Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Geology of the Island Copper mine, Port Hardy, British Columbia Cargill, D. George 1975

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1975_A1 C37_4.pdf [ 21.05MB ]
Metadata
JSON: 831-1.0052718.json
JSON-LD: 831-1.0052718-ld.json
RDF/XML (Pretty): 831-1.0052718-rdf.xml
RDF/JSON: 831-1.0052718-rdf.json
Turtle: 831-1.0052718-turtle.txt
N-Triples: 831-1.0052718-rdf-ntriples.txt
Original Record: 831-1.0052718-source.json
Full Text
831-1.0052718-fulltext.txt
Citation
831-1.0052718.ris

Full Text

QEOLOGY OF THE "ISLAND COPPER" MINE, PORT HARDY, BRITISH COLUMBIA  by  D. George C a r g i l l B.A.Sc., U n i v e r s i t y o f T o r o n t o , 1967. MSc,  Queens U n i v e r s i t y ,  1970.  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n t h e Department of Geological Sciences  We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t h e r e q u i r e d jitanda^JB  THE UNIVERSITY OF BRITISH COLUMBIA March, 1975.  In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may by his representatives.  be granted by the Head of my Department or  It is understood that copying or publication  of this thesis for financial gain shall not be allowed without my written permission.  Department of  G e o l n a i n a l  S n i f t n n P s  The University of British Columbia Vancouver 8, Canada  Date  23/3/75  ii. ABSTRACT  The  I s l a n d Copper d e p o s i t a t P o r t Hardy,  200 m i l e s northwest  o f Vancouver, B. C.,  approximately  c o n s i s t s o f two  zones w i t h t o t a l r e s e r v e s o f 280,000,000 tons of 0.52 copper and  0.029 p e r c e n t molybdenite.  Ore  percent  zones o c c u r i n  J u r a s s i c a n d e s i t i c r o c k s i n the hanging w a l l and a q u a r t z - f e l d s p a r porphyry dyke.  ore  footwall of  B r e c c i a s w i t h v o l c a n i c and  i n t r u s i v e fragments cap the dyke and occur a l o n g the margins. C h a l c o p y r i t e and molybdenite  occur i n a l l r o c k s , but ore  grade c o n c e n t r a t i o n s are r e s t r i c t e d t o v o l c a n i c r o c k s and marginal breccias. The r o c k s have been s u b j e c t e d t o c o n t a c t thermal metamorphism and  t o hydrothermal  alteration.  The  metamorphic  a u r e o l e can be s u b d i v i d e d i n t o an i n n e r zone, a d j a c e n t t o the dyke, c h a r a c t e r i z e d by b i o t i t e and magnetite; t r a n s i t i o n a l zone c h a r a c t e r i z e d by c h l o r i t e ; c h a r a c t e r i z e d by e p i d o t e . inner  ( b i o t i t e ) zone and  an i n t e r m e d i a t e , and an o u t e r zone  The ore zone i s a s s o c i a t e d w i t h the the i n n e r p a r t of the i n t e r m e d i a t e  ( t r a n s i t i o n a l ) zone. The hydrothermal b r e c c i a s and  a l t e r a t i o n which o c c u r s i n v o l c a n i c r o c k s ,  the porphyry  s e r i c i t e , p y r o p h y l l i t e and  dyke i s c h a r a c t e r i z e d by f o r m a t i o n o f a k a o l i n group m i n e r a l .  Pyrophyllite  i s l a r g e l y r e s t r i c t e d to th'e b r e c c i a which caps the dyke. S e r i c i t e and the k a o l i n group m i n e r a l ( s ) occur i n the m a r g i n a l b r e c c i a s and i n s e r i c i t e envelopes on q u a r t z v e i n s and open f r a c t u r e s c u t t i n g v o l c a n i c rocks and  the porphyry  dyke.  There are f i v e stages of c h a l c o p y r i t e d e p o s i t i o n and stages o f molybdenite  deposition.  However, f i e l d  evidence  three  iii. supported by s t a t i s t i c a l  study i n d i c a t e s t h a t the f i r s t  stage  of copper d e p o s i t i o n accounts f o r the b u l k o f metal i n the orebody.  Most o f the c h a l c o p y r i t e was d e p o s i t e d b e f o r e the  bulk o f the molybdenite. GEOLOG format proved a q u i c k and e f f e c t i v e method of r e c o r d i n g w a l l r o c k a l t e r a t i o n observed i n d r i l l t i c a l study o f c o r r e l a t i o n ,  core.  Statis-  between abundance o f a l t e r a t i o n  m i n e r a l s and copper and molybdenite grades, y i e l d e d i n f o r m a t i o n on the importance o f d i f f e r e n t stages o f s u l p h i d e d e p o s i t i o n to the ore zone.  However a knowledge o f age  r e l a t i o n s o f a l t e r a t i o n and o r e m i n e r a l s was e s s e n t i a l interpretation  of the s t a t i s t i c a l  results.  t o an  iv. ACKNOWLEDGEMENTS  The writer greatly appreciated the enthusiastic cooperation and assistance provided by the s t a f f of Utah Mines Ltd.,  E. S. Rugg and M. J . Young of the Exploration Department  and J. Lamb of the Island Copper D i v i s i o n were e s p e c i a l l y helpful.  Utah Mines Ltd. provided f i n a n c i a l support for both f i e l d  and laboratory study. Dr. K. E. Northcote of the B. C. Dept. of Mines and Dr. J. E. Muller of the Geological Survey of Canada took part i n many h e l p f u l discussions of the geologic s e t t i n g of the deposit. The l a t e Drs. J . A. Gower and W. H. White, the i n i t i a l supervisors of the study, greatly stimulated the writer's i n t e r e s t i n porphyry copper deposits. Dr. A. J . S i n c l a i r ' s advice on treatment and i n t e r p r e t a t i o n of s t a t i s t i c a l data i s greatly appreciated. Dr. A. Soregaroli assumed supervision of the completion of the study and his encouragement and advice contributed greatly to the study.  Dr. K. C. McTaggart made suggestions  for improve-  ment of the o r i g i n a l manuscript. The writer g r a t e f u l l y acknowledges a National Research Council Scholarship for 1969-70 and 1970-71.  V.  CONTENTS  Page CHAPTER 1. INTRODUCTION Location  i  P r e v i o u s G e o l o g i c Work  i  Scope o f the Present I n v e s t i g a t i o n  3  CHAPTER 2 .  REGIONAL GEOLOGY  4  Introduction  4  V o l c a n i c and Sedimentary Rocks  7  . Karmutsen Formation  7  Quatsino-Formation  g  Parsons Bay Formation  8  Harbledown Formation  9  Bonanza V o l c a n i c s  IQ  Cretaceous Rocks  11  I n t r u s i v e Rocks  12  Stocks  12  Quartz F e l d s p a r Porphyry Dykes  12  F e l s i c Dykes and S i l l s  12  A n d e s i t e Dykes  13  B a s a l t - D a c i t e Dykes  13  Regional Structure  13  Bedding  14  Faults  "  M i n e r a l Deposits and Regional A l t e r a t i o n  CHAPTER 3.  MINE GEOLOGY  Introduction  14' 14  19 19  vi. Stratigraphic Position  '  Lithology  Page 19 24  V o l c a n i c Rocks  24  Q u a r t z - F e l d s p a r Porphyry Dyke  27  Intrusive Breccias  29  Pyrophyllite Breccia  29  Marginal Breccia  30  "Yellow Dog"  31  Breccia  Formation o f the I n t r u s i v e B r e c c i a s Cretaceous Sedimentary Rocks S t r u c t u r a l Geology  32 35 35  Bedding  35  Fractures  37  Faults  37  Veins  39  S i z e and Geometry o f the Ore Zone  44  S u l p h i d e and Oxide M i n e r a l o g y  47  *CHAPTER 4.  Introduction  47  Chalcopyrite  47  Molybdenite  47  Pyrite  50  Sphalerite  52  Magnetite  52  Hematite  53  Leucoxene  53  COMPUTER ANALYSIS  54  Introduction  54  Data C o l l e c t i o n  54  Vll.  