f X-ray r a d i a t i o n  a t CuK  and d a r k a r e a s .  t o 100  (A.S.A.  a  , FeK  the r a d i a t i o n  a  and  onto a  a p p e a r e d as  T h e s e were r e c o r d e d b y ex-  3000) t o t h e X - r a y s f o r p e r i o d s  seconds  c o r r e s p o n d i n g t o the time r e -  f o r t h e e l e c t r o n beam t o s c a n a s m a l l a r e a o f t h e p o l A s c a n n i n g t i m e o f 100  i s h e d mount. s t o p o f 5.6  seconds  and a camera f  were u s e d t o a n a l y s e t h e o r g a n i c fragments:.  S u l p h i d e m i n e r a l g r a i n s , however, were g e n e r a l l y seconds.  a t 30  scanned  S e v e r a l o f t h e m i n e r a l g r a i n s were a l s o  photographed  d i f f e r e n t m a g n i f i c a t i o n s w i t h an ETEC a u t o s c a n s c a n n i n g  elec-  microscope. ANALYTICAL  PRECISION  E a c h b a t c h o f 24 s o i l , atomic a b s o r p t i o n  till  or vegetation  samples,  analysed  s p e c t r o p h o t o m e t r y , i n c l u d e d a U.B.C.  a r d r o c k s a m p l e , one d u p l i c a t e at  from  copper and s p h a l -  s c r e e n where t h e i n t e n s i t i e s  film  f r o m 30  ranging  by  intensi-  and o r g a n i c f r a g m e n t s were m e a s u r e d b y X - r a y  fluorescent  3-8  the surface o f  o f the high-energy  present  SKa wave l e n g t h s was o b s e r v e d b y d i r e c t i n g  tron  .  standards. Relative  at  um  t h e m i n e r a l g r a i n s and  Due t o t h e i n t e r a c t i o n  e l e c t r o n s w i t h atoms o f t h e e l e m e n t s X-ray  a s 0.05  sample a n d a b l a n k .  t h e 957o c o n f i d e n c e l e v e l was c a l c u l a t e d  stand-  Precision  from results- o f the  Element  Ca  A n a l y t i c a l Method  Direct A . A . ,  a  C  b  Wet o x i d a t i o n  C  a  IR-Total  carbon  Cu  b  HN0„-HC10,- A . A .  Cu  a  Direct A . A .  Co  b  HN0 -HC10.- A . A .  3  4  3  4  o  II  Fe  b  Fe  a  Direct A.A.  Mn  b  HN0--HC10.- A . A .  Mn  a  Direct A . A .  Mo  b  HN0--HC10,- A . A .  Ni  b  II  Zn  b  it  Zn  a  S  3  4  3  b  4  *  paired  (95% confidence)  samples 3  27.5  12  18.2  5  31.6  12  14.1  5  11.3  12  3.6  12  5.8  is.  5  5.8  12  c.  5 15  26.0  12  6.6  12  4.3  5  HI R e d . - B i C o l .  5  Soil, t i l l  - Not  Precision  Direct A . A .  - Water s a m p l e s . -  Number o f  58.6 •  and v e g e t a t i o n s a m p l e s .  d e t e r m i n e d due t o i n s u f f i c i e n t  Table  3-2:  Analytical  precision  data.  +%  paired  duplicate  samples  by G a r r e t t ( 1 9 6 9 ; 1 9 7 3 ) same a p p r o a c h was techniques reducible  on t h e UBC  i n water,  sulphur i n s o i l s of duplicate  f o r each element  organic  The  of a n a l y t i c a l  c a r b o n a n d HI  although i n several samples  outlined  IBM 370/168 computer.  used to estimate p r e c i s i o n  f o r elements  s m a l l number precision  i n e a c h b a t c h by a p r o c e d u r e  cases only  were a n a l y s e d .  a  Analytical  and method i s g i v e n i n T a b l e  3-2.  CHAPTER 4 GEOCHEMICAL RESULTS 4-1 TRACE AND MINOR ELEMENT ABUNDANCES AND pH IN SOILS AND TILL Information c o l l e c t e d from v e r t i c a l and H o r i z o n t a l p r o f i l e s has been used to c o n s t r u c t fence diagrams  i l l u s t r a t i n g three  dimensional r e l a t i o n s h i p s between d i f f e r e n t s o i l s , element  the t i l l and  abundances i n the bog. The metal, o r g a n i c carbon and pH  v a l u e ranges p l o t t e d i n symbol form on these diagrams  have been  s e l e c t e d a r b i t a r i l y from the shape o f frequency histograms. C o n t r a s t i n g v e r t i c a l v a r i a t i o n s o f o r g a n i c carbon content are  found i n d i f f e r e n t p a r t s o f the bog.  from l e s s than 317, i n the f i b r i c  Abundances i n c r e a s e  (Of) l a y e r to more than 407, i n  the mesic-humic (Om-Oh) l a y e r s down s e v e r a l p r o f i l e s between s t a t i o n s LON to L2N ( F i g . 4-1)  V a r i a t i o n s on a t y p i c a l o r g a n i c  s o i l p r o f i l e are shown i n F i g . 4-2 and F i g . 4-3.  Organic carb-  on s h a r p l y decreases down p r o f i l e s between s t a t i o n s L2N to G4 from more than 407. i n the f i b r i c e r i a l a t 2 to 3 m depth.  l a y e r to l e s s than 157> i n mat-  Between s t a t i o n s L5S to L4S o r g a n i c  carbon v a r i e s s l i g h t l y down p r o f i l e s and v a l u e s range from 16 to  327..  Values g e n e r a l l y decrease s h a r p l y a t the base o f the  bog and the u n d e r l y i n g t i l l  has l e s s than 57. o r g a n i c carbon.  Abundances r a n g i n g from 5 to 87. i n the t i l l  a t s t a t i o n L3N may  be due to sample contamination d u r i n g augering. Copper i s most abundant i n the mesic-humic o r g a n i c s o i l l a y e r s between s t a t i o n s B2W to L4S and LON to G2 ( F i g . 4-4 ) . S o i l i n these areas has more than 307, o r g a n i c carbon (roughly e q u i v a l e n t to 607, o r g a n i c matter) and c o n t a i n s up to 2.57, copper.  The l a t e r a l v a r i a t i o n s o f copper i n the study area  65  P R O F I L E 2. LOCATION : S t a t i o n L I N .  ENVIRONMENT AND SOIL TYPE: F i b r i c m e s i s o l s u p p o r t i n g humocky sphagnum moss,  sedges,  s c a t t e r e d l o d g e p o l e p i n e and h e m l o c k . DEPTH  74-RL-  CM 1091  Cu  Co  Fe  Mn  Ni  Mo  Zn  CARBON  HI-S  pH  2174  10  4.06  56  19  <2  28  13.7  118  5.3  DESCRIPTION  OF HORIZON  Of: 0-50 cm o f s l i g h t l y  decomposed  s e d g e and moss f i b e r s . V o l c a n i c a s h l a y e r a t 40 . 1092  271  0.13  149  73  16  283  16.0  449  4.3  Oml: 50-140 cm v e r y d a r k b r o w n  17038  153  0.72  243  98  <2  321  26.1  1360  4.3  silty  -100  •  1093  cm.  8508  (10YR3/2W) m o d e r a t e l y  decomposed  granular peat.  140-145 cm. L i g h t b r o w n v o l c a n i c , a s h . 0m2-0h: 145-320 cm. 1094  .200  1095  23073  164  0.44  271  125  7  577  32.0  906  4.1  17748  122  0.43  532  139  20  535  39.4  1418  4.5  Very dark  grey  brown m o d e r a t e l y t o h i g h l y  decomposed  p e a t c o n t a i n i n g l a r g e wood  fragments  and p i n e n e e d l e s . M a t e r i a l h a s a s t r o n g odour of hydrogen s u l p h i d e when f r e s h l y s a m p l e d .  13755  1096  287  0.95  635  162  74  651  42.6  906  4.5  49  3.64  381  75  i>  100  1.3  104  4.4  -300  1097  Cl:  I  692  320-400 cm.  sized  iiipi  (5Y3/2M)  10-20% p e b b l e  clasts.  -400  1 •  1194  O l i v e grey  sandy c l a y c o n t a i n i n g  161  28  4.30  604  71  3  70  0.18  -  7.5  C2: 4 0 0 - 500 cm. fine silty  ':  O l i v e grey(5Y5/2M)  clay.  -500 C u , Co, Mn , N i , Z n , Mo and H I r e d u c i b l e s u l p h u r ( H I - S ) a r e i n ppm, O r g a n i c c a r b o n and Fe a r e i n p e r c e n t .  F i g u r e 4-2:  Variation  of metals, organic carbon and sulphur on a fibric mesisol profile.  P R O F I L E 3.  LOCATION - S t a t i o n LON.  ENVIRONMENT AND SOIL TYPE - Humic m e s i s o l s u p p o r t i n g - m i x e d s e d g e and sphagnum moss growth. Water t a b l e w i t h i n  74-RL-  DEPTH  \  1087J  Cu  Co  Fe  Mn  Ni  Mo  Zn  CARBON  H I - S jgH  8164  20  1.21  37  24  22  33  26.2  2 4 9 4.7  362  31.9  DESCRIPTION OF HORIZON O f : 10-20 cm o f p o o r l y decomposed s e d g e and moss r e m a i n s .  14199  1088  172  1.52 168  118  20  1162 4.3 Om: 20-160 cm v e r y d a r k brown(10YR2/2)j m o d e r a t e l y decomposed p e a t  -100  1089{  3834  1090l  277  mm  wm  74 35  2.65  411  3.90 392.  100 78  7 4  263 113  16.8 0.8  725 4.9 69 5.0  30  4.50 644  76  69  <0.1  58  7.5  l  clay  loam.  i U l  «e>'„Mvo  mm Mm  frag-  a t 160 cm. C2: O l i v e g r e y (5Y5/3M) f i n e  -30Q  i  l a r g e s l i g h t l y decomposed wood ments  h a v i n g d i s t i n c t b o u n d a r y w i t h Om l a y e i j 121  l  containing  C l : O l i v e grey (5Y4/2M)sandy c l a y  •200  1195  1196l  10 cm o f s u r f a c e  30  4.50 644  85  69  0.1  7.7  O l i v e b r o w n (7.5Y5/3M) f i n e c l a y l o a m  -400  -500  Cu, Co, Mn, N i , Mo, Z n a n d H I r e d u c i b l e s u l p h u r ( H I - S ) a r e i n ppm, O r g a n i c c a r b o n and F e a r e i n p r e c e n t .  Figure 4-3: Variation of metals, organic carbon and sulphur on a humic mesisol profile.  68 reflect eases in  transitions  from l e s s  t h e Ah  these  organic  t h a n 210  horizon  two  soils  soil  decreases  between d i f f e r e n t  at  station  profiles,  as  1.387, i n t h e h u m i c - m e s i c till.  This  located  a t s t a t i o n L0N  till  at The  4-4)  decrease  3834 ppm 1.5  m  till  olic  (IC)  and  occurs content  310  soil  soil-till  l a y e r s to  less  between  277  ppm  down then  interface.from  #3  where o r g a n i c m a t e r i a l a t to  and  t h a n 700  ppm  in  (Fig. 1.3  m  i n the  b e t w e e n s t a t i o n s G1.5  the  4-3) depth  underlying  1.67,  the  t h a n 1300  B3W.  The till  ppm  ppm  are  fall  soil  contact  deeper IIC  IIC  ppm till  IIIC  till  values  soil.  1  till  than 3  the  Copp-  upper  till  l a y e r to  less  l a y e r and  this  layers.  m,  brunis-  ( F i g . 4-5).  and  two  less  through a  in this  between the  and  be  copper  horizon  f r o m 466  underlying  sharp  of  (Fig.  a l s o found i n the  i s shown on P r o f i l e Bm  to  overlying organic  variation  i n the  i n the  at the  i n the  t o G3  c o p p e r compared  where o v e r b u r d e n t h i c k n e s s may  Values  ppm  of  to  the  layer.  t h a n 294  organic  i n F i g . 4-2,  i s a l s o shown on P r o f i l e  greater  at s t a t i o n  er exceeds  shown i n d e t a i l the  the boundary  ppm  Copper g e n e r a l l y i n c r e a s e s  c o p p e r compared  f r o m 0.57.  soil  G7.  f r o m 730 ppm to U.57o.  s t a t i o n A4E,  and  incr-  i n b r u n i s o l s t o more t h a n 1300  from p r o f i l e s  Copper v a l u e s at  Copper  depth.  contains  ranging  types.  o f humic g l e y s o l s a c r o s s  sharply across  contains  ppm  soil  decrease Copper  layers i s less  than  305  ppm. Cobalt 125  ppm  i n the humic-mesic o r g a n i c  t o more t h a n 580  profiles,  but  till.(Figs.  fall  4-2,  ppm  sharply  4-3  and  and  to  4-6).  values  less  soil  generally increase  t h a n 50  The  l a y e r s ranges  ppm  i n the  fibrous organic  from down  underlying soil  layer  69  F i g u r e 4-4: Copper i n s o i l s and  till.  and  t h e A h h o r i z o n o f t h e humic g l e y s o l n o r m a l l y has l e s s  25 ppm  cobalt  locally, (Fig.  although values exceeding  4-6).  The f i b r o u s  Organic m a t e r i a l the western  manganese.  layer  i n this  from  part  the f i b r o u s  I r o n and manganese  t h a n 440 ppm manganese  levels  Manganese  exceeds  and i r o n from  650 ppm  gleysols  has l e s s  t h a n 100  and b r u n i s o l i c layers  soils.  commonly have  t h a n 37, i r o n  the weathered  and i r o n  3 m d e p t h a t s t a t i o n B2E  bedrock,  The d e e p e r ,  (Figs.  from  less  4-5,  4-7  till  i s g r e a t e r t h a n 37,. through  typically oxidized  shown i n P r o f i l e  t h a n 6.07, i r o n and t i l l  ppm  i n c r e a s e a t t h e boun-  i n c r e a s e down p r o f i l e s  t h a n 1050 ppm manganese.  also  and humic  Concentrations i n c r e a s e i n the u n d e r l y i n g  where manganese  material  and l e s s  o f t h e bog  and more t h a n 57° i r o n .  layer  The h u m i c - m e s i c o r g a n i c s o i l  4-8).  part  o f t h e bog, however,  d a r y between t h e humic g l e y s o l i c  and  a r e found,  i n f i b r o u s m a t e r i a l b e t w e e n s t a t i o n s L2S and L5S  c o n t a i n s more t h a n 1280 ppm manganese  in  580 ppm  than  1,  2.5 m d e p t h  the t i l l  and  c o n t a i n s more till  c l o s e to  ( F i g . 4-5)  at station  has more  G2.5  c o n t a i n s more t h a n 4.27, i r o n . Nickel  i n the mesic-humic s o i l  more t h a n 250 ppm  from  c r e a s e s down p r o f i l e s  t o L4S  through  ( F i g . 4-9).  organic s o i l ,  i n the u n d e r l y i n g t i l l .  Nickel  brunisolic  soil  soil  also  but f a l l s  and t i l l  t o more t h a n 90 ppm  from  less  layers  91 t o  down p r o f i l e s  t h a n 60 ppm  i n the t i l l .  to l e s s  Humic-mesic s o i l  increases s l i g h t l y  m  Nickel i n -  between s t a t i o n s L I N t o L2N h a v e n i c k e l r a n g i n g f r o m 250 ppm.  61 t o  a n d t h e h i g h e s t v a l u e s aire f o u n d a t 1-3  d e p t h b e t w e e n s t a t i o n s L5S  t h a n 150 ppm  l a y e r s ranges  through  i n the mineral  The f i b r i c  organic  P R O F I L E 1.  LOCATION:  300 m s o u t h o f s t a t i o n L 2 N .  ENVIRONMENT AND SOIL TYPE: till  s u p p o r t i n g growth o f Hemlock and Engelmann s p r u c e .  slopes southwest Cu.  Co  Fe.  Mn  Mo  O r t h i e d y s t r i c b r u n i s o l formed on  Zn  Ni  pH  DESCRIPTION OF HORIZON L-F-H: L o o s e l i t t e r o f p i n e  74-RL557  1145  8  2.62  23  111  44  Surface  a t 10-15 d e g r e e s .  5.0  Ah:  needles.  0-2 cm d a r k brown medium l o a m .  Bm: 2-30 cm d a r k brown(7.5YR4/2M) medium l o a m w i t h 10% p e b b l e  sized c l a s t s . .  -40 314  1146  14  3.12  39  255  98  5.2  .80 1147  •?9b •' > °<-o ' r  I C : 30-110 cm. O l i v e (5Y5/3M) f i n e  silty  loam. B l o c k y t o f i s s i l e  10-20%  17  4.50  318  11  16  137  3.9  rounded b o u l d e r s i z e d  294  5  3.15  56  66  5  37  3.9  IIC:  structure.  clasts.  110-115 cm. Brown y e l l o w (10YR6/8M)  c o a r s e g r a n u l a r sand  ' 120  294  1149  G r a d u a l change o f c o l o u r and t e x t u r e .  466  h  1148  BC:  31  4.00  494  12  29  76  4.1  IIIC:  115-200 cm. Red brown  (2.5Y5/4M)  c o a r s e sandy loam c o n t a i n i n g 30-40% rounded b o u l d e r s i z e d c l a s t s o f t e n c o m p l e t e l y weath-  - 160 304  1150  15  6.70  342  26  91  3.9  ed t o c l a y m i n e r a l s , b u t r e t a i n i n g rock  fabric.  •:.Oo.^Q.°Q.  .•0/!r.*x».~*\ IVC: Weathered  Cu,  porphyry.  C o , Mn, Mo, N i and Z n a r e i n ppm, F e i s i n p e r c e n t .  Figure 4-5: V a r i a t i o n of metals and pH on an orthic d y s t r i c burunisol p r o f i l e .  original  soil  layer  similar  throughout  levels  s t a t i o n s Gl.5 at  t h e bog  are found  has  less  i n the humic-mesic  t o G2.0.  A  sharp  zinc  t h a n 30 ppm 1420  ppm  bog  content of the f i b r o u s  ( F i g . 4-10).  layers  Profiles  t o G2.0,  through  The  till  u n d e r l y i n g the o r g a n i c s o i l  210  ppm  1  however, h a v e l e s s  Till  ( F i g . 4-5)  sharp decrease  layer.  layers  IC,  137  t o 37  ppm  s t a t i o n s L2N,  L3N  although l e v e l s  and G2  and  profile  The  from 26  fibrous  zinc.  less  than  profile  shown i n  contents.  A  t h e sandy t e x t u r e d  are generally  t h a n 25 ppm  close  g e n e r a l l y has  less  are also t o L2N  than found  t h a n 6 ppm  nickel  t o 120  t o 100  ppm  cm  from  6 ppm.  and depth.  between  molybdenum the e a s t e r n p a r t  Molybdenum v a l u e s  i n the humic-mesic  interface.  and  occur i n  organic layer  where t h e m e t a l  to the t i l l - b o g less  80  has more t h a n 25 ppm  i n the f i b r o u s m a t e r i a l  between s t a t i o n s L4S  till  zinc  IIIC,  the  between  o c c u r on a  i n manganese, i r o n ,  this  s e v e r a l p a r t s o f t h e bog.  on p r o f i l e s  of  o c c u r s a c r o s s the boundary  Molybdenum c o n t e n t s r a n g i n g f r o m  greater  than  Z i n c i n c r e a s e i n the u n d e r l y i n g IIIC l a y e r  molybdenum a b u n d a n c e s on  t h e bog  i s less  t h a n 30 ppm  I I C , and  t e x t u r e d IC m a t e r i a l  there are s i m i l a r v a r i a t i o n s  of  gleysols.  t o more  n o r m a l l y has  have c o n t r a s t i n g  from  between t h e s i l t y IIC  organic layer  a l t h o u g h v a l u e s g r e a t e r t h a n 500  s t a t i o n A4E.  occurs  t h e humic  these layers  Gl.5  Profile  and  and  between  a t t h e e a s t e r n end  stations  at  layers  and v a l u e s i n c r e a s e down p r o f i l e s  i n the humic-mesic  nickel  decrease of n i c k e l  t h e b o u n d a r y between t h e b r u n i s o l s The  t h a n 40 ppm  i s most  layers  abundant  The u n d e r l y i n g  molybdenum a l t h o u g h v a l u e s  73  F i g u r e 4-6: C o b a l t i n s o i l s and  till.  74  Figure 4-7: Manganese i n s o i l s and t i l l .  75  Figure 4-8:  Iron i n s o i l s and  till.  76  Figure 4-9:  Nickel i n s o i l s and  till.  77  Figure 4-10:  Zinc i n s o i l s and  till.  78  Figure 4-11:  Molybdenum i n s o i l s and  till.  79  80 ranging from L2N  18 t o 25 ppm o c c u r on p r o f i l e s a t B3W,  and A 1 E .  L4N, G l ,  V e r y h i g h molybdenum w i t h v a l u e s e x c e e d i n g 100  ppm o c c u r s on a p r o f i l e a t s t a t i o n A4E a t 2-3 m d e p t h ( F i g . 4-11). I r o n , manganese and pH show a c o n c o m i n a n t profiles pH  through the t i l l  of the grey-green t i l l  ranges dized  from till  till  t h a n 7.0  ( F i g . 4-12).  organic layers  5.0 t o 6.0.  soil  f r o m 4.0 t o 5.0 a n d i s r e l a t i v e l y c o n s t a n t down  soil  The pH o f b r u n i s o l i c  soils  less  t h a n 4.0.  4-2  S T A T I S T I C A L TREATMENT OF THE DATA  i s greater  types, s o i l  h o r i z o n s and p a r e n t m a t e r i a l s  m i n e d by s e p a r a t i n g characteristics  or  soil  the d i s t r i b u t i o n s  o f the samples.  for calculating  grams a n d p r o b a b i l i t y  on t h e p h y s i c a l  However, b o u n d a r i e s b e t w e e n  statistical  parameters  Histograms commonly u s e d  groups,  i s impossible.  have a l s o been used  of elemental  representing  indistinct  s e p a r a t i o n o f t h e sample  statistics,  graphs  i n different  c a n be d e t e r -  t y p e s and h o r i z o n s i n t h e bog a r e o f t e n  t r a n s i t i o n a l and a c l e a r  necessary  based  t h a n 5.0  G3.5 t o G5.0 i s  Ranges and means o f e l e m e n t a l d i s t r i b u t i o n s  the  oxi-  A small area of  t h e pH o f humic g l e y s o l s b e t w e e n s t a t i o n s  soil  The  The pH o f o r g a n i c  profiles. and  below t h e humic-mesic  down  f r o m 3 t o 4 m d e p t h on p r o f i l e s a t G1.5 a n d  G2 h a s pH r a n g i n g f r o m ranges  organic s o i l s .  5.0 t o 6.0, w h i l e pH o f d e e p e r , m o d e r a t e l y i n greater  copper-rich  underlying  increase  Histo-  to e s t a b l i s h  distributions.  density distributions are  t o o r g a n i z e g e o c h e m i c a l d a t a so t h a t  their  81 characteristics density mally  c a n be  distributions  summarized. reflect  mically  peaks can o c c u r tribution.  a p o p u l a t i o n mean.  and  o r n e g a t i v e l y skewed and along  The  the  'tail'  into  l a t i o n may  a different  reflect  with contrasting  soil  the  of a p o s i t i v e l y  total  The  graphs  probability  a b u n d a n c e on rithmic  paper graphs  A will  distribution.  The  indicating  distributions  that  Parslow  or h o r i z o n s .  graphs,  (1974) and  against cumulative  the a b s c i s s a .  dis-  E a c h popu-  by  has  straight  been  plotting  frequency  l i n e graph  on  represent a single,  that  or  arith-  of  the  loga-  lognormal  commonly h a v e a s i n u o u s are polymodal,  fre-  Sinclair  the o r d i n a t e s of l o g a r i t h m e t i c  paper  probability  skewed  data using cumulative  are g e n e r a l l y prepared  e l e m e n t a b u n d a n c e s on metic  (1969),  are  populations which  rocks  a l s o known as p r o b a b i l i t y  d e s c r i b e d by L e p e l t i e r  a  of v a l u e s a s s o c i a t e d  types, overburdens,  I n t e r p r e t a t i o n of geochemical quency h i s t o g r a m s ,  logrith-  separate  distribution.  range  and  Histograms  several  peaks r e p r e s e n t s t a t i s t i c a l  h a v e b e e n combined  (1976).  curve.  nor-  Trace  log-transformed values follow  bell-shaped distribution  often positively  of  a b u n d a n c e s , however, a r e commonly  distributed  symmetrical,  bell-shaped  populations consisting  d i s t r i b u t e d v a l u e s about  minor geochemical  Symmetrical,  shape i s several  populations are present. I n d i v i d u a l p o p u l a t i o n s c a n be p a r t i t i o n e d by  e s t i m a t i n g the p r o p o r t i o n of each  from  i n f l e c t i o n points along  curve.  B a s e d on  from  i n the t o t a l  graph  distribution  t h e smoothed c u m u l a t i v e  these p r o p o r t i o n s cumulative  the  frequency  frequencies  X-1S  X-2S  Log S  21.3  12,3  7.2  0.237  334  161  78  41  0.315  107  43  21  9  4  0.368  32.0  3.30  2.35  1.75  1.30  0.93  0.128  B  54.0  1.10  0.80  0.58  0.44  0.35  0.119  Cu(%)  C  14.0  0.70  0.35  0.18  0.092  0.056  0.289  Fe(%)  A  25.0  4.935  3.837  2.831  2.094  1.625  0.132  Fe(%)  B  75.0  2.979  1.625  0.850  0.437  0.216  0.263  Mn(ppm)  A  5.6  3700  3113  2683  1994  1718  0.129  Mn(ppm)  B  94.4  1186  486  172  66  20  0.452  Mo(ppm)  A  75.0  51  31  19  12  17  0.221  Mo(ppm)  B  25.0  12  7  4  2  1  0.247  Ni(ppm)  A  75.0  299  154  78  37  19  0.295  Ni(ppm)  B  25.0  37  28  21  16  12  0.124  PH  A  100.0  -  5,01  4.67  4.34  -  0.531  Zn(ppm)  A  12.0  3131  2321  1600  1098  701  0.162  Zn(ppm)  B  88.0  945  385  135  47  18  0.455  Table 4-1:  Geometric mean (X), mean + 2standard  X+2S  X+1S  100.0  48.0  34.8  A  55.0  640  Co(ppm)  B  45.0  Cu(%)  A  Cu(%)  Element  Population  Organic  A  Co(ppm)  P r o p o r t i o n (7.)  X  carbon (%)  d e v i a t i o n , .mean +  1 standard d e v i a t i o n and Log standard d e v i a t i o n (S) of p o p u l a t i o n s r e p r e s e n t i n g 90 s o i l  samples.  C O  Element  Population  Proportion(%)  X+2S  X+1S  X  X-1S  X-2S  Log S  Organic  A  20..0  1.14  0.32  0.09  0.03  -  0.550  Carbon(%)  B  80.,0  1.29  0.92  0.77  0.55  0.39  0.146  Co(ppm)  A  4.,2  87  71  61  52  43  0.066  Co(ppm)  B  95.,8  47  36  27  21  16  0.116  Cu(ppm)  A  6..0  4000  3250  2650  2180  1750  0.089  Cu(ppm)  B  10.,0  1500  1400  1350  1250  1200  0.033  Cu(ppm)  C  84..0  720  350  180  92  45  0.289  Fe(%)  A  100..0  4.91  4.37  3.77  3.23  2.76  0.064  Mn(ppm)  A  1580  1450  1380  1320  1250  0.021  Mn(ppm)  B  92..8  1270  710  550  430  305  0.111  Mn(ppm)  C  5..0  600  370  280  220  165  0.121  Mo (ppm)  A  5,.0  66  49  38  29  22  0.120  Mo(ppm)  B  6,.2  22  19  17  15  13  0.054  Mo(ppm)  C  88,.8  9  5  3  1  -  0.222  Ni(ppm)  A  100 .0  123  93  71  51  39  0.125  pH  A  40 .0  7.8  7.5  7.3  7.0  6.7  0.018  pH  B  60 .0  6.7  6.1  5.6  4.8  4.1  0.067  Zn(ppm)  A  15 .0  330  260  195  150  110  0.125  Zn(ppm)  B  85 .0  118  95  71  51  39  0.097  Table  2,, 2  4-2: G e o m e t r i c mean ( X ) , mean + 2 s t a n d a r d deviation  and Log s t a n d a r d  deviation  deviation, (S) f o r  mean •4-  96  lstandard  t i l l samples.  84 a r e r e c a l c u l a t e d and  r e p l o t t e d on  from which geometric  mean and  p o p u l a t i o n are  t h e g r a p h as  standard  e x t r a p o l a t e d from  the  linear  graphs  d e v i a t i o n s f o r each  50  and  84  percent  proba-  bilities . Graphs were p l o t t e d f o r c o b a l t , c o p p e r , nickel, and  90  molybdenum, soil  zinc,  samples by  shown i n A p p e n d i x C.  d e v i a t i o n s and  values  tions partitioned  IS and  the graphs  4-2.  the  d e s c r i p t i o n of the graphs w i l l two  convention  standard  followed  Cumulative frequency and  be:  tion ppm  B  between t i l l  graphs  Gl  and  G6  of  the  two  161  ppm,  represent  107, and  Although  cobalt populations  representing  Population  than  2S  for  two  there  in soils  expression  in  deviation. till  (Appendix F i g .  C-2)  distributions.  values  till  c o b a l t i n the mesic-humic an  4-1  standard  till  popula-  greater  than  43  between s t a t i o n s  i s appreciable  overlap  values  than  greater  t h e u p p e r 507, o f p o p u l a t i o n A,  B i s largely  popula-  i n Tables  (61,87,43) and  c o b a l t i n the  ( F i g . 4-6).  e x p l a i n e d by  soil  population A  graphs  standard  f o r c o b a l t i n the  cobalt i n soils  (27,47,16) i s l e s s  probably  These  Sinclair  G e o m e t r i c mean, Mean  have the form of bimodal, n o n - i n t e r s e c t i n g Overlap  and  till  to d e f i n e p o p u l a t i o n s  d e v i a t i o n , Mean minus  (Appendix F i g . C - l )  Fox  mean +  are given  manganese,  i n 96  G e o m e t r i c means, l o g  f o r mean +  from  pH  370/168 c o m p u t e r .  and  plus  The  c a r b o n and  a p r o g r a m w r i t t e n by  (1973) f o r t h e U.B.C. IBM are  organic  iron,  organic  soil  can  be  layers.  of c o b a l t i n the f i b r o u s  layer. Three copper p o p u l a t i o n s  are present  i n the  till  (Appen-  dix  F i g . C-3).  84%  o f the v a l u e s ,  till.  The  or w i t h  lations  C.  reflect  soil  e i t h e r normal or  the v a l u e s , found  i s an  i n the  the  organic  soil  and  although  the  an  Gl  and  till A of  expression A2E.  the  of  curve  t h e bog.  the humic-mesic o r g a n i c  i n the  copper. by  C-5).  B  in  soils of  (2.83,4.93, values  T h r e e man-  (Appendix F i g .  suggests  till  iron  that a fourth (1320,1580,1250)  between s t a t i o n s  r e f l e c t manganese i n t h e  t h e h i g h manganese l e v e l s  patterns  explained  ( F i g . 4-8).  in..the t i l l  by  C.  c o n t a i n i n g 75%  Population A  (2683,3700,1718), r e p r e s e n t e d  e a s t e r n end  B and  to s c a t t e r e d h i g h  oxidized t i l l  the  i r o n abundances g e n e r a l l y  o f manganese i n t h e  i n the  below  are present  Population  horizon  present.  Populations  l a y e r and  due  are present  shape of  p o p u l a t i o n c o u l d be is  Ah  low  popu-  forms o f  (Appendix F i g .  layers.  i s probably soil  of  the  (1.75%, 3.3%,,  c o u l d be  distributions  expression  ganese d i s t r i b u t i o n s C-7)  curves  these  till  different  till  in  each  distribution  S o i l p o p u l a t i o n B,  organic  1.63), however,  i n the  lognormal  non-intersecting iron  i n the  distributions  associated with iron  levels  representing  e x p l a i n e d by  containing  overlap with  population A  overlap with  ( A p p e n d i x F i g . C-6) .  in  Soil  c o u l d be  D i s t r i b u t i o n of  Two  B have l i t t l e  t h e bog.  negligible  the o r g a n i c  and  Ranges o f v a l u e s  These p o p u l a t i o n s in  A  (180,720,45),  'background' copper  d i s t r i b u t i o n patterns  western p a r t of 0.93%,) has  population C  reflects  Populations  other  till  layer. 4 values  reduced  Soil  population  i s an  expression  fibrous layer at  the  P o p u l a t i o n B r e f l e c t s manganese i n soil  layers  (Appendix F i g .  C-8).  The p r o b a b i l i t y graph f o r molybdenum i n t i l l  follows  a non-intersecting, trimodal d i s t r i b u t i o n with i n f l e c t i o n p o i n t s a t 57. and 117o c u m u l a t i v e frequency Values  exceeding  (Appendix F i g . C-9).  18 ppm r e p r e s e n t i n g p o p u l a t i o n s A and B  r e f l e c t m i n e r a l i z e d m a t e r i a l i n the t i l l . p o p u l a t i o n s a r e p r e s e n t i n the s o i l  Two molybdenum  (Appendix F i g . C-10) and  p o p u l a t i o n A (19,51,7) i s a n e x p r e s s i o n o f h i g h v a l u e s i n the o r g a n i c s o i l l a y e r s a t t h e w e s t e r n end of t h e b o g . ( F i g . 4-11) A s i n g l e , lognormal  n i c k e l d i s t r i b u t i o n i s present i n the t i l l  (Appendix F i g . C - l l ) .  Two n o n - i n t e r s e c t i n g lognormal  tions are present i n s o i l s  popula-  (Appendix F i g . C-12) and p o p u l a t i o n  A (78,299,19) i s an e x p r e s s i o n o f n i c k e l d i s t r i b u t i o n p a t t e r n s i n t h e humic-mesic l a y e r s .  Values  l e s s than 37 ppm a r e  l a r g e l y due t o p o p u l a t i o n B w h i c h r e f l e c t s n i c k e l i n t h e f i b r i c o r g a n i c l a y e r and t h e Ah h o r i z o n o f the humic g l e y s o l soil. Two z i n c d i s t r i b u t i o n s a r e p r e s e n t i n s o i l s and i n t h e till  (Appendix F i g . C-13).  T i l l p o p u l a t i o n A (195,330,110),  c o n t a i n i n g 157. o f t h e v a l u e s , i s an e x p r e s s i o n o f z i n c i n t h e deeper t i l l  on t h e s o u t h s i d e of t h e bog shown i n F i g . 4-10.  The s o i l p o p u l a t i o n A (1600,3131,701) r e f l e c t s the h i g h z i n c l e v e l s i n t h e humic-mesic s o i l l a y e r s a t t h e e a s t e r n end o f the bog.  P o p u l a t i o n B (135,945,18) i s p r o b a b l y due t o z i n c  i n o r g a n i c s o i l s and the Ah h o r i z o n of t h e humic g l e y s o l throughout t h e c e n t r a l and w e s t e r n p a r t s of t h e bog. The t i l l  o r g a n i c c a r b o n p o p u l a t i o n A (0.77,0.96,0.55)  (Appendix F i g . C-15) can be e x p l a i n e d by s l i g h t l y  higher  87 carbon l e v e l s interface.  i n the t i l l  populations  very  small  0.17°  i n the deeper t i l l .  A and B.  organic  follow a single tends  lative  Population B i s largely  carbon concentrations Organic  distribution  to e x h i b i t  frequency.  carbon values  less  The  pH v a l u e s  i n the t i l l  layer.  Values  the organic  distribution  4-3  by o r g a n i c  carbon  follow a non%intersecting,  due t o t h e pH o f t h e d e e p e r ,  less  soil.  than  6.7 r e p r e s e n t  The pH o f s o i l s  till  follows a  l a y e r besingle  the curved  graph could i n d i c a t e that both  distributions  oxidized  population B  o f t h e pH o f t h e r e d u c e d  ( A p p e n d i x F i g . C-18) a l t h o u g h  the p r o b a b i l i t y  lognormal  a b o v e 807, cumu-  ( A p p e n d i x F i g . C-17) and p o p u l a t i o n A  which i s an e x p r e s s i o n  of  i n soils  c o u l d be due t o t r u n c a t i o n o r t h e  (7.3,7.8,6.7) i s c l e a r l y  neath  than  t h a n 107,.  bimodal d i s t r i b u t i o n  till  due t o  ( A p p e n d i x F i g . C-16) a l t h o u g h t h e  a degree o f f l a t t e n i n g  This  between  generally less  presence of a second p o p u l a t i o n r e p r e s e n t e d values  soil-till  T h e r e i s , however, c o n s i d e r a b l e o v e r l a p  till  curve  c l o s e to the organic  shape  normal and  are present.  S T A T I S T I C A L CORRELATIONS BETWEEN METALS, ORGANIC  CARBON  AND pH IN SOILS The 4-1,  spatial  distribution patterns,  show t h a t s e v e r a l o f t h e m e t a l s  and o r g a n i c  apparently  h a v e a common a s s o c i a t i o n .  ganic  layers with  16  soil  t o 427, a r e t y p i c a l l y  nickel  organic  described  carbon  The m e s i c - h u m i c o r -  carbon contents  enriched with  i n section  copper,  ranging cobalt,  from zinc,  and molybdenum, b u t g e n e r a l l y h a v e low i r o n a n d manga-  88  c  pH  Co  Cu  Fe  Mn  Ni  Zn  1.00 -0.26  1.00  0.43  -0.13  1.00  0.46  -0.09  0.51  1.00  -0.08  0.23  0.21  -0.15  1.00  0.27  0.01  0.60  0.09  0.37  1.00  0.43  -0.11  0.49  0.38  0.18  0.15  1.00  0. 32  -0. 05  0. 54  0. 51  0.13  0. 17  0. 86  Table  4-3:  Correlation matrix organic  carbon  content  (n = 63; r = + 0.25 confidence  c  pH  for  1.00  s o i l samples w i t h g r e a t e r than  significant  57,;  a t 957,  level).  Co  Cu  Fe  Ni  Mn  Zn  1.00 -0.08  1 .00  0.05  -0 .19  1 .00  0.30  -0 .04  0 .56  1.00  -0.25  0 .22  0 .08  -0.03  1 .00  0.04  0 .05  0 .19  -0.10  0 .26  1.00  0.17  0 .08  0 .09  0.23  0 .15  -0.28  1.00  0.02  0 .15  0 .31  0.43  0 .20  -0.15  0.77  T a b l e 4-4 :  Correlation matrix organic  carbon  for  content  soil  samples w i t h  g r e a t e r than  (n = 33; r = +.0.35 s i g n i f i c a n t confidence  level).  167>;  a t 957,  1.00  89 nese l e v e l s .  