"Science, Faculty of"@en . "Earth, Ocean and Atmospheric Sciences, Department of"@en . "DSpace"@en . "UBCV"@en . "Lett, Raymond Ernest Wingrove"@en . "2010-03-11T23:03:16Z"@en . "1979"@en . "Doctor of Philosophy - PhD"@en . "University of British Columbia"@en . "Horizontal and vertical variations of copper, cobalt, iron, manganese, molybdenum, nickel, zinc, organic carbon and pH were studied in a small bog close to a known copper-mineral occurrence in the foothills of the Cascade Mountains, British Columbia This bog consists of up to 3 m thickness of moderately decomposed, water saturated, fetid organic material underlain by glacial till that almost completely covers the contact between copper-mineralized Nicola Group volcanic rocks and porphyry dykes.\r\nSoils with more than 16% organic carbon and 0.1% Hl-reducible sulphur are enriched in copper, cobalt, nickel, zinc and molybdenum. Sympathetic relationships between nickel and zinc and between cobalt and copper are demonstrated by correlation analysis of metal data. Metals generally increase down organic soil profiles, but fall sharply in the till except at the western end of the bog where small areas of concealed till have up to 0.57<> copper and 100 ppm molybdenum. Iron and manganese are generally higher in the till than in organic soil although these metals are locally very abundant in near surface fibrous organic material.\r\nReducing, subsurface bog waters generally have higher dissolved iron, manganese and organic carbon, but lower copper contents than do surface waters. However, several subsurface water samples from the area underlain by copper-rich till contain up to 1 ppm copper. Copper is also very abundant in springs water flowing from a probable fault zone west of the bog; in seepages draining humic gleysolic soils surrounding the west side of the bog and in acid, semi-stagnant surface water.\r\nSmall, irregularly shaped grains of pyrite, chalcopyrite, covellite, native copper and framboidal pyrite are scattered throughout the organic soils. Copper sulphide and native copper grains are restricted to two areas at the eastern and western ends of the bog occurring between 1 and 3 m depth. Framboidal pyrite, however, has a wider spatial distribution in organic soils than the copper and copper-iron sulphide mineral grains.\r\nCopper and iron are principally derived through oxidation of sulphides,disseminated in the underlying volcanic rocks, by circulating ground water which then discharges into the bog along concealed fault zones. Ground water,- percolating through reduced till beneath organic soils and through humic gleysolic soils,dissolves cobalt, nickel, zinc, manganese, iron and molybdenum which then migrate through the bog as simple ions, complex ions or soluble metal-fulvate complexes. A major proportion of the dissolved copper, cobalt, nickel and zinc is probably immobilized by adsorption and complexing to solid humic and fulvic acid fractions in the soil. Authigenic copper and iron sulphides also form through reaction of metals with sulphide ions produced from biogenic sulphate reduction. Stability relationships between copper and iron minerals indicate that the grain textures reflect changes in Eh, pH, sulphide ion activity, metal ion activity and possibly dissolved organic carbon abundance.\r\nHydrous oxides of iron and possibly manganese form close to the bog surface where metal-rich solutions discharge into the oxidizing environment. Molybdenum is also concentrated in the acid fibrous organic layer due to immobility of the acid molybdenate ion. Abundant copper may be adsorbed from the metal-rich surface water by plants and is then bound to proteins forming the cell-wall membrane. This form of copper is relatively stable and the metal will only be released from the association during advanced organic diagensis."@en . "https://circle.library.ubc.ca/rest/handle/2429/21805?expand=metadata"@en . "SECONDARY DISPERSION OF TRANSITION METALS THROUGH A COPPER-RICH BOG IN THE CASCADE MOUNTAINS, BRITISH COLUMBIA by RAYMOND ERNEST WINGROVE LETT B . S c , U n i v e r s i t y o f London. 1968 M.Sc, U n i v e r s i t y of L e i c e s t e r . 1970 A THESIS SUBMITTED IN PARTIAL FULFILLMENT THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES (Department of G e o l o g i c a l Sciences) We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA October, 1978 \u00C2\u00A9 Raymond E r n e s t Wingrove L e t t , 19 78 In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I ag ree tha t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r ag ree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l1 owed w i t h o u t my w r i t t e n p e r m i s s i o n . Department o f Geological Sciences The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date December 28th, 1978 ABSTRACT H o r i z o n t a l and v e r t i c a l v a r i a t i o n s of copper, c o b a l t , i r o n , manganese, molybdenum, n i c k e l , z i n c , o r g a n i c carbon and pH were s t u d i e d i n a s m a l l bog c l o s e to a known copper-mineral o c c u r r -ence i n the f o o t h i l l s o f the Cascade Mountains, B r i t i s h Columbia T h i s bog c o n s i s t s of up to 3 m t h i c k n e s s of moderately decompos-ed, water s a t u r a t e d , f e t i d o r g a n i c m a t e r i a l u n d e r l a i n by g l a c i a l t i l l t h a t almost completely covers the c o n t a c t between copper-m i n e r a l i z e d N i c o l a Group v o l c a n i c rocks and porphyry dykes. S o i l s w i t h more than 167o o r g a n i c carbon and 0.1% Hl-reduc-i b l e sulphur are e n r i c h e d i n copper, c o b a l t , n i c k e l , z i n c and molybdenum. Sympathetic r e l a t i o n s h i p s between n i c k e l and z i n c and between c o b a l t and copper are demonstrated by c o r r e l a t i o n a n a l y s i s of metal data. Metals g e n e r a l l y i n c r e a s e down o r g a n i c s o i l p r o f i l e s , but f a l l s h a r p l y i n the t i l l except at the west-ern end of the bog where sma l l areas of concealed t i l l have up to 0.57<> copper and 100 ppm molybdenum. I r o n and manganese are g e n e r a l l y h i g h e r i n the t i l l than i n o r g a n i c s o i l although these metals are l o c a l l y very abundant i n near s u r f a c e f i b r o u s o r g a n i c m a t e r i a l . Reducing, subsurface bog waters g e n e r a l l y have h i g h e r d i s s -o l v e d i r o n , manganese and o r g a n i c carbon, but lower copper cont-ents than do s u r f a c e waters. However, s e v e r a l subsurface water samples from the area u n d e r l a i n by c o p p e r - r i c h t i l l c o n t a i n up to 1 ppm copper. Copper i s a l s o very abundant i n springs water f l o w i n g from a probable f a u l t zone west of the bog; i n seepages d r a i n i n g humic g l e y s o l i c s o i l s surrounding the west s i d e of the bog and i n a c i d , semi-stagnant s u r f a c e water. Small, i r r e g u l a r l y shaped g r a i n s of p y r i t e , c h a l c o p y r i t e , c o v e l l i t e , n a t i v e copper and framboidal p y r i t e are s c a t t e r e d throughout the o r g a n i c s o i l s . Copper s u l p h i d e and n a t i v e copper g r a i n s are r e s t r i c t e d to two areas a t the e a s t e r n and western ends of the bog o c c u r r i n g between 1 and 3 m depth. Framboid-a l p y r i t e , however, has a wider s p a t i a l d i s t r i b u t i o n i n o r g a n i c s o i l s than the copper and c o p p e r - i r o n s u l p h i d e m i n e r a l g r a i n s . Copper and i r o n are p r i n c i p a l l y d e r i v e d through o x i d a t i o n of s u l p h i d e s , d i s s e m i n a t e d i n the u n d e r l y i n g v o l c a n i c rocks, by c i r c u l a t i n g ground water which then discharges i n t o the bog along concealed f a u l t zones. Ground water,- p e r c o l a t i n g through reduced t i l l beneath o r g a n i c s o i l s and through humic g l e y s o l i c s o i l s , d i s s o l v e s c o b a l t , n i c k e l , z i n c , manganese, i r o n and molyb-denum which then migrate through the bog as simple i o n s , complex ions or s o l u b l e m e t a l - f u l v a t e complexes. A major p r o p o r t i o n of the d i s s o l v e d copper, c o b a l t , n i c k e l and z i n c i s probably immob-i l i z e d by a d s o r p t i o n and complexing to s o l i d humic and f u l v i c a c i d f r a c t i o n s i n the s o i l . A u t h i g e n i c copper and i r o n s u l p h -ides a l s o form through r e a c t i o n of metals w i t h s u l p h i d e ions produced from b i o g e n i c sulphate r e d u c t i o n . S t a b i l i t y r e l a t i o n -ships between copper and i r o n m i n e r a l s i n d i c a t e t h a t the g r a i n t e x t u r e s r e f l e c t changes i n Eh, pH, s u l p h i d e i o n a c t i v i t y , metal i o n a c t i v i t y and p o s s i b l y d i s s o l v e d o r g a n i c carbon abundance. Hydrous oxides of i r o n and p o s s i b l y manganese form c l o s e to the bog s u r f a c e where m e t a l - r i c h s o l u t i o n s d i s c h a r g e i n t o the o x i d i z i n g environment. Molybdenum i s a l s o c o n c e n t r a t e d i n the a c i d f i b r o u s o r g a n i c l a y e r due to i m m o b i l i t y of the a c i d molyb-denate i o n . Abundant copper may be adsorbed from the metal-r i c h s u r f a c e water by p l a n t s and i s then bound to p r o t e i n s forming the c e l l - w a l l membrane. T h i s form of copper i s r e l a t i v e l y s t a b l e and the metal w i l l only be r e l e a s e d from the a s s o c i a t i o n d u r i n g advanced o r g a n i c d i a g e n s i s . V TABLE OF CONTENTS Page ABSTRACT i i TABLE OF CONTENTS v LIST OF TABLES v i i i LIST OF FIGURES x LIST OF PLATES x i i i ACKNOWLEDGEMENTS x v i CHAPTER 1: INTRODUCTION 1 1-1 Statement of the problem 1 1-2 Formation and c l a s s i f i c a t i o n o f bogs 2 1-3 Bog sedimentation and formation of humic substances 4 1-4 I n t e r a c t i o n of metals w i t h humic substances i n bogs 8 1-5 Diagenesis i n bogs 14-1-6 Studies of t r a c e metal d i s t r i b u t i o n i n bogs 17 1- 7 Summary 22 CHAPTER 2: DESCRIPTION OF THE STUDY AREA 24 2- 1 L o c a t i o n and access 24 2-2 Physiography, drainage and c l i m a t e 24 2-3 E f f e c t s of g l a c i a t i o n and P l e i s t o c e n e d e p o s i t s 29 2-4 Geology o f the study area 31 2-5 M i n e r a l e x p l o r a t i o n h i s t o r y and pre v i o u s 37 geochemical i n v e s t i g a t i o n s 2- 6 Pedology and f l o r a of the study area 38 CHAPTER 3: SAMPLING AND ANALYTICAL TECHNIQUES 48 3- 1 Sampling methods and f i e l d o b s e r v a t i o n s 48 3-2 A n a l y s i s of samples f o r t r a c e metals 52 3-3 A n a l y s i s of water samples f o r 2-2 b i q u i n o l i n e 56 e x t r a c t a b l e copper 3-4 Organic carbon a n a l y s i s 56 3-5 Sulphur a n a l y s i s 59 3-6 P r e p a r a t i o n o f p o l i s h e d mounts from heavy 60 m i n e r a l separates and o r g a n i c s o i l fragments v i Page 3-7 Scanning e l e c t r o n microprobe and e l e c t r o n 60 microscope s t u d i e s 3- 8 A n a l y t i c a l p r e c i s i o n 61 CHAPTER 4: GEOCHEMICAL RESULTS 64 4- 1 Trace and minor element abundances and pH 64 i n s o i l s and t i l l 4-2 S t a t i s t i c a l treatment of the data 80 4-3 S t a t i s t i c a l c o r r e l a t i o n between metals, 87 or g a n i c carbon and pH i n s o i l s 4-4 Trace metals i n v o l c a n i c ash 95 4-5 Trace metals i n bog v e g e t a t i o n 9 7 4-6 Trace elements i n ground and s u r f a c e bog waters 9 7 4- 7 HI r e d u c i b l e sulphur contents of s o i l and t i l l 106 CHAPTER 5: SULPHIDE MINERALS IN ORGANIC SOILS 109 AND TILL 5- 1 I n t r o d u c t i o n 109 5-2 Composition and t e x t u r e s o f s u l p h i d e m i n e r a l g r a i n s 109 5-3 D i s t r i b u t i o n of copper and i r o n m i n e r a l g r a i n s 121 5- 4 R e s u l t s o f microprobe analyses o f o r g a n i c s o i l 126 fragments CHAPTER 6: DISCUSSION 137 6- 1 Summary of r e s u l t s 137 6-2 Development of the bog and o r g a n i c d i a g e n e s i s 140 6-3 Accumulation of metals i n o r g a n i c s o i l s 143 6-4 Bog water chemistry 151 6-5 T h e o r e t i c a l models f o r water chemistry 153 and p r e d i c t i o n o f m i n e r a l s o l u b i l i t i e s 6-6 S t a b i l i t y o f copper and i r o n m i n e r a l s 166 i n o r g a n i c s o i l s 6-7 A conceptual model f o r metal d i s p e r s i o n 176 6-8 A p p l i c a t i o n s to m i n e r a l e x p l o r a t i o n 179 CHAPTER 7: CONCLUSIONS 183 BIBLIOGRAPHY 185 v i i Page APPENDICES Appendix A: Appendix B Appendix C: Appendix D: Tabulated r e s u l t s f o r Co, Cu, Fe, Mn, N i , Zn, o r g a n i c carbon, pH and Mo i n s o i l s and t i l l ; Cu, Fe, Mn, Zn, o r g a n i c carbon, SO^, Ca and pH i n waters. B - l : Organic carbon by wet o x i d a t i o n B-2: Organic carbon by Leco t o t a l carbon a n a l y s e r B-3: Sulphate i n water B-4: B i q u i n o l i n e e x t r a c t a b l e copper i n water B-5: Determination of sulphate i n s o i l by HI r e d u c t i o n and bismuth c o l o r i m e t r y P r o b a b i l i t y graphs f o r metals, o r g a n i c carbon and pH i n s o i l s and t i l l Example of DIAG program output f o r water sample 74-RL-1429 and d i s t r i b -u t i o n of aqueous s p e c i e s i n water samples 74-RL-142S, 1439, 1442, 1443 and 1444. 195 202 203 204 205 207 211 230 V l l l Table 3-1: Table 3-2: Table 4-1 Table 4-2: Table 4-3: Table 4-4: Table 4-5 Table 4-6 Table 4-7 LIST OF TABLES PAGE Instrumental o p e r a t i n g c o n d i t i o n s 54 f o r atomic a b s o r p t i o n spectrophoto-meters . A n a l y t i c a l p r e c i s i o n . 62 Geometric mean (X), mean + 2 standard 82 d e v i a t i o n , mean + 1 standard d e v i a t -i o n and Log standard d e v i a t i o n (S) of p o p u l a t i o n s r e p r e s e n t i n g 89 s o i l samples. Geometric mean (X), mean + 2 standard 83 d e v i a t i o n , mean + 1 standard d e v i a t -i o n and Log standard d e v i a t i o n (S) of p o p u l a t i o n s r e p r e s e n t i n g 96 t i l l samples. C o r r e l a t i o n m a t r i x f o r s o i l samples 88 w i t h o r g a n i c carbon content g r e a t e r than 5%; (n = 63; r = 0.25 s i g n i f i c -ant at 957o confidence l e v e l ) . C o r r e l a t i o n m a t r i x f o r s o i l samples 88 w i t h o r g a n i c carbon content g r e a t e r than 16%; (n = 33; r = 0.35 s i g n i f -i c a n t at 957o confidence l e v e l ) . Metal contents of v o l c a n i c ash 96 samples. Cu, Co, Mn, N i and Zn are i n ppm; Fe i s i n %. Metal contents i n ppm of v e g e t a t i o n 96 samples. A r i t h m e t i c means (X), standard d e v i a t - 98 ions (S) and ranges (R) f o r elements i n water. Cu, Fe, Mn and Zn i n ppb; C and Ca i n ppm. P = 7o values det-e c t i o n l i m i t . Page Table 4-8: Surface and subsurface water samples analysed by atomic adsorption spect- 103 rophotometry and by 2-2 biquinoline colorimetry. Table 4-9: Element contents i n surface and sub- 105 surface bog water samples. Table 4-10: Hydriodic acid reducible sulphur and 107 organic carbon contents of samples from four p r o f i l e s . Table 5-1: Metals and organic carbon i n s o i l 127 samples used for microprobe analysis. Table 6-1: D i s t r i b u t i o n of aqueous species i n 156 water sample 74-RL-1429 at Log oxygen a c t i v i t y of -66.5. Table 6-2: D i s t r i b u t i o n of aqueous species i n . 157 water sample 74-RL-1429 at Log oxygen a c t i v i t y of -66.0 Table 6-3: D i s t r i b u t i o n of aqueous species i n 158 water sample 74-RL-1429 at Log oxygen a c t i v i t y of -65.5. Table 6-4: Equilibrium constants and reaction 159 quotients for water sample 74-RL-1429 at Log oxygen a c t i v i t i e s of -66.5, -6b.0 and -65.5 and at 25\u00C2\u00B0C i n the presence of s o l i d chalcopyrite and p y r i t e Table 6-5: Equilibrium constants, reaction quot- 162 ients and r e l a t i v e degree of mineral saturation i n central bog subsurface water samples at Log oxygen a c t i v i t y of -66.5. Table 6-6: Proportion of metals t h e o r e t i c a l l y 165 bound to the f u l v i c acid f r a c t i o n i n subsurface bog water samples. X LIST OF FIGURES Page F i g u r e 1-1: F u l v i c a c i d s t r u c t u r e proposed by 7 Gamble and S c h n i t z e r (1973). F i g u r e 1-2: Schematic diagram f o r t r a c e metal 7 i n t e r a c t i o n s i n o r g a n i c s o i l s . F i g u r e 1-3: Reactions between copper and f u l v i c 11 a c i d f r a c t i o n . F i g u r e 2-1: L o c a t i o n o f study area. 27 F i g u r e 2-2: O u t l i n e of the m i n e r a l p r o p e r t y and 28 l o c a t i o n of bogs. F i g u r e 2-3: Geology of the study area ( a f t e r 32 Mustard 1968). F i g u r e 2-4: G e o l o g i c a l cross se c t i o n . A - A' shown 36 on f i g u r e 2-3. F i g u r e 2-5: S o i l catena through the study area. 40 F i g u r e 2-5a: P r o f i l e A. 41 F i g u r e 2-5b: P r o f i l e B. 42 F i g u r e 2-5c: P r o f i l e C. 43 F i g u r e 2-6: C e n t r a l bog drainage, s o i l s and f l o r a . 45 F i g u r e 3-1: L o c a t i o n of s o i l and t i l l p r o f i l e s . 49 F i g u r e 3-2: S o i l and t i l l sample l o c a t i o n s . 51 F i g u r e 3-3: Water sample l o c a t i o n s . 53 F i g u r e 3-4: Comparison of o r g a n i c carbon analyses 58 of 15 samples by wet o x i d a t i o n , Leco method and l o s s on i g n i t i o n a t 550\u00C2\u00B0C. F i g u r e 4-1: Organic carbon i n s o i l s and t i l l . 65 F i g u r e 4-2: V a r i a t i o n of metals, o r g a n i c carbon and 66 sulphur on a f i b r i c m e s i s o l p r o f i l e . Page F i g u r e 4- 3: V a r i a t i o n of metals, o r g a n i c carbon 67 and sulphur on a humic m e s i s o l p r o f i l e . F i g u r e 4- 4: Copper i n s o i l s and t i l l . 69 F i g u r e 4- 5: V a r i a t i o n of metals and pH on an o r t h i c 71 d y s t r i c b r u n i s o l p r o f i l e . F i g u r e 4- 6: Cobalt i n s o i l s and t i l l . 73 F i g u r e 4- 7: Manganese i n s o i l s and t i l l . 74 F i g u r e 4- 8: I r o n i n s o i l s and t i l l . 75 F i g u r e 4- 9: N i c k e l i n s o i l s and t i l l . 76 F i g u r e 4- 10: Z i n c i n s o i l s and t i l l . 77 F i g u r e 4- 11: Molybdenum i n s o i l s and t i l l . 78 F i g u r e 4- 12: pH i n s o i l s and t i l l 79 F i g u r e 4- 13: S c a t t e r diagram f o r Log-^QCu a g a i n s t 90 o r g a n i c carbon. F i g u r e 4- 14: S c a t t e r diagram f o r L o g ^ C o a g a i n s t 91 Log 1 ( )Mn. Fi g u r e 4- 15: S c a t t e r diagram f o r Log-^Zn a g a i n s t 92 L o g 1 Q N i . F i g u r e 4- 16: S c a t t e r diagram f o r Log-^Zn a g a i n s t 94 L o g ^ N i ( 33 samples ) . F i g u r e 4- 17: Cu (ppb) i n s u r f a c e water samples. 100 F i g u r e 4- 18: Cu (ppb) i n subsurface water samples. 101 F i g u r e 5- 1: D i s t r i b u t i o n of m i n e r a l g r a i n s i n 122 o r g a n i c s o i l s and t i l l . F i g u r e 5- 2: D i s t r i b u t i o n of framboidal p y r i t e . 123 F i g u r e 5- 3: D i s t r i b u t i o n of c o v e l l i t e , c o v e l l i t e - 124 c h a l c o p y r i t e and n a t i v e copper g r a i n s . x i i Page F i g u r e b-1: S i m p l i f i e d Eh-pH diagram f o r 168 m i n e r a l r e l a t i o n s h i p s i n the Cu-Fe-S-O-H system at 25\u00C2\u00B0C and 1 atmosphere p r e s s u r e . F i g u r e 6-2a: S t a b i l i t y r e l a t i o n s h i p s between 171 copper minerals i n water at 25\u00C2\u00B0C and 1 atmosphere p r e s s u r e as a f u n c t i o n of Log oxygen a c t i v i t y , s ulphate a c t i v i t y and pH. F i g u r e 6-2b: S t a b i l i t y r e l a t i o n s h i p s between 172 i r o n minerals i n water at 25\u00C2\u00B0C and 1 atmosphere p r e s s u r e as a f u n c t i o n o f Log oxygen a c t i v i t y , s u l p hate a c t i v i t y and pH F i g u r e 6-3: Conceptual model f o r d i s p e r s i o n 177 of metals i n the bog. x i i i P l a t e 2-1 P l a t e 5-1: P l a t e 5-2: P l a t e 5-3: P l a t e 5-4: P l a t e 5-5: P l a t e 5-6 P l a t e 5-7: P l a t e 5-8 P l a t e 5-9: P l a t e 5-10 LIST OF PLATES A west l o o k i n g view of the west end of the c e n t r a l bog. E l e c t r o n micrograph of a fr a m b o i d a l p y r i t e c l u s t e r i n a p o l i s h e d mount made from a heavy m i n e r a l separate of s o i l sample 74-RL-1119. E l e c t r o n micrograph of an i n d i v i d u a l p y r i t e framboid ('A') from the c l u s t e r shown i n p l a t e 5-1. E l e c t r o n micrograph of p y r i t e fram-boids from sample 74-RL-1119. Photomicrograph of the framboid c l u s t e r shown i n p l a t e 5-1. Photomicrograph of a p o l i s h e d mount from sample 74-RL-1127 c o l l e c t e d at s t a t i o n G 1.5 at 2.5 m depth. Photomicrograph of a p o l i s h e d mount from sample 74-RL-1117 c o l l e c t e d at s t a t i o n G 1.0 at 1.5 m depth. Photomicrograph of a c h a l c o p y r i t e -c o v e l l i t e g r a i n from sample 74-RL-1119. Photomicrograph of a g r a i n from sample 74-RL-1113. Photomicrograph from sample 74-RL-1119 showing c h a l c o p y r i t e intergrown w i t h c o v e l l i t e . Photomicrograph from sample 74-RL-1119 showing c o v e l l i t e (Cv) forming d i s c o n t -inuous , roughly c o n c e n t r i c l a y e r s i n c h a l c o p y r i t e (Cp). Page 25 110 111 112 114 114 116 117 117 119 119 X I V P l a t e 5-11 P l a t e 5-12 P l a t e 5-13 P l a t e 5-14: P l a t e 5-15: P l a t e 5-16 P l a t e 5-17 P l a t e 5-18: P l a t e 5-19 P l a t e 5-20: P l a t e 5-21: P l a t e 5-22 P l a t e 5-23 P l a t e 5-24: P l a t e 5-25: Photomicrograph of a g r a i n from sample 74-RL-1127. Photomicrograph o f a p o l i s h e d mount made from sample 73-RL-340' I n t e n s i t y p a t t e r n o f CuKa X - r a d i a t i o n i n sample 73-RL-340. I n t e n s i t y p a t t e r n o f SKa X - r a d i a t i o n i n sample 73-RL-340. I n t e n s i t y p a t t e r n o f FeKa X - r a d i a t i o n i n sample 73-RL-340. Photomicrograph of a p o l i s h e d mount from sample 73-RL-323. I n t e n s i t y p a t t e r n of CuKa X - r a d i a t i o n i n sample 73-RL-323. I n t e n s i t y p a t t e r n of SKa X - r a d i a t i o n i n sample 73-RL-323. I n t e n s i t y p a t t e r n of FeKa X - r a d i a t i o n i n sample 73-RL-323. Photomicrograph o f a p o l i s h e d mount from sample 73-RL-340. I n t e n s i t y p a t t e r n of CuKa X - r a d i a t i o n i n sample 73-RL-340. I n t e n s i t y p a t t e r n o f S K a X - r a d i a t i o n i n sample 73-RL-340. I n t e n s i t y p a t t e r n of FeKa X - r a d i a t i o n i n ' sample 73-RL-340. Photomicrograph of a p o l i s h e d mount made from sample 73-RL-338 I n t e n s i t y p a t t e r n o f CuKa X - r a d i a t i o n i n sample 73-RL-338. Page 120 120 129 129 129 130 131 131 131 132 133 133 133 135 136 X V Page Plate 5-26: Intensity pattern of S K a 136 X-radiation i n sample 73-RL-338. Plate 5-27: Intensity pattern of F e K a 136 X-radiation i n sample 73-RL-338. x v i ACKNOWLEDGEMENTS The author i s s i n c e r e l y g r a t e f u l f o r the a s s i s t a n c e prov-i d e d by the \"following people d u r i n g t h i s study and e s p e c i a l l y to Dr. W. K. F l e t c h e r who s u p e r v i s e d the p r o j e c t . Drs. M. A. Barnes, W. C. Barnes, A. J . S i n c l a i r and L. E. Lowe p r o v i d e d continuous a d v i c e , encouragement and c r i t i c a l l y reviewed t h i s manuscript. A d d i t i o n a l advice was o f f e r e d by Dr. V. C. B r i n k on p l a n t i d e n t i f i c a t i o n , by Dr. T. H. Brown on thermodynamics, by Dr. C. H. Cross on o r g a n i c geochemistry, by Dr. L. M. Lavk-u l i c h on s o i l c l a s s i f i c a t i o n , by Dr. A. E. S o r e g a r o l i on econ-omic geology and by Dr. H. V. Warren on biogeochemistry. Colleagues i n the Department of G e o l o g i c a l Sciences and Mining Industry who m a t e r i a l l y c o n t r i b u t e d to the p r o j e c t by t h e i r h e l p f u l d i s c u s s i o n i n c l u d e Dr. G. Ashley, Mr. M. Bustin, Mr. I. Duncan, Dr. P. J . Doyle, Dr. S. J . Hoffman, Mr. J . M. Morganti and Mr. D. W i l t o n . Mr. E. Pe r k i n s a d v i s e d on computer programm-in g . Mr. A. D h i l l o n , Mrs. A. Waskett-Myers, Mr. M. Waskett-Myers, Mr. G. Geogakopoulos, Mr. A. L a s c i s and Miss. L. McDonald a s s i s t e d i n sample a n a l y s e s . Mr. I. Cameron and Mr. M. Waskett-Myers a s s i s t e d , i n f i e l d s t u d i e s and sample c o l l e c t i o n . Mrs. D. Coleman, Mr. A. McGregor and Mrs. Y. M i c h i e p r o v i d e d d r a f t i n g and t y p i n g s e r v i c e s . Accommodation p r o v i d e d by Mr. H. Huff of P r i n c e t o n , B.C., i s g r a t e f u l l y a p p r e c i a t e d . The author i s indebted to Mr. C. D. Bates (BP Canada L t d . ) , Dr. P. E. Fox (Fox G e o l o g i c a l C o n s u l t a n t s ) , Dr. C. J . Hodgson (Amax E x p l o r a t i o n I n c . ) , Dr. R. F. H o r s n a i l (Amax E x p l o r a t i o n I n c . ) , Mr. T. N. Macauley (Newmont Mining Corp. o f Canada Ltd.) x v i i and Mr. D. K. Mustard (BP Canada Ltd.) f o r r e l e a s i n g i n f ormat-i o n r e l a t i n g to the geology of the p r o j e c t area and f o r h e l p f u l d i s c u s s i o n . F i n a n c i a l a s s i s t a n c e d u r i n g 1973 and 1974 was p r o v i d e d from Energy Mines and Resources r e s e a r c h agreement number 65-1674.and by the E r n e s t i n e A. M. E. Kania Memorial S c h o l a r -s h i p . L a t e r support f o r the p r o j e c t was p r o v i d e d from the L-M mutual fund. F i n a l l y I should l i k e to thank my w i f e f o r her u n f a i l i n g encouragement duri n g the completion of t h i s t h e s i s . 1 CHAPTER 1 INTRODUCTION 1-1 STATEMENT OF THE PROBLEM Conventional geochemical e x p l o r a t i o n techniques are o f t e n u n s u c c e s s f u l i n g l a c i a t e d areas where t h i c k t r a n s p o r t e d over-burden may bury p o t e n t i a l l y economic base-metal d e p o s i t s . Metals can, however, under f a v o u r a b l e h y d r o l o g i c c o n d i t i o n s be t r a n s p o r t e d i n t o the secondary environment by deeply c i r c u -l a t i n g ground water. Enhanced metal c o n c e n t r a t i o n s i n bogs are g e n e r a l l y the r e s u l t o f metal accumulation from d i l u t e ground water s o l u t i o n s by o r g a n i c matter. I n t e r p r e t a t i o n of geochemical anomalies i n bogs can be a problem e s p e c i a l l y i n d i s c r i m i n a t i n g between metals concentrated from weakly miner-a l i z e d ground water o r s u r f a c e water t h a t has moved some d i s -tance l a t e r a l l y and those metals i n t r o d u c e d from concealed sources beneath the bog. Important f a c t o r s t hat must be con^ s i d e r e d when i n t e r p r e t i n g such anomalies are complex i n t e r -a c t i o n s o f metals w i t h o r g a n i c substances and r e a c t i o n s between metals and such l i g a n d s as s u l p h i d e and carbonate. Both o r -gani c and i n o r g a n i c a s s o c i a t i o n s w i l l tend to immobilize metals i n bogs. Trace and minor element d i s t r i b u t i o n p a t t e r n s have been s t u d i e d i n a small c o p p e r - r i c h bog c l o s e to a known copper m i n e r a l occurrence. R e s u l t s o f the i n v e s t i g a t i o n s are de-s c r i b e d i n t h i s t h e s i s and models are proposed to e x p l a i n the s p a t i a l d i s t r i b u t i o n p a t t e r n s and the forms of copper present i n the bog. 2 1-2 FORMATION AND CLASSIFICATION OF BOGS The h i g h content o f n a t u r a l o r g a n i c complexing agents i n bogs has been observed to s t r o n g l y i n f l u e n c e t r a c e metal d i s -p e r s i o n . The nature o f these o r g a n i c substances w i l l r e f l e c t processes o f bog sedimentation, which can vary under d i f f e r e n t h y d r o l o g i c a l and c l i m a t i c c o n d i t i o n s . Formation o f d i f f e r e n t bog types w i l l t h e r e f o r e have a s i g n i f i c a n t e f f e c t on t r a c e metal i n t e r a t i o n s . Bogs can be d e f i n e d as peat covered or f i l l e d landforms where, although the water t a b l e i s c l o s e to the s u r f a c e , there i s u s u a l l y l i t t l e s t a n ding water ( T a r n o c a i 1970). Peat which c o n s i s t s of mixed undecomposed p l a n t fragments, products o f t h e i r decomposition, microorganisms, m i n e r a l s , and water, may be c l a s s i f i e d as an o r g a n i c s o i l . Normal s o i l f o r m a t i o n i s c h a r a c t e r i s e d by a balance between the r a t e o f o r g a n i c d e b r i s accumulation and r a t e o f t o t a l b i o l o g i c a l decomposition. The environment o f peat formation, however, r e p r e s e n t s a break i n the carbon c y c l e where r a t e s o f o r g a n i c accumulation are f a r g r e a t e r than the t o t a l d e s t r u c t i o n o f m a t e r i a l s (Given and D i c k i n s o n 1975). P h y s i c a l l a n d forms which impede s u r f a c e water movement to l e v e l s where sediment can d e p o s i t are p o t e n t i a l bog s i t e s (Moore and Bellamy 1974). Extent o f peat formation i n these areas w i l l depend on the balance between p l a n t r e s i d u e accumu-l a t i o n , r a t e o f decomposition and removal of the products from the system (Romanov 1961). High o r g a n i c accumulation r a t e s w i l l r a i s e the l a n d s u r f a c e and l i m i t upward pore water move-3 merit to p l a n t r o o t s . As. the v e g e t a t i o n is; unable to draw n u t r i e n t s from the m i n e r a l s o i l beneath the o r g a n i c m a t e r i a l i t i s t h e r e f o r e f o r c e d to o b t a i n elements from the developing host peat. Trace metals: become d e p l e t e d i n the o r g a n i c m a t e r i a l u n l e s s c o n t i n u o u s l y s u p p l i e d by l a t e r a l i n f l u x o f ground water. Bogs where t r a c e element n u t r i e n t s are dominantly s u p p l i e d through ground water movement have been c l a s s i f i e d , by T a r n o c a i (1970), as m i n e r a l o t r o p h i c or termed lower bogs by Manaskaya and Drozdova (1968). When n u t r i e n t flow to p l a n t r o o t s i s decreas-ed the monocotyledon f l o r a , t y p i c a l i n m i n e r a l o t r o p h i c bogs, may be r e p l a c e d by mosses which can t h r i v e at very low t r a c e element c o n c e n t r a t i o n s . Necessary n u t r i e n t s w i l l be adequat-e l y s u p p l i e d by s u r f a c e p r e c i p i t a t i o n . Moss growth a l s o tends to lower pH of the s u r f a c e l a y e r s suppressing microorganism a c t i v i t y r e s p o n s i b l e f o r p l a n t decomposition. Higher growth r a t e s r e s u l t i n convex bog morphologies where o r g a n i c m a t e r i a l i s l a r g e l y f i b r o u s sphagnum peat. Bogs of t h i s type are c l a s s -i f i e d as ombotrophic (T a r n o c a i 1970) or r a i s e d bogs (Manaskaya and Drozdova (1968) . Where f e a t u r e s c h a r a c t e r i s t i c of both main c l a s s e s can be observed bogs are termed t r a n s i t i o n a l . V e g e t a t i o n may p l a y an important r o l e i n both o r g a n i c matter accumulation and t r a c e metal c o n c e n t r a t i o n . T r a n s i t i o n metals, carbon, n i t r o g e n and sulphur are e s s e n t i a l f o r p l a n t metabolism. Metals c a t a l y s e v a r i o u s enzyme systems which p r o v i d e energy and form amino a c i d s , p r o t e i n s and v i t a m i n s (Nason and McElroy 1963). Large a p p a r e n t l y non t o x i c metal accumulations can form i n the t i s s u e s of c e r t a i n p l a n t s espec-4 t a l l y species: growing i n bog environments. F r a s e r (1961) , f o r example, observed t h a t the moss, P o h l i a n u trans, from the area of copper r i c h ground water seepages i n a New Brunswick bog, contained up to 3.87. copper. C o n c e n t r a t i o n s o f 0.3% copper, 0.67o z i n c and 0.067, l e a d were a l s o found by Salmi (1967) i n twig ash of the bog shrub Ledum P a l u s t r a . L o c a t i o n o f these metal accumulations i n p l a n t t i s s u e s i s u n c e r t a i n although copper and z i n c may be immobilized i n l e a f c e l l w a l l membranes thereby p r e v e n t i n g t o x i c l e v e l s forming at m e t a b o l i c s i t e s (Tur-ner (1969). Met a l r e l e a s e d u r i n g decomposition c o u l d be im-po r t a n t i n formation o f d i f f e r e n t o r g a n i c products. 1-3 BOG SEDIMENTATION AND FORMATION OF HUMIC SUBSTANCES Organic sediments i n bogs are formed by m i c r o b i a l break-down o f p l a n t m a t e r i a l and the accumulation of dark, h i g h mole-c u l a r weight decomposition products. Rates at which these ac-t i v i t i e s proceed depend on such f a c t o r s as su r f a c e water flow, supply o f n u t r i e n t s to microorganisms e.g. n i t r o g e n , and type of v e g e t a t i o n ( F l a i g 1972). Sedimentation r a t e s i n t r a n s i -t i o n a l bogs have been estimated by Grosse et al.(1964) and range from 0.1 to 1.6mm/year. Most i n t e n s i v e p l a n t decomposition by the a c t i o n of f u n g i i , actinomyces and a e r o b i c b a c t e r i a has been observed to occur i n s u r f a c e l a y e r s (Kuznetsov 1963; F l a i g 1968; Given and D i c k i n s o n 1975). D i f f e r e n t p l a n t t i s s u e s w i l l be at t a c k e d by s p e c i f i c microorganisms. Moore (1969), f o r example, e s t a b l i s h e d that the fungus M e r u l i u s Lacrymans d i g e s t e d c e l l u l o s e and h e m i c e l l u l o s e , but would not break down l i g n i n . 5 C e r t a i n microorganisms may be r e s t r i c t e d to d i f f e r e n t en-vironments. Abundant f u n g i i e.g. Fusarium are found i n s u r f a c e l a y e r s of m i n e r a l o t r o p h i c bogs. Smaller p o p u l a t i o n s o f the groups P e n i a l l i u m and Clodosporium are, however, more common i n ombotrophic environments. F u n g i a l p o p u l a t i o n s decrease i n s i z e w i t h p r o g r e s s i v e depth i n bog sediments due to lower oxygen con-c e n t r a t i o n s (Waksman and Stevens 1929). A c t i v i t y a l s o depends on the humidity o f the peat and has been observed, by Koronova (1961), to reach a maximum at 30\u00C2\u00B0C w i t h a water content o f 60-80%. Products formed as a r e s u l t o f advanced decomposition o f p l a n t m a t e r i a l s i n c l u d e low mo l e c u l a r weight i n o r g a n i c mole-c u l e s such as methane, carbon d i o x i d e , hydrogen, ammonia and hydrogen s u l p h i d e . These are formed mainly through the b i o -genic r e d u c t i o n o f n i t r a t e s , s m a l l o r g a n i c molecules such as carbohydrates and sulphate. Organic components such as humic substances, f u l v i c substances, amines and p o l y s a c c h a r i d e s can a l s o form although, however, the p r e c i s e mechanism through which these substances are developed i s u n c e r t a i n . Humic and f u l v i c substances occur w i d e l y i n n a t u r a l environments i n c l u d i n g bogs, lake sediments and marine sediments. V a r i o u s mechanisms f o r the form a t i o n of humic substances have been e x t e n s i v e l y r e -viewed by Fel b e c k (1971) and range from r e a c t i o n paths domin-ated by m i c r o b i a l a c t i v i t y to r e a c t i o n p a r ths i n v o l v i n g chemical p o l y m e r i z a t i o n o f s m a l l o r g a n i c molecules. Both m i c r o b i a l ac-t i v i t y and p o l y m e r i z a t i o n r e a c t i o n s are probably i n v o l v e d at d i f f e r e n t stages i n the genesis o f humic and f u l v i c substances. Products o f p l a n t decomposition which c o u l d i n t e r a c t w i t h t r a c e metals i n bogs i n c l u d e s o l u b l e amino a c i d s , simple organ-i c a c i d s , carbohydrates and humic polymer molecules. Humic substances have been s t u d i e d i n c o n s i d e r a b l e d e t a i l and t h e i r p r o p e r t i e s w i l l be o n l y b r i e f l y d e s c r i b e d i n t h i s t h e s i s . Stevenson and B u t l e r (1969) d e f i n e humic substances as a s e r i e s of a c i d i c , y e l l o w - t o b l a c k c o l o u r e d , moderately h i g h m o l e c u l a r weight polymers which have c h a r a c t e r i s t i c s d i s s i m i l a r to any other o r g a n i c compounds o c c u r r i n g i n l i v i n g organisms. A r b i -t r a r y d i v i s i o n of humic substances i n t o the two main humic and f u l v i c a c i d f r a c t i o n s i s based on s o l u b i l i t y i n a l k a l i n e or m i n e r a l a c i d s o l v e n t s . Both humic and f u l v i c a c i d f r a c t i o n s are s o l u b l e i n d i l u t e sodium hydroxide, a medium g e n e r a l l y used to e x t r a c t humic substances from s o i l . Amorphous humic a c i d w i l l be p r e c i p i t a t e d when the dark c o l o u r e d a l k a l i n e , o r g a n i c e x t r a c t s are a c i d i f i e d w i t h HCl. The y e l l o w c o l o u r e d s o l u t i o n which remains a f t e r s e p a r a t i o n of the humic a c i d i s known as the f u l v i c a c i d f r a c t i o n . F u l v i c a c i d f r a c t i o n s have lower molecular weights, g r e a t e r s o l u b i l i t y i n aqueous s o l u t i o n s and l a r g e r carbon-hydrogen r a t i o s than humic a c i d f r a c t i o n s (Manaskaya and Drozdova 1968). Var-i a t i o n s i n the p r o p e r t i e s of the a c i d f r a c t i o n s may r e f l e c t d i f f e r e n t types of o r g a n i c matter from which they were e x t r a c t e d . S e v e r a l workers have employed X-ray d i f f r a c t i o n to i n v e s t i g a t e humic and f u l v i c a c i d s t r u c t u r e s . R e s u l t s suggest t h a t the b a s i c u n i t s c o u l d be p olymerized carbon l a t t i c e s ( S c h n i t z e r and Khan 1972). Three dimensional 'cage' s t r u c t u r e s have a l s o been proposed f o r the a c i d s by P a u l i (1968) . V a r i o u s s i d e chains F i g u r e 1-1: F u l v i c a c i d s t r u c t u r e proposed by Gamble and S c h n i t z e r (1973). Rocks and minerals weathering MCh e (Insoluble complexes)^*\u00E2\u0080\u0094 M MCh Organic s o i l pore water Higher plants Mx (Sorption by clays; insoluble precipitates) Micro organisms F i g u r e 1-2: Schematic diagram f o r t r a c e metal i n t e r a c t i o n s i n o r g a n i c s o i l s (adapted from Lindsay, 1972). 8 a t t a c h e d to the nucleus may c a r r y c a r b o x y l , p h e n o l i c h y d r o x y l , c a r b o n y l and a l c o h o l i c f u n c t i o n a l groups. I o n i z a t i o n o f carb-o x y l and p h e n o l i c groups i s r e s p o n s i b l e f o r the weakly a c i d i c and metal complexing p r o p e r t i e s of humic and f u l v i c a c i d f r a c t -ions . Gamble and S c h n i t z e r (1973) have proposed one s t r u c t u r e f o r the f u l v i c a c i d f r a c t i o n which i s shown i n F i g . 1-1. 1-4 INTERACTION OF METALS WITH HUMIC SUBSTANCES IN BOGS P a r t i t i o n i n g of metals between the d i f f e r e n t s o l i d and aqueous phases t h a t are p o s s i b l e i n bogs i s i l l u s t r a t e d i n F i g . 1-2. Reactions i n o r g a n i c s o i l s are dynamic (Lindsay 1972) s i n c e although they may approach e q u i l i b r i u m t h i s s t a t e i s r a r -e l y maintained. Metal i n t e r a c t i o n s change i n response to p l a n t n u t r i e n t uptake from water, a d s o r p t i o n of metals to c l a y s , ses-q u i o x i d e s and o r g a n i c substances and p r e c i p i t a t i o n of a u t h i g e n i c m i n e r a l s . S o l u b l e ions or molecules w i l l move through the system i n m i g r a t i n g ground water. Organic and m i n e r a l d e t r i t u s can a l s o enter the system suspended i n s u r f a c e water. S c h n i t z e r and Khan (1972) suggested t h a t i n t e r a c t i o n be-tween metals and humic substances c o u l d be by i o n exchange, c h e l a t i o n , c o a g u l a t i o n of s o l u b l e o r g a n i c molecules or p e p t i z a -t i o n of humic c o l l o i d s . Bonding of metals to humic f u n c t i o n a l groups can be l a r g e l y due to the e l e c t r o s t a t i c a t t r a c t i o n of charged ions or by formation of s t r o n g e r , c o v a l e n t l i n k a g e s . Complexing and c h e l a t i o n are terms o f t e n used to d e s c r i b e c o v a l e n t bonding between metals and humic or f u l v i c f r a c t i o n s . Complexing i n v o l v e s donation of e l e c t r o n s by s i n g l e a c t i v e l i g a n d to a metals i o n and may be shown i n the f o l l o w i n g example, MtMetal + 4A' (Ligand) + A - M - A (Complex) A Where an o r g a n i c molecule has s e v e r a l p o t e n t i a l e l e c t r o n dona-t i n g groups a c h e l a t e may be formed, + A v A \ / M / \ + (Chelate) M(Metal) + 2A-A(Ligand) = 1 A ' s A S e v e r a l experimental methods have been used to demonstrate t h a t t r a c e metals w i l l form complexes w i t h humic and f u l v i c f r a c t i o n s . Broadbent and Ott (1957) concluded t h a t the l a r g e i n c r e a s e i n o p t i c a l d e n s i t y , observed when humic a c i d and copper sulphate s o l u t i o n s were mixed t o g e t h e r , was due to form-a t i o n of copper-humate complexes. Rashid and Leonard (1973) s t u d i e d v a r i a t i o n i n i n f r a r e d s p e c t r a o c c u r r i n g when c u p r i c ions were added to s o l u t i o n s o f humic substance e x t r a c t e d from a mar-ine sediment. They concluded from these v a r i a t i o n s t h a t carb-o x y l groups, a t t a c h e d to humic substances, formed bonds w i t h copper and were important i n metal r e t e n t i o n . Goodman and Cheshire (1973;1976), however, concluded from r e s u l t s of e l e c -t r o n paramagnetic resonance measurements t h a t the copper i n peat samples was l i n k e d to n i t r o g e n a s s o c i a t e d with, h e t e r o c y c l i c por-p h y r i n molecules. N i t r o g e n content of peat humic a c i d s has been found to be g e n e r a l l y l e s s than 5 p e r c e n t . A r e l a t i v e l y s mall p r o p o r t i o n of t o t a l copper i n o r g a n i c matter may be bound to n i t r o g e n compared to t h a t a s s o c i a t e d w i t h humic f r a c t i o n s (Ennis 1962, Davis e t a l . (1969). 