Page Data Treatment  56  Results  58  Interpretation  58  of Results  Correlation Parameters  Between Grade and Other  Importance o f .the S u l p h i d e Stages t o the Ore Zone  Mineralization  58 65  Importance o f the Copper-Molybdenum Correlation  67  E f f i c i e n c y o f "GEOLOG" Logging  68  CHAPTER 5.  69  HYDROTHERMAL ALTERATION  Introduction  69  A l t e r a t i o n Stages  69  A l t e r a t i o n Zones  70  C o n t a c t Thermal Metamorphism Biotite  73  Zone  Transistion  78  Zone  80  E p i d o t e Zone  84  Wall-rock A l t e r a t i o n S e r i c i t e and C h l o r i t e Sericite  73  Zone  84 89  Zone Zone  95  c "Yellow Dog" Zone  100  Pyrophyllite  R e l a t i o n s Between A l t e r a t i o n Type and  104  Sulphide D e p o s i t i o n Surficial  Alteration  Formation o f t h e A l t e r a t i o n Zones  106 108  Introduction  108  Environment o f Formation  108  Contact Thermal Metamorphism  109  VX11.  Page 116  Wall-rock A l t e r a t i o n  CHAPTER 6.  FORMATION OF THE ISLAND COPPER '  125  DEPOSIT Models o'f Formation of Porphyry Copper  125  Deposits A Tentative Model f o r the Formation of the Island Copper Deposit Step One Step Two  128  •  128  °  129  Step Three  CHAPTER 7.  131  CONCLUSIONS  132  REFERENCES  134  APPENDICES  143  A. "GEOLOG"  143  B. Data Processing  154  C. S t a t i s t i c a l Data f o r : Section 195  169  Section 187  176  Section 179  182  Section 171  188  Section 163  194  Section 155  200  Section 147  r  206  IX.  LIST OF TABLES Page Table  2-1  Table of Formations  2- 2  Classes of M e t a l l i f e r o u s  15  Deposits 3- 1  Tentative Vein C o r r e l a t i o n  40  3- 2  Rhenium Content o f Some Porphyry Copper D e p o s i t s C o r r e l a t i o n Between Grade and Alteration Intensity  51  4- 1  59  4- 2  Summary o f U s e f u l C o r r e l a t i o n Results  63  5- 1  M i n e r a l Assemblages - B i o t i t e A l t e r a t i o n Zone  77  5-2  M i n e r a l Assemblages - T r a n s i s t i o n A l t e r a t i o n Zone  79  5-3  M i n e r a l Assemblages - E p i d o t e A l t e r A t i o n Zone *  81  5-4  M i n e r a l Assemblages - C h l o r i t e S e r i c i t e A l t e r a t i o n Zone  85  5-5  M i n e r a l Assemblages - S e r i c i t e A l t e r a t i o n Zone  90  5-6  M i n e r a l Assemblages - P y r o p h y l l i t e A l t e r a t i o n Zone  96  5-7  M i n e r a l Assemblages - "Yellow A l t e r a t i o n Zone  5-8  Temporal R e l a t i o n s Between Stages o f A l t e r a t i o n and S u l p h i d e D e p o s i t i o n  105  5-9  M i n e r a l Assemblages i n C l a y S i z e Range  107  5-10  Summary o f the C h a r a c t e r i s t i c s o f the A l t e r a t i o n Zones V o l c a n i c Rocks  113  5-11  Summary of the C h a r a c t e r i s t i c s o f the A l t e r a t i o n Zones Q u a r t z - F e l d s p a r Porphyry  117  A-l  Coding Data F o r M o d i f i e d "GEOLOG" Sheet  14 8  A-2  L e t t e r Rock Type Code  152  Dog"  101  X.  LIST OF FIGURES Page F i g u r e 1-1  L o c a t i o n Map  2  2-1  Regional  g  2- 2  Mines and M i n e r a l Occurences  26  3- 1  I s l a n d Copper Mine - Geology  21  3-2  I s l a n d Copper P i t - Geology  22  3-3  Generalized  23  3-4  I s l a n d Copper Mine - S t r u c t u r e  26  3-5  I s l a n d Copper P i t - S t r u c t u r e  3g  3-6  Sketches I l l u s t r a t i n g Age R e l a t i o n s o f Veins W i t h i n the Ore Zone  43  3- 7  Generalized  45  4- 1  I s l a n d Copper Mine - L o c a t i o n o f Cross-Section  55  4- 2  G e n e r a l i z e d S e c t i o n Showing A l t e r ation Divisions  57  5- 1  I s l a n d Copper Mine - A l t e r a t i o n Zones  71  5-2  G e n e r a l i z e d S e c t i o n Showing A l t e r a t i o n Zones  72  5-3  Schematic Diagram o f S e r i c i t e Envelopes i n the Q u a r t z - F e l d s p a r Porphyry  91  5-4  Schematic Diagram o f a S e r i c i t e Envelope i n V o l c a n i c Rocks  91  5-5  Geology  S e c t i o n Showing Geology  S e c t i o n Showing Ore Zone  ' S p a t i a l R e l a t i o n s Between A l t e r a t i o n and Sulphide D e p o s i t i o n  105  5-6  Schematic Diagram Showing D i s t r i b u t i o n of A l t e r a t i o n Minerals Contact Metamorphism  110  5-7  T h i r t e e n A n a l y s e s o f Bonanza V o l c a n i c Rocks o f an ACF P r o j e c t i o n o f the A l b i t e - E p i d o t e H o r n f e l s F a c i e s  111  5-8  Chemical V a r i a t i o n s Between A l t e r a t i o n Zones i n the V o l c a n i c Rocks  114  Schematic Diagram o f E a r l y A l t e r a t i o n Zones Schematic Diagram Showing D i s t r i b tion of A l t e r a t i o n Minerals Wall-rock A l t e r a t i o n - Schematic Diagram Showing D i s t r i b tion of A l t e r a t i o n Minerals "Yellow Dog" Zone Experimental Studies Relating t o Hydrothermal A l t e r a t i o n Chemical V a r i a t i o n s Between A l t e r a t i o n Zones i n the Q u a r t z - F e l d s p a r Porphyry " A Schematic Comparison o f A l t e r a t i o n and M i n e r a l i z a t i o n i n M a f i c and I n t e r mediate Rocks Idealized Cross-Section of a Typical, Simple Porphyry Copper D e p o s i t Showing i t s P o s i t i o n a t the Boundary Between P l u t o n i c and Volcanic.. Environments "GEOLOG" Format M o d i f i e d "GEOLOG" Format Used a t I s l a n d Copper  LIST OF PLATES  Lithologies Polished  i n the P i t Area  Sections  Biotite Alteration  Zone  Epidote A l t e r a t i o n  Zone  Chlorite-Sericite Alteration Sericite Alteration  Zone  Pyrophyllite Alteration  Zone  "Yellow Dog" A l t e r a t i o n  Zone  Zone  1. GEOLOGY OF THE ISLAND COPPER MINE; PORT HARDY, B.C.  CHAPTER 1:  INTRODUCTION  '  LOCATION The I s l a n d Copper mine i s on Rupert I n l e t a p p r o x i m a t e l y seven m i l e s south o f the town o f P o r t Hardy on the n o r t h e r n p a r t o f Vancouver  Island  (Figure 1-1).  The mine i s a c c e s s i b l e  by p u b l i c roads from P o r t Hardy or by sea through Quatsino Narrows i n t o Rupert I n l e t .  Barge and f r e i g h t e r docks a r e a t  the mine s i t e . E l e v a t i o n s on the p r o p e r t y range from sea l e v e l t o 500 feet.  The area i s d e n s e l y timbered and undergrowth  i s thick.  Annual p r e c i p i t a t i o n , which i n c l u d e s one or two f e e t of snow, n o r m a l l y averages s e v e n t y - f i v e i n c h e s .  Yearly  temperature  range i s 20°F t o 80°F.  PREVIOUS GEOLOGIC WORK Dawson Vancouver  (188 7) p u b l i s h e d the f i r s t maps o f Northern  I s l a n d as p a r t o f a c o a s t l i n e r e c o n n a i s a n c e c a r r i e d  out i n 1886.  More r e c e n t l y , O'Rourke (1962) d e s c r i b e d the  geology and the ore d e p o s i t s o f the a r e a i n an u n p u b l i s h e d study f o r Utah Mines L t d .  Muller  (1970, 1973) mapped the  a r e a i n t h e summers o f 1968 and 1969 as p a r t o f t h e Geologi c a l Survey o f Canada'S-mapping program. 