Associations  between h i g h n i c k e l and  v a l u e s i n the humic-mesic l a y e r s and nese i n the f i b r o u s end  of the bog.  c i a t i o n s was c i e n t s and  between i r o n and manga-  l a y e r are e s p e c i a l l y evident  The  statistical  zinc  at the  eastern  s i g n i f i c a n c e of these asso-  determined by c a l c u l a t i n g c o r r e l a t i o n c o e f f i -  p l o t t i n g s c a t t e r diagrams using  w r i t t e n by Chin Le andTenisci  the program  (1977) f o r the UBC  IBM  TRP  370/168  computer. C o r r e l a t i o n c o e f f i c i e n t s measure the degree of l i n e a r r e l a t i o n s h i p between two  variables  the c o v a r i a n c e of the v a r i a b l e s standard d e v i a t i o n The  and  r e p r e s e n t a r a t i o of  to the product o f t h e i r  (Dixon and Massey 1969)).  c o e f f i c i e n t s which do not  the v a r i a b l e s range from +1.0  depend on u n i t s used to measure (indicating a perfect  sympathe-  t i c r e l a t i o n s h i p ) through zero (a t o t a l absence of any tionship)  to -1.0  (indicating a perfect  inverse r e l a t i o n s h i p ) .  Large p o s i t i v e or n e g a t i v e c o e f f i c i e n t s can the presence of a few data and  spuriously  s c a t t e r diagrams are  rela-  a l s o r e s u l t from  h i g h or low v a l u e s i n  therefore  the  commonly p l o t t e d  v i s u a l l y examine the c o r r e l a t i o n between the  to  variables  (Chapman 1976). Geochemical data f o r 63 s o i l samples w i t h organic carbon ranging from 5°L to  427  This data i n c l u d e s  values from s e v e r a l combined p o p u l a t i o n s  as d e s c r i b e d  c  was  used i n a p r e l i m i n a r y  in section 4-2.  analysis .  M e t a l values were log  trans-  formed b e f o r e c o r r e l a t i o n c o e f f i c i e n t s were c a l c u l a t e d  since  Chi squared t e s t i n g of the data i n d i c a t e d that most d i s t r i b u -  00  2.5 ro  o  1.0 o  o  o  0.5  o  ° -<r °  Calculated  oo  regression  o o^ O o  l i n e f o r 63  oo  samples  00  o oo  o  oo  o o  o o— o „ — -~ o o  oo  o „.  o  o o  o o  %Cu 0.2  0.1  0.05 _JL_  10  .. 1,. 15  I,*  20  i  I  25  % C  30  35  40  45  Figure 4-13. Scatter diagram f o r Log > Cu against Organic Carbon. 1f  1000  500  Calculated  PPM  o o  Co  0  o  o o o oo  o  iOO  0  for  0  o° o  63 sample  o O 0 0 0 0  s 0  oo oo  oo  50  ^  o  oo o  o  00  o o o o  10  _ J  100  I  I  500  1000  I w  I  5000  10000  PPM Mn Figure  4-14.  Scatter  diagram f o r Log .Co a g a i n s t lf  Log  regression  lr)  Mn.  line  5000  o  o 0  1000  o  s Calculated regression  O  o  oo  O O  PPM Zn 00  OO ^ o  oo " 0  00  X  o oo  o  O  o ' O  line  0  f o r 63  samples  o  o  o  o o o 100  O o  \'  50  „ '  o  20 Figure  o o  o  oo  o  oo, '  o / o o  4-15. S c a t t e r  50 diagram  PPM Ni  100  f o r Log-^Q Zn a g a i n s t  150 Log  200 10 1 n  Ni  300 VO  tions  were a p p r o x i m a t e l y  organic  carbon or  pH  log  normal.  No  transformation  v a l u e s were made, however, and  since  p r o p o r t i o n o f molybdenum v a l u e s were b e l o w d e t e c t i o n t h i s m e t a l was  also  excluded from  tion matrix calculated is  shown i n T a b l e The  63  (60  1967, +  at  the  freedom) i s +  will  b e t w e e n two be  since  l e v e l only  to  the  t h a n +0.5  (+0.60), Co-Zn The  indicate  257, o f  i n T a b l e 4-3  (+0.54), Cu-Zn  tionship nickel  the  and  variation  the  scatter  ( F i g . 4-15)  closely  along  plotted  against %  points  are  c o p p e r and occurs  (Phillips  that  and  there i s a  This  organic  the  are  be  and  can  Thompson, than  linear  be  attributed  Coefficients  (+0.51), Co-Mn Zn-Ni  (+0.86).  indicates  that  e x p l a i n e d by  that A  carbon  a  more  linear  points  rela-  cluster relatively  d i a g r a m o f Log-^Q c o p p e r ( F i g . 4-13)  be  seen.  Similar  Log-^Q C o b a l t p l o t t e d The  shows  that  a l t h o u g h a weak t r e n d o f  c a r b o n can  ( F i g . 4-14).  can  0.5  d i a g r a m f o r Log-^Qzinc a g a i n s t Log-^Q  scattered  diagram of  nickel  be  trend.  organic  Co-Cu  of  relationship,  variation  (+0.51) and  demonstrates  linear  widely  i n the  manganese  a  (r) which w i l l  between v a r i a b l e s .  c o e f f i c i e n t between z i n c  t h a n 607. o f  samples  r e l a t i v e l y weak b e l o w a c o e f f i c i e n t o f +  linear association  greater  63  c o e f f i c i e n t s greater  variables.  however, w i l l this  correla-  l e v e l i n a sample s i z e  0.25  Correlation  i n T a b l e 4-3  at  coefficient  57> s i g n i f i c a n c e  Table F-8).  relationship  limit  A  the  a  4-3.  degrees of  0.25  analysis.  from data r e p r e s e n t i n g  minimum c o r r e l a t i o n  significant  the  of  higher  increasing  scattering  a g a i n s t Log-^Q  correlation  coefficient  Figure  4-16.  Scatter  diagram  f o r Log-^Zn a g a i n s t  Log Ni. '10 l f )  5000  Calculated o O o  1000  regression line  o  500  samples  /o o  o  PPM  O  Zn  0  o o  100  o O  50  _L_  _j  20  50  o  PPM Ni  for  •  i  100  150  I  200 '  :  L_  300  33  95 (+0.60) f o r Co-Mn t h a n C u - C a r b o n single,  h i g h cobalt-manganese  The  using  ( T a b l e 4-4). at  the  greater A  Log-^Q n i c k e l linear ppm  and  50  not  those of  organic  soils  4-4  Results  similar  of  i n T a b l e 4-5. cm  a clear  Ash  deep i n t h e  Ah  but  olic  soil.  ited  during  at  100  Both of the  the  there  33  with  Ni-Zn  against  i s a r e l a t i v e l y strong above v a l u e s for  prove that  Co-Cu  of  completely  250 and  between  variations  nickel variations  of  of  will  cobalt depend  these metals fortuitous  in  and  c o u l d r e f l e c t common s o u r c e s  the for  mechanisms.  ASH  two  volcanic  horizon of  ash  samples a r e  a humic g l e y s o l  Sample 77-RL-2 i s o f d e p t h on  fall.  be Very  of  p r o f i l e 125 similar  ash  low  shown  b e t w e e n 30  that  metal  to  m  textured  a p r o f i l e through f i b r i c  t h e s e samples may  St Helens ash  of  and  plotted  sample 7 7 - R L - l i s f r o m a l a y e r  cm  same v a r i carbon  (+ 0.56)  linear relationship  c o u l d be  VOLCANIC  s o u t h f r o m s t a t i o n L6S. material,  Cu-Co  common a s s o c i a t i o n  of  a  Those v a r i a b l e s  metals  concentrating  analyses  to  a sample s i z e  coefficients  that  d i s t r i b u t i o n patterns  TRACE METALS IN  two  The  copper or  highly  metals or  are  necessarily  The  the  0.35.  shows t h a t  nickel.  zinc.  spatial  40  ppm  do  0.50  between the  those of  the  for  d i a g r a m f o r Log-^Q z i n c  indicating  these metals, depend on  than +  scatter  relationship  zinc  level is +  ( F i g . 4-16)  Ni-Zn, w h i l e  on  minimum c o e f f i c i e n t f o r  57o s i g n i f i c a n c e  (+ 0.71).  recalculated  samples w i t h more t h a n 167<> o r g a n i c  The  coefficients  due  value.  c o r r e l a t i o n m a t r i x was  a b l e s , but  (+0.46) c o u l d be  was  mesisdepos-  96 Number  Location  Co  Cu  Fe  Mn  Ni  Zn  77-RL-l  125 m s o u t h o f  ND  79  0.12  9  9  33  4  359  0.20  12  14  116  s t a t i o n L6S 77-RL-2  1 m  deep a t  station Table  4--5:  1 .5G  Metal contents Cu, in  Number  Co , Mn,  o f v o l c a n i c ash  samples.  N i a n d Zn a r e i n ppm;  Fe i s  %.  Location  Cu  Fe  Mn  Zn  73-RL-533  a  L5S  44  197  154  48  73-RL-535  a  B1E  96  215  90  31  73-RL-570  3  L2N  37  167  132  29  73-RL-573  a  A1W  228  206  240  21  73-RL-530  b  B1W  13  73  707  63  73-RL-534  b  B1E  19  82  805  49  74-RL-1357  b  A2W  17  56  391  34  74-RL-1363  b  G2  10  60  548  27  74-RL-1364  b  G4  16  66  430  44  74-RL-1365  b  LIN  14  68  290  41  74-RL-1366  b  LON  17  57  548  32  74-RL-1381  b  LIS  20  77  612  42  74-RL-1382  b  L3S  19  71  1503  35  Table  4-6: M e t a l  contents  samples; b  i n ppm  of vegetation  a - Sphagnum moss;  - Labrador  Tea.  97  contents  appear to be t y p i c a l of the v o l c a n i c ash except  the h i g h copper content  i n sample 77RL-2.  organic fragments i n t h i s sample and c o l o u r of the m a t e r i a l suggests  Presence of s m a l l  the dark y e l l o w to brown  t h a t the copper may  have been  i n t r o d u c e d w i t h organic matter a f t e r d e p o s i t i o n of the 4-5  TRACE METALS IN BOG  for  ash.  VEGETATION  A s m a l l number of sphagnum moss and  labrador tea samples  were analysed f o r copper, i r o n , manganese and are g i v e n i n Table 4-6.  z i n c and  results  These r e s u l t s are f o r n i t r i c - p e r -  c h l o r i c a c i d d i g e s t e d m a t e r i a l and no ash weights were d e t e r mined.  R e s u l t s i n d i c a t e , however, that copper and  i r o n are  r e l a t i v e l y more abundant i n the sphagnum moss growing on  the  water s a t u r a t e d f i b r o u s m a t e r i a l than i n the labrador tea shrub.  The  l a b r a d o r tea, i n c o n t r a s t to the moss, has  higher  l e v e l s of manganese. 4-6  TRACE ELEMENTS IN GROUND AND  SURFACE BOG  WATERS  Water f l o w i n g from t i l l - b e d r o c k seepages, a diamond hole  (#68-W-5), humic g l e y s o l seepages, semi-stagnant  s u r f a c e p o o l s , s u r f a c e streams and water accumulating bottom of cased auger holes was  bog at  the  analysed f o r t o t a l copper,  i r o n , manganese, z i n c , o r g a n i c carbon, number of the s u r f a c e and  drill  calcium and pH.  A  subsurface water samples were a l s o  analysed f o r sulphate and b i q u i n o l i n e e x t r a c t a b l e copper. A r i t h m e t i c means, standard  d e v i a t i o n s and c o n c e n t r a t i o n ranges  f o r the d i f f e r e n t sample types are g i v e n i n Table 4-7.  Means  and standard d e v i a t i o n s f o r those sample groups where a prop o r t i o n of the a n a l y t i c a l values are below i n s t r u m e n t a l  Sample  type  Carbon  Ca  Cu  Fe  Mn  pH  Zn  Till-bed-  X  1.6  24  70  30  33  6.0  10  rock  R  <0 .5-5.0  <5-125  <10-290  <20-153  <-20-41  5..5-7.0  <6-54  S  1.4  32  98  76  8  0.5  22  79  100  71  21  31  100  50  seeps  n = 14  P(%) Humic-gley-  X  1.6  19  178  87  35  6.2  25  sol  R  <0 .5-8.0  < 5-120  <10-590  <20-143  <20-60  4..0-7.3  <6-70  S  2.2  30  162  102  17  1.0  22  15  12  100  24  24  100  82  seeps  n = 17  P(%) Surface  X  1.4  19  441  30  40  5.0  27  pools  R  <0 .5-7.0  <5- 30  <10-750  <20-276  < 20-62  4.,0-7.0  < 6-50  n = 13  S  3.6  7  230  117  13  0.9  12  P(%)  69  100  100  39  77  100  85  106  7.4  12  Subsurface  X  7.4  21  185  263  waters  R  2. 0-16.0  <16-28  <10-1060  <20-2328  <20-204  6..0-7.5  < 6-40  n = 10  S  4.2  5  324  744  60  0.6  14  P(%)  100  100  70  80  100  100  60  Stream  X  2.2  22  104  38  N o  6.6  8  waters  R  <0. 5 -3.0  <17-25  <10-425  '<20-123  4 .5-7.8  < 6-22  S  1.0  6  111  38  0.9  6  95  50  100  70  P(%) T a b l e 4-7:  90  100  A r i t h m e t i c means ( X ) , s t a n d a r d  d e v i a t i o n s ( S ) and  Data  r a n g e s (R) f o r  w a t e r . Cu, F e , Mn.and Zn i n ppb; C and Ca i n ppm. P =  7o v a l u e s  elements i n detection l i m  99  d e t e c t i o n l i m i t have been c a l c u l a t e d by the method d e s c r i b e d by Miesch (1967). in  These s t a t i s t i c s are only approximations  those sample groups w i t h more than 50 percent of v a l u e s  below the d e t e c t i o n  limit.  H o r i z o n t a l v a r i a t i o n s of copper i n bog waters and rounding seepages are shown i n F i g . 4-17.  sur-  Weakly a c i d  (pH  5.5-7.0) t i l l - b e d r o c k seepages g e n e r a l l y have l e s s than 50 ppb copper, l e s s than 2 ppm or  manganese.  o r g a n i c carbon and no d e t e c t a b l e  iron  Spring water d r a i n i n g from a probable f a u l t  zone 50 m n o r t h of s t a t i o n G 11 c o n t a i n s 290 ppb copper a l though no copper was  d e t e c t e d i n water f l o w i n g from diamond  d r i l l h o l e 68-W-5.  T h i s water c o n t a i n e d 125 ppm  ppm  s u l p h a t e and 54 ppb z i n c .  have pH v a l u e s r a n g i n g from 4.0 copper content (178 ppb)  calcium, 120  Seepages from humic g l e y s o l s to 7.0 and a h i g h e r mean  than the t i l l - b e d r o c k  seepages.  Water from seepages on the west s i d e of the bog has up to 590 ppb copper  ( F i g . 4-17).  Most of the seepages do not have  d e t e c t a b l e l e v e l s of i r o n or manganese. carbon up to 8 ppm the  Dissolved organic  occurs i n water accumulating i n p i t s  n o r t h and south s i d e s of the bog.  Seepages and  f l o w i n g from the n o r t h s i d e of the bog have up to 120 calcium.  on  springs ppm  Z i n c contents up to 70 ppb are found i n seepages  d r a i n i n g the h i l l  s i d e on the southeast margin o f the bog.  The pH of semi-stagnant s u r f a c e pools can be as low as 4.0 to  and water standing on the bog s u r f a c e between s t a t i o n s G2 c o n t a i n s up to 750 ppb copper.  L0N  The h i g h copper con-  c e n t r a t i o n s are found i n semi-stagnant pools l e s s than 10 cm  CENTRAL BOG DRAIN AGE.SOILS AND FLORA TOTAL DISSOLVED COPPER CONTENT OF SURFACE WATER SAMPLES IN P.P.B  i  / v J.  LEGEND F I B R K MEStSOLS; SIMILAR FLORA TO H U M C MESISOLS WITH HUMOCKY SPHAGNUM MOSS H U M t M£SlSOLS;ENGl£MANN SPRUCE, MOUNTAIN HEMLOCK, LODGE POLE PINE ^OT TON GRASS,REDHEATHER,LA8RADOR T E A G L E Y E D D Y S T R C BRUNl50LS;ORTHIC HUMIC G L E Y S O L S WITH LOCAL PEATY P H A S E S : WHITE AMD E N G L E M A N N S P R U C E , MOUNTAIN L A B R A D O R 1EA.WHITE R MQDOOENDRON ALPINE OYSTRlC BRUNISOLS; G R A S S COVERED HILLSIDE CLEARING ORTHlf, DYSTRlC B R U N 6 0 L S WITH OC G R A D E D DYSTRIC 6 R U N I S 0 1 5 . E N G L E M A N N S P R U C E , WHITE S P R U C E , L O D G C P O L E PINE, A L P I N E FIR DRAINAGE  Figure 4-17: Copper ( ppb) in surface water samples  CHANNEL  Figure 4-18:  Copper ( ppb) in subsurface water samples  102  deep f o r m e d  over  fibric  pools c o n s i s t i n g is  occasionally  as  sulphur.  mesisois.  of p a r t i a l l y  Iron hydroxide p r e c i p i t a t e s  o f t h e bog.  (1.4 ppm) for  and  have l e s s  t h a n 30 ppb  t h a n 50 ppb The  seepages. iron,  largest  auger  Mean pH  holes.  lower  and  (185 ppb)  also less  except  The  a r e a where t h e s e h i g h c o p p e r copper-rich t i l l .  more t h a n 2000 ppb  ppb  dissolved  m  7.5.  is  similar  (178  ppb).  copper  end  of  the  ( F i g . 4-18).  values occurs i s u n d e r l a i n water  samples  i r o n , manganese and  a t 1.5  to  waters  t h a n 50 ppb  i n the water  s u r f a c e waters  example, c o l l e c t e d  6.0  but  s e e p a g e samples  S u b s u r f a c e bog  have h i g h e r mean d i s s o l v e d  copper.  from  i n a small area at the western 1000  cased  (7.4) i s  o f the s u b s u r f a c e  samples h a v e l e s s  exceeds  a b u n d a n c e s t h a n do  between  a t the bottom o f  than that of s u r f a c e waters,  where c o p p e r  dissolved  are found  v a l u e s range  bog  for  determined  manganese and  of the s u b s u r f a c e waters  content  Most s u b s u r f a c e water  by  than those  b e l o w 30 ppb  t h e mean o f t h e humic g l e y s o l  ( T a b l e 4-9)  content  accumulating  than s u r f a c e waters  The mean c o p p e r  to  organic carbon  S u r f a c e water p o o l s  chemical v a r i a t i o n s  and w a t e r s  i s markedly  western  zinc.  s u r f a c e waters  higher  on  at the  of v a l u e s a r e lower  t h e humic g l e y s o l  identified  a r e more common  s u r r o u n d i n g seepages  The mean d i s s o l v e d  range  i n these  decomposed v e g e t a t i o n f r a g m e n t s ,  coated with a white p r e c i p i t a t e  t h e b o t t o m o f p o o l s and end  Bottom s e d i m e n t  organic  ( T a b l e 4-7).  One  d e p t h a t s t a t i o n G2  iron,  but  The mean d i s s o l v e d  less  also  than  50  carbon  sample, contains ppb  calcium content of  the  10 3 Organic  Sample  Ppb Cu by  Ppb Cu by  %  number  A.A.  biquinoline  extracted  carbon  74-RL-  rophotometry  by b i q u i n -  (ppm)  spect-  Cu n o t  pH  oline 1290  125  180  -  2.0  5.8  1291  117  90  23  2.5  5.0  1292  175  120  31  2.0  5.5  1293  241  150  38  2.5  5.5  1294  158  110  30  2.0  5.8  1314  658  650  2  <0.5  5.0  1315  699  700  <1  <0.5  4.5  1316  749  800  $1  <0.5  4.0  1318  62  80  <1  2.0  6.0  1320  395  350  11  <0.5  4.0  1323  146  110  25  <0.5  5.5  1324  146  50  66  3.0  4.0  1326  220  150  32  2.0  7.0  1508  645  520  19  5.0  n.a  1427*  21  10  50  9.5  6.0  1428*  10  8  20  9.0  7.5  1429*  50  8  84  16.0  7.0  1439*  499  450  10  2.0  6.0  1442*  50  20  60  4.0  6.2  1443*  90  50  44  3.5  6.0  Table  4-8: S u r f a c e  and s u b s u r f a c e ( * )  a n a l y s e d by a t o m i c  water  absorption  samples  spectro-  p h o t o m e t r y and b y 2-2 b i q u i n o l i n e c o l o rimetry.  n.a = n o t  determined.  104 subsurface water samples i s s i m i l a r to that of s u r f a c e waters and  sulphate v a l u e s , ranging from 27 to 80 pprn, are  higher i n s u r f a c e p o o l s . water recorded  -260  mv.  One  moderately r e d u c i n g . will  the odour of H^S  li^S.  carbon values ranging from 2 to 16 ppm  s u r f a c e water and from 0.5  to 7 ppm  which may  i n sub-  i n s u r f a c e water may  sent c o n c e n t r a t i o n s of d i s s o l v e d , metal-complexing substances  values  of sulphate d e r i v e d from m i n e r a l  sulphate from the o x i d a t i o n of  Organic  from  t h a t subsurface bog water i s  Measured d i s s o l v e d sulphate  t h e r e f o r e be a product  sources and  Eh measurement made ono:s.ubsurface  This Eh and  f r e s h l y sampled water suggests  slightly  (fulvic acid fraction).  repre-  organic  The p r o p o r t i o n of copper  be bound to o r g a n i c matter or other substances  the water has been measured u s i n g 2-2 are g i v e n i n Table 4-8.  b i q u i n o l i n e and  S e v e r a l of the samples  in  results  analysed  have a b i q u i n o l i n e e x t r a c t a b l e copper v a l u e that i s g r e a t e r than the c o n c e n t r a t i o n determined by atomic a b s o r p t i o n  spec-  trophotometry.  be  The reason f o r t h i s i n c o n s i s t e n c y may  a n a l y t i c a l e r r o r of the b i q u i n o l i n e e x t r a c t a b l e copper method or poor p r e c i s i o n at h i g h copper c o n c e n t r a t i o n s .  Biquinoline  g e n e r a l l y e x t r a c t s more than 607 of the copper from samples o  having  low d i s s o l v e d carbon contents and  the s u r f a c e pools  (Table 4-8).  low pH which are from  A s m a l l e r p r o p o r t i o n of  t o t a l copper i s removed from subsurface water samples a g r e a t e r o r g a n i c carbon content  the  having  i n d i c a t i n g that a higher  percentage of the copper c o u l d be bound to the o r g a n i c matter.  Sample  Depth-  number  Location  1326  S  A0.5W  1427  G  1323  Organic  Ca  Cu  Fe  Mn  pH  2.0  19  200  61  <20  7.0  n.r  31  LIN  9.5  n.r  21  30  204  6.0  45  15  S  GO. 8  5.0  8  146  <20  23  5.5  n.r  22  1428  G  GO. 8  9.0  25  <10  110  136  7.5  40  10  1324  S  A1W  3.0  7  146  <20  <20  4.0  n.r  20  1429  G  A1W  16.0  11  50  172  74  7.0  27  22  1315  s,  G2.2  <0.5  23  699  <20  43  4.5  75  28  1439  G, G2.2  2.0  18  499  398  43  6.0  60  22  1317  S; G2.0  <0.5  29  708  <20  51  5.2  80  37  1442  G,  G2.0  4.0  23  50  2328  51  6.2  62  <6  1314  S; G1.5  <0.5  23  658  <20  43  5.0  65  30  1443  G; G1.5  3.5  25  90  441  100  6.0  62  <6  1320  S; G1.0  <0.5  16  395  <20  34  4.0  50  39  1444  G; G1.0  4.0  25  1060  61  43  n.r  65  39  1493  S; LON  7.0  n.r  633  <20  57  4.0  n.r  15  1492  G; LON  9.0  16  <10  30  165  n. r  27  <6  1508  S; L I S  5.0  13  645  61  62  4.8  40  25  1507  G; L I S  12.0  28  <10  92  71  n. r  30  <6  carbon  T a b l e 4-9: E l e m e n t c o n t e n t s Mn,  i n s u r f a c e ( S ) and s u b s u r f a c e  Zn a r e i n ppb;  C a r b o n , Ca, and SO, a r e i n  4  (G) bog ppm  n.r  ^4  Zn  w a t e r s a m p l e s . Cu, F e = not recorded.  106 B i q u i n o l i n e e x t r a c t a b l e copper data are, however, based on a comparison between 6 subsurface and 12  s u r f a c e water  samples. Stream waters a r e weakly a c i d and have d i s s o l v e d  iron,  z i n c , and o r g a n i c carbon l e v e l s s i m i l a r to those found i n t i l l - b e d r o c k seepages.  Streams d r a i n i n g semi-stagnant pools  c o v e r i n g the western end of the bog have water pH v a l u e s below 5.0 and samples  c o n t a i n more than 400 ppb copper.  T h i c k p r e c i p i t a t e s of i r o n hydroxide o f t e n occur i n channels through t h i s p a r t of the bog.  Below these i n c r u s t a t i o n s ,  however, the o r g a n i c r i c h stream sediment has a dark blue-grey c o l o u r and has a strong I^S odour.  Water f l o w i n g i n the main  stream d r a i n i n g the lower end o f the bog has h i g h e r pH than water  i n the channel a t the western end.  The d i s s o l v e d  copper content a l s o decreases from above 400 ppb a t the western end to l e s s than 70 ppb i n samples the  from the channel d r a i n i n g  lower, e a s t e r n end of the bog.  4-7  HI REDUCIBLE SULPHUR CONTENTS OF SOIL AND TILL The s o i l and t i l l  samples  analysed f o r h y d r i o d i c  r e d u c i b l e sulphur (HI r e d u c i b l e sulphur) a r e from four cal  acid verti-  o r g a n i c s o i l - t i l l p r o f i l e s i n c l u d i n g P r o f i l e 2 ( F i g . 4-2)  and P r o f i l e 3 ( F i g . 4-3).  R e s u l t s g i v e n i n T a b l e 4-10 show  that HI r e d u c i b l e sulphur i s 10 to 20 times g r e a t e r i n o r g a n i c s o i l l a y e r s than i n u n d e r l y i n g t i l l  and sulphur g e n e r a l l y  i n c r e a s e s down p r o f i l e s from the f i b r i c mesic  l a y e r s , but f a l l s  interface.  l a y e r i n t o the humic-  s h a r p l y a t the o r g a n i c s o i l - t i l l  The c o r r e l a t i o n c o e f f i c i e n t f o r HI r e d u c i b l e  Sample Number  Location-Depth  i n cm  HI-Sulphur(ppm) Organic  C  CA) Station  B1E  118  n  73-RL-117  0-50  788  26.4  ii  50-100  350  19.0  119  ii  ii  100-110  105  4.0  139  ii  ii  250-260  19  0.5  140  it  n  300-310  26  0.1  0- 50  1114  39.5  73-RL-120  L5S ii  ii  50-100  1360  32.0  II  n  100-150  1445  22.9  n  ii  150-200  1181  50.6  141  II  ii  350-360  24  0.1  142  II  n  380-390  30  0.4  0-40  249  34.1  121 122 123  LON  74-RL-1087 1088  it  II  50-100  1162  41.4  1089  it  n  100-130  725  21.9  1090  n  n  130-140  69  1.0  0-40  118  13.7  50-100  449  16.7  100-150  1360  26.1  LIN  74-RL-1091 ii  n  n n  n n  150-200  906  32.0  1095  n  n  200-250  1418  39.4  1096  M  ii  250-300  906  42.6  1097  n  n  325-350  104  1.3  1092 1093 1094  Table  4-10: H y d r i o d i c carbon  a c i d r e d u c i b l e s u l p h u r and o r g a n i c  contents  o f samples from  four  profiles.  108  sulphur  and o r g a n i c c a r b o n i s + 0.82  indicating  t h a t more  657o o f t h e v a r i a t i o n  c a n be e x p l a i n e d by a l i n e a r  s h i p between s u l p h u r  and c a r b o n .  marked in  the t i l l  cible as  increase of sulphur suggests  sulphur  sulphide.  present  relation-  This r e l a t i o n s h i p  i n organic  soil  and t h e  compared t o l e v e l s  t h a t a l a r g e p r o p o r t i o n o f t h e HI occurs  as o r g a n i c  than  redu-  s u l p h a t e and p o s s i b l y ,  109 CHAPTER 5 SULPHIDE MINERALS' IN ORGANIC SOILS AND 5-1  INTRODUCTION Bromoform s e p a r a t e d h e a v y m i n e r a l  one  hundred s o i l  and  till  cluded angular  Visible,  to subangular  p y r o x e n e and m a g n e t i t e . often p a r t i a l l y arates  from  concretion  till less  organic s o i l  by X - r a y  t h e m i n e r a l was dendritic  0.5  mm  A single  concretion  a  identified  in  i n the o r g a n i c s o i l to c a r r y out  textures roughly  sep-  coloured  in  separates  c o n c r e t i o n was  analysed  as p y r i t e . the  green  shaped p y r i t e g r a i n s ,  u s i n g a D e b y e - S c h e r r e r p o w d e r camera  identified  m i n e r a l g r a i n s and  feldspar,  i n s i z e were v i s i b l e  g r a i n s , s m a l l e r than  also present  roughly  minerals i n -  C l u s t e r s of s m a l l bronze  samples-  diffraction  subangular  t o l i m o n i t e c o u l d be  samples. than  non-sulphide  grains of quartz,  Small,  altered  f r a c t i o n s - from  samples were i n i t i a l l y e x a m i n e d u n d e r  a b i n o c u l a r microscope.  from  TILL  D a r k brown t o  yellow  concretion clusters  separates. additional  To  were  identify  examination  of  f i f t y heavy m i n e r a l s e p a r a t e  p l e s were mounted i n e p o x y - r e s i n , p o l i s h e d and  and  these the sam-  the s e c t i o n s  examined under a r e f l e c t i n g m i c r o s c o p e .  S e v e r a l o f the i n -  dividual  e x a m i n e d and  for  relative  electron 5-2  g r a i n s i n the copper,  s e c t i o n s were a l s o  iron  and  s u l p h u r abundances w i t h  TEXTURES OF  scanning  SULPHIDE MINERAL GRAINS  S e v e r a l forms o f p y r i t e were i d e n t i f i e d the heavy m i n e r a l  grains mainly ally  a  microscope.  COMPOSITION AND  made f r o m  analysed  present  occur  separates.  i n the t i l l  i n organic s o i l s .  although The  i n the s e c t i o n s  Small  angular  pyrite  t h e s e were o c c a s i o n -  most common f o r m  of  pyrite  110  P l a t e 5-1:  E l e c t r o n micrograph of a f r a m b o i d a l p y r i t e c l u s t e r  i n a p o l i s h e d mount made from a heavy m i n e r a l separate of sample 74-RL-1119.  Spherical p y r i t e concretions  rimmed w i t h s o f t e r sulphides covellite m depth.  (Cv). Bar  (Py)  c o n s i s t i n g of c h a l c o p y r i t e  Sample 74-RL-1119 i s from s t a t i o n G1.0 s c a l e measures 50  um.  soil  are (Cp) at  and 2.5  Ill  Plate 5-2: E l e c t r o n micrograph of an i n d i v i d u a l p y r i t e framboi d ('A') from the c l u s t e r shown i n Plate 5-1. The p y r i t e microcrystals are less than 10 um across and are randomly o r i n tated. Cubic forms are v i s i b l e i n several of the microcrystals. Bar scale measures 20 um.  112  P l a t e 5-3: 74-RL-1119. a concentric  E l e c t r o n micrograph  of p y r i t e framboids  The m i c r o c r y s t a l l i n e framboid l a y e r o f massive,  has a c o m p o s i t i o n  from  sample  c o r e i s coated w i t h  s l i g h t l y s o f t e r sulphide that  s i m i l a r to F e S . 0  Bar s c a l e measures 20  um.  113 in organic cretions tions  b e t w e e n 20  concretion,  and  the  length  features  and  30  um  of  each c r y s t a l  orientated  omly o r i e n t a t e d .  along  slightly 5-3).  the  and  5-2,  i n framboidal  are  of  in a  the  5-2  framboids  core  that  The  coloured  e n v e l o p e i s 8-10  and  concentric  Framboids  i n d i v i d u a l microbut  the  found  microcry-  i n the  i s enclosed  scanning  are  almost uniform throughout  the  core  a slightly  Individual shape o f  by  are  pyrite.  The  ing  envelope could,  is often  than the  apparently  softer sulphide  randorganic  a  roughly that  core  (Plate  c u t by  i r o n and  both sulphur  i n the  although,  however,  envelope.  n o n - m a g n e t i c and core  f r o m 4.0-5.0 compared framboids  (Fe^S^)  which comprises  t o 5.0  w h i c h has  for pyrite.  from a p y r i t i c  the  indicates that the  a hardness Papeunen  they  surround-  however, h a v e a c o m p o s i t i o n c l o s e r t o  of g r e i g i t e - m e l n i k o v i t e  is  e l e c t r o n microprobe a n a l y s i s ,  these framboids  the m i c r o c r y s t a l s  i n the  Relative  i r o n content  framboids  are  reported  t h i c k and  in  a p p e a r t o be  than that  fractures.  a b u n d a n c e s , d e t e r m i n e d by  has  um  cubic  Comparable  envelope c o n s i s t i n g of massive i r o n sulphide darker  of  typi-  p y r i t e reported  planes,  i n Plate  consist  roughly  environments  defined  framboid  Several  s o f t e r and  radiating  generally  i n l e s s t h a n 5 um.  well  have a m i c r o c r y s t a l i n e  spherical  has  5-1  con-  i n d i v i d u a l concre-  i n t h e s e s e d i m e n t s commonly h a v e t h e  s t a l s w h i c h make up  cubic  The  c l u s t e r s of  Microcrystals  sediments from w i d e l y ranging  crystals  or  d i a m e t e r and  shown i n P l a t e s  have been d e s c r i b e d  described  soils  spherical concretions  packed p y r i t e m i c r o c r y s t a l s .  cal  recent  i s as  r e s e m b l i n g bunches o f g r a p e s .  are  loosely  soil  that  ranging  (1966)  l a y e r i n a F i n i s h peat  114  Plate 5-4: Plate 5-1.  Photomicrograph of the framboidal c l u s t e r shown i n The softer, darker yellow chalcopyrite coating the  p y r i t e framboids i s c l e a r l y v i s i b l e .  Blue c o v e l l i t e lamellae  f i l l the i n t e r s t i c e s between the framboids.  1 Jt J  Plate 5-5:  Bar scale i s 50  um.  * \  Photomicrograph of a polished mount from sample 74-  RL-1127 c o l l e c t e d at s t a t i o n G 1.5 at 2.5 m depth.  Idiomorphic  c o v e l l i t e ' c r y s t a l s ' less than 20 um across are rimmed by chalcopyrite.  The outer shape of the chalcopyrite envelope i s  s u b - p a r a l l e l to the shape of the c o v e l l i t e core and one of the grains has a roughly hexagonal form.  Bar scale i s 10  um.  115 bog  which e x h i b i t e d s i m i l a r  He  determined,  ric  envelope  Framboids 20  t o 30  of  layer  as  approximately  i n this  pyrite cluster  the i n t e r s t i c e s  shaped areas  e n c l o s i n g the  framboidal p y r i t e  have been l a r g e r ,  b u t was  measclearly  blue  between as a  the  thin  framboids  the outer  covellite.  cluster  b r o k e n up  on  is and  s e v e r a l of the p y r i t e  irregularly  partially  shape o f t h e  pyrite.  Chalcopyrite i s also present  surrounding  larger,  fill  of  concent-  shown i n P l a t e 5-4,  Microcrystalline  lamellae p a r t i a l l y  the c l u s t e r  may  example,  across.  concretions.  also  ular  um  one  consist  containing  i n s e v e r a l o f the framboids  concentric and  i n clusters  c o n c r e t i o n s and  covellite pyrite  the c o r e both  commonly o c c u r  200  d e s c r i b e d above.  d i f f r a c t i o n t h a t t h e c o r e and  surrounding  ures roughly visible  by X - r a y  t e x t u r e s to those  The  suggests  edge  irreg-  that i t  d u r i n g sample d i s s a g g r e -  gation. Grains native  o f c h a l c o p y r i t e mixed w i t h  covellite,  copper  were a l s o  identified  heavy m i n e r a l  separates  of organic s o i l s .  ite  grains are  less  than  20 um  and  i n p o l i s h e d mounts made  consist  l a m e l l a e or r o u g h l y hexagonal forms. , a n i s o t r o p h i c and  Plate  5-5  subparallel and  from  20 um  relationships  o f deep b l u e , covellite  from  covelltwinned  i s strongly  colours are  visible  i s rimmed by The  a t h i n envelope  of  o u t e r edge o f t h e g r a i n s i s  i n t e r n a l boundary between the c o v e l l i t e  the c h a l c o p y r i t e rim.  ranging ural  chalcopyrite. to the  Idiomorphic  and  E x a m p l e s o f t h e s e g r a i n s a r e shown i n  where t h e c o v e l l i t e  green-yellow  The  r e d t o brown p o l a r i z a t i o n  under c r o s s e d n i c o l s .  covellite  core  Larger copper-iron sulphide grains  t o more t h a n between the  60  um  h a v e more complex  constituent minerals  than  textdo  the  116  Plate  5-6:  Photomicrograph of  RL-1117 c o l l e c t e d a t o c c u r s as deeply  station G  a discontinuous i n this grain  ly  90?  Smaller  by  chalcopyrite.  (area  the 'A'  ( l e s s t h a n 20 Bar  1.0  at  margin along  c o r r o d e d o u t e r edge o f  surfaces  a p o l i s h e d mount f r o m sample  um  1.5m the  depth.  to  ) covellite  s c a l e m e a s u r e s 40  Covellite  highly irregular,  chalcopyrite ) appear  74-  um.  grain.  Two  i n t e r s e c t at grains  are  roughrimmed  Plate 5-7:  Photomicrograph of a c h a l c o p y r i t e - c o v e l l i t e grain  from sample 74-RL-1119.  The chalcopyrite (Cp) core i s sub-  hedral and has a sharp contact with enclosing layers of chalcopyrite and c o v e l l i t e (Cv).  Dark, non-sulphide inclusions  are present i n the core forming a discontinuous, layer.  Bar scale on Plates 5-7  Plate 5-8: Concentric  concentric  and 5-8 measures 50  um.  