10 C a r b o x y l i c and p h e n o l i c h y d r o x y l f u n c t i o n a l groups have been shown to p l a y a s i g n i f i c a n t r o l e i n humic-metal complex-i n g . Ennis (1962) observed t h a t the c a t i o n exchange c a p a c i t y of peat c o u l d be decreased by the a d d i t i o n of o r g a n i c reagents which r e a c t e d w i t h s p e c i f i c f u n c t i o n a l groups to 'block' t h e i r metal complexing a b i l i t y . Experimental r e s u l t s i n d i c a t e d that c a r b o x y l groups were r e s p o n s i b l e f o r 307o and h y d r o x y l groups 60% of the t o t a l exchange c a p a c i t y . Lewis.and Broadbent workers (1961;1961) s t u d i e d continuous copper and z i n c exchange, by hydrogen i o n s , from metal s a t u r a t e d peat, humic a c i d and s y n t h e t i c p h e n o l - c a r b o x y l i c a c i d . The authors concluded from t h e i r data that groups of p h e n o l i c , c a r b o x y l i c and u n i d e n t i -f i e d s t r o n g l y a c i d l i g a n d s were l a r g e l y r e s p o n s i b l e f o r t r a c e metal complexing i n humic substances. S o l u t i o n pH which r e -f l e c t e d a c i d i t y and type of the f u n c t i o n a l groups was a l s o shown to c o n t r o l the extent to which metals were complexed. Monova-l e n t CuOH + ions were thought to bond w i t h c a r b o x y l groups w i t h c u p r i c ions demonstrating p r e f e r e n c e f o r p h e n o l i c s i t e s . P o t e n t i o m e t r i c t i t r a t i o n s have o f t e n been used to i n v e s t i -gate humic and f u l v i c metal complexing r e a c t i o n s (Beckwith 1959; Khanna and Stevenson 1962; Cross 1975). T h i s technique measures pH v a r i a t i o n a f t e r known volumes of bases are added to humic s o l u t i o n s . Sigmoidal t i t r a t i o n curves i n the absence o f metal ions suggest t h a t the humic and f u l v i c a c i d f r a c t i o n s c o u l d be both monobasic or p o l y b a s i c i n nature. Gamble and S c h n i t z e r (1973) concluded from s t u d i e s of proton r e l e a s e (pH decrease) o c c u r r i n g when copper ions were added to a f u l v i c a c i d f r a c t i o n s o l u t i o n that two r e a c t i o n s were p o s s i b l e . These i n -11 F i g u r e 1-3: Reactions between copper and f u l v i c a c i d f r a c t i o n (Gamble and S c h n i t z e r 1973). 12 v o l v e bonding of copper to p h e n o l i c h y d r o x y i and c a r b o x y l groups. The c a r b o x y l groups are ortho r e l a t i v e to the p h e n o l i c h y d r o x y i groups a t t a c h e d to the f u l v i c a c i d molecule. Two p o s s i b l e r e -a c t i o n s w i t h copper are shown i n F i g . 1-3 and number 1 i s con-s i d e r e d the most probable. S e v e r a l workers (Beckwith 1959; Khanna and Stevenson 1962; Khan 1969) found that the sequences of p o t e n t i o m e t r i c - curves o b t a i n e d from r e a c t i o n of d i f f e r e n t metals w i t h humic s o l u t i o n s resembled the t h e o r e t i c a l o r d e r of o r g a n o - t r a n s i t i o n metal com-plexes e s t a b l i s h e d by I r v i n g and W i l l i a m s (1948). R e l a t i v e s t r e n g t h of complex s t a b i l i t i e s decreases i n the order of lead> copper \u00E2\u0080\u00A2> n i c k e l > z i n c > cadmium>iron> manganese. S c h n i t z e r and Skinner (1966;1967), however, found t h a t r e l a t i v e s t r e n g t h s o f metal-humate complex s t a b i l i t i e s , measured at pH 3.5, d i d not f o l l o w the I r v i n g - W i l l i a m s sequence. They found the order to be copper > i r o n > n i c k e l > l e a d > c o b a l t > z i n c > manganese. The observed v a r i a t i o n s between measured humate-metal or f u l v a t e -metal complex s t a b i l i t i e s and the I r v i n g - W i l l i a m s s e r i e s c o u l d be due to d i f f e r e n t experimental methods used i n determinations or d i f f e r e n t source m a t e r i a l f o r humic substances. Cross (1975), f o r example, demonstrated i n t i t r a t i o n curves o b t a i n e d f o r r e -a c t i o n s of copper w i t h humic a c i d s o l u t i o n s t h a t the shape of the curves r e f l e c t e d s o i l s o f v a r y i n g m a t u r i t y . Davis et a l . (1969) found t h a t , u s i n g copper, the exchange c a p a c i t y of a humic f r a c t i o n e x t r a c t e d from peat was g r e a t e r than the maximum exchange c a p a c i t y of the o r i g i n a l peat. They concluded from these r e s u l t s t h a t d u r i n g the a l k a l i n e e x t r a c t i o n of the humic 13 f r a c t i o n a d d i t i o n a l exchange s i t e s were made a v a i l a b l e f o r bond-i n g w i t h copper. The formation of humate and f u l v a t e complexes can i n c r e a s e m o b i l i t y of metals through s e v e r a l p o s s i b l e i n t e r a c t i o n s . Rashid and Leonard (.1973) observed t h a t humic a c i d s o l u t i o n s w i l l markedly i n c r e a s e the s o l u b i l i t y of t r a n s i t i o n metal s u l -phides, hydroxides and carbonates. Baker (1973) found t h a t the s o l u b i l i t y of metal-humates of such metals as l e a d , z i n c and copper i n c r e a s e d w i t h the a d d i t i o n of f u r t h e r humic a c i d s o l u t i o n . C o a g u l a t i o n o f humic and f u l v i c a c i d s o l u t i o n s comm-only occurs when metal ions are added to these substances. Khan and S c h i t z e r (1972) suggested t h a t c o a g u l a t i o n i s due to formation of n e g a t i v e l y charged h y d r o p h i l i c c o l l o i d s . The c r i t i c a l c o n c e n t r a t i o n of d i f f e r e n t metals necessary to p e p t i z e these c o l l o i d s i s r e l a t e d to i o n i c v a l e n c e , i o n i c s t r e n g t h and pH. Ong and Bisque (1968) proposed t h a t the Foss e f f e c t can e x p l a i n r e l a t i v e m o b i l i t y of metal humate and f u l v a t e c o l l o i d s . C a r b o x y l i c and p h e n o l i c h y d r o x y l f u n c t i o n a l groups, a t t a c h e d to the humic macro molecules, are almost completely d i s s o c i a t e d i n the presence of low c a t i o n a c t i v i t i e s . I n c r e a s i n g metal i o n c o n c e n t r a t i o n s w i l l , however, decrease the mutal r e p u l s i o n between the f u n c t i o n a l groups due to the bonding of these groups w i t h metal i o n s . The Foss e f f e c t i s a s t r u c t u r a l change from a s t r e t c h e d c o l l o i d shape to a c o i l e d form due to the a t t r a c t i o n between the d i f f e r e n t groups. T h i s s t r u c t u r a l change w i l l a l s o r e s u l t i n the c o l l o i d changing from a h y d r o p h i l i c to a hydro-phobic s t a t e and, i n the p r o c e s s , c o a g u l a t i n g . 14 1-5 DIAGENESI.S IN BOGS Reactions between m i n e r a l s , microorganisms and the e n c l o s -i n g f l u i d s which occur a f t e r the sediment has been d e p o s i t e d , but b e f o r e metamorphism are termed d i a g e n e s i s (Bluck 1969). Ph o t o s y n t h e s i s , f e r m e n t a t i o n and anaerobic decomposition are b a s i c d i a g e n e t i c r e a c t i o n s which occur i n o r g a n i c r i c h bog s e d i -ments (Berner 1971). A e r o b i c b a c t e r i a and a q u a t i c p l a n t s , l i v i n g i n s u r f a c e pore water l a y e r s , use oxygen f o r t h e i r meta-b o l i c p r o c e s s e s . These r e a c t i o n s decompose o r g a n i c substances producing low m o l e c u l a r weight o r g a n i c a c i d s such as a c e t i c a c i d which, w i t h carbon d i o x i d e decreases pore water pH. Berner (1969) observed that i n the absence of n e u t r a l i z i n g bases such as amines or calcium, bog sediment waters can show decrease i n pH f a l l i n g to below 5.0. The p r o g r e s s i v e consump-t i o n of oxygen d i f f u s i n g downward through the pore water by a e r o b i c b a c t e r i a a l s o decreases Eh i n the deeper sediments. Reducing c o n d i t i o n s , produced through the removal of oxygen, favour the a c t i v i t y of anaerobic b a c t e r i a . These bac-t e r i a are important i n f e r m e n t a t i o n r e a c t i o n s and other o r g a n i c decompositions. B a c t e r i a l processes c a t a l y s e the r e d u c t i o n of v a r i o u s anions such as sulphate under c o n d i t i o n s which are t h e r -modynamically unfavourable f o r corresponding i n o r g a n i c r e a c t i o n s . Energy f o r these b i o l o g i c a l processes i s o b t a i n e d by o x i d a t i o n of simple o r g a n i c s u b s t r a t e s such as g l u c o s e . D i f f e r e n t b i o -genic r e a c t i o n s w i l l o n l y occur w i t h i n c e r t a i n Eh and pH ranges. Stumm and Morgan (1970) demonstrate t h a t i n the pH range 7 to 8 and w i t h abundant o r g a n i c s u b s t r a t e , n i t r o g e n i s i n i t i a l l y r e -15 duced to elemental n i t r o g e n , f o l l o w e d by* r e d u c t i o n of sulphate the hydrogen s u l p h i d e and f i n a l l y r e d u c t i o n of carbon d i o x i d e to methane. T h i s sequence r e f l e c t s i n c r e a s i n g e l e c t r o n den-s i t y as a r e s u l t of each r e a c t i o n and a l s o p a r a l l e l e c o l o g i c a l ranges i n which d i f f e r e n t b a c t e r i a are a c t i v e at a c e r t a i n Eh. Products of r e d u c t i o n r e a c t i o n s i n c r e a s e pore water pH and d i f f -use upward through the sediment. O x i d a t i o n of reduced s p e c i e s w i l l occur when these products d i f f u s e i n t o pore waters having a h i g h e r d i s s o l v e d oxygen c o n c e n t r a t i o n . The p o i n t at which o x i -d a t i o n occurs i n a v e r t i c a l sedimentary column may be termed the o x i d a t i o n - r e d u c t i o n boundary (Berner 1969). T h i s boundary can form r e l a t i v e l y c l o s e to the s u r f a c e of bogs where s t r o n g l y r e -ducing o r g a n i c s o i l s are i n c o n t a c t w i t h the atmosphere. S e v e r a l q u a n t i t i v e models have been proposed f o r the form-a t i o n of metal s u l p h i d e s d u r i n g marine sediment d i a g e n s i s (Sweeney and Kaplan 1973; R i c k a r d 1970; Love 1963; Ramm and B e l l a 1974; Lambert and Bubela 1970; Bass Becking and Moore 1961). Presence of c e r t a i n metal s u l p h i d e t e x t u r e s , commonly formed during d i a g e n e s i s , are o f t e n used as evidence f o r syngen-e t i c o r i g i n of many sedimentary ore d e p o s i t s . These t e x t u r a l forms, known as framboids, c o n s i s t of small (; 50um) s p h e r o i d a l accumulations of m i c r o c r y s t a l l i n e p y r i t e , galena or s p h a l e r i t e . Love (1963) o r i g i n a l l y proposed t h a t framboids r e p r e s e n t e d f o s s i l b a c t e r i a c o l o n i e s . More r e c e n t s t u d i e s , however, have demonstrated t h a t they may be formed by p r e c i p i t a t i o n , under l a b -o r a t o r y c o n d i t i o n s , without presence of b a c t e r i a (Sweeney and Kaplan 1973; R i c k a r d 1970; Berner 1969; K a l l i o s k o s k i 1969; 16 Kribek 1975). Framhoidal p y r i t e t e x t u r e s , although g e n e r a l l y a s s o c i a t e d with, marine environments-, have a l s o been i d e n t i f i e d i n l a k e sediments ( V a l l e n t y n e 1962) , e s t u r i n e sediments (Miedema 1973) and bogs (Papunen 1966). Papunen (1966) suggested t h a t framboid f o r m a t i o n i n f r e s h water sediments i n i t i a l l y i n v o l v e d the a s s o c i a t i o n of f e r r i c i o ns w i t h s p h e r i c a l humic c o l l o i d s . Where these entered a zone r i c h , i n hydrogen s u l p h i d e the i r o n would be reduced to s u l p h i d e m i n e r a l s which would be r e t a i n e d i n the c h a r a c t e r i s t i c spher-o i d a l shape. Papunen concluded t h a t humic a c i d s o n l y p a r t i c i -pated i n the mechanism by forming s t a b l e c o l l o i d a l iron-hydrox-i d e systems which p r o t e c t e d the developing framboid form. Berner (1969) a l s o demonstrated t h a t elemental sulphur, i n a d d i -t i o n to the hydrogen s u l p h i d e i s e s s e n t i a l f o r formation of i n i t i a l l y the i r o n monosulphide, mackinawite, and f i n a l l y p y r i t e . Although no d i r e c t b i o l o g i c a l i n t e r a c t i o n may be i n v o l v e d i n framboid f o r m a t i o n b a c t e r i a are e s s e n t i a l , i n d i r e c t l y , to p r o v i d e a source of s u l p h i d e anions. V a r i a b l e s which c o n t r o l p r e c i p i t a t i o n of metal s u l p h i d e s i n c l u d e c a t i o n sulphate and o r g a n i c s u b s t r a t e c o n c e n t r a t i o n s , t h e i r r e l a t i v e d i f f u s i o n r a t e s to s i t e s of p r e c i p i t a t i o n and the r a t e of b a c t e r i a l sulphate r e d u c t i o n . In o r g a n i c r i c h marine sediments the extent of s u l -phide formation w i l l be a f u n c t i o n of the a v a i l a b l e metal i o n c o n c e n t r a t i o n and i o n i c d i f f u s i o n r a t e s (Berner 1971). S u l -phate contents of freshwater sediments, however, are g e n e r a l l y much lower than i n marine environments. Ramm and B e l l a (1974) s t u d i e d the sources f o r hydrogen s u l p h i d e commonly found i n r e -17 duced, i n t e r t i d a l sediments. They determined, e x p e r i m e n t a l l y , t h a t - below d i s s o l v e d s u l p h a t e c o n c e n t r a t i o n s o f 300 ppm, the r a t e of sulphate r e d u c t i o n , by b a c t e r i a , depends on r e l a t i v e c o n c e n t r a t i o n s of sulphate and of o r g a n i c s u b s t r a t e s such as carbohydrate and amine. Casagrande et a l . (1977) found t h a t 257> of the t o t a l s u l p h -ur (which ranged from 0.17 to 0.217.) i n peat samples from Minnie's l a k e , Okefenokee swamp, Georgia was i n the form of e s t e r sulphate (sulphur i n a C-Q-S l i n k a g e , o f t e n termed HI r e d -u c i b l e ) and 17o was p y r i t i c sulphur. Lowe ( p r i v a t e communic-a t i o n , 1977) r e p o r t e d t h a t undecomposed sedge peat can have t o t a l sulphur ranging from 1 to 1.67o which i s s i g n i f i c a n t l y h i g h e r than contents r e p o r t e d by Casagrande a_t a l . 1-6 STUDIES OF TRACE METAL DISTRIBUTION IN BOGS Many f a c t o r s may c o n t r i b u t e to the f i n a l c o n c e n t r a t i o n of metals i n bogs. D i s c r i m i n a t i o n between anomalous t r a c e metal d i s t r i b u t i o n s which c o u l d r e f l e c t s i g n i f i c a n t m i n e r a l sources and h i g h background l e v e l s i n o r g a n i c m a t e r i a l s i s o f t e n d i f f i -c u l t . U s i l k (1968) reviewed geochemical p r o s p e c t i n g methods i n peatlands and concluded t h a t d e t e r m i n a t i o n of background data would r e q u i r e knowledge o f g e o l o g i c a l , geomorphological, hydro-l o g i c a l , chemical and e c o l o g i c a l c h a r a c t e r i s t i c s of bogs. Trace metals i n peat have been found to range from 1 ppm to s e v e r a l percent where bogs are l o c a t e d i n m i n e r a l i z e d areas. Walsh and Barry (1958) determined t h a t the copper content of or-ganic m a t e r i a l s from s e v e r a l I r i s h b l a n k e t bogs d i d not exceed 20 ppm and values f o r a l l elements p r o g r e s s i v e l y decreased w i t h 18 depth. T h i s t r e n d suggested t h a t the metals were i n t r o d u c e d to the system through s u r f a c e p r e c i p i t a t i o n r a t h e r than by ground water. S i m i l a r , very low, t r a n s i t i o n and r a r e e a r t h contents were found by Kochenov f t a l . (1967); Tarakanova(1971) as a r e s u l t of numerous metal d i s t r i b u t i o n s t u d i e s i n Russian bogs. Tarakanova observed, however, that p r o v i d i n g s u r f i c i a l c l a y s between bedrock and peat were comparatively t h i n , d i s t r i b u t i o n of the metals i n o r g a n i c m a t e r i a l would r e f l e c t u n d e r l y i n g g e o l -ogy. Other i n v e s t i g a t i o n s have demonstrated s i m i l a r r e l a t i o n -s h i p s . Gleeson and Coope (1966) found that copper and z i n c i n c r e a s e d from l e v e l s below 50 ppm i n peat to above 200 ppm i n the g l a c i o l a c u s t r i a n c l a y s beneath an O n t a r i o bog. S o i l pH a l s o i n c r e a s e d w i t h depth and Salmi (1967) noted t h a t values i n s e v e r a l Finnish bogs r e f l e c t e d u n d e r l y i n g g r a n i t e s or limestones. Manaskaya et al.(1960) concluded t h a t low copper contents i n sedge and sphagnum peats were r e l a t e d , p r i m a r i l y , to low bedrock l e v e l s . Copper d i s t r i b u t i o n was a l s o thought to depend on d i s -tance from u n d e r l y i n g basement and degree of ground water migra-t i o n . Trace metals may enter bogs by d i f f u s i o n through u n d e r l y i n g sediments, l a t e r a l movement of m i n e r a l i z e d ground water or sur-face water t r a n s p o r t of c l a y s i z e d d e t r i t a l g r a i n s (Tarakanova, 1971; B o r o v i t s k i i 1 9 7 0 ) . Areas where water discharges i n t o a bog system can correspond to l a r g e t r a c e metal accumulation i n o r g a n i c sediment and e s p e c i a l l y at the edge of bogs. Z i n c v a l u e s up to 8.87o were found, by Cannon (1955) i n peat samples from bog margins. The source o f metal, t r a n s p o r t e d to the bog 19 by ground water, was a small base-metal s u l p h i d e c o n c e n t r a t i o n hosted i n dolomite. F r a s e r (1961) and Boyle (1977) found t h a t h i g h copper v a l u e s approaching 17o i n a New Brunswick bog were r e l a t e d to en t r y of ground water through s p r i n g s and seepages. Mehrtens et a l . (1973) t r a c e d s i m i l a r copper l e v e l s (27>) i n a small Welsh bog to movement of ground water through a b u r i e d stream channel. D i f f e r e n t t r a c e metal p a t t e r n s can o f t e n be used to i n d i c -ate d i r e c t i o n of ground water movement and l o c a t i o n o f a miner-i z e d source. Maximum c o n t r a s t of copper and n i c k e l anomalies i n peat from a Finnish bog sampled by Nieminen and Y l i r u o k a n e n (1976) f o l l o w s a h o r i z o n t a l l a y e r at an i n t e r m e d i a t e depth i n the bog. T h i s d i s t r i b u t i o n r e f l e c t s l a t e r a l m i g r a t i o n o f ground water s o l u t i o n s from p a r t a i l l y exposed bedrock on the t i l l covered bog f l o o r . E r i k s s o n and E r i k s s o n (1976) observed that copper, l e a d and z i n c anomalies i n the Hinson bog, Sweden, r e f l e c t e d drainage from weathering metal s u l p h i d e s outcropping on the h i l l s i d e above the bog. Higher l e a d and copper v a l u e s o c c u r r e d c l o s e to the edge of the bog, but z i n c was con c e n t r a t e d i n peat at a g r e a t e r d i s t a n c e from the p o i n t of ground water en t r y . R e l a t i v e d i s t r i b u t i o n of these metals i n d i c a t e t h a t ground water flow and m o b i l i t y o f metal-humate complexes c o n t r o l m i g r a t i o n . The even, v e r t i c a l d i s t r i b u t i o n of copper i n the Whipsaw creek bogs s t u d i e d by Gunton and N i c h o l (1975) suggested s i g n i f i c a n t m i n e r a l sources below the c o p p e r - r i c h m a t e r i a l s . V e r t i c a l m i g r a t i o n of copper was not ap p a r e n t l y strongly influenced\", 20 by v a r i a t i o n i n the g r g a n i c matter content. V e g e t a t i o n , environment pH and Eh may have a strong e f f e c t on t r a c e metal d i s p e r s i o n through bogs. Salmi (1960) c o n s i d e r -ed t h a t the d i f f e r e n c e i n d i s t r i b u t i o n of manganese, i r o n , moly-bdenum and l e a d i n s u r f a c e peat of Finnish bogs from concentra-t i o n o f n i c k e l , t i t a n i u m and vanadium at depth r e f l e c t e d d i f f -e rent s o l u b i l i t i e s when metal ions migrated through zones of d e c r e a s i n g pH. He a l s o observed accumulation of copper and z i n c r e a c h i n g 3000 ppm i n the Ledum shrub twig ash. compared to l e v e l s below 300 ppm f o r these metals i n the host peat. The r e l a t i o n s h i p o f copper and molybdenum i o n m o b i l i t i e s to pH of the secondary environment has been d i s c u s s e d , i n d e t a i l , by Hansuid- (1966). H o r s n a i l and E l l i o t t (1971) s t u d i e d s e v e r a l c e n t r a l B.C. bogs, l o c a t e d c l o s e to m i n e r a l o c c u r r e n c e s , and found accumulation o f molybdenum, but d e p l e t i o n o f copper i n the a c i d , f i b r o u s s u r f a c e peat. A r e v e r s e r e l a t i o n s h i p be-tween these metals was observed, however, i n deeper, more de-composed o r g a n i c sediments. From the r e s u l t s of a r e g i o n a l geochemical p r o s p e c t i n g program conducted through c e n t r a l B.C. Boyle et. a l . (1975) concluded that molybdenum accumulated i n a l k a l i n e bogs, whereas, copper v a l u e s were g r e a t e r i n a c i d swamp s. E f f e c t o f environment, v e g e t a t i o n cover and o r g a n i c matter on copper accumulation has been s t u d i e d i n d e t a i l by F r a s e r (1961) who i n v e s t i g a t e d the Tantramer swamp, New Brunswick. Organic m a t e r i a l from an exposed peat bank r e s t i n g on sandy loam w i t h i n a s m a l l , open c l e a r i n g c o n tained up to 10% copper. Copper 21 v a l u e s r e a c h i n g 1% o c c u r r e d i n samples of the sandy loam c o l l e c t e d c l o s e to ground water seepages. Copper contents below 17o, however, were found i n s u r f a c e m a t e r i a l from an a r e a of swampy f o r e s t which p a r t l y surrounded the c l e a r i n g . Values s h a r p l y i n c r e a s e d , w i t h depth, r e a c h i n g 5% copper i n peat l a y -ers three f e e t below the swampy f o r e s t f l o o r . F r a s e r concluded that the o r i g i n a l c l e a r i n g formed when copper r i c h s p r i n g water destroyed the primary f o r e s t growth. F o l l o w i n g accumulation of the peat bank e v a p o r a t i o n from i t s exposed s u r f a c e induced upward m i g r a t i o n of s o l u t i o n s and c o n c e n t r a t i o n of copper i n the o r g a n i c m a t e r i a l . Low copper v a l u e s i n s u r f a c e l a y e r s o f the swampy f o r e s t r e f l e c t decreased e v a p o r a t i o n beneath the t r e e cover. L a r g e r copper abundances i n deeper l a y e r s , however, are due to l a t e r a l movement of c o p p e r - r i c h ground water s o l -u t i o n s i n t o the peat. Absence of v i s i b l e s yngenetic copper m i n e r a l s i n o r g a n i c sediment was thought to be due to the o x i -d i z i n g , a l k a l i n e nature of the environment. Formation of n i t -rogen bonded metal complexes was c o n s i d e r e d to be the major f a c -t o r r e s p o n s i b l e f o r copper accumulation i n the peat. L a t e r s t u d i e s , however, have shown that the a s s o c i a t i o n of metals w i t h o r g a n i c n i t r o g e n forms may be a r e l a t i v e l y minor e f f e c t . Copper and other i r o n m i n e r a l s may form i n bogs by p r e c i p i -t a t i o n from d i l u t e ground water s o l u t i o n s under f a v o u r a b l e Eh and pH c o n d i t i o n s . N a t i v e copper g r a i n s r a n g i n g from 1 to 10mm s i z e a s s o c i a t e d w i t h f i n e g r a i n e d p y r i t e were i d e n t i f i e d by E c k e l (1949) i n a Colorado bog. An occurrence of n a t i v e copper a l s o i n an o r g a n i c accumulation has been r e p o r t e d by 22 L o v e r i n g (1928). Cannon (1955), us i n g X-ray d i f f r a c t i o n i d e n t i f i e d l e a d and z i n c s u l p h i d e s i n peat samples c o n t a i n i n g more than 87o z i n c from the Bergen bog, New York s t a t e . Papunen (1966) d e s c r i b e d framboidal p y r i t e i n an i r o n s u l p h i d e l a y e r exposed i n a Finnish peat bog. Postma (1977) a l s o r e p o r t e d the presence o f i r o n s u l p h i d e (mackinawite)., i r o n carbonate and i r o n phosphate ( v i v i a n i t e ) i n a Danish r i v e r bog. He found that the pH of the o r g a n i c r i c h sediments c o n t a i n i n g the i r o n s u l p h i d e ranged from 5.5 to 7.4 and the Eh ranged from +100 to +250 mv. 1-7 SUMMARY Fa c t o r s which c o u l d i n f l u e n c e m o b i l i t y of metals i n bogs i n c l u d e the nature of the peat forming environment, chemical changes produced through o r g a n i c d i a g e n e s i s , f o r m a t i o n o f humic substances and i n t e r a c t i o n of metals w i t h these humic substan-ces. Numerous i n v e s t i g a t o r s have demonstrated t h a t metals such as copper, lead', c o b a l t , n i c k e l and z i n c form s t r o n g complexes w i t h humic and f u l v i c a c i d f r a c t i o n s i n s o i l . Stab-i l i t y of these complexes w i l l r e f l e c t r e l a t i v e s t r e n g t h o f bonding between the metals and the humic or f u l v i c a c i d f r a c t -i o n s , pH and i o n i c s t r e n g t h o f s o l u t i o n s c o n t a i n i n g the metals. The p h y s i c a l s t a t e o f the humic and f u l v i c c o l l o i d s may a l s o a f f e c t m o b i l i t y of the m e t a l - o r g a n i c complexes. A small p r o p o r t i o n of the metals c o u l d a l s o be s t r o n g l y bound to s o i l n i t r o g e n groups. A u t h i g e n i c metal s u l p h i d e s can occur i n reduc i n g o r g a n i c accumulations although o r g a n i c sulphur forms are most abundant i n peat. Metal d i s t r i b u t i o n p a t t e r n s i n bogs have been f r e q u e n t l y 23 s t u d i e d d u r i n g the past t h i r t y years and i n v e s t i g a t o r s have found t h a t the metals were g e n e r a l l y c o n c e n t r a t e d by the o r g a n i c matter from d i l u t e ground water s o l u t i o n s . I n t e r p -r e t a t i o n of geochemical anomalies a s s o c i a t e d w i t h bogs i s , however, o f t e n complicated by the complex chemical and p h y s i c a l i n t e r a c t i o n s which l e a d to the accumulation of metals. CHAPTER 2 DESCRIPTION OF THE STUDY AREA 2-1 LOCATION AND ACCESS The study area c o v e r i n g roughly one square k i l o m e t r e forms p a r t of a m i n e r a l c l a i m group l o c a t e d 29 km northwest of P r i n c -eton, B r i t i s h Columbia ( F i g . 2-1). Access to the p r o p e r t y from the Hope-Princeton highway i s by 19 km of g r a v e l l e d summer roads which f o l l o w the east s i d e of Whipsaw creek. 2-2 PHYSIOGRAPHY, DRAINAGE AND CLIMATE Mean e l e v a t i o n of the study area i s 158 m and the surroun-ding r e g i o n a l topography r e f l e c t s t r a n s i t i o n between h i g h e r r e l i e f of the Cascade mountains i n the west and the Thompson p l a t e a u to the e a s t . L o c a l l y there i s a marked topographic change corresponding, roughly, to the 1350 m contour. Above t h i s e l e v a t i o n are r o l l i n g , wooded h i l l s w i t h g e n t l e slopes and broad v a l l e y s . Land s u r f a c e s below 1350 m, however, are o f t e n d i s s e c t e d by deep v a l l e y s through which flow major streams e.g. Whipsaw creek. R e l i e f on the p r o p e r t y i s 200 m and l a n d s u r f a -ce g r a d i e n t s range from 5 to 40 degrees. The g e n t l e u n d u l a t i n g p l a t e a u n o r t h of the study area i s d r a i n e d by streams which flow south i n t o Whipsaw creek through steep w a l l e d v a l l e y s . These probably r e f l e c t s u r f a c e express-i o n of g e o l o g i c a l f a u l t s or zones of h i g h e r rock f r a c t u r e den-s i t y . E x t e r n a l p r o p e r t y drainage i s through a s u b d e n d r i t i c network of s m a l l streams. F i r s t order streams o f t e n r i s e i n s m a l l h i l l s i d e bogs which are r e l a t i v e l y common throughout the r e g i o n and range from 10 to s e v e r a l thousand square metres i n area. The l o c a t i o n of the c e n t r a l bog, the o u t l i n e of the P l a t e 2-1: A west l o o k i n g view o f the west end o f the c e n t r a l bog. S t a t i o n G 1.0 i s approximately l o c a t e d i n the c e n t e r o f the open area shown i n the foreground o f the photograph. 26 study area and other bogs on the p r o p e r t y are shown i n Fig.2-2. The c e n t r a l bog occupies an elongate i r r e g u l a r l y shaped d e p r e s s i o n s l o p i n g to the southeast at a 5 to 10 degree grad-i e n t . Surface f e a t u r e s are i l l u s t r a t e d i n P l a t e 2-1. S e v e r a l s m a l l e r marshy areas surrounding the main d e p r e s s i o n at s l i g h t l y h i g h e r e l e v a t i o n s correspond to p o i n t s of ground water d i s c h a r g e from the break i n slope s e p a r a t i n g the steep h i l l s i d e from the concave bog b a s i n . Larger s p r i n g s northwest of the bog prob-a b l y r e f l e c t water r i s i n g to the s u r f a c e through f a u l t zones. Water a l s o d i s c h a r g e s c o n t i n u o u s l y from one diamond d r i l l h o l e c o l l a r e d on the h i l l s i d e n o r t h o f the bog. F i r s t order streams flow from s p r i n g s and marshy seepage areas to form a meandering, d e n d r i t i c p a t t e r n o f channels on the bog f l o o r . Shallow, semi-stagnant ponds are a l s o common on the bog s u r f a c e and r e f l e c t the very poor i n t e r n a l drainage of the org a n i c s o i l . The streams combine i n t o a s i n g l e channel which dr a i n s the lower p a r t o f the b a s i n through a shallow v a l l e y ; the stream g r a d i e n t i n t h i s v a l l e y i n c r e a s e s from 10 to 15 de-grees over 1000 m d i s t a n c e from the bog margin to confluence w i t h a l a r g e r stream d r a i n i n g the n o r t h e r n bog. Climate of the study area r e f l e c t s a t r a n s i t i o n from h i g h r a i n f a l l , t y p i c a l of the c o a s t a l mountains, to a s e m i - a r i d , i n -t e r i o r environment. Annual p r e c i p i t a t i o n o f roughly 70 cm a t the p r o p e r t y e l e v a t i o n i s r e p r e s e n t e d by s e v e r a l metres of com-pacted snow which can p e r s i s t on the ground u n t i l l a t e June. Large f l u c t u a t i o n s of water t a b l e , observed i n a deep sample p i t on the i n t e r f l u v e south o f the bog, r e f l e c t a q u i f e r recharge from t h i s accumulation e a r l y i n the summer. Stream water flow 27 SCALE 1:15.640.000 OR ONE INCH TO 2 5 0 MILES MILES K)0 50 0 10(3 200 900 PJO' Depth Horizon L-F-H Ah 20 cm Bm 40 cm BC 60 cm IC 80 cm 100 cm 120 cm IIC 140 cm 160 cm IIIC Description of horizon 0-4 cm; Moss fragments and pine needles. 4-6 cm, Dark brown (10YR4/3D) medium loam with weak granular structure. High density,of'roots i n horizon. 6-30 cm; Yellow brown (10YR5/6M) medium loam with weak granular structure cont-aining 10-20% subangular pebble to cobbr le sized c l a s t s . pH - 4.8 30-40 cm; Gradual change of colour and texture. 40-110 cm; Brown yellow(10YR6/6M) coarse sandy loam with massive to weakly blocky structure containing 20-30% subangular to rounded cobble sized c l a s t s . pH - 4.9. 110-120 cm; Yellow: brown (10YR5/8M) fine sandy loam containing scattered medium d i s t i n c t mottles (2.5Y5/4) and fine textured sand stringers. 120-165 cm; Yellow . brown (5YR5/8D). coarse sandy loam largely consisting of comminuted or closely packed, very weat-hered granodiorite fragments. Dis t i n c t irregular boundary with IC horizon. 145-150 cm; Gradually changes into a fine clay loam with flecks of malachite. 165-170 cm; Light o l i v e brown (2.5Y5/4M) medium textured loam F i g u r e 2-5.a PROFILE A. \"\u00E2\u0080\u00A2o PS* k*r:-.o-p-p:-.o^>o:-o^ o.o:.-.\u00E2\u0080\u009E:^ -.\u00E2\u0080\u00A2 C J o-^iSn . . \u00C2\u00AB . . . w Depth Horizon 0 L-F-H Ah 20 cm 40 cm Bmg BC 60 cm 80 cm 100 cm 120 cm Description of horizon Moss and grass fragments; Rootlets and pine needles (0-5 cm) 5-40 cm. Very dark grey brown (10YR3/2W) granular organic rich loam with low fiber content except for plant roots. Light grey-brown (2.5YR6/2M) sandy loam textured volcanic ash at 15 cm and 45 cm depth Ash layers have sharp boundaries with enclosing organic s o i l . Distinct dark red (2.5YR3/6) iron-rich layer 1-2 cm thick at base of Ah horizon. Brown (10YR4/3M) fine s i l t y loam with weak granular structure and having coarse prominant dark red (2.5YR3/6M) mottles (42-50 cm) which gradually disappear with depth (50-55 cm) 55-120 cm. Dark olive grey (5Y3/2M) fine sandy clay t i l l . Massive struct-ure and containing 20-30% subangular pebble to cobble sized clasts. Colour gradually changes to olive (5Y5/4M) at 110-120 cm depth. F i g u r e 2-5b ;PR0FTLE B. 43 IlillllSilfi; .s h m m Depth Horizon/layer Description of horizon/layer Loose undecomposed sedge and sphagnum moss fragments. Of 20 cm 40 cm Om-Oh 60 cm 80 cm 100 cm 120 cm 140 cm 0-20 cm; Brown (10YR4/3W) to yellow brown (10YR5/6D compact.peat consisting of moderately to slightly decomposed sedge and sphagnum moss fibers. Distinct boundary between Of and Om-Oh layers. 20-120 cm; Very dark grey brown (10YR3/2W) to brown (10YR4/3D) granu-lar peat consisting of 50-60% unrub-bed fiber content and 15-20% rubbed fiber content. Sandy loam textured volcanic ash layers at 40 and 100 cm. Large preserved wood fragments and pine needles abundant in s o i l which has a strong odour of hydrogen sulphide when freshly sampled. Dark olive grey (5Y3/2M) sandy clay t i l l with strong granular structure and sharp contact with Om-Oh layers. Figure 2-5cPROFILE C. 44 (Carex s p . ) , H o r s e t a i l (Equiseturn arevanse), Skunk Cabbage, Labrador Tea (Ledum groenlandicum) and mosses i n c l u d i n g Sphagnum Sp. Organic s o i l s are d e f i n e d i n the System of S o i l C l a s s i f i -c a t i o n f o r Canada (Canadian Department of A g r i c u l t u r e 1974) as those s o i l s where o r g a n i c accumulations are g r e a t e r than 40 cm t h i c k and c o n t a i n more than 307o o r g a n i c matter. F u r t h e r c l a s s -i f i c a t i o n of these s o i l s i n t o suborders i s based on those f e a t -ures observed i n a t y p i c a l p r o f i l e known as the c o n t r o l s e c t i o n . A c o n t r o l s e c t i o n p r o f i l e through the c e n t r a l bog i s 130 cm t h i c k and c o n s i s t s of a s o i l s u r f a c e t i e r from 0 to 30 cm depth, a s o i l middle t i e r from 30 to 90 cm depth and a lower t i e r from 90 to 130 cm depth. Organic s o i l suborders are d e f i n e d from unrubbed f i b e r contents, rubbed f i b e r contents and c o l o u r of sodium pyrophosphate s o l u t i o n e x t r a c t s from s o i l samples of the middle t i e r . T h i s method p r o v i d e s a rough index of the degree of n a t u r a l decomposition of the o r g a n i c s o i l . T y p i c a l m a t e r i a l from the middle t i e r i n a c e n t r a l bog p r o f i l e c o n t a i n s between 50 and 607, unrubbed f i b e r content, 15 to 207. rubbed f i b e r content and has a sodium pyrophosphate e x t r a c t c o l o u r of 10YR 5/6 on the Munsell s c a l e . Based on these c r i t e r i a the c h a r a c t e r i s t i c s o i l i s a humic m e s i s o l . A p r o f i l e , i l l u s t r a t e d i n F i g . 2^-5c, c o n s i s t s of the l e a s t decomposed, f i b r i c l a y e r (Of) above more mature mesic (Om) and humic (Oh) l a y e r s . Beneath a s m a l l area i n the northwest p a r t of the bog where there i s abundant Sphagnum moss growth the f i b r i c (Of) l a y e r may reach 50 cm t h i c k n e s s The s o i l i s then c l a s s i f i e d as a f i b r i c m e s i s o l . T o t a l t h i c k n e s s C E N T R A L B O G D R A I N A G E . S O I L S A N D F L O R A Figure 2-6: Central bog soils, drainage and flora DRAINAGE CH ANNUL 46 of f i b r i c , mesic and humic l a y e r s i n the humic m e s i s o i s ranges from 1.5 to 2 m. Accumulation of o r g a n i c s o i l may, however, reach 4 m i n the area of f i b r i c m e s i s o i s and co r r e s p o -nds to prominant depressions i n the o r g a n i c s o i l - t i l l i n t e r -f a ce . The c e n t r a l bog i s a m i n e r a l o t r o p h i c , h i l l s l o p e type and v e g e t a t i o n i s , i n g e n e r a l , s i m i l a r to t h a t formed on peaty phases i n humic g l e y s o l s o i l . R e s t r i c t e d Sphagnum moss growth i s mixed w i t h Sedges ( S a x i f r a g a Sp.), Cotton g r a s s , Labrador Tea, Skunk Cabbage, Red Heather (Phyllodoc empetriformis) and Blue-b e r r y (Vaccinium membranceum). S c a t t e r e d stands of Englemann Spruce, Mountain Hemlock (Tsuga mertensiana) and Lodgepole Pine a l s o occur. Abundant Sphagnum moss growth i n the upper, n o r t h -west p a r t of the bog i s c h a r a c t i s t i c of ombotrophic or r a i s e d bog environments. The water t a b l e may be up to 50 cm below the humocky moss covered s u r f a c e i n t h i s area. L i g h t grey-brown (Munsell c o l o u r 2.5Y 5/6) l a y e r s o f f i n e sandy-loam t e x t u r e d m a t e r i a l found at i n t e r v a l s i n o r g a n i c s o i l p r o f i l e s are v o l c a n i c ash. Samples from these l a y e r s c o n s i s t of submicroscopic, s i l k y , t r a n s l u s c e n t g l a s s fragments mixed w i t h s m a l l q u a n t i t i e s o f magnetite, hornblende and a green min-e r a l which may be hypersthene. The l a y e r s have sharp c o n t a c t s w i t h the s o i l and are 1 to 4 cm t h i c k . They commonly occur i n orga n i c s o i l p r o f i l e s at two i n t e r v a l s between 20 to 40 cm depth and a l s o between 70 to 180 cm depth. Two d i s t i n c t l a y e r s a l s o occur i n the Ah h o r i z o n of humic g l e y s o l i c s o i l at 20 cm and at 40 cm depth. Presence of two d i s t i n c t l a y e r s i n the s o i l suggests t h a t v o l c a n i c ash may have covered the bog sur-47 face at two, separate time i n t e r v a l s . C o n t i n u i t y - o f the l a y -ers i n the hog cannot be demonstrated, however, due to the small number of samples- a v a i l a b l e f o r mineralogi.cal a n a l y s i s . In a d d i t i o n the ash. which f e l l on the bog s u r f a c e may have been reworked by stream water a c t i o n soon a f t e r d e p o s i t i o n . Two separate ash f a l l s have been d e p o s i t e d over southern B r i t i s h Columbia i n Recent times. M u l l i n e a u (1974) d e s c r i b e d an e a r l y , widespread ash d e p o s i t , dated by carbon 14 isoto/pe method, at 6,600 years B.P. T h i s o r i g i n a t e d from the pre-h i s t o r i c Mount Mazama which was l o c a t e d i n the present C r a t e r Lake, Oregon, area. The ash contained a small p r o p o r t i o n of hypersthene, but no hornblende. Repeated, l a t e r e r u p t i o n s from Mount St. Helens i n Washington a l s o d e p o s i t e d ash, but over a smal l area. The ash from t h i s e r u p t i o n c o ntained horn-blende and cummingtonite w i t h minor pyroxenes. St. Helens ash has been i d e n t i f i e d at 85 cm depth i n a peat bog l o c a t e d i n the O t t e r Creek v a l l e y roughly 60 km west of the study area F u l t o n and -Armstrong (1965). Source of the ash i n the bog i s u n c e r t a i n although miner-alogy of one sample from the deeper l a y e r exposed i n a humic g l e y s o l p r o f i l e suggests t h a t i t may re p r e s e n t the St. Helens e r u p t i o n . Upper l a y e r s i n s o i l may a l s o be r e l a t e d to p e r i o -d i c ash f a l l s which were r e l a t e d to the event. CHAPTER 3 SAMPLING AND ANALYTICAL TECHNIQUES 3-1 SAMPLING METHODS AND FIELD OBSERVATIONS S o i l and t i l l samples were c o l l e c t e d by s e v e r a l methods from v e r t i c a l p r o f i l e s at s t a t i o n s l o c a t e d between 10 and 60 metres apart along t r a v e r s e s c r o s s i n g the c e n t r a l bog. Samp-l i n g c o n t r o l was p r o v i d e d by a g e o p h y s i c a l g r i d which had been p r e v i o u s l y e s t a b l i s h e d over the p r o p e r t y . P r o f i l e and sample l o c a t i o n s are shown i n F i g . 3-1 and F i g . 3-2. M i n e r a l s o i l s and shallow t i l l samples were o b t a i n e d by excav a t i n g p i t s at s t a t i o n s on the h i l l s l o p e s above the bog. Each sample r e p r e -sented a 10 cm long v e r t i c a l channel cut i n the w a l l of the p i t Samples were taken at 30 to 40 cm i n t e r v a l s down p r o f i l e s ex-posed i n the p i t s and d e t a i l e d o b s e r v a t i o n s of environment, s o i l type, topography, sample c o l o u r , sample c o n s i s t e n c y c l a s t rock type, c l a s t shape and c l a s t o r i e n t a t i o n were made at each l o c a t i o n . T i l l samples deeper than one metre were o b t a i n e d u s i n g a Boro overburden sampler mounted on a Cobra p r e c u s s i o n d r i l l . At each l o c a t i o n an attempt was made to c o l l e c t m a t e r i w i t h the Boro sampler from the t i l l bedrock i n t e r f a c e . T h i s was o f t e n u n s u c c e s s f u l owing to the ve r y hard, compact t i l l . Ten cm long t i l l cores were o b t a i n e d at 50 to 100 cm i n t e r -v a l s down p r o f i l e s through the t i l l . O rganic s o i l m a t e r i a l was c o l l e c t e d u s i n g a H i l l e r peat auger. Continuous 40 to 50 cm long cores were o b t a i n e d w i t h t h i s equipment at 50 cm i n t e r v a l s down p r o f i l e s i n the bog. A complete core was found to be necessary to p r o v i d e s u f f i c i e n t d r i e d m a t e r i a l f o r a n a l y s i s . Subsamples were however taken CENTRAL BOG DRAINAGE.SOILS AND FLORA Figure 3-1: Location of soil and t i l l profiles 50 from the core when conspicuous t e x t u r e or c o l o u r v a r i a t i o n s c o u l d be seen w i t h i n an i n t e r v a l . F r e s h l y c o l l e c t e d o r g a n i c s o i l , m i n e r a l s o i l and t i l l m a t e r i a l was t r a n s f e r r e d from the sampler to K r a f t paper bags and allowed to a i r dry. S e v e r a l bulk o r g a n i c s o i l samples, each c o n s i s t i n g of s e v e r a l combined cores were p l a c e d i n a c i d washed p l a s t i c c a r t o n s , q u i c k l y t r a n s -p o r t e d i n an i n s u l a t e d c o n t a i n e r to P r i n c e t o n and s t o r e d i n a c o l d storage at -5\u00C2\u00B0C. V o l c a n i c ash samples were o b t a i n e d from layers: exposed i n the o r g a n i c s o i l cores. The ash, however, was commonly mixed w i t h o r g a n i c m a t e r i a l and u l t i m a t e l y o n l y two r e l a t i v e l y uncon-taminated samples were analysed f o r t r a c e metals. Leaf and stem samples r e p r e s e n t i n g new seasonal growth., were taken from Ledum glandulosum shrub and sphagnum moss growing i n the c e n t r a l bog. These samples were washed w i t h d i s t i l l e d water and s t o r e d i n paper bags. Specimens of t y p i c a l bog f l o r a were a l s o p r e -served f o r l a t e r i d e n t i f i c a t i o n . Water samples were c o l l e c t e d from a number of sources i n the study area ( F i g . 