1972,  Northcote  (1970,  1973) mapped an e i g h t - m i l e - w i d e s t r i p n o r t h of Rupert  and Holberg I n l e t s a t one m i l e t o the i n c h  ( f o r the B.C.  Department o f Mines) d u r i n g the summers o f 1968, 1969 and 1970  and d e s c r i b e d the g e n e r a l geology and e x p l o r a t i o n h i s t o r y o f the I s l a n d Copper d e p o s i t .  • ••  - SCOPE OF THE PRESENT. INVESTIGATION  The w r i t e r spent nine months on the I s l a n d Copper p r o p e r t y d u r i n g the summers o f 1970, 1971 and 1972. he mapped outcrops and p i t exposures. approximately  During t h i s  time  In a d d i t i o n , he r e l o g g e d  40,000 f e e t o f core i n d e t a i l , u s i n g a m o d i f i e d  "GEOLOG" format  (Blanchet and Godwin, 1972).,  Approximately  70,000 f e e t o f a d d i t i o n a l core were examined i n l e s s  detail.  M i n e r a l o g y and temporal r e l a t i o n s o f the a l t e r a t i o n m i n e r a l s were e s t a b l i s h e d u s i n g t h i n - s e c t i o n s , p o l i s h e d s e c t i o n s and s l a b s , and X-ray d i f f r a c t i o n t e c h n i q u e s . of the study 300 t h i n - s e c t i o n s , and approximately  During the course  65 p o l i s h e d s e c t i o n s and s l a b s ,  550 X-ray d i f f r a c t i o n p a t t e r n s were examined.  A s t a t i s t i c a l study o f the c o r r e l a t i o n between a l t e r a t i o n , mineralogy,  f r a c t u r i n g , c o l o u r index and copper and molybdenum  grades was undertaken format.  f o r t h a t core r e l o g g e d w i t h the "GEOLOG"  CHAPTER 2:  REGIONAL GEOLOGY  INTRODUCTION Vancouver I s l a n d n o r t h o f Holberg and Rupert  Inlets  i s u n d e r l a i n by rocks o f the Vancouver Group, which, as d e f i n e d by Dawson (.1887), i n c l u d e : s i n o Formation, and Crickmay Bay  the Karmutsen Formation,  and the Bonanza V o l c a n i c s .  the Quat-  Bancroft  (1913)  (1928) d e s c r i b e d two a d d i t i o n a l f o r m a t i o n s ,  and Harbledown, as l y i n g between the Quatsino  Parson  Formation  and the Bonanza V o l c a n i c s ( T a b l e 2-1 and F i g u r e 2-1). The Vancouver Group i s i n t r u d e d by r o c k s o f J u r a s s i c and T e r t i a r y age and d i s c o n f o r m a b l y mentary r o c k s .  o v e r l a i n by Cretaceous  The area i s one o f l a r g e - s c a l e b l o c k  w i t h thousands o f f e e t o f displacement.  sedifaults  These a r e o f f s e t  by younger s t r i k e - s l i p f a u l t s w i t h displacements  up t o 2500  feet. Mapping i s h i n d e r e d by p a u c i t y o f outcrop and dense f o r e s t cover.  Exposures a r e l i m i t e d t o roads,  and r a r e c l i f f s .  streams, s h o r e l i n e s  The absence o f d e t a i l e d s t r a t i g r a p h i c i n -  f o r m a t i o n f u r t h e r c o m p l i c a t e s work i n the a r e a .  There a r e no  r e c o g n i z e d marker u n i t s i n v o l c a n i c rocks o f e i t h e r the Karmutsen Formation  o r Bonanza V o l c a n i c s which makes i t extremely  d i f f i c u l t t o e s t a b l i s h displacement Units.  on f a u l t s c o n f i n e d t o these  T h i s i n t u r n makes i t i m p o s s i b l e t o determine the  s t r a t i g r a p h i c t h i c k n e s s o f the f o r m a t i o n s . The p r e s e n t knowledge o f the r e g i o n a l geology F i g u r e 2-1.  The geology  i s shown i n  i s e s t a b l i s h e d on a s m a l l s c a l e , but  a d d i t i o n a l s t r a t i g r a p h i c i n f o r m a t i o n and more exposure i s essential for detailed  interpretation.  1  Table TABLE OF  2-1 FORMATIONS After Muller  Period  Group o r Formation  Tertiary  e t a l . (1973)  Lithology  I Quartz  Eocene  Thickness (feet)  diorite  >Intrusive Contact Cretaceous  Nanaimo Group  u ft  Greywacke, s i l t s t o n e , s h a l e conglomerate, coal  •Disconformable Queen Group  Charlotte  o  Long Arm Formation  Island  -H  Intrusion  — Intrusive  •o Bonanza  Volcanics  Harbledown  Contact-  ^  Parson's  u  Bay  Q u a r t z d i o r i t e , granod i o r i t e , q u a r t z monzonite, quartzf e l d s p a r porphyry ContactA n d e s i t i c t o rhyodacite lava, t u f f , breccia Greywacke,  argil-  tuff  8,250  1,000  -  2,500  Calcareous s i l t stone, shale, greywacke, conglomerate, b r e c c i a  1,000 2,000  Quatsino  Limestone  100 2,500  Karmutsen  Basaltic lava, pillow lava, breccia Limestone  <D  (Includes i n upper p a r t i n t e r volcanic limestone) (1)  200 1,300  Contact  lite, Tnassic  1,000 3,500  Greywacke, conglomerate, s i l t s t o n e  • UnconformaJble Jurassic  Contact'  Greywacke, conglomerate , s i l t s t o n e , shale, coal  •Disconformable  u  400  Harbledown F o r m a t i o n e t a l . (1973).  i s c o r r e l a t e d w i t h Bonanza V o l c a n i c s  10,000 20,000  by  Muller  L E G E N D CRETACEOUS  mm  LOWER  Cretaceous  JURASSIC and  k'-^o'J Island  Sediments  JURASSIC  Bonanza Volcanics  CRETACEOUS  UPPER  Intrusion  TRIASSIC Parsons Bay Formation Quatsino Formation  23  Contact (approximate position)  K  Karmutsen  Formation  Island Copper Mine  Fault, (inferred) Bedding showing dip  NOTE : ON STEREONETS  CONTOUR  INTERVALS ARE NUMBER OF POINTS IN ONE PERCENT OF THE AREA.  Figure  REGIONAL  2-1  GEOLOGY 5mi.  n«110 Bedding Karmutsen Formation  n-26 Bedding Quatsino Formation  n--120 Bedding Parsons Bay Formation & Bonanza Volcanics  n,30 Bedding Cretaceous Sediments  n=lll Air Photo Lineaments  (Map Modified After Muller et al., 1973)  I  VOLCANIC AND SEDIMENTARY ROCKS Karmutsen  Formation  Upper T r i a s s i c Karmutsen Formation,  the o l d e s t r o c k s i n  n o r t h e r n Vancouver I s l a n d , u n d e r l i e approximately the area  of  the f o r m a t i o n has not been measured i n t h i s a r e a , M u l l e r e t estimate  Although  percent  of  al.(1973)  ( F i g u r e 2-1).  fifty  the s t r a t i g r a p h i c t h i c k n e s s  i t t o be 10,000 t o 20,000 f e e t .  Rocks o f the Karmutsen Formation p h y r i t i c and amygdaloidal  a r e predominantly p o r -  b a s a l t flows w i t h r a r e u n i t s o f  p i l l o w b a s a l t , f o r m a t i o n a l b r e c c i a s and t u f f s . a n a l y s e s r e p o r t e d by M u l l e r  S i x chemical  (1971) suggest a range i n comp-  o s i t i o n between t h o l e i i t e s and h i g h alumina  basalts.  This  ' agrees w i t h r e s u l t s o f more e x t e n s i v e a n a l y s e s o f Karmutsen rocks i n the B u t t l e Lake Area Island  (Asihene,  (Surdam, 1967) and on Texada  1970).  Two t h i n bands o f l i m e s t o n e occur near the top o f the Karmutsen Formation.  