Photomicrograph of a grain from sample 74-RL-1113. layers of almost spherical chalcopyrite granules  surround an i r r e g u l a r l y shaped s i l i c a t e mineral grain.  118 smaller  covellite  grains.  Chalcopyrite covellite  occurring  the  o u t e r edge o f  the  grain  surfaces,  may-  he  as  the  present  small  Within  5-6  are  between the  grain  the  90°,  chalcopyrite  c o r e and  c h a l c o p y r i t e - c o v e l l i t e margin.  These s u r f a c e s  small  be  non-sulphide mineral matter. contrasts of  the  markedly to  visible  are  roughly  concentric  s u b - p a r a l l e l to the  boundary of copyrite  this  and  irregular may  c o r e has  represent  is  consists The  edge o f  grain  This  this  core  and  grain  roughly  suggesting  edge is  also 5-7  appears to  The  grain  which  outer chal-  i s also  These  en-  very  textures  nucleus  for  a  later  replacement. with a s i l i c a t e  consists  concentric  smaller  that  where  m i n e r a l f o r m a t i o n where  sulphide  granules  are  envelope of both  formed the  a s s o c i a t i o n of  chalcopyrite  s l i g h t l y blue  an  of  surfaces  a non-sulphide material  of  accretion  c o r e s u r r o u n d e d by  spherical  shape and  sulphide  stages of  5-8.  two  and  shown i n P l a t e  two  shown i n P l a t e  quartz  a subhedral  5-6),  enclosing  these  features  deeply corroded.  unusual  Plate  sulphide,  a p p e a r s t o be  covellite-chalcopyrite An  a grain  of  inclusions  core envelope boundary.  chalcopyrite  core  enclose  or  to  regular  the  r e g u l a r i t y of  Similar  zones o f  covellite.  and  preexisting  grain  fractures  dominant  chalcopyrite.  i n a s e c o n d example o f  chalcopyrite  close  the  with  1  d e e p l y embayed, c o r r o d e d o u t e r  g r a i n where c o v e l l i t e ,  u s u a l l y rimmed by  the  the  The  two  (Area " A " . i n  chalcopyrite  s u b p a r a l l e l a r e a s t h a t may  'core  shaped zones c l o s e  i n d i c a t i o n s that  i n t e r s e c t i n g at roughly  form a contact  the  irregularly  grain.  shown i n P l a t e  forming  of  a  t h e y may  subhedral  layers  t h a n 20 um be  mineral  of and  almost having  partially  a  covell-  119  Plate 5-9:  Photomicrograph from sample 74-RL-1119 showing chal-  copyrite intergrown with c o v e l l i t e .  Blue c o v e l l i t e (Cv) occurs  as lamallae or roughly concentric zones i n the chalcopyrite  (Cp).  A pale brown mineral enclosed by the chalcopyrite i n the grain center could be bornite (Bn).  Plate 5-10:  Bar scale measures 50  Photomicrograph from sample 74-RL-1119 showing  c o v e l l i t e (Cv) forming discontinuous, i n chalcopyrite (Cp). 5-9  and 5-10  um.  roughly concentric  layers  Both the grains i l l u s t r a t e d i n Plates  have deeply embayed, corroded outer boundaries  and this feature i s t y p i c a l of copper-iron larger than 40 um across.  sulphide  Bar scale measures 50  um.  grains  120  P l a t e 5-11: 1127.  Photomicrograph o f a g r a i n from sample 74-RL-  N a t i v e copper  P l a t e 5-12:  (Cu) i s p a r t i a l l y rimmed by c u p r i t e ( C t ) .  Photomicrograph o f a p o l i s h e d mount made from a  fragment o f sample 73-RL-340.  The r e t i c u l a t e c e l l - w a l l  s t r u c t u r e s v i s i b l e i n t h i s mount may have o r i g i n a l l y been sphagnum moss t i s s u e . opaque m a t e r i a l represents  Several  o f the c e l l s a r e f i l l e d by  t h a t c o u l d be iron oxide.  The eroded a r e a  p a r t i a l d e s t r u c t i o n o f the s u r f a c e  beam d u r i n g microprobe a n a l y s i s .  by the e l e c t r o n  Reference marks X are i n c l -  uded to o r i e n t a t e photomicrographs w i t h microprobe  patterns.  121 ite.  Formation  could represent grain  an  show  covellite  i s often visible  a r e rimmed w i t h  encloses  diagenesis.  sulphide grains  organic s o i l  surrounding  sulphides  laths  sediment  copper^iron  common i n t h e c o r e and  a s s o c i a t i o n is- u n c e r t a i n although i t  a c c r e t i o n of copper s u l p h i d e onto a m i n e r a l  during organic Larger  of  of t h i s  been observed  has  i n any  i n corroded  this  Covellite  centric  grains.  This latter  d a r k brown a r e a s sulphide.  not  to the o u t e r  described  embayed and  deeply  of the  contained  and  5-10 outer  The  c o l o u r e d n a t i v e c o p p e r has  exposed f a c e cuprite.  (Plate  Mineralogy  microprobe  indistinct represent roughly  t h a t are  con-  sub-  are t y p i c a l  i n one  shaped, of  those  corroded  parallel  is partially  sample w h i c h a l s o  5-5) .  have a m o d e r a t e l y  and  chalco-  Grains  range  outer  edge.  cleavages  rimmed w i t h  o f t h e n a t i v e c o p p e r was-  on  dark  confirmed  the grey  by  analysis.  DISTRIBUTION OF The  5-11)  No  born-  Both the g r a i n s ,  chalcopyrite (Plate  and  be  separates.  um  bronze  across  5-10)  e d g e s and  c o p p e r g r a i n s were v i s i b l e and  i n turn,  have h i g h l y i r r e g u l a r l y  f r o m 40 -60  5-3  grains although  a l s o forms d i s c o n t i n u o u s  corroded  covellite  covellite  s u l p h i d e may  c h a l c o p y r i t e g r a i n s may  s e e n i n mounts o f t h e o r g a n i c s o i l Native  mixture  Twinned  covellite,  edge o f t h e g r a i n .  i n P l a t e s 5-9  intimate  been c o n f i r m e d .  zones w i t h i n c h a l c o p y r i t e ( P l a t e  parallel  also  of a c h a l c o p y r i t e An  the  across)  y e l l o w t o brown c o l o u r e d s u l p h i d e i n  although, the m i n e r a l o g y  c i t e has  envelope. i n the  a g r a i n shown i n P l a t e 5-9. ite  evidence  c h a l c o p y r i t e and  area of darker  (40-60 um  COPPER AND  h o r i z o n t a l and  IRON MINERAL GRAINS  vertical  distribution  o f copper  sulphide,  123  F i g u r e 5-2:  Distribution  (  ';) o f f r a m b o i d a l  pyrite.  124  Distribution and  G'''••!)  of c o v e l l i t e ,  native copper-cuprite  grains.  covellite-chalcopyrite  125 copper-iron is  sulphides,  iron  shown i n F i g . 5-1.  grains  of t i l l  t h a n 3.17o  greater  ( F i g . 5-2).  Framboidal p y r i t e fibric  No c o p p e r - i r o n  a t a l l depths  b e most common i n t h e m e s i c - h u m i c cm o f r e d u c e d t i l l .  containing pyrite visible  framboids  concretions.  grains i s  o r copper  sulph-  t h e copper  t h a n 1300  i n organic  ppm.  soils  from the  The f r a m b o i d s  appear  s o i l l a y e r s and i n t h e  Iron content  of organic  soils  i s often higher  than s o i l s  having  P y r i t e abundance i n o r g a n i c  does n o t e x c e e d 0.1%  however, p r o b a b l y  pyrite  samples a l t h o u g h i s greater  grains  soils.  pyrite  s o i l l a y e r t o t h e base o f t h e bog.  u p p e r 10  no  visible  a t s t a t i o n G1.5  occurs  shaped  than i n organic  samples h a v i n g  o f the t i l l  and n a t i v e copper  to subangular  g r a i n s were f o u n d i n d e e p e r t i l l  content  to  Angular  a r e more common i n t h e t i l l  Iron content  ide  sulphides  o f the t o t a l  soils,  sample  weight. Occurrence o f c o v e l l i t e , copper g r a i n s (Figs.  i s more r e s t r i c t e d  5-2;5-3) a n d t h e s e  depressions  covellite-chalcopyrite  grains  i n the t i l l - b o g  than that o f framboidal  interface.  i n the f i b r i c organic  Copper m i n e r a l  not occur  in  t h e h u m i c - m e s i c l a y e r s a n d i n t h e u p p e r 1-2 underlying  copper m i n e r a l there  the bog.  cm o f r e d u c e d  of soils  containing  1300 t o 2.57> ( F i g . 5-3), b u t  i s no a p p a r e n t r e l a t i o n s h i p between c o p p e r i n s o i l s a n d  semi-quantitative The  from  grains  s o i l layer, but are present  Copper c o n t e n t  g r a i n s ranges  pyrite  a r e most common above t h e two  do  till  and n a t i v e  estimates  larger covellite  t h a n 50 um a c r o s s )  f o r abundance o f m i n e r a l  and c o v e l l i t e - c h a l c o p y r i t e  occur  grains.  grains  (greater  between 1 t o 3 m i n t h e o r g a n i c  above t h e two d e p r e s s i o n s .  Grains  o f n a t i v e copper  soil  rimmed  126 by- c u p r i t e smaller  and i d i o m o r p h i c  covellite  t h a n 40 um o c c u r c l o s e  G 1.5 a t a d e p t h o f 2.5 m. by  chalcopyrite  enclosed  by- c h a l c o p y r i t e  t o t h e base o f t h e hog a t s t a t i o n Framboidal p y r i t e p a r t i a l l y  and c o v e l l i t e  ( P l a t e 5-1) a l s o o c c u r s  rimmed  i n the  same a r e a f r o m s t a t i o n G2 a t 2.5 m d e p t h . 5-4 RESULTS OF MICROPROBE ANALYSES OF ORGANIC SOIL FRAGMENTS Several  c h e m i c a l methods a r e commonly u s e d t o d i s t i n g u i s h  d i f f e r e n t modes o f t r a c e m e t a l o c c u r r e n c e  i n soils  and o t h e r  weathered m a t e r i a l s .  These i n c l u d e  zing  agents o r a l k a l i n e s o l u t i o n s which  ate  agents,  chelating  a n d e x t r a c t m e t a l s bound t o t h e o r g a n i c  Changes i n t h e c h a r a c t e r ing  the a p p l i c a t i o n of o x i d i -  metals released  may n o t be a t r u e  form o f t h e metal p r e s e n t soil  f o r metals  probe.  This  fraction i n soil.  o f t h e humic s u b s t a n c e s  chemical e x t r a c t i o n processes  can occur  and c o n c e n t r a t i o n s  the scanning  electron  o f the bog.  f r o m w h i c h f r a g m e n t s were o b t a i n e d t r a c e m e t a l s and o r g a n i c  present  1.11%  late the  carbon are given  of microprobe analyses  i s clearly visible  pattern  o f the c e l l  CuKa a n d S K  a  X-radiation  i n T a b l e 5-1.  5-12.  c o p p e r may be  i n the organic  soil.  A  containing  Preserved plant  i n t h i s fragment  walls  frag-  o f t h e samples  indicate that  s e c t i o n o f f r a g m e n t s f r o m sample RL-340  c o p p e r i s shown i n P l a t e  structure  Location  soil  and r e s u l t s o f a n a l y s e s f o r  i n two d i f f e r e n t a s s o c i a t i o n s  polished  micro-  method h a s b e e n u s e d t o d e t e r m i n e r e l a t i v e abun-  ments f r o m s e v e r a l p a r t s  Results  o f those  I n situ.analysis of  dances o f copper, i r o n and s u l p h u r i n d r i e d o r g a n i c  total  dur-  i n d i c a t i o n o f the o r i g i n a l  i n the s o i l .  c a n b e made u s i n g  liber-  cell  and t h e r e c t i c u -  i s r e f l e c t e d i n the patterns f o r  i n t e n s i t i e s that  a r e shown i n  127  Sample  L o c a t i o n and  Number  description  73-RL-  300 m  323  o f L5S; m  Co  Cu  Fe  Mn  Ni  Zn  Organic Carbon  514  16.4  1821  80 541  22.2  102  61 210  21.2  141  0.49  120  277 11313  1.81  82 11104  1.05  south  29  1.5  depth;  D a r k brown silty  peat.  73-RL-  L5S; 1 m  338  depth; D a r k brown silty  peat.  73-RL-  L3S; 1 m  340  depth; D a r k brown silty Co,  Cu, Mn,  peat. N i , Zn a r e i n ppm;  F e and o r g a n i c c a r b o n a r e i n %  * O r g a n i c c a r b o n d e t e r m i n e d by L e c o method. Table for  5-1: M e t a l s and o r g a n i c c a r b o n i n s o i l  microprobe analyses.  samples  used  128 P l a t e s . 5-13 not,  and  5-14.  The  pattern  however, c o r r e s p o n d t o  f o r the. FeKa  those of  copper or  F e K a r a d i a t i o n i n t e n s i t y - ( P l a t e 5-15) due  to  i r o n oxide  polished of  the  section  cells.  p h u r Ka  infilling ( P l a t e 5-12)  The  i n d i c a t i o n of  w i t h the  plant  Fragments of ected  300  copper, plant  m  i n some way and  structures  structures  s u l p h u r by are  that  i f the  to  CuKa and  X-radiation  sity  that  Small mineral ous  organic  polished  1.11%  d i a m e t e r and t i v e l y high grains 5-22,  fragment  and  ppm  were a l s o  a l t h o u g h the  grains  i n the  are  of  The  sulphide  subangular to rounded and  Ska  they are  (Plate  grains  f r o m sample RL-338 c o n t a i n i n g  the  i n t e n s i t i e s of plant  high  FeKa  cell inten-  i n amorphshown by  a  f r o m sample RL-340 are  shape.  l e s s t h a n 20um  Areas of  rela-  correspond to  these  were a l s o 1.13%  for  5-16)  i s of  probably chalcopyrite  Sulphide mineral  coll-  material.  grains  X-radiation  analysis.  Cellular  also v i s i b l e  a fragment  walls.  analysed  vegetation  Relative  that  copper,  correspond to the  5-19)  ( P l a t e 5-20)  CuKa, FeKa  141  t h i s a s s o c i a t i o n being best  copper.  are  5-12.  not  sulphide  i n d i c a t e that 5-23).  do  original  cell  from the  i n fragments  i r o n i s abundant  m a t t e r and  section  containing  i n Plate  ( P l a t e s 5-17  indicates  obtained  sul-  associated  e l e c t r o n microprobe.  also v i s i b l e  same s p e c i e s  structures  be  several  suggests  with plant  be the  c o p p e r and  concentrations  f r o m s t a t i o n L5S  although i t i s doubtful  SKa  could  the  filling  these P l a t e s ,  sulphur  High  appears i n  opaque m a t e r i a l  associated  does  fragment may  This  f r o m a sample c o n t a i n i n g  south east  i r o n and  cells.  i l l u s t r a t e d by  copper  soil  as  sulphur.  from t h i s  r e l a t i v e i n t e n s i t i e s of  X-radiation,  these elements are No  plant  radiation  (Plates  identified  c o p p e r and  are  5-21, in  a  Plate  5-13  Intensity pattern  o f CuKa  X-radiation  i n sample  73-RL-340  X P l a t e 5-14:  Intensity  pattern  o f SKa  pattern  o f FeKa  X-radiation  i n sample  73-RL-340 X  P l a t e 5-15: 73-RL-340  Intensity  X-radiation  i n sample  130  P l a t e 5-16:  Photomicrograph of a p o l i s h e d mount from sample  73-RL-323.  The c e l l  root t i s s u e .  structures  i n t h i s mount may  The bar s c a l e measures  20  um.  represent  Plate  5-18  I n t e n s i t y p a t t e r n o f SKa  X-radiation  i n sample  73-RL-323  P l a t e 5-19: 73-RL-323  Intensity pattern  o f FeKa  X-radiation  i n sample  132  P l a t e 5-20:  Photomicrograph o f a p o l i s h e d mount from sample  73-RL-340.  S m a l l s u l p h i d e g r a n u l e s l e s s than 10 um a c r o s s  are v i s i b l e i n the f i n e t e x t u r e d o r g a n i c matter. s c a l e measures 50  um.  The bar  Plate 5-21:  Intensity pattern of CuKa  X-radiation i n sampl  73-RL-340 X  X Plate 5-22  Intensity pattern of SKa  X-radiation i n sample  73-RL-340  Plate 5-23 73-RL-340  Intensity pattern of FeKa  X-radiation i n sampL  134 shown ±n  P l a t e s ; 5-24  intensities- also was  to.  H i g h e r CuKa  outline a tissue  probably o r i g i n a l l y  present  i n this- fragment  are  associated  not  5-27.  with  a plant are  fragment  stem.  i n the  and  SKa  i n the  radiation section  Chalcopyrite  amorphous o r g a n i c  remnant p l a n t  structures.  that  grains matter  and  135  Plate 5-24: sample  Photomicrograph o f a p o l i s h e d mount made from  73-RL-338.  A l o n g i t u d i o n a l s e c t i o n through a p l a n t  or a wood fragment i s v i s i b l e on the l e f t hand s i d e o f the S m a l l s u l p h i d e m i n e r a l g r a n u l e s are p r e s e n t i n f i n e  stem field.  textured  o r g a n i c matter on the r i g h t hand s i d e of the photomicrograph. The b a r s c a l e measures 5 0  um.  X  Plate 5-25  Intensity pattern of CuKa  X-radiation i n sample  73-RL-338 X  X Plate 5-26:  Intensity pattern of SKa  X-radiation i n sample  73-RL-338 X  X Plate 5-27: 73-RL-338  Intensity pattern of FeKa  X-radiation i n sample  137 CHAPTER 6 DISCUSSION 6-1  SUMMARY OF Results  are  o f g e o c h e m i c a l and  summarized  (1)  RESULTS  below.  Organic  can  soils  and  h a v e b e t w e e n 5 and  soil  i n c r e a s e or  tive  t h e Ah  51%  decrease  soil  down p r o f i l e s (2)  organic  with  increases across  and  i n t h e Ah  i r o n and  material  eastern  mesic in  are present  at  end  of  fall  sharply  higher the  nickel,  i n the  till  nickel  values  i n the till  i s less  values  0.1  and  till.  sharply humic pK  manganese  layer although  t h e bog  to  of  2. 57o  3 m  i n fibrous  h i g h molybdenum  t h e bog.  c o p p e r and  molybdenum.  are  extremely  locally, and  soil.  Humicare  enriched  These metals  are  of o r g a n i c m a t e r i a l have  g e n e r a l l y i n c r e a s e down p r o f i l e s ,  till. than  than  posi-  increase  manganese and  z i n c and  t h e w e s t e r n end  most a b u n d a n t where more t h a n a c c u m u l a t e d and  is a  sulphur.  horizons  cobalt occurs,  l a y e r s c o n t a i n from  cobalt, zinc,  and  carbon  h o r i z o n o f humic g l e y s o l i c  fibrous organic  h i g h manganese,  values  there  reducible  soil  abundances o f c o b a l t , n i c k e l ,  at the  Organic  t h e b o u n d a r y b e t w e e n b r u n i s o l s and  markedly decrease  i n the  and  t o 5.5  B mineral  g l e y s o l s whereas c o b a l t , z i n c ,  typical  carbon.  gleysolic  7.0.in the deeper, o x i d i z e d  t o more t h a n  Copper i n A  Low  HI  r a n g e s f r o m 4.0  pH  h o r i z o n o f humic  down p r o f i l e s  c o r r e l a t i o n of values  Organic  mineralogical investigations  210  I r o n and  i n organic ppm  manganese, however,  soils.  although  but are  Copper c o n t e n t  a small area  beneath  of  138  the  western  (3)  end o f t h e bog c o n t a i n s up t o 0.5% c o p p e r .  Cumulative  zinc, till  frequency graphs  show t h a t c o b a l t ,  i r o n , manganese and molybdenum v a l u e s i n s o i l s and generally  distributions  f o l l o w bimodal, or unimodal  lognormal  non-intersecting  distributions.  Organic  and pH v a l u e s a r e n o r m a l l y d i s t r i b u t e d . non-intersecting and of  nickel,  the t i l l .  copper  distributions  tion of this variation  copper  linear  and c o b a l t  f o r the v a r i a t i o n  show t h a t a v e r y s m a l l p r o p o r -  i s due t o l i n e a r  relationships  lognormal,  are present i n s o i l s  Correlation, coefficients  metals with organic carbon  Stronger  Three  carbon  relationships.  a r e p r e s e n t , however,  and b e t w e e n n i c k e l  and z i n c  between  i n soils  con-  t a i n i n g more t h a n 16% o r g a n i c c a r b o n . (4)  Volcanic  metals  a s h l a y e r s h a v e v e r y low c o p p e r  a b u n d a n c e s compared  and o t h e r  to those i n surrounding organic  soils. (5) to  Sphagnum moss c o n t a i n s up t o 228 ppm c o p p e r less  t h a n 20 ppm  i n Labrador  tea leaves.  (6)  S u b s u r f a c e , r e d u c i n g bog w a t e r s  copper,  but higher organic carbon,  surface waters. western  part  and  extremely high d i s s o l v e d  semi-stagnant  o f t h e bog commonly h a s p H l e s s copper  content.  s u b s u r f a c e w a t e r g e n e r a l l y h a s much l e s s the  western  part  lower  pools i n  than  5.0  Underlying  copper  o f t h e bog where samples f r o m  h a v e more t h a n 500 ppb c o p p e r Biquinoline  g e n e r a l l y have  i r o n a n d manganese t h a n  S u r f a c e water from  the  compared  except i n 1.5m  depth  a n d up t o 16 ppm o r g a n i c c a r b o n .  e x t r a c t s more t h a n 4 0 % o f t h e c o p p e r  from  surface  139  water from  and l e s s the t i l l  western  t h a n 507  from  o  and p o s s i b l e  s u b s u r f a c e water.  faults  zones  Seepages  draining  into  end o f t h e bog h a v e up t o 290 ppb c o p p e r .  draining  humic g l e y s o l i c  soil  in  this  the  Seepages  a r e a h a v e up t o 590  ppb  copper.  Water f l o w i n g  f r o m a diamond d r i l l  the  northwest  s i d e o f t h e bog h a s no d e t e c t a b l e c o p p e r , b u t  has  h i g h s u l p h a t e and c a l c i u m l e v e l s .  more t h a n 400 ppb c o p p e r w i t h maximum channel a t the western  h o l e on  Stream waters concentration  have  i n the  end o f t h e bog d e c r e a s i n g t o l e s s  t h a n 70 ppb a t t h e e a s t e r n end o f t h e d e p r e s s i o n . (7)  Scanning e l e c t r o n microprobe a n a l y s e s f o r copper,  iron  and s u l p h u r d i s t r i b u t i o n  demonstrates  that  copper  w i t h remnant p l a n t the  cell  wall  structure.  associated  Samples f r o m  which  f r a g m e n t s were o b t a i n e d c o n t a i n e d more t h a n 1% c o p p e r .  identified  by m i c r o p r o b e  less  t h a n lOpn d i a m e t e r were  analysis  i n t h e amorphous  also  fraction  organic s o i l .  (8)  Framboidal p y r i t e ,  native ranging of  fragments  a n d s u l p h u r a r e commonly  Small c h a l c o p y r i t e g r a i n s  of  i n organic s o i l  copper from  grains, 10  lite  grains  Covellite  less  grains  framboids a r e o c c a s i o n a l l y  and c h a l c o p y r i t e ,  Idiomorphic  t h a n 30pm a c r o s s a r e rimmed w i t h  a l s o o c c u r s as r o u g h l y c o n c e n t r i c  c h a l c o p y r i t e g r a i n s which outer boundaries.  grains,  o c c u r i n heavy m i n e r a l s e p a r a t e s  Pyrite  coated with c o v e l l i t e  subangular p y r i t e  c h a l c o p y r i t e and c o v e l l i t e  t o 60um  organic s o i l s .  small  typically  Framboidal p y r i t e  chalcopyrite.  layers  have h i g h l y  covel-  i n larger  irregular  i s found i n o r g a n i c  140  soils  throughout  copper g r a i n s  t h e bog.  only  above d e p r e s s i o n s eastern 6-2  occur  Copper  sulphide  i n the mesic-humic  i n the t i l l - o r g a n i c  soil  soil  layers  i n t e r f a c e a t the  a n d w e s t e r n ends o f t h e b o g .  DEVELOPMENT OF THE BOG AND ORGANIC DIAC-ENESIS The  relief  of b r u n i s o l i c  catena,  soils,  described  gleysolic  i n Chapter  soils  dystric  gleysols  of springs  and  i s m a r k e d by a l i n e  the secondary  oxidizing, soils,  1, c o n s i s t s  and o r g a n i c  T r a n s i t i o n from w e l l - d r a i n e d  in  and n a t i v e  soils.  b r u n i s o l s t o humic surrounding  t h e bog  environment changes from t h e m o d e r a t e l y  weakly a c i d i c  conditions,  to strongly reducing,  typical  of brunisolic  moderately a c i d i c  conditions  t h e humic g l e y s o l s . Gleysolic  and o r g a n i c  soil  i s periodically  thin  organic  microbial  typical  oxidation of organic  lowers  form i n areas  or continuously  horizons,  r a t e as a c c u m u l a t i o n . however,  soils  water  of mineral  where t h e  saturated. soils,  matter proceeding  Inundation  of the s o i l  The  a r e due t o a t t h e same  by w a t e r ,  t h e d i s s o l v e d oxygen c o n c e n t r a t i o n  in soil  p o r e w a t e r and t h e r e f o r e d e c r e a s e s m i c r o b i a l a c t i v i t y . to  this  matter of  decreased i s greater  organic matter  continuous  activity  than the r a t e of o x i d a t i o n . i n t h e bog c o u l d  discharge  growth o f a f l o r a  the n e t accumulation  of mineral  of organic Accumulation  a l s o be i n c r e a s e d by  r i c h water f a v o u r i n g  the  abundant  d o m i n a t e d by s e d g e s a n d sphagnum moss.  Mature timber  g r o w t h may be i n h i b i t e d  organic  a r e forming  soils  Due  i n areas  where t h i c k  due t o t h e a b s e n c e o f n u t r i e n t s  141  and  toxic An  / year  in  average r a t e of organic can  material final  copper c o n c e n t r a t i o n s  be  soil  c a l c u l a t e d from the  i n t h e bog  the water  accumulation  the a r e a  r a t e of peat  formation  Volcanic  l a y e r s a t two  organic  raneously, indicates  soils but  at roughly  i n a E u r o p e a n bog  suggests  the  9300 y e a r s  that this  The  therefore  difficult  formation  has  Vertical the  faster  pH  soils  i s forming  of decomposing  organic  are  pore water forming  of d i f f e r e n t  become a c t i v e down v e r t i c a l  due  to the p r o g r e s s i v e decrease  and  the  to  negative  values.  soil  to  organic  i n oxygen  redox p o t e n t i a l  dioxide.  the d i s s o l v e d oxygen  through formation  succession  due  carbon  p o r e w a t e r pH  corresponding  i t is  substrates dissolved  also  bacteria  accumu-  matter.  i n t h e d e e p e r , more decomposed s o i l  ecological  0.01  time.  concentration  An  contempo-  i f the r a t e of o r g a n i c  however, q u i c k l y l o w e r s  acid.  gleysolic  soil  This process,  decrease  mm/year.  l a y e r i s u n c e r t a i n and  v a r i a t i o n s i n t h e bog  surface s o i l  B.P.  at only  r a t e of organic  b a c t e r i a b r e a k down o r g a n i c  the near  of  h o r i z o n o f humic g l e y s o l s  to e s t a b l i s h  and  0.4  formed  v a r i e d through Eh  was  that both  of each ash  t h i c k accumulation  Aerobic in  age  mm  average  i n humic  organic matter  mm/year compared t o t h e  t h a t the  depth i n t e r v a l s  s h a l l o w Ah  lation.  o f 0.3  3 m maximum t h i c k n e s s  G r o s s e - B r a c k m a n n e_t a l . (1964) d e t e r m i n e d  and  1961).  assumed t o h a v e a c c u m u l a t e d f o l l o w i n g  d e g l a c i a t i o n of  ash  (Fraser  of  and  will  carbonic  anaerobic soil  profiles  concentration  change f r o m  positive  These b a c t e r i a mediate r e d u c t i o n  of  142  nitrogen  t o ammonium i o n , s u l p h a t e  t o methane and within  hydrogen.  redox p o t e n t i a l 1974;  Bell The  organic  -200  mv  proceed  1969) .  when r e d o x  soil  than  -300  mv  and w a t e r f r o m v e r t i c a l indicates  profiles  sampled through  t h a t the redox p o t e n t i a l  of water  of carbon  dissolved  c a l c i u m , magnesium and  o f t h e mode-  reduced  of the  subsurface waters  are  with microbial reductions especially oxidizing  accumulations surface pools, t i o n of H S 9  from  of a white  reducing  diffusing  from  as  action  (Berner  s t u d i e d by  from  6.0  Postma  boundary Small  the bottom o f  sulphur, r e p r e s e n t the  deeper reduced  water  simultaneously  c l o s e to the  on  mv.  t o t h e pli o f  conditions.  precipitate  identified  t o -250  ranging  similar bog  and  s u b s u r f a c e bog  O x i d a t i o n r e a c t i o n s c o u l d occur  separating  than  buffering  Values  organic material i n a r i v e r  (1977).  -200  b a s i c amines  to t h a t o f s u r f a c e w a t e r .  i n the  from  d i o x i d e t o methane and  c o u l d e x p l a i n t h e h i g h e r pH  t o 7.2  the  saturated organic s o i l  s u b s u r f a c e w a t e r sample r a n g e d  compared  the  (Cappenburge  o f d e t e c t a b l e rL^S i n f r e s h l y  M e a s u r e d Eh  Reduction  potential  and methane forms when  i s more n e g a t i v e  presence  mv.  1968)  -100  (Bell,  dioxide  occur  decomposed o r g a n i c m a t e r i a l i s more n e g a t i v e  o f one  by  than  carbon  1969).  C e n t r a l bog rately  t o +200 mv  r e d u c t i o n , however, w i l l  a r e more n e g a t i v e  and  N i t r o g e n r e d u c t i o n can  an Eh r a n g e f r o m +150  Sulphate  t o H^S  soil.  shallow  oxida-  143  6-3  ACCUMULATION OF METALS IN ORGANIC Horizontal  water, with  till  SOILS  and v e r t i c a l v a r i a t i o n s  of metals  and v e g e t a t i o n h a v e b e e n d e s c r i b e d  in soils,  i n Chapter  t h e o b j e c t o f e s t a b l i s h i n g mechanisms f o r m e t a l  t i o n and  c o n c e n t r a t i o n i n t h e bog  the m e t a l s .  Chemical  t r a n s i t i o n metals organic  soil*  migra-  and p r o b a b l e s o u r c e s f o r  and p h y s i c a l  from d i l u t e  a d s o r p t i o n c a n remove  s o l u t i o n s m i g r a t i n g through  M i n e r a l s s u c h as c a r b o n a t e s , h y d r o x i d e s be p r e c i p i t a t e d  i n pore water  c h e m i s t r y or abundance o f d i s s o l v e d o r g a n i c  i n t h e w a t e r , ( R a s h i d and L e o n a r d  contents  could  interactions must be found  or d i s s o l v e d  t h e r e f o r e be  and  the r e l a t i v e  established  i n the  due  natural  the metal  inorganic  of these processes distribution patterns  i n Chapter  1, h a v e b e e n  f o r h i g h m e t a l v a l u e s commonly f o u n d i n  organic accumulations.  Goodman and  experimentally that metals  Cheshire  c o u l d be  soil  organic matter.  Organic  soils,  however,  h a v e low n i t r o g e n c o n t e n t s s u g g e s t i n g t h a t a l a r g e of  the metal  role  i n concentrating transition  a r e complex n a t u r a l p o l y m e r s forms  known as humic and  elements.  thought  fulvic  can p l a y  acid  to e x i s t  These  proportion numerous  a major substances  i n two  fractions.  present  typically  i s a s s o c i a t e d w i t h o t h e r components and  s t u d i e s h a v e shown t h a t humic s u b s t a n c e s  (1973)  strongly  bound t o n i t r o g e n a s s o c i a t e d w i t h h e t e r o c y c l i c g r o u p s in  metal  bog.  to account  established  High  to both o r g a n i c or  S e v e r a l mechanisms, r e v i e w e d proposed  t o changes  1973).  importance  to e x p l a i n  due  the  and  s u l p h i d e s may  matter  4.  basic  Although  144 humic and polymer  fulvic  acid  structure  reactions organic  and  and  that  contained  f r o m 30  found  Dickenson  to  70%  humic  the  to have l e s s  tive  the  fibric  t h a n 10%  physical  stability  Fulvic acid  acid  of  dissolved  the  fractions  fractions  and  organic  Perdue 1977).  humic  fractions are  may  states.  c o l l o i d s are  to  a net  t i o n groups. resulting tions  This  (Van  Dijk  1971;  water chemistry c o u l d translocation  of  a  large  Ong  and  however,  of  bog  or  be  will  the  rela-  abundance. than are  humic  p r o p o r t i o n of waters  humic and  colloidal repulsion  from i o n i z e d by  fulvic  B i s q u e 1968).  and  have  through mutual  neutralized  the  (Reuter  fractions  peptized  charge o r i g i n a t i n g  the  Undecomposed  soluble  dispersed  i n c o a g u l a t i o n of  vegetation  organic matter  humic a c i d  charge can  example,  forest  layer,  their  more w a t e r  i n dispersed  negative  for  in  substances.  soil  and  carbon content  exist  chemical  humic f r a c t i o n s ,  represent  b e e n shown t o  due  (1975),  organic  n a t u r e of  B o t h humic and  The  different  abundant  substances.  R e a c t i o n s b e t w e e n m e t a l s and depend on  are  formed from decomposing  sphagnum moss f o r m i n g was  Both f r a c t i o n s  G i v e n and  peat  p r o b a b l y have  shape t h e y h a v e s i m i l a r  with metals.  soil  reported  fractions  func-  metal acid  ions frac-  Changes i n  t h e r e f o r e have a marked e f f e c t on  humic and  fulvic  acid  fractions  in  pore the  organic  soils. Reactions sorption  and  investigated  can  also  chelation the  involve  ion  (Kahn 1969)  exchange,  .  relative stabilities  surface  ad-  Many w o r k e r s  have  of  thought  complexes  145' to  f o r m when m e t a l s  tion and  exchange s i t e s . Skinner  that  > Ca  .  > Zn  Kahn  > Mn  (1970),  (1973)  Ni  Co  >  =Pb >  .  Cu  from  cation  c a n be  different  o f t h e u n t r e a t e d raw  (Davis  e_t a l . 1969) .  R e a c t i o n between m e t a l s  humic s u b s t a n c e s may  also vary with d i f f e r e n t  from  that  to p r o v i d e the e x t r a c t s  stabilities  to i n d i c a t e  t h e e x t r a c t e d humic  (Cross  f o r s o i l o r g a n i c m a t t e r , due  in  substance As  a'  substances  material  and  extracted  types of  soil  Reported  affinities  of  therefore the  to the v a r i a t i o n s , i n t r o d -  i n t h e bog  t h a t c o u l d be  c a n be  o f e x p e r i m e n t s made by Ong  They m e a s u r e d  the copper  b e e n immersed  from  solutions.  the e x t r a c t i o n methods.  organic materials  had  1975).  the r e l a t i v e  The maximum amount o f c o p p e r  results  generally acids  f o r m e t a l - h u m a t e and m e t a l - f u l v a t e s c a n  o n l y be u s e d  by  are  exchange s i t e s .  