3-3). These i n c l u d e d seepages from t i l l -bedrock i n t e r f a c e s exposed i n trenches, s p r i n g s from probable f a u l t zones and water d i s c h a r g i n g from a diamond d r i l l h o l e n o r t h of the c e n t r a l bog. Springs and seepages from the area dominated by humic g l e y s o l i c s o i l s were a l s o sampled. A number of samples were c o l l e c t e d from water accumulating i n semi-stag-nant bog pools and from water f l o w i n g i n streams c r o s s i n g the bog f l o o r . Subsurface bog waters were sampled through cased bore holes at ten l o c a t i o n s w i t h i n the bog. Holes were cased w i t h 3cm diameter PVC pipe to depths ranging from 1 to 2 m. 51 52 At some of the l o c a t i o n s : t h i s depth r e p r e s e n t e d the o r g a n i c s o i l -t i l l i n t e r f a c e . Water was allowed to accumulate to the top o f the c a s i n g and they- completely removed s e v e r a l times w i t h a s m a l l hand pump. A sample was f i n a l l y c o l l e c t e d through a s m a l l e r PVC tube attached to the pump and lowered to the bottom of the c a s i n g . A l l water samples were f i l t e r e d i n the f i e l d under p r e s s u r e through, a 0.45 um millipore membrane f i l t e r , a c i d i f i e d w i t h HCl, and s t o r e d i n 125 ml or 500 ml a c i d washed PVC b o t t l e s . Water pH was g e n e r a l l y measured at each sample s i t e w i t h B r i t i s h Drug Houses U n i v e r s a l I n d i c a t o r . The pH o f the water i n the cased bore h o l e s was measured u s i n g a combination g l a s s - r e f e r e n c e e l e c t r o d e a t t a c h e d to an Orion model 404 meter. Problems o c c u r r e d with, t h i s method of pH d e t e r m i n a t i o n owing to i n s t r u -mental d r i f t p o s s i b l y r e s u l t i n g from the long l e a d connecting the e l e c t r o d e to the instrument. The Eh of s e v e r a l s u r f a c e water samples, one ground water sample and the i n t e r s t i t i a l water from a f r e s h l y sampled core was measured w i t h a platinum-g l a s s e l e c t r o d e a t t a c h e d to the O r i o n 404 instrument. Sulphate content o f s e v e r a l water samples was determined i n the f i e l d by a barium c h l o r i d e t u r b i d i m e t r i c method d e s c r i b e d i n Appendix B. 3-2 ANALYSIS OF SAMPLES FOR TRACE METALS M i n e r a l s o i l , o r g a n i c s o i l , t i l l and v e g e t a t i o n samples were oven d r i e d at 110\u00C2\u00B0C. M i n e r a l s o i l s and t i l l samples were g e n t l y disaggregated and s i e v e d through an 80 mesh n y l o n screen. I t was o f t e n found necessary to g r i n d the o r g a n i c s o i l samples i n a mortar b e f o r e s u f f i c i e n t m a t e r i a l c o u l d be o b t a i n e d f o r s i e v i n g . V e g e t a t i o n samples were ground i n a W i l e y m i l l . A CENTRAL BOG DRAIN AGE.SOILS AND FLORA W A T E R S A M P L E L O C A T I O N S Figure. 3-3: Water sample locations. Samples 69 to 234 are 73-RL-; Samples 1207 to 1511 are 74-RL- . L E G E N D FIERK MfSlSOLS, SlWLAR FLDR& TO KUMlC MES60LS WITH HUWOCKY SPHAGNUM MOSS HUMIC MESISOIS.ENGLEMANN SPRUCE, MOUNTAIN HEMLOCK,LOOGEPOLE PINE JCOT TON GRASS,\u00C2\u00B0ED HE AT HER,LABRADOR TEA GLEVEO DYSTRC ORUNISOLS.ORTHIC l U M C GLEYS015 WITH LOCAL PEATY PHASES: WH'TE AND ENGLEMANN SPRUCE .MOUNTAIN LABRADOR TE A.WHITE RHODODtNDROM ALPINE OYSTRIC RRUN1SOLS.GRASS \u00E2\u0080\u00A2 COVERED HIO.SIDE CLEARING ORTI4IC DYSTPIC BRUNTSOLS WiTH DEGRADED DTSTRIC BRUNfSOLS.ENGLCMaNN SPRUCE, WHITE SPRUCE,LOOOtPOLE PINE, ALPINE FIR DRAINAGE CHANNEL Element Flame Wavelength (A) Current(mA) S l i t (u) Background C o r r e c t i o n Ca A i r - a c e t y l e n e 4226. .7 4 100 No a Co 11 2410 20 300 Y e s b Cu II 3247, .5 3 50 No a Fe it 3719, .9 5 25 No a Mn \u00E2\u0080\u00A2 i 2794, .8 10 50 No a Mo N i t r o u s oxide- 3132, .0 5 100 No a a c e t y l e n e N i A i r - a c e t y l e n e 2324 20 300 Y e s b Zn 11 2138, .6 6 100 No a a - V a r i a n Techtron IV b - Perkin-Elmer 303 Table 3-1: Instrumental o p e r a t i n g c o n d i t i o n s f o r atomic a b s o r p t i o n spectrophotometers 55 weighed p o r t i o n of the s i e v e d s o i l , t i l l or ground v e g e t a t i o n was d i g e s t e d f o r twelve hours i n a 3:1 mixture of n i t r i c and per-c h l o r i c a c i d s . At the end of t h i s d i g e s t i o n , c a r r i e d out on an a i r bath at 200\u00C2\u00B0C, a dry r e s i d u e i s obtained. T h i s r e s i d u e was leached w i t h 2 ml of 6M HCl f o r s e v e r a l minutes and the s o l u t -ions then d i l u t e d to 10 ml w i t h d i s t i l l e d water. The s o l u t -ions were then analysed f o r copper, c o b a l t , i r o n , manganese, n i c k e l and z i n c by atomic a b s o r p t i o n spectrophotometry. The s o l u t i o n s were a l s o a nalysed f o r molybdenum by atomic a b s o r p t i o n spectrophotometry, but w i t h a n i t r o u s o x i d e - a c e t y l e n e flame r a t h e r than an a i r - a c e t y l e n e flame. Before a n a l y s i n g the s o l u t i o n s 200 mg of aluminium c h l o r i d e (hexahydrate) were added to each 10 ml as a r e l e a s i n g agent. The same p r o p o r t i o n of aluminium c h l o r i d e was a l s o added to the standards. Operating c o n d i t i o n s f o r the atomic a b s o r p t i o n spectrophotometers are g i v e n i n Table 3-1, a n a l y t i c a l r e s u l t s f o r elements are g i v e n i n Appendix A and a n a l y t i c a l p r e c i s i o n f o r elements i n - T a b l e 3-2.. . F i l t e r e d water samples were a s p i r a t e d d i r e c t l y i n t o the atomic a b s o r p t i o n spectrophotometer and analysed f o r copper, i r o n , manganese and z i n c . A 10 ml p o r t i o n of each water sample was a l s o mixed w i t h 2 ml of 570 lanthanum s o l u t i o n i n a 50 ml v o l u m e t r i c f l a s k , the s o l u t i o n made up to 50 ml w i t h d i s t i l l e d water and analysed f o r c a l c i u m by atomic a b s o r p t i o n s p e c t r o -photometry. D i s s o l v e d o r g a n i c carbon content of water samples was measured u s i n g a Beckmann model 915 t o t a l carbon a n a l y s e r by i n j e c t i n g 50 u l of the f i l t e r e d , a c i d i f i e d water w i t h a m i c r o s y r i n g e i n t o the sample p o r t of t h i s instrument. The sample i s c a r r i e d by a stream of oxygen gas through a furnace 56 heated to 950\u00C2\u00B0C where the carbon i s o x i d i z e d to carbon d i o x i d e . The c o n c e n t r a t i o n of carbon d i o x i d e evolved from each sample was measured u s i n g a Beckmann model 865 I n f r a r e d a n a l y s e r a t t a c h e d to the t o t a l carbon a n a l y s e r . Before samples were analysed the instrument was- c a l i b r a t e d w i t h a s e r i e s of sucrose s o l u t i o n standards-. A n a l y t i c a l r e s u l t s are g i v e n i n Appendix A. 3-3 ANALYSIS OF WATER SAMPLES FOR 2-2 BIQUINOLINE EXTRACTABLE COPPER Approximate p r o p o r t i o n s of i o n i c copper and copper bound as n a t u r a l o r g a n i c complex were determined by a method based on that d e s c r i b e d by Stanton (1966). T h i s technique i s based on the r e a c t i o n between C u + ions and 2-2 b i q u i n o l i n e forming a pink c o l o u r e d complex and the i n t e n s i t y of t h i s c o l o u r e d complex w i l l depend on the c o n c e n t r a t i o n o f the copper i n s o l u t i o n . The de-t e r m i n a t i o n s are made by adding 1 ml of a b u f f e r s o l u t i o n , con-s i s t i n g of 200 g o f sodium a c e t a t e ( t r i h y d r a t e ) , 100 g of pot-assium sodium t a r t r a t e ( t e t r a h y d r a t e ) and 20 g of a s c o r b i c a c i d i n 1:1 of d i s t i l l e d water to 20 ml of the f i l t e r e d water sample i n a t e s t tube. The b u f f e r s o l u t i o n reduces Cu^+to C u + , p r e -vents p r e c i p i t a t i o n of i r o n and aluminium and a d j u s t s pH to 6.0. One ml of a 0.02?o 2-2 b i q u i n o l i n e s o l u t i o n i n iso-amyl a l c o h o l i s then added and the tube stoppered and shaken f o r 30 seconds. The c o l o u r of the immiscible a l c o h o l l a y e r i s v i s u a l l y compared to a standard s e r i e s g e n e r a l l y ranging from 5 ppb to 100 ppb. L a r g e r copper c o n c e n t r a t i o n s were measured by d i l u t i n g the water sample w i t h d i s t i l l e d water. 3-4 ORGANIC CARBON ANALYSIS S o i l and t i l l samples were analysed f o r o r g a n i c carbon by 5 7 a modified Schollenberger wet oxidation method (Royal School of Mines, Geochemical Prospecting Research Center, 1962). A potassium dichromate-sulphuric acid solution i s used to oxidize o the carbon i n the sample at roughly 100 C. The potassium dich-romate which i s not used during the reaction i s measured by t i t r a t i n g the solution with ferrous ammonium sulphate using diphenylanaline as an indicator. Addition d e t a i l s of the method are outlined i n Appendix B. Several previous studies have established that between 60 and 807, of the t o t a l carbon present w i l l be oxidized to C O 2 by the dichromate. Results obtained by wet oxidation methods are therefore generally adjusted by a correction factor to compen-sate for the p a r t i a l carbon recovery. The correction factor used to calculate organic carbon values given i n the present study was determined by analysing a group of samples by the Leco combustion technique. A correction factor of 1.3 was obtained by comparing results of organic carbon analyses by wet oxidation and Leco combustion methods. This factor can be compared to that of 1.12 for the Walkley-Black method and to 1.33 for the Schollenberger method. A n a l y t i c a l p r e c i s i o n for the two methods at the 957, confidence levels i s 18.27, for the wet oxidation technique and 8.87, for the Leco combustion method. o Loss of weight after sample i g n i t i o n at 550 C was also determined i n the same samples analysed by wet oxidation and Leco techniques. A scatter diagram (Fig. 3-4) indicates a strong l i n e a r v a r i a t i o n between wet oxidation and Leco combust-ion analyses and between wet oxidation and loss on i g n i t i o n ana-yses of i d e n t i c a l samples. Loss on i g n i t i o n i n samples with 58 % 60 P 50 h 40 h 30 20 10 h 0 \u00E2\u0080\u00A2A A A* A A A 0 10 20 30 40 50 % A % 0 r g a n i c carbon by wet o x i d a t i o n a g a i n s t % carbon by Leco \u00E2\u0080\u00A2 ? o0rganic carbon by wet o x i d a t i o n a g a i n s t % Loss on i g n i t . 1.724 F i g u r e 3-4: Comparison of o r g a n i c carbon analyses of 15 samples by wet o x i d a t i o n , Leco method and l o s s on i g n i t -i o n a t 550\u00C2\u00B0C. 59 l e s s than 10% carbon, however, shows a departure from the l i n e a r t r e n d suggesting that c l a y m i n e r a l s c o u l d a l s o c o n t r i b u t e to the weight l o s s , d u r i n g i g n i t i o n , by r e l e a s i n g water. A comparison of wet o x i d a t i o n and l o s s on i g n i t i o n r e s u l t s i n d i c a t e s t h at they d i f f e r by a mean r a t i o of 1.8 which i s s i m i l a r to the Van Bemmelen f a c t o r of 1.724 used to convert o r g a n i c carbon val u e s to o r g a n i c matter contents. 3-5 SULPHUR ANALYSIS A number of o r g a n i c s o i l and t i l l samples were analysed f o r sulphur content by a h y d r i o d i c a c i d r e d u c t i o n technique (Tabatabai and Bremner 1970) f o l l o w e d by bismuth c o l o r i m e t r y (Kowalenko and Lowe 1972), d e s c r i b e d i n Appendix B. T h i s method measures o r g a n i c sulphate and m i n e r a l sulphate f r a c t i o n s i n s o i l s . These forms are reduced to hydrogen s u l p h i d e a t 110\u00C2\u00B0C w i t h a mixture of h y d r i o d i c and hypophosphorous a c i d s . The hydrogen s u l p h i d e which i s generated i s c a r r i e d i n a n i t r o g e n stream i n t o a s o l u t i o n of bismuth n i t r a t e where bism-uth s u l p h i d e i s p r e c i p i t a t e d and the c o n c e n t r a t i o n of suspended bismuth s u l p h i d e i s measured i n a spectrophotomer at a wavelen-gth of 400 nm. A n a l y t i c a l p r e c i s i o n f o r t h i s method at the 957> confidence l i m i t was 58.567,. T o t a l sulphur analyses were a l s o attempted u s i n g X-ray f l u o r e s c e n c e , but were l a r g e l y u n s u c c e s s f u l owing to problems of sample p r e p a r a t i o n . Pressed d i s c s of the o r g a n i c s o i l m a t e r i a l mixed w i t h b a k e l i t e r e s i n tended to f r a c t u r e when these were removed from the h y d r a u l i c press used to prepare the d i s c s . Analyses were attempted w i t h the o r g a n i c m a t e r i a l h e l d between two mylar f i l m s i n the samples h o l d e r of the instrument. T h i s 60 approach, may- i n t r o d u c e unknown v a r i a t i o n s when r e s u l t s are com-pared w i t h those obtained from standards prepared from crushed r o c k s . S e m i q u a n t i t a t i v e sulphur abundances i n o r g a n i c r i c h samples range from 0.5 to 2.170. 3-6 PREPARATION OF POLISHED SECTIONS FROM HEAVY MINERAL SEPARATES AND ORGANIC SOIL FRAGMENTS A heavy m i n e r a l f r a c t i o n was separated from 100 minus 80-mesh s i z e d s o i l and t i l l samples u s i n g hromoform (S.G. 2-9). M i n e r a l g r a i n s were e a s i l y separated from o r g a n i c s o i l s by t h i s method. T i l l samples, however, commonly contained a p p r e c i a b l e rock f l o u r which, separated w i t h the m i n e r a l s . Heavy m i n e r a l separates were i n i t i a l l y examined under a b i n o c u l a r microscope. Small p o r t i o n s from f i f t y o f the m i n e r a l separates samples were mounted on microscope s l i d e s i n e p o x y - r e s i n at about 110\u00C2\u00B0C. Organic fragments from s e v e r a l o f the f r o z e n bulk, o r g a n i c s o i l samples were thawed, a i r d r i e d and a l s o mounted i n e p o x y - r e s i n . Freeze d r y i n g of the m a t e r i a l was a l s o attempted to minimize damage to remnant p l a n t s t r u c t u r e s when fragments were mounted. T h i s approach was u n s u c c e s s f u l because the v e r y f r i a b l e f r e e z e d r i e d m a t e r i a l tended to d i s p e r s e on contact w i t h the epoxy-r e s i n . M i n e r a l g r a i n and o r g a n i c s o i l fragment mounts were p o l i s h e d and then examined under a r e f l e c t i n g microscope. 3-7 SCANNING ELECTRON MICROPROBE ANALYSES AND ELECTRON MICROSCOPE STUDIES S e v e r a l of the p o l i s h e d mounts c o n t a i n i n g m i n e r a l g r a i n s and o r g a n i c s o i l fragments were analysed f o r copper, i r o n and sulphur w i t h an A p p l i e d Research L t d . , Scanning E l e c t r o n M i c r o -probe Quantometer. T h i s instrument i s capable of s p e c t r o -61 chemical analyses; f o r elements i n areas; as.- s p a l l as 0.05 um . by- d i r e c t i n g a f i n e l y - focused e l e c t r o n beam onto the s u r f a c e o f p o l i s h e d , carbon coated mounts c o n t a i n i n g the m i n e r a l g r a i n s and or g a n i c fragments-. Due to the i n t e r a c t i o n o f the high-energy e l e c t r o n s w i t h atoms o f the elements present c h a r a c t e r i s t i c X-ray s p e c t r a of these elements o r i g i n a t e . R e l a t i v e i n t e n s i -t i e s of X-rays at CuK a FeK a and SKa wave lengths produced from the m i n e r a l g r a i n s and o r g a n i c fragments were measured by X-ray spectrometers c a l i b r a t e d w i t h pure i r o n , pure copper and s p h a l -e r i t e standards. R e l a t i v e i n t e n s i t i e s o f X-ray r a d i a t i o n at CuK a , FeK a and SKa wave lengths was observed by d i r e c t i n g the r a d i a t i o n onto a f l u o r e s c e n t cathode screen where the i n t e n s i t i e s appeared as c o n t r a s t i n g l i g h t and dark areas. These were r e c o r d e d by ex-posing p o l a r o i d f i l m (A.S.A. 3000) to the X-rays f o r p e r i o d s ranging from 30 to 100 seconds corresponding to the time r e -q u i r e d f o r the e l e c t r o n beam to scan a smal l area of the p o l -i s h e d mount. A scanning time of 100 seconds and a camera f stop o f 5.6 were used to analyse the o r g a n i c fragments:. Sulphide m i n e r a l g r a i n s , however, were g e n e r a l l y scanned at 30 seconds. S e v e r a l o f the m i n e r a l g r a i n s were a l s o photographed at d i f f e r e n t m a g n i f i c a t i o n s w i t h an ETEC autoscan scanning e l e c -t r o n microscope. 3-8 ANALYTICAL PRECISION Each b a t c h o f 24 s o i l , t i l l or v e g e t a t i o n samples, a n a l y s e d by atomic a b s o r p t i o n spectrophotometry, i n c l u d e d a U.B.C. stand-a r d rock sample, one d u p l i c a t e sample and a blank. P r e c i s i o n at the 957o confidence l e v e l was c a l c u l a t e d from r e s u l t s - of the Element A n a l y t i c a l Method Number of P r e c i s i o n +% p a i r e d samples (95% confidence) C a a D i r e c t A . A . , 3 27.5 C b Wet o x i d a t i o n 12 18.2 C a I R - T o t a l carbon 5 31.6 Cu b HN0\u00E2\u0080\u009E-HC10,- A . A . 3 4 12 14.1 Cu a D i r e c t A . A . 5 11.3 Co b HN0o-HC10.- A . A . 3 4 12 3.6 F e b II 12 5.8 F e a D i r e c t A . A . 5 is. Mn b HN0--HC10.- A . A . 3 4 12 5.8 Mn a D i r e c t A . A . 5 c. Mo b HN0--HC10,- A . A . 3 4 15 26.0 N i b II 12 6.6 Z n b it 12 4.3 Z n a D i r e c t A . A . 5 S b HI Red.-Bi C o l . 5 58.6 - Water samples. \u00E2\u0080\u00A2 - S o i l , t i l l and v e g e t a t i o n samples. * - Not determined due to i n s u f f i c i e n t data. Table 3-2: A n a l y t i c a l p r e c i s i o n p a i r e d d u p l i c a t e samples i n each b a t c h by a procedure o u t l i n e d by Garrett(1969;1973) on the UBC IBM 370/168 computer. The same approach was used to estimate p r e c i s i o n of a n a l y t i c a l techniques f o r elements i n water, o r g a n i c carbon and HI r e d u c i b l e sulphur i n s o i l s although i n s e v e r a l cases only a small number of d u p l i c a t e samples were analysed. A n a l y t i c a l p r e c i s i o n f o r each element and method i s g i v e n i n Table 3-2. CHAPTER 4 GEOCHEMICAL RESULTS 4-1 TRACE AND MINOR ELEMENT ABUNDANCES AND pH IN SOILS AND TILL Information c o l l e c t e d from v e r t i c a l and Horizontal p r o f i l e s has been used to construct fence diagrams i l l u s t r a t i n g three dimensional relationships between d i f f e r e n t s o i l s , the t i l l and element abundances i n the bog. The metal, organic carbon and pH value ranges plotted i n symbol form on these diagrams have been selected a r b i t a r i l y from the shape of frequency histograms. Contrasting v e r t i c a l variations of organic carbon content are found i n d i f f e r e n t parts of the bog. Abundances increase from less than 317, i n the f i b r i c (Of) layer to more than 407, i n the mesic-humic (Om-Oh) layers down several p r o f i l e s between stations LON to L2N (Fig. 4-1) Variations on a t y p i c a l organic s o i l p r o f i l e are shown i n F i g . 4-2 and F i g . 4-3. Organic carb-on sharply decreases down p r o f i l e s between stations L2N to G4 from more than 407. i n the f i b r i c layer to less than 157> i n mat-e r i a l at 2 to 3 m depth. Between stations L5S to L4S organic carbon varies s l i g h t l y down p r o f i l e s and values range from 16 to 327.. Values generally decrease sharply at the base of the bog and the underlying t i l l has less than 57. organic carbon. Abundances ranging from 5 to 87. i n the t i l l at station L3N may be due to sample contamination during augering. Copper i s most abundant i n the mesic-humic organic s o i l layers between stations B2W to L4S and LON to G2 (Fig. 4-4 ). S o i l i n these areas has more than 307, organic carbon (roughly equivalent to 607, organic matter) and contains up to 2.57, copper. The l a t e r a l variations of copper i n the study area 6 5 PROFILE 2. LOCATION : S t a t i o n L I N . ENVIRONMENT AND SOIL TYPE: F i b r i c m e s i s o l s u p p o r t i n g humocky sphagnum moss, sedges , s c a t t e r e d l o d g e p o l e p i n e and hemlock. 74-RL- DEPTH Cu Co Fe Mn N i Mo Zn CARBON HI-S pH DESCRIPTION OF HORIZON CM 1091 2174 10 4.06 56 19 <2 28 13.7 118 5.3 Of: 0-50 cm of s l i g h t l y decomposed sedge and moss f i b e r s . V o l c a n i c a s h l a y e r a t 40 cm. . 1092 \u00E2\u0080\u00A2 -100 8508 271 0.13 149 73 16 283 16.0 449 4.3 Oml: 50-140 cm v e r y d a r k brown (10YR3/2W) moderately decomposed 1093 17038 153 0.72 243 98 <2 321 26.1 1360 4.3 s i l t y g r a n u l a r peat. 140-145 cm. L i g h t brown v o l c a n i c , a s h . 0m2-0h: 145-320 cm. Very d a r k grey 1094 .200 23073 164 0.44 271 125 7 577 32.0 906 4.1 brown moderately t o h i g h l y decomposed peat c o n t a i n i n g l a r g e wood fragments 1095 17748 122 0.43 532 139 20 535 39.4 1418 4.5 and p i n e n e e d l e s . M a t e r i a l has a s t r o n g odour of hydrogen s u l p h i d e when f r e s h l y sampled. 1096 -300 13755 287 0.95 635 162 74 651 42.6 906 4.5 1097 I \u00E2\u0080\u00A2 i i i p i -400 692 49 3.64 381 75 i> 100 1.3 104 4.4 C l : 320-400 cm. O l i v e grey (5Y3/2M) sandy c l a y c o n t a i n i n g 10-20% p e b b l e s i z e d c l a s t s . 1194 1 ': -500 161 28 4.30 604 71 3 70 0.18 - 7.5 C2: 400- 500 cm. O l i v e grey(5Y5/2M) f i n e s i l t y c l a y . Cu, Co, Mn , N i , Zn, Mo and HI r e d u c i b l e s u l p h u r (HI-S) a r e i n ppm, O r g a n i c carbon and Fe are i n p e r c e n t . Figure 4-2: Variation of metals, organic carbon and sulphur on a fibric mesisol profile. PROFILE 3. LOCATION - S t a t i o n LON. ENVIRONMENT AND SOIL TYPE - Humic m e s i s o l s u p p o r t i n g - m i x e d sedge and sphagnum moss growth. Water t a b l e w i t h i n 10 cm of s u r f a c e 74-RL- \ 1087J 1088 1089{ 1090l 1195 11 96l mm wm l i l i \u00C2\u00ABe>'\u00E2\u0080\u009EMvo mm Mm DEPTH -100 \u00E2\u0080\u00A2200 -30Q -400 -500 Cu 8164 Co 20 Fe Mn 1.21 37 14199 172 1.52 168 3834 74 2.65 411 N i 24 118 100 277 35 3.90 392. 78 121 30 4.50 644 76 U l 30 4.50 644 85 Mo 22 Zn 33 20 362 7 263 4 113 69 CARBON HI-S jgH DESCRIPTION OF HORIZON 26.2 249 4.7 Of: 10-20 cm o f p o o r l y decomposed sedge and moss remains. 31.9 1162 4.3 Om: 20-160 cm v e r y dark brown(10YR2/2)j mo d e r a t e l y decomposed peat c o n t a i n i n g 16.8 725 4.9 l a r g e s l i g h t l y decomposed wood f r a g -69 0.8 69 5.0 <0.1 0.1 58 7.5 ments C l : O l i v e grey (5Y4/2M)sandy c l a y h a v i n g d i s t i n c t boundary w i t h Om l a y e i j a t 160 cm. C2: O l i v e grey (5Y5/3M) f i n e c l a y loam. 7.7 O l i v e brown (7.5Y5/3M) f i n e c l a y loam Cu, Co, Mn, N i , Mo, Zn and HI r e d u c i b l e s u l p h u r (HI-S) a r e i n ppm, O r g a n i c carbon and Fe a r e i n p r e c e n t . Figure 4-3: Variation of metals, organic carbon and sulphur on a humic mesisol profile. 68 r e f l e c t t r a n s i t i o n s between d i f f e r e n t s o i l types. Copper i n c r -eases from l e s s than 210 ppm i n b r u n i s o l s to more than 1300 ppm i n the Ah h o r i z o n of humic g l e y s o l s across the boundary between these two s o i l s a t s t a t i o n G7. Copper g e n e r a l l y i n c r e a s e s down org a n i c s o i l p r o f i l e s , as shown i n d e t a i l i n F i g . 4-2, and then decreases s h a r p l y across the o r g a n i c s o i l - t i l l i n t e r f a c e . f r o m 1.387, i n the humic-mesic s o i l l a y e r s to l e s s than 700 ppm i n the t i l l . T h i s decrease i s a l s o shown on P r o f i l e #3 ( F i g . 4-3) l o c a t e d at s t a t i o n L0N where o r g a n i c m a t e r i a l at 1.3 m depth con t a i n s 3834 ppm copper compared to 277 ppm i n the u n d e r l y i n g t i l l at 1.5 m depth. The t i l l from p r o f i l e s between s t a t i o n s G1.5 to G3 ( F i g . 4-4) c o n t a i n s from 730 ppm to U.57o. copper compared to v a l u e s ranging from 0.57. to 1.67, i n the o v e r l y i n g o r g a n i c s o i l . Copper values g r e a t e r than 1300 ppm are a l s o found i n the t i l l at s t a t i o n A4E, where overburden t h i c k n e s s may be l e s s than 3 m, and at s t a t i o n B3W. The v a r i a t i o n o f copper through a b r u n i s -o l i c s o i l and the t i l l i s shown on P r o f i l e 1 ( F i g . 4-5). Copp-er exceeds 310 ppm i n the Bm s o i l h o r i z o n and the upper t i l l (IC) l a y e r . Values f a l l from 466 ppm i n t h i s l a y e r to l e s s than 294 ppm i n the u n d e r l y i n g IIC t i l l l a y e r and t h i s decrease occurs at the sharp c o n t a c t between the two l a y e r s . Copper content of the deeper IIC and IIIC t i l l l a y e r s i s l e s s than 305 ppm. Cobalt i n the humic-mesic o r g a n i c s o i l l a y e r s ranges from 125 ppm to more than 580 ppm and values g e n e r a l l y i n c r e a s e down p r o f i l e s , but f a l l s h a r p l y to l e s s than 50 ppm i n the u n d e r l y i n g t i l l . ( F i g s . 4-2, 4-3 and 4-6). The f i b r o u s o r g a n i c s o i l l a y e r 69 Figure 4-4: Copper i n s o i l s and t i l l . and the Ah h o r i z o n of the humic g l e y s o l normally has l e s s than 25 ppm c o b a l t although v a l u e s exceeding 580 ppm are found, l o c a l l y , i n f i b r o u s m a t e r i a l between s t a t i o n s L2S and L5S ( F i g . 4-6). The f i b r o u s l a y e r i n t h i s p a r t o f the bog a l s o c o n t a i n s more than 1280 ppm manganese and more than 57\u00C2\u00B0 i r o n . Organic m a t e r i a l from the f i b r o u s l a y e r and humic g l e y s o l s i n the western p a r t of the bog, however, has l e s s than 100 ppm manganese. I r o n and manganese l e v e l s i n c r e a s e at the boun-dary between the humic g l e y s o l i c and b r u n i s o l i c s o i l s . The humic-mesic or g a n i c s o i l l a y e r s commonly have l e s s than 440 ppm manganese and l e s s than 37, i r o n ( F i g s . 4-5, 4-7 and 4-8). Concentrations i n c r e a s e i n the u n d e r l y i n g t i l l where manganese exceeds 650 ppm and i r o n i s g r e a t e r than 37,. Manganese and i r o n i n c r e a s e down p r o f i l e s through the t i l l and m a t e r i a l from 3 m depth a t s t a t i o n B2E t y p i c a l l y c o n t a i n s more than 1050 ppm manganese. The deeper, o x i d i z e d t i l l c l o s e to the weathered bedrock, shown i n P r o f i l e 1, ( F i g . 4-5) has more than 6.07, i r o n and t i l l from 2.5 m depth at s t a t i o n G2.5 co n t a i n s more than 4.27, i r o n . N i c k e l i n the mesic-humic s o i l l a y e r s ranges from 61 to more than 250 ppm and the h i g h e s t v a l u e s aire found a t 1-3 m depth between s t a t i o n s L5S to L4S ( F i g . 4-9). N i c k e l i n -creases down p r o f i l e s through o r g a n i c s o i l , but f a l l s to l e s s than 150 ppm i n the u n d e r l y i n g t i l l . Humic-mesic s o i l l a y e r s between s t a t i o n s LIN to L2N have n i c k e l ranging from 91 to 250 ppm. N i c k e l a l s o i n c r e a s e s s l i g h t l y down p r o f i l e s through b r u n i s o l i c s o i l and t i l l from l e s s than 60 ppm i n the m i n e r a l s o i l to more than 90 ppm i n the t i l l . The f i b r i c o r g a n i c PROFILE 1. LOCATION: 74-RL-1145 1146 1147 1148 1149 1150 300 m s o u t h o f s t a t i o n L2N. ENVIRONMENT AND SOIL TYPE: O r t h i e d y s t r i c b r u n i s o l formed on t i l l s u p p o r t i n g growth of Hemlock and Engelmann s p r u c e . S u r f a c e s l o p e s southwest a t 10-15 degrees. \u00E2\u0080\u00A2?9b \u00E2\u0080\u00A2'r> \u00C2\u00B0<-oh' \u00E2\u0080\u00A2:.Oo.^Q.\u00C2\u00B0Q. .\u00E2\u0080\u00A20/!r.*x\u00C2\u00BB.~*\ Cu. Co Fe. -40 .80 ' 120 - 160 557 294 304 8 2.62 314 14 3.12 Mn 111 255 31 4.00 15 6.70 494 342 Mo 466 17 4.50 318 11 294 5 3.15 56 66 12 N i 23 39 16 5 29 26 Zn pH 44 98 137 37 76 91 5.0 5.2 3.9 3.9 4.1 3.9 Cu, Co, Mn, Mo, N i and Zn a r e i n ppm, Fe i s i n p e r c e n t . DESCRIPTION OF HORIZON L-F-H: Loose l i t t e r o f p i n e n e e d l e s . Ah: 0-2 cm da r k brown medium loam. Bm: 2-30 cm dark brown(7.5YR4/2M) medium loam w i t h 10% pebble s i z e d c l a s t s . . BC: G r a d u a l change of c o l o u r and t e x t u r e . I C : 30-110 cm. O l i v e (5Y5/3M) f i n e s i l t y loam. B l o c k y t o f i s s i l e s t r u c t u r e . 10-20% rounded b o u l d e r s i z e d c l a s t s . I I C : 110-115 cm. Brown y e l l o w (10YR6/8M) c o a r s e g r a n u l a r sand I I I C : 115-200 cm. Red brown (2.5Y5/4M) c o a r s e sandy loam c o n t a i n i n g 30-40% rounded b o u l d e r s i z e d c l a s t s o f t e n c o m p l e t e l y weath-ed t o c l a y m i n e r a l s , but r e t a i n i n g o r i g i n a l r o c k f a b r i c . IVC: Weathered p o r p h y r y . Figure 4-5: Variation of metals and pH on an orthic dystric burunisol profile. s o i l l a y e r throughout the bog has l e s s than 40 ppm n i c k e l and s i m i l a r l e v e l s are found i n the humic-mesic l a y e r s between s t a t i o n s Gl.5 to G2.0. A sharp decrease of n i c k e l occurs at the boundary between the b r u n i s o l s and the humic g l e y s o l s . The z i n c content of the f i b r o u s o r g a n i c l a y e r i s l e s s than 30 ppm and v a l u e s i n c r e a s e down p r o f i l e s to more than 1420 ppm i n the humic-mesic l a y e r s at the e a s t e r n end of the bog ( F i g . 4-10). P r o f i l e s through these l a y e r s between s t a t i o n s Gl.5 to G2.0, however, have l e s s than 30 ppm z i n c . The t i l l u n d e r l y i n g the organic s o i l normally has l e s s than 210 ppm although v a l u e s g r e a t e r than 500 occur on a p r o f i l e at s t a t i o n A4E. T i l l l a y e r s IC, IIC, and I I I C , shown i n P r o f i l e 1 ( F i g . 4-5) have c o n t r a s t i n g z i n c c ontents. A sharp decrease from 137 to 37 ppm occurs across the boundary between the s i l t y t e x t u r e d IC m a t e r i a l and the sandy t e x t u r e d IIC l a y e r . Z i n c i n c r e a s e i n the u n d e r l y i n g IIIC l a y e r and there are s i m i l a r v a r i a t i o n s i n manganese, i r o n , n i c k e l and molybdenum abundances on t h i s p r o f i l e from 80 to 120 cm depth. Molybdenum contents ranging from 26 to 100 ppm occur i n s e v e r a l p a r t s of the bog. The f i b r o u s o rganic l a y e r between s t a t i o n s L2N, L3N and G2 has more than 25 ppm molybdenum although l e v e l s i n the f i b r o u s m a t e r i a l from the e a s t e r n p a r t of the bog are g e n e r a l l y l e s s than 6 ppm. Molybdenum valu e s g r e a t e r than 25 ppm are a l s o found i n the humic-mesic l a y e r s between s t a t i o n s L4S to L2N where the metal i s most abundant on p r o f i l e s c l o s e to the t i l l - b o g i n t e r f a c e . The u n d e r l y i n g t i l l g e n e r a l l y has l e s s than 6 ppm molybdenum although v a l u e s 73 Figure 4-6: Cobalt i n s o i l s and t i l l . 74 Figure 4-7: Manganese in soils and t i l l . 75 Figure 4-8: Iron in soils and t i l l . 76 Figure 4-9: Nickel in soils and t i l l . 77 Figure 4-10: Zinc in soils and t i l l . 78 Figure 4-11: Molybdenum i n s o i l s and t i l l . 79 80 ranging from 18 to 25 ppm occur on p r o f i l e s at B3W, L4N, G l , L2N and A1E. Very h i g h molybdenum wi t h v a l u e s exceeding 100 ppm occurs on a p r o f i l e a t s t a t i o n A4E a t 2-3 m depth ( F i g . 4-11). Iron, manganese and pH show a concominant i n c r e a s e down p r o f i l e s through the t i l l u n d e r l y i n g o r g a n i c s o i l s . The pH of the grey-green t i l l below the humic-mesic o r g a n i c l a y e r s ranges from 5.0 to 6.0, w h i l e pH of deeper, moderately o x i -d i z e d t i l l i n g r e a t e r than 7.0 ( F i g . 4-12). A s m a l l area of c o p p e r - r i c h t i l l from 3 to 4 m depth on p r o f i l e s a t G1.5 and G2 has pH ranging from 5.0 to 6.0. The pH of o r g a n i c s o i l ranges from 4.0 to 5.0 and i s r e l a t i v e l y constant down s o i l p r o f i l e s . The pH of b r u n i s o l i c s o i l s i s g r e a t e r than 5.0 and the pH of humic g l e y s o l s between s t a t i o n s G3.5 to G5.0 i s l e s s than 4.0. 4-2 STATISTICAL TREATMENT OF THE DATA Ranges and means of elemental d i s t r i b u t i o n s i n d i f f e r e n t s o i l types, s o i l h o r i z o n s and parent m a t e r i a l s can be d e t e r -mined by s e p a r a t i n g the d i s t r i b u t i o n s based on the p h y s i c a l c h a r a c t e r i s t i c s of the samples. However, boundaries between the s o i l types and h o r i z o n s i n the bog are o f t e n i n d i s t i n c t or t r a n s i t i o n a l and a c l e a r s e p a r a t i o n of the sample groups, necessary f o r c a l c u l a t i n g s t a t i s t i c s , i s i m p o s s i b l e . H i s t o -grams and p r o b a b i l i t y graphs have a l s o been used to e s t a b l i s h s t a t i s t i c a l parameters of elemental d i s t r i b u t i o n s . Histograms r e p r e s e n t i n g d e n s i t y d i s t r i b u t i o n s a re commonly used to org a n i z e geochemical data so that t h e i r 81 c h a r a c t e r i s t i c s can be summarized. Symmetrical, b e l l - s h a p e d d e n s i t y d i s t r i b u t i o n s r e f l e c t p o p u l a t i o n s c o n s i s t i n g of nor-m a l l y d i s t r i b u t e d values about a p o p u l a t i o n mean. Trace and minor geochemical abundances, however, are commonly l o g r i t h -m i c a l l y d i s t r i b u t e d and log-transformed values f o l l o w a symmetrical, b e l l - s h a p e d d i s t r i b u t i o n curve. Histograms are o f t e n p o s i t i v e l y or n e g a t i v e l y skewed and s e v e r a l separate peaks can occur along the ' t a i l ' of a p o s i t i v e l y skewed d i s -t r i b u t i o n . The peaks r e p r e s e n t s t a t i s t i c a l p o p u l a t i o n s which have been combined i n t o the t o t a l d i s t r i b u t i o n . Each popu-l a t i o n may r e f l e c t a d i f f e r e n t range of v a l u e s a s s o c i a t e d w i t h c o n t r a s t i n g s o i l types, overburdens, rocks or h o r i z o n s . I n t e r p r e t a t i o n of geochemical data u s i n g cumulative f r e -quency histograms, a l s o known as p r o b a b i l i t y graphs, has been d e s c r i b e d by L e p e l t i e r (1969), Parslow (1974) and S i n c l a i r (1976). The graphs are g e n e r a l l y prepared by p l o t t i n g element abundances on the o r d i n a t e s of l o g a r i t h m e t i c or a r i t h -metic p r o b a b i l i t y paper a g a i n s t cumulative frequency of the abundance on the a b s c i s s a . A s t r a i g h t l i n e graph on l o g a -r i t h m i c p r o b a b i l i t y paper w i l l r e p r e s e n t a s i n g l e , lognormal d i s t r i b u t i o n . The graphs commonly have a sinuous shape i n d i c a t i n g t h at d i s t r i b u t i o n s are polymodal, that i s s e v e r a l p o p u l a t i o n s are p r e s e n t . I n d i v i d u a l p o p u l a t i o n s can be p a r t i t i o n e d from the graph by e s t i m a t i n g the p r o p o r t i o n of each i n the t o t a l d i s t r i b u t i o n from i n f l e c t i o n p o i n t s along the smoothed cumulative frequency curve. Based on these p r o p o r t i o n s cumulative f r e q u e n c i e s Element Population Proportion (7.) X+2S X+1S X X-1S X-2S Log S Organic A 100.0 48.0 34.8 21.3 12,3 7.2 0.237 carbon (%) Co(ppm) A 55.0 640 334 161 78 41 0.315 Co(ppm) B 45.0 107 43 21 9 4 0.368 Cu(%) A 32.0 3.30 2.35 1.75 1.30 0.93 0.128 Cu(%) B 54.0 1.10 0.80 0.58 0.44 0.35 0.119 Cu(%) C 14.0 0.70 0.35 0.18 0.092 0.056 0.289 Fe(%) A 25.0 4.935 3.837 2.831 2.094 1.625 0.132 Fe(%) B 75.0 2.979 1.625 0.850 0.437 0.216 0.263 Mn(ppm) A 5.6 3700 3113 2683 1994 1718 0.129 Mn(ppm) B 94.4 1186 486 172 66 20 0.452 Mo(ppm) A 75.0 51 31 19 12 17 0.221 Mo(ppm) B 25.0 12 7 4 2 1 0.247 Ni(ppm) A 75.0 299 154 78 37 19 0.295 Ni(ppm) B 25.0 37 28 21 16 12 0.124 PH A 100.0 - 5,01 4.67 4.34 - 0.531 Zn(ppm) A 12.0 3131 2321 1600 1098 701 0.162 Zn(ppm) B 88.0 945 385 135 47 18 0.455 Table 4-1: Geometric mean (X), mean + 2standard deviation, .mean + 1 standard deviation and Log standard deviation (S) of populations representing 90 s o i l samples. C O Element P o p u l a t i o n P r o p o r t i o n ( % ) X+2S X+1S X X-1S X-2S Log S Organic A 20. .0 1.14 0.32 0.09 0.03 - 0.550 Carbon(%) B 80. ,0 1.29 0.92 0.77 0.55 0.39 0.146 Co(ppm) A 4. ,2 87 71 61 52 43 0.066 Co(ppm) B 95. ,8 47 36 27 21 16 0.116 Cu(ppm) A 6. .0 4000 3250 2650 2180 1750 0.089 Cu(ppm) B 10. ,0 1500 1400 1350 1250 1200 0.033 Cu(ppm) C 84. .0 720 350 180 92 45 0.289 Fe(%) A 100. .0 4.91 4.37 3.77 3.23 2.76 0.064 Mn(ppm) A 2, , 2 1580 1450 1380 1320 1250 0.021 Mn(ppm) B 92. .8 1270 710 550 430 305 0.111 Mn(ppm) C 5. .0 600 370 280 220 165 0.121 Mo (ppm) A 5, .0 66 49 38 29 22 0.120 Mo(ppm) B 6, .2 22 19 17 15 13 0.054 Mo(ppm) C 88, .8 9 5 3 1 - 0.222 Ni(ppm) A 100 .0 123 93 71 51 39 0.125 pH A 40 .0 7.8 7.5 7.3 7.0 6.7 0.018 pH B 60 .0 6.7 6.1 5.6 4.8 4.1 0.067 Zn(ppm) A 15 .0 330 260 195 150 110 0.125 Zn(ppm) B 85 .0 118 95 71 51 39 0.097 Table 4-2: Geometric mean (X), mean +2standard d e v i a t i o n , mean \u00E2\u0080\u00A2 4- l s t a n d a r d d e v i a t i o n and Log standard d e v i a t i o n (S) f o r 96 t i l l samples. 84 are r e c a l c u l a t e d and r e p l o t t e d on the graph as l i n e a r graphs from which geometric mean and sta n d a r d d e v i a t i o n s f o r each p o p u l a t i o n are e x t r a p o l a t e d from the 50 and 84 percent proba-b i l i t i e s . Graphs were p l o t t e d f o r c o b a l t , copper, i r o n , manganese, n i c k e l , molybdenum, z i n c , o r g a n i c carbon and pH i n 96 t i l l and 90 s o i l samples by a program w r i t t e n by Fox and S i n c l a i r (1973) f o r the U.B.C. IBM 370/168 computer. These graphs are shown i n Appendix C. Geometric means, l o g standard d e v i a t i o n s and v a l u e s f o r mean + IS and mean + 2S f o r popula-t i o n s p a r t i t i o n e d from the graphs are g i v e n i n Tables 4-1 and 4-2. The convention f o l l o w e d to d e f i n e p o p u l a t i o n s i n the d e s c r i p t i o n of the graphs w i l l be: Geometric mean, Mean p l u s two standard d e v i a t i o n , Mean minus two standard d e v i a t i o n . Cumulative frequency graphs f o r c o b a l t i n the t i l l (Appendix F i g . C-l) and c o b a l t i n s o i l s (Appendix F i g . C-2) have the form of bimodal, n o n - i n t e r s e c t i n g d i s t r i b u t i o n s . Overlap between t i l l p o p u l a t i o n A (61,87,43) and t i l l popula-t i o n B (27,47,16) i s l e s s than 107, and v a l u e s g r e a t e r than 43 ppm probably r e p r e s e n t c o b a l t i n the t i l l between s t a t i o n s Gl and G6 ( F i g . 4-6). Although there i s a p p r e c i a b l e overlap of the two c o b a l t p o p u l a t i o n s i n s o i l s v a l u e s g r e a t e r than 161 ppm, r e p r e s e n t i n g the upper 507, of p o p u l a t i o n A, can be e x p l a i n e d by c o b a l t i n the mesic-humic organic s o i l l a y e r s . P o p u l a t i o n B i s l a r g e l y an e x p r e s s i o n of c o b a l t i n the f i b r o u s s o i l l a y e r . Three copper p o p u l a t i o n s are p r e s e n t i n the t i l l (Appen-d i x F i g . C-3). The t i l l p o p u l a t i o n C (180,720,45), c o n t a i n i n g 84% o f the v a l u e s , r e f l e c t s 'background' copper l e v e l s i n the t i l l . P o p u l a t i o n s A and B have l i t t l e o v e r l a p w i t h each other or w i t h C. Ranges of v a l u e s r e p r e s e n t i n g these popu-l a t i o n s r e f l e c t d i s t r i b u t i o n p a t t e r n s i n the t i l l below the western p a r t of the bog. S o i l p o p u l a t i o n A (1.75%, 3.3%,, 0.93%,) has n e g l i g i b l e o verlap w i t h d i s t r i b u t i o n s B and C. These p o p u l a t i o n s c o u l d be e x p l a i n e d by d i s t r i b u t i o n p a t t e r n s i n the o r g a n i c s o i l a s s o c i a t e d w i t h d i f f e r e n t forms of copper. D i s t r i b u t i o n of i r o n i n the t i l l c o u l d be e x p l a i n e d by e i t h e r normal or lognormal curves (Appendix F i g . C-5). Two n o n - i n t e r s e c t i n g i r o n d i s t r i b u t i o n s are p r e s e n t i n s o i l s (Appendix F i g . C-6) . S o i l p o p u l a t i o n B, c o n t a i n i n g 75% o f the v a l u e s , i s an e x p r e s s i o n of low i r o n abundances g e n e r a l l y found i n the organic s o i l l a y e r s . P o p u l a t i o n B (2.83,4.93, 1.63), however, i s probably due to s c a t t e r e d h i g h i r o n v a l u e s i n the o r g a n i c s o i l and Ah h o r i z o n ( F i g . 4-8). Three man-ganese d i s t r i b u t i o n s are p r e s e n t in..the t i l l (Appendix F i g . C-7) although the shape of the curve suggests that a f o u r t h p o p u l a t i o n c o u l d be p r e s e n t . P o p u l a t i o n A (1320,1580,1250) i s an e x p r e s s i o n of manganese i n the t i l l between s t a t i o n s G l and A2E. P o p u l a t i o n s r e f l e c t manganese i n the reduced t i l l l a y e r and i n the o x i d i z e d t i l l l a y e r . S o i l p o p u l a t i o n A (2683,3700,1718), r e p r e s e n t e d by 4 v a l u e s i s an e x p r e s s i o n of the h i g h manganese l e v e l s i n the f i b r o u s l a y e r a t the e a s t e r n end of the bog. P o p u l a t i o n B r e f l e c t s manganese i n the humic-mesic o r g a n i c s o i l l a y e r s (Appendix F i g . C-8). The p r o b a b i l i t y graph f o r molybdenum i n t i l l f o l l o w s a n o n - i n t e r s e c t i n g , t r i m o d a l d i s t r i b u t i o n w i t h i n f l e c t i o n p o i n t s at 57. and 117o cumulative frequency (Appendix F i g . C-9). Values exceeding 18 ppm repr e s e n t i n g populations A and B r e f l e c t m i n e r a l i z e d m a t e r i a l i n the t i l l . Two molybdenum populations are present i n the s o i l (Appendix F i g . C-10) and popu l a t i o n A (19,51,7) i s an expression of high values i n the organic s o i l l a y e r s at the western end of the bog.(Fig. 4-11) A s i n g l e , lognormal n i c k e l d i s t r i b u t i o n i s present i n the t i l l (Appendix F i g . C - l l ) . Two n o n - i n t e r s e c t i n g lognormal popula-t i o n s are present i n s o i l s (Appendix F i g . C-12) and po p u l a t i o n A (78,299,19) i s an expression of n i c k e l d i s t r i b u t i o n patterns i n the humic-mesic l a y e r s . Values l e s s than 37 ppm are l a r g e l y due to po p u l a t i o n B which r e f l e c t s n i c k e l i n the f i -b r i c organic l a y e r and the Ah h o r i z o n of the humic g l e y s o l s o i l . Two z i n c d i s t r i b u t i o n s are present i n s o i l s and i n the t i l l (Appendix F i g . C-13). T i l l p o p u l a t i o n A (195,330,110), c o n t a i n i n g 157. of the values, i s an expression of z i n c i n the deeper t i l l on the south s i d e of the bog shown i n F i g . 