The d i s t r i b u t i o n o f limestone  i s e r r a t i c and suggests  outcrops  a s e r i e s o f l e n s e s a t the same g e n e r a l  s t r a t i g r a p h i c h o r i z o n r a t h e r than one continuous bed. The  lower c o n t a c t o f the f o r m a t i o n has not been  on the n o r t h e r n p a r t o f Vancouver I s l a n d . w i t h l i m e s t o n e o f the Quatsino  Formation  observed  The upper c o n t a c t  g e n e r a l l y i s sharp  and e a s i l y r e c o g n i z e d , a l t h o u g h l i m e s t o n e s and b a s a l t  locally  are i n t e r b e d d e d over a narrow s t r a t i g r a p h i c i n t e r v a l a t t h i s contact. Low-grade metamorphism o f the Karmutsen Formation has r e s u l t e d i n p e r v a s i v e c h l o r i t i z a t i o n and amygdules w i t h e p i d o t e , carbonate,  rocks filled  z e o l i t e , p r e h n i t e , c h l o r i t e , and q u a r t z  8. Northcote  (1970) reports pumpellyite, which places the rocks  in the subgreenschist, pumpellyite-prehnite-quartz (Muller et a l . ,  facies  1973).  B a s a l t i c rocks along contacts with i n t r u s i v e stocks are in many places converted to dark-coloured hornblende hornfels. Skarn zones occur sporadically along these contacts, both i n the i n t e r - l a v a limestones and i n the basalts.  Quatsino Formation The Upper T r i a s s i c Quatsino Formation,  defined by DoImage  (1919), paraconformably o v e r l i e s the Karmutsen D i s t r i b u t i o n of t h i s unit i s shown on Figure  Formation.  2-1.  Quatsino Formation consists of massive limestone with rare, thin  (2 to 3 inches) interbeds of tuffaceous material.  unit ranges i n thickness from 100 to 2500 feet.  The  The upper  contact with the overlying Parson's Bay Formation i s gradational with limestones grading upward into carbonaceous a r g i l l i t e s . Muller and Rahmani (1970) place the upper contact at the  first  i n f l u x of c l a s t i c material. The rocks of the Quatsino Formation show l i t t l e  evidence  of metamorphism except for contact metamorphic/metasomatic aureoles adjacent to i n t r u s i v e stocks. g r a n i t i c intrusions i s p a r t l y  Limestone near a few  silicified.  Parson's Bay Formation The Parson's Bay Formation of Upper T r i a s s i c age established by Bancroft Island.  The term was  was  (1913) at Parson's Bay on Harbledown  reintroduced by Muller et a l . (1973)  as a substitute for the Upper T r i a s s i c part of the sedimentary d i v i s i o n of the Bonanza Group.  The d i s t r i b u t i o n of the  formation 200  i s shown on F i g u r e 2-1.  Thicknesses  range from  to 2,000 f e e t . The  Quatsino-Parson's Bay  a sequence of grey Formation,  limestone  c o n t a c t i s g r a d a t i o n a l through c h a r a c t e r i s t i c of the  Quatsino  and b l a c k c a l c a r e o u s s i l t s t o n e s , s h a l e s , and  lime-  stones w i t h s h a l e y inter'beds c h a r a c t e r i s t i c of the Parson's Bay Formation. lowest  M u l l e r e t a l . (1973) d e f i n e  s t r a t i g r a p h i c h o r i z o n where b l a c k limestone,  s i l t s t o n e predominate over grey l i m e s t o n e . between Parson's Bay lowest  the c o n t a c t as  The  shale  the  and  upper c o n t a c t  Formation and Bonanza V o l c a n i c s i s the  s t r a t i g r a p h i c h o r i z o n where v o l c a n i c t u f f s , b r e c c i a s  or flows The  occur. Parson's Bay  Formation n o r t h o f the mine c o n s i s t s of  a b a s a l b l a c k limestone s h a l e s and  g r a d i n g upward i n t o b l a c k  calcareous  siltstones.  A b l a c k hydrocarbon w i t h the appearance of t a r o c c u r s l o c a l l y w i t h i n the a r g i l l i t e s as f r a c t u r e f i l l i n g s and bedding p l a n e s .  along  A few beds appear to be s a t u r a t e d w i t h  the  hydrocarbon. On a r e g i o n a l s c a l e the rocks are unmetamorphosed. e f f e c t s adjacent  to g r a n i t i c i n t r u s i o n s have not been  Contact recorded.  Harbledown Formation The Lower J u r a s s i c Harbledown Formation was Crickmay and  defined  by  (1928) on the b a s i s o f mapping on Hanson, Harbledown  Swanson I s l a n d s .  term to d e s i g n a t e  M u l l e r e t a l . (1973) have r e i n t r o d u c e d  the Lower J u r a s s i c a r g i l l i t e - g r e y w a c k e  sequence on the i s l a n d s i n Queen C h a r l o t t e Sound.  They have  c o r r e l a t e d these rocks w i t h the Bonanza V o l c a n i c s o f western  the  Vancouver I s l a n d . The  l i t h o l o g y o f the u n i t i n i t s type l o c a l i t y i s dom-  inantly a r g i l l i t e Parson's  and i s d i s t i n g u i s h e d from rocks o f t h e  Bay Formation  by i t s non-calcareous  character.  Bonanza V o l c a n i c s The  name "Bonanza Subgroup" o r i g i n a l l y was a p p l i e d t o sed-  imentary and v o l c a n i c r o c k s o v e r l y i n g t h e Quatsino Formation on the west s i d e o f Bonanza Lake  (Gunning,  (1973) have r e s t r i c t e d t h e term  Muller et a l .  "Bonanza" t o v o l c a n i c rocks  l y i n g Lower J u r a s s i c o r Upper T r i a s s i c name "Bonanza V o l c a n i c s " i s used  1932).  sedimentary  rocks.  f o r t h i s formation.  over The  The d i s -  t r i b u t i o n of t h e v o l c a n i c r o c k s i s shown i n F i g u r e 2-1. The base o f the Bonanza V o l c a n i c s i s the lowest l a v a o r v o l c a n i c b r e c c i a o v e r l y i n g the Parson's 1973).  Bay sediments  (Muller e t a l  Bonanza V o l c a n i c s a r e o v e r l a i n d i s c o n f o r m a b l y by C r e t -  aceous sedimentary, r o c k s . Few  outcrops and abundant f a u l t s make i t extremely  to measure the t h i c k n e s s o f t h i s u n i t . imate,  i s 8,500 f e e t  (Muller e t a l . ,  difficult  The b e s t a v a i l a b l e  est-  1973).  The Bonanza V o l c a n i c s f o r m a t i o n c o n s i s t s o f bedded and massive  t u f f s , f o r m a t i o n a l b r e c c i a s and r a r e amygdoloidal  p h y r i t i c flows.  P o r p h y r i t i c dykes and s i l l s  p a r t o f the u n i t . the r o c k s , based  Northcote  and p o r -  i n t r u d e the lower  (1970) r e p o r t s the composition o f  on r e f r a c t i v e i n d i c e s d e t e r m i n a t i o n o f g l a s s  beads made by f u s i n g powdered rock samples, t o be b a s a l t t o a n d e s i t e through  t h e b u l k o f the s e c t i o n , w i t h some r h y o d a c i t e  i n t h e upper p a r t .  T h i s agrees w i t h t h e r e s u l t s o f n i n e t e e n  c h e m i c a l a n a l y s e s f o r samples from an 8,500 f o o t  11. s e c t i o n of the Bonanza V o l c a n i c s Formations r e p o r t e d by M u l l e r e t a l . (1973). Regional  metamorphism w i t h i n the Bonanza V o l c a n i c s i s v e r y  low grade, p o s s i b l y z e o l i t e f a c i e s . a l b i t i z e d and s a u s s e r i t i z e d . occur' w i t h i n the matrix and  i n amygdules.  are  hematitized.  P l a g i o c l a s e commonly i s  C h l o r i t e , epidote  and laumonite  of v o l c a n i c breccias, i n v e i n l e t s ,  Coarse i n t r a f o r m a t i o n a l b r e c c i a s  B i o t i t e and amphibolite  h o r n f e l s e s occur  locally  adjacent  t o stocks  which i n t r u d e the Bonanza V o l c a n i c s . "Pyrobitumen", a b l a c k hydrocarbon e r r a t i c a l l y d i s t r i b u t e d wi'thin the Bonanza rocks,  g e n e r a l l y occurs  as f r a c t u r e  or i n the c e n t r e s of z e o l i t e - c a r b o n a t e v e i n s .  