by  by  > Al >  change t h e s t r u c t u r e o f t h e humic  r e t e n t i o n of metals  uced  complexes  s o i l :using a l k a l i n e  result  metals  > Zn >  where Fe  Complex s t a b i l i t i e s  t h e number o f a v a i l a b l e  used  demonstrated  t h a t metal-humate  of s t a b i l i t i e s  have been e x t r a c t e d  frac-  Schnitzer  by r e a c t i n g m e t a l s w i t h humic o r f u l v i c  T h i s p r o c e s s may and  sequence  acid  o f t h e m e t a l - f u l v a t e complexes  (1969) f o u n d  > N i > Co  determined which  stability  and Hanson Schnitzer  i n the o r d e r o f Fe >  follow a similar Cu  Schnitzer  ( 1 9 6 7 ) , Gamble and  the r e l a t i v e  decreased Mn  a r e bound t o humic o r f u l v i c  1 t o 1500  ppm  and  adsorbed  e s t i m a t e d from Swanson  the  (1966) .  c o n t e n t o f p e a t samples  after  these  i n solutions with concentrations ranging copper.  Copper c o n t e n t o f peat p l a c e d  s o l u t i o n s w i t h more t h a n 1500  ppm  c o p p e r was  found  to  be  146:  17o.  Using s o l u t i o n s w i t h l e s s than 50 ppm,  found that copper enrichment by a f a c t o r o f 200.  however, they  i n the peat a t a pH o f 4.5 was  Peat immersed i n a s o l u t i o n c o n t a i n i n g  1 ppm copper, f o r example, w i l l adsorb a t o t a l of 200 ppm copper.  The authors a l s o found that the a d s o r p t i o n c a p a c i t y  of peat i n c r e a s e d a f t e r removal  of humic a c i d and concluded  that r e a c t i o n s o f copper w i t h peat i n v o l v e d both s u r f a c e a d s o r p t i o n and i o n exchange. Subsurface bog waters have been found, l o c a l l y , t o c o n t a i n more than 1 ppm d i s s o l v e d copper.  Organic matter  would adsorb up to 200 ppm copper from t h i s d i l u t e based on the enrichment (1966).  Dried s o i l  solution  f a c t o r g i v e n by L i n g Ong and Swanson  samples from the bog  t y p i c a l l y have  more than 27> copper and f r e s h l y sampled o r g a n i c m a t e r i a l has more than 907> water content.  A copper content o f 27,  i n a dry sample i s t h e r e f o r e e q u i v a l e n t to 2000 ppm i n the o r i g i n a l , water s a t u r a t e d m a t e r i a l .  This v a l u e i s ten times  g r e a t e r than the estimated maximum of 200 ppm which c o u l d t h e o r e t i c a l l y be c o n c e n t r a t e d through a d s o r p t i o n . d i f f e r e n c e c o u l d be e x p l a i n e d by s o i l pore water  This copper  c o n c e n t r a t i o n s h i g h e r than those found i n subsurface bog water,  f o r m a t i o n of complexes by mechanisms other than  a d s o r p t i o n or the presence of a u t h i g e n i c copper m i n e r a l s i n the  soil. Other metals w i l l be adsorbed from d i l u t e bog water  s o l u t i o n s and t h i s accumulation w i l l depend on the t r a t i o n of metals i n the water and the r e l a t i v e  concen-  affinity  147  of  metals  f o r the o r g a n i c matter.  could r e f l e c t humic  the r e l a t i v e  and f u l v i c  calculated  acid  linear  relationship  relationship  s t r e n g t h o f complexes formed  fractions.  f o r metals,  t a i n i n g more t h a n 167o  Correlation  o r g a n i c c a r b o n and pH  of n i c k e l w i t h z i n c .  c a n be compared  vate  between  stabilities  the s t r o n g r e l a t i o n s h i p  c o m p l e x e s a r e , however,  of nickel-humate  similar.  could  associations  humic  and f u l v i c  suggest  acid  that  fractions,  tribution patterns w i l l  also  low manganese  layers.  Although  complexes have formed the s i z e  and  Relatively  explain  i n the mesic-humic o r g a n i c s o i l  metal  the  The c o p p e r - c o b a l t  complex  The s t a b i l i t i e s  weak manganese-humate c o m p l e x e s  humic  a moderate  to the s i m i l a r i t y  does n o t e x p l a i n  these metals.  zinc-humate  levels  con-  t h e d i f f e r e n c e between n i c k e l - f u l v a t e a n d z i n c f u l -  stabilities  between  with  coefficients  i n soils  organic carbon i n d i c a t e  c o p p e r - f u l v a t e and c o b a l t - f u l v a t e although  Concentration of metals  with  and shape o f d i s -  depend on the. s t a b i l i t y  s u b s t a n c e s and t h e c h e m i s t r y o f w a t e r f l o w i n g  of the through  bog. Correlation  coefficients  indicate  l i n e a r r e l a t i o n s h i p s between m e t a l s the  bog.  This  ble  f o r metal  c o u l d be due  that  and o r g a n i c c a r b o n i n  to the l a r g e  a d s o r p t i o n , low m e t a l  t h e r e a r e no  surface area  c o n c e n t r a t i o n s i n aqueous  s o l u t i o n s m i g r a t i n g through  the o r g a n i c m a t e r i a l ,  of  by m a t e r i a l  decomposing  surrounding large  organic s o i l  t h e bog  differences  from  ranges  of metal  dilution  the a r e a  ( G a r r e t t and H o r n b r o o k 1976)  between  availa-  or v e r y  and o r g a n i c c a r b o n  148 v a l u e s used t o c a l c u l a t e the c o r r e l a t i o n c o e f f i c i e n t m a t r i x . P r o b a b i l i t y graphs f o r c o b a l t , n i c k e l , z i n c and molybdenum i n o r g a n i c s o i l s have t h e form o f b i m o d a l ,  non-inter-  s e c t i n g d i s t r i b u t i o n s r e f l e c t i n g m e t a l abundances a s s o c i a t e d w i t h the d i f f e r e n t s o i l l a y e r s .  High c o b a l t , n i c k e l , z i n c  and molybdenum c o n c e n t r a t i o n ranges ( p o p u l a t i o n 'A') can be e x p l a i n e d by a c c u m u l a t i o n other processes  in  o f m e t a l s through a d s o r p t i o n and  t h e mesic-humic l a y e r s .  c o b a l t , n i c k e l and z i n c v a l u e s  The v e r y low  ( p o p u l a t i o n 'B') r e f l e c t  metal a s s o c i a t e d w i t h the f i b r o u s organic l a y e r .  These low  c o n c e n t r a t i o n s , i n c o n t r a s t t o the enhanced v a l u e s i n the u n d e r l y i n g humic-mesic l a y e r s , suggest t h a t c o b a l t , z i n c and n i c k e l a r e n o t adsorbed by the o r g a n i c m a t e r i a l and may be desorbed due t o t h e h i g h c o n c e n t r a t i o n o f hydrogen i o n s i n the s u r f a c e w a t e r p o o l s .  Three p o p u l a t i o n s can be p a r t i -  t i o n e d from t h e d i s t r i b u t i o n graph f o r copper i n o r g a n i c s o i l although  there i s considerable overlap of values  s e n t i n g each p o p u l a t i o n .  repre-  The s e p a r a t e copper d i s t r i b u t i o n s  could r e f l e c t presence of d i f f e r e n t metal a s s o c i a t i o n s i n the s o i l .  V a l u e s g r e a t e r than 1.37 copper ( p o p u l a t i o n 0  'A')  a r e found c h i e f l y i n the mesic-humic l a y e r s above the depressions i n the t i l l - o r g a n i c s o i l i n t e r f a c e . Extremely  h i g h , l o c a l c o n c e n t r a t i o n s or i r o n , manganese  and molybdenum i n t h e f i b r o u s o r g a n i c l a y e r c o n t r a s t s h a r p l y to  the low m e t a l abundances t y p i c a l o f t h i s m a t e r i a l .  C l e a r l y processes  o t h e r than i n t e r a c t i o n w i t h o r g a n i c sub-  s t a n c e s a r e r e s p o n s i b l e f o r c o n c e n t r a t i o n o f these  metals.  The  h i g h molybdenum  i n t h e f i b r o u s l a y e r a t t h e w e s t e r n end  o f t h e bog c a n be e x p l a i n e d by f o r m a t i o n zed a c i d molybdenate i o n s  i n deeper, h u m i c - m e s i c  probably  due t o p r e c i p i t a t i o n  reducing  organic m a t e r i a l .  be  o f molybdenum Extremely  the r e s u l t  i r o n hydroxide  especially  i n an area  commonly  formation.  occurs  surrounding  on t h e b o g s u r f a c e  small  seepages a t t h e  No manganese o x i d e s  although  these  material  i n streams d r a i n i n g marshy areas  were  h a v e b e e n d e s c r i b e d as c o a t i n g s  found  on c l a s t i c  elsewhere  (Horsnail  al.1969). Although  the  sulphide i n the  h i g h manganese a n d  o f secondary hydrous oxide  e a s t e r n end o f t h e bog.  et  layers i s  i n f i b r o u s m a t e r i a l a t t h e e a s t e r n end o f t h e bog c o u l d  Colloidal and  immobili-  (HMoO^~) i n a c i d bog s u r f a c e w a t e r .  A c c u m u l a t i o n o f molybdenum  iron  of readily  no s y s t e m a t i c  s t u d i e s were made t o e s t a b l i s h  f o r m o f manganese i n t h e f i b r o u s l a y e r , a s m a l l  number  o f s t r e a m s e d i m e n t s f r o m t h e b o g were t r e a t e d w i t h  IM s t r e n g t h  hydroxylamine hydrochloride  sediments  the eastern  solution.  are  from  and  c o n t a i n up t o 12360 ppm Mn,  end o f t h e bog c l o s e t o s t a t i o n L5S  Hydroxylamine h y d r o c h l o r i d e manganese, b u t l e s s the c o b a l t .  than  14980 ppm Cu, 980 ppm Co.  e x t r a c t e d more  suggest  h i g h p r o p o r t i o n o f manganese i s p r e s e n t  associated with organic  soil  than  657, o f t h e  97, o f t h e c o p p e r a n d o n l y  These p r o p o r t i o n s  secondary oxide,  The s t r e a m  47, o f  that a r e l a t i v e l y i n t h e form o f a  b u t t h a t t h e copper and c o b a l t a r e m a i n l y organic matter  or other  (Chao, 1972; C a r p e n t e r  components i n t h e  e t al.,1975;1977).  150  Garrels and  and  Christ  hematite are  Fe^" " and  Mn^  1  6.0  and  (1964) d e m o n s t r a t e d  stable minerals  concentrations  +  t h e Eh  i n aqueous s o l u t i o n s where  exceed  i s more p o s i t i v e  that manganite  10~^M, pH  i s greater  t h a n +200 mv.  than  Moreover,  7+  although 8.5  and  6.0,  o x i d a t i o n o f Mn 2+ o x i d a t i o n o f Fe  high  greatly Ferric  to Mn02 i s i n h i b i t e d to Fe203 i s v e r y  concentrations  i n c r e a s e these hydroxide  through a c t i v i t y  of Co^  and  +  oxidation rates  commonly forms of  Cu^  +  below  pH  s l o w b e l o w pH i n the water  (Stumm and  i n oxidized  i r o n b a c t e r i a s u c h as  of  will  Morgan  1970).  environments  Gallionella  O t h e r b a c t e r i a s u c h as MetalJogeniumare known t o m e d i a t e o x i d a t i o n o f Mn  t o Mn  .  D i s s o l v e d manganese c o n c e n t r a t i o n s and in  dissolved iron s e v e r a l of  values  are  the  concentrations subsurface  bog  i n c o n t r a s t to v e r y  typical  of  surface waters.  of  iron  and  end  of  manganese i n t h e  t h e bog  water onto  may  t h e bog  be  exceeding water  low  The  greater  2 ppm  levels  surface.  by  the  and  ,  the h i g h  d i s s o l v e d copper content  w a t e r and  activity  o f b a c t e r i a , may  t i o n of found may,  immobile hydrous o x i d e s .  i n the  fibrous material at  however, be  rather  than  due  to l o c a l  adsorption  onto  The the  high  the  cobalt  eastern  s u r f a c e of  of  Mn  surface  i n v o l v e d i n forma-  a d s o r p t i o n on  the  eastern rich 2+  o f Fe  be  Mn  of metal 2+  c a t a l y s e d by by  high  concentrations  discharge  Oxidation  and  ppb  found  These  o f Fe  large local  200  are  samples.  fibrous layer at  explained  than  end  values  of  organic secondary  the  bog  matter oxides.  151  6-4  BOG  WATER CHEMISTRY  S u r f a c e water samples have a m a r k e d l y d i f f e r e n t metal  chemistry  Moderately copper,  compared  Subsurface  low  dissolved  waters,  c a l c i u m and  copper,  other  elements.  in  subsurface waters  values  Although  than  1 ppm  till  a t the western found  higher  i r o n , manganese  t h a n do  than  end  values  depth of  i n t h e bog the  vertical typical  a r e much  t h e bog.  Vertical  could r e f l e c t metal till-organic  i n the s o i l - w a t e r flow r a t e  variations  i n ionic  diffusion rates s y s t e m due  lower greater  above an a r e a o f c o p p e r - r i c h  variations  changes i n the  and  waters.  i n s u r f a c e water contents  a t 1.5m  water d i s c h a r g i n g from  cal  surface  show l i t t l e  copper  zinc.  t o n e u t r a l and  to l a r g e c o n c e n t r a t i o n g r a d i e n t s  of  occur  but  sulphate contents  compared  gradients  s u r f a c e w a t e r s have abundant  however, a r e w e a k l y a c i d  organic carbon  variation  samples.  c o n c e n t r a t i o n s o f i r o n , manganese, and  g e n e r a l l y h a v e low  Zinc,  to t h a t of s u b s u r f a c e water  to s t r o n g l y a c i d  but  trace  soil  chemical rich  interface,  (Sperling  (Berner,  to processes  ground  1965),  1971)  of  and  chemi-  organic  diagenesis. Dissolved important water  s u l p h i d e c o n c e n t r a t i o n s , Eh  factors  influencing  saturated organic s o i l .  reducing,  s u b s u r f a c e bog  investigation  and  the s o l u b i l i t y Sulphide  w a t e r was  dissolved  and  pH w i l l  be  of minerals  ion activity  in  not measured d u r i n g  sulphate contents  s u l p h a t e c o n t e n t p l u s s u l p h a t e d e r i v e d from  sampling  o x i d a t i o n of i o n i c  s p e c i e s such  the  represent  original  as H 2 S ;  HS";  in  post S^"  152 S^0^~  .  phide  formed t h r o u g h b i o l o g i c a l  The  calculated  maximum p o s s i b l e c o n c e n t r a t i o n o f h y d r o g e n  from d i s s o l v e d sulphate  where t h e  r a t e of sulphate  available  sulphate  and  most common o r g a n i c rates  and  +  2  mg  of  Less  than  107  o  n a t u r a l w a t e r s has hydrates  and  samples has  of the  1 and  to produce  reduced  total  carbohyd-  following  2HC0 ~ 3  to  1 mg  o f r^S  and  t o be  t o be  the  i n the  Felbeck  form o f  in filtered  fulvic  acid  The  n a t u r a l water  fraction  carbon could contain  w h i c h c o u l d be  ^M)  in  carbo-  1968).  (Reuter  C e n t r a l bog w a t e r samples h a v i n g  (.10  0.75  d i s s o l v e d organic matter  form of o r g a n i c matter  1 ppm  The  oxidized i n this reaction.  (Midwood and  carbohydrate  the  (1968). +  2  dissolved organic  2 ppm  Bella  been e s t i m a t e d  been found  10 ppm  o x i d i z e d i n the  HS  w o u l d be  P e r d u e 1977).  than  =  2 4  amino a c i d s  most a b u n d a n t  and  substrate.  i n n a t u r a l waters are  be  contents  the a v a i l a b l e organic  s u l p h a t e w o u l d be  of carbonhydrate  organic matter  l i m i t e d by  Ramm and S0  can  be  amino a c i d s w h i c h a r e  2CH 0  and  reduction w i l l  substrates  r e a c t i o n p r o p o s e d by  T h r e e mg  r e d u c t i o n of sulphate  sul-  more  between  o x i d i z e d , by b a c t e r i a ,  hydrogen sulphide  through the  reduct-  2i o n o f 3 ppm  of sulphate.  depend on Eh  and  to the ured  and  will  g e n e r a l l y be  of S very  and small  HS  dissolved sulphide lake  s e d i m e n t s r a n g e f r o m 10~  t o 1 0 " M a t pH 1 2  ion concentrations -8  7.5  (Emerson  M  1976).  Meas-  i n reducing, (Timperly  will  compared  c o n c e n t r a t i o n of d i s s o l v e d hydrogen s u l p h i d e .  saturated 1974)  pH  Concentrations  and  water Allan  6-5  THEORETICAL MODELS FOR WATER CHEMISTRY AND PREDICTION OF MINERAL The  SOLUBILITIES.  distribution of ionic  n a t u r a l water compositions namic  models  chemical e q u i l i b r i a  ution o f organic  ations  thermodyi n the water  species  1974).  i n sea water  (Thorstenson  complexes  described  involve  the following  (1)  Define  by G a r r e l s  l y 7 6 ) and  i n sea water  The b a s i c p r i n c i p l e s u n d e r l y i n g  have been  distr-  a n d Thompson 1962), t h e d i s t r i b -  d i s t r i b u t i o n o f simple organic  (Gardner  from  have been p r o p o s e d t o p r e d i c t e l e m e n t a l  i b u t i o n i n sea water . ( G a r r e l s  the  species  c a n be c a l c u l a t e d u s i n g  data f o r a l l p o s s i b l e  Various  and complexed  and C h r i s t  the calcul= (1965) a n d  stages.  a l lpossible  i n t e r a c t i o n s between  cations  and a n i o n s ; e g . , 3(aq  C a C 0  (2)  Write mass"balance  )  =  C  "  a  +  equations  +  C 0  3 " 2  f o r e a c h component  present; eg., Ca (3)  Calculate  (TOTAL)  =  Ca  concentration  +  2 +  of the i t h  f r o m mass a c t i o n e q u a t i o n s w r i t t e n the  appropriate  molalities (mCa  2 + Y  2 +  )  (mCaC0  2  component i n terms o f  coefficients (yi);  eg.,  2  Y  d  3  1  =  K  yCaC0 ) 3  can g e n e r a l l y  water  by assuming  Y i s unity.  ^  (mCO ~ C 0 ~ )  Mass a c t i o n e q u a t i o n s c h e m i c a l models  3  e q u i l i b r i u m constants ( K i ) ,  (mi) a n d a c t i v i t y Ca  CaC0 °^  be s i m p l i f i e d i n f r e s h  that  the a c t i v i t y  coefficient  154 (4)  S u b s t i t u t e mass a c t i o n equations i: t o t a l Ca  lated  and s i m u l t a n e o u s l y  i n t h e mass b a l a n c e  solve  t h e s e i n terms o f  element c o n c e n t r a t i o n s ; eg.,  (TOTAL), C (TOTAL), C u ( T O T A L ) ,  Species samples  equations  distributions  S(TOTAL)  f o r s i xsubsurface c e n t r a l bog water  (74-RL-1428,1429,1439,1442,1443.and  from t o t a l  rbonate,  dissolved  copper, z i n c ,  1444) were  iron,  calcu-  manganese,  bica-  s u l p h a t e and s u l p h i d e c o n c e n t r a t i o n s , pH a n d o x y g e n  f u g a c i t y b y t h e p r o g r a m DISTRIB (1977) on t h e UBC IBM 370/168  w r i t t e n b y Brown a n d P e r k i n s  computer.  S e v e r a l a s s u m p t i o n s h a v e b e e n made i n c a l c u l a t i n g t h e species (1)  distributions  The f i r s t  models  include  f o r t h e bog w a t e r s .  assumption i s that all  major i o n s  f o r a l l r e a c t i o n s between will  be s i m p l i f i e d  nickel  and c o b a l t ,  Cu(0H)2 acid  and complexes  these  species.  inorganic  associations  complexes could  from t h e models.  The s y s t e m i s assumed a n d no i n t e r a c t i o n s  that  i n a natural  a n d thermodynamic  to represent  o c c u r between  o f bog water.  t h e macro  different be removed  rates  In the n a t u r a l  system w i l l  an  solid  a s s u m p t i o n may be made i f t h e models  volume  sodium,  data,  they  a n d aqueous p h a s e s .  are applied  state  reactions.  system b u t ,  equilibrium  to a small  i ti s unlikely  approach e q u i l i b r i u m  of biological  however,  s u c h as c o p p e r - h u m i c  exist  have been e x c l u d e d  This  Most m o d e l s ,  +  of analytical  state  and a c c o u n t  c o m p l e x e s s u c h as C u O H a n d  due t o t h e p a u c i t y  (2)  equilibria  b e c a u s e e l e m e n t s s u c h a s magnesium,  and m e t a l - o r g a n i c  fraction  the chemical  due t o t h e  Moreover metals w i l l  from s o l u t i o n by p r e c i p i t a t i o n . a s  sulphides,  oxides  155 and  c a r b o n a t e s o r by  adsorption  to o r g a n i c  matter or  adsorption  to p a r t i c u l a t e i r o n hydroxide. (3)  The  transfers  s y s t e m i s assumed t o be  occur i n t o or  those d i s s o l v e d Solution ions  are  the  elements  copper,  and  given  a small  the  analysis  of  this  constraint  i n the  A l t h o u g h no  was  w i t h an sample total  (Log  K)  common c o p p e r ,  The  species  and  of  and  two  c a l c u l a t e d by  are  b a s e d on  measured  soils.  These  (2*10~^M)  and  solution  i r o n as  the  composition of  water  in  c a l c u l a t i o n s w h i c h ivere r e p e a t e d a t and  zinc  -65.5. (Log  sulphides,  p r o g r a m DISTRIB.  quotients  are  Equilibrium  Q)  oxides  for and  the Log con-  carbonates constants  with mineral  determined from  for  several,  Equilibrium  f r e e energy changes a s s o c i a t e d  i o n whereas r e a c t i o n  by  equilibrium  solution constraints  reaction quotients  the  oxygen a c t i v i t y  p y r i t e were i n to  using  s o l i d p h a s e s were s u b s t i t u t e d  -66.5, -66.0  iron.and  are  subsurface water  additional  p r o b a b l e range of  c o p p e r and  oxygen a c t i v i t i e s  sulphate  c a l c u l a t i o n s were c a r r i e d o u t  chalcopyrite  74-RL-1429.  of  and  from the t r a n s i t i o n  organic  an  distribut-  models.  solid  dissolved  constraints.  bicarbonate  aqueous s o l u t i o n e q u i v a l e n t  distribution  stants  ppm  e n t e r e d as  e s t a b l i s h the  assuming t h a t  and  than  subsurface water  s e e p a g e w a t e r samples  A number o f p r e l i m i n a r y DISTRIB t o  solution  f o r b i c a r b o n a t e t h i s a n i o n was  l e s s t h a n 10  concentration  material  aqueous p h a s e o t h e r  filtered,  i n T a b l e 4-9.  number o f  contained  no  used i n c a l c u l a t i n g species  between the humic g l e y s o l i c s o i l samples  and  z i n c , i r o n , manganese, c a l c i u m  samples were a n a l y s e d in  of  s p e c i f i e d as  constraints  v a l u e s o b t a i n e d by samples  out  closed  format-  equilibrium  DISTRIBUTION  if  1429  IN  UF  THE  DISTRIBUTION  SPECIES  PRESENCE  OF  SPECIES  FOR  wA T E R  SAMPLE  GR  CP  AND  CALLED  AT  OF  1  73-RL-1429  IN  PY  STEP  AQUEOUS SPECIES  MOLALITY  CA + + FE+ + FE+ ++ CU + C ! ^ S — S04-CG3-OHH + H20 02(AQJ CACQ3 CAS04 HS04HSH2 S  LOG  MOL  0.30259E-03 0.27910E-07 0.522316-22 0.41750E-15  -7.554 -22.282 -15.379  0.14293E-19 0.34847E-17 0. 2 7 0 3 3 F - 0 3  -1 9 . 8 4 5 -1 7 .458 -3.5o7  0.34107E-08 0. 10690E-07 0.10371E-05 0. 55508E+02 0.33881E-69 0.95365E-09 0. I 0149!:-04 0.22955E-07  - 3 . 4 o 7 -7 .971 -5.984 I .744 -6 9 .470 -9.021 - 4 . 9 9 4  ACTIVITY  -3.519  LOG  0.26022F-03 0. 0. 0 0.  24002E-07 37583E-22 .40150F-15 1229 2 E - 1 9  0.29919E-17 0 .2 3215F-0 1 0.29260E-08 0.10285E-07 0.1OOOOE-05 0 . 9 9 9 9 9 E +00 0.33881E-69 0.95395E-09  ACT  PPM  -19.910 - 1 7 . 5 2 4 - 3 . 6 34  0. 002 0.000 0.000  0.85998E+00 0.S5859E+00 0 . H 5 7 1 f i F + OD  - 0 . 0 6 6 - 0 . 0 6 6 - f ) . 06 7  0.90818E-18 0.1 1173E-15  0.000 0.000  - 9 . 5 3 4 - 7 . 9 3 8 - 6 . 3 0 0 - 0 . 0 0 0 - 6 9 . 4 7 0 - 9 . 0 2 0 - 4 . 9 9 3  0.85789E+00  - 0 . 0 6 7 - 0 . 0 1 7 - 0 . 0 1 6 -1 .744 0.0 0.000  0.20467E-06 0.18 182E-06 0. 10454E-0 5 ............JM..V .. J....-/....J ^&.,ZT.\* JHL^T,  0. 136  -•3.858  0.13347E-03  - 8 . 8 7 5  0 . 1 17973C—02  M20  0. 15587E-05 0.29169E-20 0.26528E-13  -  =  GRAM S / K G M  - 0 .  0.23449E-03 0.62167E-04 0.13545F-03  STRENGTH  C  - 0 . 0 6 6 - 0 . 143 - 0 . 017  - 8 . 6 3 0 -4.190 - 3 . 8 6 8  IONIC  ACT  0.85998F+00  -9...6J6  70E-0B  LG  0. 85998E+00 C.71956E+00 0.96158E+00  0... 2 3 5 3 . . 7 E - 0 9  +  COEF  -7.620 - 2 2 . 4 2 5 - 1 5 . 3 9 6  0.23441E-03 0.6'i590£-04 0. 13541E-03  HC03H2CU3 F E (OH)  ACT  - 3 . 5 3 5  0 . 10 1 5 3 E - 0 4 0.22089E-07 Q ...2.264 4E-.0.9  -7-639  SPECIES  0.96208E+00 ...0.964196 + 00 0. 18015E-01 0.10000E+01 0.10003E+01 0.10003E+01  066  0. 000  0.1?1?HF-01  o.?6ni6F-ni  0.10000E+04 0.10842F-67 J3.954 50E-07 0. 13817E-02  - 7 . 6 5 6  0.96229E+00  - 0 .  0 . 9 6 2 0 . 8 . 6 + 0.0 0. 10003E+01 0.96243E+00 0. 10003F+01  - 0 . 0 1 7 0. 000 - 0 . 017 0 . 00 0  0. 7 764U--QB  C.96229E+00  - 0 .  0.10105E-06  9 8 4 3  . . . .  6 6 2 8  ELECTRICAL  4 3 0 6  5 0 6 8  BALANCE  =  017  017  0.  LOG  OXYGEN  GAS  CARBON  DIOXIDE  0.0  STEAM SULFUR  GAS SULFIDE  HYDROGEN  GAS  Table b - 1 :  -7  .83540 I ...5 0 5 1 7..  HYDROGEN' METHANE  K  192.34951 125.01049 41.6602 2 135.90718  AC T I V I  0.316 0.425 0-312 0. 762 0.226 0.338  TY  23E-66 56E-02 481-01 12E-24 60E-07 84F-08  0.76978E-13  LOG  —i i*Jn . :>^ / 7oA -15.042 - 1 2 . 9 5 2 1 . 4 1S - 3 . 6 3 9 - 3 . 7 4 0 _ "> * Ci^ 'o>i 1  SJL.AJJ.XLL  999948.132 0.000 n n nn  22282E-05  0.79888E-07 0.39411E-02 0 . 3 39f>6 F - 0 ?  0.484106E-13  ACTIVITY  -66.50000 -2.37103 ..-1.5.0518... -24.11793 -7.64473 -8.41023 13.11363  ...Pi. s tr:_ib u t i on of aqueous species i n water s amp le 74-RL-1429 at Log oxygen a c t i v i t y of -66,5,  1 . 3 82 0.002  ...a ...ooQ 0.000 3. 941 H 1U M O . J J f1 0. 000  PPM  1 m U aft -I. 807 - 1 7 . 5 3 5  0.000 0.000  GASES  NAME  LOG  .  6.000 - 6 4 . ^ 6 5 — L. n ? c\ 0 . 140 - 2 . 6 5 2 - 5 . 1J9 - 4 . 0 9 8 0. 596 it . - 3 . 9 9 5  DISTRIBUTION #  1429  IN  THE  D1STP, I b U T ION  UF  SPECIES  PRESENCE  OF  SPECIES  FOR  WATER  SAMPLE  GK  CP  AMD  CALLED  AT  STEP  OF  1  73-KL-1429  IN  PY  AQUEOUS LOG  MOLALITY  SPECIES CA + + FE + + FE + + + CJ* CU + +  0.30107E-03 0. !5u89E-05 0.39154E-2 0 0 . 5 s 6 74.E-.Li... 0. 2 5 4 1 7 E - 1 9  s—  Q.l't'i'j.iiz-iti  ..SU4-C0 3OHH+ H2G 02(AQ) CAC03 CAS0*> HS04HSH2S HCC3H2C03 FE(OH)+  IU.MIC  n.?70»,HF-0 3 0.3*107E-03 0. 10690E-07 0 . 10 37 IE - 0 5.. 0.555D8E+02 0 . 10 7 1 4 E - 6 8 0.94832E-09 0 . 10 1 0 0 E - 0 4 0. 22959E-07 0 . 2 3 54 i E - 10... 0. 23446E-09 0. 6 4 5 9 0 E - 0 4 0. I V : 4 1 F - 0 3 0. 779/1E-07  STRENGTH  =  0.I  -3.521 .604 -20.407 ..-..1.5....2M -19.595 -18.458 -3 . 5 6 7 - 8 . 4 67 -7.971 - 5 , . 9.8.4 1.744 -68.970 -9.023 -4.996 -7.639 -10.628 -9.630 -4.190 - 3 ..868 -7.106  LOG  ACTIVITY  MOL  0 . 2 5891 E - Q 3 0 13492F-05 0 •28173E-20 0 •535H0E-I5 0.21858E-19 0 .29925E-13 Q.21219F-0J 0 •2 9 2 6 0 E - 0 8 0 . 10285E-07 0 • 1.000 O c - 0 , 5 . . . 0.99999E+00 0 .10714E-68 0 •94913E-Q9 0.10103E-04 0 •22093E-07 ...0 . . 2 2 6 4 8 1 . - 1 0 0 23453E-09 0 62167E-04 a 1 154 5 F - 0 . ? 0 . 7 503 0 E - 0 7  -8.534 -7.938 „ „ - 6 , .0,0,0 -0.000 -68.970 -9.02 3 -4.996 -7.656 -.10,645 -9.630 -4.206 -3.868 -7.125  ELECTRICAL  17990E-02  ACT  ACT  -3.5?7 -5.870 - 2 0 . 5 50 - 1 5 , 2 71 -19.660 -16.524  SP'.:CIES COEF  8 i997F + 00 t  0. 85997E+00 0. 71954E+00 ...0. 9 6 1 6 7 E + 0 0 . 0. 85997E+00 0 . 85858E+00 _cu.8 5 7 1 7 r + 0 0 0 . 85788E+00 0. 96208E+00 c. 9.6 4.1.8.C.+.0.0... 18015E-01 0. 10000E+01 0. 10003E+01 _LL. 1 0 0 0 3 E + 0 1 0. 96228E+00 0 . .9.6.2.08 E +0.0... 0 . 10003E+01 96248E+00 9 6 2 2 S E +00  BALANCE  LG  ACT  C  -0.Q66 - 0 . 066 - 0 . 143 - 0 . .0.1.7... - 0 . 066 - 0 . 066 - 0 . 06 7 • 0 . 06 7 - 0 . 017 :..Q.,.. 0 1 6 - 1 . 744 0. 0 _ 0 * . OOP o. 000 - o . 017 „-o„, 01 7 0 . 000 - 0 . 017 0_. 0 0 0 -0.017  GRAMS/KGM  H20  LOG  PPM  n.1?067F-0 1  1?•  0. 8 7 6 2 0 E - 0 4 0 21866E-18 0. , 16150E-17 , 1 1 175E-16 .?6n?iF-ni .20467E-06 o .18 1 8 2 E - 0 6 . 10454Er05. „„Q . 10000E+04 0. •34284E-67 0. 94967F-07 . 13750E-02 .22286E-05 .7 7 9 5 5 E - 0 9 . 7 9 9 0 3 F.-08 .39411E-02  0.088 0.000 ,..0..J3.00.. 0.000 0.000 2 6 . 0 20 0. 000 0.000 ..Q....00.1. 999948.103 0 .000  0.56805E-05  PPM  066  o.ooo  t. 3 7 5 0.002 0 . 0 00 3 .941 8 . 3 9H 0.006  -1 . 0 5 7 -15.660 -10.451. -14.792 -13.952 -3.639 -3.740 -Z.931. 6. 000 -64.465 -4.022 0. 133 -2.652. ..-•6.1 09. -5.097 0.596 Q. 9 2 4 . - 2 . 246  0.145868E-13  GASES  LOG  N AM E  OXYGEN GAS CARBON D I O X I D E STEAM S U L F U R GAS HYDROGEN S U L F I D E HYDROGEN GAS METHANE T  a  b  i  e  6.^.=.  K  0.0 -7.83540 1,505.1.7. 192.34951 125.01049 1 3 5 . 9071 8  ACTIVITY  0.10000E-6 5 0. 42556E-02 0..31.2 4 8 L - . 0 1 0 . 241 0 9 E - 2 5 0. 22664E-08 _fU2JL866F-02 0.76978E-14  LOG  ACTIVITY  -66.00000 -2.37103 -1.5.051.8 -25.61782 -8.64466 -14.11363  D i s t r i b u t i o n o t aqueous species i n water-sample 74-RL-14Z9 at Log oxygen a c t i v i t y o f -66,0.  Ul  D I S T R I B U T I O N OF S P E C I E S FOR WATER SAMPLE it 1429 IN THE PRESENCE OF 1 GR CP AND PY  DISTRIBUTION  OF S P E C I E S CALLED  7 3 - R L - 1 4 2 9 IN  AT STEP  AQUEOUS SPEC IES C At f FE++ FE + + + CU+ CU + + $  —  '-if i 4 A\.t T  C03— UHH+ H20 02(AQ) CACU3 CAS 04 HS04H5H2S HC03H?C03 FE(OH)+  MCLALITY  -3.664 0.21669E-03 0.36596E-04 -4.063 -18.540 0.2 6 8 3 6 E - 1 8 0. 7 4 2 5 3 ^ - 1 5 ...-15. 129 -19.345 0.45223C-19 -19.453 0. 3 5 2 0 9 1 - 1 9 - 3 . 5(>3 0.2 7 364F--0 3 -6.467 0.3412 5 E - 0 3 . -7.971 0.10692E-07 -5.984 0. I 0 3 7 3 E - 0 5 1 . 744 0.5 5 508c +0 2 -68.470 0.33881E-68 0.68253E-09 - 9 . 166 0.73355E-05 - 5 . 135 -7.635 0.23183E-07 - I 1.624 0. 2 3 7 7 1 E - 1 1 -10.626 0.23672E-10 0.64596E-04 -4.190 - 3 . tUici 0 . 1 3 5 4 0 F -0 -i -5.366 0 . 4 3 019E-0 5  TtJNICSTRENGTH' =  ACTIVITY  LOG MOL  0 . 136? 5F-03 0 .74430E-0t 0.20725E-18 0.7 1 3 9 7 E - 1 5 0.33869E-19 0.30213E-19 0.?3443F-0 3 0.29259E-08 0.10235E-07 0.1000 0E-0 5 0.9 9999E+0 0 0 .3383 I E - 0 8 0.63274E-09 0.73379E-05 0.22306E-07 O. 2 2 8o 7 E - U 0.23679E-10 0.62164E-04 0 . 1 -154 4 F - 0 i 0.4 139 1E-05  0.118835E-02  LOG ACT -3.7 30 -4.128 -18.683 -15.146 -19.410 -19.520 -3.630 -8.534 -7.988 - 6 . 0 00 -0.000 -68.470 -9.166 -5.134 -7.652 -11 .641 -10.626 -4.206 -3.86H -5.383  SPECIES ACT  COEF  0.85951F+00 0.35951E+00 0.71873E+00 0.96153E+00 0.H5951E+00 0.65811E+00 n.R56r,4F+or) 0.85740E+00 0.96195E+00 Q...9.6.40 6 E+0.0 0. 1 8 0 1 5 E - 0 1 0.10000E+01 0.10003E+01 0.10003E+01 0.96215E+00 0.96195 E+0.0 0. 10003E+01 0.96235E+00 n.inno3F+oi 0.96215E+00  E L E C T R I C A L BALANCE  =  LG  ACT C  -0.066 -0.066 -0.14 3 - 0 . 01.7 -0.066 -0.066 -0.067 -0.067 -0.017 -.0.016 -1 . 744 0. 0 0.000 0.000 - 0 . 017 -0.017 0.000 -0.017  n.ono -0.017  PPM  GRAM S/KGM H20 0.86R51F-02 0.48361E-02 0.16104E-16 0. 4.7.13 1 E - 1 3 0.28735E-17 0 . 1 1289 E-17 n.?6?R6F-01 0.20478E-06 0.18184E-06 .„_ .0....1.0..4.5.5.E-Q5 .. 0.10000E+04  LOG PPM  R.6HS  4. 836  0.000 ..o.ooa  0.000  0.000 ?S5  .  0.000 0.000 0 . 0.0L _  .  999946.540  0.000 0 . 0 00  0.10842E-66 0.68314F-07 0.99867E-03 0.22504E-05 Q..... 7.8.6.. 1.7. E.-.LQ. _ 0.30673E-09 0.39415E-02 0.839H?F-n? 0.3 1 3 4 1 E - 0 3  0.999 0.002  0.0.0.0  0.000 3. 941 fi.398 0.313  0 . q 39 0 . 6 84 -13.793 -10.326 -14.542 -14.947 1 .420 -3.689 -3.740 -2 .931 6 . 000 -63.965 -4.166 -0.001 -2.648 . - 7.11)5 -6.093 .  0.596 n.Q?4 -0.504  -0.387176E-11  GASES  NAME  LOG K  OXYGEN GAS CARBON 01 OX IDE STEAM SULFUR GAS HYDROGEN S U L F I D E '. l1Y1i LJ JRV O GFN GAS U UI.IN J METHANE  Table 6-3:  0.0 -7.83540 1.50517 192.3495 1 125.01049 4 1.6602? 135 .90718  ACTIVITY  0.31G23E-65 0.42555E-02 0.31248E-01 0. 777 17E-27 0.22383L-09 0 . 1 ? '•> 9 f - F - f ! f i 0.76975E-15  LOG A C T I V I T Y  -65.50000 -2.37105 -1.5051 3... -27.10949 -9.64049 -8.91023 -15.11365  _  ._ _  —  Distribution of aqueous species i n water sample 74-RL-1429 at L 0 3 oxvge.n activity of -65.5.  Ln CO  159 Log oxygen -66 .5  activity  -66 .0  -65 .5  MINERAL  Log K  Log Q  Log K  Log Q  Log K  Log Q  Bornite  167.18  168.23*  167.18  166.73  167.18  165.24  83.79  84.11*  83.79  83.37  83.79  82.62  Chalcocite  0.0  0.0  0.0  0.0  0.0  0.0  84.82  84.12  84.82  83.87  84.82  82.62  Cuprite  -16.36  -33.25  -16.36  -33.0  -16.36  -32.75  Hematite  -431.68  -436.21  -431.68  -432.46  -431.68  -428.73*  Magnetite  -629.39  -637.69  -629.39  -632.20  -629.39  -626.72*  Chalcopyrite Covellite  Native Copper  4.84  0.0  4.84  0.0  4.84  0.0  Pyrite  0.0  0.0  0.0  0.0  0.0  0.0  Siderite  -208.26  Table 6-4:  -211.69  Equilibrium ients  -208.26  -209.94  constants  -208.26  -208.20*  (Log K) and r e a c t i o n  quot-  (Log Q) f o r water sample 74-RL-1429 at Log  oxygen a c t i v i t i e s o f -66.5, -66.U  and -65.5  25°C i n the presence o f s o l i d c h a l c o p y r i t e pyrite.  and a t and  O v e r s a t u r a t i o n o f m i n e r a l s compared to  equilibrium  conditions  i s i n d i c a t e d by * . 2— + S o l u t i o n c o n s t r a i n t s are SO. ~ HC0~~ Ca , H 4 ' 3 ' ' and Log oxygen a c t i v i t y . D i s t r i b u t i o n of species 2+ are b a l a n c e d on Ca ion.  160 c o n c e n t r a t i o n o f the r e a c t a n t s and products between Log K and Log Q values of m i n e r a l  and the d i f f e r e n c e  i s an i n d i c a t i o n of the degree  s a t u r a t i o n i n the s o l u t i o n .  D i s t r i b u t i o n of s p e c i e s i n water sample 74-RL-1429; Log K and Log Q values a t Log oxygen a c t i v i t i e s o f -66.5, -66.0 and -65.5  are given i n Tables  b-1, 6-2, b-3 and 6-4.  Results of  these c a l c u l a t i o n s i n d i c a t e t h a t , when c h a l c o p y r i t e and p y r i t e are assumed to be i n e q u i l i b r i u m w i t h the s o l u t i o n at Log oxygen a c t i v i t y o f -66.5, b o r n i t e and c h a l c o c i t e are o v e r s a t u r a t e d and c o v e l l i t e s l i g h t l y undersaturated  (Table 6-4).  2+ 3+ C o n c e n t r a t i o n o f i r o n (Fe + Fe ) i n s o l u t i o n i s l e s s than -8 - ]_R 10" M, s u l p h i d e i o n i s below 10" M and copper c o n c e n t r a t i o n (Cu  +  + C u ) i s l e s s than 10" M Z +  lb  c h a l c o c i t e are undersaturated  (Table 6-1).  B o r n i t e and  when Log oxygen a c t i v i t y i s  i n c r e a s e d from -b6.5 to -66.0 (Table 6-4) and the i r o n concentration  (Fe^ + Fe  ) i s i n c r e a s e d t o 10" M (88 ppb ) .  The -19  c o n c e n t r a t i o n o f s u l p h i d e i o n , however, i s decreased (Table 6-2).  to 10  M.  Magnetite, hematite and s i d e r i t e are o v e r s a t u r -  ated i n s o l u t i o n when Log oxygen a c t i v i t y i s i n c r e a s e d from -66.0 to -b5.5 and the p r e d i c t e d e q u i l i b r i u m i r o n c o n c e n t r a t i o n 2+ 3+ -3 (Fe + Fe ) o f 8.65 10 (4836 ppb) g r e a t l y exceeds measured t o t a l d i s s o l v e d i r o n (172 ppb) i n the water sample 74-R.L-1429. + (Table 6-3).  