4-10. The s o i l p o p u l a t i o n A (1600,3131,701) r e f l e c t s the high z i n c l e v e l s i n the humic-mesic s o i l l a y e r s at the eastern end of the bog. P o p u l a t i o n B (135,945,18) i s probably due to z i n c i n organic s o i l s and the Ah h o r i z o n of the humic g l e y s o l throughout the c e n t r a l and western parts of the bog. The t i l l organic carbon p o p u l a t i o n A (0.77,0.96,0.55) (Appendix F i g . C-15) can be explained by s l i g h t l y higher 87 carbon l e v e l s i n the t i l l c l o s e to the o r g a n i c s o i l - t i l l i n t e r f a c e . There i s , however, c o n s i d e r a b l e o v e r l a p between t i l l p o p u l a t i o n s A and B. P o p u l a t i o n B i s l a r g e l y due to very s m a l l organic carbon c o n c e n t r a t i o n s g e n e r a l l y l e s s than 0.17\u00C2\u00B0 i n the deeper t i l l . Organic carbon values i n s o i l s f o l l o w a s i n g l e d i s t r i b u t i o n (Appendix F i g . C-16) although the curve tends to e x h i b i t a degree of f l a t t e n i n g above 807, cumu-l a t i v e frequency. T h i s c o u l d be due to t r u n c a t i o n or the presence of a second p o p u l a t i o n r e p r e s e n t e d by org a n i c carbon values l e s s than 107,. The pH v a l u e s i n the t i l l f o l l o w a n o n % i n t e r s e c t i n g , bimodal d i s t r i b u t i o n (Appendix F i g . C-17) and p o p u l a t i o n A (7.3,7.8,6.7) i s c l e a r l y due to the pH of the deeper, o x i d i z e d t i l l l a y e r . Values l e s s than 6.7 r e p r e s e n t p o p u l a t i o n B which i s an e x p r e s s i o n of the pH of the reduced t i l l l a y e r be-neath the o r g a n i c s o i l . The pH of s o i l s f o l l o w s a s i n g l e d i s t r i b u t i o n (Appendix F i g . C-18) although the curved shape of the p r o b a b i l i t y graph c o u l d i n d i c a t e that both normal and lognormal d i s t r i b u t i o n s are p r e s e n t . 4-3 STATISTICAL CORRELATIONS BETWEEN METALS, ORGANIC CARBON AND pH IN SOILS The s p a t i a l d i s t r i b u t i o n p a t t e r n s , d e s c r i b e d i n s e c t i o n 4-1, show that s e v e r a l of the metals and o r g a n i c carbon a p p a r e n t l y have a common a s s o c i a t i o n . The mesic-humic or-gani c s o i l l a y e r s w i t h o r g a n i c carbon contents ranging from 16 to 427, are t y p i c a l l y e n r i c h e d w i t h copper, c o b a l t , z i n c , n i c k e l and molybdenum, but g e n e r a l l y have low i r o n and manga-c 1.00 pH Co Cu Fe Mn Ni -0.26 1.00 0.43 -0.13 1.00 0.46 -0.09 0.51 1.00 -0.08 0.23 0.21 -0.15 1.00 0.27 0.01 0.60 0.09 0.37 1.00 0.43 -0.11 0.49 0.38 0.18 0.15 1.00 0. 32 -0. 05 0. 54 0. 51 0.13 0. 17 0. 86 Table 4-3: C o r r e l a t i o n m a t r i x f o r s o i l samples w i t h o r g a n i c carbon content g r e a t e r than 57,; (n = 63; r = + 0.25 s i g n i f i c a n t at 957, confidence l e v e l ) . c pH Co Cu Fe Mn N i 1.00 -0.08 1 .00 0.05 -0 .19 1 .00 0.30 -0 .04 0 .56 1.00 -0.25 0 .22 0 .08 -0.03 1 .00 0.04 0 .05 0 .19 -0.10 0 .26 1.00 0.17 0 .08 0 .09 0.23 0 .15 -0.28 1.00 0.02 0 .15 0 .31 0.43 0 .20 -0.15 0.77 Table 4-4 : C o r r e l a t i o n m a t r i x f o r s o i l samples w i t h o r g a n i c carbon content g r e a t e r than 167>; (n = 33; r = +.0.35 s i g n i f i c a n t a t 957, confidence l e v e l ) . 88 Zn 1.00 Zn 1.00 89 nese l e v e l s . Associations between high n i c k e l and zinc values i n the humic-mesic layers and between i r o n and manga-nese i n the fibrous layer are especially evident at the eastern end of the bog. The s t a t i s t i c a l significance of these asso-ciations was determined by c a l c u l a t i n g c o r r e l a t i o n c o e f f i -cients and p l o t t i n g scatter diagrams using the program TRP written by Chin Le andTenisci (1977) for the UBC IBM 370/168 computer. Correlation c o e f f i c i e n t s measure the degree of l i n e a r relationship between two variables and represent a r a t i o of the covariance of the variables to the product of their standard deviation (Dixon and Massey 1969)). The c o e f f i c i e n t s which do not depend on units used to measure the variables range from +1.0 (indicating a perfect sympathe-t i c relationship) through zero (a t o t a l absence of any r e l a -tionship) to -1.0 (indicating a perfect inverse r e l a t i o n s h i p ) . Large p o s i t i v e or negative c o e f f i c i e n t s can also r e s u l t from the presence of a few spuriously high or low values i n the data and scatter diagrams are therefore commonly plotted to v i s u a l l y examine the c o r r e l a t i o n between the variables (Chapman 1976). Geochemical data for 63 s o i l samples with organic carbon ranging from 5\u00C2\u00B0L to 427 c was used i n a preliminary analysis . This data includes values from several combined populations as described i n section 4-2. Metal values were log trans-formed before c o r r e l a t i o n c o e f f i c i e n t s were calculated since Chi squared testing of the data indicated that most d i s t r i b u -2.5 r-1.0 o o \u00E2\u0080\u009E. 0.5 o o o o oo \u00E2\u0080\u009E o o o ^ -O o o oo o o o o 0 0 o o oo \u00C2\u00B0 - Cu against Organic Carbon. 1000 500 PPM Co iOO 50 o o o o o o o o o oo oo oo ^ o 0 0 0 o\u00C2\u00B0 o o O 0 0 0 s 0 0 C a l c u l a t e d r e g r e s s i o n l i n e f o r 63 sample o o o o o o 0 0 10 o o _ J I I I I 100 500 1000 w 5000 10000 PPM Mn F i g u r e 4-14. S c a t t e r diagram f o r Log l f.Co a g a i n s t Log l r )Mn. 5000 o 1000 PPM Zn 100 50 o O / o oo, o o ' \' \u00E2\u0080\u009E ' o o o o o o s 0 o o ' O O O 0 o o o O O o o X o o oo \" OO 00 ^ 0 oo o o 00 o o o o o 20 50 100 PPM Ni F i g u r e 4-15. S c a t t e r diagram f o r Log-^Q Zn a g a i n s t L o g 1 n Ni 150 200 10 C a l c u l a t e d r e g r e s s i o n l i n e f o r 63 samples 300 V O t i o n s were approximately l o g normal. No t r a n s f o r m a t i o n of organic carbon or pH values were made, however, and s i n c e a p r o p o r t i o n of molybdenum valu e s were below d e t e c t i o n l i m i t t h i s metal was a l s o excluded from the a n a l y s i s . A c o r r e l a -t i o n m a t r i x c a l c u l a t e d from data r e p r e s e n t i n g the 63 samples i s shown i n Table 4-3. The minimum c o r r e l a t i o n c o e f f i c i e n t (r) which w i l l be s i g n i f i c a n t at the 57> s i g n i f i c a n c e l e v e l i n a sample s i z e of 63 (60 degrees of freedom) i s + 0.25 ( P h i l l i p s and Thompson, 1967, Table F-8). C o r r e l a t i o n c o e f f i c i e n t s g r e a t e r than + 0.25 i n Table 4-3 w i l l i n d i c a t e t h a t there i s a l i n e a r r e l a t i o n s h i p between two v a r i a b l e s . T h i s r e l a t i o n s h i p , however, w i l l be r e l a t i v e l y weak below a c o e f f i c i e n t of + 0.5 s i n c e a t t h i s l e v e l only 257, of the v a r i a t i o n can be a t t r i b u t e d to the l i n e a r a s s o c i a t i o n between v a r i a b l e s . C o e f f i c i e n t s g r e a t e r than +0.5 i n Table 4-3 are Co-Cu (+0.51), Co-Mn (+0.60), Co-Zn (+0.54), Cu-Zn (+0.51) and Zn-Ni (+0.86). The c o e f f i c i e n t between z i n c and n i c k e l i n d i c a t e s t h a t more than 607. of the v a r i a t i o n can be e x p l a i n e d by a l i n e a r r e l a -t i o n s h i p and the s c a t t e r diagram f o r Log-^Qzinc a g a i n s t Log-^Q n i c k e l ( F i g . 4-15) demonstrates t h a t p o i n t s c l u s t e r r e l a t i v e l y c l o s e l y along a l i n e a r t r e n d . A diagram of Log-^Q copper p l o t t e d a g a i n s t % organic carbon ( F i g . 4-13) shows that p o i n t s are w i d e l y s c a t t e r e d although a weak tr e n d of i n c r e a s i n g copper and o r g a n i c carbon can be seen. S i m i l a r s c a t t e r i n g occurs i n the diagram of Log-^Q C o b a l t p l o t t e d a g a i n s t Log-^Q manganese ( F i g . 4-14). The h i g h e r c o r r e l a t i o n c o e f f i c i e n t F i g u r e 4-16. S c a t t e r diagram f o r Log-^Zn a g a i n s t L o g l f ) N i . '10 5000 1000 500 PPM Zn 100 50 o O o o / o o C a l c u l a t e d r e g r e s s i o n l i n e f o r 33 samples o O 0 o o o O o _L_ 20 _ j \u00E2\u0080\u00A2 i I : L_ 50 PPM Ni 100 150 200 ' 300 95 (+0.60) f o r Co-Mn than Cu-Carbon (+0.46) c o u l d be due to a s i n g l e , h i g h cobalt-manganese v a l u e . The c o r r e l a t i o n m a t r i x was r e c a l c u l a t e d f o r the same v a r i -a b l e s , but u s i n g samples w i t h more than 167<> o r g a n i c carbon (Table 4-4). The minimum c o e f f i c i e n t f o r a sample s i z e of 33 a t the 57o s i g n i f i c a n c e l e v e l i s + 0.35. Those v a r i a b l e s w i t h c o e f f i c i e n t s g r e a t e r than + 0.50 are Cu-Co (+ 0.56) and Ni-Zn (+ 0.71). A s c a t t e r diagram f o r Log-^Q z i n c p l o t t e d a g a i n s t Log-^Q n i c k e l ( F i g . 4-16) shows th a t there i s a r e l a t i v e l y s t r o n g l i n e a r r e l a t i o n s h i p between the two metals above val u e s of 250 ppm z i n c and 50 ppm n i c k e l . The c o e f f i c i e n t s f o r Co-Cu and Ni-Zn, w h i l e i n d i c a t i n g a c l e a r l i n e a r r e l a t i o n s h i p between these metals, do not n e c e s s a r i l y prove t h a t v a r i a t i o n s of c o b a l t depend on those of copper or t h a t n i c k e l v a r i a t i o n s w i l l depend on those of z i n c . The common a s s o c i a t i o n of these metals i n the h i g h l y o r g a n i c s o i l s c o u l d be completely f o r t u i t o u s and the s p a t i a l d i s t r i b u t i o n p a t t e r n s c o u l d r e f l e c t common sources f o r the metals or s i m i l a r c o n c e n t r a t i n g mechanisms. 4-4 TRACE METALS IN VOLCANIC ASH R e s u l t s of analyses of two v o l c a n i c ash samples are shown i n Table 4-5. Ash sample 77-RL-l i s from a l a y e r between 30 to 40 cm deep i n the Ah h o r i z o n of a humic g l e y s o l p r o f i l e 125 m south from s t a t i o n L6S. Sample 77-RL-2 i s of s i m i l a r t e x t u r e d m a t e r i a l , but at 100 cm depth on a p r o f i l e through f i b r i c mesis-o l i c s o i l . Both of these samples may be of ash t h a t was depos-i t e d d u r i n g the St Helens ash f a l l . Very low metal 96 Number L o c a t i o n Co Cu Fe Mn N i Zn 77-RL-l 125 m south of ND 79 0.12 9 9 33 s t a t i o n L6S 77-RL-2 1 m deep s t a t i o n 1 at .5G 4 359 0.20 12 14 116 Table 4--5: Metal Cu, Co i n %. contents of v o l c a n i c , Mn, N i and Zn are ash samples. i n ppm; Fe i s Number L o c a t i o n Cu Fe Mn Zn 73-RL-533 a L5S 44 197 154 48 73-RL-535 a B1E 96 215 90 31 73-RL-570 3 L2N 37 167 132 29 73-RL-573 a A1W 228 206 240 21 73-RL-530 b B1W 13 73 707 63 73-RL-534 b B1E 19 82 805 49 74-RL-1357 b A2W 17 56 391 34 74-RL-1363 b G2 10 60 548 27 74-RL-1364 b G4 16 66 430 44 74-RL-1365 b LIN 14 68 290 41 74-RL-1366 b LON 17 57 548 32 74-RL-1381 b LIS 20 77 612 42 74-RL-1382 b L3S 19 71 1503 35 Table 4-6: Metal contents i n ppm of v e g e t a t i o n samples; a - Sphagnum moss; b - Labrador Tea. 9 7 contents appear to be t y p i c a l of the volcanic ash except for the high copper content i n sample 77RL-2. Presence of small organic fragments i n this sample and the dark yellow to brown colour of the material suggests that the copper may have been introduced with organic matter aft e r deposition of the ash. 4-5 TRACE METALS IN BOG VEGETATION A small number of sphagnum moss and labrador tea samples were analysed for copper, iron, manganese and zinc and results are given i n Table 4-6. These results are for n i t r i c - p e r -c h l o r i c acid digested material and no ash weights were deter-mined. Results indicate, however, that copper and i r o n are r e l a t i v e l y more abundant i n the sphagnum moss growing on the water saturated fibrous material than i n the labrador tea shrub. The labrador tea, i n contrast to the moss, has higher levels of manganese. 4-6 TRACE ELEMENTS IN GROUND AND SURFACE BOG WATERS Water flowing from t i l l - b e d r o c k seepages, a diamond d r i l l hole (#68-W-5), humic gleysol seepages, semi-stagnant bog surface pools, surface streams and water accumulating at the bottom of cased auger holes was analysed for t o t a l copper, iron, manganese, zinc, organic carbon, calcium and pH. A number of the surface and subsurface water samples were also analysed for sulphate and biquinoline extractable copper. Arithmetic means, standard deviations and concentration ranges for the d i f f e r e n t sample types are given i n Table 4-7. Means and standard deviations for those sample groups where a pro-portion of the a n a l y t i c a l values are below instrumental Sample type Carbon Ca Cu Fe Mn pH Zn T i l l - b e d - X 1.6 24 70 30 33 6.0 10 rock seeps R <0 .5-5.0 <5-125 <10-290 <20-153 <-20-41 5. .5-7.0 <6-54 n = 14 S 1.4 32 98 76 8 0.5 22 P(%) 79 100 71 21 31 100 50 Humic-gley- X 1.6 19 178 87 35 6.2 25 s o l seeps R <0 .5-8.0 < 5-120 <10-590 <20-143 <20-60 4. .0-7.3 <6-70 n = 17 S 2.2 30 162 102 17 1.0 22 P(%) 15 12 100 24 24 100 82 Surface X 1.4 19 441 30 40 5.0 27 pools R <0 .5-7.0 <5- 30 <10-750 <20-276 < 20-62 4. ,0-7.0 < 6-50 n = 13 S 3.6 7 230 117 13 0.9 12 P(%) 69 100 100 39 77 100 85 Subsurface X 7.4 21 185 263 106 7.4 12 waters R 2. 0-16.0 <16-28 <10-1060 <20-2328 <20-204 6. .0-7.5 < 6-40 n = 10 S 4.2 5 324 744 60 0.6 14 P(%) 100 100 70 80 100 100 60 Stream X 2.2 22 104 38 N o 6.6 8 waters R <0. 5 -3.0 <17-25 <10-425 '<20-123 Data 4 .5-7.8 < 6-22 S 1.0 6 111 38 0.9 6 P(%) 90 100 95 50 100 70 Table 4-7: A r i t h m e t i c means (X), standard d e v i a t i o n s ( S ) and ranges (R) f o r elements i n water. Cu, Fe, Mn.and Zn i n ppb; C and Ca i n ppm. P = 7o values d e t e c t i o n l i m 9 9 detection l i m i t have been calculated by the method described by Miesch (1967). These s t a t i s t i c s are only approximations i n those sample groups with more than 50 percent of values below the detection l i m i t . Horizontal variations of copper i n bog waters and sur-rounding seepages are shown i n F i g . 4-17. Weakly acid (pH 5.5-7.0) t i l l - b e d r o c k seepages generally have less than 50 ppb copper, less than 2 ppm organic carbon and no detectable iron or manganese. Spring water draining from a probable f a u l t zone 50 m north of station G 11 contains 290 ppb copper a l -though no copper was detected i n water flowing from diamond d r i l l hole 68-W-5. This water contained 125 ppm calcium, 120 ppm sulphate and 54 ppb zinc. Seepages from humic gleysols have pH values ranging from 4.0 to 7.0 and a higher mean copper content (178 ppb) than the t i l l - b e d r o c k seepages. Water from seepages on the west side of the bog has up to 590 ppb copper (Fig. 4-17). Most of the seepages do not have detectable levels of iron or manganese. Dissolved organic carbon up to 8 ppm occurs i n water accumulating i n p i t s on the north and south sides of the bog. Seepages and springs flowing from the north side of the bog have up to 120 ppm calcium. Zinc contents up to 70 ppb are found i n seepages draining the h i l l side on the southeast margin of the bog. The pH of semi-stagnant surface pools can be as low as 4.0 and water standing on the bog surface between stations L0N to G2 contains up to 750 ppb copper. The high copper con-centrations are found i n semi-stagnant pools less than 10 cm CENTRAL BOG DRAIN AGE.SOILS AND FLORA TOTAL DISSOLVED COPPER CONTENT OF SURFACE WATER SAMPLES IN P.P.B i / v J. LEGEND FIBRK MEStSOLS; SIMILAR FLORA TO H U M C MESISOLS WITH HUMOCKY SPHAGNUM MOSS H U M t M\u00C2\u00A3SlSOLS ;ENGl\u00C2\u00A3MANN S P R U C E , MOUNTAIN HEMLOCK, LODGE POLE PINE ^OT TON GRASS,REDHEATHER,LA8RADOR TEA GLEYED DYSTRC BRUNl50LS;ORTHIC HUMIC GLEYSOLS WITH LOCAL PEATY P H A S E S : WHITE AMD ENGLEMANN SPRUCE, MOUNTAIN LABRADOR 1EA.WHITE R MQDOOENDRON ALPINE OYSTRlC BRUNISOLS; GRASS COVERED HILLSIDE CLEARING ORTHlf, DYSTRlC B R U N 6 0 L S WITH OC GRADED DYSTRIC 6RUNIS015. ENGLEMANN SPRUCE, WHITE SPRUCE,LODGCPOLE PINE, ALPINE FIR D R A I N A G E C H A N N E L Figure 4-17: Copper ( ppb) in surface water samples Figure 4-18: Copper ( ppb) in subsurface water samples 102 deep formed over f i b r i c m e s i s o i s . Bottom sediment i n these pools c o n s i s t i n g of p a r t i a l l y decomposed v e g e t a t i o n fragments, i s o c c a s i o n a l l y coated w i t h a white p r e c i p i t a t e i d e n t i f i e d as sulphur. I r o n hydroxide p r e c i p i t a t e s are more common on the bottom of pools and surrounding seepages at the western end of the bog. The mean d i s s o l v e d o r g a n i c carbon content (1.4 ppm) and range of v a l u e s are lower than those determined f o r the humic g l e y s o l seepages. Surface water pools a l s o have l e s s than 30 ppb i r o n , below 30 ppb manganese and l e s s than 50 ppb z i n c . The l a r g e s t chemical v a r i a t i o n s are found between s u r f a c e waters and waters accumulating at the bottom o f cased auger h o l e s . Mean pH of the subsurface waters (7.4) i s higher than s u r f a c e waters and v a l u e s range from 6.0 to 7.5. The mean copper content (185 ppb) of the subsurface waters i s markedly lower than that of s u r f a c e waters, but i s s i m i l a r to the mean of the humic g l e y s o l seepage samples (178 ppb). Most subsurface water samples have l e s s than 50 ppb copper (Table 4-9) except i n a small area at the western end of the bog where copper exceeds 1000 ppb i n the water ( F i g . 4-18). The area where these h i g h copper v a l u e s occurs i s u n d e r l a i n by c o p p e r - r i c h t i l l . Subsurface bog water samples a l s o have higher mean d i s s o l v e d i r o n , manganese and o r g a n i c carbon abundances than do s u r f a c e waters (Table 4-7). One sample, f o r example, c o l l e c t e d a t 1.5 m depth a t s t a t i o n G2 c o n t a i n s more than 2000 ppb d i s s o l v e d i r o n , but l e s s than 50 ppb d i s s o l v e d copper. The mean d i s s o l v e d c a l c i u m content of the 10 3 Sample Ppb Cu by Ppb Cu by % Cu not Organic pH number A.A. spect- b i q u i n o l i n e e x t r a c t e d carbon 74-RL- rophotometry by b i q u i n -o l i n e (ppm) 1290 125 180 - 2.0 5.8 1291 117 90 23 2.5 5.0 1292 175 120 31 2.0 5.5 1293 241 150 38 2.5 5.5 1294 158 110 30 2.0 5.8 1314 658 650 2 <0.5 5.0 1315 699 700 <1 <0.5 4.5 1316 749 800 $1 <0.5 4.0 1318 62 80 <1 2.0 6.0 1320 395 350 11 <0.5 4.0 1323 146 110 25 <0.5 5.5 1324 146 50 66 3.0 4.0 1326 220 150 32 2.0 7.0 1508 645 520 19 5.0 n.a 1427* 21 10 50 9.5 6.0 1428* 10 8 20 9.0 7.5 1429* 50 8 84 16.0 7.0 1439* 499 450 10 2.0 6.0 1442* 50 20 60 4.0 6.2 1443* 90 50 44 3.5 6.0 Table 4-8: Surface and subsurface(*) water samples analysed by atomic a b s o r p t i o n s p e c t r o -photometry and by 2-2 b i q u i n o l i n e c o l o -r i m e t r y . n.a = not determined. 104 subsurface water samples i s similar to that of surface waters and sulphate values, ranging from 27 to 80 pprn, are s l i g h t l y higher i n surface pools. One Eh measurement made ono:s.ubsurface water recorded -260 mv. This Eh and the odour of H^S from freshly sampled water suggests that subsurface bog water i s moderately reducing. Measured dissolved sulphate values w i l l therefore be a product of sulphate derived from mineral sources and sulphate from the oxidation of li^S. Organic carbon values ranging from 2 to 16 ppm i n sub-surface water and from 0.5 to 7 ppm i n surface water may repre-sent concentrations of dissolved, metal-complexing organic substances ( f u l v i c acid f r a c t i o n ) . The proportion of copper which may be bound to organic matter or other substances i n the water has been measured using 2-2 biquinoline and r e s u l t s are given i n Table 4-8. Several of the samples analysed have a biquinoline extractable copper value that i s greater than the concentration determined by atomic absorption spec-trophotometry. The reason for this inconsistency may be a n a l y t i c a l error of the biquinoline extractable copper method or poor p r e c i s i o n at high copper concentrations. Biquinoline generally extracts more than 607o of the copper from samples having low dissolved carbon contents and low pH which are from the surface pools (Table 4-8). A smaller proportion of the t o t a l copper i s removed from subsurface water samples having a greater organic carbon content indicating that a higher percentage of the copper could be bound to the organic matter. Sample Depth- Organic Ca Cu Fe Mn pH ^ 4 Zn number L o c a t i o n carbon 1326 S A0.5W 2.0 19 200 61 <20 7.0 n.r 31 1427 G LIN 9.5 n.r 21 30 204 6.0 45 15 1323 S GO. 8 5.0 8 146 <20 23 5.5 n.r 22 1428 G GO. 8 9.0 25 <10 110 136 7.5 40 10 1324 S A1W 3.0 7 146 <20 <20 4.0 n.r 20 1429 G A1W 16.0 11 50 172 74 7.0 27 22 1315 s, G2.2 <0.5 23 699 <20 43 4.5 75 28 1439 G, G2.2 2.0 18 499 398 43 6.0 60 22 1317 S; G2.0 <0.5 29 708 <20 51 5.2 80 37 1442 G, G2.0 4.0 23 50 2328 51 6.2 62 <6 1314 S; G1.5 <0.5 23 658 <20 43 5.0 65 30 1443 G; G1.5 3.5 25 90 441 100 6.0 62 <6 1320 S; G1.0 <0.5 16 395 <20 34 4.0 50 39 1444 G; G1.0 4.0 25 1060 61 43 n.r 65 39 1493 S; LON 7.0 n.r 633 <20 57 4.0 n.r 15 1492 G; LON 9.0 16 <10 30 165 n. r 27 <6 1508 S; LIS 5.0 13 645 61 62 4.8 40 25 1507 G; LIS 12.0 28 <10 92 71 n. r 30 <6 Table 4-9: Element contents i n s u r f a c e ( S ) and subsurface (G) bog water samples. Cu, Fe Mn, Zn are i n ppb; Carbon , Ca, and SO, are 4 i n ppm n.r = not recorded. 106 Biquinoline extractable copper data are, however, based on a comparison between 6 subsurface and 12 surface water samples. Stream waters are weakly acid and have dissolved iron, zinc, and organic carbon levels similar to those found i n ti l l - b e d r o c k seepages. Streams draining semi-stagnant pools covering the western end of the bog have water pH values below 5.0 and samples contain more than 400 ppb copper. Thick precipitates of iron hydroxide often occur i n channels through this part of the bog. Below these incrustations, however, the organic r i c h stream sediment has a dark blue-grey colour and has a strong I^S odour. Water flowing i n the main stream draining the lower end of the bog has higher pH than water i n the channel at the western end. The dissolved copper content also decreases from above 400 ppb at the western end to less than 70 ppb i n samples from the channel draining the lower, eastern end of the bog. 4-7 HI REDUCIBLE SULPHUR CONTENTS OF SOIL AND TILL The s o i l and t i l l samples analysed for hydriodic acid reducible sulphur (HI reducible sulphur) are from four v e r t i -c a l organic s o i l - t i l l p r o f i l e s including P r o f i l e 2 (Fig. 4-2) and P r o f i l e 3 (Fig. 4-3). Results given i n Table 4-10 show that HI reducible sulphur i s 10 to 20 times greater i n organic s o i l layers than i n underlying t i l l and sulphur generally increases down p r o f i l e s from the f i b r i c layer into the humic-mesic layers, but f a l l s sharply at the organic s o i l - t i l l i nterface. The c o r r e l a t i o n c o e f f i c i e n t for HI reducible Sample Number Location-Depth i n cm HI-Sulphur(ppm) Organic C CA) 73-RL-117 S t a t i o n B1E 0-50 788 26.4 118 n i i 50-100 350 19.0 119 i i i i 100-110 105 4.0 139 i i ii 250-260 19 0.5 140 it n 300-310 26 0.1 73-RL-120 L5S 0- 50 1114 39.5 121 ii i i 50-100 1360 32.0 122 I I n 100-150 1445 22.9 123 n i i 150-200 1181 50.6 141 I I i i 350-360 24 0.1 142 I I n 380-390 30 0.4 74-RL-1087 LON 0-40 249 34.1 1088 it I I 50-100 1162 41.4 1089 it n 100-130 725 21.9 1090 n n 130-140 69 1.0 74-RL-1091 LIN 0-40 118 13.7 1092 i i n 50-100 449 16.7 1093 n n 100-150 1360 26.1 1094 n n 150-200 906 32.0 1095 n n 200-250 1418 39.4 1096 M i i 250-300 906 42.6 1097 n n 325-350 104 1.3 Table 4-10: H y d r i o d i c a c i d r e d u c i b l e sulphur and o r g a n i c carbon contents of samples from f o u r p r o f i l e s . 108 sulphur and organic carbon i s + 0.82 i n d i c a t i n g that more than 657o of the v a r i a t i o n can be e x p l a i n e d by a l i n e a r r e l a t i o n -ship between sulphur and carbon. T h i s r e l a t i o n s h i p and the marked i n c r e a s e of sulphur i n or g a n i c s o i l compared to l e v e l s i n the t i l l suggests that a l a r g e p r o p o r t i o n of the HI redu-c i b l e sulphur present occurs as o r g a n i c sulphate and possibly, as s u l p h i d e . 109 CHAPTER 5 SULPHIDE MINERALS' IN ORGANIC SOILS AND TILL 5-1 INTRODUCTION Bromoform separated heavy m i n e r a l f r a c t i o n s - from roughly one hundred s o i l and t i l l samples were i n i t i a l l y examined under a b i n o c u l a r microscope. V i s i b l e , non-sulphide m i n e r a l s i n -cluded angular to subangular g r a i n s o f quartz, f e l d s p a r , a green pyroxene and magnetite. Small, subangular shaped p y r i t e g r a i n s , o f t e n p a r t i a l l y a l t e r e d to l i m o n i t e c o u l d be i d e n t i f i e d i n sep-a r a t e s from t i l l samples. C l u s t e r s o f s m a l l bronze c o l o u r e d c o n c r e t i o n l e s s than 0.5 mm i n s i z e were v i s i b l e i n separates from o r g a n i c s o i l samples- A s i n g l e c o n c r e t i o n was analysed by X-ray d i f f r a c t i o n u s i n g a Debye-Scherrerpowder camera and the m i n e r a l was i d e n t i f i e d as p y r i t e . Dark brown to y e l l o w d e n d r i t i c g r a i n s , s m a l l e r than the c o n c r e t i o n c l u s t e r s were a l s o present i n the o r g a n i c s o i l separates. To i d e n t i f y these m i n e r a l g r a i n s and to c a r r y out a d d i t i o n a l examination of the c o n c r e t i o n t e x t u r e s roughly f i f t y heavy m i n e r a l separate sam-p l e s were mounted i n e p o x y - r e s i n , p o l i s h e d and the s e c t i o n s examined under a r e f l e c t i n g microscope. S e v e r a l o f the i n -d i v i d u a l g r a i n s i n the s e c t i o n s were a l s o examined and analysed f o r r e l a t i v e copper, i r o n and sulphur abundances w i t h a scanning e l e c t r o n microscope. 5-2 COMPOSITION AND TEXTURES OF SULPHIDE MINERAL GRAINS Se v e r a l forms o f p y r i t e were i d e n t i f i e d i n the s e c t i o n s made from the heavy m i n e r a l separates. Small angular p y r i t e g r a i n s mainly occur i n the t i l l although these were o c c a s i o n -a l l y present i n o r g a n i c s o i l s . The most common form o f p y r i t e 110 Plate 5-1: Electron micrograph of a framboidal p y r i t e c l u s t e r i n a polished mount made from a heavy mineral separate of s o i l sample 74-RL-1119. Spherical pyrite concretions (Py) are rimmed with softer sulphides consisting of chalcopyrite (Cp) and c o v e l l i t e (Cv). Sample 74-RL-1119 i s from s t a t i o n G1.0 at 2.5 m depth. Bar scale measures 50 um. I l l Plate 5-2: Electron micrograph of an individual pyrite frambo-id ('A') from the cluster shown in Plate 5-1. The pyrite microcrystals are less than 10 um across and are randomly orin-tated. Cubic forms are visible in several of the microcrystals. Bar scale measures 20 um. 112 Plate 5-3: E l e c t r o n micrograph of p y r i t e framboids from sample 74-RL-1119. The m i c r o c r y s t a l l i n e framboid core i s coated with a concentric layer of massive, s l i g h t l y s o f t e r sulphide that has a composition s i m i l a r to FeS 0. Bar scale measures 20 um. 113 i n o r g a n i c s o i l i s as s p h e r i c a l c o n c r e t i o n s or c l u s t e r s of con-c r e t i o n s resembling bunches of grapes. The i n d i v i d u a l concre-t i o n s are between 20 and 30 um diameter and g e n e r a l l y c o n s i s t of l o o s e l y packed p y r i t e m i c r o c r y s t a l s . M i c r o c r y s t a l s i n a t y p i -c a l c o n c r e t i o n , shown i n P l a t e s 5-1 and 5-2, are roughly c u b i c and the l e n g t h of each c r y s t a l i n l e s s than 5 um. Comparable f e a t u r e s have been d e s c r i b e d i n framboidal p y r i t e r e p o r t e d i n r e c e n t sediments from w i d e l y ranging environments Framboids d e s c r i b e d i n these sediments commonly have the i n d i v i d u a l micro-c r y s t a l s o r i e n t a t e d along w e l l d e f i n e d planes, but the m i c r o c r y -s t a l s which make up the framboid i n P l a t e 5-2 appear to be rand-omly o r i e n t a t e d . S e v e r a l of the framboids found i n the o r g a n i c s o i l s have a m i c r o c r y s t a l i n e core t h a t i s e n c l o s e d by a roughly s p h e r i c a l envelope c o n s i s t i n g of massive i r o n s u l p h i d e that i s s l i g h t l y s o f t e r and darker c o l o u r e d than t h a t i n the core ( P l a t e 5-3). The envelope i s 8-10 um t h i c k and i s o f t e n cut by both r a d i a t i n g and c o n c e n t r i c f r a c t u r e s . R e l a t i v e i r o n and sulphur abundances, determined by scanning e l e c t r o n microprobe a n a l y s i s , are almost uniform throughout these framboids although, however, the core has a s l i g h t l y i r o n content than the envelope. I n d i v i d u a l framboids are a p p a r e n t l y non-magnetic and the c u b i c shape of the m i c r o c r y s t a l s i n the core i n d i c a t e s that they are p y r i t e . The s o f t e r s u l p h i d e which comprises the surround-i n g envelope c o u l d , however, have a composition c l o s e r to that of g r e i g i t e - m e l n i k o v i t e (Fe^S^) which has a hardness ranging from 4.0-5.0 compared to 5.0 f o r p y r i t e . Papeunen (1966) has r e p o r t e d framboids from a p y r i t i c l a y e r i n a F i n i s h peat 114 Plate 5-4: Photomicrograph of the framboidal cluster shown in Plate 5-1. The softer, darker yellow chalcopyrite coating the pyrite framboids is clearly v i s i b l e . Blue covellite lamellae f i l l the interstices between the framboids. Bar scale is 50 um. Jt J * \ 1 Plate 5-5: Photomicrograph of a polished mount from sample 74-RL-1127 collected at station G 1.5 at 2.5 m depth. Idiomorphic covellite 'crystals' less than 20 um across are rimmed by chal-copyrite. The outer shape of the chalcopyrite envelope i s sub-parallel to the shape of the covellite core and one of the grains has a roughly hexagonal form. Bar scale is 10 um. 115 bog which e x h i b i t e d s i m i l a r t e x t u r e s to those d e s c r i b e d above. He determined, by X-ray d i f f r a c t i o n t h a t the core and concent-r i c envelope surrounding the core both c o n s i s t o f p y r i t e . Framboids commonly occur i n c l u s t e r s c o n t a i n i n g approximately 20 to 30 c o n c r e t i o n s and one example, shown i n P l a t e 5-4, meas-ures roughly 200 um a c r o s s . Microcrystalline p y r i t e i s c l e a r l y v i s i b l e i n s e v e r a l of the framboids i n t h i s c l u s t e r and b l u e c o v e l l i t e l a m e l l a e p a r t i a l l y f i l l the i n t e r s t i c e s between the p y r i t e c o n c r e t i o n s . C h a l c o p y r i t e i s a l s o present as a t h i n c o n c e n t r i c l a y e r surrounding s e v e r a l of the p y r i t e framboids and a l s o as l a r g e r , i r r e g u l a r l y shaped areas on the outer edge of the c l u s t e r p a r t i a l l y e n c l o s i n g the c o v e l l i t e . The i r r e g -u l a r shape of the framboidal p y r i t e c l u s t e r suggests that i t may have been l a r g e r , but was broken up d u r i n g sample d i s s a g g r e -g a t i o n . Grains of c h a l c o p y r i t e mixed w i t h c o v e l l i t e , c o v e l l i t e and n a t i v e copper were a l s o i d e n t i f i e d i n p o l i s h e d mounts made from heavy m i n e r a l separates of o r g a n i c s o i l s . Idiomorphic c o v e l l -i t e g r a i n s are l e s s than 20 um and c o n s i s t o f deep blue, twinned l a m e l l a e or roughly hexagonal forms. The c o v e l l i t e i s s t r o n g l y , a n i s o t r o p h i c and r e d to brown p o l a r i z a t i o n c o l o u r s are v i s i b l e under c r o s s e d n i c o l s . Examples o f these g r a i n s are shown i n P l a t e 5-5 where the c o v e l l i t e i s rimmed by a t h i n envelope of green-yellow c h a l c o p y r i t e . The outer edge of the g r a i n s i s s u b p a r a l l e l to the i n t e r n a l boundary between the c o v e l l i t e core and the c h a l c o p y r i t e rim. L a r g e r c o p p e r - i r o n s u l p h i d e g r a i n s ranging from 20 um to more than 60 um have more complex t e x t -u r a l r e l a t i o n s h i p s between the c o n s t i t u e n t m i n e r a l s than do the 116 P l a t e 5-6: Photomicrograph o f a p o l i s h e d mount from sample 74-RL-1117 c o l l e c t e d a t s t a t i o n G 1.0 at 1.5m depth. C o v e l l i t e occurs as a d i s c o n t i n u o u s margin along the h i g h l y i r r e g u l a r , deeply corroded outer edge of the c h a l c o p y r i t e g r a i n . Two s u r f a c e s i n t h i s g r a i n (area 'A' ) appear to i n t e r s e c t a t rough-l y 90? Smaller ( l e s s than 20 um ) c o v e l l i t e g r a i n s are rimmed by c h a l c o p y r i t e . Bar s c a l e measures 40 um. Plate 5-7: Photomicrograph of a chalcopyrite-covellite grain from sample 74-RL-1119. The chalcopyrite (Cp) core is sub-hedral and has a sharp contact with enclosing layers of chal-copyrite and covellite (Cv). Dark, non-sulphide inclusions are present i n the core forming a discontinuous, concentric layer. Bar scale on Plates 5-7 and 5-8 measures 50 um. Plate 5-8: Photomicrograph of a grain from sample 74-RL-1113. Concentric layers of almost spherical chalcopyrite granules surround an irregularly shaped s i l i c a t e mineral grain. 118 s m a l l e r c o v e l l i t e g r a i n s . C h a l c o p y r i t e may- he present forming the g r a i n 'core 1 w i t h c o v e l l i t e o c c u r r i n g as small i r r e g u l a r l y shaped zones c l o s e to the outer edge of the g r a i n . W i t h i n the c h a l c o p y r i t e core of the g r a i n shown i n P l a t e 5-6 are i n d i c a t i o n s that two r e g u l a r s u r f a c e s , i n t e r s e c t i n g at roughly 90\u00C2\u00B0, (Area \" A \" . i n P l a t e 5-6), form a contact between the c h a l c o p y r i t e core and the e n c l o s i n g c h a l c o p y r i t e - c o v e l l i t e margin. These s u r f a c e s enclose two s m a l l s u b p a r a l l e l areas t h a t may be f r a c t u r e s or i n c l u s i o n s of non-sulphide m i n e r a l matter. The r e g u l a r i t y of these s u r f a c e s c o n t r a s t s markedly to the deeply embayed, corroded outer edge o f the g r a i n where c o v e l l i t e , the dominant s u l p h i d e , and i s u s u a l l y rimmed by c h a l c o p y r i t e . S i m i l a r f e a t u r e s are a l s o v i s i b l e i n a second example of a g r a i n shown i n P l a t e 5-7 where the c h a l c o p y r i t e core has a subhedral shape and appears to en-c l o s e r o u g h l y c o n c e n t r i c zones o f a non-sulphide m a t e r i a l which are s u b - p a r a l l e l t o the core envelope boundary. The outer boundary of t h i s g r a i n c o n s i s t s of an envelope of both c h a l -c o p y r i t e and c o v e l l i t e . The edge of t h i s g r a i n i s a l s o very i r r e g u l a r and appears to be deeply corroded. These t e x t u r e s may r e p r e s e n t two stages of s u l p h i d e m i n e r a l formation where a p r e e x i s t i n g c h a l c o p y r i t e g r a i n formed the nucleus f o r l a t e r c o v e l l i t e - c h a l c o p y r i t e a c c r e t i o n and replacement. An unusual a s s o c i a t i o n of s u l p h i d e w i t h a s i l i c a t e m i n e r a l i s shown i n P l a t e 5-8. T h i s g r a i n c o n s i s t s of a subhedral quartz core surrounded by roughly c o n c e n t r i c l a y e r s of almost s p h e r i c a l c h a l c o p y r i t e granules s m a l l e r than 20 um and having a s l i g h t l y blue core suggesting that they may be p a r t i a l l y c o v e l l -119 Plate 5-9: Photomicrograph from sample 74-RL-1119 showing chal-copyrite intergrown with covellite. Blue covellite (Cv) occurs as lamallae or roughly concentric zones in the chalcopyrite (Cp). A pale brown mineral enclosed by the chalcopyrite in the grain center could be bornite (Bn). Bar scale measures 50 um. Plate 5-10: Photomicrograph from sample 74-RL-1119 showing covellite (Cv) forming discontinuous, roughly concentric layers in chalcopyrite (Cp). Both the grains i l l u s t r a t e d in Plates 5-9 and 5-10 have deeply embayed, corroded outer boundaries and this feature is typical of copper-iron sulphide grains larger than 40 um across. Bar scale measures 50 um. 120 Plate 5-11: Photomicrograph of a grain from sample 74-RL-1127. Native copper (Cu) i s p a r t i a l l y rimmed by cuprite (Ct). Plate 5-12: Photomicrograph of a polished mount made from a fragment of sample 73-RL-340. The r e t i c u l a t e c e l l - w a l l structures v i s i b l e i n t h i s mount may have o r i g i n a l l y been sphagnum moss t i s s u e . Several of the c e l l s are f i l l e d by opaque material that could be iron oxide. The eroded area represents p a r t i a l destruction of the surface by the electron beam during microprobe analysis. Reference marks X are i n c l -uded to orientate photomicrographs with microprobe patterns. 121 i t e . Formation of t h i s a s s o c i a t i o n is- u n c e r t a i n although i t c o u l d r e p r e s e n t a c c r e t i o n of copper s u l p h i d e onto a m i n e r a l g r a i n during o r g a n i c sediment d i a g e n e s i s . Larger c o p p e r ^ i r o n s u l p h i d e g r a i n s (40-60 um across) a l s o common i n the o r g a n i c s o i l show evidence of a c h a l c o p y r i t e core and surrounding c o v e l l i t e envelope. An i n t i m a t e mixture o f s u l p h i d e s i s o f t e n v i s i b l e i n the g r a i n s . Twinned c o v e l l i t e l a t h s are rimmed w i t h c h a l c o p y r i t e and the c o v e l l i t e , i n t u r n , e n c l o s e s an area of darker y e l l o w to brown c o l o u r e d s u l p h i d e i n a g r a i n shown i n P l a t e 5-9. T h i s l a t t e r s u l p h i d e may be born-i t e although, the mineralogy has not been confirmed. No c h a l c o -c i t e has been observed i n any of the g r a i n s although i n d i s t i n c t dark brown areas i n corroded c h a l c o p y r i t e g r a i n s may r e p r e s e n t t h i s s u l p h i d e . C o v e l l i t e a l s o forms d i s c o n t i n u o u s roughly con-c e n t r i c zones w i t h i n c h a l c o p y r i t e ( P l a t e 5-10) t h a t are sub-p a r a l l e l to the o u t e r edge o f the g r a i n . Both the g r a i n s , d e s c r i b e d i n P l a t e s 5-9 and 5-10 have h i g h l y i r r e g u l a r l y shaped, embayed and deeply corroded outer edges and are t y p i c a l o f those seen i n mounts of the o r g a n i c s o i l s eparates. N a t i v e copper g r a i n s were v i s i b l e i n one sample which a l s o contained c o v e l l i t e and c h a l c o p y r i t e ( P l a t e 5-5) . Grains range from 40 -60 um across and have a moderately corroded outer edge. The bronze c o l o u r e d n a t i v e copper has p a r a l l e l cleavages on the exposed face ( P l a t e 5-11) and i s p a r t i a l l y rimmed w i t h dark grey c u p r i t e . Mineralogy of the n a t i v e copper was- confirmed by microprobe a n a l y s i s . 5-3 DISTRIBUTION OF COPPER AND IRON MINERAL GRAINS The h o r i z o n t a l and v e r t i c a l d i s t r i b u t i o n of copper s u l p h i d e , 123 Figure 5-2: D i s t r i b u t i o n ( ';) of framboidal p y r i t e . 124 D i s t r i b u t i o n G'''\u00E2\u0080\u00A2\u00E2\u0080\u00A2!) of c o v e l l i t e , c o v e l l i t e - c h a l c o p y r i t e and n a t i v e copper-cuprite g r a i n s . 125 c o p p e r - i r o n s u l p h i d e s , i r o n s u l p h i d e s and n a t i v e copper g r a i n s i s shown i n F i g . 5-1. Angular to subangular shaped p y r i t e g r a i n s are more common i n the t i l l than i n o r g a n i c s o i l s . I r o n content o f t i l l samples having v i s i b l e p y r i t e g r a i n s i s g r e a t e r than 3.17o ( F i g . 5-2). No c o p p e r - i r o n or copper sulp h -i d e g r a i n s were found i n deeper t i l l samples although the copper content o f the t i l l at s t a t i o n G1.5 i s g r e a t e r than 1300 ppm. Framboidal p y r i t e occurs at a l l depths i n or g a n i c s o i l s from the f i b r i c s o i l l a y e r to the base of the bog. The framboids appear to be most common i n the mesic-humic s o i l l a y e r s and i n the upper 10 cm of reduced t i l l . I r o n content of o r g a n i c s o i l s c o n t a i n i n g p y r i t e framboids i s o f t e n h i g h e r than s o i l s having no v i s i b l e c o n c r e t i o n s . P y r i t e abundance i n or g a n i c s o i l s , however, probably does not exceed 0.1% of the t o t a l sample weight. Occurrence o f c o v e l l i t e , c o v e l l i t e - c h a l c o p y r i t e and n a t i v e copper g r a i n s i s more r e s t r i c t e d than that of framboidal p y r i t e ( F i g s . 5-2;5-3) and these g r a i n s are most common above the two depressions i n the t i l l - b o g i n t e r f a c e . Copper m i n e r a l g r a i n s do not occur i n the f i b r i c o r g a n i c s o i l l a y e r , but are present i n the humic-mesic l a y e r s and i n the upper 1-2 cm of reduced t i l l u n d e r l y i n g the bog. Copper content of s o i l s c o n t a i n i n g copper m i n e r a l g r a i n s ranges from 1300 to 2.57> ( F i g . 5-3), but there i s no apparent r e l a t i o n s h i p between copper i n s o i l s and s e m i - q u a n t i t a t i v e estimates f o r abundance o f m i n e r a l g r a i n s . The l a r g e r c o v e l l i t e and c o v e l l i t e - c h a l c o p y r i t e g r a i n s ( g r e a t e r than 50 um across) occur between 1 to 3 m i n the o r g a n i c s o i l above the two depr e s s i o n s . Grains of n a t i v e copper rimmed 126 by- c u p r i t e and idi o m o r p h i c c o v e l l i t e e n c l o s e d by- c h a l c o p y r i t e s m a l l e r than 40 um occur c l o s e to the base of the hog at s t a t i o n G 1.5 at a depth o f 2.5 m. Framboidal p y r i t e p a r t i a l l y rimmed by c h a l c o p y r i t e and c o v e l l i t e ( P l a t e 5-1) a l s o occurs i n the same area from s t a t i o n G2 at 2.5 m depth. 5-4 RESULTS OF MICROPROBE ANALYSES OF ORGANIC SOIL FRAGMENTS Se v e r a l chemical methods are commonly used to d i s t i n g u i s h d i f f e r e n t modes of t r a c e metal occurrence i n s o i l s and other weathered m a t e r i a l s . These i n c l u d e the a p p l i c a t i o n o f o x i d i -z i n g agents, c h e l a t i n g agents or a l k a l i n e s o l u t i o n s which l i b e r -ate and e x t r a c t metals bound to the or g a n i c f r a c t i o n i n s o i l . Changes i n the c h a r a c t e r of the humic substances can occur dur-i n g chemical e x t r a c t i o n processes and c o n c e n t r a t i o n s of those metals r e l e a s e d may not be a t r u e i n d i c a t i o n o f the o r i g i n a l form of the metal present i n the s o i l . I n s i t u . a n a l y s i s o f s o i l f o r metals can be made u s i n g the scanning e l e c t r o n micro-probe. T h i s method has been used to determine r e l a t i v e abun-dances of copper, i r o n and sulphur i n d r i e d o r g a n i c s o i l f r a g -ments from s e v e r a l p a r t s o f the bog. L o c a t i o n of the samples from which fragments were o b t a i n e d and r e s u l t s of analyses f o r t o t a l t r a c e metals and o r g a n i c carbon are giv e n i n Table 5-1. Re s u l t s of microprobe analyses i n d i c a t e t h a t copper may be present i n two d i f f e r e n t a s s o c i a t i o n s i n the o r g a n i c s o i l . A p o l i s h e d s e c t i o n o f fragments from sample RL-340 c o n t a i n i n g 1.11% copper i s shown i n P l a t e 5-12. Preserved p l a n t c e l l s t r u c t u r e i s c l e a r l y v i s i b l e i n t h i s fragment and the r e c t i c u -l a t e p a t t e r n o f the c e l l w a l l s i s r e f l e c t e d i n the p a t t e r n s f o r the CuKa and SK a X - r a d i a t i o n i n t e n s i t i e s t h a t are shown i n 127 Ni Zn Organic Carbon 141 0.49 120 29 514 277 11313 1.81 1821 80 541 82 11104 1.05 102 61 210 16.4 22.2 Sample L o c a t i o n and Co Cu Fe Mn Number d e s c r i p t i o n 73-RL- 300 m south 323 of L5S; 1.5 m depth; Dark brown s i l t y peat. 73-RL- L5S; 1 m 338 depth; Dark brown s i l t y peat. 73-RL- L3S; 1 m 340 depth; Dark brown s i l t y peat. Co, Cu, Mn, N i , Zn are i n ppm; Fe and o r g a n i c carbon are i n % * Organic carbon determined by Leco method. 