fillings  Its distribution  i s not r e l a t e d to the p o s i t i o n o f the i n t r u s i v e s t o c k s . The Lower J u r a s s i c age of the Bonanza V o l c a n i c s l i s h e d by f o s s i l s i n interbedded  sediments.  In a d d i t i o n ,  potassium-argon whole rock dates r e p o r t e d by Northcote suggest a l a t e J u r a s s i c to e a r l y Cretaceous age. considered  i s estab-  (1972),  Northcote  the whole rock ages as minimum ones and b e l i e v e s the  v o l c a n i c rocks are s l i g h t l y o l d e r than i s suggested by these ages.  Cretaceous Rocks Cretaceous rocks are d i v i d e d i n t o t h r e e u n i t s : Longarm Formation, Queen C h a r l o t t e Group and Suquash Formation (Muller e t a l . , 1973).  These u n i t s are d e s c r i b e d  i n d e t a i l by  Muller. Cretaceous rocks  l i e disconformably  They c o n s i s t of w e l l - i n d u r a t e d  coarse  on Bonanza V o l c a n i c s .  conglomerates,  12. s i l t s t o n e s , sandstones  and greywackes w i t h o c c a s i o n a l small>  d i s c o n t i n u p u s c o a l seams.  M u l l e r e t a l . (1973) b e l i e v e t h a t  they formed d u r i n g a molasse-type  sedimentation  cycle.  INTRUSIVE ROCKS Stocks A northwest-trending the e a s t end of Rupert 2-1).  zone of i n t r u s i v e s t o c k s extends  from  I n l e t t o Queen C h a r l o t t e Sound ( F i g u r e  These s t o c k s range i n composition  from d i o r i t e to q u a r t z  monzonite and d i s p l a y a wide v a r i e t y of t e x t u r e s . Potassium-argon  age d e t e r m i n a t i o n s r e p o r t e d by  (1972), and Carson  Northcote  (1973) i n d i c a t e t h a t the s t o c k s c r y s t a l l i z e d  d u r i n g the e a r l y to middle J u r a s s i c time  Q u a r t z - F e l d s p a r Porphyry  m.y.)  Dykes  Q u a r t z - f e l d s p a r porphyry the zone of s t o c k s .  (179.5-148  dykes occur a l o n g the south edge of  Because they are narrow ( l e s s than 100  and s h o r t ( l e s s than 500  feet)  f e e t ) , they are not shown i n F i g u r e  2-1.  Dykes are c h a r a c t e r i z e d by c o a r s e , subhedral q u a r t z arid p l a g i o c l a s e phenocrysts  set i n a pink, very f i n e - g r a i n e d ,  quartz and f e l d s p a r m a t r i x . end of Rupert  Phases w i t h i n the stock .at the e a s t  I n l e t , which have t e x t u r e s s i m i l i a r t o the q u a r t z -  f e l d s p a r porphyry  dykes, suggest t h a t the dykes are apophyses  from the s t o c k s .  Radiometric  age d e t e r m i n a t i o n s have not been  made on the dyke r o c k s . 9  F e l s i c Dykes and  Sills  F e l s i c dykes and s i l l s occur around the margins o f some intrusive stocks.  They are l e s s than f i v e f e e t wide and two  or  13. t h r e e hundred  feet long.  These f i n e - g r a i n e d , p i n k ,  r o c k s c u t r o c k s o f the Karmutsen Formation, Formation and the Bonanza V o l c a n i c s . communication,  felsitic  the Quatsino  Northcote ( p e r s o n a l  1971) has noted a s i m i l a r i t y between these  dykes and the rhyodacit.es o c c u r i n g a t the top o f the Bonanza Volcanics.  The dykes have had l i t t l e  e f f e c t on the r o c k s they  intrude.  A n d e s i t e Dykes Dykes o f a n d e s i t i c c o m p o s i t i o n , which c u t the Karmutsen Formation,  the Quatsino Formation and the Parson's Bay Formation,  were f e e d e r s f o r Bonanza v o l c a n i s m . are  l e s s than t e n f e e t wide.  Quatsino and the Parson's  These dykes g e n e r a l l y  They a r e e a s i l y r e c o g n i z e d i n the  Bay Formations, but a r e d i f f i c u l t t o  i d e n t i f y i n v o l c a n i c r o c k s o f the Karmutsen Formation.  B a s a l t - D a c i t e Dykes T e r t i a r y b a s a l t - d a c i t e dykes a r e r e p o r t e d by N o r t h c o t e (1970) as i n t r u d i n g lower Cretaceous sedimentary r o c k s . also r e p o r t s a small plug of s i m i l a r composition lower Cretaceous  He  intruding  sediments.  REGIONAL STRUCTURE  The map a r e a  ( F i g u r e 2-1) i s c h a r a c t e r i z e d by g e n t l y  d i p p i n g beds o f f s e t by a complex p a t t e r n o f f a u l t s .  The  s t r a t a , except f o r the g e n t l e d i p , a r e e s s e n t i a l l y undeformed. F o l d i n g and f l e x u r i n g o f bedding major  faults.  i s observed o n l y a d j a c e n t t o  14.  Bedding Bedding  i s w e l l developed w i t h i n the Quatsino and  Bay Formations.  Bedding  Parson's  i n • v o l c a n i c rocks i s p o o r l y developed.  A l l u n i t s are s t r u c t u r a l l y conformable, w i t h s t r i k e s n o r t h of west and d i p s between 20° and 40° t o the  slightly  southwest.  N o r t h - d i p p i n g beds i n v a r i a b l y are a d j a c e n t to major  faults  and are the r e s u l t of drag.  Faults The area i s one of b l o c k f a u l t s o f f s e t by younger with s u b s t a n t i a l s t r i k e - s l i p movements. of f a u l t i n g ; (Figure 2-1).  northwest,  faults  Three prominent  directions  n o r t h e a s t and e a s t - n o r t h e a s t are r e c o r d e d  N o r t h w e s t - t r e n d i n g f a u l t s are most obvious  p o s s i b l y most important.  These f a u l t s c u t Cretaceous  and  o l d e r rocks and cause r e p e t i t i o n of l a r g e p a r t s of the igraphic section.  and  strat-  Although the s t r a t i g r a p h y i s not e s t a b l i s h e d  s u f f i c i e n t l y to c a l c u l a t e d i s p l a c e m e n t s , the throws of many o f these f a u l t s are s e v e r a l hundred  to thousands  of  Northeast f a u l t s , o f secondary prominence, northwest  s e t and have s t r i k e - s l i p d i s p l a c e m e n t s  hundreds of f e e t .  feet. offset  the  measuring  The e a s t - n o r t h e a s t f a u l t s are p o o r l y developed  and t h e i r age r e l a t i v e to o t h e r f a u l t - s e t s has not been established.  M i n e r a l D e p o s i t s and R e g i o n a l A l t e r a t i o n Mines and m i n e r a l occurences shown i n F i g u r e 2-2 i n t o four  groups:  are d i v i d e d  I  15.  Table  2-2  CLASSES OF METALLIFEROUS DEPOSITS (After K. E, Northcote, i n Muller et a l . , Known or Probable Age  Class  Mid Jurassic  Porphyry Copper  2.  Jurassic and Tertiary  Lead-Zinc Skarn or Replacement i n Limestone  3.  Jurassic and Tertiary  Copper Skarns  Jurassic and Tertiary  1.  Metal  1973)  Example  Mineralogy  Host and Associated Formation  Island Copper  C h a l c o p y r i t e , molybdeni t e , (bornite), magnet i t e , p y r i t e , hematite  Bonanza v o l c a n i c s ; pyroc l a s t i c rocks of andesite and b a s a l t composition. To a l e s s e r extent, b r e c c i a t e d and a l t e r e d q u a r t z - f e l d s p a r porphyry  H.P.H.  