E q u i l i b r i u m copper c o n c e n t r a t i o n  i s r e l a t i v e l y constant  QCu  2+ + Cu  ;  at lU "^M d e s p i t e v a r i a t i o n s o f oxygen  a c t i v i t y and i s c o n s i d e r a b l y lower than the measured copper concentration The  (10 ^) i n the water.  c a l c u l a t i o n s i n d i c a t e t h a t the degree o f m i n e r a l  s a t u r a t i o n i s extremely s e n s i t i v e to v a r i a t i o n s  161 of oxygen a c t i v i t y .  Species d i s t r i b u t i o n s a l s o demonstrate  that c h a l c o p y r i t e , p y r i t e , c o v e l l i t e , b o r n i t e ,  chalcocite  i r o n oxides approach p a r t i a l chemical e q u i l i b r i u m w i t h aqueous s o l u t i o n c o n t a i n i n g  sulphate between Log  i t i e s of -66.0  Aqueous species  and  -66.5.  r e c a l c u l a t e d f o r the using  d i s t r i b u t i o n s were  as system c o n s t r a i n t s .  An  and  Log  oxygen a c t i v i t y  Q values f o r eleven copper and and  Log  K and  Log  i r o n m i n e r a l s are g i v e n i n Table  these i n d i c a t e that the degree of c u p r i t e , hematite,  magnetite, n a t i v e  copper, p y r i t e , s p h a l e r i t e and s i d e r i t e  s a t u r a t i o n i n the waters i s g e n e r a l l y of magnitude from p r e d i c t e d c h a l c o c i t e , c o v e l l i t e and over s a t u r a t e d  l e s s than f i v e orders  equilibrium  compositions.  c h a l c o p y r i t e , however," are  i n a l l water samples and  l a r g e r than Log  Log  Bornite, greatly  0. v a l u e s are  often  K values by more than ten orders of magnitude.  Oversaturation  of copper and  l a r g e excess of copper (,Cu  +  where p y r i t e , c h a l c o p y r i t e , are i n e q u i l i b r i u m the  of  example of the program output  f o r sample 74-RL-1429 i s shown i n Appendix D.  by  oxygen a c t i v -  t o t a l measured d i s s o l v e d copper, z i n c , i r o n , manganese,  -66.5  the  and  s i x subsurface c e n t r a l bog water samples  calcium, sulphate, b i c a r b o n a t e , pH  6-5  and  c o p p e r - i r o n sulphides  + C u ) above Z +  that for a s o l u t i o n  c o v e l l i t e , bornite  (.Tables 6-1,  6-2  and  formation of copper complexes.  6-3) The  and  and  chalcocite  c o u l d be aqueous  explained species  d i s t r i b u t i o n c a l c u l a t i o n s are based on the assumption that d i s s o l v e d metal c o n c e n t r a t i o n s l a r g e l y c o n s i s t of simple Copper, however, can  the  ions.  form hydroxo complexes such as Cu0H , +  2+ C^COH^ and  can  i n d i l u t e aqueous systems (Stumm and Morgan  ly70;  a l s o form very s t a b l e complexes w i t h d i s s o l v e d humic  Table  6-5.  Equilibrium in  constants  c e n t r a l bog  (Log K ) , r e a c t i o n q u o t i e n t s ( L o g  s u b s u r f a c e w a t e r samples  499.74  556.42**  134.47  153.64**  134. 47  154.16**  134.47  156.31**  244.44**  231.20  244.23**  2 3 1 . 20  243.55**  231.20  243.80**  120.03**  110.16  119.04**  110. 16  119.10**  110.16  120.18**  4 9 9 . 74  555 7 1 * *  499.74  134. 47  152.08**  134. 47  153.34**  134. 47  155.63**  CHALCOPYRITE  2 3 1 . 20  240.00**  231. 20  242.50**  2 3 1 . 20  COVELLITE  110. 16  116.67**  110. 16  118.73**  110. 16  34.32  35.96*  34.,32  36.87*  34.32  -19.77*  -19.96  -18.23*  - 1 9 .,96  -18.91*  -19.96  -20.63  U  - 1 9 .,96 -11..81  -13.03  -11.81  -10.23*  - 1 1 ,.81  -11.74*  -11.81  -14.32  U  -14.04° 34.61*  30,.81  35.61*  30.81  34.60*  30,.81  35.06*  30.81  36.13*  30,.81  207.88*  205 .86  208.83*  205.86  209.62*  205 .36  208.49*  205.86  207.66*  205,.86  34. 32  HEMATITE  - 1 9 . 96  -15.62*  - 1 9 ..96  -20.44  MAGNETITE  - 1 1 ..81  -6.82*  - 1 1 .,81  30..81  35.41*  PYRITE SIDERITE SPHALERITE ***U  -  205..86  204.59  U  -2 .40  -2.44  U  120 .46  122.32*  Highly  U  IT  -3.81  120 .46  122.59* compared  oversaturated  Undersaturated  U  -2 .40  oversaturated  Slightly  39.01*  37.96*  37.57*  NATIVE COPPER  LOG Q  34. 32  35.98*  34. 32  CUPRITE  LOG Q  551.86  549.18**  CHALCOCITE  74-RL-  74'-RL- 1443  4 9 9 . 74  4 9 9 . 74  4 9 9 . 74  saturation  551.53**  544.16**  BORNITE  degree o f m i n e r a l  -66.5.  LOG K  LOG _K  LOG Q  of  LOG Q  LOG q  LOG K  and r e l a t i v e  activity  LOG K  LOG K  LOG Q  LOG K  MINERAL  QJ  74-RL- 1442  74 -RL- 1439  74.-RL- 1429  74--RL- 1428  a t Log oxygen  compared  U  -2 .40  -3.47  120 .46  122.74*  to e q u i l i b r i u m  compared  to equlibrium  to e q u i l i b r i u m  U  -2.40  -2.70  120.46  122.40*  solution solution  solution  U  composition composition  composition  -2 .40  -3.11  120 .46  122.40*  U  -2.40  -3.97  120.46  123.00*  U  163 and f u l v i c  a c i d f r a c t i o n s i n n a t u r a l waters.  Swaine (1976), f o r example, but  Nissenbaum  and  found that more than 80% of copper,  l e s s than 57o of c a l c i u m and manganese c o n c e n t r a t i o n s i n a  shallow marine sediment pore water was substances.  a s s o c i a t e d w i t h humic  The a c t u a l simple copper i o n c o n c e n t r a t i o n i n  o r g a n i c r i c h n a t u r a l waters c o u l d be very small compared to measured abundances.  S o i l pore water chemistry c o u l d be  d i f f e r e n t from that o f water accumulating at the bottom o f cased auger h o l e s .  Nissenbaum  et a l .  (Iy71) found that  ow marine sediment pore water contained up to 148 ppm o r g a n i c carbon compared to l e s s than 5 ppm  shall-  dissolved  i n o v e r l y i n g sea  water. Studies by Rashid and Leonard,(1973),Baker,(1973) shown that the s o l u b i l i t y  o f base-metal s u l p h i d e s , hydroxides  and carbonates i n c r e a s e s i n the presence of s o l u t i o n s ing humic a c i d f r a c t i o n s .  contain-  A major p r o p o r t i o n o f copper and  other metals c o u l d be bound to humic and f u l v i c forming s o l u b l e complexes  have  acid  fractions  d i s p i t e small c o n c e n t r a t i o n s o f orga-  n i c matter i n n a t u r a l waters.  The percentage of o r g a n i c a l l y  bound copper can be approximately c a l c u l a t e d from known data f o r m e t a l - f u l v a t e complex  stabilities.  Estimates are, however,  very approximate s i n c e i n t e r a c t i o n s w i t h other i n o r g a n i c and o r g a n i c l i g a n d s has been i g n o r e d and m e t a l - f u l v a t e constants were determined at pH  stability  3.0.  The c o n c e n t r a t i o n o f f u l v i c a c i d f r a c t i o n a v a i l a b l e f o r metal complexing i s based on an average m o l e c u l a r weight f o r f u l v i c a c i d of 1000. Schnitzer  From t h i s m o l e c u l a r weight Gamble and  (19 73) c a l c u l a t e d that a s o l u t i o n c o n t a i n i n g 1 ppm of  o r g a n i c carbon was sites.  e q u i v a l e n t to 3X10  Concentrations  -6  M metal complexing  of m e t a l - f u l v a t e complexes were  c a l c u l a t e d by the same method as that used f o r the s p e c i e s distribution.  The mass a c t i o n equation f o r the r e a c t i o n of  copper w i t h the f u l v a t e l i g a n d i s shown below. Cu  +  + HL"  K 4  =  =  CuL" +  H  +  m(CuL)  m(K )  m(HL~)  m(Cu )  +  +  m(CuL) i s the m o l a l i t y of the s i t e bound b i d e n t a t e copper ligand. m(H )  "  "  "  "  hydrogen i o n .  m(Cu ) "  "  "  "  cuprous i o n s .  m(HL~) "  "  "  "  i o n i z e d f u l v a t e f r a c t i o n com-  +  +  plexing  sites.  K. i s the mass a c t i o n q u o t i e n t f o r the r e a c t i o n . 4  Mass ac-  t i o n q u o t i e n t s have been c a l c u l a t e d f o r copper, calcium, z i n c and manganese by Gamble and below.  An  S c h n i t z e r (1973) and are  listed  estimate f o r the mass a c t i o n q u o t i e n t f o r i r o n  has been made from data g i v e n by S c h n i t z e r and Metal  Skinner  Mass a c t i o n q u o t i e n t j£ (at pH  Cu  23  Fe  20  Ca  15  Zn  1.8  Mn  0.37  (1966). 3.0;  165  Sample Number  Ca  Cu  B i q u i n o - Fe  Mn  Zn  ine Cu* 74-RL-1428  Organic carbon**  4 16  35 67  20 0  33 00 0 81  1 96  9 0  "  1429  16 46  71 59  84 0  68 64 2 96  7 44  16 0  "  1439  0 89  11 24  10 0  9 97 5 51  0 30  2 0  "  1442  1 22  13 50  60 0  12 .00 0 22  0 66  4 0  "  1443  1 44  15 60  44 0  14 14 0 27  0 65  3 5  "  1444  1 44  16 27  n r  13 17 0 .26  0 67  4 0  Table 6-6: P r o p o r t i o n o f metals  (7o)  t h e o r e t i c a l l y bound  to the f u l v i c a c i d f r a c t i o n i n subsurface bog water samples. * Represents  7 Cu not e x t r a c t e d by 2-2 c  biquinoline. * * D i s s o l v e d o r g a n i c carbon content i n ppm.  166 Percentages of copper, z i n c , i r o n , manganese and bound to f u l v i c substances are given i n Table 6-6.  calcium  i n s i x subsurface water samples R e l a t i v e p r o p o r t i o n s of metals  bound i n complex form r e f l e c t the d e c r e a s i n g s t a b i l i t i e s  of  the copper, i r o n , calcium, z i n c and manganese complexes. More than 70%, of the copper i s present i n the form of a f u l v a t e complex i n water sample 1429 o l v e d o r g a n i c carbon.  The  2-2  c o n t a i n i n g 16 ppm  diss-  b i q u i n o l i n e e x t r a c t e d only  16%  of the copper from t h i s sample emphasizing t h a t a l a r g e propo r t i o n of the metal i s bound i n a r e l a t i v e l y s t a b l e complex form.  Water samples 1442,  than 5 ppm  1443,  1444  and  1439  containing less  d i s s o l v e d o r g a n i c carbon have s m a l l e r p r o p o r t i o n s of  metals i n the form of m e t a l - f u l v a t e complexes. c a l c u l a t i o n s i n d i c a t e that l e s s than samples 1442  and  copper u s i n g 2-2  1443  Although  16% of the t o t a l copper i n  i s bound to o r g a n i c matter, e x t r a c t i o n of  b i q u i n o l i n e suggests  metal i s present i n complexed forms.  that more than 407 of the o  The  d i f f e r e n c e between  c a l c u l a t e d and e x t r a c t e d complexed copper values c o u l d r e f l e c t i n t e r a c t i o n of metals w i t h other o r g a n i c and  inorganic ligands  to form s t a b l e complexes i n a d d i t i o n to a s s o c i a t i o n w i t h and humic a c i d 6-6  fulvic  fractions.  STABILITY OF COPPER AND  IRON MINERALS IN THE  ORGANIC  SOILS Thermodynamic models have demonstrated that c h a l c o p y r i t e , c h a l c o c i t e , c o v e l l i t e and b o r n i t e are o v e r s a t u r a t e d compared to e q u i l i b r i u m concentrations  c a l c u l a t e d from subsurface,  bog water sample compositions.  central  However, p r e c i p i t a t i o n w i l l  only occur i f anion and c a t i o n c o n c e n t r a t i o n s s a t i s f y  mineral  167 s o l u b i l i t y product  relationships.  phide i o n c o n c e n t r a t i o n s  (10 ^M)  Predicted equilibrium sulare s m a l l e r than measured -12  s u l p h i d e i o n abundances i n lake sediment pore waters (10 r e p o r t e d by Emerson (.1976). concentration  (10 ^M)  The  c a l c u l a t e d hydrogen s u l p h i d e  i s a l s o s m a l l e r than that which c o u l d  t h e o r e t i c a l l y be produced as a r e s u l t of b i o g e n i c reduction apparently  (10 ^M).  M;  sulphate  Although s u l p h i d e i o n c o n c e n t r a t i o n s  l a r g e enough f o r p r e c i p i t a t i o n of m i n e r a l  the c o n c e n t r a t i o n of metal ions may  are  sulphides  be i n s u f f i c i e n t f o r form-  a t i o n of l a r g e a u t h i g e n i c m i n e r a l accumulations due  to d e v e l -  opment o f complexes. S t a b i l i t y r e l a t i o n s h i p s among copper and which c o u l d be of pH,  Eh,  ration.  iron  minerals  formed i n the o r g a n i c s o i l s r e f l e c t v a r i a t i o n s  t o t a l metal c o n c e n t r a t i o n and  t o t a l sulphur  Eh of the system can be c a l c u l a t e d from Log  concentoxygen  a c t i v i t } ^ by the r e l a t i o n s h i p f o r the s t a b i l i t y of water. Eh = 1.23 + 0.059 Log 0 - 0.059pH 2  4 C a l c u l a t e d Eh from t h i s r e l a t i o n s h i p at Log oxygen a c t i v i t y -66.0  and pH 6.0  would be  -98mv.  Copper and i r o n  r e l a t i o n s h i p s as a f u n c t i o n of Eh and pH at a t o t a l a c t i v i t y of 10 ^ are shown i n F i g . 6-1 to the c e n t r a l bog  of  mineral sulphur  where approximate l i m i t s  system, based on Eh and pH measurements, are  shown as a shaded area. An aqueous s o l u t i o n having  a pH of 6.0  and Eh -98  mv  would p l o t i n the c o v e l l i t e - p y r i t e s t a b i l i t y f i e l d on F i g . This mineral  a s s o c i a t i o n occurs  where c o v e l l i t e l a m e l l a e f i l l  i n a g r a i n shown i n P l a t e  6-1. 5-4  the i n t e r s t i c e s between p y r i t e  168  + 0-6  CiT+  Figure 6-1:  Fe 0 2  3  Cu0+Fe 0 2  3  Simplified Eh-pH diagram for mineral r e l a t i o n s h i p s  i n the Cu-Fe-S-O-H system at 25°C and 1 atmosphere  pressure  Total dissolved sulphur concentration i s 10~^M and the shaded area C  - ) represents the approximate Eh-pH range of c e n t r a l  bog waters. Christ (1965).  The diagram i s based on that given by Garrels and  framboids.  The m i n e r a l r e l a t i o n s h i p s most commonly  observed  i n the heavy m i n e r a l g r a i n s , however, are s m a l l , i d i o m o r p h i c c o v e l l i t e granules coated w i t h c h a l c o p y r i t e ( P l a t e 5-5;  or  c o v e l l i t e as roughly c o n c e n t r i c zones w i t h i n c h a l c o p y r i t e grains  ( P l a t e 5-7).  f i e l d s i n F i g . 6-1  The  c o v e l l i t e and c h a l c o p y r i t e s t a b i l i t y  are separated by c h a l c o c i t e and b o r n i t e  f i e l d s and these m i n e r a l s would be expected  to be present i n  an assemblage c o n t a i n i n g c h a l c o p y r i t e and c o v e l l i t e .  No  c h a l c o c i t e and b o r n i t e have been p o s i t i v e l y i d e n t i f i e d i n any of the m i n e r a l g r a i n s . Idiomorphic 40 um  c o v e l l i t e - c h a l c o p y r i t e g r a i n s , s m a l l e r than  across and the presence  s t r o n g l y suggests Framboidal  of framboidal p y r i t e i n the bog  that the s u l p h i d e m i n e r a l s are a u t h i g e n i c .  p y r i t e probably formed by a d s o r p t i o n of p a r t i c u l a t e  f e r r i c hydroxide onto the s u r f a c e of s p h e r i c a l humic a c i d c o l l o i d a l d r o p l e t s f o l l o w e d by r e a c t i o n o f i r o n w i t h s u l p h i d e ions and elemental sulphur to form p y r i t e ly69, R i c k a r d l y 7 0 ) .  P y r i t e framboids  (Papunen I96b,  Berner  are o c c a s i o n a l l y  enclosed by a l a y e r of massive,  s o f t e r s u l p h i d e which i s almost  i d e n t i c a l to p y r i t e composition  ( P l a t e 5-3).  massive p y r i t i c  This concentric,  l a y e r c o u l d r e p r e s e n t l a t e r p r e c i p i t a t i o n of  an i r o n s u l p h i d e g e l onto the o r i g i n a l framboid  due to l o c a l  chemical v a r i a t i o n s i n the o r g a n i c s o i l pore water.  Although  mineralogy  of the c o n c e n t r i c l a y e r i s most l i k e l y F e S , other  metastable  i r o n s u l p h i d e s such as mackinawite and  0  (.Fe^S^) which have been e x p e r i m e n t a l l y produced Kaplan  (1973) may  griegite  by Sweeney and  be a l s o p r e s e n t .  C h a l c o p y r i t e granules s m a l l e r than 10 um  diameter  occur i n  170 the c e n t r a l bog o r g a n i c could represent  soils  ( P l a t e s 5-20 and 5-24).and these  the i n i t i a l stage o f s u l p h i d e p r e c i p i t a t i o n  from s o i l pore water s o l u t i o n s .  The e l l i p t i c a l  granules c o a t i n g a s i l i c a t e m i n e r a l  chalcopyrite  g r a i n shown i n P l a t e 5-8  may a l s o have formed by p r e c i p i t a t i o n o f s u l p h i d e e x i s t i n g surface. grains smaller  onto an  Textures e x h i b i t e d by c h a l c o p y r i t e - c o v e l l i t e  than 40 um across  ence o f s u l p h i d e m i n e r a l c o v e l l i t e lamellae  c o u l d be e x p l a i n e d by a sequ-  depositions.  ( P l a t e 5-4; represent  The idiomorphic the f i r s t  stage o f  p r e c i p i t a t i o n and the s u b p a r a l l e l c h a l c o p y r i t e l a y e r surroundi n g the c o v e l l i t e was d e p o s i t e d due  onto e x i s t i n g m i n e r a l  to changing Eh, pH or s o l u t i o n composition.  o f t e n forms roughly  concentric  l a r g e r than 50 um across  surface  Covellite  layers i n chalcopyrite  grains  ( P l a t e s 5-7 and 5-10) resembling  Leisengang r i n g s which a r e commonly found i n c o l l o f o r m s t r u c t ures .  These r i n g s a r e thought to form as a r e s u l t o f rhythmic  mineral  p r e c i p i t a t i o n i n a g e l and c o u l d a l s o form where  authigenic  sulphide  grains have developed through  sequential  deposition. The ilities  e f f e c t o f sulphur  a c t i v i t y v a r i a t i o n s on m i n e r a l  stab-  i n the Cu-b-O-H and Fe-S-O-H systems a t 25°C i s shown  i n F i g s . b-2a and 6-2b.  Mineral  s t a b i l i t i e s were determined  as a f u n c t i o n o f v a r y i n g Log oxygen a c t i v i t y and Log sulphate 2 a c t i v i t y -I- 2pH .  The phase boundaries were e s t a b l i s h e d by  w r i t i n g balanced equations f o r the o x i d a t i o n o f each m i n e r a l i n terms o f oxygen, ( S 0 ^ ~ + 2H ) , C u , F e 2  +  2 +  2 +  and H^O.  A typical  r e a c t i o n f o r c h a l c o c i t e o x i d a t i o n would be:Cu S = " - 2 ( 4 ~ > 2(Cu - 2H ) + 2H 0 2  2  5 0  +  S  0  2  +  2 H +  +  2 +  +  2  171  -10G Log a c t i v i t y  F i g u r e 6-2a:  (SO^  2-  ) "activity  S t a b i l i t y r e l a t i o n s h i p s between  +2 (H )  copper  m i n e r a l s i n water a t 25°C and 1 atmosphere p r e s s u r e as a f u n c t i o n o f Log a c t i v i t y oxygen gas and Log a c t i v i t y * a c t i v i t y hydrogen i o n . 2  the approximate l i m i t s itions  a t oH 6.0  The shaded a r e a  sulphate  indicates  of s u b s u r f a c e bog water sample compos-  and Eh -100  mv.  172  -20 H  -40 H CM O  .  v—' CO 60 O  -60 •  HEMATITE  MAGNETITE -80 H HYDROGEN + OXYGEN GASES  -100  1  — T —  -50  -40  -20  -30 Log a c t i v i t y  F i g u r e 5-2b:  -10  (SO^ ) * a c t i v i t y 2-  (H ) +  2  S t a b i l i t y r e l a t i o n s h i p s between i r o n m i n e r a l s  i n water at 25°C and 1 atmosphere p r e s s u r e as a f u n c t i o n o f Log a c t i v i t y  oxygen gas and Log a c t i v i t y  sulphate *  activity  2 hydrogen i o n .  The shaded area  <&  indicates  approximate  l i m i t s o f s u b s u r f a c e bog water sample compositions and Eh -loOmv.  at•pH  6.0  173 E q u i l i b r i u m constants, K,  f o r each r e a c t i o n and  components  i n d i c a t e d by the r e a c t i o n were used as c o n t r o l s f o r the p l o t t i n g program DIAG (Brown 1970; prepare  on the UBC  the phase diagrams.  IBM  Probable  370/168 computer.to  oxygen a c t i v i t y  s u l p h a t e c o n c e n t r a t i o n l i m i t s to the bog  and  system, based on water  sample analyses are shown as shaded areas on the diagrams. The  c h a l c o p y r i t e s t a b i l i t y f i e l d has not been i n d i c a t e d on the  diagram although  t h i s m i n e r a l would be formed by r e a c t i o n of  copper s u l p h i d e s w i t h p y r i t e . oxygen a c t i v i t y of -66.0 6-2a  Water sulphate-pH  values at Log  p l o t i n the c h a l c o c i t e f i e l d on F i g .  c l o s e to the c h a l c o c i t e - n a t i v e copper boundary and i n the  pyrite field  on F i g . b-2b  c l o s e to the p y r i t e - h e m a t i t e boundary.  I n c r e a s i n g oxygen a c t i v i t y and d e c r e a s i n g sulphate ion  concentrat-  would favour the formation of n a t i v e copper and  hematite  whereas d e c r e a s i n g oxygen a c t i v i t y and i n c r e a s i n g sulphate c o n c e n t r a t i o n would favour the formation of p y r i t e ,  covellite  and c h a l c o p y r i t e . The phase diagrams 6-1,  6-2a  and 6-2b  i n d i c a t e that chalco-  p y r i t e and p y r i t e , c h a l c o c i t e , c o v e l l i t e , n a t i v e copper,  cuprite,  and hematite would become p r o g r e s s i v e l y s t a b l e i n sequence when oxygen a c t i v i t y i s i n c r e a s e d or sulphate c o n c e n t r a t i o n i s decreased.  Native copper g r a i n s , rimmed by c u p r i t e , and  p h i c c o v e l l i t e - c h a l c o p y r i t e g r a i n s ( P l a t e s 5-11  and 5-5)  together i n sample 74-RL-1I19 suggesting l a r g e , but v a r i a t i o n s of Eh, pH and/or sulphur a c t i v i t y .  idomoroccur  local  Chalcocite i s  not v i s i b l e i n any of the m i n e r a l g r a i n s although b o r n i t e be present i n one  g r a i n shown i n P l a t e 5-9.  The  may  absence of  c h a l c o c i t e i n the system where c o n d i t i o n s are f a v o u r a b l e f o r  174 formation  and  s t a b i l i t y c o u l d be e x p l a i n e d by  predominantly  low oxygen a c t i v i t y and high sulphur  activity.  n a t i v e copper i s present  sample from c l o s e to the  organic s o i l - t i l l r a t h e r than The  i n only one  i n t e r f a c e the m i n e r a l  Since  g r a i n s may  be  the  detrital  authigenic.  absence of c h a l c o c i t e c o u l d a l s o be due  u b i l i t y of the m i n e r a l  to h i g h  sol-  i n aqueous s o l u t i o n s c o n t a i n i n g abundant  d i s s o l v e d humic substances.  Baker (1973) demonstrated that  c h a l c o c i t e i s extremely s o l u b l e i n humic a c i d f r a c t i o n s o l u t i o n s whereas, by c o n t r a s t , c h a l c o p y r i t e and p y r i t e are o n l y weakly soluble.  C h a l c o c i t e may  t h e r e f o r e be q u i c k l y d i s s o l v e d soon  a f t e r p r e c i p i t a t i o n by d i s s o l v e d humic f r a c t i o n s present bog waters.  The  corroded  i n the  outer edges, t y p i c a l of the l a r g e r  c h a l c o p y r i t e - c o v e l l i t e grains, could also r e f l e c t p a r t i a l  sol-  u t i o n of s u l p h i d e s by the d i s s o l v e d o r g a n i c matter. Thermodynamic models and m i n e r a l evidence  t h a t the s u l p h i d e minerals  textures provide  formed by p r e c i p i t a t i o n from  aqueous s o l u t i o n s during o r g a n i c d i a g n e s i s . c h a l c o p y r i t e probably  formed i n i t i a l l y  Covellite  and  i n the o r g a n i c s o i l  c o l l o i d a l aggregates which formed a nucleus The  strong  as  f o r l a t e r growth.  s u l p h i d e s c o u l d a l s o have r e p l a c e d e x i s t i n g o r g a n i c  frag-  ments or c o u l d have a c c r e t e d onto the s u r f a c e of s i l i c a t e mineral grains.  Textures  wood by c h a l c o c i t e and (1928) fossil The  Hagni and spores  i n t e r p r e t e d as due  to replacement of  c h a l c o p y r i t e are d e s c r i b e d by  Papenfus  Gann (1975) a l s o d e s c r i b e replacement of  by c h a l c o c i t e i n a red-bed copper d e p o s i t .  s m a l l , dark, opaque m i n e r a l  i n c l u s i o n s i n the core of a  c h a l c o p y r i t e - c o v e l l i t e g r a i n , shown i n P l a t e 5-7,  could  175  r e p r e s e n t a l m o s t complete r e p l a c e m e n t o f an o r g a n i c  fragment  by copper s u l p h i d e . Copper, t r a n s p o r t e d i n t o t h e bog by c i r c u l a t i n g  ground  w a t e r , i s i m m o b i l i z e d as s u l p h i d e m i n e r a l s and copper-humate or c o p p e r - f u l v a t e a s s o c i a t i o n s .  Microprobe analyses  have  a l s o demonstrated t h a t copper and s u l p h u r a r e a s s o c i a t e d w i t h c e l l - w a l l s t r u c t u r e s p r e s e r v e d i n o r g a n i c s o i l fragments. T h i s a s s o c i a t i o n was p r o b a b l y formed as a r e s u l t o f copper a b s o r p t i o n , by l i v i n g p l a n t s such as sphagnum moss o r sedges, from c o p p e r - r i c h water f l o w i n g over t h e bog s u r f a c e . The copper may be bound t o s u l p h u r c o n t a i n i n g amino a c i d s w h i c h form t h e p l a n t c e l l membrane p r o t e i n s .  Release of  copper from t h e p l a n t m a t e r i a l w i l l o n l y o c c u r when t h e m a t e r i a l i s completely  decomposed.  High organic  carbon  v a l u e s i n deeper samples from s e v e r a l v e r t i c a l p r o f i l e s , however, suggest t h a t a s i g n i f i c a n t p r o p o r t i o n o f t h e o r g a n i c m a t t e r has n o t undergone d e c o m p o s i t i o n .  A large proportion  of t h e t o t a l copper i n t h i s m a t e r i a l c o u l d t h e r e f o r e be bound i n a r e l a t i v e l y s t a b l e form and c o u l d r e f l e c t copper c o n c e n t r a t i o n on t h e s u r f a c e water f l o w i n g over t h e bog a t the time when the s u r f a c e was exposed.  Q u a n t i t a t i v e analy-  ses o f copper, s u l p h u r and carbon i n o r g a n i c s o i l components at d i f f e r e n t of t h i s  depths a r e n e c e s s a r y t o e s t a b l i s h t h e v a l i d i t y  hypothesis.  176 6-f  A CONCEPTUAL MODEL FOR  METAL DISPERSION  Secondary d i s p e r s i o n of metals i n the bog ding area can be summarized by Iron, c o b a l t , n i c k e l ,  soil.  surroun-  the model shown i n F i g .  Copper and  beneath  s u r f a c e streams d r a i n i n g h i l l  at  The  slopes  of the bog  copper-rich  till  c o u l d r e f l e c t upward m i g r a t i o n  of s o l u t i o n s from a f a u l t zone.  The  copper and  iron  s o l v e d i n t h i s water are d e r i v e d from o x i d a t i o n of disseminated  or by  on the western s i d e  s m a l l area of concealed  the western end  the  i r o n are a l s o i n t r o d u c e d by ground  water f l o w i n g from f a u l t zones b u r i e d under the t i l l  of the bog.  6-3.  z i n c , molybdenum and manganese are  l a r g e l y d e r i v e d through r e d u c t i o n of the t i l l organic  and  through the N i c o l a v o l c a n i c r o c k s .  dis-  sulphides Subsurface  bog waters have l e s s than 70 ppm  sulphate  suggesting  that  the c i r c u l a t i n g ground water has  a low oxygen f u g a c i t y or  that a r e l a t i v e l y small p a r t of the rock i s exposed to o x i d i z i n g water.  High calcium and  f l o w i n g from a diamond d r i l l h o l e , and v o l c a n i c r o c k s , and  i n water  intersecting porphyritic  i n d i c a t e s l o c a l weathering of these  l o c a l o x i d a t i o n of i r o n  rocks  sulphides.  The metals are t r a n s p o r t e d by m i g r a t i n g  sulphate values  the  through the organic  soil  water as complex ions or as s o l u b l e complexes  i n c l u d i n g those formed w i t h humic a c i d f r a c t i o n s , f u l v i c a c i d f r a c t i o n s , amines and p o l y s a c h a r r i d e s .  Copper, z i n c ,  c o b a l t and n i c k e l are adsorbed from these d i l u t e s o l u t i o n s by  the abundant c o l l o i d a l humic aggregates forming a major  FIGURE 6-3:  CONCEPTUAL MODEL FOR DISPERSION OF METALS IN THE BOG  178  component of the organic s o i l .  The  degree to which  these  metals are enriched i n the s o i l w i l l depend on the d i s s o l v e d metal contents  i n the s o i l pore water, r e l a t i v e  of complexes formed between metals and humic pK,  Eh,  and  substances,  the abundances of these substances i n the  I r o n and manganese are only weakly adsorbed by and  strengths  f u l v i c a c i d f r a c t i o n s and  the humic  t h e r e f o r e remain i n s o l u t i o n .  Framboidal p y r i t e , c h a l c o p y r i t e , c o v e l l i t e and copper w i l l p r e c i p i t a t e from r e d u c i n g , weakly a c i d bog water s o l u t i o n s .  soil.  native subsurface  Framboidal p y r i t e forms l a r g e l y as a  r e s u l t of r e a c t i o n between i r o n m i g r a t i n g  from the t i l l  s u l p h i d e ions produced from b i o g e n i c r e d u c t i o n of  and  sulphate.  Copper s u l p h i d e and n a t i v e copper g r a i n s , however, are formed i n those p a r t s of the bog where copper and discharge  from f a u l t s .  i r o n r i c h waters  S p h a l e r i t e and molybdenite c o u l d  a l s o be p r e c i p i t a t e d i n the o r g a n i c s o i l although minerals  have not been i d e n t i f i e d .  or c o p p e r - i r o n  The  these  absence of p y r i t e  s u l p h i d e l a y e r s i n the s o i l could  reflect  the comparative slow d i f f u s i o n r a t e s of metals and to r e a c t i o n s i t e s or may  reflect  sulphide  the s m a l l v e r t i c a l concen-  t r a t i o n g r a d i e n t s developed i n the  bog.  O x i d a t i o n of d i s s o l v e d metal-humate or m e t a l - f u l v a t e complexes i n water f l o w i n g through the r e d u c i n g - o x i d i z i n g boundary w i l l i n c r e a s e c a t i o n a c t i v i t i e s i n s u r f a c e waters. Secondary i r o n and manganese hydrous oxides the bog  s u r f a c e or on the s u r f a c e and  form c l o s e to  e s p e c i a l l y i n areas  where l a r g e volumes of water d i s c h a r g e .  Molybdenum w i l l  179  be immobilized water.  as a c i d molybdenate ions i n the a c i d s u r f a c e  Copper m i g r a t i n g  l a t e r a l l y i n t o the bog  to the s u r f a c e and  by streams can be absorbed i n t o the  t i s s u e s of s u r f a c e v e g e t a t i o n . t i v e l y s t a b l e and may  transported  This copper w i l l be  rela-  only be r e l e a s e d from the p l a n t  t i s s u e s i n h i g h l y decomposed s o i l s . 6-8  APPLICATIONS TO MINERAL EXPLORATION S e v e r a l previous  s t u d i e s have demonstrated that organic  s o i l geochemistry can be s u c c e s s f u l l y used to l o c a t e m i n e r a l occurrences.  Nieminen and Y l i r u o k u n e n  example, t r a c e d copper, n i c k e l and n i s h peat bog bog  concealed  (1976), f o r  z i n c anomalies i n a F i n -  to a small bedrock exposure through the  i n t e r f a c e and  concluded  t h a t metal d i s t r i b u t i o n  till-  patterns  r e f l e c t e d m e t a l l i f e r o u s water f l o w i n g from t h i s bedrock. R e s u l t s of the present copper, n i c k e l , c o b a l t and  i n v e s t i g a t i o n i n d i c a t e that z i n c are most abundant i n the  deeper, decomposed m a t e r i a l i n p a r t s of the c e n t r a l bog where organic  soil  thickness exceeds 3 m.  decreases from more than 0.5% l e s s than 210 ppm t e r n end  Copper g e n e r a l l y  i n humic-mesic s o i l l a y e r s to  i n the u n d e r l y i n g t i l l  except at the wes-  of the bog where a s m a l l area of b u r i e d  c o n t a i n s up  to 0.57  0  copper.  H o r i z o n t a l and  till  vertical  v a r i a t i o n s of copper i n the organic s o i l l a y e r s do not show a c l e a r r e l a t i o n s h i p with  the c o p p e r - r i c h t i l l  and  distribu-  t i o n p a t t e r n s have l a r g e l y formed through c o n c e n t r a t i o n of copper and other metals from m i g r a t i n g  ground water s o l u t i o n s .  180 Authigenic  c h a l c o p y r i t e , c h a l c o p y r i t e - c o v e l l i t e and  native copper-cuprite  g r a i n s form, l o c a l l y ,  i n two  through r e a c t i o n of s u l p h i d e ions w i t h metals i n t o the organic  s o i l from the t i l l - b o g  areas  transported  interface.  The  g r a i n s are abundant i n s o i l between 1 to 3 m depth above the c o p p e r - r i c h t i l l .  Subsurface bog water i n t h i s area  of  the bog where the g r a i n s are most abundant have h i g h copper and in  i r o n contents. organic  D i s t r i b u t i o n of small, a u t h i g e n i c  s o i l s and  subsurface  used to l o c a t e concealed the h i l l  bog water chemistry  metal sources.  duced i n t o the bog  by  suggesting  could  be  Seepages d r a i n i n g  slope on the west s i d e of the bog  copper c o n c e n t r a t i o n  grains  a l s o have h i g h  that metals have been i n t r o -  l a t e r a l l y f l o w i n g water as w e l l as  by  d i s c h a r g i n g ground water. Overburden sampling i s o f t e n used to o u t l i n e areas of mineralized  till  or bedrock concealed  by bogs, but  method i s r e l a t i v e l y expensive ( c u r r e n t c o s t s are $20/m) and  this roughly  slow (1 to 2 samples/hour) compared to stream  sediment and  s o i l sampling.  