21.2 Table 5-1: Metals and o r g a n i c carbon i n s o i l samples used f o r microprobe a n a l y s e s . 128 Plates. 5-13 and 5-14. The p a t t e r n f o r the. FeKa r a d i a t i o n does not, however, correspond to those of copper or sulphur. High FeKa r a d i a t i o n i n t e n s i t y - ( P l a t e 5-15) from t h i s fragment may be due to i r o n oxide i n f i l l i n g p l a n t c e l l s . T h i s appears i n the p o l i s h e d s e c t i o n ( P l a t e 5-12) as opaque m a t e r i a l f i l l i n g s e v e r a l of the c e l l s . The r e l a t i v e i n t e n s i t i e s of the copper and s u l -phur Ka X - r a d i a t i o n , i l l u s t r a t e d by these P l a t e s , suggests that these elements are i n some way a s s o c i a t e d w i t h p l a n t c e l l w a l l s . No i n d i c a t i o n o f copper and sulphur c o n c e n t r a t i o n s a s s o c i a t e d w i t h the p l a n t s t r u c t u r e s c o u l d be o b t a i n e d from the a n a l y s i s . Fragments of s o i l from a sample c o n t a i n i n g 141 ppm copper, c o l l -e c t e d 300 m south east from s t a t i o n L5S were a l s o analysed f o r copper, i r o n and sulphur by e l e c t r o n microprobe. C e l l u l a r p l a n t s t r u c t u r e s are a l s o v i s i b l e i n fragments ( P l a t e 5-16) although i t i s d o u b t f u l i f the o r i g i n a l v e g e t a t i o n i s of the same s p e c i e s to that i n P l a t e 5-12. R e l a t i v e i n t e n s i t i e s o f CuKa and SKa X - r a d i a t i o n do not correspond to the p l a n t c e l l s t r u c t u r e s ( P l a t e s 5-17 and 5-19) although the h i g h FeKa i n t e n -s i t y i n d i c a t e s t h a t i r o n i s abundant i n the m a t e r i a l . Small m i n e r a l s u l p h i d e g r a i n s are a l s o v i s i b l e i n amorph-ous o r g a n i c matter and t h i s a s s o c i a t i o n b e i ng best shown by a p o l i s h e d s e c t i o n ( P l a t e 5-20) of a fragment from sample RL-340 c o n t a i n i n g 1.11% copper. The s u l p h i d e g r a i n s are l e s s than 20um diameter and are subangular to rounded shape. Areas of r e l a -t i v e l y h i g h CuKa, FeKa and Ska X - r a d i a t i o n correspond to these g r a i n s i n d i c a t e that they are probably c h a l c o p y r i t e ( P l a t e s 5-21, 5-22, 5-23). Sulphide m i n e r a l g r a i n s were a l s o i d e n t i f i e d i n a fragment from sample RL-338 c o n t a i n i n g 1.13% copper and are Plate 5-13 73-RL-340 I n t e n s i t y p a t t e r n of CuKa X - r a d i a t i o n i n sample Plate 5-14: 73-RL-340 X I n t e n s i t y p a t t e r n of SKa X - r a d i a t i o n i n sample X Plate 5-15: 73-RL-340 I n t e n s i t y p a t t e r n of FeKa X - r a d i a t i o n i n sample 1 3 0 Plate 5-16: Photomicrograph of a polished mount from sample 73-RL-323. The c e l l structures i n t h i s mount may represent root tissue. The bar scale measures 20 um. Plate 5-18 73-RL-323 Intensity pattern of SKa X-radiation i n sample Plate 5-19: 73-RL-323 Intensity pattern of FeKa X-radiation i n sample 132 Plate 5-20: Photomicrograph of a polished mount from sample 73-RL-340. Small sulphide granules less than 10 um across are v i s i b l e i n the fi n e textured organic matter. The bar scale measures 50 um. Plate 5-21: 73-RL-340 Plate 5-22 73-RL-340 Intensity pattern of CuKa X-radiation in sampl X X Intensity pattern of SKa X-radiation in sample Plate 5-23 73-RL-340 Intensity pattern of FeKa X-radiation in sampL 134 shown \u00C2\u00B1n Plates; 5-24 to. 5-27. Higher CuKa and SKa r a d i a t i o n i n t e n s i t i e s - a l s o o u t l i n e a t i s s u e fragment i n the s e c t i o n that was p r o b a b l y o r i g i n a l l y a p l a n t stem. C h a l c o p y r i t e g r a i n s p r e s e n t i n this- fragment are i n the amorphous o r g a n i c matter and are not a s s o c i a t e d w i t h remnant p l a n t s t r u c t u r e s . 135 Plate 5 - 2 4 : Photomicrograph of a polished mount made from sample 73-RL-338. A longitudional section through a plant stem or a wood fragment i s v i s i b l e on the l e f t hand side of the f i e l d . Small sulphide mineral granules are present i n f i n e textured organic matter on the r i g h t hand side of the photomicrograph. The bar scale measures 50 um. X Plate 5-25 73-RL-338 Intensity pattern of CuKa X-radiation in sample X Plate 5-26: 73-RL-338 X Intensity pattern of SKa X-radiation i n sample X X Plate 5-27: Intensity pattern of FeKa X-radiation in sample 73-RL-338 137 CHAPTER 6 DISCUSSION 6-1 SUMMARY OF RESULTS R e s u l t s of geochemical and m i n e r a l o g i c a l i n v e s t i g a t i o n s are summarized below. (1) Organic s o i l s and the Ah h o r i z o n of humic g l e y s o l i c s o i l have between 5 and 51% o r g a n i c carbon. Organic carbon can i n c r e a s e or decrease down p r o f i l e s and there i s a p o s i -t i v e c o r r e l a t i o n of v a l u e s w i t h HI r e d u c i b l e sulphur. Organic s o i l pH ranges from 4.0 to 5.5 and v a l u e s i n c r e a s e down p r o f i l e s to more than 7 .0.in the deeper, o x i d i z e d t i l l . (2) Copper i n A and B m i n e r a l s o i l h o r i z o n s s h a r p l y i n c r e a s e s a c r o s s the boundary between b r u n i s o l s and humic g l e y s o l s whereas c o b a l t , z i n c , n i c k e l , manganese and pK markedly decrease i n the Ah h o r i z o n of humic g l e y s o l i c s o i l . Low abundances of c o b a l t , n i c k e l , z i n c and manganese are t y p i c a l i n the f i b r o u s o r g a n i c l a y e r although extremely h i g h manganese, i r o n and c o b a l t occurs, l o c a l l y , i n f i b r o u s m a t e r i a l at the e a s t e r n end of the bog and h i g h molybdenum values are present at the western end of the bog. Humic-mesic l a y e r s c o n t a i n from 0.1 to 2. 57o copper and are e n r i c h e d i n c o b a l t , z i n c , n i c k e l and molybdenum. These metals are most abundant where more than 3 m of organic m a t e r i a l have accumulated and v a l u e s g e n e r a l l y i n c r e a s e down p r o f i l e s , but f a l l s h a r p l y i n the t i l l . I r o n and manganese, however, are h i g h e r i n the t i l l than i n o r g a n i c s o i l s . Copper content of the t i l l i s l e s s than 210 ppm although a small area beneath 138 the western end of the bog c o n t a i n s up to 0.5% copper. (3) Cumulative frequency graphs show that c o b a l t , n i c k e l , z i n c , i r o n , manganese and molybdenum values i n s o i l s and t i l l g e n e r a l l y f o l l o w bimodal, lognormal n o n - i n t e r s e c t i n g d i s t r i b u t i o n s or unimodal d i s t r i b u t i o n s . Organic carbon and pH v a l u e s are normally d i s t r i b u t e d . Three lognormal, n o n - i n t e r s e c t i n g copper d i s t r i b u t i o n s are present i n s o i l s and the t i l l . C o r r e l a t i o n , c o e f f i c i e n t s f o r the v a r i a t i o n of metals w i t h o r g a n i c carbon show that a very small propor-t i o n of t h i s v a r i a t i o n i s due to l i n e a r r e l a t i o n s h i p s . Stronger l i n e a r r e l a t i o n s h i p s are present, however, between copper and c o b a l t and between n i c k e l and z i n c i n s o i l s con-t a i n i n g more than 16% or g a n i c carbon. (4) V o l c a n i c ash l a y e r s have very low copper and other metals abundances compared to those i n surrounding organic s o i l s . (5) Sphagnum moss c o n t a i n s up to 228 ppm copper compared to l e s s than 20 ppm i n Labrador tea l e a v e s . (6) Subsurface, r e d u c i n g bog waters g e n e r a l l y have lower copper, but hig h e r o r g a n i c carbon, i r o n and manganese than s u r f a c e waters. Surface water from semi-stagnant pools i n the western p a r t of the bog commonly has p H l e s s than 5.0 and extremely h i g h d i s s o l v e d copper content. U n d e r l y i n g subsurface water g e n e r a l l y has much l e s s copper except i n the western p a r t of the bog where samples from 1.5m depth have more than 500 ppb copper and up to 16 ppm org a n i c carbon. B i q u i n o l i n e e x t r a c t s more than 40% of the copper from s u r f a c e 139 water and l e s s than 507o from subsurface water. Seepages from the t i l l and p o s s i b l e f a u l t s zones d r a i n i n g i n t o the western end of the bog have up to 290 ppb copper. Seepages d r a i n i n g humic g l e y s o l i c s o i l i n t h i s area have up to 590 ppb copper. Water f l o w i n g from a diamond d r i l l h o l e on the northwest s i d e of the bog has no d e t e c t a b l e copper, but has h i g h sulphate and c a l c i u m l e v e l s . Stream waters have more than 400 ppb copper w i t h maximum c o n c e n t r a t i o n i n the channel a t the western end of the bog decreasing to l e s s than 70 ppb a t the e a s t e r n end of the de p r e s s i o n . (7) Scanning e l e c t r o n microprobe analyses f o r copper, i r o n and sulphur d i s t r i b u t i o n i n o r g a n i c s o i l fragments demonstrates that copper and sulphur are commonly a s s o c i a t e d w i t h remnant p l a n t c e l l w a l l s t r u c t u r e . Samples from which the fragments were obtained c o n t a i n e d more than 1% copper. Small c h a l c o p y r i t e g r a i n s l e s s than lOpn diameter were a l s o i d e n t i f i e d by microprobe a n a l y s i s i n the amorphous f r a c t i o n of o r g a n i c s o i l . (8) Framboidal p y r i t e , s m a l l subangular p y r i t e g r a i n s , n a t i v e copper g r a i n s , c h a l c o p y r i t e and c o v e l l i t e g r a i n s ranging from 10 to 60um occur i n heavy m i n e r a l separates of o r g a n i c s o i l s . P y r i t e framboids are o c c a s i o n a l l y coated w i t h c o v e l l i t e and c h a l c o p y r i t e , Idiomorphic c o v e l -l i t e g r a i n s l e s s than 30pm across are rimmed w i t h c h a l c o p y r i t e . C o v e l l i t e a l s o occurs as roughly c o n c e n t r i c l a y e r s i n l a r g e r c h a l c o p y r i t e g r a i n s which t y p i c a l l y have h i g h l y i r r e g u l a r outer boundaries. Framboidal p y r i t e i s found i n organic 140 s o i l s throughout the bog. Copper s u l p h i d e and n a t i v e copper g r a i n s only occur i n the mesic-humic s o i l l a y e r s above depressions i n the t i l l - o r g a n i c s o i l i n t e r f a c e a t the e a s t e r n and western ends of the bog. 6-2 DEVELOPMENT OF THE BOG AND ORGANIC DIAC-ENESIS The r e l i e f catena, d e s c r i b e d i n Chapter 1, c o n s i s t s of b r u n i s o l i c s o i l s , g l e y s o l i c s o i l s and organic s o i l s . T r a n s i t i o n from w e l l - d r a i n e d d y s t r i c b r u n i s o l s to humic g l e y s o l s i s marked by a l i n e of s p r i n g s surrounding the bog and the secondary environment changes from the moderately o x i d i z i n g , weakly a c i d i c c o n d i t i o n s , t y p i c a l of b r u n i s o l i c s o i l s , to s t r o n g l y r e d u c i n g , moderately a c i d i c c o n d i t i o n s i n the humic g l e y s o l s . G l e y s o l i c and o r g a n i c s o i l s form i n areas where the s o i l i s p e r i o d i c a l l y or c o n t i n u o u s l y water s a t u r a t e d . The t h i n o r g a n i c h o r i z o n s , t y p i c a l o f m i n e r a l s o i l s , are due to m i c r o b i a l o x i d a t i o n of organic matter proceeding a t the same r a t e as accumulation. Inundation of the s o i l by water, however, lowers the d i s s o l v e d oxygen c o n c e n t r a t i o n i n s o i l pore water and t h e r e f o r e decreases m i c r o b i a l a c t i v i t y . Due to t h i s decreased a c t i v i t y the net accumulation of or g a n i c matter i s g r e a t e r than the r a t e of o x i d a t i o n . Accumulation of o r g a n i c matter i n the bog c o u l d a l s o be i n c r e a s e d by the continuous d i s c h a r g e of m i n e r a l r i c h water f a v o u r i n g abundant growth of a f l o r a dominated by sedges and sphagnum moss. Mature timber growth may be i n h i b i t e d i n areas where t h i c k o r g a n i c s o i l s are forming due to the absence of n u t r i e n t s 141 and t o x i c copper c o n c e n t r a t i o n s i n the water ( F r a s e r 1961). An average r a t e of o r g a n i c s o i l accumulation of 0.3 mm / year can be c a l c u l a t e d from the 3 m maximum t h i c k n e s s of m a t e r i a l i n the bog assumed to have accumulated f o l l o w i n g f i n a l d e g l a c i a t i o n of the area a t roughly 9300 years B.P. Grosse-Brackmann e_t a l . (1964) determined t h a t the average r a t e of peat f o r m a t i o n i n a European bog was 0.4 mm/year. V o l c a n i c ash l a y e r s a t two depth i n t e r v a l s i n humic g l e y s o l i c and o r g a n i c s o i l s suggests that both s o i l s formed contempo-raneously, but the shallow Ah h o r i z o n of humic g l e y s o l s i n d i c a t e s t h at t h i s o r g a n i c matter i s forming a t o n l y 0.01 mm/year compared to the f a s t e r r a t e of o r g a n i c s o i l accumu-l a t i o n . The age of each ash l a y e r i s u n c e r t a i n and i t i s t h e r e f o r e d i f f i c u l t to e s t a b l i s h i f the r a t e of o r g a n i c s o i l f o r m a t i o n has v a r i e d through time. V e r t i c a l Eh and pH v a r i a t i o n s i n the bog are due to the t h i c k accumulation of decomposing o r g a n i c matter. A e r o b i c b a c t e r i a break down o r g a n i c s u b s t r a t e s d i s s o l v e d i n the near s u r f a c e s o i l pore water forming carbon d i o x i d e . This p r o c e s s , however, q u i c k l y lowers the d i s s o l v e d oxygen c o n c e n t r a t i o n i n the deeper, more decomposed s o i l and w i l l a l s o decrease pore water pH through f o r m a t i o n of c a r b o n i c a c i d . An e c o l o g i c a l s u c c e s s i o n of d i f f e r e n t anaerobic b a c t e r i a become a c t i v e down v e r t i c a l o rganic s o i l p r o f i l e s due to the p r o g r e s s i v e decrease i n oxygen c o n c e n t r a t i o n and the corresponding redox p o t e n t i a l change from p o s i t i v e to n e g a t i v e v a l u e s . These b a c t e r i a mediate r e d u c t i o n of 142 n i t r o g e n to ammonium i o n , sulphate to H^S and carbon d i o x i d e to methane and hydrogen. N i t r o g e n r e d u c t i o n can occur w i t h i n an Eh range from +150 to +200 mv ( B e l l , 1969) . Sulphate r e d u c t i o n , however, w i l l proceed when redox p o t e n t i a l are more n e g a t i v e than -100 mv and methane forms when the redox p o t e n t i a l i s more n e g a t i v e than -300 mv (Cappenburge 1974; B e l l 1969). The presence of d e t e c t a b l e rL^S i n f r e s h l y sampled org a n i c s o i l and water from v e r t i c a l p r o f i l e s through the C e n t r a l bog i n d i c a t e s t h at the redox p o t e n t i a l of the mode-r a t e l y decomposed organic m a t e r i a l i s more n e g a t i v e than -200 mv. Measured Eh of water s a t u r a t e d o r g a n i c s o i l and of one subsurface water sample ranged from -200 to -250 mv. Reduction of carbon d i o x i d e to methane and b u f f e r i n g a c t i o n by d i s s o l v e d calcium, magnesium and b a s i c amines (Berner 1968) c o u l d e x p l a i n the h i g h e r pH of the subsurface bog water compared to t h a t of s u r f a c e water. Values ranging from 6.0 to 7.2 i n the subsurface waters are s i m i l a r to the pli of reduced o r g a n i c m a t e r i a l i n a r i v e r bog s t u d i e d by Postma (1977). O x i d a t i o n r e a c t i o n s c o u l d occur simultaneously w i t h m i c r o b i a l r e d u c t i o n s e s p e c i a l l y c l o s e to the boundary s e p a r a t i n g o x i d i z i n g from r e d u c i n g c o n d i t i o n s . Small accumulations of a white p r e c i p i t a t e on the bottom of shallow s u r f a c e p o o l s , i d e n t i f i e d as sulphur, r e p r e s e n t the oxida-t i o n of H 9S d i f f u s i n g from deeper reduced s o i l . 143 6-3 ACCUMULATION OF METALS IN ORGANIC SOILS H o r i z o n t a l and v e r t i c a l v a r i a t i o n s of metals i n s o i l s , water, t i l l and v e g e t a t i o n have been d e s c r i b e d i n Chapter 4. w i t h the o b j e c t of e s t a b l i s h i n g mechanisms f o r metal migra-t i o n and c o n c e n t r a t i o n i n the bog and probable sources f o r the metals. Chemical and p h y s i c a l a d s o r p t i o n can remove t r a n s i t i o n metals from d i l u t e s o l u t i o n s m i g r a t i n g through the or g a n i c s o i l * M i n e r a l s such as carbonates, hydroxides and s u l p h i d e s may be p r e c i p i t a t e d or d i s s o l v e d due to changes i n pore water chemistry or abundance of d i s s o l v e d o r g a n i c matter i n the water,(Rashid and Leonard 1973). High metal contents c o u l d t h e r e f o r e be due to both o r g a n i c or i n o r g a n i c i n t e r a c t i o n s and the r e l a t i v e importance of these processes must be e s t a b l i s h e d to e x p l a i n the metal d i s t r i b u t i o n p a t t e r n s found i n the bog. S e v e r a l mechanisms, reviewed i n Chapter 1, have been proposed to account f o r h i g h metal v a l u e s commonly found i n n a t u r a l organic accumulations. Goodman and Cheshire (1973) e s t a b l i s h e d e x p e r i m e n t a l l y t h a t metals c o u l d be s t r o n g l y bound to n i t r o g e n a s s o c i a t e d w i t h h e t e r o c y c l i c groups p r e s e n t i n s o i l o r g a n i c matter. Organic s o i l s , however, t y p i c a l l y have low n i t r o g e n contents suggesting t h a t a l a r g e p r o p o r t i o n of the metal i s a s s o c i a t e d w i t h other components and numerous s t u d i e s have shown t h a t humic substances can p l a y a major r o l e i n c o n c e n t r a t i n g t r a n s i t i o n elements. These substances are complex n a t u r a l polymers thought to e x i s t i n two b a s i c forms known as humic and f u l v i c a c i d f r a c t i o n s . Although 144 humic and f u l v i c a c i d f r a c t i o n s probably have d i f f e r e n t polymer s t r u c t u r e and shape they have s i m i l a r chemical r e a c t i o n s w i t h metals. Both f r a c t i o n s are abundant i n o r g a n i c s o i l and Given and Dickenson (1975), f o r example, r e p o r t e d that peat formed from decomposing f o r e s t v e g e t a t i o n c ontained from 30 to 70% humic substances. Undecomposed sphagnum moss forming the f i b r i c o r g a n i c l a y e r , however, was found to have l e s s than 10% humic substances. Reactions between metals and s o i l o r ganic matter w i l l depend on the p h y s i c a l nature of humic f r a c t i o n s , the r e l a -t i v e s t a b i l i t y of the f r a c t i o n s and t h e i r abundance. F u l v i c a c i d f r a c t i o n s are more water s o l u b l e than are humic a c i d f r a c t i o n s and may r e p r e s e n t a l a r g e p r o p o r t i o n of the d i s s o l v e d o r g a n i c carbon content of bog waters (Reuter and Perdue 1977). Both humic and humic a c i d f r a c t i o n s have been shown to e x i s t i n d i s p e r s e d or p e p t i z e d c o l l o i d a l s t a t e s . The c o l l o i d s are d i s p e r s e d through mutual r e p u l s i o n due to a net n e g a t i v e charge o r i g i n a t i n g from i o n i z e d func-t i o n groups. This charge can be n e u t r a l i z e d by metal ions r e s u l t i n g i n c o a g u l a t i o n of the humic and f u l v i c a c i d f r a c -t i o n s (Van D i j k 1971; Ong and Bisque 1968). Changes i n pore water chemistry c o u l d t h e r e f o r e have a marked e f f e c t on the t r a n s l o c a t i o n of humic and f u l v i c a c i d f r a c t i o n s i n o r g a n i c s o i l s . R eactions can a l s o i n v o l v e i o n exchange, s u r f a c e ad-s o r p t i o n and c h e l a t i o n (Kahn 1969) . Many workers have i n v e s t i g a t e d the r e l a t i v e s t a b i l i t i e s of complexes thought 145' to form when metals are bound to humic or f u l v i c a c i d f r a c -t i o n exchange s i t e s . S c h n i t z e r and Hanson (1970), S c h n i t z e r and Skinner (1967), Gamble and S c h n i t z e r (1973) demonstrated t h a t the r e l a t i v e s t a b i l i t y of the m e t a l - f u l v a t e complexes decreased i n the order of Fe > Ni > Co =Pb > Cu > Zn > Mn > Ca . Kahn (1969) found t h a t metal-humate complexes f o l l o w a s i m i l a r sequence of s t a b i l i t i e s where Fe > A l > Cu > Zn > Ni > Co > Mn . Complex s t a b i l i t i e s are g e n e r a l l y determined by r e a c t i n g metals w i t h humic or f u l v i c a c i d s which have been e x t r a c t e d from s o i l :using a l k a l i n e s o l u t i o n s . T h i s process may change the s t r u c t u r e of the humic substance and the number of a v a i l a b l e c a t i o n exchange s i t e s . As a ' r e s u l t r e t e n t i o n of metals by the e x t r a c t e d humic substances can be d i f f e r e n t from t h a t of the u n t r e a t e d raw m a t e r i a l (Davis e_t a l . 1969) . R e a c t i o n between metals and e x t r a c t e d humic substances may a l s o vary w i t h d i f f e r e n t types of s o i l used to p r o v i d e the e x t r a c t s (Cross 1975). Reported s t a b i l i t i e s f o r metal-humate and m e t a l - f u l v a t e s can t h e r e f o r e only be used to i n d i c a t e the r e l a t i v e a f f i n i t i e s of the metals f o r s o i l o r g a n i c matter, due to the v a r i a t i o n s , i n t r o d -uced by the e x t r a c t i o n methods. The maximum amount of copper that c o u l d be adsorbed by o r g a n i c m a t e r i a l s i n the bog can be estimated from the r e s u l t s of experiments made by Ong and Swanson (1966) . They measured the copper content of peat samples a f t e r these had been immersed i n s o l u t i o n s w i t h c o n c e n t r a t i o n s ranging from 1 to 1500 ppm copper. Copper content of peat p l a c e d i n s o l u t i o n s w i t h more than 1500 ppm copper was found to be 146: 17o. Using solutions with less than 50 ppm, however, they found that copper enrichment i n the peat at a pH of 4.5 was by a factor of 200. Peat immersed i n a solution containing 1 ppm copper, for example, w i l l adsorb a t o t a l of 200 ppm copper. The authors also found that the adsorption capacity of peat increased aft e r removal of humic acid and concluded that reactions of copper with peat involved both surface adsorption and ion exchange. Subsurface bog waters have been found, l o c a l l y , to contain more than 1 ppm dissolved copper. Organic matter would adsorb up to 200 ppm copper from this d i l u t e solution based on the enrichment factor given by Ling Ong and Swanson (1966). Dried s o i l samples from the bog t y p i c a l l y have more than 27> copper and freshly sampled organic material has more than 907> water content. A copper content of 27, i n a dry sample i s therefore equivalent to 2000 ppm i n the o r i g i n a l , water saturated material. This value i s ten times greater than the estimated maximum of 200 ppm which could t h e o r e t i c a l l y be concentrated through adsorption. This difference could be explained by s o i l pore water copper concentrations higher than those found i n subsurface bog water, formation of complexes by mechanisms other than adsorption or the presence of authigenic copper minerals i n the s o i l . Other metals w i l l be adsorbed from d i l u t e bog water solutions and this accumulation w i l l depend on the concen-t r a t i o n of metals i n the water and the r e l a t i v e a f f i n i t y 147 of metals f o r the organic matter. C o n c e n t r a t i o n of metals c o u l d r e f l e c t the r e l a t i v e s t r e n g t h of complexes formed w i t h humic and f u l v i c a c i d f r a c t i o n s . C o r r e l a t i o n c o e f f i c i e n t s c a l c u l a t e d f o r metals, organic carbon and pH i n s o i l s con-t a i n i n g more than 167o o r g a n i c carbon i n d i c a t e a moderate l i n e a r r e l a t i o n s h i p of n i c k e l w i t h z i n c . The c o p p e r - c o b a l t r e l a t i o n s h i p can be compared to the s i m i l a r i t y between c o p p e r - f u l v a t e and c o b a l t - f u l v a t e complex s t a b i l i t i e s although the d i f f e r e n c e between n i c k e l - f u l v a t e and z i n c f u l -v a t e s t a b i l i t i e s does not e x p l a i n the s t r o n g r e l a t i o n s h i p between these metals. The s t a b i l i t i e s of nickel-humate and zinc-humate complexes are, however, s i m i l a r . R e l a t i v e l y weak manganese-humate complexes c o u l d e x p l a i n low manganese l e v e l s i n the mesic-humic o r g a n i c s o i l l a y e r s . Although metal a s s o c i a t i o n s suggest that complexes have formed with humic and f u l v i c a c i d f r a c t i o n s , the s i z e and shape of d i s -t r i b u t i o n p a t t e r n s w i l l a l s o depend on the. s t a b i l i t y of the humic substances and the chemistry of water f l o w i n g through the bog. C o r r e l a t i o n c o e f f i c i e n t s i n d i c a t e t hat there are no l i n e a r r e l a t i o n s h i p s between metals and o r g a n i c carbon i n the bog. T h i s c o u l d be due to the l a r g e s u r f a c e area a v a i l a -b l e f o r metal a d s o r p t i o n , low metal c o n c e n t r a t i o n s i n aqueous s o l u t i o n s m i g r a t i n g through the organic m a t e r i a l , d i l u t i o n of decomposing o r g a n i c s o i l by m a t e r i a l from the area surrounding the bog (Garrett and Hornbrook 1976) or very l a r g e d i f f e r e n c e s between ranges of metal and o r g a n i c carbon 148 values used to c a l c u l a t e the c o r r e l a t i o n c o e f f i c i e n t m a t r i x . P r o b a b i l i t y graphs f o r c o b a l t , n i c k e l , z i n c and molyb-denum i n organic s o i l s have the form of bimodal, non-inter-s e c t i n g d i s t r i b u t i o n s r e f l e c t i n g metal abundances a s s o c i a t e d w i t h the d i f f e r e n t s o i l l a y e r s . High c o b a l t , n i c k e l , z i n c and molybdenum concen t r a t i o n ranges (population 'A') can be explained by accumulation of metals through adsorption and other processes i n the mesic-humic l a y e r s . The very low c o b a l t , n i c k e l and z i n c values (population 'B') r e f l e c t metal a s s o c i a t e d w i t h the f i b r o u s organic l a y e r . These low concentrations, i n c o n t r a s t to the enhanced values i n the under l y i n g humic-mesic l a y e r s , suggest that c o b a l t , z i n c and n i c k e l are not adsorbed by the organic m a t e r i a l and may be desorbed due to the high c o n c e n t r a t i o n of hydrogen ions i n the surface water pools. Three populations can be p a r t i -t i o ned from the d i s t r i b u t i o n graph f o r copper i n organic s o i l although there i s considerable overlap of values repre-senting each p o p u l a t i o n . The separate copper d i s t r i b u t i o n s could r e f l e c t presence of d i f f e r e n t metal a s s o c i a t i o n s i n the s o i l . Values greater than 1.37 0 copper (population 'A') are found c h i e f l y i n the mesic-humic l a y e r s above the depres-sions i n the t i l l - o r g a n i c s o i l i n t e r f a c e . Extremely high, l o c a l concentrations or i r o n , manganese and molybdenum i n the f i b r o u s organic l a y e r c o n t r a s t sharply to the low metal abundances t y p i c a l of t h i s m a t e r i a l . C l e a r l y processes other than i n t e r a c t i o n w i t h organic sub-stances are r e s p o n s i b l e f o r co n c e n t r a t i o n of these metals. The h i g h molybdenum i n the f i b r o u s l a y e r a t the western end of the bog can be e x p l a i n e d by f o r m a t i o n of r e a d i l y immobili-zed a c i d molybdenate ions (HMoO^~) i n a c i d bog s u r f a c e water. Accumulation of molybdenum i n deeper, humic-mesic l a y e r s i s probably due to p r e c i p i t a t i o n of molybdenum s u l p h i d e i n the red u c i n g organic m a t e r i a l . Extremely h i g h manganese and i r o n i n f i b r o u s m a t e r i a l a t the e a s t e r n end of the bog cou l d be the r e s u l t o f secondary hydrous oxide f o r m a t i o n . C o l l o i d a l i r o n hydroxide commonly occurs on the bog s u r f a c e and e s p e c i a l l y i n an area surrounding small seepages at the e a s t e r n end of the bog. No manganese oxides were found although these have been d e s c r i b e d as c o a t i n g s on c l a s t i c m a t e r i a l i n streams d r a i n i n g marshy areas elsewhere ( H o r s n a i l et al.1969). Although no syste m a t i c s t u d i e s were made to e s t a b l i s h the form of manganese i n the f i b r o u s l a y e r , a smal l number of stream sediments from the bog were t r e a t e d w i t h IM s t r e n g t h hydroxylamine h y d r o c h l o r i d e s o l u t i o n . The stream sediments are from the e a s t e r n end of the bog c l o s e to s t a t i o n L5S and c o n t a i n up to 12360 ppm Mn, 14980 ppm Cu, 980 ppm Co. Hydroxylamine h y d r o c h l o r i d e e x t r a c t e d more than 657, of the manganese, but l e s s than 97, of the copper and only 47, of the c o b a l t . These p r o p o r t i o n s suggest that a r e l a t i v e l y h i g h p r o p o r t i o n of manganese i s presen t i n the form of a secondary oxide, but t h a t the copper and c o b a l t are mainly a s s o c i a t e d w i t h o r g a n i c matter or other components i n the orga n i c s o i l (Chao, 1972; Carpenter et al.,1975;1977). 150 G a r r e l s and C h r i s t (1964) demonstrated that manganite and hematite are s t a b l e m i n e r a l s i n aqueous s o l u t i o n s where Fe^\"1\" and Mn^ + c o n c e n t r a t i o n s exceed 10~^M, pH i s g r e a t e r than 6.0 and the Eh i s more p o s i t i v e than +200 mv. Moreover, 7+ although o x i d a t i o n of Mn to Mn02 i s i n h i b i t e d below pH 2+ 8.5 and o x i d a t i o n of Fe to Fe203 i s v e r y slow below pH of 6.0, h i g h c o n c e n t r a t i o n s of Co^ + and C u ^ + i n the water w i l l g r e a t l y i n c r e a s e these o x i d a t i o n r a t e s (Stumm and Morgan 1970). F e r r i c hydroxide commonly forms i n o x i d i z e d environments through a c t i v i t y of i r o n b a c t e r i a such as G a l l i o n e l l a Other b a c t e r i a such as MetalJogeniumare known to mediate o x i d a t i o n of Mn to Mn . D i s s o l v e d manganese c o n c e n t r a t i o n s g r e a t e r than 200 ppb and d i s s o l v e d i r o n c o n c e n t r a t i o n s exceeding 2 ppm are found i n s e v e r a l of the subsurface bog water samples. These h i g h v a l u e s are i n c o n t r a s t to very low l e v e l s of Fe and Mn t y p i c a l of s u r f a c e waters. The l a r g e l o c a l c o n c e n t r a t i o n s of i r o n and manganese i n the f i b r o u s l a y e r a t the e a s t e r n end of the bog may be e x p l a i n e d by d i s c h a r g e of metal r i c h 2+ 2+ water onto the bog s u r f a c e . O x i d a t i o n of Fe and Mn , c a t a l y s e d by the h i g h d i s s o l v e d copper content of the s u r f a c e water and by a c t i v i t y of b a c t e r i a , may be i n v o l v e d i n forma-t i o n of immobile hydrous o x i d e s . The h i g h c o b a l t v a l u e s found i n the f i b r o u s m a t e r i a l a t the e a s t e r n end of the bog may, however, be due to l o c a l a d s o r p t i o n on o r g a n i c matter r a t h e r than a d s o r p t i o n onto the s u r f a c e of secondary ox i d e s . 151 6-4 BOG WATER CHEMISTRY Sur f a c e water samples have a markedly d i f f e r e n t t r a c e metal chemistry compared to that of subsurface water samples. Moderately to s t r o n g l y a c i d s u r f a c e waters have abundant copper, but low c o n c e n t r a t i o n s of i r o n , manganese, and z i n c . Subsurface waters, however, are weakly a c i d to n e u t r a l and g e n e r a l l y have low copper, but h i g h e r i r o n , manganese and d i s s o l v e d o r g a n i c carbon values than do s u r f a c e waters. Z i n c , c a l c i u m and sulphate contents show l i t t l e v e r t i c a l v a r i a t i o n compared to l a r g e c o n c e n t r a t i o n g r a d i e n t s t y p i c a l of other elements. Although copper values are much lower i n s u b s urface waters than i n s u r f a c e water contents g r e a t e r than 1 ppm occur at 1.5m depth above an area of c o p p e r - r i c h t i l l a t the western end of the bog. V e r t i c a l chemical g r a d i e n t s found i n the bog c o u l d r e f l e c t metal r i c h ground water d i s c h a r g i n g from the t i l l - o r g a n i c s o i l i n t e r f a c e , v a r i a t i o n s i n the s o i l - w a t e r flow r a t e ( S p e r l i n g 1965), v a r i a t i o n s i n i o n i c d i f f u s i o n r a t e s (Berner, 1971) and chemi-c a l changes i n the system due to processes of organic d i a g e n e s i s . D i s s o l v e d s u l p h i d e c o n c e n t r a t i o n s , Eh and pH w i l l be important f a c t o r s i n f l u e n c i n g the s o l u b i l i t y of m i n e r a l s i n water s a t u r a t e d o r g a n i c s o i l . S ulphide i o n a c t i v i t y i n r e d u c i n g , subsurface bog water was not measured duri n g the i n v e s t i g a t i o n and d i s s o l v e d s u l p h a t e contents r e p r e s e n t o r i g i n a l s u l p h a t e content p l u s s u l p h a t e d e r i v e d from post sampling o x i d a t i o n of i o n i c s p e c i e s such as H 2 S ; HS\"; S^\" 152 S^0^~ . The maximum p o s s i b l e c o n c e n t r a t i o n of hydrogen s u l -phide formed through b i o l o g i c a l r e d u c t i o n of sulphate can be c a l c u l a t e d from d i s s o l v e d sulphate and o r g a n i c matter contents where the r a t e of sulphate r e d u c t i o n w i l l be l i m i t e d by the a v a i l a b l e s u lphate and the a v a i l a b l e o r g a n i c s u b s t r a t e . The most common or g a n i c s u b s t r a t e s i n n a t u r a l waters are carbohyd-r a t e s and amino a c i d s which are o x i d i z e d i n the f o l l o w i n g r e a c t i o n proposed by Ramm and B e l l a (1968). 2CH 20 + S 0 4 2 - = H 2S + 2HC03~ Three mg of sulphate would be reduced to 1 mg of r^S and 0.75 mg of carbonhydrate would be o x i d i z e d i n t h i s r e a c t i o n . Less than 107o of the t o t a l d i s s o l v e d o r g a n i c matter i n n a t u r a l waters has been estimated to be i n the form of carbo-hydrates and amino a c i d s (Midwood and Felbeck 1968). The most abundant form of o r g a n i c matter i n f i l t e r e d n a t u r a l water samples has been found to be the f u l v i c a c i d f r a c t i o n (Reuter and Perdue 1977). C e n t r a l bog water samples having more than 10 ppm d i s s o l v e d o r g a n i c carbon c o u l d c o n t a i n between 1 and 2 ppm carbohydrate which c o u l d be o x i d i z e d , by b a c t e r i a , to produce 1 ppm (.10 ^M) hydrogen s u l p h i d e through the r e d u c t -2-i o n o f 3 ppm o f s u l p h a t e . Concentrations of S and HS w i l l depend on Eh and pH and w i l l g e n e r a l l y be very s m a l l compared to the c o n c e n t r a t i o n of d i s s o l v e d hydrogen s u l p h i d e . Meas-ured d i s s o l v e d s u l p h i d e i o n c o n c e n t r a t i o n s i n reducing, water - 8 s a t u r a t e d l a k e sediments range from 10~ M (Timperly and A l l a n 1974) to 10\" 1 2M at pH 7.5 (Emerson 1976). 6-5 THEORETICAL MODELS FOR WATER CHEMISTRY AND PREDICTION OF MINERAL SOLUBILITIES. The d i s t r i b u t i o n of i o n i c and complexed s p e c i e s from n a t u r a l water compositions can be c a l c u l a t e d u s i n g thermody-namic data f o r a l l p o s s i b l e chemical e q u i l i b r i a i n the water Various models have been proposed to p r e d i c t elemental d i s t r -i b u t i o n i n sea water . ( G a r r e l s and Thompson 1962), the d i s t r i b -u t i o n o f or g a n i c s p e c i e s i n sea water (Thorstenson ly76) and the d i s t r i b u t i o n of simple o r g a n i c complexes i n sea water (Gardner 1974). The b a s i c p r i n c i p l e s u n d e r l y i n g the c a l c u l = a t i o n s have been d e s c r i b e d by G a r r e l s and C h r i s t (1965) and i n v o l v e the f o l l o w i n g stages. (1) Define a l l p o s s i b l e i n t e r a c t i o n s between c a t i o n s and anions; eg., C a C 0 3 ( a q ) = C a \" + + C 0 3 2 \" (2) Write mass\"balance equations f o r each component present; eg., Ca (TOTAL) = C a 2 + + C a C 0 3 \u00C2\u00B0 ^ ^ (3) C a l c u l a t e c o n c e n t r a t i o n of the i t h component from mass a c t i o n equations w r i t t e n i n terms of the a p p r o p r i a t e e q u i l i b r i u m constants ( K i ) , m o l a l i t i e s (mi) and a c t i v i t y c o e f f i c i e n t s ( y i ) ; eg., (mCa 2 + Y C a 2 + ) (mCO 2 ~ YC0 2~) d 1 = K (mCaC0 3 yCaC0 3) Mass a c t i o n equations can g e n e r a l l y be s i m p l i f i e d i n f r e s h water chemical models by assuming that the a c t i v i t y c o e f f i c i e n t Y i s u n i t y . 154 (4) S u b s t i t u t e mass a c t i o n equations i n the mass balance equations and sim u l t a n e o u s l y s o l v e these i n terms of i: t o t a l element c o n c e n t r a t i o n s ; eg., Ca (TOTAL), C (TOTAL), Cu(TOTAL), S(TOTAL) Species d i s t r i b u t i o n s f o r s i x subsurface c e n t r a l bog water samples (74-RL-1428,1429,1439,1442,1443.and 1444) were c a l c u -l a t e d from t o t a l d i s s o l v e d copper, z i n c , i r o n , manganese, b i c a -rbonate, sulphate and s u l p h i d e c o n c e n t r a t i o n s , pH and oxygen f u g a c i t y by the program DISTRIB w r i t t e n by Brown and Perkins (1977) on the UBC IBM 370/168 computer. S e v e r a l assumptions have been made i n c a l c u l a t i n g the spe c i e s d i s t r i b u t i o n s f o r the bog waters. (1) The f i r s t assumption i s th a t the chemical e q u i l i b r i a models i n c l u d e a l l major ions and complexes and account f o r a l l r e a c t i o n s between these s p e c i e s . Most models, however, w i l l be s i m p l i f i e d because elements such as magnesium, sodium, n i c k e l and c o b a l t , i n o r g a n i c complexes such as CuOH + and Cu(0H)2 and meta l - o r g a n i c complexes such as copper-humic a c i d f r a c t i o n a s s o c i a t i o n s c o u l d e x i s t i n a n a t u r a l system but, due to the p a u c i t y of a n a l y t i c a l and thermodynamic data, they have been excluded from the models. (2) The system i s assumed to r e p r e s e n t an e q u i l i b r i u m s t a t e and no i n t e r a c t i o n s occur between s o l i d and aqueous phases. T h i s assumption may be made i f the models are a p p l i e d to a small volume of bog water. In the n a t u r a l s t a t e i t i s u n l i k e l y t h a t the macro system w i l l approach e q u i l i b r i u m due to the d i f f e r e n t r a t e s of b i o l o g i c a l r e a c t i o n s . Moreover metals w i l l be removed from s o l u t i o n by p r e c i p i t a t i o n . a s s u l p h i d e s , oxides 155 and carbonates or by a d s o r p t i o n to o r g a n i c matter or a d s o r p t i o n to p a r t i c u l a t e i r o n hydroxide. (3) The system i s assumed to be c l o s e d and no m a t e r i a l t r a n s f e r s occur i n t o or out of the aqueous phase other than those d i s s o l v e d elements s p e c i f i e d as s o l u t i o n c o n s t r a i n t s . S o l u t i o n c o n s t r a i n t s used i n c a l c u l a t i n g s p e c i e s d i s t r i b u t -ions are the copper, z i n c , i r o n , manganese, c a l c i u m and sulphate v a l u e s o b t a i n e d by a n a l y s i s of f i l t e r e d , subsurface water samples and g i v e n i n Table 4-9. Although no subsurface water samples were analysed f o r b i c a r b o n a t e t h i s anion was measured i n a s m a l l number of seepage water samples from the t r a n s i t i o n between the humic g l e y s o l i c s o i l and o r g a n i c s o i l s . These samples co n t a i n e d l e s s than 10 ppm b i c a r b o n a t e (2*10~^M) and t h i s c o n c e n t r a t i o n was entered as an a d d i t i o n a l s o l u t i o n c o n s t r a i n t i n the models. A number of p r e l i m i n a r y c a l c u l a t i o n s were c a r r i e d out u s i n g DISTRIB to e s t a b l i s h the probable range of oxygen a c t i v i t y by assuming that s o l i d c h a l c o p y r i t e and p y r i t e were i n e q u i l i b r i u m w i t h an aqueous s o l u t i o n e q u i v a l e n t to the composition of water sample 74-RL-1429. The two s o l i d phases were s u b s t i t u t e d f o r t o t a l d i s s o l v e d copper and i r o n as s o l u t i o n c o n s t r a i n t s i n the d i s t r i b u t i o n of s p e c i e s c a l c u l a t i o n s which ivere repeated at Log oxygen a c t i v i t i e s of -66.5, -66.0 and -65.5. E q u i l i b r i u m con-st a n t s (Log K) and r e a c t i o n q u o t i e n t s (Log Q) f o r s e v e r a l , common copper, iro n . a n d z i n c s u l p h i d e s , oxides and carbonates are c a l c u l a t e d by the program DISTRIB. E q u i l i b r i u m constants are based on f r e e energy changes a s s o c i a t e d w i t h m i n e r a l format-i o n whereas r e a c t i o n q u o t i e n t s are determined from e q u i l i b r i u m D I S T R I B U T I O N U F S P E C I E S F O R wA T E R S A M P L E 7 3 - R L - 1 4 2 9 I N if 1 4 2 9 I N T H E P R E S E N C E O F 1 GR C P A N D P Y D I S T R I B U T I O N O F S P E C I E S C A L L E D A T S T E P A Q U E O U S S P E C I E S S P E C I E S M O L A L I T Y L O G M O L A C T I V I T Y L O G A C T A C T C O E F L G A C T C GRAM S / K G M M 2 0 P P M LOG P P M C A + + 0 . 3 0 2 5 9 E - 0 3 - 3 . 5 1 9 0 . 2 6 0 2 2 F - 0 3 - 3 . 5 3 5 0 . 8 5 9 9 8 F + 0 0 - 0 . 0 6 6 0 . 1 ? 1 ? H F - 0 1 F E + + F E + + + C U + 0 . 2 7 9 1 0 E - 0 7 0 . 5 2 2 3 1 6 - 2 2 0 . 4 1 7 5 0 E - 1 5 - 7 . 5 5 4 - 2 2 . 2 8 2 - 1 5 . 3 7 9 0 . 2 4 0 0 2 E - 0 7 0 . 3 7 5 8 3 E - 2 2 0 . 4 0 1 5 0 F - 1 5 - 7 . 6 2 0 - 2 2 . 4 2 5 - 1 5 . 3 9 6 0 . 8 5 9 9 8 E + 0 0 C . 7 1 9 5 6 E + 0 0 0 . 9 6 1 5 8 E + 0 0 - 0 . 0 6 6 - 0 . 1 4 3 - 0 . 0 1 7 0 . 1 5 5 8 7 E - 0 5 0 . 2 9 1 6 9 E - 2 0 0 . 2 6 5 2 8 E - 1 3 0 . 0 0 2 0 . 0 0 0 0 . 0 0 0 1 m U aft -I. 8 0 7 - 1 7 . 5 3 5 \u00E2\u0080\u0094 i n ^ 7 A C ! ^ S \u00E2\u0080\u0094 S 0 4 - -0 . 1 4 2 9 3 E - 1 9 0 . 3 4 8 4 7 E - 1 7 0 . 2 7 0 3 3 F - 0 3 - 1 9 . 8 4 5 - 1 7 . 4 5 8 - 3 . 5 o 7 0 . 1 2 2 9 2 E - 1 9 0 . 