S p h a l e r i t e , galena  Limestone of Sicker Group, upper Karmutsen and Quatsino Formations  Cu (Au, Ag, Fe)  Old SportBenson Lake  Chalcopyrite, bornite magnetite  Sicker Group limestone, i n s k a r n i f i e d v o l c a n i c and s e d i mentary rocks at QuatsinoKarmutsen contact. Some dep o s i t s i n Quatsino-Karmutsen limestones  Iron Skarns  Fe  Merry Widow  Magnetite, minor s p e c u l a r i t e and sulphides  Quatsino Formation and/or adjacent s k a r n i f i e d v o l c a n i c and i n t r u s i v e rocks  Upper Triassic  Copper i n Basic Volcanics  Cu  Minnington. Rick  Chalcopyrite, bornite, native copper  Karmutsen Basalt, t u f f breccia  Jurassic and Tertiary  Copper-Bearing Quartz Veins & Shear Zones  Quatsino King  Chalcocite, chalcop y r i t e , (pyrite, p y r r h o t i t e , molybdenite)  Karmutsen Formation, Bonanza V o l c a n i c s , gra..itic rocks  Cu 0.5% MoS 0.029% 2  Pb, (Ag,  Zn, Au)  (Cu)  Cu (Mo/Ag Au, Zn)  and  Structural Control  Associated Alteration  B r e c c i a t i o n i n and adjacent to q u a r t z - f e l d s p a r porphyry i n t r u d i n g Bonanza rocks presumably f o l l o w i n g shear zones.  Epidote, c h l o r i t e , s e r i c i t e , pyrite, b i o t i t e , s i l i c a , kaolin, pyrophyllite, dumortierite, carbonate, laumonite, pyrobitumen  S i l i c i c stocks and q u a r t z - f e l d s p a r porphyry complex.  Silicification,  G r a n i t i c to gabbroic and p o r p h y r i t i c intrusions  2.  skarn  1  I n t r u s i v e (Genetic-Spatial)  3.  L i m e s t o n e - i n t r u s i v e contacts folds, fractures, breccia zones and favourable horizons  S k a r n i f i c a t i o n , epidote, garnet, v a r i o u s other calcium s i l i c a t e s including wollastonite, diopside, a c t i n o l i t e , hedenbergite, e t c . , and i l v a i t e .  J u r a s s i c and T e r t i a r y i n t r u s i v e of v a r i e d composition  4.  Intrusive contacts, folds fractures, stratigraphic c o n t a c t s , b r e c c i a zones  S k a r n i f i c a t i o n as above  J u r a s s i c and T e r t i a r y i n t r u s i v e of v a r i e d composition  May or may not be a s s o c i a t e d with carbonate and/or quartz  None; thought to be generated w i t h i n the v o l c a n i c rocks  Strong s i l i c i f i c a t i o n and/or c a r b o n a t i z a t i o n may or may not be present  G r a n i t i c to gabbroic and porp h y r i t i c intrusions believed to be g e n e t i c a l l y r e l a t e d to these deposits  5.  6.  Amygdaloidal beds, f r a c t u r e s small shears i n b a s i c . v o l c a n i c rocks Narrow shear zones, l a r g e f r a c t u r e s , f r a c t u r e zones near f a u l t s and contacts  F I G . 2-2  MINES and MINERAL OCCURENCES OF NORTHERN VANCOUVER ISLAND (Modified  after  Muller  ef  al.,  16.  1973J  MILLS  legend:  o r  G  o  10  SKARN DEPOSITS  16. 17. IRON 18. 19. 20.  Frances L i t t l e Joe Caledonia Haw Mor North Shore, Lake, Jean Mon, T i CS 1801, 1809, 1910 Caledonia Sun, S t . C l a i r e Ori  SKARN DEPOSITS LEAD-ZINC 21. "A" 22. Haw 24 23. Rain, Main, #1 24. HPH, Main, #1 25. Norman, Contact Creek 26. Laury, Anon 27. Expo 81, Expo 2 02, Bowerman, D i c t a t o r COPPER VEINS 28. Dem (Rupert) 29. CS 495 30. Aird  Copper  (3  Lead-Zinc  O  Copper  O  /ro/7  3/  COPPER IN VOLCANICS 31. Har, Expo 32. Deb 33. Haw 2 6 34. Haw 15 35. Wit, Haw 34, Haw 44 36. Hoi 37. Jay, S e a l 38. S t u a r t j 39. M i l l i n g t o n , S t u a r t 40. AAA #48 41. Lois i 42. CS 6422 1  Copper Veins Skarn 3kam  Skarn  Copper  In  Volcanics  Mineral  A I  I  ^—A |  | v_y  <f  a  COPPER 10. 11. 12. 13. 14. 15.  ED  A D O  v ii  PORPHYRY COPPER DEPOSITS 1. Bay 29, 77, (Yankee G i r l ) 2. Road 3. I s l a n d Copper (Bay) 4. Bay 21 5. Bay 4 6. Bay 7 4 7. Expo #1 8. Hep 9. Red Dog  Porphyry  Q  aZ7  L\  O ^  Occurence  «,  fpresent  Zb/7«  or pasf  of Intense  producer) alteration  17. (1)  Porphyry  (2)  Skarn d e p o s i t s  (3)  Copper M i n e r a l i z a t i o n i n V o l c a n i c Rocks  ( 4 )  Vein deposits  The system o f c l a s s i f i c a t i o n  copper d e p o s i t s  i s t h a t used by Carson  (1968).  Porphyry copper d e p o s i t s on the n o r t h end o f Vancouver I s l a n d are a s s o c i a t e d w i t h bodies o f q u a r t z - f e l d s p a r porphyry i n t r u d e the Bonanza V o l c a n i c s .  which  A l l known porphyry copper  show-  ings a r e w i t h i n a zone o f h y d r o t h e r m a l l y a l t e r e d Bonanza V o l c a n i c s approximately one m i l e wide and f i f t e e n m i l e s l o n g (Figure 2-2). Northcote zone as predominantly  (1970) d e s c r i b e d the a l t e r a t i o n  silicification  i n this  and a r g i l l i z a t i o n w i t h  l o c a l bodies o f p y r o p h y l l i t i z e d b r e c c i a .  Alteration of this  type i s r e s t r i c t e d to the Bonanza V o l c a n i c s . Skarn d e p o s i t s o f copper,  i r o n and l e a d - z i n c a r e a s s o c i a t e d  w i t h i n t r u s i v e r o c k s c u t t i n g l i m e s t o n e s o f the upper Karmutsen Formation,  the Quatsino Formations  and the lower  sequence o f the Parson's Bay Formation and  2-2).  carbonate  (compare F i g u r e s 2-1  Skarns mostly o c c u r a l o n g the l i m e s t o n e - i n t r u s i o n  c o n t a c t , b u t a t some skarn showings i n t r u s i v e r o c k s a r e not exposed.  Contact a l t e r a t i o n c o n s i s t s o f s i l i c i f i c a t i o n  limestone and f o r m a t i o n o f e p i d o t e - a n d r a d i t e - m a g n e t i t e  o f the skarns  l o c a l l y accompanied by hedenbergite and i l v a i t e both i n l i m e stones, and b a s a l t s .  Chalcopyrite, pyrite, bornite,  and galena occur w i t h i n these skarns  sphalerite  (Table 2-2).  The copper showings i n v o l c a n i c rocks a r e r e s t r i c t e d t o the Karmutsen Formation.  C h a l c o p y r i t e , b o r n i t e and n a t i v e  copper o c c u r i n amygdules, f r a c t u r e s and s m a l l s h e a r s .  Associated and  a l t e r a t i o n c o n s i s t s o f minor amounts of carbonate  quartz. Vein deposits  anza V o l c a n i c s  occur i n the Karmutsen Formation, the Bon-  and g r a n i t i c rocks  (Figure  2-2).  C h a l c o c i t e and  c h a l c o p y r i t e w i t h p y r i t e , p y r r h o t i t e , and molybdenite o c c u r i n shear zones, l a r g e f r a c t u r e s arid f r a c t u r e zones near Intense s i l i c i f i c a t i o n  and c a r b o n a t i z a t i o n  w i t h the copper m i n e r a l i z a t i o n .  can be  faults.  associated  19, CHAPTER 3:  MINE GEOLOGY  INTRODUCTION Island Copper mine occurs i n the volcanic section of the Bonanza Volcanics.  Ore zones are i n volcanic rocks i n the  hanging-wall and footwall of a quartz-feldspar  porphyry dyke.  The dyke contains minor amounts of chalcopyrite but very l i t t l e ore-grade material.  ,  A detailed knowledge of the s t r a t i g r a p h i c p o s i t i o n , l i t h o l o g y and s t r u c t u r a l h i s t o r y of a deposit  i s i n many mineral deposits  an obvious prerequisite to a study of the wall-rock a l t e r a t i o n associated  with the deposit.  Stratigraphic p o s i t i o n may give  an i n d i c a t i o n of the depth at which the a l t e r a t i o n formed and from t h i s pressures can be interpreted.  The l i t h o l o g y governs the  i n i t i a l chemical response of the rocks to hydrothermal  conditions.  Fractures and f a u l t s which existed at the time of formation of the deposit  largely control the permeability  of the rocks to  hydrothermal solutions and thus control the extent, the i n t e n s i t y and  the patterns of a l t e r a t i o n . STRATIGRAPHIC POSITION Because of the absence of d e t a i l e d s t r a t i g r a p h i c knowledge  of the Bonanza Volcanics,  i t i s d i f f i c u l t to determine the exact  s t r a t i g r a p h i c p o s i t i o n of the deposit.  However, i t i s possible  to estimate l i m i t s f o r the s t r a t i g r a p h i c p o s i t i o n . F i r s t , the s t r a t i g r a p h i c thickness o f the Bonanza Volcanics must be established.  Muller  feet of Bonanza Volcanics of 8,000 feet.  (1970) measured a section of 8,500  and Jeletsky  (1969) reports a section  These figures give an i n d i c a t i o n of the order  of  magnitude o f the t h i c k n e s s o f the u n i t .  Considerable  l a t e r a l t h i c k e n i n g and t h i n n i n g may be p r e s e n t i n t h i s  vol-  c a n i c s e c t i o n , b u t these cannot be e s t i m a t e d . Assuming no r e p e t i t i o n o f the s e c t i o n due t o f a u l t i n g , the I s l a n d Copper d e p o s i t i s , on the b a s i s o f geometry, about 5,000 f e e t s t r a t i g r a p h i c a l l y above the lower Bay Formation.  c o n t a c t w i t h the Parson's  However, t h e r e i s l i t t l e  c o n t a c t and the mine a r e a .  outcrop between t h i s  Because t h r e e major n o r t h e a s t  t r e n d i n g lineaments, which may r e p r e s e n t f a u l t s ,  l i e between  the c o n t a c t and the d e p o s i t , e s t i m a t e s o f s t r a t i g r a p h i c based s o l e l y on geometry a r e extremely Surface diamond d r i l l i n g  hazardous.  a t the d e p o s i t has p e n e t r a t e d  1,200 f e e t o f the s t r a t i g r a p h i c s e c t i o n without Parson's Bay Formation. the rocks d r i l l e d ,  position  i n t e r s e c t i n g the  Assuming no r e p e t i t i o n o f s e c t i o n i n  p a r t o f the d e p o s i t formed a t l e a s t 1,200  f e e t above the Parson's Bay  Formation.  L i m i t s t o the d e p o s i t ' s depth o f f o r m a t i o n may be estimated from t h i s d a t a .  Maximum depth would be 6,800 f e e t t h a t i s the  e n t i r e t h i c k n e s s of the Bonanza V o l c a n i c Formation l e s s the 1,200 f e e t i n t e r s e c t e d by d r i l l i n g .  (8,000 f e e t )  The minimum depth  would be zero f e e t as the 1,200 f e e t o f rock i n t e r s e c t e d by drilling  c o u l d r e p r e s e n t the e n t i r e t h i c k n e s s o f the Bonanza  V o l c a n i c s i n the v i c i n i t y o f the mine. l i e s between 1,000 and 5,000 f e e t . by p e t r o l o g i c data d i s c u s s e d  later.  A reasonable  estimate  T h i s e s t i m a t e i s supported  21  i  22  7-SOOM  7. OOP NI  I4JQ0  6  0 Q 0 N  S-SOON  IBffflnj  Island Copper Pit ( O c t . 1972 ) Figure  I.SOON  ~~ Fault Contoct: Definite, Assumed ® 0-16 Sample point I  3-2  G EOLOGY  :  RG.C.  LITHOLOGY V o l c a n i c Rocks The  Bonanza V o l c a n i c s i n the mine area are p a r t o f a  p i l e o f a n d e s i t i c p y r o c l a s t i c r o c k s w i t h wide v a r i a t i o n s i n texture.  These rocks form a b e l t which s t r i k e s N70°W and  d i p s 25° - 30° SW.  Primary  t e x t u r e s o f the v o l c a n i c r o c k s  are i n c r e a s i n g l y more vague as the dyke i s approached and d i s a p p e a r w i t h i n 400 f e e t o f the dyke c o n t a c t F r e s h , u n a l t e r e d r o c k s are l i t h i c lapilli  (Figure 3-3).  tuffs, crystal  tuffs,  t u f f s and f o r m a t i o n a l b r e c c i a s ( P l a t e I , , A,B,C,D,  E; and P l a t e IV., A,B) w i t h r a r e beds o f c h e r t .  These u n i t s  have v e r y l i m i t e d l a t e r a l e x t e n t , which makes i t i m p o s s i b l e t o c o r r e l a t e most i n d i v i d u a l u n i t s between s e c t i o n s 200 f e e t a p a r t . However, an e x c e p t i o n i s a u n i t o f h e m a t i t i z e d b r e c c i a , which i s exposed i n c o r e , a l o n g the shore o f Rupert pit  I n l e t south o f the  and i n the e x c a v a t i o n s f o r f o u n d a t i o n s o f the m i l l  building.  I t has been t r a c e d more than 6,000 f e e t a l o n g s t r i k e on the south s i d e o f the d e p o s i t . Bedding of  and graded-bedding  t u f f s and l a p i l l i  tuffs.  a r e observed  i n good  exposures  B r e c c i a s l o c a l l y show bedding but  tend t o be massive. Few o f the v o l c a n i c r o c k s have r e t a i n e d t h e i r textures.  Textures a r e p r e s e r v e d i n l i t h i c  original  lapilli  and c r y s t a l t u f f s and f o r m a t i o n a l b r e c c i a s .  Lithic  g e n e r a l l y a r e p o r p h y r i t i c sometimes w i t h a t r a c h y t i c Many p o r p h y r i t i c fragments a r e c r y s t a l In  lithic  fragments matrix.  tuffs.  v o l c a n i c r o c k s near the orebody, a l t e r a t i o n i s so i n t e n s e  that i t i s d i f f i c u l t rocks.  tuffs,  t o determine  P l a g i o c l a s e phenocrysts  the o r i g i n a l mineralogy  o f the  are i n v a r i a b l y a l b i t i z e d .  Mafic  25.  PLATE I OUTCROPS AND HAND SPECIMENS A.  Bonanza V o l c a n i c s - F o r m a t i o n a l B r e c c i a M a t r i x and many fragments are c o l o r e d box-car r e d by p e r v a s i v e hematite. S c a l e on outcrop i s one i n c h .  B.  Bonanza V o l c a n i c s - L i t h i c T u f f I n t r i c a t e sedimentary and p o s t - d i a g e n e t i c s t r u c t u r e s are shown by some o f p y r o c l a s t i c r o c k s . S c a l e on o u t c r o p i s one i n c h .  C.  Bonanza V o l c a n i c s - L i t h i c L a p i l l i T u f f T h i s sample i s t y p i c a l o f v o l c a n i c s on the n o r t h w a l l o f the pit. Bedding i s d i f f i c u l t to d i s c e r n b u t fragmental n a t u r e o f rock i s apparent.  D.  Bonanza V o l c a n i c s - L i t h i c L a p i l l i T u f f A t h i n s e c t i o n o f C showing L i t h i c n a t u r e o f fragments  E.  Bonanza V o l c a n i c s - F o r m a t i o n a l B r e c c i a Fragments a r e c o l o u r e d box-car r e d by p e r v a s i v e hematite. M a t r i x i s c o l o u r e d c h a l k y white by z e o l i t e ( l a u m o n t i t e ) .  F.  Q u a r t z - F e l d s p a r Porphyry Phenocrysts o f q u a r t z , p l a g i o c l a s e , and c h l o r i t e pseudomorphing mafic m i n e r a l s a r e c l e a r l y v i s i b l e .  