An  exploration target  size  c o u l d be e f f e c t i v e l y decreased b e f o r e a p p l i c a t i o n of overburden sampling by sampling organic m a t e r i a l from c l o s e to the base of a bog w i t h a H i l l e r peat auger.  Identification  of m i n e r a l g r a i n s , examination ,of g r a i n t e x t u r e s and measurement of metal c o n c e n t r a t i o n s in  i n bog waters c o u l d be  e s t a b l i s h i n g the source f o r the metal.  d e s c r i b i n g p h y s i c a l and  chemical  analyses  samples and water samples i s shown below.  important  A flow diagram of augered  soil  131 AUGER SAMPLE  SQUEEZE OR  DRY SAMPLE  GENTLY DISAGGREGATE  CENTRIFUGE  AT 110°C  SAMPLE  WATER FROM WET SAMPLE  HEAVY MINERAL SEPARATION  ANALYSE WATER  SIEVE TO  FOR METALS  MINUS 80  EXAMINE UNDER BINOCULAR MICROSCOPE  MESH  HN0 -HC10 3  4  MOUNT GRAINS IN EPOXY-  DIGESTION  RESIN AND EXAMINE  AA ANALYSIS  UNDER REFLECTING  FOR METALS  MICROS COPE  A n a l y s i s of water from squeezed or c e n t r i f u g e d  organic  s o i l s f o r t r a c e metal contents would be f a s t e r than sampling cased auger holes i n the bog, but a d d i t i o n a l s t u d i e s must be conducted, however, to determine i f there a r e any s i g n i f i cant v a r i a t i o n s between organic s o i l pore water and water c o l l e c t e d from the cased auger h o l e s . Microprobe analyses of organic s o i l samples f o r metals are  g e n e r a l l y too expensive f o r r o u t i n e m i n e r a l e x p l o r a t i o n  application.  Q u a n t i t a t i v e scanning e l e c t r o n microprobe  a n a l y s i s c o u l d , however, be used to e s t a b l i s h the d i s t r i b u t i o n of metals between d i f f e r e n t organic s o i l  components.  R e s u l t s c o u l d then be compared w i t h those o b t a i n e d from r e l a t i v e l y simple s e q u e n t i a l e x t r a c t i o n or i o n exchange methods. determine  These techniques may  then be c o n f i d e n t l y used  the mode of metal occurrence i n s o i l s .  CHAPTER 7 CONCLUSIONS (1)  The p r i n c i p l e forms of copper i n organic s o i l s i n  order of r e l a t i v e abundance a r e : (a)  Copper bound by p h y s i c a l and chemical to s o i l o r g a n i c matter.  The s o i l  adsorption  components  l a r g e l y r e s p o n s i b l e f o r these processes and (b)  f u l v i c acid  a r e humic  fractions.  Copper bound to p r o t e i n molecules  forming  the c e l l  w a l l membranes o f p l a n t fragments p r e s e r v e d decomposed m a t e r i a l comprising organic s o i l (c)  i n the  the humic-mesic  layers.  Copper i n the form o f a u t h i g e n i c c h a l c o p y r i t e , c h a l c o p y r i t e - c o v e l l i t e , c o v e l l i t e and n a t i v e copper cuprite mineral grains.  (2)  Copper, c o b a l t , n i c k e l and z i n c a r e adsorbed by the  o r g a n i c matter from d i l u t e aqueous s o l u t i o n s m i g r a t i n g the bog.  throu  The c o b a l t , n i c k e l and z i n c a r e l a r g e l y d e r i v e d  from the reduced  till  beneath the o r g a n i c s o i l s and from  humic g l e y s o l s surrounding  the bog.  Copper c o n c e n t r a t i o n s  are a l s o i n t r o d u c e d by s u r f a c e water f l o w i n g from seepages on the west s i d e of the bog and by subsurface ground water d i s c h a r g i n g from a f a u l t zone beneath organic s o i l s and the till.  The source of t h i s copper i s probably  disseminated  copper-iron sulphides i n contact with o x i d i z i n g , c i r c u l a t i n g ground water.  deeply  The degree o f copper, c o b a l t ,  n i c k e l and z i n c enrichment through a d s o r p t i o n w i l l depend  on the a c t i v i t y of metal ions i n the s o i l pore water, r e l a t i v e s t a b i l i t i e s o f complexes formed w i t h humic and f u l v i c a c i d f r a c t i o n s , s o i l pore water pH and Eh. (3) and  S c a t t e r e d p y r i t e framboids occur throughout the bog form by r e a c t i o n of i r o n r i c h bog waters with  sulphide  ions produced through b i o g e n i c r e d u c t i o n of s u l p h a t e . Framboids found  i n organic s o i l above c o p p e r - r i c h t i l l a t  the western end of the bog a r e o c c a s i o n a l l y coated  with  c h a l c o p y r i t e and c o v e l l i t e i n d i c a t i n g that the coppers u l p h i d e s were p r e c i p i t a t e d on the framboid  surface.  tures of c h a l c o p y r i t e - c o v e l l i t e g r a i n s , found  Tex-  i n the same  area, r e f l e c t a l t e r n a t i n g d e p o s i t i o n of sulphides where copper and i r o n r i c h s o l u t i o n s , f l o w i n g from the f a u l t , mix with sulphide ions. (4)  S i g n i f i c a n t c o n c e n t r a t i o n s of i r o n and manganese a l s o  enter the bog from the reduced  till.  These metals are not  adsorbed by the r e d u c i n g , o r g a n i c s o i l s although immobilized drous oxides  as framboidal p y r i t e .  i r o n w i l l be  I r o n and manganese hy-  form i n the s u r f a c e f i b r o u s organic l a y e r where  metal r i c h s o l u t i o n s flow from the reducing z i n g environment.  i n t o the o x i d i -  Molybdenum i s a l s o concentrated  i n this  f i b r o u s m a t e r i a l due to the low pH of the bog s u r f a c e water.  185 BIBLIOGRAPHY A n d e r s o n , P., 1971. Geology, p e t r o l o g y , o r i g i n and metamorphic h i s t o r y o f t h e E a g l e g r a n o d i o r i t e and N i c o l a Group, P r i n c e t o n area, southern B r i t i s h Columbia. Unpublished B.Sc T h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , 201 p . Barr,  D.A., F o x , P.E., N o r t h c o t e , K. a n d P e t r o , V.A., 1976. The a l k a l i n e s u i t e p o r p h y r y d e p o s i t s : A summary. In: Porphyry deposits o f t h e Canadian C o r d i l l e r a . (SutEerl a n d - B r o w n , A., E d . ) , p p . 35y-367.  B a k e r , W.E., l y 7 3 . The r o l e o f humic a c i d s from Tasmanian p o d z o l i c s o i l s i n m i n e r a l d e g r a d a t i o n and m e t a l m o b i l i z ation. Geochim. Cosmochim. A c t a . V o l . 37, p p . 2 6 y - 2 8 l . Baas  B e c k i n g , L.G.M. a n d M o o r e , D., 1961. E c o n . G e o l . V o l . 56, p p . 259-272.  B e c k w i t h , R.S., 1959, T i t r a t i o n curves N a t u r e . V o l . 184, p p . 745-746. Bell,  Biogenic  of soil  sulphides  organic  matter.  R.G., 1969. Studies o f t h e decomposition o f organic matter i n flooded s o i l . S o i l B i o l . B i o c h e m . V o l 15, p p . 105-115.  B e r n e r , R.A., 1969. M i g r a t i o n o f i r o n and sulphur i n anaerobic sediment d u r i n g d i a g e n s i s . Am. J . S c i . V o l . 267, p p . 19-42. B e r n e r , R.A., 1971. P r i n c i p l e s o f chemical sedimentology. McGraw-Hill I n t e r n a t i o n a l Series i n the Earth Sciences, New Y o r k . Z40 p . B i u c k , B . J . , 1969. I n t r o d u c t i o n t o sedimentology. In: O r g a n i c G e o c h e m i s t r y , ( E g l i n t o n , G., a n d Murphy, M.M.J., E d s . ) , S p r i n g e r - V e r l a g , New Y o r k . p p . 245-257. Brown, T.H., 1970. T h e o r e t i c a l p r e d i c t i o n s o f e q u i l i b r i a and mass t r a n s f e r i n t h e s y s t e m C a 0 - M g 0 - S i 0 - H 0 - N a C l - H C l . U n p u b l i s h e d Ph.D t h e s i s , N o t h w e s t e r n U n i v e r s i t y . 136 p . 2  2  B o r o v i t s k i i , V.P., 1970. The a p p l i c a t i o n o f bog s a m p l i n g i n prospecting for ore deposits i n perennial regions. j o u r . G e o c h . E x p l . , V o l . 5, No. 1, p p . 65-70. B o y l e , R.W., l y 7 7 . New B r u n s w i c k , p p . 495-528.  C u p r i f e r o u s bogs i n t h e S a c k v i l l e Canada. J o u r . Geoch. E x p l . , V o l .  area, 8, No. 3,  186 B o y l e , D.R. and T r o u p , A.G. ,1975. Copper-molybdenum p o r p h y r y m i n e r a l i z a t i o n i n c e n t r a l B r i t i s h C o l u m b i a , C a n a d a : An assessment o f geochemical sampling media u s e f u l i n areas of glaciated terrain. In: P r o s p e c t i n g i n areas of glaciated terrain. ( J o n e s , M.L., Ed.), I n s t i t u t i o n of M i n i n g and M e t a l l u r g y , L o n d o n , pp. b-15. B r o a d b e n t , F . E . and O t t , J . E . , 1957. S o i l organic matter complexes:1. Factors a f f e c t i n g retention of various cations. S o i l S c i . V o l . 83, pp. 419-423. C a n a d i a n D e p a r t m e n t o f A g r i c u l t u r e , 1974. The s y s t e m o f s o i l c l a s s i f i c a t i o n f o r Canada, P u b l i s h e d by the Canadian D e p a r t m e n t o f A g r i c u l t u r e , O t t a w a . 255 p . C a n n o n , H.L., 1955. Geochemical r e l a t i o n s h i p s o f z i n c b e a r i n g p e a t t o t h e L o c k o o r t d o l o m i t e , O r l e a n s Co., New York. U . S . G e o l . S u r v . B u l l . No. 1000-D C a r p e n t e r , R.H., Pope, T.A. a n d S m i t h , R.L., 1975. Ironmanganese o x i d e c o a t i n g s i n s t r e a m s e d i m e n t geochemical surveys. J o u r . G e o c h . E x p . , V o l . 4, No. 3, pp 34y-363 C a p p e n b e r g , T h . E . , 1974. I n t e r r e l a t i o n s between s u l p h a t e r e d u c i n g b a c t e r i a and methane p r o d u c i n g b a c t e r i a i n bottom deposits o f a f r e s h water l a k e : l . F i e l d observations. A n t o n i e v a n Leeuwenhoek. V o l . 40, pp. Z85-295. C a s a g r a n d e , D . J . , S i e f e r t , K., B e r s c h i n s k i , C. and S u t t o n , N., 1977. Sulphur i n p e a t - f o r m i n g systems o f the Okefenokee swamp and F l o r i d a E v e r g l a d e s : O r i g i n s o f s u l p h u r i n c o a l . G e o c h i m . Cosmochim. A c t a . , V o l . 41, pp. 161-167. Qiao,  T.T., 1972. S e l e c t i v e d i s s o l u t i o n o f manganese o x i d e s f r o m s o i l s and s e d i m e n t s w i t h h y d r o x y l a m i n e h y d r o c h l o r i d e . S o i l S c i . S o c . Am. P r o c . , V o l . 36, p p . 764-768.  Chapman, R.P., 1976. L i m i t a t i o n s o f c o r r e l a t i o n and r e g r e s s i o n a n a l y s i s i n geochemical e x p l o r a t i o n . Trans. Inst. M i n . M e t a l l . L o n d o n , V o l . 85, pp. B279-283. , C h i n L e . and T e n i s c i , T., 1977. program package, U n i v e r s i t y C e n t e r . 183 p .  TRP: a t r i a n g u l a r r e g r e s s i o n o f B r i t i s h Columbia Computing  C r o s s , C.H., 1975. The r e l a t i o n s h i p o f m e t a l s and s o i l o r g a n i c components w i t h p a r t i c u l a r r e f e r e n c e t o c o p p e r . Unpubl i s h e d Ph.D t h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , Canada. 170 p . D a v i s , R . I . , C h e s h i r e , M.V. a n d G r a h a m - B r y c e , I . J . , 1969. t e n t i o n o f low l e v e l s o f c o p p e r by h u m i c a c i d . Jour. S o i l . S c i . V o l . 20, No. 78, pp. 65-71.  Re-  187 Dixon, W.J. and Massey, F . J , , 1969. Introduction to s t a t i s t i c a l analysis. McGraw-Hill, 638 p. E c k e l , E.B., I94y. Geology and ore d e p o s i t s o f the La P l a t a D i s t r i c t , Colorado. U.S.Geol. Surv. P r o f . Paper., No. 219, pp. 55-64. Emerson, S., 1976. E a r l y diagensis of anaerobic lake s e d i - . . ments: chemical e q u i l i b r i a i n i n t e r s t i t i a l water. Geochim. Cosmochim. A c t a . V o l . 4 0 , pp. 925-934. E n n i s , M.T., peat.  1962. The c h e m i c a l n a t u r e of copper complexes i n I r i s h J o u r . A g r i c . Res., V o l . 2, pp. 147-155.  E r r i k s s o n , K. and E r r i k s s o n , G., 1976. Hinsen: Heavy metals i n peat and t i l l . J o u r . Geoch. E x p l o r . , V o l . 5, No. 7, pp. 232-235. E r r i k s s o n , K. and E r r i k s s o n , G., 1976. i n peat c l o s e t o a b o u l d e r t r a i n . V o l . 5, No. 7, pp. 342-343.  Stromo: Heavy metals Jour. Geoch. E x p l o r . ,  F e l b e c k , G.T., 1971. Chemical and B i o l o g i c a l c h a r a c t e r i z a t i o n of humic matter. In: S o i l B i o c h e m i s t r y , V o l . 2, (McLaren, A.D. and S k u j i n s , J . , E d s . ) , pp. 36-59. F l a i g , W., 1 9 7 2 . An i n t r o d u c t o r y view on humic s u b s t a n c e s : a s p e c t s o f r e s e a r c h on t h e i r g e n e s i s , t h e i r p h y s i c a l and chemical p r o p e r t i e s and t h e i r e f f e c t s on organisms. Proceedings o f the I n t e r n a t i o n a l Meeting on Humic Subs t a n c e s , (Povoleds, D. and Bolterman, H.L., E d s . ) , pp. 19-41. Fox, M. and S i n c l a i r , A . J . , 1973. Unpublished program f o r p l o t t i n g p r o b a b i l i t y graphs. Department o f G e o l o g i c a l S c i e n c e s , U n i v e r s i t y , o f B r i t i s h Columbia. F r a s e r , D.C., l y 6 1 . A s y n g e n e t i c copper d e p o s i t o f r e c e n t age. Econ. Geol., V o l . 56, pp. 951-962. F r a s e r , D.C., 1961. O r g a n i c s e q u e s t r a t i o n o f copper. G e o l . , V o l . 56, pp. 1063-1078.  Econ.  F u l t o n , R.J. and Armstrong, J.E., 1965. F i e l d conference J . 7th. Meeting o f the I n t e r n a t i o n a l A s s o c i a t i o n f o r Quaternary Research, 1965. pp. 746-747.  188 Gamble, D.S. and S c h n i t z e r , M., 1973. The c h e m i s t r y o f f u l v i c a c i d and i t s . \ r e a c t i o n w i t h metal i o n s . I n : Trace metals and m e t a l - o r g a n i c i n t e r a c t i o n s i n n a t u r a l waters-, ( S i n g e r , P.C., E d . ) , S c i e n c e P u b l i s h e r s Inc., Ann A r b o r , Michigan, pp. 265-301. Gardener, L.R. , 1974. Organic versus: i n o r g a n i c t r a c e metal complexes- i n s u l p h i d i c marine waters-: some s p e c u l a t i v e c a l c u l a t i o n s based on a v a i l a b l e s t a b i l i t y - c o n s t a n t s . Geochim. Cosmochim. A c t a , V o l . 38, pp. 1297-1302. G a r r e l s , R.M. and Thompson, M.E., 1962. A c h e m i c a l model f o r seawater a t 25 degrees c e n t i g r a d e and one atmosphere t o t a l pressure. Am. J o u r . S c i . V o l . 260. p p 5 7 - o 6 . G a r r e l s , R.M. and C h r i s t , C.H., 1965. S o l u t i o n s , M i n e r a l s and Equilibria. P u b l i s h e d by Harper I n t e r s c i e n c e , 450 p. Garrett,R.G. and Hornbrook, E.H.W. , 1976. The r e l a t i o n s h i p between z i n c and o r g a n i c content i n c e n t r e - l a k e bottom sediments. J o u r . Geoch. E x p l o r . , V o l . 5, No. 1, pr». 31-38. G a r r e t R.G., 1973. The d e t e r m i n a t i o n o f sampling and a n a l y t i c a l e r r o r s i n e x p l o r a t i o n geochemistry ( d i s c u s s i o n ) . Econ. Geol., V o l . 68, pp. 282-283. G a r r e t R.G., 1969. The d e t e r m i n a t i o n o f a n a l y t i c a l e r r o r s i n e x p l o r a t i o n geochemistry. Econ. Geol., V o l . 64, pp. 568574. Given, P.C. and D i c k i n s o n , C.H., 1975. B i o c h e m i s t r y and microb i o l o g y o f peats. I n : S o i l b i o c h e m i s t r y , ( P a u l i , E.M., and McLaren, A.D., E d s . ) , pp. 123-213. Gleeson, C F . and Coope, J.A., 1966. Some o b s e r v a t i o n s on the d i s t r i b u t i o n o f m e t a l s i n swamps i n e a s t e r n Canada. Geol o g i c a l Survey o f Canada Paper No. 66-54, pp. 145-166. Goodman, B.A. and C h e s h i r e , M.V., 1973. E l e c t r o n paramagnetic resonance evidence t h a t copper i s complexed i n humic a c i d by n i t r o g e n o f p o r p h y r i n groups. Nature, New B i o l o g y , London, V o l . 244, pp. 158-159. Goodman, B.A. and C h e s h i r e , M.V., 1976. The o c c u r r e n c e o f c o p p e r - p o r p h y r i n complexes i n . s o i l humic a c i d s . Soil. Sci. V o l . 27, pp. 337-347. Grosse-Brauckmann, C. and P u f f e , D., 1964. Uber z e r s e t z u n g s prozesse und s t o f f b i l a n z im wachsenden moor. In Proceedings o f the 8 t h I n t e r n a t i o n a l Congress o f S o i l S c i e n c e , Bucharest. :  Gunton, J . E . and N i c h o l , I . , 1974.  D e l i n i a t i o n and i n t e r p r e -  18y t a t i o n o f metal d i s p e r s i o n patterns r e l a t i n g to minerali z a t i o n i n t h e Whipsaw Creek a r e a . T r a n s . Can. I n s t . Min. M e t a l ! . , V o l . 77, pp. 32-41. Hagi, R.D. and Gann, D.E., 1976. Microscopy o f copper o r e a t the C r e t a mine, southwestern Oklahoma. I n : S t r a t i f o r m copper d e p o s i t s o f the m i d c o n t i n e n t a l r e g i o n , Oklahoma Geol. Surv. C i r c . , No. 77, pp. 40-50. Hansuld, J.A., 1966. The behaviour o f molybdenum i n secondary d i s p e r s i o n media. Min. Eng. December, 1966. pp. 73-77. H i l l s , L.V., 1962. G l a c i a t i o n , s t r a t i g r a p h y , s t r u c t u r e and micropaleobotany o f the P r i n c e t o n c o a l f i e l d , B r i t i s h Columbia. U n p u b l i s h e d M. Sc. t h e s i s , U n i v e r s i t y o f B r i t i s h Columbia, 141 p. H o r s n a i l , R.F., N i c h o l , I . and Webb, J.S., 1969 Influence of v a r i a t i o n s i n the s u r f a c e environment on metal d i s t r i b u t i o n i n d r a i n a g e sediments. Q. J . Colorado School o f Mines, V o l . 64, No. 1, pp. 307-322. H r o s n a i l R.F. and E l l i o t t , I.L., i n f l u e n c e s on t h e secondary copper i n w e s t e r n Canada. S p e c i a l V o l . 2, (Boyle, R.W. pp. 166-175.  1971. Some environmental d i s p e r s i o n o f molybdenum and I n : Can. I n s t . Min. M e t a l l . , and M c G e r r i g l e , J . I . , Eds)  I r v i n g , H. and W i l l i a m s , R.J.P., 1948. Order o f s t a b i l i t y of metal complexes. Nature, V o l . 162. pp. 746-747. K a l l i o s k o s k i , J . and C a t h l e s , L., 1969. Morphology, mode o f f o r m a t i o n and d i a g e n e t i c changes i n framboids. Bull. Geol. Soc. F i n l a n d . , V o l . 41, pp. 125-134. Khanna, S.S. and Stenevson, F . J . , 1962. M e t a l - o r g a n i c complexes i n s o i I : l . P o t e n t i o m e t r i c t i t r a t i o n o f some s o i l o r g a n i c matter i s o l a t e s i n the presence o f t r a n s i t i o n metals. S o i l . S c i . , V o l . 93, pp. 2y8-305. Khan, S.U. and S c h n i t z e r , M. , 1972. The r e t e n t i o n o f hydrophobic o r g a n i c compounds by humic a c i d s . Geochim. Cosmochim. A c t a , V o l . 36, pp. 745-754. Khan, S.U., 1969. I n t e r a c t i o n between the humic a c i d f r a c t i o n of s o i l and c e r t a i n m e t a l l i c c a t i o n s . S o i l S c i . Soc. Am. P r o c , V o l . 33. pp. 851-854. Kochkenov, A.V. and Kreshtapova, V.N., 1967. Rare and d i s p e r s ed elements i n the peat o f the n o r t h e r n p a r t o f R u s s i a n Platforms. Geochem. Intern.,.No. 4. pp. 286-292. Kononova, M.M., 1961. Oxford, 4 5 0 p.  S o i l o r g a n i c matter. Pub. by Pergamon,  190 Kowalenko, C.G. and Lowe, L.E., 1972. O b s e r v a t i o n s on the bismuth method f o r s u l p h a t e a n a l y s i s i n s o i l . Comm. S o i l . S c i . P I . A n a l . , V o l . 3, pp. 79-86. K r i b e k , B., 1975. The o r i g i n o f f r a m b o i d a l p y r i t e as a surf a c e e f f e c t on s u l p h u r g r a i n s . Minera. Deposita, V o l . 10, pp. 389-396. Kuznetsov, S.I., Ivanov, M.V. and L y a k i k o v a , N.N., 1963. Introduction to geological microbiology. International S e r i e s i n the E a r t h S c i e n c e s . (.Broneer, P.T., Trans., Oppenheimer, C.H., E d . ) , 252 p. Lambert, I.B. and Bubela, B., 1970. Banded s u l p h i d e o r e s : The e x p e r i m e n t a l p r o d u c t i o n of monomineralic s u l p h i d e ores i n sediments. Minera. D e p o s i t a . , V o l . 5, pp.97-102, L e p e l t i e r , G., 1969. A s i m p l i f i e d s t a t i s t i c a l treatment o f geochemical d a t a by g r a p h i c a l r e p r e s e n t a t i o n . Econ. Geol.. V o l . 64, pp. 538-550. Lewis, T.E. and Broadbent, F.E., 1961. S o i l o r g a n i c mattermetal complexes: 3. Exchange r e a c t i o n s of model compounds. S o i l . S c i . , V o l . 91, pp. 341-347. Lewis, T.E. and Broadbent, F.E., 1961. S o i l o r g a n i c mattermetal complexes: 4. Nature and p r o p e r t i e s o f exchange sites. S o i l . S c i . , V o l . 91, pp. 393-399. L i n d s a y , W., 1972. I n o r g a n i c phase e q u i l i b r i a o f micronutrients i n s o i l s . In: Micronutrients i n A g r i c u l t u r e , (Mortvedt, J . J . , Giordano, P.M. and L i n d s a y , W.L., E d s . ) , Symposium cosponsored by the Tennessee V a l l e y A u t h o r i t y and S o i l S c i e n c e S o c i e t y o f America, pp. 41-57. Love, L.G., 1963. Early diagenetic p y r i t e i n fine-grained sediments and the genesis o f s u l p h i d e o r e s . In: Sedimentology and o r e g e n e s i s , (Amstutz, G.C. E d . ~ T , Developments i n Sedimentology, V o l . 2, pp. 11-17. L o v e r i n g , T.S., 1928. Organic p r e c i p i t a t i o n o f m e t a l i c U.S.Geol. Surv. B u l l . , No. 795-C, pp. 45-52.  copper.  Manaskaya, S.M. and Drozdova, T.V., i960. D i s t r i b u t i o n of copper i n peat o f B y e l l o r u s s i a . International Series of Monographs on the E a r t h S c i e n c e s , V o l . 28, pp. 243-250. Manaskaya, S.M. and Drozdova, T.V., 1968. Geochemistry o f organic substances. (.Shapiro, L. , Trans., Breger, I.A., Ed. ), Pergamon, 435 p. Mathews, W.H., 1944. G l a c i a l l a k e s and i c e r e t r e a t i n south c e n t r a l B r i t i s h Columbia, Trans. R. Soc. Can. S e c t . 4., V o l . 38, pp. 39-57.  191 Midwood, R.B. and F e l h e c k , G.T., 1969.. o r g a n i c matter from fresh, water. Assoc., V o l . 60, pp. 357-366.  Analysis of yellow J o u r . Am. Waste Water •  Miesch, A.T., 1967. Methods o f computation f o r e s t i m a t i n g geochemical abundance. U.S.Geol Surv Paper 574B, pp. 1-15. Mehrtens, M.B., Tooms, J.S. and Troup, A.G., 1973. Some asp e c t s o f geochemical d i s p e r s i o n from base m e t a l m i n e r a l i z a t i o n w i t h i n g l a c i a t e d t e r r a i n i n Norway, North Wales and B r i t i s h Columbia, Canada. I n : Proceedings o f t h e 4 t h I n t e r n a t i o n a l Geochemical E x p l o r a t i o n Symposium, 1972. C l o n e s , M.J. E d . ) , P u b l i s h e d by t h e I n s t i t u t i o n o f M i n i n g and M e t a l l u r g y , London, pp. 105-116. Miedema, R., Jongmans, A.G. and S l a g e r , S. , 1973. Micromorpho l o g i c a l o b s e r v a t i o n s on p y r i t e and i t s o x i d a t i o n p r o d u c t s i n f o u r Holocene a l l u v i a l s o i l s i n t h e N e t h e r l a n d s . Proceedings o f the f o u r t h I n t e r n a t i o n a l Working Meetings on S o i l M i c r o b i o l o g y , (Rutherford, G.K. E d . ) , pp. 772-794. Moore, P.D. and Bellamy, D.J., 1974. Peatlands. S p r i n g e r - V e r l a g , New York, 221 p.  P u b l i s h e d by  M u l l i n e a u x , D.R., 1974. Pumice and o t h e r p y r o c l a s t i c d e p o s i t s i n Mount R a i n i e r N a t i o n a l Park, Washington. U.S.Geol. Surv. B u l l , , No. 1362, 81 p. Mustard, D.K., 1968. P r o p e r t y examination o f the Whipsaw Creek property. Unpublished Ascessment Report by Amax E x p l o r a t i o n , Vancouver, 48 p. Nason, A. and M c E l r o y , W.D., 1963. Modes o f a c t i o n o f essent i a l m i n e r a l elements. I n : P l a n t P h y s i o l o g y , (Stward, F.C., E d . ) , V o l . 3, pp. 459-536. Nieminen, K. and Y l i r u o k a n e n , I . , 1976. Kitee: n i c k e l anomalies o f the L i e t s o s u d peat bog. . E x p l . , V o l . 5, No. 3, pp. .34.8-353.  The copperJ o u r . Geoch.  Nissenbaum, A. and Swaine, D.J., 1976. O r g a n i c matter-metal i n t e r a c t i o n s i n Recent sediments: t h e r o l e o f humic substances . Geochim. Cosmochim. A c t a . , V o l . 33, pp.809816. Nissenbaum, A., Studies o f water o f a chemistry, Ong,  Baedecker, M.J. and Kaplan, J.R., 1971. d i s s o l v e d o r g a n i c matter from the i n t e r s t i t i a l reducing f j o r d . I n : Advances i n o r g a n i c geo(Ingerson, E., Ed.X7 V o l . 33, pp. 427-440.  H.L. and Bisque, R.E., 1968. C o a g u l a t i o n o f humic c o l l o i d s by m e t a l i o n s . S o i l S c i , , . V o l . 106, pp. 220-224.  192 Ong,  H..L. and Swanson, V.E., 19.66. A d s o r p t i o n o f copper by • peat, l i g n i t e and bituminous: c o a l . Econ. G e o l . , V o l . 61, pp. 1214-1231.  Papenfus, E.B., 1931. and New Brunswick.  "Red^-bed" copper d e p o s i t s i n Nova S c o t i a Econ. G e o l . , V o l . 26, pp. 314-330..  Papunen, K. , 1966. Framboidal t e x t u r e o f the p y r i t i c l a y e r found i n a peat bog i n southeast F i n l a n d . Comptes Rendus de l a S o c i e t e Geologique de F i n l a n d e , No. 38, pp. 117-125. Parslow, G.R., 1974. D e t e r m i n a t i o n o f background and t h r e s h o l d i n E x p l o r a t i o n Geochemistry. J o u r n . Geoch. E x o l . , V o l . 3, No. 4", pp. 319-336 P a u l i , F.W., 1968. Some r e c e n t developments i n b i o g e o c h e m i c a l research. Geol. Can. Proc, V o l . 19, pp. 45-49. P h i l l i p s , J.S. and Thompson, R.F., M a c m i l l a n and Co, 550 p.  1967.  Statistics  f o r nurses.  Postma, D., 1977. The occurrence and c h e m i c a l composition o f i r o n - r i c h carbonates i n a r i v e r bog. Jour Sed Pet V o l . 47, No. 3, pp. 1089-1098. Ramm, A.E. and B e l l a , D.A., a e r o b i c microcosms . 110-118.  1974. S u l p h i d e p r o d u c t i o n i n anL i m n o l . Oceanogr;, V o l . 19, op  Randhawa, N.S. and Broadbent, F.C., 1965. S o i l o r g a n i c mattermetal complexes:5. R e a c t i o n s o f z i n c w i t h model compounds and humic a c i d . Soil Sci., V o l . 99, No. 5, pp. 295-300. Rashid, M.A. and Leonard, J.D., 1973. M o d i f i c a t i o n i n the s o l u b i l i t y o f v a r i o u s metals as a r e s u l t o f t h e i r i n t e r a c t i o n w i t h sedimentary humic a c i d . Chemical Geology, V o l . 11, pp. 89-97. Reuter, J.H. and Perdue, E.M., 1977. Importance o f heavy m e t a l o r g a n i c m a t t e r i n t e r a c t i o n s i n n a t u r a l waters. Geochim. Cosmochim. A c t a . , V o l . 41, pp. 3Z5-344. R i c k a r d , D.T., 1970. pp. 269-293.  The o r i g i n o f framboids.  L i t h o s , V o l . 3,  ( Ramanov, V.V., 1961. Hydrophysics o f bogs. P u b l i s h e d by I s r a e l Program f o r S c i e n t i f i c T r a n s l a t i o n s , 299 p. j  the  Royal S c h o o l o f Mines Geochemical P r o s p e c t i n g Research C e n t r e . , 1962. D e t e r m i n a t i o n of s u l p h a t e i n n a t u r a l water. Techn i c a l Communication No. 27, 2 p. Royal School o f Mines Geochemical P r o s p e c t i n g Research C e n t r e . , 1962. D e t e r m i n a t i o n of o r g a n i c carbon i n s o i l and s e d i ment samples. T e c h n i c a l Communication No. 32, 2 p.  193 Salmi'-,, M. , 1967. Peat i n p r o s p e c t i n g : A p p l i c a t i o n s i n F i n land. Tri: Geochemical p r o s p e c t i n g i n Fennoscandia, (Kvalheim, A., E d . ) , pp. 113-125. S c h n i t z e r , M. and Khan, S.U., 1972. Humic substances i n the environment. M a r c e l Dekker I n c . , New York, 320 p. S c h n i t z e r , M. and Hansen, E.H., 1970. Organo-metallic i n t e r a c t i o n s i n s o i l s 8: An e v a l u a t i o n o f methods f o r the determination o f s t a b i l i t y constants of metal-fulvate a c i d complexes. S o i l .Sci., V o l . 109, pp. 333-349. S c h n i t z e r , M. and S k i n n e r , S.I.M., .1966. Organo-metal i n t e r a c t i o n s i n s o i l s 5: S t a b i l i t y c o n s t a n t s o f Cu" *", Fe"* ", and Zn" *" f u l v i c a c i d complexes. Soil S c i . , V o l . 102, pp. 361-365. 1-  -1  1-  S c h n i t z e r , M. and Skinner, S.I.M., 1967. Organo-metal i n t e r a c t i o n s i n s o i l s 7: S t a b i l i t y c o n s t a n t s o f Pb" ", Ni" **, M n , Co"**", Ca , and Mg" " f u l v i c a c i d complexes. Soil Sci., V o l . 103, pp. 247-252. 1-1  ++  -  1-  1-1  S i n c l a i r , A . J . , 1976. A p p l i c a t i o n o f p r o b a b i l i t y graphs i n mineral exploration. A s s o c i a t i o n o f E x p l o r a t i o n Geochemists, S p e c i a l V o l . 4, 95 p. S p e r l i n g , J.H., 1965. Studies on the r e l a t i o n s h i p between water movement and water c h e m i s t r y i n m i r e s . Can. J o u r . Botany, V o l . 44, pp 747-758. S t a n t o n , R.E., 1966. Rapid methods o f t r a c e metal a n a l y s i s . Edward A r n o l d L t d . , London, 96 p. Stevenson, F . J . and B u t l e r , J.H.A., 1969. Chemistry o f humic a c i d s and r e l a t e d pigments. I n : Organic Geochemistry, ( E g l i n t o n , G. and Murphy, M.T.J. , E d s . ) , pp. 534-556. Stumm, W. and Morgan, J . J . , 1970. Aquatic chemistry. I n t e r s c i e n c e , New York, 583 p.  Wiley  Sweeney, R.E. and Kaplan, I.R., 1973. P y r i t e framboids forma t i o n : L a b o r a t o r y symthesis and marine sediments. Econ. G e o l . , V o l . 68, pp. 618-634. T a b a t a b a i , M.A. and Bremner, J.M. 1970. An a l k a l i n e o x i d a t i o n method f o r d e t e r m i n a t i o n o f t o t a l s u l p h u r i n s o i l s . S o i l S c i . Soc. Am. P r o c , V o l . 34, pp. 62-65. Tarakanova, E . I . , 1971. D i s t r i b u t i o n o f a c c e s s o r y elements i n modern peat bogs. U.S.S.R. Academy o f S c i e n c e s , T r a n s a c t i o n s o f the I n s t i t u t e o f Geology and Geochemistry, No. 90, pp. 55-63. T a r n o c a i , C , 1970.  C l a s s i f i c a t i o n o f peat landforms. i n Mani-  194  toba. Canadian. Dept. o f A g r i c u l t u r e Research. S t a t i o n , Pedo l o g y - U n i t , Winnipeg, Man., 45 p. T h o r s t e n s o n , D . C , 1970. E q u i l i b r i u m d i s t r i b u t i o n of small o r g a n i c molecules- i n n a t u r a l waters. Geochim. Cosmochim. A c t a . , V o l . 34, pp. 745-7.70. T i m p e r l y , M.H. and A l l a n , R.J., 1974. The f o r m a t i o n and d e t e c t i o n o f metal d i s p e r s i o n h a l o e s i n o r g a n i c l a k e sediments. J o u r . Geoch. E x p l . , V o l . 3, No. 2, pp. 167-190. Turner, R.G., 1969. Heavy m e t a l t o l e r a n c e i n p l a n t s . In: E c o l o g i c a l aspects o f the m i n e r a l n u t r i t i o n o f p l a n t s . B r i t . E c o l . Soc. Symp. No. 9. B l a c k w e l l S c i e n t i f i c Publ i c a t i o n s , Oxford, pp. 399-410. U s i l k , L., 1968. Comparison o f geochemical and g e o b o t a n i c a l p r o s p e c t i n g methods i n p e a t l a n d s . Geol. Surv. Can. Paper 68-66. Vallentyne-, J.R. , 1962. A c h e m i c a l study o f p y r i t e s p h e r u l e s i s o l a t e d from sediments o f L i t t l e Round Lake, O n t a r i o . In: B i o c h e m i s t r y o f s u l p h u r i s o t o p e s , (Jensen, M.L., E d . ) , N a t i o n a l Science Symposium, pp. 144-152. Van D i j k , H. , 1971. C o l l o i d a l chemical p r o p e r t i e s o f humic matter. I n : S o i l B i o c h e m i s t r y (McLaren, A.D. and S k u j i n s , J . , E d s . ) , V o l . 2, pp. 16-35. Walsh, T. and Barry, T.A., 1958. The chemical composition o f some I r i s h peats. Proceedings o f the Royal I r i s h Academy, V o l . 59, Sect. B, No. 15, pp. 308-325. Waksman, S.A. and Stevens, K.R., 1929. C o n t r i b u t i o n to the c h e m i c a l composition o f peat:V. The r o l e o f microorganisms i n peat f o r m a t i o n and decomposition. Soil Sci., V o l . 4, pp. 315-325.  A P P E N D I X A:  >  >  A N A L Y T I C A L R E S U L T S TOR S U I L PPM CO NUK BEa 122.5 . . 73-RL- J.S_ 19 125. 1 30.1 20 137.6 3 53. 5 22 2a 79.7 29 35. 0 30 33. 2 41 .1 31 ~ i 39.0 33 33.0 34 7.9 35 12.3 38.4 36 37 26 .6 3o.4 38 32 .4 40 41 27.4 26.7 42 34. a 43 44 '26. a 45 29 . 5 46 25.1 47 30.9 30.8 48 49 30. 2 31.4 50 5 1 17.3 52 52." 51.7 53 54 27.2 25.3 55 56 27.0 34. 3 57 58 23.6 59 27.3 50 26. 5 61 29.4 36 18.2 89 26. 4 23.6 90 25.5 9I 92 17.5 93 29.2 94 37.5 95 31.4 22.7 96 30. 4 97 98 21.5 99 26.0 2  1  Results  of soil  and t i l l  AM!) T I L L SAMPLES f, FE PS-M CU 1.1114.. 2... _.„_ 1...26 8 8 803.3 1. 540 2533. t 2. 52f> 1 .243 15 533.8 24423.9 0. 754 941. 8 2.980 388.0 2.970 134.5 3.65 2 4.196 131.3 4 . 14J 202.9 3. 847 240. 7 4 .464 397.4 345.9 3. 856 3.834 261. 3 2.690 46.3 84. 5 3. 523 3. 386 46. 3 41.6 2.728 145.9 3.322 194. S 3 . 730 2.307 51.5 92.7 2.907 2 .404 SCO 1 12*5 3.334 2 .6 i o '. 16 . 6 1521. 7 2. 13V 2173.6 4. 103 2.689 P*'...4 1231.9 3.388 1352.8 3.924 66 . 