2 9 9 1 9 E - 1 7 0 . 2 3 2 1 5 F - 0 1 - 1 9 . 9 1 0 - 1 7 . 5 2 4 - 3 . 6 3 4 0 . 8 5 9 9 8 E + 0 0 0 . S 5 8 5 9 E + 0 0 0 . H 5 7 1 f i F + O D - 0 . 0 6 6 - 0 . 0 6 6 - f ) . 06 7 0 . 9 0 8 1 8 E - 1 8 0 . 1 1 1 7 3 E - 1 5 o . ? 6 n i 6 F - n i 0 . 0 0 0 0 . 0 0 0 i *J . :> / o - 1 5 . 0 4 2 - 1 2 . 9 5 2 C G 3 - -O H -H + 0 . 3 4 1 0 7 E - 0 8 0 . 1 0 6 9 0 E - 0 7 0 . 1 0 3 7 1 E - 0 5 - 3 . 4 o 7 - 7 . 9 7 1 - 5 . 9 8 4 0 . 2 9 2 6 0 E - 0 8 0 . 1 0 2 8 5 E - 0 7 0 . 1 O O O O E - 0 5 - 9 . 5 3 4 - 7 . 9 3 8 - 6 . 3 0 0 0 . 8 5 7 8 9 E + 0 0 0 . 9 6 2 0 8 E + 0 0 . . . 0 . 9 6 4 1 9 6 + 0 0 - 0 . 0 6 7 - 0 . 0 1 7 - 0 . 0 1 6 0 . 2 0 4 6 7 E - 0 6 0 . 1 8 1 8 2 E - 0 6 0 . 1 0 4 5 4 E - 0 5 0 . 0 0 0 0 . 0 0 0 1 . 4 1 S - 3 . 6 3 9 - 3 . 7 4 0 _ \"> C i o i H 2 0 0 2 ( A Q J C A C Q 3 0 . 5 5 5 0 8 E + 0 2 0 . 3 3 8 8 1 E - 6 9 0 . 9 5 3 6 5 E - 0 9 I . 7 4 4 - 6 9 . 4 7 0 - 9 . 0 2 1 0 . 9 9 9 9 9 E + 0 0 0 . 3 3 8 8 1 E - 6 9 0 . 9 5 3 9 5 E - 0 9 - 0 . 0 0 0 - 6 9 . 4 7 0 - 9 . 0 2 0 0 . 1 8 0 1 5 E - 0 1 0 . 1 0 0 0 0 E + 0 1 0 . 1 0 0 0 3 E + 0 1 - 1 . 7 4 4 0 . 0 0 . 0 0 0 ............JM..V .. J....-/. . . .J ^&.,ZT.\* JHL^T, 0 . 1 0 0 0 0 E + 0 4 0 . 1 0 8 4 2 F - 6 7 J 3 . 9 5 4 5 0 E - 0 7 SJL.AJJ.XLL 9 9 9 9 4 8 . 1 3 2 0 . 0 0 0 n n n n * ^ ' > 1 6 . 0 0 0 - 6 4 . ^ 6 5 \u00E2\u0080\u0094 L. n ? c\ C A S 0 4 H S 0 4 -H S -H 2 S H C 0 3 -H 2 C U 3 0 . I 0 1 4 9 ! : - 0 4 0 . 2 2 9 5 5 E - 0 7 0. . . 2 3 5 3 . . 7 E - 0 9 0 . 2 3 4 4 1 E - 0 3 0 . 6 ' i 5 9 0 \u00C2\u00A3 - 0 4 0 . 1 3 5 4 1 E - 0 3 - 4 . 9 9 4 - 7 - 6 3 9 - 9 . . . 6 J 6 0 . 1 0 1 5 3 E - 0 4 0 . 2 2 0 8 9 E - 0 7 Q . . . 2 . 2 6 4 4 E - . 0 . 9 - 4 . 9 9 3 - 7 . 6 5 6 - 9 . 6 4 5 0 . 1 0 0 0 3 E + 0 1 0 . 9 6 2 2 9 E + 0 0 0 . 9 6 2 0 . 8 . 6 + 0 . 0 0 . 0 0 0 - 0 . 0 1 7 - 0 . 0 1 7 0 . 1 3 8 1 7 E - 0 2 0 . 2 2 2 8 2 E - 0 5 0 . 7 7 6 4 U - - Q B 1 . 3 8 2 0 . 0 0 2 ...a ...ooQ 0 . 1 4 0 - 2 . 6 5 2 . - 5 . 1 J 9 - 8 . 6 3 0 - 4 . 1 9 0 - 3 . 8 6 8 0 . 2 3 4 4 9 E - 0 3 0 . 6 2 1 6 7 E - 0 4 0 . 1 3 5 4 5 F - 0 3 - 8 . 6 3 0 - 4 . 2 0 6 - 3 . 8 6 8 0 . 1 0 0 0 3 E + 0 1 0 . 9 6 2 4 3 E + 0 0 0 . 1 0 0 0 3 F + 0 1 0 . 0 0 0 - 0 . 0 1 7 0 . 0 0 0 0 . 7 9 8 8 8 E - 0 7 0 . 3 9 4 1 1 E - 0 2 0 . 3 39f>6 F - 0 ? 0 . 0 0 0 3 . 9 4 1 H 1 U M - 4 . 0 9 8 0 . 5 9 6 F E ( O H ) + 0 . 1 3 6 7 0 E - 0 B - \u00E2\u0080\u00A2 3 . 8 5 8 0 . 1 3 3 4 7 E - 0 3 - 8 . 8 7 5 C . 9 6 2 2 9 E + 0 0 - 0 . 0 1 7 0 . 1 0 1 0 5 E - 0 6 O . J J f 1 0 . 0 0 0 it . - 3 . 9 9 5 I O N I C S T R E N G T H = 0 . 1 1 7 9 7 3 C \u00E2\u0080\u0094 0 2 E L E C T R I C A L B A L A N C E = 0 . 4 8 4 1 0 6 E - 1 3 G A S E S N A M E L O G K A C T I V I T Y L O G A C T I V I T Y O X Y G E N G A S C A R B O N D I O X I D E S T E A M S U L F U R G A S H Y D R O G E N ' S U L F I D E H Y D R O G E N G A S M E T H A N E Table b - 1 : 0 . 0 - 7 . 8 3 5 4 0 I . . . 5 0 5 1 7.. 1 9 2 . 3 4 9 5 1 1 2 5 . 0 1 0 4 9 4 1 . 6 6 0 2 2 0 . 3 1 6 2 3 E - 6 6 0 . 4 2 5 5 6 E - 0 2 0 - 3 1 2 4 8 1 - 0 1 0 . 7 6 2 1 2 E - 2 4 0 . 2 2 6 6 0 E - 0 7 0 . 3 3 8 8 4 F - 0 8 1 3 5 . 9 0 7 1 8 0 . 7 6 9 7 8 E - 1 3 - 6 6 . 5 0 0 0 0 - 2 . 3 7 1 0 3 . . - 1 . 5 . 0 5 1 8 . . . - 2 4 . 1 1 7 9 3 - 7 . 6 4 4 7 3 - 8 . 4 1 0 2 3 1 3 . 1 1 3 6 3 ...Pi. s tr:_ib u t i on of aqueous species in water s amp le 74-RL-1429 at Log oxygen activity of -66,5, D I S T R I B U T I O N UF S P E C I E S FOR WATER S A M P L E 7 3 - K L - 1 4 2 9 I N # 1 4 2 9 I N T H E P R E S E N C E OF 1 GK CP AMD PY D1STP, I b U T ION OF S P E C I E S C A L L E D AT S T E P S P E C I E S CA + + F E + + FE + + + C J * C U + + s \u00E2\u0080\u0094 . . S U 4 - -C 0 3 -O H -H + H 2 G 0 2 ( A Q ) C A C 0 3 CAS0*> H S 0 4 -H S -H 2 S H C C 3 -H 2 C 0 3 AQUEOUS S P ' . : C I E S M O L A L I T Y LOG MOL A C T I V I T Y 0 . 3 0 1 0 7 E - 0 3 - 3 . 5 2 1 0 . 2 5 8 9 1 E - Q 3 0 . ! 5 u 8 9 E - 0 5 0 . 3 9 1 5 4 E - 2 0 0 . 5 s 6 7 4 . E - . L i . . . 0. 2 5 4 1 7 E - 1 9 Q.l't'i'j.iiz-iti n.?70\u00C2\u00BB,HF-0 3 . 6 0 4 0 - 2 0 . 4 0 7 0 . . - . .1 .5 . . . .2M 0 - 1 9 . 5 9 5 0 - 1 8 . 4 5 8 0 -3 . 5 6 7 Q 0 . 3 * 1 0 7 E - 0 3 0 . 1 0 6 9 0 E - 0 7 0 . 10 37 IE - 0 5.. 0 . 5 5 5 D 8 E + 0 2 0 . 10 7 1 4 E - 6 8 0 . 9 4 8 3 2 E - 0 9 0 . 10 1 0 0 E - 0 4 0 . 2 2 9 5 9 E - 0 7 0 . 2 3 54 i E - 10... 0 . 2 3 4 4 6 E - 0 9 0 . 6 4 5 9 0 E - 0 4 0 . I V : 4 1 F - 0 3 1 3 4 9 2 F - 0 5 \u00E2\u0080\u00A2 2 8 1 7 3 E - 2 0 \u00E2\u0080\u00A2 5 3 5 H 0 E - I 5 . 2 1 8 5 8 E - 1 9 . 2 9 9 2 5 E - 1 3 . 2 1 2 1 9 F - 0 J - 8 . 4 67 0 - 7 . 9 7 1 0 - 5 , . 9.8.4 0 1 . 7 4 4 0 - 6 8 . 9 7 0 0 - 9 . 0 2 3 0 \u00E2\u0080\u00A22 9 2 6 0 E - 0 8 . 1 0 2 8 5 E - 0 7 \u00E2\u0080\u00A2 1.000 O c - 0 , 5 . . . . 9 9 9 9 9 E + 0 0 . 1 0 7 1 4 E - 6 8 \u00E2\u0080\u00A2 9 4 9 1 3 E - Q 9 LOG ACT - 3 . 5 ? 7 - 5 . 8 7 0 - 2 0 . 5 5 0 - 1 5 , 2 71 - 1 9 . 6 6 0 - 1 6 . 5 2 4 - 8 . 5 3 4 - 7 . 9 3 8 \u00E2\u0080\u009E \u00E2\u0080\u009E - 6 , .0,0,0 - 0 . 0 0 0 - 6 8 . 9 7 0 - 9 . 0 2 3 - 4 . 9 9 6 0 - 7 . 6 3 9 0 - 1 0 . 6 2 8 ...0 - 9 . 6 3 0 0 - 4 . 1 9 0 0 - 3 . . 8 6 8 a . 1 0 1 0 3 E - 0 4 \u00E2\u0080\u00A2 2 2 0 9 3 E - 0 7 . . 2 2 6 4 8 1 . - 1 0 2 3 4 5 3 E - 0 9 6 2 1 6 7 E - 0 4 1 154 5 F - 0 . ? - 4 . 9 9 6 - 7 . 6 5 6 - . 1 0 , 6 4 5 - 9 . 6 3 0 - 4 . 2 0 6 - 3 . 8 6 8 F E ( O H ) + 0 . 7 7 9 / 1 E - 0 7 - 7 . 1 0 6 0 . 7 5 0 3 0 E - 0 7 - 7 . 1 2 5 A C T COEF 0 . 0 . . . . 0 . 0 . 0 . _cu. 0 . 0 . c. 0 . 0 . _LL. 0 . 0 . 0 . 8 t i 9 9 7 F + 0 0 8 5 9 9 7 E + 0 0 7 1 9 5 4 E + 0 0 9 6 1 6 7 E + 0 0 . 8 5 9 9 7 E + 0 0 8 5 8 5 8 E + 0 0 8 5 7 1 7 r + 0 0 8 5 7 8 8 E + 0 0 9 6 2 0 8 E + 0 0 9.6 4.1.8.C.+.0.0... 1 8 0 1 5 E - 0 1 1 0 0 0 0 E + 0 1 1 0 0 0 3 E + 0 1 1 0 0 0 3 E + 0 1 9 6 2 2 8 E + 0 0 .9.6.2.08 E +0.0... 1 0 0 0 3 E + 0 1 9 6 2 4 8 E + 0 0 9 6 2 2 S E +00 L G A C T C G R A M S / K G M H 2 0 - 0 . Q 6 6 - 0 . - 0 . - 0 . - 0 . - 0 . - 0 . 0 6 6 1 4 3 .0.1.7... 0 6 6 0 6 6 0 6 7 \u00E2\u0080\u00A2 0 . - 0 . :..Q.,.. - 1 . 0 . _ 0 * . 06 7 0 1 7 0 1 6 7 4 4 0 OOP o . - o . \u00E2\u0080\u009E-o\u00E2\u0080\u009E, 0 . - 0 . 0_. 0 0 0 0 1 7 01 7 0 0 0 0 1 7 00 0 - 0 . 0 1 7 n . 1 ? 0 6 7 F - 0 1 0 . 0 0 . 8 7 6 2 0 E - 0 4 2 1 8 6 6 E - 1 8 , 1 6 1 5 0 E - 1 7 , 1 1 1 7 5 E - 1 6 . ? 6 n ? i F - n i o \u00E2\u0080\u009E\u00E2\u0080\u009EQ 0 . 0 . . 2 0 4 6 7 E - 0 6 . 1 8 1 8 2 E - 0 6 . 1 0 4 5 4 E r 0 5 . . 1 0 0 0 0 E + 0 4 \u00E2\u0080\u00A2 3 4 2 8 4 E - 6 7 9 4 9 6 7 F - 0 7 . 1 3 7 5 0 E - 0 2 . 2 2 2 8 6 E - 0 5 . 7 7 9 5 5 E - 0 9 . 7 9 9 0 3 F . - 0 8 . 3 9 4 1 1 E - 0 2 0 . 5 6 8 0 5 E - 0 5 PPM 1 ? \u00E2\u0080\u00A2 0 6 6 0 . 0 8 8 0 . 0 0 0 , . .0 . .J3.00. . 0 . 0 0 0 0 . 0 0 0 2 6 . 0 20 0 . 0 0 0 0 . 0 0 0 ..Q....00.1. 9 9 9 9 4 8 . 1 0 3 0 . 0 0 0 o . o o o t. 3 7 5 0 . 0 0 2 0 . 0 0 0 3 . 9 4 1 8 . 3 9H 0 . 0 0 6 LOG P P M - 1 . 0 5 7 - 1 5 . 6 6 0 - 1 0 . 4 5 1 . - 1 4 . 7 9 2 - 1 3 . 9 5 2 - 3 . 6 3 9 - 3 . 7 4 0 - Z . 9 3 1 . 6 . 0 0 0 - 6 4 . 4 6 5 - 4 . 0 2 2 0 . 1 3 3 - 2 . 6 5 2 . . . - \u00E2\u0080\u00A2 6 . 1 0 9 . - 5 . 0 9 7 0 . 5 9 6 Q. 9 2 4 . - 2 . 2 4 6 IU.MIC S T R E N G T H = 0 . I 1 7 9 9 0 E - 0 2 E L E C T R I C A L B A L A N C E 0 . 1 4 5 8 6 8 E - 1 3 G A S E S N AM E LOG K A C T I V I T Y L O G A C T I V I T Y O X Y G E N G A S C A R B O N D I O X I D E S T E A M S U L F U R G A S H Y D R O G E N S U L F I D E H Y D R O G E N G A S M E T H A N E 0 . 0 - 7 . 8 3 5 4 0 1 , 5 0 5 . 1 . 7 . 1 9 2 . 3 4 9 5 1 1 2 5 . 0 1 0 4 9 1 3 5 . 9 0 7 1 8 0 . 1 0 0 0 0 E - 6 5 0 . 4 2 5 5 6 E - 0 2 0 . . 3 1 . 2 4 8 L - . 0 1 0 . 2 4 1 0 9 E - 2 5 0 . 2 2 6 6 4 E - 0 8 _ f U 2 J L 8 6 6 F - 0 2 0 . 7 6 9 7 8 E - 1 4 - 6 6 . 0 0 0 0 0 - 2 . 3 7 1 0 3 - 1 . 5 . 0 5 1 . 8 - 2 5 . 6 1 7 8 2 - 8 . 6 4 4 6 6 - 1 4 . 1 1 3 6 3 T a b i e 6.^.=. Distribution ot aqueous species in water-sample 74-RL-14Z9 at Log oxygen act i v i t y of -66,0. U l DISTRIBUTION OF SPECIES FOR WATER SAMPLE 73-RL-1429 IN it 1429 IN THE PRESENCE OF 1 GR CP AND PY DISTRIBUTION OF SPECIES CALLED AT STEP AQUEOUS SPECIES SPEC IES MCLALITY LOG MOL ACTIVITY LOG ACT ACT COEF LG ACT C GRAM S/KGM H20 P P M LOG PPM C At f 0 .21669E - 0 3 - 3 . 6 6 4 0 . 136? 5F-03 -3.7 30 0 .85951F+00 -0.066 0.86R51F - 0 2 R . 6 H S 0. q 39 FE++ 0.36596E-04 -4.063 0 .74430E-0t -4.128 0.35951E+00 -0.066 0.48361E-02 4. 836 0 . 6 84 FE + + + 0.2 6 836E-18 -18.540 0.20725E-18 -18.683 0.71873E+00 - 0.14 3 0.16104E-16 0 . 0 0 0 -13.793 C U + 0. 74253^-1 5 ...-15. 129 0.7 1397E-15 -15.146 0.96153E+00 - 0 . 01.7 0. 4.7.13 1E-13 . . o . o o a -10.326 CU + + 0.45223C-19 -19.345 0.33869E-19 -19.410 0.H5951E+00 -0.066 0 .28735E-17 0.000 -14.542 $ \u00E2\u0080\u0094 0. 35209 1 -19 -19.453 0.30213E-19 -19.520 0.65811E+00 -0.066 0 . 1 1289 E-17 0 . 0 0 0 -14.947 '-if i 4 0.2 7 364F--0 3 - 3 . 5(>3 0 . ? 3 4 4 3 F - 0 3 - 3 . 6 3 0 n . R 5 6 r,4F+ o r ) - 0 . 0 6 7 n . ? 6 ? R 6 F - 0 1 ?S5 1 .420 A\.t T C 0 3 \u00E2\u0080\u0094 0.3412 5E-03 - 6 . 4 6 7 0.29259E-08 - 8 . 5 3 4 0.85740E+00 -0.067 0.20478E-06 0 . 0 0 0 -3.689 UH- 0.10692E-07 . - 7.971 0.10235E-07 -7.988 0.96195E+00 -0.017 0.18184E-06 0 . 0 0 0 -3.740 H + 0. I0373E-05 -5.984 0.1000 0E-0 5 - 6 . 0 00 Q...9.6.40 6 E+0.0 -.0.016 .\u00E2\u0080\u009E_ .0....1.0..4.5.5.E-Q.5. . . 0 . 0.0L _ -2 .931 H20 0.5 5 508c +0 2 1 . 744 0.9 9999E+0 0 -0.000 0. 18015E-01 -1 . 744 0.10000E+04 999946.540 6 . 000 02(AQ) 0.33881E-68 -68.470 0 .3383 I E - 0 8 -68.470 0.10000E+01 0. 0 0.10842E-66 0 . 0 0 0 -63.965 CACU3 0.68253E-09 -9. 166 0.63274E-09 -9.166 0.10003E+01 0.000 0.68314F-07 0 . 0 00 -4.166 CAS 04 0.73355E-05 - 5 . 135 0.73379E-05 -5.134 0.10003E+01 0.000 0.99867E-03 0.999 - 0.001 HS04- 0.23183E-07 -7.635 0.22306E-07 -7.652 0.96215E+00 -0. 017 0 . 2 2 5 0 4 E - 0 5 0.002 - 2.648 H5- 0. 23771E- 1 1 - I 1.624 O. 2 2 8o 7 E - U -11 .641 0.96195 E+0.0 -0.017 Q..... 7.8.6.. 1.7. E.-.LQ. _ 0.0.0.0 . - 7.11)5 H2S 0.23672E-10 -10.626 0.23679E-10 -10.626 0. 10003E+01 0.000 0.30673E-09 0.000 -6.093 HC03- 0.64596E-04 -4.190 0.62164E-04 -4.206 0.96235E+00 -0.017 0.39415E-02 3. 941 . 0 .596 H?C03 0 . 1 3 5 4 0 F -0 -i - 3 . tUici 0 . 1 -154 4 F-0 i -3.86H n . i n n o 3 F + o i n . o n o 0 . 8 3 9 H ? F - n ? fi.398 n.Q?4 FE(OH)+ 0 . 4 3 019E-0 5 -5.366 0.4 139 1E-05 -5.383 0.96215E+00 -0.017 0.3 1341E-03 0.313 - 0.504 T t J N I CSTRENGTH' = 0.118835E-02 ELECTRICAL BALANCE = - 0 . 3 8 7 1 7 6 E - 1 1 GASES NAME LOG K ACTIVITY LOG ACTIVITY OXYGEN GAS 0.0 0.31G23E-65 -65.50000 CARBON 01 OX IDE -7.83540 0.42555E-02 -2.37105 STEAM 1.50517 0.31248E-01 -1.5051 3... _ ._ _ \u00E2\u0080\u0094 SULFUR GAS 192.3495 1 0. 777 17E-27 -27.10949 HYDROGEN SULFIDE 125.01049 0.22383L-09 -9.64049 ' l Y i J R O G F N GAS 4 1 . 6 6 0 2 ? 0.1? '\u00E2\u0080\u00A2> 9 f - F - f ! f i -8.91023 . 1 1 L J V U U I . I N J METHANE 135 .90718 0.76975E-15 -15.11365 Ln Table 6-3: Distribution of aqueous species in water sample 74-RL-1429 at L 0 3 oxvge.n activity of -65.5. CO 159 Log oxygen activity -66 .5 -66 .0 -65 .5 MINERAL Log K Log Q Log K Log Q Log K Log Q Bornite 167.18 168.23* 167.18 166.73 167.18 165.24 Chalcocite 83.79 84.11* 83.79 83.37 83.79 82.62 Chalcopyrite 0.0 0.0 0.0 0.0 0.0 0.0 Covellite 84.82 84.12 84.82 83.87 84.82 82.62 Cuprite -16.36 -33.25 -16.36 -33.0 -16.36 -32.75 Hematite -431.68 -436.21 -431.68 -432.46 -431.68 -428.73* Magnetite -629.39 -637.69 -629.39 -632.20 -629.39 -626.72* Native 4.84 0.0 4.84 0.0 4.84 0.0 Copper Pyrite 0.0 0.0 0.0 0.0 0.0 0.0 Siderite -208.26 -211.69 -208.26 -209.94 -208.26 -208.20* Table 6-4: Equilibrium constants (Log K) and reaction quot-ients (Log Q) for water sample 74-RL-1429 at Log oxygen a c t i v i t i e s of -66.5, -66.U and -65.5 and at 25\u00C2\u00B0C i n the presence of s o l i d chalcopyrite and p y r i t e . Oversaturation of minerals compared to equilibrium conditions i s indicated by * . 2- \u00E2\u0080\u0094 + Solution constraints are SO. ~ HC0~~ Ca , H 4 ' 3 ' ' and Log oxygen a c t i v i t y . D i s t r i b u t i o n of species 2+ are balanced on Ca ion. 160 concentration of the reactants and products and the difference between Log K and Log Q values i s an in d i c a t i o n of the degree of mineral saturation i n the solution. D i s t r i b u t i o n of species i n water sample 74-RL-1429; Log K and Log Q values at Log oxygen a c t i v i t i e s of -66.5, -66.0 and -65.5 are given i n Tables b-1, 6-2, b-3 and 6-4. Results of these calculations indicate that, when chalcopyrite and py r i t e are assumed to be i n equilibrium with the solution at Log oxygen a c t i v i t y of -66.5, bornite and chalcocite are oversat-urated and c o v e l l i t e s l i g h t l y undersaturated (Table 6-4). 2+ 3+ Concentration of iron (Fe + Fe ) i n solution i s less than - 8 - ]_R 10\" M, sulphide ion i s below 10\" M and copper concentration (Cu + + Cu Z +) i s less than 10\" l bM (Table 6-1). Bornite and chalcocite are undersaturated when Log oxygen a c t i v i t y i s increased from -b6.5 to -66.0 (Table 6-4) and the iron concent-r a t i o n (Fe^ + Fe ) i s increased to 10\" M (88 ppb ). The -19 concentration of sulphide ion, however, i s decreased to 10 M. (Table 6-2). Magnetite, hematite and s i d e r i t e are oversatur-ated i n solution when Log oxygen a c t i v i t y i s increased from -66.0 to -b5.5 and the predicted equilibrium iron concentration 2+ 3+ - 3 (Fe + Fe ) of 8.65 10 (4836 ppb) greatly exceeds measured t o t a l dissolved iron (172 ppb) i n the water sample 74-R.L-1429. + 2+ (Table 6-3). Equilibrium copper concentration QCu + Cu ; is r e l a t i v e l y constant at lU \"^ M despite variations of oxygen a c t i v i t y and i s considerably lower than the measured copper concentration (10 ^ ) i n the water. The calculations indicate that the degree of mineral saturation i s extremely sensitive to variations 161 of oxygen a c t i v i t y . Species dist r i b u t i o n s also demonstrate that chalcopyrite, p y r i t e , c o v e l l i t e , bornite, chalcocite and iron oxides approach p a r t i a l chemical equilibrium with and aqueous solution containing sulphate between Log oxygen activ -i t i e s of -66.0 and -66.5. Aqueous species d i s t r i b u t i o n s were recalculated for the six subsurface central bog water samples using t o t a l measured dissolved copper, zinc, iron, manganese, calcium, sulphate, bicarbonate, pH and Log oxygen a c t i v i t y of -66.5 as system constraints. An example of the program output for sample 74-RL-1429 i s shown i n Appendix D. Log K and Log Q values for eleven copper and i r o n minerals are given i n Table 6-5 and these indicate that the degree of cuprite, hematite, magnetite, native copper, p y r i t e , sphalerite and s i d e r i t e saturation i n the waters i s generally less than f i v e orders of magnitude from predicted equilibrium compositions. Bornite, chalcocite, c o v e l l i t e and chalcopyrite, however,\" are greatly over saturated i n a l l water samples and Log 0. values are often larger than Log K values by more than ten orders of magnitude. Oversaturation of copper and copper-iron sulphides and the large excess of copper (,Cu+ + Cu Z +) above that for a solution where p y r i t e , chalcopyrite, c o v e l l i t e , bornite and chalcocite are i n equilibrium (.Tables 6-1, 6-2 and 6-3) could be explained by the formation of copper complexes. The aqueous species d i s t r i b u t i o n calculations are based on the assumption that the dissolved metal concentrations largely consist of simple ions. Copper, however, can form hydroxo complexes such as Cu0H+, 2+ C^COH^ i n d i l u t e aqueous systems (Stumm and Morgan ly70; and can also form very stable complexes with dissolved humic Table 6-5. E q u i l i b r i u m constants (Log K), r e a c t i o n quotients(Log QJ and r e l a t i v e degree of mineral s a t u r a t i o n i n c e n t r a l bog subsurface water samples at Log oxygen a c t i v i t y of -66.5. 74--RL- 1428 74. -RL- 1429 74 -RL- 1439 74-RL- 1442 74' -RL- 1443 74-RL-MINERAL LOG K LOG Q LOG K LOG q LOG _K LOG Q LOG K LOG Q LOG K LOG Q LOG K BORNITE 499. 74 544.16** 499. 74 549.18** 499. 74 555 71** 499.74 551.53** 499. 74 551.86 499.74 CHALCOCITE 134. 47 152.08** 134. 47 153.34** 134. 47 155.63** 134.47 153.64** 134. 47 154.16** 134.47 CHALCOPYRITE 231. 20 240.00** 231. 20 242.50** 231. 20 244.44** 231.20 244.23** 231. 20 243.55** 231.20 COVELLITE 110. 16 116.67** 110. 16 118.73** 110. 16 120.03** 110.16 119.04** 110. 16 119.10** 110.16 CUPRITE 34. 32 37.57* 34. 32 35.98* 34. 32 37.96* 34.32 35.96* 34. ,32 36.87* 34.32 HEMATITE -19. 96 -15.62* -19. .96 -20.44U -19. ,96 -19.77* -19.96 -18.23* -19. ,96 -18.91* -19.96 MAGNETITE -11. .81 -6.82* -11. ,81 -14.04\u00C2\u00B0 -11. .81 - 1 3 . 0 3U -11.81 -10.23* -11, .81 -11.74* -11.81 NATIVE COPPER 30. .81 35.41* 30, .81 34.61* 30, .81 35.61* 30.81 34.60* 30, .81 35.06* 30.81 PYRITE 205. .86 204.59 U 205, .86 207.88* 205 .86 208.83* 205.86 209.62* 205 .36 208.49* IT 205.86 SIDERITE -2 .40 - 2 . 4 4 U -2 .40 - 3 . 8 1U -2 .40 - 3 . 4 7 U -2.40 - 2 . 7 0U -2 .40 - 3 . 1 1 U -2.40 SPHALERITE 120 .46 122.32* 120 .46 122.59* 120 .46 122.74* 120.46 122.40* 120 .46 122.40* 120.46 **- Highly oversaturated compared to e q u i l i b r i u m s o l u t i o n composition *- S l i g h t l y oversaturated compared to equlibrium s o l u t i o n composition U - Undersaturated compared to e q u i l i b r i u m s o l u t i o n composition LOG Q 556.42** 156.31** 243.80** 120.18** 39.01* - 2 0 . 6 3 U - 1 4 . 3 2 U 36.13* 207.66* - 3 . 9 7 U 123.00* 163 and f u l v i c acid fractions i n natural waters. Nissenbaum and Swaine (1976), for example, found that more than 80% of copper, but less than 57o of calcium and manganese concentrations i n a shallow marine sediment pore water was associated with humic substances. The actual simple copper ion concentration i n organic r i c h natural waters could be very small compared to measured abundances. S o i l pore water chemistry could be d i f f e r e n t from that of water accumulating at the bottom of cased auger holes. Nissenbaum et a l . (Iy71) found that s h a l l -ow marine sediment pore water contained up to 148 ppm dissolved organic carbon compared to less than 5 ppm i n overlying sea water. Studies by Rashid and Leonard,(1973),Baker,(1973) have shown that the s o l u b i l i t y of base-metal sulphides, hydroxides and carbonates increases i n the presence of solutions contain-ing humic acid fra c t i o n s . A major proportion of copper and other metals could be bound to humic and f u l v i c acid fractions forming soluble complexes d i s p i t e small concentrations of orga-ni c matter i n natural waters. The percentage of organically bound copper can be approximately calculated from known data for metal-fulvate complex s t a b i l i t i e s . Estimates are, however, very approximate since interactions with other inorganic and organic ligands has been ignored and metal-fulvate s t a b i l i t y constants were determined at pH 3.0. The concentration of f u l v i c acid f r a c t i o n available for metal complexing i s based on an average molecular weight for f u l v i c acid of 1000. From this molecular weight Gamble and Schnitzer (19 73) calculated that a solution containing 1 ppm of -6 organic carbon was equivalent to 3X10 M metal complexing s i t e s . Concentrations of metal-fulvate complexes were calculated by the same method as that used for the species d i s t r i b u t i o n . The mass action equation for the reaction of copper with the fulvate ligand i s shown below. Cu + + HL\" = CuL\" + H + K = m(CuL) m(K +) 4 m(HL~) m(Cu+) m(CuL) i s the molality of the s i t e bound bidentate copper ligand. m(H+) \" \" \" \" hydrogen ion. m(Cu+) \" \" \" \" cuprous ions. m(HL~) \" \" \" \" ionized fulvate f r a c t i o n com-plexing s i t e s . K. i s the mass action quotient for the reaction. Mass ac-4 t i o n quotients have been calculated for copper, calcium, zinc and manganese by Gamble and Schnitzer (1973) and are l i s t e d below. An estimate for the mass action quotient for iron has been made from data given by Schnitzer and Skinner (1966). Metal Mass action quotient j\u00C2\u00A3 (at pH 3.0; Cu 23 Fe 20 Ca 15 Zn 1.8 Mn 0.37 165 Sample Number Ca Cu Biquino- Fe Mn Zn Organic ine Cu* carbon** 74-RL-1428 4 16 35 67 20 0 33 00 0 81 1 96 9 0 \" 1429 16 46 71 59 84 0 68 64 2 96 7 44 16 0 \" 1439 0 89 11 24 10 0 9 97 5 51 0 30 2 0 \" 1442 1 22 13 50 60 0 12 .00 0 22 0 66 4 0 \" 1443 1 44 15 60 44 0 14 14 0 27 0 65 3 5 \" 1444 1 44 16 27 n r 13 17 0 .26 0 67 4 0 Table 6-6: Proportion of metals (7o) t h e o r e t i c a l l y bound to the f u l v i c acid f r a c t i o n i n subsurface bog water samples. * Represents 7cCu not extracted by 2-2 biquinoline. **Dissolved organic carbon content i n ppm. 166 Percentages of copper, zinc, iron, manganese and calcium bound to f u l v i c substances i n s i x subsurface water samples are given i n Table 6-6. Relative proportions of metals bound i n complex form r e f l e c t the decreasing s t a b i l i t i e s of the copper, iron, calcium, zinc and manganese complexes. More than 70%, of the copper i s present i n the form of a fulvate complex i n water sample 1429 containing 16 ppm diss-olved organic carbon. The 2-2 biquinoline extracted only 16% of the copper from this sample emphasizing that a large prop-ortio n of the metal i s bound i n a r e l a t i v e l y stable complex form. Water samples 1442, 1443, 1444 and 1439 containing less than 5 ppm dissolved organic carbon have smaller proportions of metals i n the form of metal-fulvate complexes. Although calculations indicate that less than 16% of the t o t a l copper i n samples 1442 and 1443 i s bound to organic matter, extraction of copper using 2-2 biquinoline suggests that more than 407o of the metal i s present i n complexed forms. The difference between calculated and extracted complexed copper values could r e f l e c t i n t e r a c t i o n of metals with other organic and inorganic ligands to form stable complexes i n addition to association with f u l v i c and humic acid fractions. 6-6 STABILITY OF COPPER AND IRON MINERALS IN THE ORGANIC SOILS Thermodynamic models have demonstrated that chalcopyrite, chalcocite, c o v e l l i t e and bornite are oversaturated compared to equilibrium concentrations calculated from subsurface, central bog water sample compositions. However, p r e c i p i t a t i o n w i l l only occur i f anion and cation concentrations s a t i s f y mineral 167 s o l u b i l i t y product relationships. Predicted equilibrium s u l -phide ion concentrations (10 ^M) are smaller than measured -12 sulphide ion abundances i n lake sediment pore waters (10 M; reported by Emerson (.1976). The calculated hydrogen sulphide concentration (10 M^) i s also smaller than that which could t h e o r e t i c a l l y be produced as a r e s u l t of biogenic sulphate reduction (10 ^M). Although sulphide ion concentrations are apparently large enough for p r e c i p i t a t i o n of mineral sulphides the concentration of metal ions may be i n s u f f i c i e n t for form-ation of large authigenic mineral accumulations due to devel-opment of complexes. S t a b i l i t y relationships among copper and iron minerals which could be formed i n the organic s o i l s r e f l e c t variations of pH, Eh, t o t a l metal concentration and t o t a l sulphur concent-ra t i o n . Eh of the system can be calculated from Log oxygen activit}^ by the relationship for the s t a b i l i t y of water. Eh = 1.23 + 0.059 Log 0 2 - 0.059pH 4 Calculated Eh from this r elationship at Log oxygen a c t i v i t y of -66.0 and pH 6.0 would be -98mv. Copper and i r o n mineral relationships as a function of Eh and pH at a t o t a l sulphur a c t i v i t y of 10 ^ are shown i n F i g . 6-1 where approximate l i m i t s to the central bog system, based on Eh and pH measurements, are shown as a shaded area. An aqueous solution having a pH of 6.0 and Eh -98 mv would plot i n the c o v e l l i t e - p y r i t e s t a b i l i t y f i e l d on F i g . 6-1. This mineral association occurs i n a grain shown i n Plate 5-4 where c o v e l l i t e lamellae f i l l the i n t e r s t i c e s between p y r i t e 168 + 0-6 CiT+ Fe 20 3 C u 0 + F e 2 0 3 Figure 6-1: Simplified Eh-pH diagram for mineral relationships in the Cu-Fe-S-O-H system at 25\u00C2\u00B0C and 1 atmosphere pressure Total dissolved sulphur concentration is 10~^M and the shaded area C - ) represents the approximate Eh-pH range of central bog waters. The diagram i s based on that given by Garrels and Christ (1965). framboids. The mineral relationships most commonly observed i n the heavy mineral grains, however, are small, idiomorphic c o v e l l i t e granules coated with chalcopyrite (Plate 5-5; or c o v e l l i t e as roughly concentric zones within chalcopyrite grains (Plate 5-7). The c o v e l l i t e and chalcopyrite s t a b i l i t y f i e l d s i n F i g . 6-1 are separated by chalcocite and bornite f i e l d s and these minerals would be expected to be present i n an assemblage containing chalcopyrite and c o v e l l i t e . No chalcocite and bornite have been p o s i t i v e l y i d e n t i f i e d i n any of the mineral grains. Idiomorphic c o v e l l i t e - c h a l c o p y r i t e grains, smaller than 40 um across and the presence of framboidal p y r i t e i n the bog strongly suggests that the sulphide minerals are authigenic. Framboidal p y r i t e probably formed by adsorption of p a r t i c u l a t e f e r r i c hydroxide onto the surface of spherical humic acid c o l l o i d a l droplets followed by reaction of i r o n with sulphide ions and elemental sulphur to form p y r i t e (Papunen I96b, Berner ly69, Rickard ly70). Pyrite framboids are occasionally enclosed by a layer of massive, softer sulphide which i s almost i d e n t i c a l to p y r i t e composition (Plate 5-3). This concentric, massive p y r i t i c layer could represent l a t e r p r e c i p i t a t i o n of an iron sulphide gel onto the o r i g i n a l framboid due to l o c a l chemical variations i n the organic s o i l pore water. Although mineralogy of the concentric layer i s most l i k e l y FeS 0, other metastable i r o n sulphides such as mackinawite and g r i e g i t e (.Fe^S^) which have been experimentally produced by Sweeney and Kaplan (1973) may be also present. Chalcopyrite granules smaller than 10 um diameter occur i n 170 the central bog organic s o i l s (Plates 5-20 and 5-24).and these could represent the i n i t i a l stage of sulphide p r e c i p i t a t i o n from s o i l pore water solutions. The e l l i p t i c a l chalcopyrite granules coating a s i l i c a t e mineral grain shown i n Plate 5-8 may also have formed by p r e c i p i t a t i o n of sulphide onto an exis t i n g surface. Textures exhibited by ch a l c o p y r i t e - c o v e l l i t e grains smaller than 40 um across could be explained by a sequ-ence of sulphide mineral depositions. The idiomorphic c o v e l l i t e lamellae (Plate 5-4; represent the f i r s t stage of p r e c i p i t a t i o n and the subparallel chalcopyrite layer surround-ing the c o v e l l i t e was deposited onto exi s t i n g mineral surface due to changing Eh, pH or solution composition. C o v e l l i t e often forms roughly concentric layers i n chalcopyrite grains larger than 50 um across (Plates 5-7 and 5-10) resembling Leisengang rings which are commonly found i n colloform struct-ures . These rings are thought to form as a re s u l t of rhythmic mineral p r e c i p i t a t i o n i n a gel and could also form where authigenic sulphide grains have developed through sequential deposition. The e f f e c t of sulphur a c t i v i t y variations on mineral stab-i l i t i e s i n the Cu-b-O-H and Fe-S-O-H systems at 25\u00C2\u00B0C i s shown i n Figs. b-2a and 6-2b. Mineral s t a b i l i t i e s were determined as a function of varying Log oxygen a c t i v i t y and Log sulphate 2 a c t i v i t y -I- 2pH . The phase boundaries were established by writing balanced equations for the oxidation of each mineral i n terms of oxygen, (S0^ 2~ + 2H+) , Cu 2 +, F e 2 + and H^O. A t y p i c a l reaction for chalcocite oxidation would be:-Cu 2S = \" 2- 5 02 + ( S 0 4 2 ~ + 2 H +> + 2 ( C u 2 + - 2H+) + 2H20 171 -10G 2- +2 Log activity (SO^ ) \" a c t i v i t y (H ) Figure 6-2a: S t a b i l i t y r e l a t i o n s h i p s between copper minerals i n water at 25\u00C2\u00B0C and 1 atmosphere pressure as a function of Log a c t i v i t y oxygen gas and Log a c t i v i t y sulphate * a c t i v i t y hydrogen ion 2 . The shaded area indicates the approximate l i m i t s of subsurface bog water sample compos-i t i o n s at oH 6.0 and Eh -100 mv. 172 -20 H -40 H CM O . v\u00E2\u0080\u0094' CO 60 O -60 \u00E2\u0080\u00A2 -80 H -100 HEMATITE MAGNETITE HYDROGEN + OXYGEN GASES \u00E2\u0080\u0094 T \u00E2\u0080\u0094 -40 1 -30 -50 -20 -10 Log a c t i v i t y (SO^ 2 -) * a c t i v i t y ( H + ) 2 Figure 5-2b: S t a b i l i t y r e lationships between i r o n minerals i n water at 25\u00C2\u00B0C and 1 atmosphere pressure as a function of Log a c t i v i t y oxygen gas and Log a c t i v i t y sulphate * a c t i v i t y 2 hydrogen ion . The shaded area <& indicates approximate l i m i t s of subsurface bog water sample compositions at\u00E2\u0080\u00A2pH 6.0 and Eh -loOmv. 173 Equilibrium constants, K, for each reaction and components indicated by the reaction were used as controls for the p l o t t i n g program DIAG (Brown 1970; on the UBC IBM 370/168 computer.to prepare the phase diagrams. Probable oxygen a c t i v i t y and sulphate concentration l i m i t s to the bog system, based on water sample analyses are shown as shaded areas on the diagrams. The chalcopyrite s t a b i l i t y f i e l d has not been indicated on the diagram although this mineral would be formed by reaction of copper sulphides with p y r i t e . Water sulphate-pH values at Log oxygen a c t i v i t y of -66.0 p l o t i n the chalcocite f i e l d on F i g . 6-2a close to the chalcocite-native copper boundary and i n the p y r i t e f i e l d on F i g . b-2b close to the pyrite-hematite boundary. Increasing oxygen a c t i v i t y and decreasing sulphate concentrat-ion would favour the formation of native copper and hematite whereas decreasing oxygen a c t i v i t y and increasing sulphate concentration would favour the formation of p y r i t e , c o v e l l i t e and chalcopyrite. The phase diagrams 6-1, 6-2a and 6-2b indicate that chalco-p y r i t e and p y r i t e , chalcocite, c o v e l l i t e , native copper, cuprite, and hematite would become progressively stable i n sequence when oxygen a c t i v i t y i s increased or sulphate concentration i s decr-eased. Native copper grains, rimmed by cuprite, and idomor-phic c o v e l l i t e - c h a l c o p y r i t e grains(Plates 5-11 and 5-5) occur together i n sample 74-RL-1I19 suggesting large, but l o c a l variations of Eh, pH and/or sulphur a c t i v i t y . Chalcocite i s not v i s i b l e i n any of the mineral grains although bornite may be present i n one grain shown i n Plate 5-9. The absence of chalcocite i n the system where conditions are favourable for 174 formation and s t a b i l i t y could be explained by predominantly low oxygen a c t i v i t y and high sulphur a c t i v i t y . Since the native copper i s present i n only one sample from close to the organic s o i l - t i l l interface the mineral grains may be d e t r i t a l rather than authigenic. The absence of chalcocite could also be due to high s o l -u b i l i t y of the mineral i n aqueous solutions containing abundant dissolved humic substances. Baker (1973) demonstrated that chalcocite i s extremely soluble i n humic acid f r a c t i o n solutions whereas, by contrast, chalcopyrite and p y r i t e are only weakly soluble. Chalcocite may therefore be quickly dissolved soon after p r e c i p i t a t i o n by dissolved humic fractions present i n the bog waters. The corroded outer edges, t y p i c a l of the larger c h a l c o p y r i t e - c o v e l l i t e grains, could also r e f l e c t p a r t i a l s o l -ution of sulphides by the dissolved organic matter. Thermodynamic models and mineral textures provide strong evidence that the sulphide minerals formed by p r e c i p i t a t i o n from aqueous solutions during organic diagnesis. C o v e l l i t e and chalcopyrite probably formed i n i t i a l l y i n the organic s o i l as c o l l o i d a l aggregates which formed a nucleus for l a t e r growth. The sulphides could also have replaced e x i s t i n g organic frag-ments or could have accreted onto the surface of s i l i c a t e min-e r a l grains. Textures interpreted as due to replacement of wood by chalcocite and chalcopyrite are described by Papenfus (1928) Hagni and Gann (1975) also describe replacement of f o s s i l spores by chalcocite i n a red-bed copper deposit. The small, dark, opaque mineral inclusions i n the core of a c h a l c o p y r i t e - c o v e l l i t e grain, shown i n Plate 5-7, could 175 represent almost complete replacement of an organic fragment by copper sulphide. Copper, transported i n t o the bog by c i r c u l a t i n g ground water, i s immobilized as sulphide minerals and copper-humate or copper-fulvate a s s o c i a t i o n s . Microprobe analyses have a l s o demonstrated that copper and sulphur are as s o c i a t e d w i t h c e l l - w a l l s t r u c t u r e s preserved i n organic s o i l fragments. This a s s o c i a t i o n was probably formed as a r e s u l t of copper absorption, by l i v i n g p l a n t s such as sphagnum moss or sedges, from c o p p e r - r i c h water f l o w i n g over the bog surface. The copper may be bound to sulphur c o n t a i n i n g amino acids which form the p l a n t c e l l membrane p r o t e i n s . Release of copper from the p l a n t m a t e r i a l w i l l only occur when the m a t e r i a l i s completely decomposed. High organic carbon values i n deeper samples from s e v e r a l v e r t i c a l p r o f i l e s , however, suggest that a s i g n i f i c a n t p r o p o r t i o n of the organic matter has not undergone decomposition. A l a r g e p r o p o r t i o n of the t o t a l copper i n t h i s m a t e r i a l could t h e r e f o r e be bound i n a r e l a t i v e l y s t a b l e form and could r e f l e c t copper c o n c e n t r a t i o n on the surface water f l o w i n g over the bog at the time when the surface was exposed. Q u a n t i t a t i v e analy-ses of copper, sulphur and carbon i n organic s o i l components at d i f f e r e n t depths are necessary to e s t a b l i s h the v a l i d i t y of t h i s hypothesis. 176 6 - f A CONCEPTUAL MODEL FOR METAL DISPERSION Secondary dispersion of metals i n the bog and surroun-ding area can be summarized by the model shown i n F i g . 6-3. Iron, cobalt, n i c k e l , zinc, molybdenum and manganese are largely derived through reduction of the t i l l beneath the organic s o i l . Copper and i r o n are also introduced by ground water flowing from f a u l t zones buried under the t i l l or by surface streams draining h i l l slopes on the western side of the bog. The small area of concealed copper-rich t i l l at the western end of the bog could r e f l e c t upward migration of solutions from a f a u l t zone. The copper and iron d i s -solved i n this water are derived from oxidation of sulphides disseminated through the Nicola volcanic rocks. Subsurface bog waters have less than 70 ppm sulphate suggesting that the c i r c u l a t i n g ground water has a low oxygen fugacity or that a r e l a t i v e l y small part of the rock i s exposed to the oxidizing water. High calcium and sulphate values i n water flowing from a diamond d r i l l hole, intersecting porphyritic and volcanic rocks, indicates l o c a l weathering of these rocks and l o c a l oxidation of iron sulphides. The metals are transported through the organic s o i l by migrating water as complex ions or as soluble complexes including those formed with humic acid fractions, f u l v i c acid f r a c t i o n s , amines and polysacharrides. Copper, zinc, cobalt and n i c k e l are adsorbed from these d i l u t e solutions by the abundant c o l l o i d a l humic aggregates forming a major FIGURE 6-3: CONCEPTUAL MODEL FOR DISPERSION OF METALS IN THE BOG 178 component of the organic s o i l . The degree to which these metals are enriched i n the s o i l w i l l depend on the dissolved metal contents i n the s o i l pore water, r e l a t i v e strengths of complexes formed between metals and humic substances, pK, Eh, and the abundances of these substances i n the s o i l . Iron and manganese are only weakly adsorbed by the humic and f u l v i c acid fractions and therefore remain i n solution. Framboidal p y r i t e , chalcopyrite, c o v e l l i t e and native copper w i l l p r e c i p i t a t e from reducing, weakly acid subsurface bog water solutions. Framboidal p y r i t e forms largely as a r e s u l t of reaction between ir o n migrating from the t i l l and sulphide ions produced from biogenic reduction of sulphate. Copper sulphide and native copper grains, however, are formed i n those parts of the bog where copper and i r o n r i c h waters discharge from f a u l t s . Sphalerite and molybdenite could also be p r e c i p i t a t e d i n the organic s o i l although these minerals have not been i d e n t i f i e d . The absence of p y r i t e or copper-iron sulphide layers i n the s o i l could r e f l e c t the comparative slow d i f f u s i o n rates of metals and sulphide to reaction sites or may r e f l e c t the small v e r t i c a l concen-t r a t i o n gradients developed i n the bog. Oxidation of dissolved metal-humate or metal-fulvate complexes i n water flowing through the reducing-oxidizing boundary w i l l increase cation a c t i v i t i e s i n surface waters. Secondary ir o n and manganese hydrous oxides form close to the bog surface or on the surface and especially i n areas where large volumes of water discharge. Molybdenum w i l l 179 be immobilized as acid molybdenate ions i n the acid surface water. Copper migrating to the surface and transported l a t e r a l l y into the bog by streams can be absorbed into the tissues of surface vegetation. This copper w i l l be r e l a -t i v e l y stable and may only be released from the plant tissues i n highly decomposed s o i l s . 6-8 APPLICATIONS TO MINERAL EXPLORATION Several previous studies have demonstrated that organic s o i l geochemistry can be successfully used to locate concealed mineral occurrences. Nieminen and Yliruokunen (1976), for example, traced copper, n i c k e l and zinc anomalies i n a Fi n -nish peat bog to a small bedrock exposure through the t i l l -bog interface and concluded that metal d i s t r i b u t i o n patterns r e f l e c t e d metalliferous water flowing from this bedrock. Results of the present investigation indicate that copper, n i c k e l , cobalt and zinc are most abundant i n the deeper, decomposed material i n parts of the central bog where organic s o i l thickness exceeds 3 m. Copper generally decreases from more than 0.5% i n humic-mesic s o i l layers to less than 210 ppm i n the underlying t i l l except at the wes-tern end of the bog where a small area of buried t i l l contains up to 0.570 copper. Horizontal and v e r t i c a l variations of copper i n the organic s o i l layers do not show a clear r e l a t i o n s h i p with the copper-rich t i l l and d i s t r i b u -tion patterns have largely formed through concentration of copper and other metals from migrating ground water solutions. 180 Authigenic chalcopyrite, c h a l c o p y r i t e - c o v e l l i t e and native copper-cuprite grains form, l o c a l l y , i n two areas through reaction of sulphide ions with metals transported into the organic s o i l from the t i l l - b o g interface. The grains are abundant i n s o i l between 1 to 3 m depth above the copper-rich t i l l . Subsurface bog water i n this area of the bog where the grains are most abundant have high copper and iron contents. D i s t r i b u t i o n of small, authigenic grains i n organic s o i l s and subsurface bog water chemistry could be used to locate concealed metal sources. Seepages draining the h i l l slope on the west side of the bog also have high copper concentration suggesting that metals have been i n t r o -duced into the bog by l a t e r a l l y flowing water as well as by discharging ground water. Overburden sampling i s often used to outline areas of mineralized t i l l or bedrock concealed by bogs, but this method i s r e l a t i v e l y expensive (current costs are roughly $20/m) and slow (1 to 2 samples/hour) compared to stream sediment and s o i l sampling. An exploration target size could be e f f e c t i v e l y decreased before application of over-burden sampling by sampling organic material from close to the base of a bog with a H i l l e r peat auger. I d e n t i f i c a t i o n of mineral grains, examination ,of grain textures and measure-ment of metal concentrations i n bog waters could be important in establishing the source for the metal. A flow diagram describing physical and chemical analyses of augered s o i l samples and water samples i s shown below. 131 AUGER SAMPLE SQUEEZE OR CENTRIFUGE WATER FROM WET SAMPLE ANALYSE WATER FOR METALS DRY SAMPLE AT 110\u00C2\u00B0C SIEVE TO MINUS 80 MESH GENTLY DISAGGREGATE SAMPLE HEAVY MINERAL SEPA-RATION EXAMINE UNDER BINO-CULAR MICROSCOPE HN03-HC104 DIGESTION AA ANALYSIS FOR METALS MOUNT GRAINS IN EPOXY-RESIN AND EXAMINE UNDER REFLECTING MICROS COPE Analysis of water from squeezed or centrifuged organic s o i l s for trace metal contents would be faster than sampling cased auger holes i n the bog, but additional studies must be conducted, however, to determine i f there are any s i g n i f i -cant variations between organic s o i l pore water and water co l l e c t e d from the cased auger holes. Microprobe analyses of organic s o i l samples for metals are generally too expensive for routine mineral exploration application. Quantitative scanning electron microprobe analysis could, however, be used to establish the d i s t r i b u -t i o n of metals between d i f f e r e n t organic s o i l components. Results could then be compared with those obtained from r e l a t i v e l y simple sequential extraction or ion exchange methods. These techniques may then be confidently used determine the mode of metal occurrence i n s o i l s . CHAPTER 7 CONCLUSIONS (1) The p r i n c i p l e forms of copper i n organic s o i l s i n order of r e l a t i v e abundance are:-(a) Copper bound by physical and chemical adsorption to s o i l organic matter. The s o i l components largely responsible for these processes are humic and f u l v i c acid f r a c t i o n s . (b) Copper bound to protein molecules forming the c e l l wall membranes of plant fragments preserved i n the decomposed material comprising the humic-mesic organic s o i l layers. (c) Copper i n the form of authigenic chalcopyrite, c h a l c o p y r i t e - c o v e l l i t e , c o v e l l i t e and native copper cuprite mineral grains. (2) Copper, cobalt, n i c k e l and zinc are adsorbed by the organic matter from d i l u t e aqueous solutions migrating throu the bog. The cobalt, n i c k e l and zinc are largely derived from the reduced t i l l beneath the organic s o i l s and from humic gleysols surrounding the bog. Copper concentrations are also introduced by surface water flowing from seepages on the west side of the bog and by subsurface ground water discharging from a f a u l t zone beneath organic s o i l s and the t i l l . The source of this copper i s probably disseminated copper-iron sulphides i n contact with oxidizing, deeply c i r c u l a t i n g ground water. The degree of copper, cobalt, n i c k e l and zinc enrichment through adsorption w i l l depend on the a c t i v i t y of metal ions i n the s o i l pore water, r e l a -t i v e s t a b i l i t i e s of complexes formed with humic and f u l v i c acid f r a c t i o n s , s o i l pore water pH and Eh. (3) Scattered p y r i t e framboids occur throughout the bog and form by reaction of ir o n r i c h bog waters with sulphide ions produced through biogenic reduction of sulphate. Framboids found i n organic s o i l above copper-rich t i l l at the western end of the bog are occasionally coated with chalcopyrite and c o v e l l i t e i ndicating that the copper-sulphides were preci p i t a t e d on the framboid surface. Tex-tures of c h a l c o p y r i t e - c o v e l l i t e grains, found i n the same area, r e f l e c t alternating deposition of sulphides where copper and iron r i c h solutions, flowing from the f a u l t , mix with sulphide ions. (4) S i g n i f i c a n t concentrations of ir o n and manganese also enter the bog from the reduced t i l l . These metals are not adsorbed by the reducing, organic s o i l s although iron w i l l be immobilized as framboidal p y r i t e . Iron and manganese hy-drous oxides form i n the surface fibrous organic layer where metal r i c h solutions flow from the reducing into the o x i d i -zing environment. Molybdenum i s also concentrated i n this fibrous material due to the low pH of the bog surface water. 