3 .. - . . 2.622 9 6. 5 2. 822 56.4 2.588 99.3 3.310 105.7 2. 801 133.6 3.353 18 8.6 3. 342 138. 1 3.128 2 . 59o 44. 3 126. 1 3.802 39.7 2.901 75.3 3. 721 65.9 2..195.. 129.6 3.801 5. 566 511.3 239.9 4.334 61.9 2.368 69. 9 3. 747 228.0 3. 159 152.2 2.990 :  sample  analyses.  PPM HH 203.5 ... 236. 9 326. 8 420.7 326.2 393.5 416.2........ 639.2 90'-. .i BOO. 5 755. 0 175. 9 17*.6 . 889.6 454.1 3 09 . 3 303.0 195.5 277.7 276.2 198.5 270. 5 195.5 3 56.3 17.3.3..... 366.3 621 . 1 2 19.7 52 7.1 583. 8 195.8 220.9 196.4 34 6.3 200.9 298.6 2.8S.. 7.. 3 50.3 572.5 366.7 5 35.9 36o.4 .135.3 472.2 320.7 431.1 449.5 521.2 609.9 325.6  PPM MI 131.8...... 76.1 77.4 15 2. 1 18.9 58.2 126.3, 110.5 111.7 77.5 8.2 3.0 77. 3 78.0 63. 7 50.3 51.4 22.4 .3.0. 7 33. 3 28. 5 43.8 44.2 54. o 59.0 86.9 8 8.4 40. 6 67.5 77.9 3.8. 0 44.5 32. 2 5o.9 44. 7 53.9 52.8 55.9 37.6 52.5 42. 7 52.4 2 8.8 60.4 84.4 59.5 47.9 81.1 57.6 5 5.8  PPM ZN 3! CARBON 24,40 50..1 .„.. 0.0 3 36-.0 249.3 9.53 .,54.9 19.23 454.3 27.85 £64.1 0.75 57. 1 0. 29 64.4 O.IS 65.6 0.16 0.2 1 89.0 0.26 i 65. 5 77.9 0. 13 66.6 0.16 133.5 0.16 i67. 4 1.53 80.9 0.6 2 J56.7 1.00 88. 6 1.53 l87.8 .,1.51 , £05. 8 0.74 238.8 1.30 246. 2 0.26 ^59.C 1.51 80.2 0. 38 3 19.2...... . 1.24 W97.9 1.17 3 2 3.8 0.48 1.14 L 4 5 . 0 75.3 2.43 7 8.7 2.34 49. 3 2, 46 57.0 :.72 2.41 51.3 61.0 0.48 76.0 1.65 76. 8 0. 86 ..67. 8 1.65, 68. 3 0.66 :>92. 4 2.08 0.61 i41.7 £07.1 • 1.17 83.9 0.38 1.14 65.2 62. 3 0.73 396.6 2.6 5 75.9 0.9 0 1. 14 62.6 60.9 1.29 i71.0 3.35 76.0 1.00  PH 5.10 4. 80 4.80 4.8C 4.20 7 •0D 5.10 _.. 6.50 6.00 6.40 7.30 5.70 5.80 6.10 5.20 5.20 5.10 5.00 5 .00 5.30 5.70 5.70 5.30 5.40 5..00 5.90 6.00 t>. 2 0 5.70 5.30 5.20 5.30 4.8C 5.20 5.20 5.20 5.10 5.30 5.60 6.90 6.00 5.60 5.20 , . _ 5.50 5.70 5.70 5.60 5.70 5.60 5.50  PPM MO 55.5 28.9 11.4 13.7 11.4 26.6 0.0. 0.0 0.0 0.0 6.1 13.7 9.1 ... 0.0 0.0 n.n 0.0 1.5 ... 0.0 . 1.5 0.0 1 .5 0.0 1.5 5.5 17.7 16.7 U.f,  1.5 2.4 0.0 0.0 0.0 n.n 1.5 n.n  0.0  0.0 1.0  I  1.0 .n 0.0 1.0 1.0 2.0 i .n 1.0 1.0 9.2 6.1  196  o — o cj o  x  m  vO : M  oj O  n  ^  r> o \ v q  o  so o  o o o l • * ro ^  o c o o o rn fNJ Cr fM r\t  cJ  :  d  j o:  1  *M  m  . - Jst  A J LA A I  O  rsj  of  -ui  LA  in  O  O  <~* M O  :  cv) -A, m m irJin m -ti  N i n o o n in  - J - LA  —• —i  O  O  <r <r o cn <i  o  >jo o o' o o  O K  CT» O OJ "  IA l A : s t l A l A l  o  ird f\j - j st -t — - j - >t  U LA  Lf\  rix O  <t  C>  -st!  Ol  r-  O;  1  LA  st NTJ st  fO OD O  ^ m  1  r-  O  O  O  C o  o  o  m  o  o  o  c o  o  o  V T O C O C O m  n  LA IA; CO l A -t  -tj -t  oj co  Hc ml L so  -a!  •J-  m  r-i o  ^:  (NJ  r4 ^  - j - vH ^  i)i r- m irJ  a» m rn; to o  i *?  • n  -t q a*rt.rg co r— ol o  M  o  c o x ; rt J, L A rA  st  ^t  ^  (NJ  o o  LA •  d ; rsi c  j f-  O  ^O  -J" 'O: - * ' 3  •j  m o  LA  M : 0  -l M!  r\i r-  «i rt O CT- c d  o  -t  C7> -tH s t  O  co a>; o -o  "A  .o:  O  ffl  o  x  CL  -fr r s i ( A  o U- A l  «j  . r— -j; ,n u> rA so in  i r J >:  rt! (A  a> :  rt  jo  in co . • •  m  o ^ o i r-  rsj (\|  rsj  ^  % t s^-  o  s t CM ,-A (M CA| r*»  rt  :  CM cA: A i  st .J rn  m  rsj; rA rA rni  <i  O  —» r \ i A I  A  -A st' r -  ."NJ  » O  st!  o o o o co co  a  rsj rsj rsjj rsj L A rsj o  z  l_ _j _J  sO' CO vO  •fl  (M  -o| A  a* -N;  c^s  r-  o in sj • ' / » L I co rt m ro r- o o  f  rt  h- a  A  m  -t rA XI. CO A l O J - t ,A  st  rn.  in  -XJ  m| m  r*  rt  'Ai  O  r- o  a:  in  ,A m  rsji r- so u \ -j a - m l —< -o r ? sj0 m IA rt r J  i5  sOi r-  -t  AJ  Oj O O  <  r-  r~  (\i  --4<.  h - r~: r - r -  o q -  o  m  i M i n o r— O (ft fA OJ U  o  |~- CSJrt,o  st  m  o ol  as  r  o oj  J? G  X  -ti  r-  N  (M D  r-j  M  O  H  oo; o o q m  m  O  coo  O  r-O  ooo cO O  r  N '  qooQooali  m mf  O  cjs r A fA  rt u-d .  LA  NO  3> -T  O N H O  1  A r A  o !  s t rsj. r*i s t -fr i ) • r g n - A f*~ co o r— rt cortsO s t -0 -Ol X sC - t st  i <t^ CM  J c  m  cJ sflI - CM  m  r*i; - t  ni  O >0 H H f - O r - i t N l f J i n r - ^ t • • • * sO O -sr rt x r - r - O .J- N rsj X ro| O st -t O rt 4- os Lf^ O O rt sQ in in in L A fA J > O O 'XV s t ^  N  -o - O CM CM r A r: sO rsj co, O r A sO I CO CO; >t in LA st  CM  r\j L A C A CA: *t  rn m fA  IM  f - i rA vn ,-sJ • O O OJ •  o  o  CM s t  m •  fA s t ; rA rA .-rJ (  —* Oj CM rt .  ^  m  rn^  *t ,-sJ  *••!.. J .«.';• .  a> x CM f> O r~ -T NT '%J rvj rsj  N  r-  O  JO rt rt; i A rA r M X  J-4 s t s t i rt , A J>| rsi fA . . .j . . W rt A / -O; as m in) a> r - ^ CO,rtro - MO \ 0 : -st CO -OJ st -t .-<: A  rA;  i O O O O O Ol o P-I in N' «i -o in  o; o o o o o o i o o  o  o o o cr< o ui  co rt  * • • * r—; O A rt| rsj co  o  c  O  .-A no mi o A J r\J r— so r**l «o CM r—  fA O j vTs (\J rA CO P'l -O' N  PA CNJ CM f s J  UJ _j Ci.  in  rt  • o sf, .n r ~ J r inrta rt -'r*  •O i A rsj O lAJ sO st CMi •—I «—4 LAJ st j rsj rt <JCT" CA sO; m fA 0 ' o t f v C H q st O trvrtrtr-.  j r- o  o•  ."NJrtr- -<  c  srl *  O* U Y J r t rt A I :  * ; • • • • ) O rt ed m m -O: -o o J-^ -4- rt  m so  O  CO|  H  Z  r-  m  O ^ O  vtj  r-- r-~ oj r n  Ji  rt  mirtr- ^ r  s t m - t ' -artro O ' r - r t s t o oj ro m L A s f co rn -o r- — m o> H cc o| o- M N rt rsj rt rtj rt rt rt rt: f A Psl Psj f A  cr: rsj rt r- c:-i : n o r-{ s t a * rsj -o . rn - t ! i rsj ;  i/i c£  O  a. tA  C  h_)  i_  U Ci. LJ I X  0^1 rt sC  X  I  •A sfj . t | -0 r~  \r\  J  -  •J r- m  rtj  sO  r-J O >-n ml O O  st A J  m  Tsl rvj <t QJ\ N  —i st >H-  _j  <  rr. Ui  rt m 1—  >- z.  < <  O  ul  o r~- r-  fM I A ; A CM .NJ rnj r rt fTi to , A t-\ .  O  Jm  o  r - OD O rA rA rA f  — fM f A •f sT  -if  « t : sA sO M ; s*: , t -i" v H .  3  y  AfJAL YT IC AL NU'iGER 73_RL-15_l_ 152 153 15'. 1 55 74-RL- 1017 1013 T0'19~ 1020 1021  R E S U L T S FOR ? PM CO 31.6 '"' 3 3 ."4 4  5.4  3 3.2 3 5 . 2  14.7 18 .3 "1 5 " . < T 17.7 j;^_.7_ 2 2 .0 B.6 0.0 T 3 ' 7 5 ~  102 3 1029 1 030_ 1031 10 32 _1_054_ 1055 1 0 56 10 57 "1033" 10 59 i 060 10 61 1062 1063 1064" 10 65 106 7 106 3 10 69 1070 "1071'" 1072 1073 i 074 1075 _10 76_ 10 77 1.0 78 1079 10 30 1081 1032 1 03)  8•9 14.0 2 5.5 19. ! _2 9. 8 35.7"' 32.8 69.8 414.3 8 1.2 15 2.0 "27 0 " . T " 2 .5 6 . 0 7 5.6 2 83 . S 33 6. 5 _ 4 8 2.2 1 7 0 ."0 1 77 7.0 32.1 1 8.4 IB. 2 21.5 0.0 2 6.3 2 2.5 18.9 360.1" 7 0.6_ 1 7/2 ' 69.3 27.3 3 4.5 4 3.2 2 .? ' 11 . 6'  S O I L AND  T I L L SAMPLFS PPM CU % FE 376.8 3.951 369.6 4.137 2662.4 4.072 37C.5 3.775 63 7. 9 3.291 223.7 2 .569 66.6 3.376 2.716 1 3 8.9' 3.303 216. 5 3.'.29 2053.8 2.876 60 3. 4 0.52 5 3194.7 1.659 2 30 7.3 "1.843" "4 15.3 1 .604 2307.3 1 .567 1405.7 2434.7 3.5 76 930.0 3.134 2200.8 3.134 8 >4 l . u " 3 . "'• "2 9 3230.2 4.350 5 63 4. 4 0.344 0 540 6.9 95 7780.9 1 .999 24594.7 1 .560 "1434 6.3" 2.FO 5 1 6456. 1 2.877 5 79 5.4 3.99b 5545. 0 0.902 18334.3 1 .048 22806.0 1 .487 12 34 2. i •1 .8/8 7.392 352 8. 0 3. 173 384. 1 2164.8 1.262 30 3. 8 3.065 2 30. 4 3.101 0.5 59 "5 58 6. "5 0.523 4139.9 2.091 439.9 6234.8 1.127 9165. 3 2.055 3.353 J ^"0.469 "5 761. 0 0.833 9950.9 642. 4 2.632 584 3. 3 1.352 10038.2 0.721 708.8 3.101 0.667 7 24 5.0 lb  7  PPM KN 760. 9 731. a 819. C 686. 5 554 . 219. 389. 2 2' . 366. 424 . 2 93 . ? 5.: . 4 65 . 8 1 80 . 5 150.4 159.2 477. 424. 3.'. 383 . 1317 . 28 72. 178 , 395. 404. 508 . 361. 527 . 4 52 . 7 64. C 49. C 20 735. 6 358.7 93 .4 306.4 306.4 "a 4. 1 34. 1 224.2 112.1 242. S 343. 7 93.4 6 5.4 2 33 . 9 112. 1 74. 7 291 . 4 93.4  PPI». NI 100.6 73.7 81.6 93. 7 63.0 45. 1 58.9 44.2 54. 1 93.6 69.4 10.4 9.5 46 . 3 21.7 22.4 83. 3 73.0 53. 7 75. 2 69.2 50.9 75. 5 57.0 159.0 197. 1 3 35.9 1 32.0 35 . 4 177.3 215. 1 93.3 17.0 67. 4 21.2 56.9 62. 4 17.1 73.4 58.6 25. 5 92.7 91.9 23.0 62. 7 72. 1 45 . 3 57.6 87.5 24.8  PPM ZN' % 212,q 13 6. 5 162.7 97. 0 110. 4 57. 8 51.4 61.0" 55.9 118.8 65.7 14. 1 20. 2 47.3 28. 2 35. 5 180. 6 8 5. 4 114.2 164. 1 136. 6 63.0 277.3 135. 8 4687.5 Till. 1 34 72.2 9 51.4 177. 1 1614.6 1180.6 536. 5 " 21.8 99.0 50. 9 71.1 80. 1 18.6 214. 3 150. 5 23. 7 223.0 294. 1 31.5 26 4. 8 135. 9 92.3 155. 1 182. 6 46. 5  CAR SON 0 .01 0.09 0 .20 0.16 0.13 0 .0 0.39 "i.30" 0.03 2.41 0 .29 23 .60 18.63 '""1.4 A" 15.68 5.07 2.95 0.57 3.35 11.64 2.15 31.38 17.38 2 0 . 13 28 .33 28.09 27 .94 7.68 17 .46 19.60 21 .81 21 . 2 8 " 28 .56 11 .00 7.92 0.95 0.59 18.8 5'"' 25 .61 2.80 20.96 27 .94 3 .59 ""18.47" 24 .99 1.72 16 . 22 43 .03 2.43 23.05  _PH 6.2C 7.00 5.90 6.70 5.70 5.20 4.80 5.10 5 .20 4. 90 5.20 4.00 3.90 3.9 0 4.60 4.50 5.90 5.80 5.60 5.60 5.70 4.90 4.80 4.80 7.00 4.6 0 4.60 4.70 4.7C 4.60 4.30 "4.60 4.60 4.70 4.70 4.7C 4.60 4.30 4.60 4.40 4.30 4.50 4.10 4.50 4.30 4.80  PPM MO 0.0 6.3 3.9 3,0-  4.50 4.60 4.50 4.50  0.0 23.1 2.1 5.2  4.0 1.8 1.8. 2.9 5.4 0.0 0.0 0.0 0.0 7.6 -0,010.6 4.6 10.6 14.2 12.1 0.06.2 0.0 -.•4.92.1 6.7 —2,40.6 9.7 - 3.93.9 60.8 51.2 3.4 0.0 0.0 15.7 —-3.410.5 29.4 14.7 10.5 18.9 6.3  4 ANALYTICAL  v ?  N.H8ER 74_RI._ 1 084 1085 1 oat 1087 lOnb 1089 1090 1 091 1092 1 C 93 1 094 1095 1 096 109 7 1098 i 099 1100 1101 1 102 1103 1 104 1105 1 lCfc 1 107 1108 1 110 1111 1112 1113 1114 1115 1116 1117 1113 1119 1120 1121 1122 1123 1124 1125 1126 1127 1123 1129 1 1 30 1131 1132 1133 1 134  R E S U L T S FOR PPN rn 67.0 1C6.6 30.3 19.7 171.8 74. 1 35. 1 10. 4 271.0 152.9 I 64. 4 122,5 2 67 . 2 49.4 31.7 76.4 1 14. 8 266. 3 240. 7 267. 2 95. 2 34. 7 30. 6 49. 7 27. 2 23. 5 67. 8 23. 7 33.6 25. 5 17. 2 69. 1 112.3 118.0 28 . o 398. 3 17.2 12.4 11.6 13.9 15. 1 23. 6 18.3 7.6 CO 12.4 14.9 23. 1 41 . 1 6.4  SOIL  AND  T I L L SAMPLES op v. r n * FE ' 9252.6 . 1 ..2.1.7,... 3.038 3928.0 230.4 3. 606 8164.2 1 .206 14196.6 1. 522 3333.6 2. 64 5 3. 898 276.9 4.03 7 2174.2 0.125 8607.9 0. 724 17038.3 0. 43o 23072.7 17748.2 0.432 13754.9 0. 947 692. 2 3. 63 3 1.318 9761.5 7986.7 0. 835 0 . **64 16860.8 0.536 17925.7 0.191 15086.0 5750.4• 1.856 3194.7 4.455 3 . 564 575.0 3.248 3 594.0 2.784 7720.5 1.820 3959.3 2. 558 4610.2 3. 605 5152.5 2. 335 4013.6 2.953 2320.3 3.845 1355.9 1.021 943. 7 16673.0 0.670 2.249 12881.4 3.949 23864.4 7159.3 0. 645 4718.6 0. 251 5016.9 0. 532 5857.6 0.378 3362.7 1 . 133 0.618 9003.4 5694.9 0.625 0.474 4772.9 7484.7 0.405 0.755 4 000.0 0. 326 5423.7 0. 842 1773.6 1.369 2331.0 1.635 4155.2 1.962 • 4 76 3.3 1.093 4307.2  PPM MN 112-1 242.8 418.4 37.3 166.0 410.7 392. 1 56.0 149.4 242.7 270.7 5 3 2 . '. 634. 8 380.9 261 .4 158.7 140.0 149.4 457.4 429.4 326.6 373.4 326.7 242. 7 248. 3 650.2 197.0 208.9 232 .5 551.7 2.44.3 6 9.0 216.7 246 . 3 90.6 2206.9 69.0 47.3 118.2 63 .1 51.2 31.5 31.5 14.8 9.9 63.7 6 7.6 71.6 119.4 6V. 7  PPM NI 91.4 125.9 84.4 24. 1 113.4 100. 1 77.6 19.2 72.6 97.8 125. 1 139. 3 162. 1 75.4 3 8.9 6 0. 9 65. J 39.5 61.6 127.6 72.9 75.6 52.8 58. 1 56.2 57.6 65.5 51.3 54.6 59. 7 5o..5 33.1 70.6 76. 5 27.8 50.6 22.4 17.5 23.9 37. 1 26.1 2 7.6 27.2 10.2 13.4 24.5 29.7 4 6.9 63. 1 17.7  PPM IN J97.2 J04.9 117.1 32.6 362.4 £35.6 1 13.3 28.0 t83. 4 321.3 37t. 6 335.4 u50.7 X00.2 37.6 71.2 83.7 1 18.6 60.6 196.4 110.9 85.7 .36.7 j.74.6 .154.4. i41.3 44.6 135.7 .65.4 192.9 156.4 89.6 i82.6 246.3 73.0 120.6 55.1 117.1 82.7 67.5 63.4 74.4 58.6 14.8 31.0 66. 1 59.8 i61.7 142.0 32.7 t  *  CARBON 29.6 5 16.30 0.74 34. 1 1 41.44 21.87 0.98 13.65 16.73 23.13 31.96 39.40 42.60 1.26 26.52 34.8 8 44.02 38.61 42.CC 30. 89 3.95 1.65 25. 10 15.57 0.0 18.28 22.91 5.56 6. 29 7.4 1 5. 5 6 22.32 10.94 16.73 10.94 4.89 16. 22 10.00 8.29 9. 58 10.04 13.05 10.45 36. 69 31.92 6.96 7.88 9.19 5.55 3 3.49  .  PH P P M MO 18.8... 4.30 4.50 18.9 5 .00 4.2 22.5 4.70 4.30 19.8 7.2 4.90 5.90 _ 3.6 5.30 0.0 4.30 16.2 4. 30 n.n 4.10 7.2 4.00 19.8 4.50 73.7 4 .40 1.8 5.00 10.8 31 .5 4.60 4.60 25.2 4.40 18.0 16.2 4.80 4.70 34.2 3.70 42.4 ??.S 5.10 5.00 40.5 4.30 34.2 0.0 _. . .,9.9 5.40 23.1 4.40 45.5 13.9 4. 30 4.50 16.5 5.50 19.2 ' 5, 70... ._ _ 12.6 .4.50 18.2 7.00 24.8 12.4 4.70 5.00 7.2 4.90 29.1 5.00 26.5 4.60 ' 24.8 4.80 9.3 4.70 91. R 4,30 16.5 4. 80 19.8 4.90 13.9 4.20 18.2 4.70 18.2 4.30 •i.fl 4.30 9.3 4.80 18.2 5.00... ... 13.9 16.6 4.20  ...  __  .-  _. -  — .  --  ANALYTICAL NUMBER 113 6 1 166 ! 16 7 1 168 I 169 1170 II T i l l 72 1 1 73 1 17'. 1 175 1 I 76 Ti'7 7" 1178 1 179 i 180 US 1 1 182 "113 3" I 18'. 1135 1136 1187 _U33_ U39 11 90 1191 1192 I 193 1 194 1 19 5 1196 1197 I 198 1199 1200_ "1201 1202  R E S U L T S FOR PPM CP _ 9. 9 23.4""  17.9 2 3.'! 3 1.5 47.4  "57V4"" 13 0.6 23.8 25.4 31.7 37.3 4 IV9 3 2.1 3 5 .0  <-0 . 5 2 3.1 19.0 "4 ?.5 " 23.3 2 1.3 21.2 23.3 28.6_ "2176 ' 30.6 2 8.2 55.3 27.2 _23_. 1 3 0.T 30.0 22.1 26. 1 19.7 2 1^2 "24. 3 25.0  SOIL  AMD  T I L L SA MPLES PPM CU 162 1.5 1824.2 211.2 311.2 3.642 165. 6 3.680 140. 5 3.332 502. 0 4.06 8 562.2 3.680 I 129.4 4.06 3 165.6 4.145 44 1. 7 3.603 140. 5 4.094 1607.5 " 3 . 7 76 '" 160. 8" 4.094 477.2 4.452 7 1 3. 3 4.651 123 I.0 3.697 1356.4 3.180 241 1.3 4.05 6 1156.4 3.776 221.0 3.180 13 5.6 3.180 24 1.1 3.776 73 3.4 4.253 130.6 '3 .9 '5 1 US5.2 3.816 130.6 3.657 1205. 7 4.850 6123.7 4.452 612.9 4.293_ _ 16 0.8 4.5)2 " 12 0.6 4.452 110. 5 .269 105.8 .678 126. 1 , 188 110.2 .842 U2.2 342 158.9" .2 09 120.7  I  PPM MN 55 . 7 199. 0 413. i 609.2 650. 5 541. 5 511.4 714 . 5 1316.1 534. 0 '.40 . 0 902. 5 469 . 1 332 .5 707 .6 4 29 .3 485. 0 298 . I 246. 5 735. 4 548 . 6 270. 3 2 70 . 3 699 . 6 644 . 0 3'.9 . 8 667. 8 314. 0 397. 5 524. 7 604. 2 663 ." 9 644 . 0 287 .3 573 .4 233 . 6 544 . 8 582. 2 541.1  PPM Ni 19.2 55. I 41.0 59.0 72.7 101.9 62.7 73.1 63.9 74. 3 75.2 90.3 81.8 "102.0 107.2 97.4 95. 9 61. 1 57.2 71.9 57.2 44. 6 49.6 60.2 72.1 53.4 88.5 61.7 23. 6 63.0 70.6 76.5 85. 1 53.0 63.2 49.0 59. 8 74.7 65.6  PPM ZN 36.6 84 . 4 86.8 119.0 72. I 110. 6 70.0 87.5 81. 9 37.5 80. 5 73. 5 96.2 '89.3 96. 2 106. 5 140. 9 94 . 2 70. I 143.6" 77.7 50.9 63. 2 164.9 71. 5 152. 6 63.2 137. 5 116. 8 85. 9 70. 1 68. ! 63. 2 54. 7 63.0 55.3 73. 3  72.6 84. 0  .AR BUN 8.81 "2.73 0.10 0.10 0 .27 0.10 0 . 10 0.10 0. 10 0 .10 0.10 0. 10 0 .10 "0.2 4 0.10 0 .24 0.10 0 .20 0.61  "6.20 0 .47 0. !U 0.59 0.43 0 . 10_ "6 . 30 0 .10 1 . 18 0.10 0.10 0 . 10  6. io  0.10 0 .53 0 . 10 0 . 10 0 . 10  o.'io" 0.10  PH 4.40 " 5.00 00 30 70 30 20 00 20 7.00 4.60 7.3 0 5.30 7.40 7.30 6.10 5.70 5 .90 5 .00 '6.00 7.40 5.90 5.00 6. 30 7.40. 6.60 60 80 30 00 50 50 70 60 7.50 4.90 7.30 7.5 0 7.40  PPM MO 4.0 5.0 7.5 0.0 2.7 5.1 3.4 0.0 4.1 0.0 0.0 0.0 3.3 " 5.0 0.0 2.7 0.0 3.3 15.9 2.7 4.0 6.0 7.3 33.9 4.0 31.5 0.0 27.2 106.2 7.3 3.3 2.7 0.0 2.6 0.0 0.0 3.3 3.3 3.9 VO  ii 8 R E S U L T S FOR D I S S U L V E U ME TA L. ORGANIC CARBCM, SULPHATE CONTENTS- AND PH IN BOG WATER SAMPLES PPMS04 PPM CA PP."* ZN PH PPM MN PPM F E PPM CU PPMCARBUN 0.0 27.000 7.000 0.02 8 0. 0 0. t 53 1. 500 0.0 . o.O 6. 000 5.500 0.0 0.020 0 .0 1203 O.T?75 ' " 2 . 0 0 0 6. 000 5.800 0.0 0.0 0.0 I 1 0.0 0.042 3.00 0 1209 5.000 0.0 14 0.0 5.500 0. 0 0 .0 3.000 0.021 1210 23.000 6. 000 5.500 0. 0 0 .061 0.0 0.0 0.042 1211 5.800 0.0 0.041 5.000 . i 9 . 000 0.0 ! 212 0.0 8. 000 5.300 0.0 0.0 0.0 0.117 0 .0 1213 0 . 500 6.000 8. 000 i 2;'5 ' " o.o "o.o o.o 0.0 0. 271 1. 50 0 5.800 37.000 24.000 0.0 0.0 0.0 0.0 1223 0. 0 22.000 6.500 40.000 0.0 ;.o 0.0 0.0 0.2 29 1224 9.000 6 .400 0.0 0.0 o.o 0.062 1 .00 0 0.092 1225 6. 000 0.0 0.0 0.074 0. 0 0.0 0.047 1 .000 > 226 14.000 0.0 5.600 0.014 0. 062 4.000 0.0 1727 0.466 14. 0 0 0 7.300 0.041 0.0 " V. •> 01 2.000 " ""0.0 2 3 o. o " 1223 0. 0 0.009 0.0 0.0 0. 0 0.117 3.50 0 0.0 1229 2 4.000 0.0 0.0 0.020 0.0 6.800 0 .0 12 30 0.250 20.000 119.000 7.200 0.0 0.0 0.0 0.021 1 .000 1231 120.000 125.000 0.054 6.300 0.0 0 .0 0. 50 0 0.0 1232 34. 000 0.0 0.0 0.0 2.500 0 .0 0.0 1 I 1233 0 . 133 0.0 27.000 6 .800 0.0 0.0 "••.. :-')0 0 .0 6 2 0.033"" 1234" '" 0.0 42.000 0.006 7.000 0.041 0 .0 2.000 C . 1 17 12 7 5 3 5. 00 0 22. 000 0.006 7.000 0.0 0.0 0.0/ 5 3.000 12 7 58.000 6.000 37.000 0.006 0. 0 3.000 12 79 0.050 0.0 40.000 0. 0 0.0 n.80 0 I 0.0 0. 0 0.0 1230 0.02! 21. 000 7.000 0.0 0.0 o .o 0. 042 3.000 0.0 1 2 32 7.500 6.0" 52.000 " " 0. 0 0.0 123 3 o"; 0" 1 . 5'">U """o.o 27.000 7.00 0 0. 0 0.0 0.0 0.0 3.000 123 5 0.062 7 .000 40.000 2!.000 0.0 0.0 0.0 12B7 0. 1 75 2.000 *8.000 0.0 0.020 5.500 0.092 0. 0 0.146 3.50 0 12 39 16.000 5.800 0.0 0.010 0 .061 0.0 0.125 2.00 0 1290 30.000 0.0 0.0 0.117 2. 5 CO 0. 061 5.00 0 0.0 1 290 0.0 3 4 5.500 0.0 21.000 2.000 0.175 1 292 0 .0 0.0 2.8 "~ 0.0 21. 000 0.034 5 .500 0. 043 0.241 0.0 2.000 1293 16. 000 0.0 5.800 0.031 0.0 0.0 0.153 ! . 500 129'. 28.000 0.054 5.500 0.0 0.0 0.0 0.0 1295 0 . 1 46 56.000 7.000 0.0 0.0 0.0 1.00 0 0.061 0.021 1 31 1 20.000 26.000 7.000 0.0 0.0 0.0 0.0 0.500 1312 6 5.00 0 23.000 "0.0 30 5.000 0.034 0 .0 .1314 0.0 0.653 75.000 23. 000 4.500 0. 043 0.U2 S 0.0 0.699 0.0 1315 23.000 0.03 0 4.000 75.00 0 0.0 0.043 C . 749 0.500 1316 29.000 80.000 0.0 3 7 5.200 0.0 0.0 0. 051 0. 703 1 31 7 18.000 6. 000 6.000 0.025 0.0 2.000 0.0 13! 3 0.062 16.000 4.000 50.000 0.039 o .o 0.034 0.3 9.5 0.500 1320 0.0 0.0 13.000 0. 043 0.02 5 '~ 0.2 76 1321 2.000 0. 233 6.000 5.000 0.0 0.069 0. 104 0.0 0. 0 2.000. 1322 8. 000 5.500 0.0 0.0 2 2 0.023 0. 500 0.0 0. 146 132 3 0.0 7.000 0.020 0. 0 0.146 3.000 0.0 " 4.6 0 0 1324 12.000 0.05 t 5.000 0.0 0.092 0. 0 0.203 2.50 0 1325  ANALYTICAL NUM3ER  '  ._  _ _  ANALYTICAL 1  -1A  1 3 2 3 1 3 2 9 13 3 0  RESULTS  F?e C 1 S S O L V C 0  PDM r,j OOWCAP (j:-)),; 0 . 2 0 0  2 . 0 0 0  0 . 0 2 1  1 . 0 0 0  o.o  :.?4i 0.047  o ^ o  1 4 1 4 141  o.o 0 .  CC  ?  0  2 0 " . 50 0 .-in o  . 0  0 . 0 3 . 1 1 0 0 .  1 •'• 5 9 1 4 4  2 . 0 0 0  2  !  72  0 . 3 ° 9 2 . 3 2 8  "74 4 3  1  61 0  O.Y23  7  1 4 2  -  0 . 0  1 4 1 6 "14  V c T A L , C'GANIC M FF PP". MM 0 . 0 6 ! _ „ 0.0 " " o . o 0.0 CO 0 . 0 CO  pp  "  4 4 4  3 .  5 0 C  6 . 4 4 1 ' 0 . 0 6 1  4 . 0 0 0  1  14 9 3 1 4 9 3  0 . 6 3 ;  ! 4 9 4  0 .  3  1  . 0  9,0)0  0 . 0  7 . 0 0  0  0  75  0 .1 0  1 65 ?57 0.-62 o. 6 0 .  . 0  0 .  C 1 3 5  1495*  0. 204 0.13* C 0 74 0 . 043 C O 51 Oo 099 0.043  2 3  . 0  CO 6'. 1 5 C 3  73-RL-  ! 50  9  ! 5 !  I  5 . "7  5 ~ C  0 .092 C .061 0. 1 23  . ' 5 0 0 "  0. 071 0.062 0. 1 76 CO  CARSON, SULPHATE C 3 N T E N S AND OPV ZN PH PPMS04 C .02.1 7.COO _ 0.0 o . c2 8 6.000 0.0 0.01 5 6.800 0.0 CJ2 CO 0^0 0 .0 10 0.0 0.0 0.01C 0.0 0.0 0 .0 0.0 CO O.C 1 1 7.000 0.0 0.01 5 6.000 4 5 . 000 0.010 7 .500 4C000 0.0? 2 7.003 27.000 O.CiS 6.000 60.000 6 .200 CO ' 62.000 6.000 0.0 62 .000 0.0 C . G 3 S 6 5.00 0 0 .0 0.077 0.0 CO 4.000 27.000 C .01 5 4.500 CO 0 .010 0.0 0.0 5. 800 6.6 5. 8C0 0.0 0 .04 7 0.0 0.049 0.0 CO 4. 800 30.000 0.C1C 0.0 40.000 0.01 0 6.500 3 7.00 0 CO 6 0.0 T  o.o  o.  69  0.189  0.067  0.012  7.2  37.000  72  0.058  0.075  0.006  6.8  20.000  234  0.018  0.006  0.006  7.2  20.000  PH  I N  PPM  BOG  W A T E R  S A M P L E S  CA  19.000.25. 00 C 24.000 _24._C00 84. COC 69.030 60. COO 66.000 25.000 2 5. OOP 11.000 18.000 23. 000 25.000 25. 00 C 2. COO 16.000 0. C .17. COO 19.000 0. C 0.0 28.000 13. COO 20.000 35.CO C  O  202 APPENDIX B B - l ORGANIC CARBON BY WET  OXIDATION  The method used f o r d e t e r m i n a t i o n o f o r g a n i c carbon has been s l i g h t l y m o d i f i e d from that d e s c r i b e d i n the Royal School Mines Geochemical P r o s p e c t i n g Research Center., t e c h n i c a l cornm^ u n i c a t i o n number 32. Schollenberger  T h i s technique, o r i g i n a l l y d e r i v e d by  (1927), i s based on q u a n t i t a t i v e o x i d a t i o n of  carbon to carbon d i o x i d e u s i n g a potassium d i c h r o m a t e - s u l p h u r i c a c i d s o l u t i o n by the f o l l o w i n g 2K Cr 0 2  2  y  + 3C°+' 6 H S 0 2  4  reaction.  = 2Cr (S0 ) 2  4  3  + 3C0  2  + 8H 0  ;  2  D e t a i l s o f the procedure are o u t l i n e d below. 1  Weigh 300 mg of the minus 80 mesh f r a c t i o n o f the sample  i n t o a 250 ml Erlenmeyer f l a s k .  The sample weight used f o r de-  t e r m i n a t i o n s must be decreased to 50 mg  i f o r g a n i c carbon c o n r  t e n t s are g r e a t e r than 407 . o  2  Add 10 ml o f 0.4 N potassium dichromate s o l u t i o n and 10 ml  of c o n c e n t r a t e d s u l p h u r i c a c i d to the f l a s k and mix the c o n t e n t s . 3  Heat the f l a s k over a low flame f o r 25  seconds.  4  Cool the f l a s k and add 100 ml o f 5% sodium f l u o r i d e  solu-  tion. 5  Add three drops o f diphenylamine i n d i c a t o r to the f l a s k .  6  T i t r a t e the contents o f the f l a s k w i t h 0.2 N f e r r o u s  ammonium sulphate and r e c o r d the volume (_ x cc) necessary f o r the c o l o u r to change from blue to green. 7  Carry out a blank t i t r a t i o n f o l l o w i n g steps 2 to 6 and r e -  cord the volume o f f e r r o u s ammonium sulphate ( y cc ) n e c e s s a r y f o r the c o l o u r change. Percent o r g a n i c carbon i s c a l c u l a t e d by the f o l l o w i n g  relation-  203 ship. %C = V o l . K C r 0 2  2  Cl - y_ cc) x n o r m a l i t y K C r 0 v  7  2  2  7  x 0.003 x 100  x cc  sample weight  Organic carbon v a l u e s are m u l t i p l i e d By- a c o r r e c t i o n  fac-  t o r o f 1.3 to compensate f o r the f r a c t i o n o f carbon i n the sample resistant to oxidation  by the potassium dichromate.  Reagents. Diphenylamine i n d i c a t o r : 100  Dissolve  ml o f concentrated s u l p h u r i c  500 mg o f diphenylamine i n  a c i d and c a r e f u l l y add the mix-  ture t o 20 ml o f water. 0.4 N potassium dichromate s o l u t i o n : assium dichromate ( X ^ C r ^ ^ ) , add  Dissolve  19.6147 g pot-  ANALAR grade, i n d i s t i l l e d water,  20 ml c o n c e n t r a t e d s u l p h u r i c  a c i d , and make the s o l u t i o n up  to 1 1. B-2 ORGANIC CARBON BY LECO TOTAL CARBON ANALYSER. Detailed  o p e r a t i n g i n s t r u c t i o n s f o r the Leco A n a l y s e r are  p r o v i d e d i n the instrument manual. the  a n a l y s e r are an i n d u c t i o n  c l a y c r u c i b l e can be loaded.  E s s e n t i a l components of  furnace i n which a s m a l l ,  fire-  The furnace and c r u c i b l e are  attached by a gas t i g h t s e a l t o a system c o n s i s t i n g o f an absorption vessel gas  burette.  containing  potassium hydroxide s o l u t i o n and a  0.25 g o f sample (minus 80 mesh f r a c t i o n ) are  mixed w i t h 2 scoops o f i r o n a c c e l e r a t o r e l e r a t o r i n a clean  crucible.  and 1 scoop o f t i n acc-  Oxygen i s passed through the  system at a flow r a t e o f 1.5 l i t r e s / m i n u t e  and the sample i g -  n i t e d w i t h the c r u c i b l e a t t a c h e d t o the system. The  carbon d i o x i d e  produced i s absorbed i n the potassium  hydroxide s o l u t i o n and the volume decrease measured by- b a l a n c i n g the  two columns o f the gas b u r e t t e .  Percent o r g a n i c carbon i s  204 i n d i c a t e d d i r e c t l y ^ by> graduations, o f the. b u r e t t e based on a one gram sample weight.  Carbon content i n the sample may  c o r r e c t i o n s f o r temperature and p r e s s u r e which, a f f e c t  require carbon  d i o x i d e volume measurements and f o r sample weights s m a l l e r than one gram.  The Leco A n a l y s e r w i l l measure both o r g a n i c carbon  and carbonates p r e s e n t i n the sample.  Since the peat  analysed by t h i s method were from a r e l a t i v e l y - a c i d i t was  samples  environment  assumed that carbonate content was n e g l i g i b l e by compar-  i s o n to o r g a n i c matter content. B-3  SULPHATE IN WATER The method f o r s u l p h a t e i n water i s g i v e n i n Royal School  of Mines Geochemical P r o s p e c t i n g Research Center, T e c h n i c a l Communication  Number 27 and i s based on the r e a c t i o n between  sulphate ions and barium c h l o r i d e which p r e c i p i t a t e s barium phate.  sul-  Sulphate content i s measured by the i n t e n s i t y of the  barium s u l p h a t e t u r b i d i t y .  Stages o f the procedure are shown  below: 1.  P l a c e 20 ml o f f i l t e r e d water i n an 18 x 180 mm  t e s t tube  c a l i b r a t e d at 20 and 25 ml„ 2  Add 5 ml of a c i d - s a l t s o l u t i o n from a polythene wash-bottle  3  Add 250 mg o f barium c h l o r i d e c r y s t a l s  (dihydrate, Analar)  u s i n g a scoop. 4  Shake f o r 30  seconds  5  Compare the t u b i d i t y produced w i t h the standard s e r i e s  a g a i n s t a dark background 6 PPM  (e.g. a matt b l a c k s u r f a c e )  C a l c u l a t e sulphate c o n c e n t r a t i o n from the r e l a t i o n s h i p Sulphate = mg o f matching standard x 50  P r e p a r a t i o n of standards  205 1  To 12 t e s t tubes, 0-3 x 130 ram, c a l i b r a t e d a t 20 and 25 ml)  add r e s p e c t i v e l y - 0, 0,05, 0.1,. 0.2, o',3, 0.4, 0.5, 0,75, 1,0, 1,25, 2  1.5, 2.0 mg o f sulphate. Add 1 ml o f gum a c a c i a s o l u t i o n .  determinations: are made w i t h i n  (This may be omitted i f  s e v e r a l hours o f p r e p a r i n g the  standards,) 3  D i l u t e to 20 ml w i t h water,  4  Add 5 ml o f a c i d - s a l t s o l u t i o n .  5  Add 250 mg o f barium c h l o r i d e c r y s t a l s .  6  Cork the tubes and shake f o r about 30 seconds t o d i s s o l v e  the c r y s t a l s . Reagents Acid-salt solution:  d i s s o l v e 240 g o f sodium c h l o r i d e  ('ANALAR')  i n 900 ml o f water, add 20 ml o f c o n c e n t r a t e d hydrochlori.dic acid  (sp. gr 1.18, 'ANALAR') and d i l u t e to 1 1 w i t h water.  Barium c h l o r i d e :  dihydrate,  Standard sulphate s o l u t i o n :  ''ANALAR  1,  d i s s o l v e 907 mg o f potassium s u l -  phate i n water and d i l u t e to 1 1 to g i v e a s o l u t i o n 0.5 mg o f S 0  2 4  containing  ~ / ml.  B-4 BIQUINOLINE EXTRACTABLE COPPER IN WATER The procedure f o r b i q u i n o l i n e  extractable  copper i n water,  based on the method f o r copper i n s o i l s and sediments by Stanton (1966), i s o u t l i n e d  described  below.  1  C a l i b r a t e 18 x 180 mm t e s t tubes a t 20 ml volume.  2  Add 1 ml o f b u f f e r s o l u t i o n to 20 ml f i l t e r e d water  sample  i n the t e s t tube. 3  Add 1 ml o f 2-2 b i q u i n o l i n e  to each tube.  4  Stopper each tube w i t h a PVC bung and shake f o r 30 seconds,  Z06  5  Compare t h e c o l o u r developed w i t h a standard s.eries .  Preparation  o f standards  ;  (0 to 100 ppb copper)  To e i g h t c a l i b r a t e d tubes add the f o l l o w i n g volumes o f 1 ppm copper standard No. ml 1 ppm standard 0 Copper i n ppb  0.1  0  5  0.2  0.4  0.8  1.2  1.6  2.0  10  20  40  60  80  100  Make up the volume to 20 ml w i t h d i s t i l l e d water and repeat stages 1 through 4. Reagents Buffer 100  solution:  d i s s o l v e 200 g o f sodium acetate  g potassium sodium t a r t r a t e ( t e t r a - h y d r a t e )  (tri-hydrate) ,  and 20 g o f  a s c o r b i c a c i d ( a l l 'ANALAR' grade) i n d i s t i l l e d water and d i l u t e to 1 1.  E x t r a c t w i t h 0.01% d i t h i z o n e  s o l u t i o n u n t i l the b u f f e r  s o l u t i o n i s f r e e o f copper and then remove the excess by e x t r a c t i o n w i t h carbon t e t r a c h l o r i d e .  dithizone  The b u f f e r s o l u t i o n  should be at pH 6,0 - 0.15. 0.01% 400  dithizone  solution:  d i s s o l v e 40 mg o f s o l i d reagent i n  ml o f carbon t e t r a c h l o r i d e and s t o r e i n a vacuum f l a s k .  0.02%  2-2 - b i q u i n o l i n e s o l u t i o n :  d i s s o l v e 100 mg i n iso-amyl  a l c o h o l by warming g e n t l y and d i l u t e to 500 ml w i t h iso-amyl alcohol. Standard copper s o l u t i o n :  100 ppm copper;  d i s s o l v e 200 mg o f  c u p r i c sulphate (peta-hydrate) i n 0.5 M h y d r o c h l o r i c d i l u t e to 500 ml w i t h t h i s s t r e n g t h  of acid.  a c i d and  D i l u t e t h i s stan-  dard f o r 1 ppm copper w i t h 0.5 M HCl. Notes 1  A l l tubes and stoppers should be washed w i t h 50% HCl,  water and f i n a l l y with, b u f f e r / b i q u i n o l i n e b e f o r e use.  with  207 2  Samples w i t h more than 100 ppb copper may be analysed by .  d i l u t i n g the o r i g i n a l  sample,  B-5 DETERMINATION OF SULPHATE IN SOIL BY HI REDUCTION AND BISMUTH COLORIMETRY Sulphate-sulphur i n s o i l i s reduced t o hydrogen u s i n g a h y d r i o d i c acid-hypophosphorous  sulphide  a c i d - r f o r m i c a c i d mixture  i n a m o d i f i e d J o h n s o n - N i s h i t a apparatus (Tabatabai, and Bremner 1970)  and the hydrogen s u l p h i d e generated i s c a r r i e d by a n i t -  rogen gas stream i n t o a s o l u t i o n o f sodium hydroxide.  Bismuth,  n i t r a t e i s added to t h i s s o l u t i o n and the c o n c e n t r a t i o n o f p r e c i p i t a t e d bismuth s u l p h i d e measured by spectrophotometry enko and Lowe 1972) .  (Kowal-  The procedure o u t l i n e d below is- taken  from an unpublished l a b o r a t o r y manual used i n the Department o f S o i l S c i e n c e , UBC. Procedure 1  P i p e t t e 20 ml o f 1 N NaOH i n t o a 22 x 200 mm t e s t tube and  a t t a c h to the d i s t i l l a t i o n apparatus so that the d e l i v e r y tube reaches almost to the bottom o f the t e s t tube (see s k e t c h ) . 2  A d j u s t the n i t r o g e n gas flow to r o u g h l y 8 bubbles/second.  3  Moisten the ground g l a s s j o i n t o f the d i g e s t i o n f l a s k , add  the weighed  sample and 4.2 ml o f the r e d u c i n g mixture from an  automatic p i p e t t e .  Sample weights of 10 to 100 mg may be used  depending on the range o f s u l p h a t e i n the sample. 4  A t t a c h the d i g e s t i o n f l a s k to the condensor and d i g e s t f o r  20 minutes.  (1 hour d i g e s t i o n time may be used f o r sulphate  r i c h samples) at a Mark 3 s e t t i n g on a LABCON h e a t e r or 70 on a Ful-Kontrol heater. 5  Remove the t e s t tube a f t e r 20 minutes  (or 1 hour), add 10  208 ml o f the bismuth, reagent and mix immediately- on a '''minishaker'''. 6  Read adsorbance at 400 nm on a Bausch and Lomb S p e c t r o n i c  20 spectrophotometer  a g a i n s t a blank obtained by- mixing 20 ml o f  NaOH and 10 ml o f bismuth reagent. 7  Standardize the apparatus b e f o r e a n a l y s i n g unknown samples  u s i n g a s e r i e s o f sulphate standards ranging from 10 to 100 ppm sulphate.  The range can be i n c r e a s e d t o 200 ppm by- b l a n k i n g  the specrophotometer  a g a i n s t a 40 ppm sulphate standard.  Reagents Reducing  Mixture:  Mix 200 ml h y d r i o d i c a c i d  t i v e ) , 50 ml hypophosphorous a c i d in a flask.  (47% w i t h p r e s e r v a -  (-50%) and 100 ml f o r m i c a c i d  Bubble n i t r o g e n s l o w l y through the s o l u t i o n and  heat to 100°C;  m a i n t a i n t h i s temperature  f o r 10 minutes.  t i n u e n i t r o g e n flow w h i l e the s o l u t i o n c o o l s . stoppered.  (Caution:  Store  Con-  tightly  highly corrosive).  Nitrogen p u r i f i c a t i o n s o l u t i o n :  10 g H g C ^ i n 200 ml o f 2% .  KMn0 . 4  1 N NaOH:  4 g o f s o l i d NaOH ('ANALAR grade') i n 1 1 of d i s -  t i l l e d water. Bismuth Reagent:  Heat 3.4 g o f 'ANALAR' grade bismuth n i t r a t e  ( B i ( N O ^ ) ^ 5 ^ 0 ) i n 230 ml g l a c i a l a c e t i c a c i d u n t i l d i s s o l v e d . F i l t e r i f necessary  (Whatman #50).  Cool.  d i s s o l v e d by warming i n about 500 ml water. 1 1.  Reagent i s s t a b l e  Standard  D i l u t e s o l u t i o n to  indefinitely.  Sulphate: -1000 ppm S:  t i l l e d water.  Add 30 g g e l a t i n  2.717 g K^S'O^ i n 500 ml d i s -  Prepare working standards by d i l u t i n g 1000 ppm  standard w i t h water.  209 Apparatus;: JohnsonT-Nishita d i g e s t i o n d i s t i l l a t i o n apparatus- w i t h the f o l l o w i n g m o d i f i c a t i o n (Tabatabai and Bremner 1970). (a)  Long-necked d i g e s t i o n f l a s k w i t h ground g l a s s (T) socket,  (p.)  Condenser with. N i t r o g e n i n l e t and delivery- tube.  (c)  Gas washing bulb  (d)  C a p i l l a r y tubes f o r n i t r o g e n flow c o n t r o l  omitted (Kowalenko and  Lowe 1972) .. Notes: (a)  Branch n i t r o g e n l i n e s f o r each u n i t from a common R e s e r v o i r  f l a s k through m u l t i - h o l e d stopper.  I n s e r t 30 cm of c a p i l l a r y  g l a s s t u b i n g i n t o each, l i n e to m a i n t a i n uniform and balanced  gas  flow to each u n i t . (b)  C o n d i t i o n apparatus  s o l u t i o n through  p r i o r to days run by running a standard  ( s t a n d a r d i z e hydrogen s u l p h i d e a d s o r p t i o n by  glassware). (c)  S p e c t r o n i c 20 spectrophotometer  at t h i s wavelength.  r e q u i r e s no o p t i c a l  filter  210 Modified Johnson-Nishita H l - r e d u c i b e l sulphur  apparatus  used f o r d e t e r m i n a t i o n o f  (not drawn t o s c a l e ) .  CONDENSER --  N  0  INLEx—*  :  —  NaOH SOLUTION  DIGESTION-DISTILLATION FLASK  211  Appendix C P r o b a b i l i t y graphs f o r metals, o r g a n i c carbon and pH i n s o i l s and  till.  Fig.  c-r-  LOG PROBABILITY PLOT OF 96 COBALT VALUES IN THE TILL  N:  FIG. C-2--  1  5  10  20  30  40  PROBABILITY ( CUM. % )  50  60  70  80  90  95  99 (— Co 1  FIG. C-5: ARITHMETIC PLOT OF 96 IRON VALUES IN THE TILL  FIG. C-6= I — i  LOG PROBABILITY PLOT OF 88 IRON VALUES IN SOILS 1  1  1  1 — i — i  J  I  I  I  i  1  5  10 20 30 40 PROBABILITY ( CUM.% )  I  i  i —  r  l  I  i  I  I  I  50  60  70  80  90  95  L  99  FIG. C-9: LOG PROBABILITY PLOT OF 96 MOLYBDENUM VALUES IN THE TILL I  "—'  1—I  PROBABILITY (  1  CIM./i)  2  1  1  i  1  5  10  1  1  1—i—i  1  1  1  i  i  t  i  i  t  20  30  40  50  60  70  80  1  i  90  1  1—r  i  i t  95  98  99  FIG. C-10=  r ~ i  LOG PROBABILITY PLOT OF 80 MOLYBDENUM VALUES IN SOILS.  s  e  1  5  1  10  1  1 — i — i — i — i  20 30 40 50 PROBABILITY ( CUM.%  60 )  70  1  1  1  r  80  90  95  yy  FIG. C-18. ARITHMETIC PROBABILITY PLOT OF 90 pH VALUES IN SOILS  PROBABILITY ( CUM. % )  Appendix D Example  o f DIAG program output f o r  water sample 74-RL-1429 and  distrib-  u t i o n of aqueous s p e c i e s i n water samples 74-RL-1428, 1439, and  1444.  1442,  1443  * * * * * * * *  CATa  ECHO  C ' I S T P I E U T I O N C P S P C C ! E S F O R W A T E R S A M P L E 7 2-P. L - 1 4 2 9 AT A S U L P H A T E : CON'C C F 1 0 - A . M o l a l  T E M P E R A T U R E (K EL V I N I OF T H I S RUN I S R E S SUR VI 1 B A ? S)_ OF TH] S R U N I S . . . . . . . . . . M A X I M U M MJ MR ER OF S T E P S M J Q E f t Oc STEPS eFTt-F-N  IS EACH  PRINT  ICN C H C S F N FOR E L E C T R I C A L BALANCE M O L E S Q 1- S C L V - ' N T H 2 . C I h S Y S T ' . v I S  a** * * * * * * * * * *  :  INITIAL  SCLUTIGN  0 . 2 7 5 C 0 C C C T - - 0 3 MOLA L I TV 0.336CO0OOE-O6  MOLALITY  298.15 1.00  CUT  IS  1 0_  . . .  IS  CA+ + 5 5 .50.8 250  CONSTRAINTS  * * * * * * * * * * *  CA+ +  CA(1)  (AOUEOUS  SPECIES)  ZN + +  Z N (1 )  (AQUEOUS  SPECIES)  '  0 . 1 3 5 0 0 0 0 0 ? - 0 5 MOL A L I T V  MN+ +  MM1>  (AOUEOUS  SPECIES)  ;  0.765COOOCE-06  MOLALITY  CU * +  CU(1 )  (AOUEOUS  SPECIES)  0.30800000E-05  MOLALITY  FE + +  F E ( 1)  (ACU  HC 0 3 -  H(1)C(1)C(3)  (AOUEOUS  S P E C ! ES)  h+  H( 1 )  (AQUEOUS  SPECIES)  MOLALITY  SOA—  S(1 )0(4)  (AOUEOUS  SPECIES)  LOG  CXYCEN  ;  C . 2 C C C 0 C 0 C C - 0 3 MOLALITY -0.6GG0O0O0E+O1 0.281C0CO0E-O3 -0.665CCC0OE+O2  LOG  ACT.  ACT.  GAS  0(2)  (GAS)  EOUS S P E C I E S )  D I S T R I B U T I O N OF S P E C I E S FOR WATER A" A SULPHATE CCNC CF 10-4 Molal  CISTPIHUTICN  CF S P E C I E S  CALLEC  SAMPLE  AT STEP  73-RL-1429  C  ACLECLS MOLALITY  LCG f C L  ACTIVITY  0.29770E-03 0. 29 34 2 1 : - • 0 5 0. 549 1 C E - 2 0 0 .1 350OE- 0 5 ~ C 19681."0. 7R497E0. ? 6 3 7 3 06 0 • 3 4 3 5 "-17 •10 0. 27035.1 0 . 3 4 1 0 6 E -08 "0. ir"i5CT -C7 0 . 10 3 71c-C5 0 . 5 3 C 8 t-0 - 2 0.3 3 8 8 H -65 0 . 9 3 8 2 5 E 09 0. 59865- -C5 0 „ ! J 9 '. -':- 0 6 " 0. 2 29 5 7? -07 0. 23535- -C9 0. 23444?- 08 0. 64590"- 04 0. 12 54 1 1 ' 0. 14 582E- 0 6  -3.526 -5 .533 -2C.26C -5.370 ' -.6. 7C6  C.25602E-03 0.25234E-05 C. 3S5 12F.-20 C.11610E-05 0. 1 6 9 2 6 E - 0 6 " C.75485E-06  SPECIES  F  • 1*  r: + • • r;j • CU + +  c  •rib"  r  SC4-"CH-  H* H 2i"l  c  02(401 C AC 03 C i sty- _ MS04HS-  H2S HCQ3_H2CD3 r tTCHH  IONIC  STRENGTH  =  -6.io;  LOG  - 1 0 . 5 7 1 X«lIUJ1ric -17.458 C. 29922F.-17 -3.567 0. 2 3 2 1 7 E - C 3 -8.467 O.29260S-0B - 7.5 71 C . 1 C2 85H-07 -5.584 C . 10OC0E-C5 1 .744 0.99999E+00 - 65 . 4 7 0 C. 3388 I S - 6 9 -9 .028 0.53854E-C5 -5.0C1 0.99396E-05 - 6 . 856" "C. 1 3 9 2 2 E - 0 6 -7.639 0. 2 2 C 5 1 E - 0 7 -5.628 C.22647E-09 -8.630 C. 2 3 4 5 2 E - C 8 -4 . 1 5 C 0.62167E-04 - 3 . 666 0. 1 3 5 4 5 E - 0 3 - 6 . 836" "C.'i4033£-O6~  0.1 17936E-C2  SPECIES  ACT  ACT  CCEF  •3.592 -5.598 -20.4C3 -5.535 -6 .771 -6.122 M0._(3(_ -17.524 -3.634 -3.534 -7.588 - 6 . OCC - C 0 n (i  0. ESSI'E+CC C.E5S9SSKC 0. 7 1 5 5 S E * 0 0 C. 65S<;5Et-CC 0.85999E«CO 0. 561 i B E t O O C.ES999EI-C3 0.858615*00 C. E57 2 CEV00 0. E579 15>C0 0.5&2C9t*C0 C. S641=E*CC C.1601EE-C1  -6S.47C - 5 . C-28 -5.000 - 6 . £56 -7.656 _^9_._64_5_ - 8. 63C -4.206 -3.868 -6.653  C.  1 0 0 C C E * C 1  C.  ICG  0 .  1 0 1 C 3 E + 0 1  C.  100C3E«-C1  C 35* C1  0.56225Et-CO _Q_!L562C5E*00  C. 10002E+C1 0.5624 5£«-C0 0.100':3E*01 C.?62 2.E»-0C C  E L E C T R I C A L BALANCE  LG  ACT C  -C.066 -C.C66 -0.143 -C.G66 -C.066 -0.017 -CC66 -0.C66 -C.C67 -C.06 7 - C O 17 -C.C16 -1.744 0 .0 COOO C .COO 0.000 - C C17 -0.017 C.COO -C.C17  GRAPS/KGM  H2G  0.U932E-01 0. 1 6 3 8 6 E - 0 3 0.3C665E-18 0.74l66c-C4 C 12866E-04 0.49877E-04 C 17C.75E-C8 C . 1 1 1 7 4 = - 15 0.26018E-01 0.20467S-06 0 . 1 8 1 8 1E-06 0. 1 0 4 5 4 E - 0 5 C. 1 0 0 C 3 E » C 4 0.10842E-67 0. 9 3 9 C 3 E - 0 7 .0. !25 9*K-C2.. 6. 2 24 6 9 E-04 C.22284E-05 C. 7 7 8 4 5 E - C 8 0.79897E-07 0.29411S-02 _0.83?8fcE-0 2_ 0. 106 24E-04  0 . 0 0 0  -C.C17  LCG  PPM  11.931 C . l 64 C.COO 0.074 0.013 0.050 C . P O O  C. COO 26.017  o-ooo_ C. 000 0 .001 9 5 5 94 8 . C 1 6 COOO 0 . 0 0 0  .1 . 360.. 0 .022 0 .002 Q. 00 r  0 . 0 0 0  3 .941 8.39 8 0 .Oil  FPM  1 tC77  -0.786 -15.513 _=JL.i30_ -1.891 -1. 3 0 2 -5.763 - 1 2 . 952 1.415 __=3_...6.89_ -3.740 -2.581 6 .COC -«4.565 -4 .027  _e....l33_ -1.648 -2.652 -5.105 -4.097 0 .596  X.-12A. -1.574  = -0. 269791E-13  G4SES NAME  LCG  OXYGEN GAS C4RBCN DIOXIDE STE.V SULFUR GAS HY CF C GEN S U L F I D E HYCRCCEN__GAS ".METHANE  K  0.0 -7.8354C 1.505 17 152.34551 125.01C45 4 1 .66022 1 35 . 90 71 8"  THE LCG K FCR B C P M ' E LOC K * 4 5 5 . 7355876  LOG C =  ACTIVITY  0.21623E-66 0 . 42557E-C2 0 . 31246E-C1 0.76229E-24 C. 2 2 6 6 3 2 - 0 7 C.38E84E-C8 0.76979E-13  HAS eEEN E X C E E C E C 5 4 9 . 1342661  LOG  ACTIVITY  -66.5CCCC -2.37103 - 1 . EC518  -24.1 n e e -7.64469 -6.41C23 -13.11363 AT S T E P  C  '  :  -  -  .  :'•••• ..•"•'•  :  ' ..:' N: !  j TH-; LOG K =0P  CHALCOCITE  HAS OF.cFv  EXCEEOEC  AT STEP  C  :  '  -. ( J O  "  N3  LOG  K =  134.471587C  LOG £ =  153.3434279  7H= LOG K F C ? C H H C C F Y R I T E I TG K = 231.2C12686 ICG C =  FAS BEEN EXCEEDED AT STEP 242. 4S741C2  C  T>' LOG K'Yr.?. C O V E L L I T E LCG K = 110.1634839  HAS B E E N F X C S E C E C 11E.72962C9  0  " " H  LOG K FOP CUPRITE T>,/3~19 1 9  LCG C =  . " LCG C =  HAS  BEEN EXCEEDED AT S T E P . 35.97 76141  c ,n HOP NATIVE COPPEP HAS BEEN EXCEECEC t.r'f < = 30.1.620.19 7 LOG C = _. 34.6138071  r H  G  K  " T P F T F G K ECR P Y R I T E LCG K = 2G5.861766C  HAS BEEN EXCEEDED AT STEP 207.e836032  LOG C =  HAS BEEN EXCEECEC 122.5S43554  LOG :< ALA8A.NDTTE  A5'AGCNI T E A Z U ° ! ~ F B C R M T E  E^CCHAN'TTTE CALC I T E CH AL C ANT H I T E C U S O A "  CU23C4 FFS04 IKQr; N A T I V E SULFUR CHALCCC!TE  CHALCOPYPTTE CCVclLITE  CLP*ITE FFPPCUS " X I D E GRAPH ITE H F V A I ! i~.  "Vi  M^:  MALACHITE  AT S T E P  LCG C *  THE 1 0 0 X FOR S P H A L E B I T E LOG K = 120.4642586  _ A N H Y C ^ I T E  AT S T E P  132.5£9 -4.144 1 .968 9.161 499 .740 14.733 1. EC2  -2.536  "2.996  34.816 1 .US 55.4 SC 89.226 _134 .4 7 2_ 22l". 2C1 110.1(3 34.319 11.316 61.476 -19 .957 2 2 . 70 7" -11.6C7 5 .946  0  C  AT STEP  LOG C 123.43C6369 -7.2259194 -1.7981672 - 1 6 . 3214529 549.1842661 -10. 1769763 -1.7581672 -14.2704058 " -14.2703 791 20.3434279 -9.23221C7 39.6519755 84. 1 1 581 38 153.3434279 ""242.4574102 1 16.72962C9 35.9776141 6.4C19755 56.293566C -20.4460489 8.4C 82668 -14.044C734 -7.4788260  K: to  NANG^'IOS IT E f*ELANTER!TE N A T I V E _ C 0_P_PER_ PYRITE PYP.RHCT! T = RHOOaCHP-iSIT:-  S  ID E K ! T  E  SMITH S C N I T E  _S?r-AL E R ITS TEN CP ! T l f ViURTZ I T E  17. 921 -4, 614 39. 162 205. 862 127 . 051 - 1 . 2C7 .4 CO -0 .626 120 . 464 7".6 67 122 ,763  6.C64S221 -9.2322537 _ 34.6133071 2C7.8826C32 123 . 7 6 7 7 8 9 2 -4.1416109 -3.6C44585 -4 .9773922 .122.5543556 1 .3623071 122 .5943556  GASES  NAME  LOG K  OXYGEN G * S CAP-BC.N DIOX IDE STEAf SUL rUR '".a S " HYCRCGES RO!.F!CE HY0 RCG -N G A S VFTFANE EXECUTION  IS IGNOFF  TERMINATED  C C -7 . e 3 5 4 0 1.50517 192.34951 125 . 0 1 C 4 9 41.66C22 1 2 5 . 5 C 7 18 10:26:43 T=1.192  ACTIVITY  LCG  C. 31623E-66 0.42557E-C2 0.31248E-01 C 76229 -24 0.22663E-C7 C3M84E^C8_ 0. 765 75 -13 RC=C $.64 c  ACTIVITY -  .'6.50000 - 2 . 2 7 1C3  -1.ECSie -24.11788 -7.(4465 - 8 . . A ! £2 3 -13.11363  DA  fA  E C H O  * * * * * * * * *  O l S I R I d U T I O N OF S P E C I E S FOR WATERS SAMPLE AT S U L P H A T E CiJMC Or 10-4 M o l a l T£M' EkATUKE ( K E L V -sur, SjR ;. (:!••.>., ) J  I N !  r  M A X I M U M  NUMsrK  N U . M J E R  UF  OF  Sir-PS  OF  ;  THIS S RJ.N  S T E P S  R U N  l i  IS  298.15 1.00  I S  BFTwrFH r A C H  ..  l  I S ...  PRINT HUT  ION CHOSEN FOR E L E C T R I C A L BALANCE _ag:L£.S_Q.F_SC(.L.V.ENL Jiii)...„.IJ'J_.S Y.ST t/1. J.S  eee****ss****  74-RL-1428  IS  0 CA+* 55 ..5.08250...  I N I T I A L SOLUTION CONSTRAINTS  ***********  O.I 5 7 0 0 0 O O S - 0 6  MUL4L1IY  CU»*  CU(1)  (AQUEOUS  SPECIES)  0. 1 9 7 0 0 0 O O E - 0 5  MOLALITY  FEn-  FE(l)  (AQUEOUS  SPECIES)  ..0-.24 8000.00..E-0 5„j«JLAL.!T_Y 0. 1 5 3 0 0 0 0 0 E - J ( j MOLALITY  IN*-*  0.625O0000E-03  CA**  MOLALITY  0. 2000.00OOE-33 h J L A l IXY_ - 0 . 7 5 0 0 0 0 0 0 E + 0 1  0.41600000E-03  LUG  A C T .  MOLALITY  -Cl.-fe0.5.aOQ.aaEiU.2_LJlu_a.C.Ls_  M'i ( 1 )  •'. >!<•.•  ...HC.G3H*  ZNU) C 4 < 1) H.(.U..C.„<.1)..U.(3L H(l)  S04-•JAY GEN  * * * * * * * * * ? * * * * * * »?*?$.-*£*******  S!l)0(4) GAS  0123..  I AQULQUS..SPECIES). (AQUEOUS  SPECIES)  (AQUEOUS  SPECIES)  ...!.AQUE.QU.S_SPiC.IESl_ ( AQUEOUS  SPECIES)  (AQUEOUS  SPECIES)  -IGAS)  DISTRIBUTION AT  SULPHATE  DISTRIBUTION  OF  SPECIES  CONC  OF  OF  FOR  WATERS  SAMPLE  7 4 - R L - 1 4 2 8  lO-4Molal  SPECIES  CALLED  AT  SIEP  0  AQUEOUS MOLALITY  SPECIES  LOG  ACTIVITY  MOL  LOG  SPECIES ACT  ACT  0.  LG  H3.106F4-00  GRAMS/KGM  ACT C  PPM  H 2 0  -O.OS1  Cl. 1 9 4 0 1 F - n 1  -0. 031 -0. 175  0 . 4 3 4 6 9 E - 0 4  0.043  -1.362  0.26747E-20  - 1 7 . 5 7 3  3625E-03  0.000 0.136  0.5 1 1 2 1 E - 0 5 0 . 9 9 7 5 8 E - 0 5 0. 1 1 0 R 2 F - I 0  0.005 0.010 n.ooo  -2.291  0 . ' m4 051-"-0 3  - 1 . 3 1 6  .1.4(1! 7 9 C - 0 3  - 3 .  ft}** Ft*** ',f,** IH** OJ* CO**  0.  - 6 . 1 0 9  0 . 6 4 6 0 8 E - 0 6  -6.190  0.83006E+00  1992E-22  - 2 2 . 4 9 5  0.66798E*-00  _0.20.5.3 5E-05.  - 5 . 6 8 6  . 0 . . 8 3 0 . 0 6 E . + 00_  0.64912E-07  - 7 . 1 3 8  0.63006E+00  0.  -6.825  0 . 1 7 4 4 2 F - 1 ?  -6.e04 - 1 2 , 7 5 8  - 1 2 . 8 3 9  0.95250E«-00 0.83006F+00  - 0 . 0 8 1 - 0 . 0 2 1 -0.0R1  0 . 5 0 6 4 6 c - 1 7  - 1 7 . 2 9 5  0 . 4 1 9 3 6 E - 1 7  - 1 7 . 3 7 7  0.32602E+00  - 0 . 0 8 2  0.16239E-15  0 . 0 0 0  - 0 . 0 8  0.37845E-01  37.842 0.019  - 2 2.  0.47894E-22  :  0 . 2 4 8 0 C E - 0 5 0.  762  J2E-07  0.15700E-06  S--  0.3  320  - 5.606 - 7 . 1 0 7  0.  14954E-06 1 44 7  8F-12  3 C 4 —  0 . 3 9 3 9 6 E - J 3  -  3.405  0. 3 25385-03  - 3 . 4 8 8  0.82592E+00  C 0 3 - -  0.321415-06  0 .26530F;-06  - 6 . 5 75  ...0.82693EtU0...  vj - i ~  0. 34123E-0o 0 . 3 3 0 6 8 E - 0 7  - 6 . 4 9 3 - 6.467  0 . J 2 5 2 4 L - 0 6  -u.43  0.3  1623E-07  0.9  99931- +00  H.'O  0 .  5 5 5 0 jF » 0 ?  - 7 . 4 3 1 1 . 74 4  02 < AQ)  0 . 3 3 3 3 1 E - 6 9 0. 1 3374E-06  - 6 9 . 4 7 0 - 6.374  0.2196IE-0 4  H »  CAC03  0.3338  0.1  -0.031  - 0 .  3  0.19288F-Q4  083  - 0 . 0 2 1  0 . 5 S 0 3 5 E - 0 5  0 . 0 0 6  - 7 . 5 0 0  0.95631E+00 (). I H 0 1 5 F - 0 1  0 . 3 3 3 3 1 E - 0 7 0.10000F4-04  0 . 0 0 3  - 0 . 0 0 0  - 0 . 019 - 1 . 744  -69.4  1E-69  _  0 . 9 5 3 1 3 E O 0  8  70  0 . 1 3 3 8 0 E - 0 6  - 6 . 8 7 4  0.21972C-04  -4.05  0.74835E-07  0. 3  -0.866 -2.001  -7.9SS  -12.789  1. 5 7 8 -1  000  0.13386E-04 0.293981-02  .  . 7 1 5  -2.  236 - 4 . 4 7 7 6.  0 . 0 0 0  .0.000.  0.  10005E+01  ...Q.10005E«-01..  1.7SB  9999?7.?51  0 . 1 0 8 4 2 E - 6 7  0.0  0.10000E+01  PPM  LOG  19.399  C A * *•  77»3=>E-06  396  COEF  - 6 4 .  non 965  0 . 0 1 3 ? . 9 9 0  -1.873 -  76  747-»oE-0 7  - 4 . 6 5 8 7.126  - 7 . 1 2 6  0.10005E+01  0 . 0 0 0  0.12075 E - 0 4  0.0  - 3 . 9 8 3 - 1 0 . 978  0 . 9 7906E-09 0. 1 00 i 7F- 1 0  - 9 . 0 0 9 - 1 0 . 9 9 8  0.95344E+00  - 0 . 021 - 0 . 0 2 1  0. 99678E-07 0 . 3 4 H 2 6 F - 0 9  0 . 0 0 0  H S ~  0 . 1 0 2 6 9 E - 0 8 0 . 10 530F-10  o.n.oo  -4.001 - 6 . 4 S «  H2S  0.32630E-1  - 1 1 . 4 8 3  0.3286  - 1 1 . 4 8 3  0.  0.1  0.0  - 6 . 9 5 1  HC0 3-  0.  H2C03  0 . 1 2 2 4 3 E - 0 4  FE(CH)*  0.11916E-05  C A S0 4 Z.NS04  0.  H504-  1  S T R E N G T H  O N I C  1  16 725E-33  =  0 . 135  - 3 .  72 8  - 4 . 9 1 0 - 5 . 9 2 t  /83L-  7E-11  0 . 1 7 8 5 3 E - 0 J -0....123.04E-04._._ 0. 1 1362E-05  0. 0 0 0  10005E +01  - 3 . 7 4 8  0.95374E*00  - 4 . 9 1 0 - 5 . 9 4 5  0. 100C5EVJ1... 0.95344E+00  ELECTRICAL  -02  0JJ53.13£±J33J  BALANCE  =  - 0 . 0 2 1  .  .0..7.6  00  I  11.424  280E.-Q3  0 . 7 6 3  0. 11425E-0  - 0 . 0 2 1  0..000-  1195E-09  12  0.86816E-04  0.037  fl. 4 1.918  1 . 0 5 8 .....  - n . i i 8 -1.061  0 . 5 0 5 / 4 4 E - 1 3  CAStS  NAME  LUG  ACTIVITY  K  LOG  ACTIVITY  1'  GA  CARBON  DIOXIDE  S T F A  0.31623E-66 0. 33659E-03 0 . 3 1248F-01  - 6 6 . 5 0 0 0 0 -3.41275  192. 3495 1  0.  - 2 9 . 8 2 4 7 0  125.01049  0.31762E-10  1. 660 2 2 135.90/1 8  0. 383 64E-08  0.0  OXYGEN  S  -7  M GAS  SULFUR  H Y O R O G E ti S U L F I D E t IY C R 0 G E N ' . J A S  4  METHANE  THE LOG  THE  L O G :< F O R .-v =  LOG  F O R  C H A L I O C I T  LOG  Q =  - 1.  14973E-29  ••  BEEN  544  HAS  .  EXCEEDED  60  51 R  ..  10.49810 - 8 . 4 1 0 2 3  -14.  0 . 6 9 9 2 8 E - 1 4  HAS  BORNITE  499.7399,378  it  .33540 !.50817  .  .  -  ——  15535  AT  STEP  0  AT  STEP  Q _  1633237  BEEN  EXCEL-OEO  ,  ,  ********  DATA  ECHO  *********  D I S T R I B U T I O N OF S P E C I E S FOP. MM BP. SAMPLE AT S U L P H A T E CCNC CF 1 0 - 4 M o l a l  74-P. 1 - 1 4 3 9 "  TEMPERATUR E ( K E L V I N ) OF T H I S RUN I S ...PR,= S SUR.S..J.P «R SI r.-...THtS .RUN I S ........ ..... .... , f^AXIMUM NUMBER O F STEPS IS Jaiwe.£5...QF STEPS PETt,F{FN EACH  PRINT  INITIAL  1 0  CUT IS . . .  IC\ CHOSEN FOR E L E C T R I C A L BALANCE I S XCLe.S..CF„,SOLyENT H20. IN. SYSTEM IS  **•»*»****.**  298.15 ... 1 .00  CA++ 55.508250...  SOLUTICK C C K S T R A U T S  ***********  0.7E3C0C0OE-O5  MOLALITY  CU*  C U I 1 I  (AQUEOUS  S P E C I E S )  O.7120OOOOE-O5  MOLALITY  F E +•  F F ( 1 )  (ACUEOUS  S P E C I E S )  (AOUEOUS  S P E C I E S)  (ACUEOUS  S P E C I E S )  0. .7 E 3 C C C 0 " - C i>.. 0 L A L1 TY 0.33600000E-06  MOLALITY  " . 4 5 0 C 0 C C 0 - - 0 3 MOLALITY . 0.2.CCCO0CO:'-O3...V'l S'.tTv -C.6CC0O000E+01 C. 6 2 4 C 0 C O C E - 0 3  ^S..i.t5S>0J)JiS^*S>2  p N (1 ) ...  + ZN ++  CA + +  Z N U )  C  A(1)  HCC3-„  LOG A C T .  H (1 )C(1 1 0 ( 3 ) H(ll  MOLALITY  S G 4 —  S ( 1 ) C ( 4 )  I C GACT.  CXY.GEN_.GAS  0,! 2.)  (AOUEOUS  SPECIES)  (AOUEOUS  S P E C ! ES)  (ACUEOUS  S P E C I E S )  (ACUEOUS  SPECIETT  ( G A S )  r-o  0 I S TR AT  I B U T I O N  S U L P H A T E  OF  S P E C I E S  C O N C  DISTRieUTIOM  OF  OF  IO-A  F CR  S A M P L E  fcATER  7 4 - P L - 1 4 3 9  Moiai  SPECIES CALLED  A 7  STEP  ACUECUS SPECIES SPECIES  M O L A L I T Y  C.A»*  0 .  * + +  _MN* • 7_N*t CU*  C. 4 S 0 3 1 F - C 3 0.55053E-C5 C.862C5E-2C C.63421E-06. C.11580E-06 C.74078F-05 _CZ2.6 79_E.-C_L. 0.60676E-17 C.47C79E-03 0. 25120E-C8. 0.10285E-07 C. 1 0 0 C 0 - - C 5  6 0 5 3 3 T - - C 3  c  c  $0 4 — _C.C.3-_._ OH-  7EIASE-17  o.  564 <;9E-03  _0.. 3 6 I 2 3 E - 0 8 0 . 1 CSfc1E-07 C . 1 1 5 1 6 — 05 0 . 55508E*0 Z 0 . 3383 1C--69 0. 17376E-08 0. ' f ' W -04 C . 19 3G 3? - 0 6 0.47288E-07 ___.._-__l___-_ 0.47524E-08 0 . 65233'^-C4 ..0...13471--C3 0.323175-06  M*  02(AQ! CAC03 C A S C 4 __ ZMS04 HSC4H£-  H2S  HC0  3J-2.Cfl3__ F E (0 K ) <  ICM-C  0.  STRENGTH  ACTIVITY  MOL  0.6796SE-05 0. 1 3 578E-19 _ C 78300 -06 6. 1 4 2 9 7 E - 0 6 0. 7 8 2 9 7 - 0 5 0.27999P-09  F E * * FE  LCG  L O G  ii.S99SJ5_tfl.0_  LG ACT C 2  0.e09^eE*00 0 . E C 9 9£E*CC 0 .63467E*C0  -C -C  ,092  C  . 1 9 7  C . 7 5 6 3 1 E - 1 8  o.eo9seE*oo  -0 -C -0  .092  0 . 4 3 0 1 6 E - 0 4  • C 9 2  C S 3 4 5 7 E - C 5  .C24  C . 4 9 7 5 0 E - 0 3  -c  • C 9 2  0 . 1 7 7 9 1 E - 0 7  0 . ECS?£_*Cb 0 . 946 1 2 6 * 0 0 0. £C9<EE*_CC_ 0 . 6 C 7 4 2E + CC C eC479.*C0 0. £.0.612S*.C.O... 0.94692E*00 C 55O57E*0O _ C _ J 6 0  E L E C T R I C A L  15E-01  0 . 100CCE + 01 C. 1 0 0 C 7 E * 0 1 0 ' . 10CC 7E*C1 . 0. 100C7E*C1 0.S4722E*C0 j;.__.6.5_2.___0_ C 1CCC7E*C1 0 . 9 4 7 7 1E+00 C. 1 0 0 C 7 E * 0 1 _ 0.94722E+C0  B A L A N C E  •  - 0 . 0 9  C93  C  094  0 . 5 6 1 9 5 E - 0 1  0.94  0.  -d. -o.  -l.  _  024 022 7 4 4  C 000  ceo. C 000 -C 024 _ _ £ .024 C. COO -0, C23 0. 000_ - C , C24  coco  - 1  -C.303 -4.750  0 . 0 0 0  C.COO  - 1 2  56.189  0.000: C. OCO 0.C01 999900 . 9 4 6  21677E-06...  C i e 4 7 2 E - C 6  0 . 1C559E-05 0. 1 0 0 0 G E * 0 4 0. 10842E-67 0.17892E-06 0. 52781E-02 6.3li62E-04 0.45902E-05 0.16039E-07  C . C C O  0 . 0 3 1  . 7 5 0 . 6 6 4 _  - 3 . 7 3 4 - 2 . 5 7 5  6  . 0 0 0  - 6 4 . 9 6 5 - 3 . 7 4 7  _  0 . 7 2 2  -1.5C6  0 . 0 0 5  - 2 . 3 3 8  C O O P  - 4 . 7 9 5  0.000 3.983 8.355__ 0.024  0 . 16196E-06 C.39834E-C2 0.83555E-C2. 0.23544E-04  . 6 1 8 1  _^3  0 . 0 0 0 5 . 2 7 8 . .  . 2 6 6  - 2 . 0 2 9  0 . 0 0 9 0 . 4 9 7  24056E-15  . 4 2 1  - 1 5 . 1 2 0  0 . 0 4 3 _ "  PPM  1 . 3 8 5 -0  0 . 3 8 0  3 7 9 5 8 E - 0 3  - 0 .  _rC.  24.259  0 . 2 4 2 6 2 E - 0 1  - C  LCG  PPM  GRAfS/KGM H20  -3.310  -69.470 - 6 . 747 -4.411... -6.714 -7.349 __9.-3.___ -8.223 -4.209 -3.870 -6.514  .A5_S.2JE.-„j9_ C 47555E-C8 C.61869F-04 C. 134 80S-C3... 0.20615E-C6  CCEF  - 5 . 259 -20 . 0 6 4 -6.198 -6.936 -5.130 -9.644 -17.217 -3.327 - e . 5 36_ -7.588 -t.OCO  _rC.C.C_.C_.  C.338815-69 C. 1 7 8 8 8 E - C 8 0.38794.-04 C 19316E-06 C.44796E-07  C243337E-C2  ACT  ACT  - 3 . 7 9 1 0 . 6 0 0 _ _ 0 . 9 2 2 _ - 1 . 6 2 8  - C . 7 6 1 6 2 2 E - 1 3  G A S E S  LOG  NAME  »- •  152.34951 125.C1C49 41 . 6 6 0 2 2 125.5C718  SULFLR GAS HY DP CG EN S U L F I D E f  ! Jb^L'.;. N  "  M-cTH^N'.  ~H LOG K FOP BCR NT TE LOG K = 499.7399873  HAS  C  Tt-"  LOG K F T P  CHALCOCITE  LCG  LOG C =  HAS  BEEN E X C E F C E C 555.7101822  BEEN  EXCEEDED  ACTIVITY  -66.50000 - 2 . 3721 1 -1.5C51E - 2 3 . 50282 - 7 . 22766 -R.'1C23 -13.11572  C.31623E-66 0.42352E-C2 C.31248F-01 0.31345E-23 C 45955E-C7 C . 3e884E-C8 C.76609E-13  CO -7.83540 1 . ^ 5 17  OXYGEN GAS CASHCN D I O X I D E •) M  ACTIVITY  K  AT  ST E F  0  AT  STEP  C  :  —  ...  LO CO  ee*.*****  DATA  ECHO  *********  D I S T R I B U T I O N OF S P E C I E S IN WATER AT A S U L P H A T E COMC OF 10-A M o l a l  SAMPLE  it-KL-1442  TEMPERATURE ( K E L V I N ) OF I M i S RON IS ^ R L S S J R E . <;;.Wi j....;;'. { J I j KU?i .J.3............  298.15 1...C0...  :  .'•! A X I M UM N UM 3 f R OF STEPS IS . . . NUMBER OF S T E P S MF l.lFFi-i F A D ! PRINT  OUT  IS  ION C HOSE'S FOR E LEG IR : CA L BALANCE IS _MOL ES.JO F__ SiiL V ENL_H2U...! N... S Y..S IK •<. IS .. .  *************  INITIAL  SOLUTION  0. 7 3 5 0 0 0 0 0 E - D 6  MOLALITY  0.41700000c-  MOLALI TV  ...J^5:2aOOOOOE-Oo. MiJ.cAL l. T.Y  CONSTRAINTS  cum  I AQUEOUS S P E C I E S )  FE* +  FE ( 1 )  (AQUEOUS  SPECIES)  m.tt.  MN.i  (AQUECUS  SPECIES)  n...  0.1 5 3 O 0 0 0 0 E - 0 6 M C L A L . 1 T Y  ZN ( 1 )  I AQUEOUS S P E C I E S )  0. 573000 0OE-O3 MC.CALITY  CA 1 1 )  1 AQUEOUS S P E C I E S )  p_._2iOOOjiOOE.rJl3_ .MOLALITY  H.C.O.3.-. ..... .Hi D C ! 1 >0( 31  I AQUEOUS SPEC I F S 1  0 . 6 4 5 0 0 J J O E - 0 3 MO LAC 1 TY  S0 4 —  S( 1 ) 0 ( 4 )  (AQUEOUS  SPECIES)  H+  HI 1 )  (AQUEOUS  SPECIES)  -0.60000000E+01  LOG  ACT.  - Q . 6 6 5 0 0 0 0 0 E + 0 2 _LOG__ ACI •  .i)XV.GE.N.JIA_S.  ********* **********<:*****»*»»*  ]  . . . CA•+ ..........55... 5.0.8250...  0(2)  -  (GAS 1  DISTRIBUTION AT  A  OF SPLCILS  SULPHATE  CONC  D I S TRI BUT ION  QF  I N WATCK  SAMPLE 74-:i<L-1442  10- 4 MoXal  SPECIES  CALLED  AT  STEP  AOUEGUS S P E C I E S MOLALITY  SPECIES  ACTIVITY  MOL  0.59->t,6|--03 -3.225 0 . 4 H 0 3 7i--0 i 0.39812E-04 -4.400 0.12139E-04 0. 7931 7 E - L 9 -19.098 0.50326E-19 0.923JJE-06 -:.-.0 3 2 .0. 7.491 6 E - 0 6 0. 64 'Jo 3E -0 7 -7.193 0.51717E-07 0 . 7b49 7E-06 -6.105 0. 7 4 1 9 9 E - 0 6 0 . 2• > 139 f - 1 0 -10.551 0.22 716E- 10 0. 7 7 7 9 2 L - 1 7 -1 7. 109 0.t>2596!:-17 G.60563E-03 -3.218 0.43569E-03 „0...jo2.4 0E-0B _. - d . 4 4 I 0 .21.112E-08. 0. 103 71E-0 7 - 7 . 964 0.10235E-07 0. 101/24E-05 -5.978 0.100J0E-05 0. ' l i ' i J o i i .'2 i . 744 0.9 >•/•) li + 00 -5 9. 4 70 0.3iJ3lE-<>9 0.33381E-69 -8.756 0.1V527E-08 0 . 1 733 rd-oa -4.406 0.39224L-04 0. 3.92 5 1E-.U4 0.66937L-07 -7.051 0 . 3399 7E-0 7 0. 4 3 52 6 E -0 / 0.4o2l4t-07 -7.311 0. 500 76E-09 0.47376E-09 -9.300 -3.310 0.49359E-08 0.4*j2of--0<S 0. o 5 32 2t - 0 1 -4.185 0 . 6 i o 5 3 E - 04 0..-.'•}••:.• .tl •;•'.'- iS . <.• 7 i 0,. 1 34 76F.-03 -5.72 4 0 . 1 78 7 2 E - 0 5 0. iaSeJ3E-0S  CA + + FEt + F E +++ MN + +  ZN + + CU* CU + + S — SU4— CO}--  ,  LOG  OriiH + H«l C2(A0i CAC03 CASJ4 Z.NS04 HSU4HSH2 5  hoc:i-  H2C03 FE!OH)»  I O N I C ST R E N G r H  -  0 . 2 5 1 8 7 5 E -02  LOG  ACT  ACT  COEF  -3.318 0. R0728F+00 -4.493 0. S072BC + 00 •19.298 0.63C52E+00 -6.125 . 0. 80728E*00 -7.236 0. 30728E t-00 -6.130 0.94525E+00 •10.644 Q. 80.72.5EJ.aO •17.203 0.80465E+00 -3.314 0. 80195E + 00 - 8 . 536 0.80331E+00 - 7 . 9 'J 8 0.94603E+00 0.95025E + 00 -6.000 0. 1801 5' -0 1 -Q.,iLQ.Q6 9 . 4 70 0. 10000E + 01 -8.756 0. 10007E+01 - 4 . 4 0 6 ..... .0 . 1000 7E + 01 - 7 . 051 0. 1000 V E »• 01 -7.335 0.94649E+00 -9.3 24 0.94&03E+00 -8.309 0. 10007E+01 -4.209 0.94669E+00 -3.870 . 0. 1000 7E+.0L -5.748 0. 94649E +00 :  ELECTRICAL  BAL A NC E  LG  ACT  C  GRAM S/KGM  H20  PPM  -0.093 0.2 3874 F-01 ?3 .87? -0.093 0.22234E-02 2.223 -0.200 0.44575E-17 0.000 0 .051 0.50982F-04 - 0 . 093 0.004 - 0 . 093 0.4 1 8 7 8 E - 0 5 0.49B77E-04 0.050 -0.024 0.1 7 8 7 9 r - O R 0.0.)0 - 0 . 093 -0.094 0.24943E-15 0.000 -0.096 0.58 1 7 8 E - 0 1 58.172 0.000 - 0 . 095 ........0..217.4.7E.-0.6. . _ -0.024 0. 1 8 4 8 9 E - 0 6 0.000 -0.022 0. 1 0 6 0 7 E - 0 5 0.001 - 1. 744 o. i oooor- +04' 9Q0847.74? 0.0 0. 1 0 8 4 2 E - 6 7 0.000 0. 1 7 5 4 3 E - 0 6 0.000 0.000 0 . 5 3 4 0 1 F 0 2 5. 3 40 0.000.. 0.000 0.14357E-04 0 .014 - 0 . 024 0.47396E-05 0.005 -0.024 0.16561F-07 0.0 00 0.000 0.16708E-06 0 .0 00 - 0 . 024 0.39858E-02 3.935 fl.35? 0.000... . 0.8 3531 F - 0 ? - 0 . 024 0. 1 3 7 5 7 E - 0 3 0.138  LCG  PPM  1. 373 0. 347 - 1 4 . 351 -1.291 - 2 . 3 78 - 1 . 332 - 6 . 748 -12.603 1. 765 -3.66 3 - 3 . 733 - 2 . 9 74 6. 000 - 6 4 . 965 - 3 . 756 0. 728 -1.343 -2.324 - 4 . 73 1 -5.777 0. 6 JO 0 . 92? -0.862  = -0.284082E-13  GASES  NAME  AC T I V I T Y  LUG R  OX'GEN GAS CARBON 01 O X I D E STEAM SULFUR GAS HYDROGEN S U L F I D E HYDR'J.>EN GAS MET H A N t  THE LOG R LOG K =  0 . 3 1 6 2 3 E - 06 0 . 4 2 3 4 2 E - 02 0 . 3 I 2 4 3 F - 01 0. 333 6 0 E - 23 0.47409E- 0 7 0. 3 88 8 3 L-08 0. 7.6588E- 13  0.0 -? .83540 1 .505 1 7 U2.3-i951 125 .01049 41.66022 135.90718  FOR BORNITE 499.7399578  LOG  U  LOG  HAS BEEN EXC r.fc: J E D 5 5 1 . 5340.46 2.  ACTIVITY  -66.50000 -2.37323 -1 .5051 8 -23.47677 -7.3 24 14 -8 .41023 - 13.11584  AT S I E P  0 K:  THE  i.lJG *  FOR  CHALC'X  IT  HAS  H;L N ;  Ff.jr.1) AT  STEP  0  o  DATA  ECHO  D I STP. I 3UTI ON I J F ' T P E C I E S IN at  hATER  SAfPLE  74-RL-1443  a s u l p h a t e oonc o f 10~4 Molal  TEMPERATURE P3ESS.Se ''.AX'MLM Miv-icq  ( K E L V I V ) OF  .J_4£_J__r.__I^'LS NUMBER  OF  THIS  PUN  I S  293.15  - B U N . ._I_.S_. ..... ..............  ST?PS  <,-:p<. FFTwFFM T  IS FACE  1 PRINT  OUT  IS  ...  ION CHOSEN FOR ELECTRICAL BALANCE I S JIC.L5.S„GF_.5.QL_.&Li-H.20 J . N . . . S Y S T E M I S  »**»****-»*•*  INITIAL  0. 1410000CE-05  SOLUTION  MOLALITY  0 .78 5 0 0 0 0 0 . - 0 5 " 0 1 . A L T T Y ...C.1.8.20.0C.001-05...VOL  1.0.C  ,  CONSTRAINTS  CA + * 55.50.8250..  ***********  CU**  C U ( 1 )  FE* *  FE(1  A1.ITY  Q  )  (AQUEOUS  SPECIES)  (AQUEOUS  SPECIES)  ...MN (1 )_  ...(. A.OU E .0US  S PEC.I.E. S.I  .5.153.00000-06  M O L A L I-TY  ZN**  ZN( 1)  (ACUEOUS  SPECIES)  0.625CCCCa~-C3  MOLALITY  CA**  CA(1)  (ACUEOUS  SPECIES)  MCIAUTV  .SP._)__  5..I.1 ).0.(.A..)..  (AOUEOUS  SPECIES.)..  HC03-  HtllCIl)C(3>  (AOUEOUS  SPECIES)  (AQUEOUS  SPECIES)  _ g_.^_ggjOOQF.-03 u  0 .2G000000?-0 3 -0.62C00C00E+01  CGLALtTY L C GA C T .  ^..£J>^&lQ21*3.Z-\.QJLJiCZ.»X * * * *****fta** a f t - t  H* OXYGEN  H(l) GAS  0 ( 2)  (GAS)  '—D .S.TRTBUT7 Otf OF"'SPFCT „ S I N _  SAMPLE  *  WATER  S A M P L E  74-RL-1443  1443  DISTRIBUTION  OF  SPECIES CALLED  AT  S1EP  AOUEOUS S P E C I E S  3_  CA++  0 . 7 3 0 1 5 E - 05 0 . 9 2 4 5 1 F •20 Q, 1 32 CC: C5 o. -- ? i •07 i4i ___<_3.__I1J_ 0 . 7 7 4 3 1 F •17 C . - 0 3 2 2 E -0 3  FE** FE*** MN** 2. . * *  CIJ + . Cj » »  LCG  MCLALITY  SPECIES  r  o.  . .  S0 4 —  co;  „.C.Li3..--_  0 . 7 6A92F  "OH-  0. 17234" 0 .ft6 ' ! - r 6 tO 2 0. 33831. -69 C . 3 9 4 4 1 — OB 0 . 4 1 6 5 2 E'04 0. S87 15c- C7 0. 30663'i- 07 p . 3 ] 44 •_ 5 _ r- . 1 942 l •08 0 . 8 6 9 3 2 E -04 0. 1 1 Oc 5485 1~  I .*  ri__0 0 2 ( AC ) CAC03 C.4.S.Q4___  "zNSoT" HSG4HS-  H2. HC03-  c  _i_.c_.3_. FEICHH  NGTM  I ON I C  ACT I V I T Y L O G  MOL  „__3.,l<.6 -5.137 -20.034 -5.740 ""-7.19 2 -5.851 ___10.__6_ -17.111 -3.2 20 -8.116 -7.764 -6.178 JL__44  c  -4.38C -7.052 - 7 . 537  ACT  201 093 C93 .0 25 _____ ,C95 .096 .096 .C24 .022 .744 0 000  coo coo  icoc7t*gi  S  BALANCE  C  -0.093 093  b.iooc7E*bi C. 946 26E*00 0.9458 5E*09 0.100C7E*01 0..466 7E*G0 0 ..10_0.7E.*.0.1„ C. 946 26E*00  _r5__5._l_ -8.711 -4.C85 -3.946 - 6 . 2 85  ELECTRICAL  •C2  LG  CCSF  _?__•__-.. Q. 80656 .+ 00 0.EC656E*C0 -5.230 0.62935E+00 -20.2 35 0. 80656 6*.00 -5.833 -7.285 C. E065-E*CO -5.375 0.94501E*00 - 10.589 _0_._e065_6E*C_0_ 0.60 3 9 I E * 0 0 -17.206 0.80116E*00 -3.316 0. £02 5 6E+C0. -8.2 12 0.545e-E*CO -7.788 C„950C5E*00 - 6 . 200 ___.JJ__ 1 5E-C1 -O.OOC 0 . 1 0 0 C 0 E + 01 -69.470 0.100C7E*01 -8.404  C_,. .Q3__ C. 58391E- 05 56184E- •20 14679E- 05 51346F- •07 13324F- •05 257381: l_C_ 62288E- 17 4 8 3 3 0 .• •03 6138SF- •C8... 16300E- •07 63056F- 06 99997E' •oo_  -69.470 0. 33881F- 69 -8.404 0. 35466E- 03 -4.380 _ 0. 4 1680E- 04 -7.C52 0. 6878CE- 07 -7.513 C. 2SC15E- 07 iQ9_ __9_.J5J12 0... -8.712 0. 1S435E -08 -4.061 0. 8 2 2 9 6 . -04 - 3 . 947. ...0. 11313E "03... -6.2-1 C. 51903E- -06  ,25<_  A C T A C T  -C  024 024 000 C24 COO 024  GRAPS/KGM  H2C  0.25500E-01 0 . 4 0 7 7 7 E - 03 0. E1621E- 16 0 . 9 9 9 8 7 E - 04 C.4202CE- 05 0. 69569c- C4 0 . 2 0 2 7 6 E - 03 0.248440- 15 0.57947E- 01 0 . 4 5 9 0 2 E ' •06 0. 29310E- •06 0 . 6 6 9 4 2 ' •06 C.IOOCOE. ___. 0. 10842E- 67 0 . 2 9 4 7 6 E - 06 0. 56705E- 02 0. 142 22=- C 4 0 . 2 9 7 6 4 E - 05 0. 104CCE- C7 0 . 6 6 1 8 8 E - 07 C. 53044E- C2 C . 7 0 1 2 4 E - C2 " C . 3 9 9 6 1 E - 04 !:  LCG  PPM  PPM  1. 4C6 - 0 . 390 -15. 287 -1 . 000 . _„ ^ 37 7 - 1 . 048 - 5 693 -12 .605 763 •228_ .533 .174 .000 -64 ,965 -3 .404 0 ,754_ -1 ' 644 -2 .526 -4 ,983 -4 ,179 0 .725 C , £46 -1.398  25.497 0 .408 C.COO C.100 0 .004 C.090 0.000 0.000 57.941 0.000 C.000 0. 001 999897.916 C.COO O.COO 5 .670___ 6.ci4 0.003  COCO C.000 5.304 7.C12-. 0.040  -0.493916E-13  GASES  LOG  NAME  OXYGEN CARBON  G AS DIOXIDE  _SZ£AZ_ SULFUR GAS HVCRCGEN SOL F I D " JdY.C__.C-G. .. _____ .5  y , f THANE  TH  rLCG K I Oo * -  0.0 - 7 . 63540 _.-5J2_17_ 192.34951 1 25.01C49 __ 41...66.022. 135.50718  FOR R CR M T E 499. 7 3 9 5 8 7 8  LOG  LOG  ACTIVITY  K  Q =  -66.5C0CC -2.44921  0. 2 1 6 2 3 E - 6 6 0.35546S-02  ___._--CJ_lJL  _.CUJ.1.2j_.8_r--l_. 0.52353E-24 C. 1 8 7 8 1 E - C 7 C. 3 8 8 8 3 E - C E 0.64296E-13  FAS BEEN EXCEEDED 551 . 8 5 9 7 5 7 5  ACTIVITY  •24.2E106 -7. 72628 -8.«1C23_ 15182  -13. AT  STEP  C •  ~  "  "  "  -.  '  •  :•  IO  -PIN.  TH-  t 0 0- K  Fng  THAI C O C I T .  HAS  BEEN  EXCE-CEC  «T S T E P  0  CAT,",  D I S T R I B U T I O N AT  A  T E M P E R A T U R E  .PRESSURE M X I H U M  M J V 3 F R  tCN  OF  S U L P H A T E  C  S O  C  C  C  T  F O R  I N  O F  . * » » * * * * * * . . « *  I N I T I A L  0 . 1 6 & C O 0 ) 0 E - O 4  0 . 5 C S C O O O O E - C 5  7 , £ 3 C O.C 3 C E - C ' .  1  M O L A L I T Y  . . M O L A L I T Y  M C L  M O L A L !  L O G  O . 6 7 6 C O 0 0 0 S - O 3  - 0 . . . « J C O 0 _ 0 0 F _ 0  2  I S  . . .  IS  C O N S T R A I N T S  cu*+  C U ( 1  F E  F E U )  + +  C A +  A C T .  M O L A L I T Y  _  Z N (  +  1  C A ( 1  * * • * » * * * * » •  )  ( A O U E O U S  S P E C I E S )  ( A C U E O U S  S P E C I E S )  )  ( A Q U E O U S  S P E C I E S )  )  ( A C U E O U S  S P E C I E S )  ( A O U E O U S  S P E C I E S )  1 A C U E O U S  S P E C I E S )  ( A C U E O U S  S P E C I E S )  ( A O U E O U S  S P E C I E S )  )  F C C 3 -  H ( 1 ) C ( 1  H<-  H(l)  S O i  +  5 5 . 508250  IH**  T Y  0  CA«-  T . E M . . I S  N M 1  A L I T Y  I D £ _ _ C T . . _  C U T  .  O . 2 C 0 C O O 0 O E - O 3 . . . . M P _ L * L . ! . T Y . „ _ _  - 0 . 6 2 0 G 0 C 9 C S + 0 1  P R I N T  B A L A N C E  S Y S  M O L A L I T Y  0 . 6 2 5 C 0 C 0 0 E - O 3  298.15 ...1.00.  .  I S  S C L U T 1 C N  0 . 5 9 7 0 0 0 0 0 E - 0 6  IS  R U N  I S . . . . . . . . .  E A C H  I N  74HRL-1V44  M o l a l  U N  E L E C T R I C A L  {-2 0  sTfflB  W A T E R  T H I S  -  H I S  E E ' K E E N  LVJ..NT  » * * * » * » * *  A  10-  F  STEPS  O F  S T F ° S  C M O S " )  N  ( K E L V I N )  N U M B E R  j_QkS...-.£F_  , 0 .  S P E C I S S o  (EAQ.S)  I F  F X M 3  —  O X Y G E N  1 0 ( 3 )  S ( 1 ) C ( 4 )  G A S  0 ( 2 )  ( G A S )  SAI»PIE  D I S T R I B U T I O N OF S P E C I E S IN hATSR AT A S U L P H A T E CONC OF 10- A M o l a l  DISTRIBUTION  OF  SPECIES CALLED  AT  74-RL-1444  STEP  ACUECUS S P E C I E S SPECIES  FE+ + FE + • +  .' N t i _ ZNn-~ CU + S-S04— CHH+ H20 02(AO) CAC.03  -.CJJ1Q.4 7.NSQ4 HS 0 4 HSH2S HCC3_H2C.r3_ FE(QH)+  MCLALITY , 66? 0. I 0 I 4 O F - 0 5 0. 1 2 3 5 3 ~ - 2 0 .0.78300^-06 0.24556F-06 0. 1 6 6 0 0 E - 0 4 0„37674"-C9 0. 3093 A I 7 0 .fc21 1 S _C\. .7.6.7 7 0 f - 0 8 0. 17252'. -C7 0.6fc47IS-0« 0.555 0 3F+02 0. 33 3 e l ~ - 6 9 0.40947^-08 .0.45036"-04 O. 35144^-06 Oc 3 I 9 5 4 E - 0 7 0.32773~-C9 0. 20 21 EE-08 0. 8 6 9 3 3 F - 0 4 0. 1 1 3 ? l E - 0 3 Oo 7596CP-C7  I C N IC  :  LCG  MCL  -5.994 -20.890 -6.106 -6.6 10 -4.78C  ACTIVITY  0.81472F-06 0.80493E-21 0 . 629CS--C6_ G.1S729E-06 C. 1567CE-04  r . 5 . A 2 4 _  -17.092 -3.2C0 .-8-115 -7.763 - 6 . 177 I_.74 4_ -69.470 -8.388 -4.346.. -6.454 -7.495 -9.484 - 8 . 654 -4.061 _ -3.947_ - 7 . 119  0.64844E-17 C.5C313F-03 _0.61363E-.08 0. 1 6 3 0 0 E - 0 7 C. 63096^-06 JUS52SlE.tJ50_ 0.3388 1E-69 C. 4 C S 7 7 E - C 8 0.45068E-04 C.35165r-C6 0.302C6E-C7 .-0..3096.6F_-i_09_ 0.20232E-P8 0. 8226 IE-04 0. 1 1 3 0 9 F - 0 3 0. 7 1 8 C 5 E - 0 7  2E-02  LOG  ACT  •3. 273 -6.085 -21.094 - 6 . 201 -6.705 -4.805 -5.5 IS -17.188 -3.298 -8.212 -7.788 -6.200 ^0,_CO_C_ -69.470 - 8 . 387 .-4.346. -6.454 - 7 . 52C -9.505  CCSF  0. 8 0 3 4 4 g * 0 0 _ £C344EtCQ 62434S*03 60344E+00 6C344E4-C0 944C0E+00 .S0344E»CO C. 6007CE+C0 0. 7 9 7 8 5 5 * 0 0 0. TS.5 2CE+C0 0. 9 4 A e 7 e • c d 0. S4922E*00 X1601.S-C1 0 .lOOCOEfOl c. 100C7E+01 c. lQ.OCJFt-01.. b. 100C7E+01 0. ^452?E+CC J3. 5448TEfCO 0. 1000 7E + 01 0. '45T1E+CC G. If 0 C 7 E » C 1 0. S4525E+C0  -8.694 -4.C85 -3.947 - 7 . 144  ELECTRICAL  ACT  BALANCE  =  LOG K  O X Y G E N GAS CARBON DIOXIDE _STF j y SULFUR GAS HYCROGEN S U L F I D E HYC~CC~N GAS METHANE  ACTIVITY  0.0 -7.83540 _U_5 0 51,7_ 192 .34551 I25.01C49 __.4.1.6 6C.2.2_ 135.90718  THE LCG K FCP ECRNITE LOG K = 499.7395878  LCG  C =  LOG  0. 2 1 5 2 2 E - 6 6 0.35531E-02  0.567385-24 G.15552E-07 ..C..388 83E-.Ce . 0 .64268E-13  HAS BEEN EXCESOEC 556.4226930  ACTIVITY  •66. 5CCCC -2.4 4S3 5 ,__l.JC?_9_ - 2 4 . .4.12 -7.70381 _ -8.41C24 - 13. 1S.CC  J^ni4Jfii0j_  AT  STEP  «CT C  -0.095 -C .C95 -0 .205 -0 .095 -C • C55 -0 .025 -C .095 -C . C57 -C .098 zS .097 - c• C25 -0 .023 . 744 -1 C.C C .000 C • COO  c .coo -C • C24 -C 0 .000 -0 • C24 C .COO -0.024  -0.665814C--13  5ASES  NAME  LG  C  GRA^S/KGK  H20  0 . 2 6 5 8 9 E - 01 0. 56631E- 04 C. 720C1E- IS C.43016E- 04 C. 16052E- C4 C . 1C3 4 7E- C2 C.23938E- 07 0. 25967C-- 15 0 . 6 0 5 7 4 E - 01 _C.46069E- 06 C. 29340E- 0 6 0.67001 E- 06 C. IQOQOi 04 0. 1C842E- 67 0.409 84E- •06 .0. 61313E- 02 C . 56734E- C4 0.31018E- 05 C.10839E- C7 0 . 6 8 9 0 2 c - 07 0. 53075S- 02 _0. 7COS2E- G2 0. 5 5 341 E- 05  PPM  LCG  26.586 057 000 043_ 016 055 OOP  C. 000 60. 568 0, 000_ c. COO 0, 001 9 9 9 8 9 3 , 163 000 000 131_ 057 00 3 OOP C. COO 5 ,307 7. 008 0.006  FPM  1 .425 -1.247 -16.143 -1.266 -1.795 0. C23 -4.621 -12.586 1. 782 -3 .337 -3.533 -3.174 6 .000 -64.565 -3.287 _0.788 -1.24 6 -2.508 -4.565 -4.162 0.725 __C.846_ -2.257  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0052874/manifest

Comment

Related Items