185 BIBLIOGRAPHY Anderson, P., 1971. Geology, p e t r o l o g y , o r i g i n and metamorphic h i s t o r y o f the Eagl e g r a n o d i o r i t e and N i c o l a Group, P r i n c e t o n area, southern B r i t i s h Columbia. Un p u b l i s h e d B.Sc T h e s i s , U n i v e r s i t y o f B r i t i s h Columbia, 201 p. Ba r r , D.A., Fox, P.E., Northcote, K. and Petro, V.A., 1976. The a l k a l i n e s u i t e porphyry d e p o s i t s : A summary. In: Porphyry d e p o s i t s o f the Canadian C o r d i l l e r a . ( S u t E e r -land-Brown, A., Ed.), pp. 35y-367. Baker, W.E., ly7 3 . The r o l e o f humic a c i d s from Tasmanian p o d z o l i c s o i l s i n m i n e r a l d e g r a d a t i o n and metal m o b i l i z -a t i o n . Geochim. Cosmochim. A c t a . V o l . 37, pp. 26y-28l. Baas Becking, L.G.M. and Moore, D., 1961. B i o g e n i c s u l p h i d e s Econ. Geol. V o l . 56, pp. 259-272. Beckwith, R.S., 1959, T i t r a t i o n curves o f s o i l o r g a n i c matter. Nature. V o l . 184, pp. 745-746. B e l l , R.G., 1969. St u d i e s o f the decomposition o f o r g a n i c matter i n f l o o d e d s o i l . S o i l B i o l . Biochem. V o l 15, pp. 105-115. Berner, R.A., 1969. M i g r a t i o n o f i r o n and sulphur i n an a e r o b i c sediment d u r i n g d i a g e n s i s . Am. J . S c i . V o l . 267, pp. 19-42. Berner, R.A., 1971. P r i n c i p l e s o f chemical sedimentology. McGraw-Hill I n t e r n a t i o n a l S e r i e s i n the E a r t h S c i e n c e s , New York. Z40 p. Biu c k , B.J., 1969. I n t r o d u c t i o n t o sedimentology. In: Organic Geochemistry, ( E g l i n t o n , G., and Murphy, M.M.J., E d s . ) , S p r i n g e r - V e r l a g , New York. pp. 245-257. Brown, T.H., 1970. T h e o r e t i c a l p r e d i c t i o n s o f e q u i l i b r i a and mass t r a n s f e r i n the system Ca0-Mg0-Si0 2-H 20-NaCl-HCl. Unpublished Ph.D t h e s i s , Nothwestern U n i v e r s i t y . 136 p. B o r o v i t s k i i , V.P., 1970. The a p p l i c a t i o n o f bog sampling i n p r o s p e c t i n g f o r ore d e p o s i t s i n p e r e n n i a l r e g i o n s . j o u r . Geoch. E x p l . , V o l . 5, No. 1, pp. 65-70. B o y l e , R.W., l y 7 7 . C u p r i f e r o u s bogs i n the S a c k v i l l e a r e a , New Brunswick, Canada. J o u r . Geoch. E x p l . , V o l . 8, No. 3, pp. 495-528. 186 B o y l e , D.R. and Troup, A.G. ,1975. Copper-molybdenum porphyry m i n e r a l i z a t i o n i n c e n t r a l B r i t i s h Columbia, Canada: An assessment o f geochemical sampling media u s e f u l i n areas o f g l a c i a t e d t e r r a i n . In: P r o s p e c t i n g i n areas o f g l a c i a t e d t e r r a i n . (Jones, M.L., Ed.), I n s t i t u t i o n o f M i n i n g and M e t a l l u r g y , London, pp. b-15. Broadbent, F.E. and O t t , J.E., 1957. S o i l o r g a n i c matter complexes:1. F a c t o r s a f f e c t i n g r e t e n t i o n o f v a r i o u s c a t i o n s . S o i l S c i . V o l . 83, pp. 419-423. Canadian Department o f A g r i c u l t u r e , 1974. The system o f s o i l c l a s s i f i c a t i o n f o r Canada, P u b l i s h e d by the Canadian Department of A g r i c u l t u r e , Ottawa. 255 p. Cannon, H.L., 1955. Geochemical r e l a t i o n s h i p s o f z i n c b e a r i n g peat to the Lockoort d o l o m i t e , Orleans Co., New York. U.S.Geol. Surv. B u l l . No. 1000-D Ca r p e n t e r , R.H., Pope, T.A. and Smith, R.L., 1975. I r o n -manganese oxide c o a t i n g s i n stream sediment geochemical sur v e y s . Jour. Geoch. Exp., V o l . 4, No. 3, pp 34y-363 Cappenberg, Th. E., 1974. I n t e r r e l a t i o n s between s u l p h a t e -r e d u c i n g b a c t e r i a and methane p r o d u c i n g b a c t e r i a i n bottom d e p o s i t s o f a f r e s h water l a k e : l . F i e l d o bserv-a t i o n s . A ntonie van Leeuwenhoek. V o l . 40, pp. Z85-295. Casagrande, D.J., S i e f e r t , K., B e r s c h i n s k i , C. and Sutton, N., 1977. Sulphur i n p e a t - f o r m i n g systems o f the Okefenokee swamp and F l o r i d a E v e r g l a d e s : O r i g i n s o f s u l p h u r i n c o a l . Geochim. Cosmochim. A c t a . , V o l . 41, pp. 161-167. Qiao, T.T., 1972. S e l e c t i v e d i s s o l u t i o n o f manganese o x i d e s from s o i l s and sediments w i t h hydroxylamine h y d r o c h l o r i d e . S o i l S c i . Soc. Am. Proc., V o l . 36, pp. 764-768. Chapman, R.P., 1976. L i m i t a t i o n s of c o r r e l a t i o n and r e g r e s s -i o n a n a l y s i s i n geochemical e x p l o r a t i o n . T rans. I n s t . Min. M e t a l l . London, V o l . 85, pp. B279-283. , C h i n Le. and T e n i s c i , T., 1977. TRP: a t r i a n g u l a r r e g r e s s i o n program package, U n i v e r s i t y o f B r i t i s h Columbia Computing Center. 183 p. C r o s s , C.H., 1975. The r e l a t i o n s h i p of metals and s o i l o r g a n i c components w i t h p a r t i c u l a r r e f e r e n c e t o copper. Unpub-l i s h e d Ph.D t h e s i s , U n i v e r s i t y of B r i t i s h Columbia, Canada. 170 p. D a v i s , R.I., C h e s h i r e , M.V. and Graham-Bryce, I . J . , 1969. Re-t e n t i o n o f low l e v e l s o f copper by humic a c i d . J o u r . S o i l . S c i . V o l . 20, No. 78, pp. 65-71. 187 Dixon, W.J. and Massey, F.J,, 1969. Introduction to s t a t -i s t i c a l analysis. McGraw-Hill, 638 p. Eckel, E.B., I94y. Geology and ore deposits of the La P l a t a D i s t r i c t , Colorado. U.S.Geol. Surv. Prof. Paper., No. 219, pp. 55-64. Emerson, S., 1976. Early diagensis of anaerobic lake s e d i - . . ments: chemical e q u i l i b r i a i n i n t e r s t i t i a l water. Geochim. Cosmochim. Acta. Vol. 4 0 , pp. 925-934. Ennis, M.T., 1962. The chemical nature of copper complexes i n peat. I r i s h Jour. Agric. Res., Vol. 2, pp. 147-155. Erriksson, K. and Erriksson, G., 1976. Hinsen: Heavy metals i n peat and t i l l . Jour. Geoch. Explor., Vol. 5, No. 7, pp. 232-235. Erriksson, K. and Erriksson, G., 1976. Stromo: Heavy metals i n peat close to a boulder t r a i n . Jour. Geoch. Explor., Vol. 5, No. 7, pp. 342-343. Felbeck, G.T., 1971. Chemical and B i o l o g i c a l c h a r a c t e r i z a t i o n of humic matter. In: S o i l Biochemistry, Vol. 2, (McLaren, A.D. and Skujins, J . , Eds.), pp. 36-59. F l a i g , W., 1 9 7 2 . An introductory view on humic substances: aspects of research on t h e i r genesis, t h e i r p h y s i c a l and chemical properties and t h e i r e f f e c t s on organisms. Proceedings of the International Meeting on Humic Sub-stances, (Povoleds, D. and Bolterman, H.L., Eds.), pp. 19-41. Fox, M. and S i n c l a i r , A.J., 1973. Unpublished program for p l o t t i n g p r o b a b i l i t y graphs. Department of Geological Sciences, University,of B r i t i s h Columbia. Fraser, D.C., ly61. A syngenetic copper deposit of recent age. Econ. Geol., Vol. 56, pp. 951-962. Fraser, D.C., 1961. Organic sequestration of copper. Econ. Geol., Vol. 56, pp. 1063-1078. Fulton, R.J. and Armstrong, J.E., 1965. F i e l d conference J. 7th. Meeting of the International Association f o r Quaternary Research, 1965. pp. 746-747. 188 Gamble, D.S. and Schnitzer, M., 1973. The chemistry of f u l v i c acid and its.\reaction with metal ions. In: Trace metals and metal-organic interactions i n natural waters-, (Singer, P.C., Ed.), Science Publishers Inc., Ann Arbor, Michigan, pp. 265-301. Gardener, L.R. , 1974. Organic versus: inorganic trace metal complexes- i n su l p h i d i c marine waters-: some speculative cal c u l a t i o n s based on available s t a b i l i t y - constants. Geochim. Cosmochim. Acta, Vol. 38, pp. 1297-1302. Garrels, R.M. and Thompson, M.E., 1962. A chemical model f o r seawater at 25 degrees centigrade and one atmosphere t o t a l pressure. Am. Jour. S c i . Vol. 260. p p 5 7 - o 6 . Garrels, R.M. and Ch r i s t , C.H., 1965. Solutions, Minerals and E q u i l i b r i a . Published by Harper Interscience, 450 p. Garrett,R.G. and Hornbrook, E.H.W. , 1976. The r e l a t i o n s h i p between zinc and organic content i n centre-lake bottom sediments. Jour. Geoch. Explor., Vol. 5, No. 1, pr\u00C2\u00BB. 31-38. Garret R.G., 1973. The determination of sampling and a n a l y t i -c a l errors i n exploration geochemistry (discussion). Econ. Geol., Vol. 68, pp. 282-283. Garret R.G., 1969. The determination of a n a l y t i c a l errors i n exploration geochemistry. Econ. Geol., Vol. 64, pp. 568-574. Given, P.C. and Dickinson, C.H., 1975. Biochemistry and micro-biology of peats. In: S o i l biochemistry, (Pauli, E.M., and McLaren, A.D., Eds.), pp. 123-213. Gleeson, C F . and Coope, J.A., 1966. Some observations on the d i s t r i b u t i o n of metals i n swamps i n eastern Canada. Geo-l o g i c a l Survey of Canada Paper No. 66-54, pp. 145-166. Goodman, B.A. and Cheshire, M.V., 1973. Electron paramagnetic resonance evidence that copper i s complexed i n humic acid by nitrogen of porphyrin groups. Nature, New Biology, London, Vol. 244, pp. 158-159. Goodman, B.A. and Cheshire, M.V., 1976. The occurrence of copper-porphyrin complexes i n . s o i l humic acids. S o i l . S c i . V o l . 27, pp. 337-347. Grosse-Brauckmann, C. and Puffe, D., 1964. Uber zersetzungs-prozesse und s t o f f b i l a n z im wachsenden moor. I n : Pro-ceedings of the 8th International Congress of S o i l Science, Bucharest. Gunton, J.E. and Nichol, I., 1974. D e l i n i a t i o n and interpre-18y t a t i o n of metal dispersion patterns r e l a t i n g to mineral-i z a t i o n i n the Whipsaw Creek area. Trans. Can. Inst. Min. Metal!., Vol. 77, pp. 32-41. Hagi, R.D. and Gann, D.E., 1976. Microscopy of copper ore at the Creta mine, southwestern Oklahoma. In: Stratiform copper deposits of the midcontinental region, Oklahoma Geol. Surv. C i r c . , No. 77, pp. 40-50. Hansuld, J.A., 1966. The behaviour of molybdenum i n secondary dispersion media. Min. Eng. December, 1966. pp. 73-77. H i l l s , L.V., 1962. Gl a c i a t i o n , stratigraphy, structure and micropaleobotany of the Princeton c o a l f i e l d , B r i t i s h Columbia. Unpublished M. Sc. thesis, U n i v e r s i t y of B r i t i s h Columbia, 141 p. Horsnail, R.F., Nichol, I. and Webb, J.S., 1969 Influence of varia t i o n s i n the surface environment on metal d i s t r i b -ution i n drainage sediments. Q. J . Colorado School of Mines, Vol. 64, No. 1, pp. 307-322. Hrosnail R.F. and E l l i o t t , I.L., 1971. Some environmental influences on the secondary dispersion of molybdenum and copper i n western Canada. In: Can. Inst. Min. Metall., Special V o l . 2, (Boyle, R.W. and McGerrigle, J . I . , Eds) pp. 166-175. Irving, H. and Williams, R.J.P., 1948. Order of s t a b i l i t y of metal complexes. Nature, Vol. 162. pp. 746-747. K a l l i o s k o s k i , J. and Cathles, L., 1969. Morphology, mode of formation and diagenetic changes i n framboids. B u l l . Geol. Soc. Finland., Vol. 41, pp. 125-134. Khanna, S.S. and Stenevson, F.J., 1962. Metal-organic compl-exes i n s o i I : l . Potentiometric t i t r a t i o n of some s o i l organic matter i s o l a t e s i n the presence of t r a n s i t i o n metals. S o i l . S c i . , Vol. 93, pp. 2y8-305. Khan, S.U. and Schnitzer, M. , 1972. The retention of hydro-phobic organic compounds by humic acids. Geochim. Cosmochim. Acta, V o l . 36, pp. 745-754. Khan, S.U., 1969. Interaction between the humic acid f r a c t i o n of s o i l and c e r t a i n m e t a l l i c cations. S o i l S c i . Soc. Am. P r o c , Vol. 33. pp. 851-854. Kochkenov, A.V. and Kreshtapova, V.N., 1967. Rare and dispers-ed elements i n the peat of the northern part of Russian Platforms. Geochem. Intern.,.No. 4. pp. 286-292. Kononova, M.M., 1961. S o i l organic matter. Pub. by Pergamon, Oxford, 4 5 0 p. 190 Kowalenko, C.G. and Lowe, L.E., 1972. Observations on the bismuth method for sulphate analysis i n s o i l . Comm. S o i l . S c i . PI. Anal., Vol. 3, pp. 79-86. Kribek, B., 1975. The o r i g i n of framboidal p y r i t e as a sur-face e f f e c t on sulphur grains. Minera. Deposita, Vol. 10, pp. 389-396. Kuznetsov, S.I., Ivanov, M.V. and Lyakikova, N.N., 1963. In-troduction to geological microbiology. International Series i n the Earth Sciences. (.Broneer, P.T., Trans., Oppenheimer, C.H., Ed.), 252 p. Lambert, I.B. and Bubela, B., 1970. Banded sulphide ores: The experimental production of monomineralic sulphide ores i n sediments. Minera. Deposita., Vol. 5, pp.97-102, L e p e l t i e r , G., 1969. A s i m p l i f i e d s t a t i s t i c a l treatment of geochemical data by graphical representation. Econ. Geol.. Vol. 64, pp. 538-550. Lewis, T.E. and Broadbent, F.E., 1961. S o i l organic matter-metal complexes: 3. Exchange reactions of model comp-ounds. S o i l . S c i . , Vol. 91, pp. 341-347. Lewis, T.E. and Broadbent, F.E., 1961. S o i l organic matter-metal complexes: 4. Nature and properties of exchange s i t e s . S o i l . S c i . , Vol. 91, pp. 393-399. Lindsay, W., 1972. Inorganic phase e q u i l i b r i a of micro-nutrients i n s o i l s . In: Micronutrients i n Agr i c u l t u r e , (Mortvedt, J . J . , Giordano, P.M. and Lindsay, W.L., Eds.), Symposium cosponsored by the Tennessee Valley Authority and S o i l Science Society of America, pp. 41-57. Love, L.G., 1963. Early diagenetic p y r i t e i n fine-grained sediments and the genesis of sulphide ores. In: Sed-imentology and ore genesis, (Amstutz, G.C. E d . ~ T , Develop-ments i n Sedimentology, Vol. 2, pp. 11-17. Lovering, T.S., 1928. Organic p r e c i p i t a t i o n of metalic copper. U.S.Geol. Surv. B u l l . , No. 795-C, pp. 45-52. Manaskaya, S.M. and Drozdova, T.V., i960. D i s t r i b u t i o n of copper i n peat of Bye l l o r u s s i a . International Series of Monographs on the Earth Sciences, Vol. 28, pp. 243-250. Manaskaya, S.M. and Drozdova, T.V., 1968. Geochemistry of organic substances. (.Shapiro, L. , Trans., Breger, I.A., Ed. ), Pergamon, 435 p. Mathews, W.H., 1944. G l a c i a l lakes and i c e retr e a t i n south central B r i t i s h Columbia, Trans. R. Soc. Can. Sect. 4., Vol. 38, pp. 39-57. 191 Midwood, R.B. and Felheck, G.T., 1969.. Analysis of yellow organic matter from fresh, water. Jour. Am. Waste Water \u00E2\u0080\u00A2 Assoc., V o l . 60, pp. 357-366. Miesch, A.T., 1967. Methods of computation f o r estimating geochemical abundance. U.S.Geol Surv Paper 574B, pp. 1-15. Mehrtens, M.B., Tooms, J.S. and Troup, A.G., 1973. Some as-pects of geochemical dispersion from base metal mineral-i z a t i o n within gla c i a t e d t e r r a i n i n Norway, North Wales and B r i t i s h Columbia, Canada. In: Proceedings of the 4th International Geochemical Exploration Symposium, 1972. C l o n e s , M.J. Ed.), Published by the I n s t i t u t i o n of Mining and Metallurgy, London, pp. 105-116. Miedema, R., Jongmans, A.G. and Slager, S. , 1973. Micromorph-o l o g i c a l observations on p y r i t e and i t s oxidation products i n four Holocene a l l u v i a l s o i l s i n the Netherlands. Pro-ceedings of the fourth International Working Meetings on S o i l Microbiology, (Rutherford, G.K. Ed.), pp. 772-794. Moore, P.D. and Bellamy, D.J., 1974. Peatlands. Published by Springer-Verlag, New York, 221 p. Mullineaux, D.R., 1974. Pumice and other p y r o c l a s t i c deposits in Mount Rainier National Park, Washington. U.S.Geol. Surv. B u l l , , No. 1362, 81 p. Mustard, D.K., 1968. Property examination of the Whipsaw Creek property. Unpublished Ascessment Report by Amax Explora-t i o n , Vancouver, 48 p. Nason, A. and McElroy, W.D., 1963. Modes of action of essen-t i a l mineral elements. In: Plant Physiology, (Stward, F.C., Ed.), Vol. 3, pp. 459-536. Nieminen, K. and Yliruokanen, I., 1976. Kitee: The copper-n i c k e l anomalies of the Lietsosud peat bog. Jour. Geoch. . Expl., Vol. 5, No. 3, pp. .34.8-353. Nissenbaum, A. and Swaine, D.J., 1976. Organic matter-metal in t e r a c t i o n s i n Recent sediments: the r o l e of humic sub-stances . Geochim. Cosmochim. Acta., Vol. 33, pp.809-816. Nissenbaum, A., Baedecker, M.J. and Kaplan, J.R., 1971. Studies of dissolved organic matter from the i n t e r s t i t i a l water of a reducing f j o r d . In: Advances i n organic geo-chemistry, (Ingerson, E., Ed.X7 Vol. 33, pp. 427-440. Ong, H.L. and Bisque, R.E., 1968. Coagulation of humic c o l l -oids by metal ions. S o i l S c i , , . Vol. 106, pp. 220-224. 192 Ong, H..L. and Swanson, V.E., 19.66. Adsorption of copper by \u00E2\u0080\u00A2 peat, l i g n i t e and bituminous: coal. Econ. Geol., Vol. 61, pp. 1214-1231. Papenfus, E.B., 1931. \"Red^-bed\" copper deposits i n Nova Scotia and New Brunswick. Econ. Geol., Vol. 26, pp. 314-330.. Papunen, K. , 1966. Framboidal texture of the p y r i t i c layer found i n a peat bog i n southeast Finland. Comptes Rendus de l a Societe Geologique de Finlande, No. 38, pp. 117-125. Parslow, G.R., 1974. Determination of background and threshold i n Exploration Geochemistry. Journ. Geoch. Exol., V o l . 3, No. 4\", pp. 319-336 P a u l i , F.W., 1968. Some recent developments i n biogeochemical research. Geol. Can. Proc, Vol. 19, pp. 45-49. P h i l l i p s , J.S. and Thompson, R.F., 1967. S t a t i s t i c s for nurses. Macmillan and Co, 550 p. Postma, D., 1977. The occurrence and chemical composition of i r o n - r i c h carbonates i n a r i v e r bog. Jour Sed Pet Vol. 47, No. 3, pp. 1089-1098. Ramm, A.E. and B e l l a , D.A., 1974. Sulphide production i n an-aerobic microcosms . Limnol. Oceanogr;, Vol. 19, op 110-118. Randhawa, N.S. and Broadbent, F.C., 1965. S o i l organic matter-metal complexes:5. Reactions of zinc with model compounds and humic acid. S o i l S c i . , Vol. 99, No. 5, pp. 295-300. Rashid, M.A. and Leonard, J.D., 1973. Modification i n the s o l -u b i l i t y of various metals as a r e s u l t of t h e i r i n t e r a c t i o n with sedimentary humic acid. Chemical Geology, Vol. 11, pp. 89-97. Reuter, J.H. and Perdue, E.M., 1977. Importance of heavy metal-organic matter interactions i n natural waters. Geochim. Cosmochim. Acta., Vol. 41, pp. 3Z5-344. Rickard, D.T., 1970. The o r i g i n of framboids. Lithos, Vol. 3, pp. 269-293. (j Ramanov, V.V., 1961. Hydrophysics of bogs. Published by the I s r a e l Program for S c i e n t i f i c Translations, 299 p. Royal School of Mines Geochemical Prospecting Research Centre., 1962. Determination of sulphate i n natural water. Tech-n i c a l Communication No. 27, 2 p. Royal School of Mines Geochemical Prospecting Research Centre., 1962. Determination of organic carbon i n s o i l and sedi-ment samples. Technical Communication No. 32, 2 p. 193 Salmi'-,, M. , 1967. Peat i n prospecting: Applications i n F i n -land. Tri: Geochemical prospecting i n Fennoscandia, (Kvalheim, A., Ed.), pp. 113-125. Schnitzer, M. and Khan, S.U., 1972. Humic substances i n the environment. Marcel Dekker Inc., New York, 320 p. Schnitzer, M. and Hansen, E.H., 1970. Organo-metallic i n t e r -actions i n s o i l s 8: An evaluation of methods for the de-termination of s t a b i l i t y constants of metal-fulvate a c i d complexes. S o i l .Sci., Vol. 109, pp. 333-349. Schnitzer, M. and Skinner, S.I.M., .1966. Organo-metal i n t e r -actions i n s o i l s 5: S t a b i l i t y constants of Cu\"1-*\", Fe\"*-1\", and Zn\"1-*\" f u l v i c acid complexes. S o i l S c i . , Vol. 102, pp. 361-365. Schnitzer, M. and Skinner, S.I.M., 1967. Organo-metal i n t e r -actions i n s o i l s 7: S t a b i l i t y constants of Pb\"1-1\", Ni\"1-**, Mn + +, Co\"*-*\", Ca , and Mg\"1-1\" f u l v i c a c i d complexes. S o i l S c i . , V o l . 103, pp. 247-252. S i n c l a i r , A.J., 1976. Application of p r o b a b i l i t y graphs i n mineral exploration. Association of Exploration Geo-chemists, Special Vol. 4, 95 p. Sperling, J.H., 1965. Studies on the re l a t i o n s h i p between water movement and water chemistry i n mires. Can. Jour. Botany, Vol. 44, pp 747-758. Stanton, R.E., 1966. Rapid methods of trace metal analysis. Edward Arnold Ltd., London, 96 p. Stevenson, F.J. and Butler, J.H.A., 1969. Chemistry of humic acids and re l a t e d pigments. In: Organic Geochemistry, (Eglinton, G. and Murphy, M.T.J. , Eds.), pp. 534-556. Stumm, W. and Morgan, J . J . , 1970. Aquatic chemistry. Wiley Interscience, New York, 583 p. Sweeney, R.E. and Kaplan, I.R., 1973. Py r i t e framboids form-ation: Laboratory symthesis and marine sediments. Econ. Geol., Vol. 68, pp. 618-634. Tabatabai, M.A. and Bremner, J.M. 1970. An alk a l i n e oxidation method f o r determination of t o t a l sulphur i n s o i l s . S o i l S c i . Soc. Am. P r o c , Vol. 34, pp. 62-65. Tarakanova, E.I., 1971. D i s t r i b u t i o n of accessory elements i n modern peat bogs. U.S.S.R. Academy of Sciences, Trans-actions of the Ins t i t u t e of Geology and Geochemistry, No. 90, pp. 55-63. Tarnocai, C , 1970. C l a s s i f i c a t i o n of peat landforms. i n Mani-1 9 4 toba. Canadian. Dept. of Agr i c u l t u r e Research. Station, Ped-ology-Unit, Winnipeg, Man., 45 p. Thorstenson, D.C, 1970. Equilibrium d i s t r i b u t i o n of small or-ganic molecules- i n natural waters. Geochim. Cosmochim. Acta., Vol. 34, pp. 745-7.70. -Timperly, M.H. and A l l a n , R.J., 1974. The formation and detec-t i o n of metal dispersion haloes i n organic lake sediments. Jour. Geoch. Expl., Vol. 3, No. 2, pp. 167-190. Turner, R.G., 1969. Heavy metal tolerance i n plants. In: E c o l o g i c a l aspects of the mineral n u t r i t i o n of plants. B r i t . Ecol. Soc. Symp. No. 9. Blackwell S c i e n t i f i c Pub-l i c a t i o n s , Oxford, pp. 399-410. U s i l k , L., 1968. Comparison of geochemical and geobotanical prospecting methods i n peatlands. Geol. Surv. Can. Paper 68-66. Vallentyne-, J.R. , 1962. A chemical study of p y r i t e spherules i s o l a t e d from sediments of L i t t l e Round Lake, Ontario. In: Biochemistry of sulphur isotopes, (Jensen, M.L., Ed.), National Science Symposium, pp. 144-152. Van D i j k , H. , 1971. C o l l o i d a l chemical properties of humic matter. In: S o i l Biochemistry (McLaren, A.D. and Skujins, J . , Eds.), Vol. 2, pp. 16-35. Walsh, T. and Barry, T.A., 1958. The chemical composition of some I r i s h peats. Proceedings of the Royal I r i s h Academy, Vo l . 59, Sect. B, No. 15, pp. 308-325. Waksman, S.A. and Stevens, K.R., 1929. Contribution to the chemical composition of peat:V. The r o l e of microorgan-isms i n peat formation and decomposition. S o i l S c i . , Vol. 4, pp. 315-325. APPENDIX A: R e s u l t s o f s o i l and t i l l sample a n a l y s e s . A N A L Y T I C A L RESULTS TOR SUIL AM!) T I L L SAMPLES NUK BEa PPM CO PS-M CU f, FE PPM HH PPM MI PPM ZN 3! CARBON PH PPM MO . . 73-RL- J.S_ 122.5 1.1114.. 2... _.\u00E2\u0080\u009E_ 1...26 8 203.5 ... 131.8...... 50..1 24,40 .\u00E2\u0080\u009E.. 5.10 55.5 19 125. 1 8 803.3 1. 540 236. 9 76.1 3 36-.0 0 . 0 4. 80 28.9 20 30.1 2533. t 2. 52f> 326. 8 77.4 249.3 9.53 4 . 8 0 11.4 > 2 1 137.6 15 533.8 1 .243 420.7 15 2. 1 .,54.9 19.23 4.8C 13.7 > 22 3 53. 5 24423.9 0. 754 326.2 18.9 454.3 27.85 4 . 2 0 11.4 2a 79.7 941. 8 2.980 393.5 58.2 \u00C2\u00A364.1 0.75 7 \u00E2\u0080\u00A2 0 D 26.6 29 35. 0 388.0 2.970 416.2........ 126.3, 57. 1 0. 29 5.10 _.. 0.0. 30 33. 2 134.5 3.65 2 639.2 110.5 64.4 O . I S 6.50 0.0 31 41 .1 131.3 4.196 90'-. .i 111.7 65.6 0.16 6.00 0.0 ~ i 39.0 202.9 4 . 14J BOO. 5 77.5 89.0 0.2 1 6.40 0.0 33 33.0 240. 7 3. 847 755. 0 8.2 i 65. 5 0.26 7.30 6.1 34 7.9 397.4 4 .464 175. 9 3.0 77.9 0. 13 5.70 13.7 35 12.3 345.9 3. 856 17*.6 77. 3 66.6 0.16 5.80 9.1 ... 36 38.4 261. 3 3.834 . 889.6 78.0 133.5 0.16 6.10 0.0 37 26 .6 46.3 2.690 454.1 63. 7 i 6 7 . 4 1.53 5.20 0.0 38 3o.4 84. 5 3. 523 3 09 . 3 50.3 80.9 0.6 2 5.20 n.n 40 32 .4 46. 3 3. 386 303.0 51.4 J56.7 1.00 5.10 0.0 41 27.4 41.6 2.728 195.5 22.4 88. 6 1 . 5 3 5.00 1.5 42 26.7 145.9 3.322 277.7 .3.0. 7 l 8 7 . 8 .,1.51 , 5 .00 ... 0.0 . 43 34. a 194. S 3 . 730 276.2 33. 3 \u00C2\u00A3 0 5 . 8 0.74 5.30 1.5 44 '26. a 51.5 2.307 198.5 28. 5 238.8 1.30 5.70 0.0 45 29 . 5 92.7 2.907 270. 5 43.8 246. 2 0.26 5.70 1 .5 46 25.1 S C O 2 .404 195.5 44.2 ^59.C 1 .51 5.30 0.0 47 30.9 1 12*5 3.334 3 56.3 54. o 80.2 0. 38 5.40 1.5 48 30.8 '. 16 . 6 2 .6 io 17.3.3..... 59.0 3 19.2...... . 1.24 5..00 5.5 49 30. 2 1521. 7 2. 13V 366.3 86.9 W 9 7 . 9 1.17 5.90 17.7 50 31.4 2173.6 4. 103 621 . 1 8 8.4 3 2 3.8 0.48 6.00 16.7 5 1 17.3 P*'.:..4 2.689 2 19.7 40. 6 L 4 5 . 0 1.14 t>. 2 0 U.f, 52 52.\" 1231.9 3.388 52 7.1 67 . 5 75.3 2.43 5.70 1.5 53 51.7 1352.8 3.924 583. 8 77.9 7 8.7 2.34 5.30 2.4 54 27.2 66 . 3 .. - . . 2.622 195.8 3.8. 0 49. 3 2, 46 5.20 0.0 55 25.3 9 6. 5 2. 822 220.9 44.5 57.0 :.72 5.30 0.0 56 27.0 56.4 2.588 196.4 32. 2 51.3 2.41 4 . 8 C 0.0 57 34. 3 99.3 3.310 34 6.3 5o.9 61.0 0.48 5.20 n.n 58 23.6 105.7 2. 801 200.9 44. 7 76.0 1.65 5.20 1.5 59 27.3 133.6 3.353 298.6 53.9 76. 8 0. 86 5 . 2 0 n.n 5 0 26. 5 18 8.6 3. 342 2.8S.. 7.. 52.8 ..67. 8 1.65, 5.10 0.0 61 29.4 138. 1 3.128 3 50.3 55.9 68. 3 0.66 5.30 0.0 36 18.2 44. 3 2 . 59o 572.5 37.6 :>92. 4 2.08 5.60 1.0 89 26. 4 126. 1 3.802 366.7 52.5 i 4 1 . 7 0.61 6.90 I .n 90 23.6 39.7 2.901 5 35.9 42. 7 \u00C2\u00A307.1 \u00E2\u0080\u00A2 1.17 6.00 1.0 9 I 25.5 75.3 3. 721 36o.4 52.4 83.9 0 . 3 8 5.60 0.0 92 17.5 65.9 2..195.. .135.3 2 8.8 65.2 1.14 5.20 , . _ 1.0 93 29.2 129.6 3.801 472.2 60.4 6 2 . 3 0 . 7 3 5 . 5 0 1.0 94 37.5 511.3 5. 566 320.7 84.4 396.6 2.6 5 5 . 7 0 2.0 95 31.4 239.9 4.334 431.1 59.5 75.9 0.9 0 5.70 i .n 96 22.7 61.9 2.368 449.5 47.9 62.6 1. 14 5.60 1.0 97 30. 4 69. 9 3. 747 521.2 81.1 60.9 1.29 5 . 7 0 1.0 98 21 . 5 228 . 0 3. 159 609.9 57.6 i 7 1 . 0 3.35 5.60 9.2 99 26.0 152.2 2.990 325.6 5 5.8 76 . 0 1.00 5.50 6.1 196 o \u00E2\u0080\u0094 o cj o s o o o j o o o c J l \u00E2\u0080\u00A2 * r o ^ d cv) -A, m m irJ j o: *M m . - J 1 A J L A A I of o x m vO : M O n ^ r > o \ v q o c o : o o rn fNJ Cr: fM r\t in m -ti L A in -J -st rsj -ui \u00E2\u0080\u0094\u00E2\u0080\u00A2 \u00E2\u0080\u0094i ird N i n o o n in jo o o' o o H c U LA LA IA; CO l A ml L i O O O O O Ol P-I in N' \u00C2\u00ABi -o o o o ; o o q in N m m o o o cO O N ' LA IA l A : s t l A l A l f\j - j - s t o -t \u00E2\u0080\u0094 - j - >t ix Lf\ Ol r - fO OD O 1 O ; ^ m O 1 s t - t - t j - t - j - vH ^ so -a! r - r - r ~ r - h - r ~ : r - r - r - j r oj co i)i r- m irJ a\u00C2\u00BB m rn; to o \u00E2\u0080\u00A2J- m r - i o (\i --4<. ^ : (NJ r4 ^ o q -\u00E2\u0080\u00A2 n M -t q a* rt. rg co r\u00E2\u0080\u0094 ol o (NJ o o LA \u00E2\u0080\u00A2 o c o x ; rt ^ d ; J, L A st rA t^ rsi c j f - O M : 0 O CO| ^ O -J\" 'O: - * ' 3 srl * \u00E2\u0080\u00A2j L A m o co r--l M! t i *? o o; o o o .-A no mi o A J r\J r\u00E2\u0080\u0094 so r**l \u00C2\u00ABo CM r\u00E2\u0080\u0094 o o o i o o qooQooali o m -ti r - m mf \u00C2\u00ABi rt O CT- c d r\i r- - t o C7> -tH s t co a>; o -o O \"A .o: \u00E2\u0080\u0094\u00C2\u00BB r \ i A I A -A s t ' r - rt o i M i n o r\u00E2\u0080\u0094 O (ft N (M D N \u00C2\u00BB O JO rt rt; iA rA rM X fA OJ U H .\"NJ O* U Y |~- CSJ rt, o X o ! Jrt rt A I : Z ffl o x i r J >: * ; \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ) O rt ed ^ -4- rt CL -fr r s i ( A rt! . r\u00E2\u0080\u0094 -j; ,n u> rA so in %t m m -O: .\"NJ rt r--o o J - - o ^ o i (A rt rsj (\| rsj ^ -< o sf, .n r ~ J r- in rt a rt -' st CM ,-A (M CA| s^- rt s t i rt , A J>| \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * r - O r\u00E2\u0080\u0094; O A r* o rt| rsj co r*\u00C2\u00BB rt \0: -st CO -OJ rsi fA st! J - st -4 . . .j . . W rt A / -O; as m in) r - ^ CO, rt ro - M - t m .-<: A o ol st s t rsj. r*i s t -fr a> r g n -A f*~ co O r\u00E2\u0080\u0094 rt co rt sO s t -0 -Ol X sC - t i ) N O >0 H H \u00E2\u0080\u00A2 t \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * o -sr rt x r - r -st O rt 4- os st sQ in in in O cjs rA fA rt u-d . O 3> -T O N H O 1 A r A f - O r - i t N l f J i n r - ^ O .J- N rsj X ro| Lf^ O O rt L A fA J > O O O sO O s t - t 'XV s t ^ o a> : U- A l o \u00E2\u0080\u00A2 in co . \u00C2\u00ABj \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 PA CNJ CM fsJ \u00E2\u0080\u00A2O i A : rsj O lAJ j r- o j rsj rt t in LA I CM m r*i; - t ni r\j L A CA CA : *t rn m r- o f - i rA vn ,-sJ \u00E2\u0080\u00A2 IM O O O J \u00E2\u0080\u00A2 s t o CM s t m \u00E2\u0080\u00A2 fA fA s t ; rA rA .-rJ ( UJ _j Ci. - z. < < sO' CO vO -o| \u00E2\u0080\u00A2fl (M f A a* -N; c^ s r-o in sj \u00E2\u0080\u00A2 ' / \u00C2\u00BB LI co rt m ro r- o o rt A XI. CO A l OJ m s t rn. in -XJ m| -t a> x CM f> rA O r~ - t -T NT '%J rvj , A rsj m r* ' A i r- o a : in ^ rn^ m *t ,-sJ *\u00E2\u0080\u00A2\u00E2\u0080\u00A2!.. J .\u00C2\u00AB.';\u00E2\u0080\u00A2 . i5 sOi r- L A O ^ O cr:; rsj rt , A rsji r- so u \ -j r- c:-i :n o r-{ m a - m l \u00E2\u0080\u0094< -o r ? sj- s t a* rsj -o . 0 m I A rn - t ! i rt r J rsj v t j r-- r-~ oj rn rt mi rt r- ^ r J s t m - t ' -a rt ro i s f co rn -o r- \u00E2\u0080\u0094 rt rt: f A Psl Psj O ' r - r t s t o oj ro m L A m o> H cc o| o- M N fA rt rsj rt rtj rt rt 0^ 1 rt sC X I \u00E2\u0080\u00A2A sfj . t | -0 r~ \r\ -t A J Oj O O -J fM I A ; A CM .NJ rnj r rt fTi to , A \u00E2\u0080\u0094i t-\ . st >H-\u00E2\u0080\u00A2J r- m rtj sO r-J O >-n ml O O st O r- OD o O \u00E2\u0080\u0094 J m rA rA rA f -if A J m Tsl rvj 4 l . u 3230.2 5 63 4. 4 3.5 76 3.134 3.134 \"3. \"'\u00E2\u0080\u00A2 \"2 9 4.350 0.344 477. 424. 3.'. 383 . 1317 . 83. 3 73.0 53. 7 75. 2 69.2 50.9 180. 6 8 5. 4 114.2 164. 1 136. 6 63.0 2.95 0.57 3.35 11.64 2.15 31.38 5.90 5.80 5.60 5.60 5.70 4.90 414.3 8 1.2 15 2.0 \"27 0 \" . T \" 2 .5 6 . 0 7 5.6 540 6.9 7780.9 24594.7 \"1434 6.3\" 1 6456. 1 5 79 5.4 0 95 1 .999 1 .560 2.FO 5 2.877 3.99b 28 72. 178 , 395. 404. 508 . 361. 10 61 1062 1063 1064\" 10 65 106 7 2 83 . S 33 6. 5 _ 4 8 2.2 1 7 0 .\"0 1 77 7.0 32.1 5545. 0 18334.3 22806.0 12 34 2. i 352 8. 0 384. 1 0.902 1 .048 1 .487 \u00E2\u0080\u00A21 .8/8 7.392 3. 173 527 . 4 52 . 7 64. C 49. C 20 735. 6 358.7 75. 5 57.0 159.0 197. 1 3 35.9 1 32.0 35 . 4 177.3 215. 1 93.3 17.0 67. 4 277.3 135. 8 4687.5 T i l l . 1 34 72.2 9 51.4 17.38 20. 13 28 .33 28.09 27 .94 7.68 4.80 4.80 7.00 4.6 0 4.60 4.70 10.6 4.6 10.6 14.2 12.1 0.0-177. 1 1614.6 1180.6 536. 5 \" 21.8 99.0 17 .46 19.60 21 .81 21 . 28\" 28 .56 11 .00 4.7C 4.60 4.30 \"4.60 4.60 4.70 6.2 0.0 -.\u00E2\u0080\u00A24.9-2.1 6.7 \u00E2\u0080\u00942,4-0.6 9.7 - 3.9-3.9 60.8 106 3 10 69 1070 \"1071'\" 1072 1073 1 8.4 IB. 2 21.5 0.0 2 6.3 2 2.5 2164.8 30 3. 8 2 30. 4 \"5 58 6. \"5 4139.9 439.9 1.262 3.065 3.101 0.5 59 0.523 2.091 93 .4 306.4 306.4 \" a 4. 1 34. 1 224.2 21.2 56.9 62. 4 17.1 73.4 58.6 50. 9 71.1 80. 1 18.6 214. 3 150. 5 7.92 0.95 0.59 18.8 5'\"' 25 .61 2.80 4.70 4.7C 4.60 4.30 4.60 4.40 51.2 3.4 0.0 0.0 15.7 \u00E2\u0080\u0094-3.4-10.5 29.4 14.7 10.5 18.9 6.3 i 074 1075 _10 76_ 10 77 1.0 78 1079 18.9 360.1\" 7 0.6_ 1 7/2 ' 69.3 27.3 6234.8 9165. 3 J lb^-7 \"5 761. 0 9950.9 642. 4 1.127 2.055 3.353 \"0.469 0.833 2.632 112.1 242. S 343. 7 93.4 6 5.4 2 33 . 9 25. 5 92.7 91.9 23.0 62. 7 72. 1 23. 7 223.0 294. 1 31.5 26 4. 8 135. 9 10 30 1081 1032 1 03) 20.96 27 .94 3 .59 \"\"18.47\" 24 .99 1.72 4.30 4.50 4.10 4.50 4.30 4.80 3 4.5 4 3.2 2 . ? ' 11 . 6' 584 3. 3 10038.2 708.8 7 24 5.0 1.352 0.721 3.101 0.667 112. 1 74. 7 291 . 4 93.4 45 . 3 57.6 87.5 24.8 92.3 155. 1 182. 6 46. 5 16 . 22 43 .03 2.43 23.05 4.50 4.60 4.50 4.50 0.0 23.1 2.1 5.2 4 ANALYTICAL RESULTS FOR SOIL AND TILL SAMPLES N.H8ER P P N rn op v. rn * FE ' PPM MN PPM NI PPM IN * CARBON PH PPM MO 74_RI._ 1 084 67.0 9252.6 . 1 ..2.1.7,... 112-1 91.4 J97.2 29.6 5 . 4.30 18.8... 1085 1C6.6 3928.0 3.038 242.8 125.9 J 0 4 . 9 16.30 4.50 18.9 1 oat 30.3 230.4 3. 606 418.4 84.4 117.1 0.74 5 .00 4.2 v 1087 19.7 8164.2 1 .206 37.3 24. 1 32.6 34. 1 1 4.70 22.5 ? lOnb 171.8 14196.6 1. 522 166.0 113.4 362.4 41.44 4.30 19.8 1089 74. 1 3 3 3 3.6 2. 64 5 410.7 100. 1 \u00C2\u00A335.6 21.87 4.90 7.2 1090 35. 1 276.9 3. 898 392. 1 77.6 1 13.3 0.98 5.90 _ 3.6 1 091 10. 4 2174.2 4.03 7 56.0 19.2 28.0 13.65 5.30 0.0 1092 271.0 8607.9 0.125 149.4 72.6 t 8 3 . 4 16.73 4.30 16.2 1 C 9 3 152.9 17038.3 0. 724 242.7 97.8 321.3 23.13 4. 30 n.n 1 094 I 6 4 . 4 23072.7 0. 43o 270.7 125. 1 3 7 t . 6 31.96 4.10 7.2 1095 122,5 17748.2 0.432 532. '. 139. 3 335.4 39.40 4.00 19.8 1 096 2 67 . 2 13754.9 0. 947 634. 8 162. 1 u50.7 42.60 4.50 73.7 109 7 4 9 . 4 692. 2 3. 63 3 380.9 75.4 X00.2 1.26 4 .40 1.8 1098 31.7 9761.5 1.318 261 .4 3 8.9 37.6 26.52 5.00 10.8 i 099 76.4 7986.7 0. 835 158.7 6 0. 9 71.2 34.8 8 4.60 31 .5 1100 1 14. 8 16860.8 0 . **64 140.0 65. J 83.7 44.02 4.60 25.2 1101 266. 3 17925.7 0.536 149.4 39.5 1 18.6 38.61 4.40 18.0 1 102 240. 7 15086.0 0.191 457.4 61.6 60.6 42.CC 4.80 16.2 ... 1103 267. 2 5750.4- \u00E2\u0080\u00A2 1.856 429.4 127.6 196.4 30. 89 4.70 34.2 1 104 9 5 . 2 3194.7 4.455 326.6 72.9 110.9 3.95 3.70 42.4 1105 34. 7 575.0 3 . 564 373.4 75.6 85.7 1.65 5.10 ??.S 1 lCfc 30. 6 3 5 9 4.0 3.248 326.7 52.8 .36.7 25. 10 5.00 40.5 1 107 4 9 . 7 7720.5 2.784 242. 7 58. 1 j.74.6 15.57 4.30 34.2 1108 27. 2 3 9 5 9 . 3 1.820 248. 3 56.2 .154.4. 0.0 0.0 _. . .,9.9 1 110 23. 5 4610.2 2. 558 650.2 57.6 i 4 1 . 3 18.28 5.40 23.1 1111 67. 8 5152.5 3. 605 197.0 65.5 t 4 4 . 6 22.91 4.40 45.5 1112 23. 7 4013.6 2. 335 208.9 51.3 1 3 5.7 5.56 4. 30 13.9 1113 3 3.6 2320.3 2.953 232 .5 54.6 .65.4 6. 29 4.50 16.5 1114 25. 5 1355.9 3.845 551.7 59. 7 192.9 7.4 1 5.50 19.2 ' 1115 17. 2 9 4 3 . 7 1.021 2.44.3 5o..5 156.4 5. 5 6 5, 70... . _ _ 12.6 1116 69. 1 16673.0 0.670 6 9.0 33.1 89.6 22.32 .4.50 18.2 1117 112.3 12881.4 2.249 216.7 70.6 i 8 2 . 6 10.94 7.00 24.8 1113 118.0 23864.4 3.949 246 . 3 76. 5 246.3 16.73 4.70 12.4 1119 28 . o 7159.3 0. 645 90.6 27.8 73.0 10.94 5.00 7.2 1120 398. 3 4718.6 0. 251 2206.9 50.6 120.6 4.89 4.90 29.1 1121 17.2 5016.9 0. 532 69.0 22.4 55.1 16. 22 5.00 26.5 __ 1122 12.4 5857.6 0.378 47.3 17.5 117.1 10.00 4.60 ' 24.8 1123 11.6 3362.7 1 . 133 118.2 23.9 82.7 8.29 4.80 9.3 1124 1 3 . 9 9003.4 0.618 63 .1 37. 1 67.5 9. 58 4.70 91. R 1125 15. 1 5694.9 0.625 51.2 26.1 63.4 10.04 4,30 16.5 1126 23. 6 4772.9 0.474 31.5 2 7.6 74.4 13.05 4. 80 19.8 1127 18.3 7484.7 0.405 31.5 27.2 58.6 10.45 4.90 13.9 .- \u00E2\u0080\u0094 . 1123 7.6 4 000.0 0.755 14.8 10.2 14.8 36. 69 4.20 18.2 1129 C O 5423.7 0. 326 9.9 13.4 31.0 31.92 4.70 18.2 1 1 30 12.4 1773.6 0. 842 63.7 24.5 66. 1 6.96 4.30 \u00E2\u0080\u00A2i.fl 1131 14.9 2331.0 1.369 6 7.6 29.7 59.8 7.88 4.30 9.3 1132 23. 1 4155.2 1.635 71.6 4 6.9 i 6 1 . 7 9.19 4.80 18.2 1133 41 . 1 \u00E2\u0080\u00A2 4 76 3.3 1.962 119.4 63. 1 142.0 5.55 5.00... ... 13.9 _. - --1 134 6.4 4307.2 1.093 6V. 7 17.7 32.7 3 3.49 4.20 16.6 ANALYTICAL RESULTS FOR NUMBER 113 6 1 166 ! 16 7 1 168 I 169 1170 I I T i -l l 72 1 1 73 1 17'. 1 175 1 I 76 Ti'7 7\" 1178 1 179 i 180 U S 1 1 182 \"113 3\" I 18'. 1135 1136 1187 _U33_ U 3 9 11 90 1191 1192 I 193 1 194 1 19 5 1196 1197 I 198 1199 1200_ \"1201 1202 PPM CP _ 9. 9 2 3 . 4 \" \" 17.9 2 3.'! 3 1 . 5 47.4 \"57V4\"\" 13 0.6 23.8 SOIL AMD TILL SA PPM CU 162 1.5 1824.2 211.2 311.2 MPLES 25.4 31.7 37.3 4 IV 9 3 2.1 3 5 .0 <-0 . 5 2 3.1 19.0 \"4 ?.5 \" 23.3 2 1.3 21.2 23.3 28.6_ \"2176 ' 30.6 2 8.2 55.3 27.2 _23_. 1 3 0 . T 30.0 22.1 26. 1 19.7 2 1^2 \"24. 3 25.0 165. 6 140. 5 502. 0 562.2 I 129.4 165.6 44 1. 7 140. 5 1607.5 '\" 160. 8\" 477.2 7 1 3. 3 123 I.0 1356.4 241 1.3 1156.4 221.0 13 5.6 24 1.1 73 3.4 130.6 1 US5.2 130.6 1205. 7 6123.7 612.9 _ 16 0.8 \" 12 0.6 110. 5 105.8 126. 1 110.2 U 2 . 2 158.9\" 120.7 3.642 3.680 3.332 4.06 8 3.680 4.06 3 4.145 3.603 4.094 \" 3 . 7 76 4.094 4.452 4.651 3.697 3.180 4.05 6 3.776 3.180 3.180 3.776 4.253 '3 .9 '5 3.816 3.657 4.850 4.452 4.293_ 4.5)2 4.452 .269 .678 , 188 .842 I 342 .2 09 PPM MN 55 . 7 199. 0 413. i 609.2 650. 5 541. 5 511.4 714 . 5 1316.1 534. 0 '.40 . 0 902. 5 469 . 1 332 .5 707 .6 4 29 .3 485. 0 298 . I 246. 5 735. 4 548 . 6 270. 3 2 70 . 3 699 . 6 644 . 0 3'.9 . 8 667. 8 314. 0 PPM Ni 19.2 55. I 41.0 59.0 72.7 101.9 62.7 73.1 63.9 74. 3 75.2 90.3 81.8 \"102.0 107.2 97.4 95. 9 61. 1 57.2 71.9 57.2 44. 6 49.6 60.2 72.1 53.4 88.5 61.7 397. 5 524. 7 604. 2 663 .\" 9 644 . 0 287 .3 23. 6 63.0 70.6 76.5 85. 1 53.0 PPM ZN 36.6 84 . 4 86.8 119.0 .AR BUN 8.81 \"2.73 0.10 0.10 72. I 110. 6 70.0 87.5 81. 9 37.5 0 .27 0.10 0 . 10 0.10 0. 10 0 .10 PH 4.40 \" 5.00 00 3 0 70 30 20 00 20 PPM MO 4.0 5.0 7.5 0.0 7.00 2.7 5.1 3.4 0.0 4.1 0.0 80. 5 73. 5 96.2 '89.3 96. 2 106. 5 0.10 0. 10 0 .10 \"0.2 4 0.10 0 .24 140. 9 94 . 2 70. I 143 . 6 \" 77.7 50.9 63. 2 164.9 71. 5 152. 6 63.2 137. 5 0.10 0 .20 0.61 \"6.20 0 .47 0 . ! U 0.59 0.43 0 . 10_ \"6 . 30 0 .10 1 . 18 116. 8 85. 9 70. 1 68. ! 63. 2 54. 7 0.10 0.10 0 . 10 6 . i o 0.10 0 .53 573 .4 233 . 6 544 . 8 582. 2 541.1 63.2 49.0 59. 8 74.7 65.6 63.0 55.3 73. 3 72.6 84. 0 0 . 10 0 . 10 0 . 10 o.'io\" 0.10 4.60 7.3 0 5.30 7.40 7.30 6.10 5.70 5 .90 5 .00 '6.00 7.40 5.90 0.0 0.0 3.3 \" 5.0 0.0 2.7 0.0 3.3 15.9 2.7 4.0 6.0 5.00 6. 30 7.40. 6.60 60 80 30 00 50 50 70 60 7.3 33.9 4.0 31.5 0.0 27.2 106.2 7.3 3.3 2.7 0.0 2.6 7.50 4.90 7.30 7.5 0 7.40 0.0 0.0 3.3 3.3 3.9 VO i i 8 ANALYTICAL RESULTS FOR DISSULVEU ME TA L. ORGANIC CARBCM, SULPHATE CONTENTS- AND PH IN BOG WATER SAMPLES NUM3ER PPM CU PPMCARBUN PPM FE PPM MN PP.\"* ZN PH PPMS04 PPM CA 1203 0.0 O.T?75 1. 500 ' \" 2 . 0 0 0 0. t 53 0 .0 0. 0 . o.O 0.02 8 0.020 7.000 5.500 0.0 0.0 27.000 6. 000 1209 0.042 3 . 0 0 0 0.0 0.0 0 . 0 I 1 5.800 0.0 6. 000 1210 0.021 3 . 0 0 0 0 .0 0. 0 0.0 14 5.500 0.0 5.000 1211 0.042 0.0 0 .061 0. 0 0.0 5.500 23.000 6. 000 ! 212 0.0 5.000 0.0 0.041 . i 5.800 0.0 9 . 000 1213 0.117 0 . 500 0 . 0 0.0 0 . 0 5.300 0.0 8. 000 i 2;'5 ' \" 0. 271 1. 50 0 0.0 o . o \" o . o 6.000 o . o 8. 000 1223 0. 0 0.0 0.0 0.0 0.0 5.800 37.000 24.000 1224 0.2 29 0 . 0 0.0 0.0 ; . o 6.500 40.000 22.000 1225 0.062 1 . 0 0 0 0.092 o . o 0.0 6 .400 0.0 9.000 > 226 0.047 1 .000 0.074 0. 0 0 . 0 0.0 0.0 6. 000 1727 0.466 4 . 0 0 0 0 . 0 0. 062 0.014 5.600 0.0 14.000 ._ 1223 \" V. \u00E2\u0080\u00A2> 01 2 . 0 0 0 0.0 0.041 \" \"\"0.0 2 3 7.300 o . o \" 14. 000 1229 0.117 3.50 0 0.0 0. 0 0.009 0.0 0.0 0. 0 12 30 0.250 0 . 0 0 .0 0.0 0.020 6 . 8 0 0 0.0 24.000 1231 0.021 1 .000 0.0 0.0 0 . 0 7.200 20.000 119.000 1232 0.0 0. 50 0 0 .0 0.0 0.054 6.300 120.000 125.000 1233 0 . 133 2.500 0 .0 0.0 0.0 1 I 0.0 0.0 34. 000 1234\" '\" 0.033\"\" \"\u00E2\u0080\u00A2\u00E2\u0080\u00A2.. :-')0 0.0 0.0 0 .0 6 2 6 .800 0.0 27.000 12 7 5 C . 1 17 2 . 0 0 0 0 . 0 0.041 0.006 7.000 0.0 42.000 12 7 0 . 0 / 5 3 . 0 0 0 0 . 0 0.0 0.006 7.000 3 5. 00 0 22. 000 12 79 0.050 3 . 0 0 0 0.0 0. 0 0.006 6.000 37.000 58.000 1230 0 . 0 2 ! n . 8 0 0 I 0.0 0. 0 0 . 0 0.0 40.000 0. 0 1 2 32 0. 042 3 . 0 0 0 0.0 0.0 o .o 7.000 0.0 21. 000 _ _ ' 123 3 o\"; 0\" 1 . 5'\">U 0.0 0. 0 \"\"\"o.o 7.500 6.0\" 52.000 \" \" 123 5 0.062 3 . 0 0 0 0.0 0.0 0.0 7.00 0 0. 0 27.000 12B7 0. 1 75 2.000 0.0 0.0 0.0 7 .000 40.000 2!.000 12 39 0.146 3.50 0 0.092 0. 0 0.020 5.500 0.0 *8.000 1290 0.125 2 . 0 0 0 0 .061 0.0 0.010 5.800 0.0 16.000 1 290 0.0 0.117 2. 5 CO 0. 061 0.0 5.00 0 0.0 30.000 1 292 0.175 2.000 0 .0 0.0 2.8 \"~ 0.0 3 4 5.500 0.0 21.000 1293 0.241 2.000 0.0 0. 043 0.034 5 .500 0.0 21. 000 129'. 0.153 ! . 500 0.0 0.0 0.031 5.800 0.0 16. 000 1295 0 . 1 46 0.0 0.0 0.0 0.054 5.500 0.0 28.000 1 31 1 0.021 1.00 0 0.061 0.0 0.0 7.000 0.0 56.000 1312 0 . 0 0.500 0 . 0 0.0 0.0 7.000 20.000 26.000 .1314 0.653 0.0 0 . 0 0.034 \"0.0 30 5.000 6 5.00 0 23.000 1315 0.699 0.0 0.0 0. 043 0.U2 S 4.500 75.000 23. 000 1316 C. 749 0.500 0.0 0.043 0.03 0 4.000 75.00 0 23.000 1 31 7 0. 703 0 . 0 0.0 0. 051 0.0 3 7 5.200 80.000 29.000 13! 3 0.062 2.000 0.0 0.0 0.025 6.000 18.000 6. 000 1320 0.3 9.5 0.500 o .o 0.034 0.039 4.000 50.000 16.000 1321 0. 233 2.000 '~ 0.2 76 0. 043 0.02 5 0.0 0.0 13.000 1322 0. 104 2.000. 0.0 0. 0 0.069 5.000 0.0 6.000 132 3 0. 146 0. 500 0.0 0.023 0.0 2 2 5.500 0.0 8. 000 1324 0 .146 3 . 0 0 0 0 . 0 0. 0 0.020 \" 4.6 0 0 0.0 7.000 1325 0.203 2.50 0 0.092 0. 0 0.05 t 5.000 0.0 12.000 ANALYTICAL 1 - 1 A 1 3 2 3 1 3 2 9 1 3 3 0 1 4 1 4 1 4 1 6 1 4 1 ? \" 1 4 2 0 \" 1 4 2 7 RESULTS F?e C1SSOLVC0 VcTAL, PDM r,j OOWCAP (j:-)),; p p M FF 0 . 2 0 0 2 . 0 0 0 0 . 0 6 ! 0 . 0 2 1 1 . 0 0 0 - \" \" o . o : . ? 4 i o.o o.o 0.047 o ^ o 0 . 0 C C . 5 0 0 . - in o 1 \u00E2\u0080\u00A2'\u00E2\u0080\u00A2 5 9 1 4 4 2 \" 7 4 4 3 1 4 4 4 0 . 0 6 1 0 . 0 0 . 0 O . Y 2 3 0 . 0 3 . 1 1 0 C'GANIC CARSON, SULPHATE C3NTEN TS AND PP\". MM OPV ZN PH PPMS04 _ \u00E2\u0080\u009E 0.0 C .02.1 7.COO _ 0.0 0.0 o . c 2 8 6.000 0.0 C O 0.01 5 6.800 0.0 C O CJ2 C O 0^0 2 . 0 0 0 \" 3 . 5 0 C 4 . 0 0 0 0 . ! 7 2 0 . 3 \u00C2\u00B0 9 2 . 3 2 8 6 . 4 4 1 ' 0 . 0 6 1 1 1 . 0 1 4 9 3 1 4 9 3 ! 4 9 4 1 4 9 5 * 1 5 C 3 ! 5 0 9 73-RL-! 5 ! I 69 72 234 0 . 6 3 ; 0 . 3 7 5 0.189 0.058 0.018 9,0)0 7 . 0 0 0 0 . 0 0 . 0 C 1 3 5 0 . 1 2 3 0 . 0 CO 6'. 5 . 5 ~ C \" 7 . ' 5 0 0 \" 0 .092 C .061 0. 1 23 0.067 0.075 0.006 0. 204 0 . 1 3 * C 0 74 0 . 043 C O 5 1 Oo 099 0.043 0 . 1 65 0 . ?57 0.-62 o . 6 0. 071 0.062 0. 1 76 C O 0 .0 10 0.01C 0 .0 O.C 1 1 0.01 5 0.010 0.0? 2 O.CiS CO ' 0.0 C . G 3 S 0.077 C O C .01 5 0 .010 o.o 0 .04 7 0.049 C O 0.C1C 0.01 0 C O 0.012 0.006 0.006 P H I N B O G W A T E R S A M P L E S PPM CA 19.000.-25. 00 C 24.000 _24._C00 0.0 0.0 0.0 7.000 6.000 7 .500 0.0 0.0 C O 0.0 45. 000 4 C 0 0 0 84. COC 69.030 60. COO 66.000 25.000 2 5. OOP 7.003 6.000 6 .200 6.000 0.0 0 .0 27.000 60.000 62.000 62 .000 6 5.00 0 0.0 11.000 18.000 23. 000 25.000 25. 00 C 2. COO 4.000 4.500 0.0 5. 800 5. 8C0 0.0 4. 800 0.0 6.500 o. 6 7.2 6.8 7.2 27.000 C O 0.0 6.6 0.0 0.0 30.000 40.000 3 7.00 0 0 . 0 37.000 20.000 20.000 16.000 0. C .17. COO 19.000 0. C 0.0 28.000 13. COO 20.000 35.CO C O 202 APPENDIX B B-l ORGANIC CARBON BY WET OXIDATION The method used for determination of organic carbon has been s l i g h t l y modified from that described i n the Royal School Mines Geochemical Prospecting Research Center., technical cornm^ unication number 32. This technique, o r i g i n a l l y derived by Schollenberger (1927), i s based on quantitative oxidation of carbon to carbon dioxide using a potassium dichromate-sulphuric acid solution by the following reaction. 2 K 2Cr 20 y + 3C\u00C2\u00B0+' 6H 2S0 4 = 2 C r 2 ( S 0 4 ) 3 + 3C0 2 + 8H20 ; Details of the procedure are outlined below. 1 Weigh 300 mg of the minus 80 mesh f r a c t i o n of the sample into a 250 ml Erlenmeyer flask. The sample weight used for de-terminations must be decreased to 50 mg i f organic carbon conr tents are greater than 407o. 2 Add 10 ml of 0.4 N potassium dichromate solution and 10 ml of concentrated sulphuric acid to the f l a s k and mix the contents. 3 Heat the f l a s k over a low flame for 25 seconds. 4 Cool the f l a s k and add 100 ml of 5% sodium f l u o r i d e solu-t i o n . 5 Add three drops of diphenylamine indicator to the fl a s k . 6 T i t r a t e the contents of the f l a s k with 0.2 N ferrous ammonium sulphate and record the volume (_ x cc) necessary for the colour to change from blue to green. 7 Carry out a blank t i t r a t i o n following steps 2 to 6 and re-cord the volume of ferrous ammonium sulphate ( y cc ) necessary for the colour change. Percent organic carbon i s calculated by the following r e l a t i o n -203 ship. %C = Vol. K 2 C r 2 0 7 Cl - y_v cc) x normality K 2 C r 2 0 7 x 0.003 x 100 x cc sample weight Organic carbon values are mul t i p l i e d By- a correction fac-tor of 1.3 to compensate for the f r a c t i o n of carbon i n the sam-ple r e s i s t a n t to oxidation by the potassium dichromate. Reagents. Diphenylamine indicator: Dissolve 500 mg of diphenylamine i n 100 ml of concentrated sulphuric acid and c a r e f u l l y add the mix-ture to 20 ml of water. 0.4 N potassium dichromate solution: Dissolve 19.6147 g pot-assium dichromate ( X ^ C r ^ ^ ) , ANALAR grade, i n d i s t i l l e d water, add 20 ml concentrated sulphuric acid, and make the solution up to 1 1. B-2 ORGANIC CARBON BY LECO TOTAL CARBON ANALYSER. Detailed operating instructions for the Leco Analyser are provided i n the instrument manual. Essential components of the analyser are an induction furnace i n which a small, f i r e -clay crucible can be loaded. The furnace and crucible are attached by a gas tight seal to a system consisting of an ab-sorption vessel containing potassium hydroxide solution and a gas burette. 0.25 g of sample (minus 80 mesh fraction) are mixed with 2 scoops of iron accelerator and 1 scoop of t i n acc-elerator i n a clean crucible. Oxygen i s passed through the system at a flow rate of 1.5 litres/minute and the sample i g -n i t e d with the crucible attached to the system. The carbon dioxide produced i s absorbed i n the potassium hydroxide solution and the volume decrease measured by- balancing the two columns of the gas burette. Percent organic carbon i s 204 indicated directly^ by> graduations, of the. burette based on a one gram sample weight. Carbon content i n the sample may require corrections for temperature and pressure which, affect carbon dioxide volume measurements and for sample weights smaller than one gram. The Leco Analyser w i l l measure both organic carbon and carbonates present i n the sample. Since the peat samples analysed by t h i s method were from a relatively- acid environment i t was assumed that carbonate content was n e g l i g i b l e by compar-ison to organic matter content. B-3 SULPHATE IN WATER The method for sulphate i n water i s given i n Royal School of Mines Geochemical Prospecting Research Center, Technical Communication Number 27 and i s based on the reaction between sulphate ions and barium chloride which prec i p i t a t e s barium s u l -phate. Sulphate content i s measured by the i n t e n s i t y of the barium sulphate t u r b i d i t y . Stages of the procedure are shown below: 1. Place 20 ml of f i l t e r e d water i n an 18 x 180 mm test tube calibrated at 20 and 25 ml\u00E2\u0080\u009E 2 Add 5 ml of a c i d - s a l t solution from a polythene wash-bottle 3 Add 250 mg of barium chloride c r y s t a l s (dihydrate, Analar) using a scoop. 4 Shake for 30 seconds 5 Compare the t u b i d i t y produced with the standard series against a dark background (e.g. a matt black surface) 6 Calculate sulphate concentration from the relationship PPM Sulphate = mg of matching standard x 50 Preparation of standards 205 1 To 12 test tubes, 0-3 x 130 ram, calibrated at 20 and 25 ml) add respectively- 0, 0,05, 0.1,. 0.2, o',3, 0.4, 0.5, 0,75, 1,0, 1,25, 1.5, 2.0 mg of sulphate. 2 Add 1 ml of gum acacia solution. (This may be omitted i f determinations: are made within several hours of preparing the standards,) 3 Dilute to 20 ml with water, 4 Add 5 ml of a c i d - s a l t solution. 5 Add 250 mg of barium chloride c r y s t a l s . 6 Cork the tubes and shake for about 30 seconds to dissolve the c r y s t a l s . Reagents Ac i d - s a l t solution: dissolve 240 g of sodium chloride ('ANALAR') i n 900 ml of water, add 20 ml of concentrated hydrochlori.dic acid (sp. gr 1.18, 'ANALAR') and d i l u t e to 1 1 with water. Barium chloride: dihydrate, ''ANALAR1, Standard sulphate solution: dissolve 907 mg of potassium s u l -phate i n water and d i l u t e to 1 1 to give a solution containing 0.5 mg of S 0 4 2 ~ / ml. B-4 BIQUINOLINE EXTRACTABLE COPPER IN WATER The procedure for biquinoline extractable copper i n water, based on the method for copper i n s o i l s and sediments described by Stanton (1966), i s outlined below. 1 Calibrate 18 x 180 mm test tubes at 20 ml volume. 2 Add 1 ml of buffer solution to 20 ml f i l t e r e d water sample i n the test tube. 3 Add 1 ml of 2-2 biquinoline to each tube. 4 Stopper each tube with a PVC bung and shake for 30 seconds, Z06 5 Compare the colour developed with a standard s.eries . Preparation of standards ; (0 to 100 ppb copper) To eight c a l i b r a t e d tubes add the following volumes of 1 ppm copper standard No. ml 1 ppm standard 0 0.1 0.2 0.4 0.8 1.2 1.6 2.0 Copper i n ppb 0 5 10 20 40 60 80 100 Make up the volume to 20 ml with d i s t i l l e d water and repeat stages 1 through 4. Reagents Buffer solution: dissolve 200 g of sodium acetate (tri-hydrate) , 100 g potassium sodium t a r t r a t e (tetra-hydrate) and 20 g of ascorbic acid ( a l l 'ANALAR' grade) i n d i s t i l l e d water and d i l u t e to 1 1. Extract with 0.01% dithizone solution u n t i l the buffer solution i s free of copper and then remove the excess dithizone by extraction with carbon tetrachloride. The buffer solution should be at pH 6,0 - 0.15. 0.01% dithizone solution: dissolve 40 mg of s o l i d reagent i n 400 ml of carbon tetrachloride and store i n a vacuum fl a s k . 0.02% 2-2 -biquinoline solution: dissolve 100 mg i n iso-amyl alcohol by warming gently and d i l u t e to 500 ml with iso-amyl alcohol. Standard copper solution: 100 ppm copper; dissolve 200 mg of cupric sulphate (peta-hydrate) i n 0.5 M hydrochloric acid and di l u t e to 500 ml with this strength of acid. Dilute this stan-dard for 1 ppm copper with 0.5 M HCl. Notes 1 A l l tubes and stoppers should be washed with 50% HCl, with water and f i n a l l y with, buffer/biquinoline before use. 207 2 Samples with more than 100 ppb copper may be analysed by . d i l u t i n g the o r i g i n a l sample, B-5 DETERMINATION OF SULPHATE IN SOIL BY HI REDUCTION AND BIS-MUTH COLORIMETRY Sulphate-sulphur i n s o i l i s reduced to hydrogen sulphide using a hydriodic acid-hypophosphorous acid - r formic acid mixture in a modified Johnson-Nishita apparatus (Tabatabai, and Bremner 1970) and the hydrogen sulphide generated i s carr i e d by a n i t -rogen gas stream into a solution of sodium hydroxide. Bismuth, n i t r a t e i s added to this solution and the concentration of pre-c i p i t a t e d bismuth sulphide measured by spectrophotometry (Kowal-enko and Lowe 1972) . The procedure outlined below is- taken from an unpublished laboratory manual used i n the Department of S o i l Science, UBC. Procedure 1 Pipette 20 ml of 1 N NaOH into a 22 x 200 mm test tube and attach to the d i s t i l l a t i o n apparatus so that the delivery tube reaches almost to the bottom of the test tube (see sketch). 2 Adjust the nitrogen gas flow to roughly 8 bubbles/second. 3 Moisten the ground glass j o i n t of the digestion f l a s k , add the weighed sample and 4.2 ml of the reducing mixture from an automatic pipette. Sample weights of 10 to 100 mg may be used depending on the range of sulphate i n the sample. 4 Attach the digestion flask to the condensor and digest for 20 minutes. (1 hour digestion time may be used for sulphate r i c h samples) at a Mark 3 setting on a LABCON heater or 70 on a Ful-Kontrol heater. 5 Remove the test tube aft e r 20 minutes (or 1 hour), add 10 208 ml of the bismuth, reagent and mix immediately- on a '''minishaker'''. 6 Read adsorbance at 400 nm on a Bausch and Lomb Spectronic 20 spectrophotometer against a blank obtained by- mixing 20 ml of NaOH and 10 ml of bismuth reagent. 7 Standardize the apparatus before analysing unknown samples using a series of sulphate standards ranging from 10 to 100 ppm sulphate. The range can be increased to 200 ppm by- blanking the specrophotometer against a 40 ppm sulphate standard. Reagents Reducing Mixture: Mix 200 ml hydriodic acid (47% with preserva-tive) , 50 ml hypophosphorous acid (-50%) and 100 ml formic acid i n a fl a s k . Bubble nitrogen slowly through the solution and heat to 100\u00C2\u00B0C; maintain t h i s temperature for 10 minutes. Con-tinue nitrogen flow while the solution cools. Store t i g h t l y stoppered. (Caution: highly corrosive). Nitrogen p u r i f i c a t i o n solution: 10 g HgC^ i n 200 ml of 2% . KMn04. 1 N NaOH: 4 g of s o l i d NaOH ('ANALAR grade') i n 1 1 of d i s -t i l l e d water. Bismuth Reagent: Heat 3.4 g of 'ANALAR' grade bismuth n i t r a t e (Bi(NO^)^5^0) i n 230 ml g l a c i a l acetic acid u n t i l dissolved. F i l t e r i f necessary (Whatman #50). Cool. Add 30 g g e l a t i n dissolved by warming i n about 500 ml water. Dilute solution to 1 1. Reagent i s stable i n d e f i n i t e l y . Standard Sulphate: -1000 ppm S: 2.717 g K^ S'O^ i n 500 ml dis -t i l l e d water. Prepare working standards by d i l u t i n g 1000 ppm standard with water. 209 Apparatus;: JohnsonT-Nishita digestion d i s t i l l a t i o n apparatus- with the following modification (Tabatabai and Bremner 1970). (a) Long-necked digestion f l a s k with ground glass (T) socket, (p.) Condenser with. Nitrogen i n l e t and delivery- tube. (c) Gas washing bulb omitted (d) C a p i l l a r y tubes for nitrogen flow control (Kowalenko and Lowe 1972) .. Notes: (a) Branch nitrogen lines for each unit from a common Reservoir fl a s k through multi-holed stopper. Insert 30 cm of c a p i l l a r y glass tubing into each, l i n e to maintain uniform and balanced gas flow to each unit. (b) Condition apparatus p r i o r to days run by running a standard solution through (standardize hydrogen sulphide adsorption by glassware). (c) Spectronic 20 spectrophotometer requires no o p t i c a l f i l t e r at t h i s wavelength. 210 Modified Johnson-Nishita apparatus used for determination of Hl-reducibel sulphur (not drawn to scale). CONDENSER --N 0 INLEx\u00E2\u0080\u0094*: \u00E2\u0080\u0094 NaOH SOLUTION DIGESTION-DISTILLATION FLASK 211 Appendix C Probabil i t y graphs for metals, organic carbon and pH i n s o i l s and t i l l . Fig. c-r-LOG PROBABILITY PLOT OF 96 COBALT VALUES IN THE TILL N: FIG. C-2--1 5 10 20 30 40 50 60 70 80 90 95 99 PROBABILITY ( CUM. % ) (\u00E2\u0080\u00941 Co FIG. C-5: ARITHMETIC PLOT OF 96 IRON VALUES IN THE TILL FIG. C-6= LOG PROBABILITY PLOT OF 88 IRON VALUES IN SOILS I \u00E2\u0080\u0094 i 1 1 1 1 \u00E2\u0080\u0094 i \u00E2\u0080\u0094 i i i \u00E2\u0080\u0094 r J I I I i I l I i I I I L 1 5 10 20 30 40 50 60 70 80 90 95 99 PROBABILITY ( CUM.% ) FIG. C-9: LOG PROBABILITY PLOT OF 96 MOLYBDENUM VALUES IN THE TILL I \" \u00E2\u0080\u0094 ' 1 1 1 1 1 \u00E2\u0080\u0094 i \u00E2\u0080\u0094 i 1 1 1 1 1 \u00E2\u0080\u0094 r 1 \u00E2\u0080\u0094 I i 1 1 i i t i i t i i i t 1 2 5 10 20 30 4 0 50 6 0 70 80 9 0 9 5 9 8 99 PROBABILITY ( CIM./i) FIG. C-10= LOG PROBABILITY PLOT OF 80 MOLYBDENUM VALUES IN SOILS. r ~ i s 1 1 1 \u00E2\u0080\u0094 i \u00E2\u0080\u0094 i \u00E2\u0080\u0094 i \u00E2\u0080\u0094 i 1 1 1 r e 1 5 10 20 30 40 50 60 70 80 90 95 yy PROBABILITY ( CUM.% ) FIG. C-18. ARITHMETIC PROBABILITY PLOT OF 90 pH VALUES IN SOILS PROBABILITY ( CUM. % ) Appendix D Example of DIAG program output for water sample 74-RL-1429 and d i s t r i b -ution of aqueous species i n water samples 74-RL-1428, 1439, 1442, 1443 and 1444. * * * * * * * * C A T a ECHO C ' I S T P I E U T I O N C P S P C C ! E S F O R W A T E R S A M P L E 7 2-P. L - 1 4 2 9 AT A S U L P H A T E : CON'C CF 1 0 - A . M o l a l T E M P E R A T U R E (K EL V I N I OF T H I S RUN I S 2 9 8 . 1 5 R E S SUR VI 1 B A ? S)_ OF TH] S RUN I S . . . . . . . . . . 1 . 0 0 M A X I M U M MJ MR ER OF S T E P S I S 1 M J Q E f t O c S T E P S e F T t - F - N E A C H P R I N T CUT I S . . . 0_ I C N C H C S F N FOR E L E C T R I C A L B A L A N C E IS CA+ + M O L E S Q 1- S C L V - ' N T H 2 . C I h S Y S T ' . v I S 5 5 . 5 0 . 8 2 5 0 a * * * * * * * * * * * * I N I T I A L S C L U T I G N C O N S T R A I N T S * * * * * * * * * * * : 0 . 2 7 5 C 0 C C C T - - 0 3 MOLA L I TV CA+ + C A ( 1 ) ( A O U E O U S S P E C I E S ) 0 . 3 3 6 C O 0 O O E - O 6 M O L A L I T Y ZN + + Z N ( 1 ) ( A Q U E O U S S P E C I E S ) ' 0 . 1 3 5 0 0 0 0 0 ? - 0 5 MOL A L I T V MN+ + M M 1 > ( A O U E O U S S P E C I E S ) ; 0 . 7 6 5 C O O O C E - 0 6 M O L A L I T Y CU * + C U ( 1 ) ( A O U E O U S S P E C I E S ) 0 . 3 0 8 0 0 0 0 0 E - 0 5 M O L A L I T Y FE + + F E ( 1) ( A C U EOUS S P E C I E S ) ; C . 2 C C C 0 C 0 C C - 0 3 M O L A L I T Y HC 0 3 - H ( 1 ) C ( 1 ) C ( 3 ) ( A O U E O U S S P E C ! E S ) - 0 . 6 G G 0 O 0 O 0 E + O 1 LOG A C T . h + H ( 1 ) ( A Q U E O U S S P E C I E S ) 0 . 2 8 1 C 0 C O 0 E - O 3 M O L A L I T Y SOA\u00E2\u0080\u0094 S ( 1 ) 0 ( 4 ) ( A O U E O U S S P E C I E S ) - 0 . 6 6 5 C C C 0 O E + O 2 LOG A C T . C X Y C E N GAS 0 ( 2 ) ( G A S ) DISTRIBUTION OF SPECIES FOR WATER SAMPLE 73-RL-1429 A\" A SULPHATE CCNC CF 10-4 Molal CISTPIHUTICN CF SPECIES CALLEC AT STEP C ACLECLS SPECIES SPECIES MOLALITY LCG fCL ACTIVITY LOG ACT ACT CCEF LG ACT C GRAPS/KGM H2G P P M LCG F P M \u00E2\u0080\u00A2 1* 0.29770E-03 -3.526 C.25602E-03 \u00E2\u0080\u00A23.592 0. ESSI'E+CC -C.066 0.U932E-01 11.931 1 tC77 F r: + \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 r;j \u00E2\u0080\u00A2 CU + + SC4--\" C H -H * H 2i\"l 02(401 C AC 03 C i sty- _ M S 0 4 -H S -0. 29 34 21: -0. 549 1 C E -0 .1 350OE-~ C 19681.\"-0. 7R497E-0. ?6373 c-\u00E2\u0080\u00A2 0 5 2 0 0 5 \u00E2\u0080\u00A2rib\" 0 6 \u00E2\u0080\u00A2 1 0 -5 .533 -2C.26C -5.370 ' -.6. 7C6 -6.io; -10.571 0 \u00E2\u0080\u00A2 3 4 3 5 r \" 0. 27035.1 0.34106E \"0. ir\"i5CT 0 . 10 3 71c 0 . c 5 3 C 8 --17 -08 -C7 -C5 t-0 2 -17.458 -3.567 -8.467 - 7.5 71 -5.584 1 .744 0.25234E-05 C. 3S5 12F.-20 C.11610E-05 0. 16926E-06\" C.75485E-06 X\u00C2\u00ABlIUJ1ric C. 29922F.-17 0. 23217E-C3 O.29260S-0B C . 1 C2 85H-07 C . 10OC0E-C5 0.99999E+00 -5.598 -20.4C3 -5.535 -6 .771 -6.122 M0._(3(_ -17.524 -3.634 -3.534 -7.588 -6. OCC - C 0 n (i 0.3 3 8 8 H 0.93825E 0. 59865-0 \u00E2\u0080\u009E ! J 9 '. -':-0. 2 29 5 7? 0. 23535--65 09 -C5 06\" -07 -C9 - 65 . 4 7 0 -9 .028 -5.0C1 -6. 856\" -7.639 -5.628 C. 3388 IS-69 0.53854E-C5 0.99396E-05 \"C. 1 3922E-06 0. 22C51E-07 C.22647E-09 H2S HCQ3-_H2CD3 r tTCHH 0. 23444?-0. 64590\"-0. 12 54 1 1 -' 0. 14 582E-08 04 0 6 -8.630 -4 .1 5 C -3. 666 -6. 836\" C. 2 3452E-C8 0.62167E-04 0. 1 3545E-03 \"C.'i4033\u00C2\u00A3-O6~ -6S.47C -5. C-28 -5.000 -6. \u00C2\u00A356 -7.656 _^ 9_._64_5_ - 8 . 6 3 C -4.206 -3.868 -6.653 C.E5S9SSKC 0. 7155SE*00 C. 65S<;5Et-CC 0.85999E\u00C2\u00ABCO 0. 561 iBEtOO C.ES999EI-C3 0.858615*00 C. E57 2 CEV00 0. E579 15>C0 0.5&2C9t*C0 C. S641=E*CC C.1601EE-C1 C . 1 0 0 C C E * C 1 C. I C G C 35* C1 0 . 1 0 1 C 3 E + 0 1 C. 1 0 0 C 3 E \u00C2\u00AB - C 1 0.56225Et - C O _ Q _ ! L 5 6 2 C 5 E * 0 0 C. 10002E+C1 0.5624 5\u00C2\u00A3\u00C2\u00AB-C0 0.100':3E*01 C.?62 2 C.E\u00C2\u00BB-0C -C.C66 -0.143 -C.G66 -C.066 -0.017 - C C 6 6 0. 16386E-03 0.3C665E-18 0.74l66c-C4 C . l 64 C.COO 0.074 C 12866E-04 0.49877E-04 C 17C.75E-C8 0.013 0.050 C . P O O -0.C66 -C.C67 -C.06 7 - C O 17 -C.C16 -1.744 C.11174=- 15 0.26018E-01 0.20467S-06 0.1818 1E-06 0. 10454E-05 C. 100C3E\u00C2\u00BBC4 0 .0 COOO C .COO 0.000 - C C17 -0.017 C. COO 26.017 o-ooo_ C. 000 0 .001 9 5 5 94 8 . C 1 6 C.COO -C.C17 0 . 0 0 0 -C.C17 0.10842E-67 0. 939C3E-07 .0. !25 9*K-C2.. 6. 2 24 6 9 E-04 C.22284E-05 C. 77845E-C8 COOO 0 . 0 0 0 .1 . 360.. 0 .022 0 .002 Q. r00 0.79897E-07 0.29411S-02 _0.83?8fcE-0 2_ 0. 106 24E-04 0 . 0 0 0 3 .941 8.39 8 -0.786 -15.513 _=JL.i30_ -1.891 -1. 3 0 2 -5.763 -12. 952 1.415 __=3_...6.89_ -3.740 -2.581 6 .COC -\u00C2\u00AB4.565 -4 .027 _e....l33_ -1.648 -2.652 -5.105 -4.097 0 .596 X.-12A. 0 . O i l -1.574 IONIC STRENGTH = 0.1 17936E-C2 ELECTRICAL BALANCE = -0. 269791E-13 G4SES NAME LCG K ACTIVITY LOG ACTIVITY OXYGEN GAS C4RBCN DIOXIDE STE.V 0.0 -7.8354C 1.505 17 0.21623E-66 0 . 42557E-C2 0 . 31246E-C1 SULFUR GAS HY CF C GEN SULFIDE HYCRCCEN__GAS \".METHANE 152.34551 125.01C45 4 1 .66022 1 35 . 90 71 8\" 0.76229E-24 C. 226632-07 C.38E84E-C8 0.76979E-13 -66.5CCCC -2.37103 -1. EC518 -24.1 n e e -7.64469 -6 . 41C23 -13.11363 THE LCG K FCR B C P M ' E HAS eEEN E X C E E C E C AT STEP C ' :'\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2 LOC K * 455. 7355876 LOG C = 549. 1342661 ..\u00E2\u0080\u00A2\"\u00E2\u0080\u00A2'\u00E2\u0080\u00A2 : - - . : ' ..:' N: ! -. (JO j \" N3 TH-; LOG K =0P CHALCOCITE HAS OF.cFv EXCEEOEC AT STEP C : ' LOG K = 134.471587C LOG \u00C2\u00A3 = 153.3434279 7H= LOG K FC? CHHCCFYRITE FAS BEEN EXCEEDED AT STEP C I TG K = 231.2C12686 ICG C = 242. 4S741C2 T>' LOG K'Yr.?. COVELLITE HAS BEENFXCSECEC AT STEP 0 LCG K = 110.1634839 LCG C = 11E.72962C9 \" H \" LOG K FOP CUPRITE . T>,/3~19 1 9 \" LCG C = HAS BEEN EXCEEDED AT STEP. 35.97 76141 r H c , n G K HOP NATIVE COPPEP HAS BEEN EXCEECEC AT STEP 0 t.r'f < = 30.1.620.19 7 LOG C = _. 34.6138071 \" T P F T F G K ECR PYRITE HAS BEEN EXCEEDED AT STEP C L C G K = 2 G 5.861766C LCG C * 207.e836032 THE 100 X FOR SPHALEBITE HAS BEEN EXCEECEC AT STEP LOG K = 120.4642586 LOG C = 122.5S43554 LOG :< LOG C A L A 8 A . N D T T E _ A N H Y C ^ I T E A 5 ' A G C N I T E A Z U \u00C2\u00B0 ! ~ F B C R M T E E^CCHAN'TTTE CALC ITE CH AL C ANT H I T E C U S O A \" CU23C4 FFS04 IKQr; NATIVE SULFUR CHALCCC!TE CHALCOPYPTTE C C V c l L I T E CLP*ITE FFPPCUS \" X I D E GRAPH ITE H F V A I ! i~. \"Vi M ^ : MALACHITE 132.5\u00C2\u00A39 -4.144 1 .968 9.161 499 .740 14.733 1. EC2 -2.536 \"2.996 34.816 1 .US 55.4 SC 89.226 _134 .4 7 2_ 22l\". 2C1 110.1(3 34.319 11.316 61.476 -19 .957 2 2 . 70 7\" -11.6C7 5 .946 123.43C6369 -7.2259194 -1.7981672 -16. 3214529 549.1842661 -10. 1769763 -1.7581672 -14.2704058 \" -14.2703 791 20.3434279 -9.23221C7 39.6519755 84. 1 1 581 38 153.3434279 \"\"242.4574102 1 16.72962C9 35.9776141 6.4C19755 56.293566C -20.4460489 8.4C 82668 -14.044C734 -7.4788260 K: to NANG^'IOS IT E f*ELANTER!TE NATIVE _ C 0_P_PER_ PYRITE PYP.RHCT! T = R H O O a C H P - i S I T : -S I D E K ! T E SMITH S C N I T E _S?r-AL E R ITS TEN CP ! T l f ViURTZ I T E 17. -4, 39. 205. 127 . -1. 921 614 162 862 051 2C7 6.C64S221 - 9 . 2 3 2 2 5 3 7 _ 3 4 . 6 1 3 3 0 7 1 2 C 7 . 8 8 2 6 C 3 2 123 .7677892 - 4 . 1 4 1 6 1 0 9 -0 120 7\" 122 .4 CO .626 . 464 .6 67 ,763 -3.6C44585 -4 .9773922 .122.5543556 1 .3623071 122 .5943556 GASES NAME OXYGEN G*S CAP-BC.N DIOX IDE S T E A f SUL rUR '\".a S \" HYCRCGES RO!.F!CE H Y 0 R C G - N G A S VFTFANE EXECUTION TERMINATED LOG K C C -7 . e 3 5 4 0 1 .50517 192.34951 125 .01C49 4 1 . 6 6 C 2 2 A C T I V I T Y LCG ACTIVITY 1 2 5 . 5 C 7 18 1 0 : 2 6 : 4 3 T=1.192 C . 3 1 6 2 3 E - 6 6 0 . 4 2 5 5 7 E - C 2 0 . 3 1 2 4 8 E - 0 1 C 7 6 2 2 9 c - 2 4 0 . 2 2 6 6 3 E - C 7 C 3 M 8 4 E ^ C 8 _ 0. 765 75 RC=C -13 $ . 6 4 - . '6 .50000 - 2 . 2 7 1C3 -1.ECSie - 2 4 . 1 1 7 8 8 - 7 . ( 4 4 6 5 -8 . .A! \u00C2\u00A32 3 - 1 3 . 1 1 3 6 3 IS IGNOFF DA fA E C H O * * * * * * * * * OlSIRIdUTION OF SPECIES FOR WATERS SAMPLE 74-RL-1428 AT SULPHATE CiJMC Or 10-4 Molal T\u00C2\u00A3 M' JEkATUKE ( K E L V I N ! O F THIS R U N IS 298.15 -sur, SjR ;. (:!\u00E2\u0080\u00A2\u00E2\u0080\u00A2.>.r, ) ; S RJ.N l i 1.00 .. M A X I M U M N U . M J E R O F S T E P S I S l NUMsrK U F Sir-PS BFTwrFH rACH PRINT HUT I S ... 0 ION CHOSEN FOR ELECTRICAL BALANCE IS CA+* _ag : L \u00C2\u00A3 . S _ Q . F _ S C(.L . V.ENL Jiii)...\u00E2\u0080\u009E.IJ'J_.S Y.ST t/1. J.S 55 ..5.08250... e e e * * * * s s * * * * INITIAL SOLUTION CONSTRAINTS *********** O.I 57000OOS-06 M U L 4 L 1 I Y 0. 197000OOE-05 MOLALITY ..0-.24 8000.00..E-0 5\u00E2\u0080\u009Ej\u00C2\u00ABJLAL.!T_Y 0. 15300000E-J(j MOLALITY 0.625O0000E-03 MOLALITY 0. 2000.00OOE-33 h J L A l IXY_ - 0 . 7 5 0 0 0 0 0 0 E + 0 1 LUG A C T . 0.41600000E-03 MOLALITY -Cl.-fe0.5.aOQ.aaEiU.2_LJlu_a.C.Ls_ CU\u00C2\u00BB* CU(1) FEn- F E ( l ) \u00E2\u0080\u00A2'. >!<\u00E2\u0080\u00A2.\u00E2\u0080\u00A2 M'i ( 1 ) IN*-* ZNU) C A * * C 4 < 1) ...HC.G3- H.(.U..C.\u00E2\u0080\u009E<.1)..U.(3L H* H ( l ) S04-- S ! l ) 0 ( 4 ) \u00E2\u0080\u00A2JAY GEN GAS 0123.. * * * * * * * * * ? * * * * * * \u00C2\u00BB?*?$.-*\u00C2\u00A3******* (AQUEOUS SPECIES) (AQUEOUS SPECIES) I AQULQUS..SPECIES). (AQUEOUS SPECIES) (AQUEOUS SPECIES) ...!.AQUE.QU.S_SPiC.IESl_ ( AQUEOUS SPECIES) (AQUEOUS SPECIES) -IGAS) D I S T R I B U T I O N O F S P E C I E S F O R W A T E R S S A M P L E 7 4 - R L - 1 4 2 8 AT S U L P H A T E C O N C O F l O - 4 M o l a l D I S T R I B U T I O N O F S P E C I E S C A L L E D A T S I E P 0 A Q U E O U S S P E C I E S S P E C I E S M O L A L I T Y L O G M O L A C T I V I T Y L O G A C T A C T C O E F L G A C T C G R A M S / K G M H 2 0 PPM L O G PPM C A * *\u00E2\u0080\u00A2 0 . ' m 4 0 5 1 - \" - 0 3 - 1 . 3 1 6 . 1 . 4 ( 1 ! 7 9 C - 0 3 - 3 . 3 9 6 0 . H 3 . 1 0 6 F 4 - 0 0 - O . O S 1 Cl. 1 9 4 0 1 F - n 1 19.399 1 . 7 S B ft}** 0 . 7 7 \u00C2\u00BB 3 = > E - 0 6 - 6 . 1 0 9 0 . 6 4 6 0 8 E - 0 6 - 6 . 1 9 0 0 . 8 3 0 0 6 E + 0 0 - 0 . 0 3 1 0 . 4 3 4 6 9 E - 0 4 0 . 0 4 3 - 1 . 3 6 2 Ft*** 0 . 4 7 8 9 4 E - 2 2 - 2 2 . 3 2 0 0 . 3 1 9 9 2 E - 2 2 - 2 2 . 4 9 5 0 . 6 6 7 9 8 E * - 0 0 - 0 . 1 7 5 0 . 2 6 7 4 7 E - 2 0 0 . 0 0 0 - 1 7 . 5 7 3 :',f,** 0 . 2 4 8 0 C E - 0 5 - 5 . 6 0 6 _ 0 . 2 0 . 5 . 3 5 E - 0 5 . - 5 . 6 8 6 . 0 . . 8 3 0 . 0 6 E . + 00_ _ -0.031 0.1 3 6 2 5 E - 0 3 0 . 1 3 6 -0.866 IH** 0 . 7 6 2 J 2 E - 0 7 - 7 . 1 0 7 0 . 6 4 9 1 2 E - 0 7 - 7 . 1 3 8 0 . 6 3 0 0 6 E + 0 0 - 0 . 0 8 1 0.5 1 1 2 1 E - 0 5 0 . 0 0 5 - 2 . 2 9 1 OJ* 0 . 1 5 7 0 0 E - 0 6 - 6 . e 0 4 0 . 1 4 9 5 4 E - 0 6 - 6 . 8 2 5 0 . 9 5 2 5 0 E \u00C2\u00AB - 0 0 - 0 . 0 2 1 0 . 9 9 7 5 8 E - 0 5 0 . 0 1 0 - 2 . 0 0 1 CO** 0 . 1 7 4 4 2 F - 1 ? - 1 2 , 7 5 8 0 . 1 4 4 7 8 F - 1 2 - 1 2 . 8 3 9 0 . 8 3 0 0 6 F + 0 0 - 0 . 0 R 1 0 . 1 1 0 R 2 F - I 0 n . o o o - 7 . 9 S S S - - 0 . 5 0 6 4 6 c - 1 7 - 1 7 . 2 9 5 0 . 4 1 9 3 6 E - 1 7 - 1 7 . 3 7 7 0 . 3 2 6 0 2 E + 0 0 - 0 . 0 8 2 0 . 1 6 2 3 9 E - 1 5 0 . 0 0 0 - 1 2 . 7 8 9 3 C 4 \u00E2\u0080\u0094 0 . 3 9 3 9 6 E - J 3 - 3 . 4 0 5 0 . 3 2 5 3 8 5 - 0 3 - 3 . 4 8 8 0 . 8 2 5 9 2 E + 0 0 - 0 . 0 8 3 0 . 3 7 8 4 5 E - 0 1 3 7 . 8 4 2 1. 5 7 8 C 0 3 - - 0 . 3 2 1 4 1 5 - 0 6 - 6 . 4 9 3 0 . 2 6 5 3 0 F ; - 0 6 - 6 . 5 7 5 . . . 0 . 8 2 6 9 3 E t U 0 . . . - 0 . 0 8 3 0 . 1 9 2 8 8 F - Q 4 0 . 0 1 9 - 1 . 7 1 5 v j - i ~ 0 . 3 4 1 2 3 E - 0 o - 6 . 4 6 7 0 . J 2 5 2 4 L - 0 6 - u . 4 3 8 0 . 9 5 3 1 3 E O 0 - 0 . 0 2 1 0 . 5 S 0 3 5 E - 0 5 0 . 0 0 6 - 2 . 2 3 6 H \u00C2\u00BB 0 . 3 3 0 6 8 E - 0 7 - 7 . 4 3 1 0 . 3 1 6 2 3 E - 0 7 - 7 . 5 0 0 0 . 9 5 6 3 1 E + 0 0 - 0 . 0 1 9 0 . 3 3 3 3 1 E - 0 7 0 . 0 0 3 - 4 . 4 7 7 H . ' O 0 . 5 5 5 0 j F \u00C2\u00BB 0 ? 1 . 7 4 4 0 . 9 9 9 9 3 1 - + 0 0 - 0 . 0 0 0 ( ) . I H 0 1 5 F - 0 1 - 1 . 7 4 4 0 . 1 0 0 0 0 F 4 - 0 4 9999 ? 7 . ? 5 1 6 . non 0 2 < A Q ) 0 . 3 3 3 3 1 E - 6 9 - 6 9 . 4 7 0 0 . 3 3 3 8 1 E - 6 9 - 6 9 . 4 7 0 0 . 1 0 0 0 0 E + 0 1 0 . 0 0 . 1 0 8 4 2 E - 6 7 0 . 0 0 0 - 6 4 . 9 6 5 C A C 0 3 0 . 1 3 3 7 4 E - 0 6 - 6 . 3 7 4 0 . 1 3 3 8 0 E - 0 6 - 6 . 8 7 4 0 . 1 0 0 0 5 E + 0 1 0 . 0 0 0 0 . 1 3 3 8 6 E - 0 4 0 . 0 1 3 - 1 . 8 7 3 C A S 0 4 0 . 2 1 9 6 I E - 0 4 - 4 . 6 5 8 0 . 2 1 9 7 2 C - 0 4 - 4 . 0 5 3 . . . Q . 1 0 0 0 5 E \u00C2\u00AB - 0 1 . . . 0 . 0 0 0 . 0 . 2 9 3 9 8 1 - 0 2 . ? . 9 9 0 f l . 4 76 Z . N S 0 4 0 . 7 4 7 - \u00C2\u00BB o E - 0 7 - 7 . 1 2 6 0 . 7 4 8 3 5 E - 0 7 - 7 . 1 2 6 0 . 1 0 0 0 5 E + 0 1 0 . 0 0 0 0 . 1 2 0 7 5 E - 0 4 0 . 0 1 2 - 1 . 9 1 8 H 5 0 4 - 0 . 1 0 2 6 9 E - 0 8 - 3 . 9 8 3 0 . 9 7 9 0 6 E - 0 9 - 9 . 0 0 9 0 . 9 5 3 4 4 E + 0 0 - 0 . 0 2 1 0 . 9 9 6 7 8 E - 0 7 0 . 0 0 0 - 4 . 0 0 1 H S ~ 0 . 1 0 5 3 0 F - 1 0 - 1 0 . 9 7 8 0 . 1 0 0 i 7 F - 1 0 - 1 0 . 9 9 8 0 J J 5 3 . 1 3 \u00C2\u00A3 \u00C2\u00B1 J 3 3 J - 0 . 0 2 1 0 . 3 4 H 2 6 F - 0 9 o.n.oo - 6 . 4 S \u00C2\u00AB H 2 S 0 . 3 2 6 3 0 E - 1 1 - 1 1 . 4 8 3 0 . 3 2 8 6 7 E - 1 1 - 1 1 . 4 8 3 0 . 1 0 0 0 5 E + 0 1 0 . 0 0 0 0 . 1 1 1 9 5 E - 0 9 0 . 0 0 0 - 6 . 9 5 1 H C 0 3 - 0 . 1 6 7 2 5 E - 3 3 - 3 . 7 2 8 0 . 1 7 8 5 3 E - 0 J - 3 . 7 4 8 0 . 9 5 3 7 4 E * 0 0 - 0 . 0 2 1 0 . 1 1 4 2 5 E - 0 I 1 1 . 4 2 4 1 . 0 5 8 H 2 C 0 3 0 . 1 2 2 4 3 E - 0 4 - 4 . 9 1 0 - 0 . . . . 1 2 3 . 0 4 E - 0 4 . _ . _ - 4 . 9 1 0 0 . 1 0 0 C 5 E V J 1 . . . 0..000- . . 0 . . 7 . 6 2 8 0 E . - Q 3 0 . 7 6 3 . . . . . - n . i i 8 F E ( C H ) * 0 . 1 1 9 1 6 E - 0 5 - 5 . 9 2 t 0 . 1 1 3 6 2 E - 0 5 - 5 . 9 4 5 0 . 9 5 3 4 4 E + 0 0 - 0 . 0 2 1 0 . 8 6 8 1 6 E - 0 4 0 . 0 3 7 - 1 . 0 6 1 1 ' 1 O N I C S T R E N G T H = 0 . 1 3 5 / 8 3 L - - 0 2 E L E C T R I C A L B A L A N C E = 0 . 5 0 5 / 4 4 E - 1 3 C A S t S N A M E L U G K A C T I V I T Y L O G A C T I V I T Y O X Y G E N C A R B O N S T F A M G A S D I O X I D E 0 . 0 - 7 . 3 3 5 4 0 ! . 5 0 8 1 7 0 . 3 1 6 2 3 E - 6 6 0 . 3 3 6 5 9 E - 0 3 0 . 3 1 2 4 8 F - 0 1 - 6 6 . 5 0 0 0 0 - 3 . 4 1 2 7 5 - 1. 6 0 51 R .. S U L F U R H Y O R O G E t IY C R 0 G E G A S ti S U L F I D E N ' . J A S 1 9 2 . 3 4 9 5 1 1 2 5 . 0 1 0 4 9 4 1 . 6 6 0 2 2 0 . 1 4 9 7 3 E - 2 9 0 . 3 1 7 6 2 E - 1 0 0 . 3 8 3 6 4 E - 0 8 - 2 9 . 8 2 4 7 0 \u00E2\u0080\u00A2\u00E2\u0080\u00A2 1 0 . 4 9 8 1 0 - 8 . 4 1 0 2 3 . . - \u00E2\u0080\u0094 \u00E2\u0080\u0094 M E T H A N E 1 3 5 . 9 0 / 1 8 0 . 6 9 9 2 8 E - 1 4 - 1 4 . 1 5 5 3 5 T H E L O G :< F O R B O R N I T E L O G .-v = 4 9 9 . 7 3 9 9 , 3 7 8 L O G Q = H A S B E E N E X C E E D E D 5 4 4 . 1 6 3 3 2 3 7 A T S T E P 0 T H E L O G it F O R C H A L I O C I T H A S B E E N E X C E L - O E O A T S T E P Q _ , , * * * * * * * * D A T A E C H O * * * * * * * * * DISTRIBUTION OF SPECIES FOP. MM BP. SAMPLE 74-P. 1 - 1 4 3 9 \" AT SULPHATE CCNC CF 10-4 Molal TEMPERATUR E (KELVIN) OF THIS RUN IS 298.15 ...PR,= S SUR.S..J.P \u00C2\u00ABR SI r.-...THtS .RUN I S ........ ..... .... , .. 1 .00 f^AXIMUM NUMBER OF STEPS IS 1 Jaiwe.\u00C2\u00A35...QF STEPS PETt,F{FN EACH PRINT CUT IS ... 0 IC\ CHOSEN FOR ELECTRICAL BALANCE IS CA++ XCLe.S..CF\u00E2\u0080\u009E,SOLyENT H20. IN. SYSTEM IS 55.508250... * * \u00E2\u0080\u00A2 \u00C2\u00BB * \u00C2\u00BB * * * * . * * INITIAL SOLUTICK CCKSTRAUTS **** * * * * * * * 0. .7 E 3 C C C 0 \" - C i>.. 0 L A L1 TY + p N (1 ) ... -C.6CC0O000E+01 LOG ACT. H ( l l 0.7E3C0C0OE-O5 MOLALITY C U * C U I 1 I ( A Q U E O U S S P E C I E S ) O . 7 1 2 0 O O O O E - O 5 M O L A L I T Y F E + \u00E2\u0080\u00A2 F F ( 1 ) ( A C U E O U S S P E C I E S ) (AOUEOUS SPECIE S) 0.33600000E-06 M O L A L I T Y Z N + + Z N U ) ( A C U E O U S S P E C I E S ) \".450C0CC0--03 MOLALITY CA + + C A ( 1 ) ( A O U E O U S SPECIES) . 0.2.CCCO0CO:'-O3...V'l S'.tTv HCC3-\u00E2\u0080\u009E H (1 )C(1 1 0 ( 3 ) (AOUEOUS SPEC! ES) ( A C U E O U S S P E C I E S ) C. 6 2 4 C 0 C O C E - 0 3 M O L A L I T Y S G 4 \u00E2\u0080\u0094 S ( 1 ) C ( 4 ) ( A C U E O U S S P E C I E T T ^S..i.t5S>0J)JiS^*S>2 I C G A C T . CXY.GEN_.GAS 0,! 2.) ( G A S ) r-o 0 I S T R I B U T I O N O F S P E C I E S F C R fcATER S A M P L E 7 4 - P L - 1 4 3 9 A T S U L P H A T E C O N C O F I O - A Moiai D I S T R i e U T I O M OF S P E C I E S C A L L E D A 7 STEP ACUECUS SPECIES S P E C I E S C.A\u00C2\u00BB* F E * * F E * + + _MN* \u00E2\u0080\u00A2 7_N*t C U * $0 4 \u00E2\u0080\u0094 _C.C.3-_._ O H -M * 0 2 ( A Q ! CAC03 C A S C 4 __ ZMS04 H S C 4 -H \u00C2\u00A3 -H2S HC0 3 -J-2.Cfl3__ F E (0 K ) < M O L A L I T Y 0 . 6 0 5 3 3 T - - C 3 LCG MOL 0 . 6 7 9 6 S E - 0 5 0 . 1 3 578E-19 _ C 7 8 3 0 0 c - 0 6 6. 1 4 2 9 7 E - 0 6 0 . 7 8 2 9 7 c - 0 5 0 . 2 7 9 9 9 P - 0 9 0 . 7 E I A S E - 1 7 o. 564 <;9E-03 _0.. 3 6 I 2 3 E - 0 8 0 . 1 CSfc1E-07 C . 1 1 5 1 6 \u00E2\u0080\u0094 05 0 . 5 5 5 0 8 E * 0 Z 0 . 3383 1C--69 0 . 1 7 3 7 6 E - 0 8 0 . ' f ' W - 0 4 C . 19 3G 3? - 0 6 0 . 4 7 2 8 8 E - 0 7 _ _ _ . . _ - _ _ l _ _ _ - _ 0 . 4 7 5 2 4 E - 0 8 0 . 65233'^-C4 ..0...13471--C3 0 . 3 2 3 1 7 5 - 0 6 A C T I V I T Y L O G ACT ACT CCEF LG ACT C GRAfS/KGM H20 C. 4 S 0 3 1 F - C 3 0 . 5 5 0 5 3 E - C 5 C . 8 6 2 C 5 E - 2 C C . 6 3 4 2 1 E - 0 6 . C . 1 1 5 8 0 E - 0 6 C . 7 4 0 7 8 F - 0 5 _CZ2.6 79_E.-C_L. 0 . 6 0 6 7 6 E - 1 7 C . 4 7 C 7 9 E - 0 3 0 . 25120E-C8. 0 . 1 0 2 8 5 E - 0 7 C. 1 0 0 C 0 - - C 5 ii.S99SJ5_tfl.0_ C . 3 3 8 8 1 5 - 6 9 C. 1 7 8 8 8 E - C 8 0 . 3 8 7 9 4 . - 0 4 C 1 9 3 1 6 E - 0 6 C . 4 4 7 9 6 E - 0 7 .A5_S.2JE.-\u00E2\u0080\u009Ej9_ C 4 7 5 5 5 E - C 8 C . 6 1 8 6 9 F - 0 4 C. 134 80S-C3... 0 . 2 0 6 1 5 E - C 6 -3.310 0.e09^eE*00 - 0 . 0 9 2 0 . 2 4 2 6 2 E - 0 1 - 5 . 259 -20 . 0 6 4 - 6 . 1 9 8 - 6 . 9 3 6 - 5 . 1 3 0 - 9 . 6 4 4 0 . E C 9 9\u00C2\u00A3E*CC 0 . 6 3 4 6 7 E * C 0 o.eo9seE*oo 0 . ECS?\u00C2\u00A3_*Cb 0 . 946 126*00 0 . \u00C2\u00A3C90( 31 I AQUEOUS SPEC IFS1 0.64500JJOE-0 3 MO LAC 1 TY S0 4 \u00E2\u0080\u0094 S( 1)0(4) (AQUEOUS SPECIES) -0.60000000E+01 LOG ACT. H + HI 1 ) (AQUEOUS SPECIES) -Q.66500000E+02 _LOG__ ACI \u00E2\u0080\u00A2 .i)XV.GE.N. JIA_S. 0(2) - (GAS 1 ********* **********<:*****\u00C2\u00BB*\u00C2\u00BB\u00C2\u00BB* ] D I S T R I B U T I O N O F S P L C I L S I N W A T C K SAMPLE 74-:it,6|--03 -3.225 0.4H03 7i--0 i -3.318 0. R0728F+00 -0.093 0.2 3874 F-01 ?3 .87? 1. 373 F E t + F E + + + M N + + 0.39812E-04 0. 7931 7E-L9 0.923JJE-06 -4.400 -19.098 -:.-.0 3 2 0.12139E-04 0.50326E-19 .0. 7.491 6E-06 -4.493 \u00E2\u0080\u00A219.298 - 6.125 0. S072BC + 00 0.63C52E+00 . 0. 80728E*00 -0.093 -0.200 -0. 093 0.22234E-02 0.44575E-17 0.50982F-04 2.223 0.000 0 .051 0. 347 -14. 351 -1.291 ZN + + CU* CU + + 0. 64 'Jo 3E -0 7 0 . 7b49 7E-06 0 . 2 \u00E2\u0080\u00A2> 139 f - 1 0 -7.193 - 6 . 1 0 5 -10.551 0.51717E-07 0. 74199E-06 0.22 716E- 10 -7.236 -6.130 \u00E2\u0080\u00A210.644 0. 30728E t-00 0.94525E+00 Q. 80.72.5EJ.aO -0. 093 -0.024 -0. 093 0.4 1878E-05 0.49B77E-04 0.1 7879r-OR 0.004 0.050 0.0.)0 -2. 3 78 -1. 332 - 6 . 748 S \u00E2\u0080\u0094 S U 4 \u00E2\u0080\u0094 C O } - -0. 7 7 792L -1 7 G.60563E-03 \u00E2\u0080\u009E0...jo2.4 0E-0B _. -1 7. 109 -3.218 -d . 4 4 I 0.t>2596!:-17 0.43569E-03 0 .21.112E-08. \u00E2\u0080\u00A217.203 -3.314 -8. 536 0.80465E+00 0. 80195E + 00 0.80331E+00 -0.094 -0.096 -0. 095 0.24943E-15 0.58 178E-01 ........0..217.4.7E.-0.6. . _ 0.000 58.172 0.000 -12.603 1. 765 -3 . 6 6 3 Ori-, i H + H\u00C2\u00ABl 0. 103 71E-0 7 0. 101/24E-05 0. 'li'iJoi i .'2 -7. 964 -5.978 i . 744 0.10235E-07 0.100J0E-05 0.9 >\u00E2\u0080\u00A2/\u00E2\u0080\u00A2) li + 00 - 7 . 9 'J 8 - 6.000 -Q.,iLQ.Q-0.94603E+00 0.95025E + 00 0. 1801 5':-0 1 -0.024 -0.022 - 1. 744 0. 18489E-06 0. 10607E-05 o. i oooor- +04' 0.000 0.001 9Q0847.74? -3. 733 -2.9 74 6. 000 C2(A0i CAC03 CASJ4 0.3iJ3lE-<>9 0.1V527E-08 0.39224L-04 -5 9. 4 70 -8.756 -4.406 0.33381E-69 0 . 1 733 rd-oa 0. 3.92 5 1E-.U4 69 . 4 70 -8.756 -4.406 .... 0. 10000E + 01 0. 10007E+01 . .0 . 1000 7E + 01 0.0 0.000 0.000.. 0. 10842E-67 0. 1 7543E-06 0.53401F-02 0.000 0.000 5. 3 40 -64. 965 - 3 . 756 0. 728 Z.NS04 HSU4-HS-0.66937L-07 0. 4 3 52 6 E -0 / 0. 500 76E-09 -7.051 -7.311 -9.300 0 . 3399 7E-0 7 0 . 4 o 2 l 4 t - 0 7 0.47376E-09 -7. 051 -7.335 -9.3 24 0. 1000 V E \u00C2\u00BB\u00E2\u0080\u00A2 01 0.94649E+00 0.94&03E+00 0.000 -0. 024 -0.024 0.14357E-04 0.47396E-05 0.16561F-07 0 .014 0.005 0.0 00 -1.343 -2.324 -4. 73 1 H2 5 hoc:i -H2C03 0.4*j2of--0EN GAS U2.3-i951 125 .01049 41.66022 0. 333 60E-0.47409E-0. 3 88 8 3 L-23 0 7 08 -23.47677 -7.3 24 14 -8 .41023 MET H AN t 135.90718 0. 7.6588E- 13 - 13.11584 THE LOG LOG R K = FOR BORNITE 499.7399578 LOG U HAS BEEN EXC 551. 5340.46 r. fc : J E D AT 2. SIEP 0 THE i.lJG * FOR C H A L C ' X IT H A S H;L ;N Ff.jr.1) AT STEP 0 K : o D A T A E C H O D I STP. I 3UTI ON IJF'TPEC I E S IN hATER SAfPLE 74-RL-1443 at a sulphate oonc of 10~4 Molal T E M P E R A T U R E (KEL VIV) OF T H I S PUN I S 293.15 P3ESS.Se .J_4\u00C2\u00A3_J__r.__I^ 'LS -BUN. ._I_.S_. ..... .............. 1.0.C ''.AX'MLM N U M B E R OF S T ? P S IS 1 Miv-icq <,T-:p<. FFTwFFM F A C E P R I N T O U T IS ... Q I O N C H O S E N F O R E L E C T R I C A L B A L A N C E I S CA + * JIC.L5.S\u00E2\u0080\u009EGF_.5.QL_.&Li-H.20 J.N...SYSTEM I S , 55.50.8250.. \u00C2\u00BB * * \u00C2\u00BB * * * * - \u00C2\u00BB * \u00E2\u0080\u00A2 * I N I T I A L S O L U T I O N C O N S T R A I N T S * * * * * * * * * * * 0 . 1 4 1 0 0 0 0 C E - 0 5 M O L A L I T Y C U * * C U ( 1 ) 0 .78 5 0 0 0 0 0 . - 0 5 \" 0 1 . A LT T Y ...C.1.8.20.0C.001-05...VOL A 1 . I T Y . 5 . 1 5 3 . 0 0 0 0 0 - 0 6 M O L A L I-TY FE* * ZN** 0 . 2 G 0 0 0 0 0 0 ? - 0 3 CGLALtTY H C 0 3 -- 0 . 6 2 C 0 0 C 0 0 E + 0 1 L C G A C T . ^..\u00C2\u00A3J>^&lQ21*3.Z-\.QJLJiCZ.\u00C2\u00BB-FE(1 ) ...MN (1 )_ ZN( 1) 0 . 6 2 5 C C C C a ~ - C 3 M O L A L I T Y C A * * C A ( 1 ) _ ug_.^_ggjOOQF . - 0 3 MCIAUTV .SP._)__ 5..I.1 ).0.(.A..).. H t l l C I l ) C ( 3 > H * H ( l ) OXYGEN GAS 0 ( 2) ( A Q U E O U S S P E C I E S ) (AQUEOUS SPECIES) ...(. A.OU E .0US S PEC.I.E. S.I (ACUEOUS SPECIES) (ACUEOUS SPECIES) (AOUEOUS SPECIES.).. (AOUEOUS SPECIES) (AQUEOUS SPECIES) (GAS) X * * * *****fta** a f t -t '\u00E2\u0080\u0094D .S.TRTBUT7 Otf _OF\"'SPFCT \u00E2\u0080\u009E S I N WATER S A M P L E 74-RL-1443 SAMPLE * 1443 DISTRIBUTION OF SPECIES CALLED AT S1EP SPECIES C A + + MCLALITY FE * * FE*** MN** 2. . * * CIJ + . C j \u00C2\u00BB \u00C2\u00BB . . 0.73015E-0.92451F Q, 1 32 CC: o . -- ? i r o. i 4 i co; ___<_3.__I1J_ 3_ 05 \u00E2\u0080\u00A220 C5 \u00E2\u0080\u00A207 S0 4 \u00E2\u0080\u0094 \u00E2\u0080\u009E.C.Li3..--_ \"OH-I . * ri__0 0.77431F C.-0322E 0 . 7 6A92F 0. 17234\" 0 . ft 6 ' ! \u00E2\u0080\u00A217 -0 3 - r 6 tO 2 0 2 ( AC ) CAC03 C.4.S.Q4___ \" z N S o T \" HSG4-H S -0. 33831. -C.39441 \u00E2\u0080\u0094 0 . 416 5 2 E' 0. S87 15c-0. 30663'i-p. 3 ] 44 \u00E2\u0080\u00A2 H2. HC03-_i_.c_.3_. F E I C H H 69 OB 04 C7 07 _5_ r- . 1 942 l c -0 . 86932E 0. 1 1 Oc 5485 1~ \u00E2\u0080\u00A208 -04 LCG MOL \u00E2\u0080\u009E__3.,l<.6 C_,. -5.137 C. -20.034 -5.740 \"\"-7.19 2 -5.851 ___10.__6_ -17.111 -3.2 20 -8.116 -7.764 -6.178 JL__44 AOUEOUS SPECIES ACT I V I T Y L O G A C T A C T CCSF _?__\u00E2\u0080\u00A2__-.. Q. 80656 .+ 00 58391E-56184E-14679E-51346F-13324F-257381: 62288E-48330 .\u00E2\u0080\u00A2 6138SF-16300E-63056F-99997E' .Q3__ 05 \u00E2\u0080\u00A220 05 \u00E2\u0080\u00A207 \u00E2\u0080\u00A205 l_C_ -5.230 -20.2 35 -5.833 -7.285 -5.375 - 10.589 17 \u00E2\u0080\u00A203 \u00E2\u0080\u00A2C8... \u00E2\u0080\u00A207 06 \u00E2\u0080\u00A2oo_ -17.206 -3.316 -8.2 12 -7.788 -6. 200 -O.OOC -69.470 0. -8.404 0. -4.380 _ 0. -7.C52 0. -7.513 C. __9_.J5J12 0... -8.712 0. -4.061 0. -3. 947. ...0. -6.2-1 C. 33881F-35466E-4 1680E-6878CE-2SC15E-69 03 04 07 07 iQ9_ -69.470 -8.404 -4.38C -7.052 -7. 537 _ r 5 _ _ 5._l_ 1S435E 82296. 11313E 51903E--08 -04 \"03... -06 -8.711 -4.C85 -3.946 -6. 2 85 0.EC656E*C0 0.62935E+00 0. 80656 6*.00 C. E065-E*CO 0.94501E*00 _0_._e065_6E*C_0_ 0.60 3 9 IE*00 0.80116E*00 0. \u00C2\u00A302 5 6E+C0. 0.545e-E*CO C\u00E2\u0080\u009E950C5E*00 ___.JJ__ 1 5E-C1 0.100C0E + 01 0.100C7E*01 c i c o c 7 t * g i b . i o o c 7 E * b i C. 946 26E*00 0.9458 5E*09 LG ACT C GRAPS/KGM H2C 0.100C7E*01 0..466 7E*G0 0 ..10S_0.7E.*.0.1\u00E2\u0080\u009E C. 946 26E*00 -0. 093 093 201 093 C93 .0 25 _____ 0.25500E-01 0.40777E-0. E1621E-0.99987E-C.4202CE-0. 69569c-0.20276E-,C95 .096 .096 .C24 .022 .744 0.248440-0.57947E-0.45902E' 0. 29310E-0.66942 ! :' C.IOOCOE. 03 16 04 05 C4 03 15 01 \u00E2\u0080\u00A206 \u00E2\u0080\u00A206 \u00E2\u0080\u00A206 ___. 0 000 coo coo 024 024 -C 000 C24 COO 024 0. 10842E-0.29476E-0. 56705E-0. 142 22=-0.29764E-0. 104CCE-0.66188E-C. 53044E-C.70124E-\" C.39961E-67 06 02 C 4 05 C7 07 C2 C2 04 P P M 25.497 0 .408 C.COO C.100 0 .004 C.090 0.000 0.000 57.941 0.000 C.000 0. 001 999897.916 C.COO O.COO 5 .670___ 6.ci4 0.003 COCO C.000 5.304 7.C12-. 0.040 LCG PPM 1. 4C6 -0. -15. -1 . . _\u00E2\u0080\u009E ^ -1. -5 390 287 000 37 7 048 693 -12 .605 763 \u00E2\u0080\u00A2228_ .533 .174 .000 -64 -3 0 -1 -2 -4 ,965 .404 ,754_ ' 644 .526 ,983 -4 0 C ,179 .725 , \u00C2\u00A346 -1.398 I ON I C NGTM ,25<_ \u00E2\u0080\u00A2C2 ELECTRICAL BALANCE -0.493916E-13 GASES NAME LOG K ACTIVITY LOG ACTIVITY OXYGEN CARBON _SZ\u00C2\u00A3AZ_ G AS DIOXIDE 0.0 -7. 63540 _.-5J2_17_ SULFUR GAS HVCRCGEN SOL FID\" JdY.C__.C-G. .. _____ .5 y , f THANE 192.34951 1 25.01C49 __ 41...66.022. 135.50718 0. 21623E-66 0.35546S-02 _.CUJ.1.2j_.8_r--l_. 0.52353E-24 C. 18781E-C7 C. 38883E-CE 0.64296E-13 -66.5C0CC -2.44921 ___._--CJ_lJL \u00E2\u0080\u00A224.2E106 -7. 72628 -8.\u00C2\u00AB1C23_ -13. 15182 T Hr- LCG K FOR R CR MT E FAS BEEN EXCEEDED AT STEP C I Oo * - 499. 7395878 LOG Q = 551 .8597575 \u00E2\u0080\u00A2 -. \u00E2\u0080\u00A2 :\u00E2\u0080\u00A2 I O ~ \" \" \" ' -P-IN. T H - t 0 0- K Fng THAI COCIT. HAS BEEN EXCE-CEC \u00C2\u00ABT STEP 0 C A T , \" , F X M 3 \u00C2\u00BB * * * \u00C2\u00BB * \u00C2\u00BB * * D I S T R I B U T I O N O F S P E C I S S I N W A T E R sTfflB 74HRL-1V44 A T A S U L P H A T E C o N C C F 1 0 - A M o l a l T E M P E R A T U R E ( K E L V I N ) O F T H I S R U N IS 298.15 .PRESSURE (EAQ.S) C T H I S - U N I S . . . . . . . . . . ...1.00. M X I H U M N U M B E R O F STEPS I S 1 M J V 3 F R I F S T F \u00C2\u00B0 S E E ' K E E N E A C H P R I N T C U T I S . . . 0 tCN C M O S \" ) F O R E L E C T R I C A L B A L A N C E IS CA\u00C2\u00AB- + j_QkS...-.\u00C2\u00A3F_ S O L V J..NT { - 2 0 I N S Y S T . E M . . I S 55. 508250 . * \u00C2\u00BB \u00C2\u00BB * * * * * * . . \u00C2\u00AB * I N I T I A L S C L U T 1 C N C O N S T R A I N T S * * \u00E2\u0080\u00A2 * \u00C2\u00BB * * * * \u00C2\u00BB \u00E2\u0080\u00A2 0 . 1 6 & C O 0 ) 0 E - O 4 M O L A L I T Y cu*+ C U ( 1 ) ( A O U E O U S S P E C I E S ) 0 . 5 C S C O O O O E - C 5 M O L A L I T Y , 0 . 7 , \u00C2\u00A3 3 C O . C 3 C E - C ' . . . M O L A L I T Y . F E + + F E U ) N M 1 ) ( A C U E O U S ( A Q U E O U S S P E C I E S ) S P E C I E S ) 0 . 5 9 7 0 0 0 0 0 E - 0 6 M C L A L I T Y IH** Z N ( 1 ) ( A C U E O U S S P E C I E S ) 0 . 6 2 5 C 0 C 0 0 E - O 3 O . 2 C 0 C O O 0 O E - O 3 . . . M O L A L ! T Y . M P _ L * L . ! . T Y . \u00E2\u0080\u009E _ _ C A + + F C C 3 -C A ( 1 ) H ( 1 ) C ( 1 1 0 ( 3 ) ( A O U E O U S 1 A C U E O U S S P E C I E S ) S P E C I E S ) - 0 . 6 2 0 G 0 C 9 C S + 0 1 L O G A C T . H < - H ( l ) ( A C U E O U S S P E C I E S ) O . 6 7 6 C O 0 0 0 S - O 3 - 0 . . . \u00C2\u00AB J C O 0 _ 0 0 F _ 0 2 M O L A L I T Y I D \u00C2\u00A3 _ _ C T . . _ _ S O i \u00E2\u0080\u0094 O X Y G E N S ( 1 ) C ( 4 ) G A S 0 ( 2 ) ( A O U E O U S ( G A S ) S P E C I E S ) DISTRIBUTION OF SPECIES IN hATSR SAI\u00C2\u00BBPIE 74-RL-1444 AT A SULPHATE CONC OF 10- A Molal DISTRIBUTION OF SPECIES CALLED AT STEP SPECIES FE+ + FE + \u00E2\u0080\u00A2 + .' N t i _ ZNn-~ CU + S--S 0 4 \u00E2\u0080\u0094 CH-H + H20 02(AO) CAC.03 -.CJJ1Q.4 7.NSQ4 HS 04-HS- H2S HCC3-_H2C.r3_ FE(QH)+ M C L A L I T Y , 66? LCG MCL 0. I0I4OF-05 0. 12353~-20 .0.78300^-06 0.24556F-06 0. 16600E - 0 4 0\u00E2\u0080\u009E37674\"-C9 I 7 0. 3093 A 0 . fc 21 1 S _C\. .7.6.7 70f-08 0. 17252'.:-C7 0.6fc47IS-0\u00C2\u00AB 0.555 0 3F+02 0. 33 3 e l ~ - 6 9 0.40947^-08 .0.45036\"-04 O. 35144^-06 Oc 3I954E-07 0.32773~-C9 0. 20 21 EE-08 0. 86933F-04 0. 1 1 3 ? l E - 0 3 Oo 7596CP-C7 -5.994 -20.890 -6.106 -6.6 10 -4.78C r . 5 . A 2 4 _ -17.092 -3.2C0 .-8-115 -7.763 -6. 177 I_.74 4_ -69.470 -8.388 -4.346.. -6.454 -7.495 -9.484 -8. 654 -4.061 _ -3.947_ - 7 . 119 ACTIVITY 0.81472F-06 0.80493E-21 0 . 629CS--C6_ G.1S729E-06 C. 1567CE-04 0.64844E-17 C.5C313F-03 _0.61363E-.08 0. 16300E-07 C. 63096^-06 JUS52SlE . t J 5 0 _ 0.3388 1E-69 C. 4CS77E-C8 0.45068E-04 C . 3 5 1 6 5 r - C 6 0.302C6E-C7 .-0..3096.6F_-i_09_ 0.20232E-P8 0. 8226 IE-04 0. 1 1309F-03 0. 7 1 8 C 5 E - 0 7 ACUECUS SPECIES LOG ACT ACT CCSF \u00E2\u0080\u00A23. 273 0. 80344g*00_ -6.085 -21.094 -6. 201 -6.705 -4.805 -5.5 IS -17.188 -3.298 -8.212 -7.788 -6.200 ^0,_CO_C_ -69.470 -8. 387 .-4.346. -6.454 -7. 52C -9.505 -8.694 -4.C85 -3.947 -7. 144 C. 0. 0. 0. 0. X-0 . c. c. b. 0. J3 . 0. 0. G. 0. lOOCOEfOl 100C7E+01 lQ.OCJFt-01.. 100C7E+01 ^452?E+CC 5448TEfCO LG \u00C2\u00ABCT C GRA^S/KGK H20 \u00C2\u00A3C344EtCQ -C 62434S*03 -0 60344E+00 -0 6C344E4-C0 -C 944C0E+00 -0 .S0344E\u00C2\u00BBCO -C -0.095 .C95 .205 .095 \u00E2\u0080\u00A2 C55 .025 .095 6007CE+C0 -C 797855*00 -C TS.5 2CE+C0 zS 9 4 A e 7 e \u00E2\u0080\u00A2 c d -c S4922E*00 -0 1601.S-C1 -1 . C57 .098 .097 \u00E2\u0080\u00A2 C25 .023 . 744 C C C c -C -C 1000 7E + 01 0 '45T1E+CC -0 If 0C7E\u00C2\u00BBC1 C S4525E+C0 . C .000 \u00E2\u0080\u00A2 C O O .coo \u00E2\u0080\u00A2 C24 .000 \u00E2\u0080\u00A2 C24 .COO 0.26589E-0. 56631E-C. 720C1E-C.43016E-C. 16052E-C. 1C3 4 7E-C.23938E-01 04 IS 04 C4 C2 07 0. 25967C--0.60574E-_C.46069E-C. 29340E-0.67001 E-C. IQOQOi 15 01 06 0 6 06 04 0. 1C842E-0.409 84E-.0. 61313E-C. 56734E-0.31018E-C.10839E-67 \u00E2\u0080\u00A206 02 C4 05 C7 -0.024 0.68902c-0. 53075S-_0. 7COS2E-0. 5 5 341 E-07 02 G2 PPM 26.586 C. 60. 0, c. 0, 999893, 057 000 043_ 016 055 O O P 000 568 000_ COO 001 163 000 000 131_ 057 00 3 OOP COO 307 008 05 C. 5 , 7. 0.006 LCG FPM 1 .425 -1.247 -16.143 -1.266 -1.795 0. C23 -4.621 -12.586 1. 782 -3 .337 -3.533 -3.174 6 .000 -64.565 -3.287 _ 0 . 7 8 8 -1.24 6 -2.508 -4.565 -4.162 0.725 __C.846_ -2.257 ICN IC 2 E - 0 2 ELECTRICAL BALANCE = -0.665814C--13 5ASES NAME LOG K ACTIVITY LOG ACTIVITY OXYGEN GAS CARBON D I O X I D E _STF jy SULFUR GAS HYCROGEN SULFIDE HYC~CC~N GAS METHANE 0.0 -7.83540 _U_5 0 51,7_ 192 .34551 I25.01C49 __.4.1.6 6C.2.2_ 135.90718 0. 21522E-66 0.35531E-02 J ^ n i 4 J f i i 0 j _ 0.567385-24 G.15552E-07 ..C..388 83E-.Ce . 0 .64268E-13 \u00E2\u0080\u00A266. 5CCCC -2.4 4S3 5 ,__l.JC?_9_ -24. .4.12 -7.70381 _ -8.41C24 - 13. 1S.CC THE LCG K FCP ECRNITE HAS BEEN EXCESOEC AT STEP C LOG K = 499.7395878 LCG C = 556.4226930 "@en . "Thesis/Dissertation"@en . "10.14288/1.0052874"@en . "eng"@en . "Geological Sciences"@en . "Vancouver : University of British Columbia Library"@en . "University of British Columbia"@en . "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en . "Graduate"@en . "Secondary dispersion of transition metals through a copper-rich bog in the Cascade Mountains, British Columbia"@en . "Text"@en . "http://hdl.handle.net/2429/21805"@en .