G.  Cretaceous Conglomerate A sample o f conglomerate from Cretaceous o u t c r o p s south o f m i l l buildings.  H.  Cretaceous Sedimentary U n i t Discontinuous c o a l seams i n the Cretaceous  Abbreviations  strata.  Used on the P l a t e  q  -  quartz  cl  -  chlorite  f  -  plagioclase feldspar  26.  m i n e r a l s are almost i n v a r i a b l y _  c h l o r i t i z e d , but pyroxene  and  amphibole phenocrysts pseudomorphed by c h l o r i t e can be r e c o g n i z e d i n some cases.  Quartz phenocrysts. have not been r e c o g n i z e d .  The  m a t r i x of the few samples t h a t were not t o t a l l y a l t e r e d i s a v e r y f i n e - g r a i n e d mass of a l b i t i c  feldspar  laths.  F i n e r - g r a i n e d v o l c a n i c r o c k s appear t o be a combination w a t e r l a i n t u f f s and e p i c l a s t i c v o l c a n i c r o c k s .  B r e c c i a s may  of have  been formed by submarine mud-flow.  Q u a r t z - F e l d s p a r Porphyry  Dyke  A t a b u l a r dyke of q u a r t z - f e l d s p a r porphyry,  2,400 f e e t of  which i s exposed i n the p i t , has been t r a c e d by d r i l l i n g than a m i l e along s t r i k e  ( F i g u r e s 3-1,  3-2).  f o r more  The dyke s t r i k e s  N70°W and d i p s a t 50°NE, approximately a t r i g h t angles to the bedding  i n the v o l c a n i c r o c k s .  t r u e width of 400  Exposure  i n the p i t i n d i c a t e s a  f e e t , which corresponds w i t h  from diamond d r i l l  intersections.  interpretations  However the a c t u a l width of  the dyke i s v a r i a b l e and a c c u r a t e e s t i m a t e s are hampered by a marginal b r e c c i a  ( F i g u r e s 3-1,  centage of dyke fragments.  3-2,  3-3)  containing  a high per-  D i s t i n c t i o n between dyke and  breccia  o f t e n i s d i f f i c u l t i n the p i t and n e a r l y i m p o s s i b l e i n d r i l l core, p a r t i c u l a r l y when both dyke and b r e c c i a are h i g h l y  altered.  The form of the dyke a l s o i s c o m p l i c a t e d by apophyses of q u a r t z f e l d s p a r porphyry extending from the body o f the dyke (Figure 3-2). At the northwest  end of the p i t the dyke i s capped by  pyro-  p h y l l i t e b r e c c i a whereas a t the southeast end of the p i t the dyke plunges under Bonanza V o l c a n i c s . Intense a l t e r a t i o n o f most o f the dyke makes i t d i f f i c u l t  to  28. d e f i n e c l e a r l y the o r i g i n a l c o m p o s i t i o n .  However, the c e n t r a l  p o r t i o n of the dyke, which shows the l e a s t a l t e r a t i o n , i s granodiorite.  Less-altered  bodies of q u a r t z - f e l d s p a r  beyond the map  a r e a a l s o are g r a n o d i o r i t e  (Muller e t a l . , 1973).  The porphyry c o n s i s t s of phenocrysts of q u a r t z plagioclase  porphyry  (5-15%),  (20-30%), and o c c a s i o n a l mafic m i n e r a l s , pseudo-  morphed by c h l o r i t e (5-10%) ( P l a t e I . , F , and P l a t e V., A,B,C) s e t i n a f i n e - g r a i n e d m a t r i x of q u a r t z (10-25%) and potash f e l d s p a r  (15-20%),  plagioclase  (15-25%).  Quartz phenocrysts are the most c h a r a c t e r i s t i c f e a t u r e s the r o c k .  They are l a r g e  of  (4-5mm.), subhedral and show moderate  to s t r o n g embayment a l o n g the margins.  Quartz phenocrysts  r e s i s t a n t to a l t e r a t i o n and p e r s i s t through a l l types and  are degrees  of a l t e r a t i o n . P l a g i o c l a s e phenocrysts are s l i g h t l y s m a l l e r (2-3mm.) than quartz phenocrysts.  They g e n e r a l l y occur i n glomeroporphs.  The  c r y s t a l s are mostly unzoned or normally zoned; but some complex zoning was determine  noted.  Composition  of the p l a g i o c l a s e i s d i f f i c u l t  to  because the phenocrysts g e n e r a l l y are a l t e r e d t o s e r i c i t e  ( P l a t e VI.,H).  In the few specimens where the p l a g i o c l a s e i s r e -  l a t i v e l y u n a l t e r e d , compositions of An 5 t o 15 were o b t a i n e d . However, these g r a i n s everywhere are a s s o c i a t e d c l a s e s and  i t is difficult  with altered plagio-  t o e s t a b l i s h whether these r e p r e s e n t  average compositions or compositions which are more r e s i s t a n t to alteration. M a f i c phenocrysts are a l t e r e d , e i t h e r to c h l o r i t e , e p i d o t e , carbonate, magnetite m i n e r a l s , p y r i t e , and  and leucoxene, o r t o white mica, leucoxene  ( P l a t e V.,  clay  B,C,D,E).  patches o f c h l o r i t e are c l e a r l y pseudomorphs o f e u h e d r a l  Rare  29. ' amphiboles,  b u t most a r e a n h e d r a l .  Most of the f i n e - g r a i n e d m a t r i x o f the dyke i s h i g h l y altered.  However, where r e l a t i v e l y u n a l t e r e d , i t c o n s i s t s o f  a m i c r o g r a n i t i c assemblage of equant q u a r t z , subhedral p l a g i o - • clase  ( a l b i t i c ) and anhedral o r t h o c l a s e .  Orthoclase generally  i s more a l t e r e d than p l a g i o c l a s e , even i n " f r e s h " r o c k s , b u t i t s presence was confirmed by e t c h i n g and s t a i n i n g both hand specimens and t h i n  sections.  Magnetite,  leucoxene  and p y r i t e a r e a s s o c i a t e d w i t h  chlorite  pseudomorphs and p r o b a b l y formed as by-products d u r i n g the a l t e r a t i o n o f the o r i g i n a l m a f i c m i n e r a l s . The dyke e x h i b i t s many c h a r a c t e r i s t i c s o f an e p i z o n a l p l u t o n as o u t l i n e d by Buddington  (1959).  I t i s porphyritic, discordant,  and e x h i b i t s c o n t a c t metamorphic/metasomatic e f f e c t s . g r a i n e d c h i l l e d margins o f the dyke a r e now fragments marginal b r e c c i a .  Northcote  (1970) suggested  The f i n e i n the  t h a t the i n t r u s i o n s  w i t h which i t i s a s s o c i a t e d a r e c l o s e l y r e l a t e d t o e x t r u s i v e rocks i n the upper p a r t o f the Bonanza V o l c a n i c s , s u g g e s t i n g t h a t they are f e e d e r s f o r the l a t e r stages o f the v o l c a n i s m .  The dyke i s  f l a n k e d by c o n t a c t b r e c c i a s and capped by an e x p l o s i o n b r e c c i a . A l l o f these c h a r a c t e r i s t i c s suggest shallow emplacement. Radiometric age d e t e r m i n a t i o n s have n o t been made on the dyke.  However i t i s b e l i e v e d contemporaneous w i t h the grano-  d i o r i t e stock a t the end o f Rupert by K-Ar on b i o t i t e a t 154-6 M.Y.  I n l e t which has been dated  (Northcote, 1972)  Intrusive Breccias Pyrophyllite  Breccia  Pyrophyllite  b r e c c i a o c c u r s as a t a b u l a r body capping the  30. porphyry dyke on the northwest end o f the d e p o s i t 3-2,.3-3).  (Figures 3-1,  The b r e c c i a zone i s approximately 350 f e e t wide and  was t r a c e d more than 3,600 f e e t along  strike.  The b r e c c i a i s  wedge-shaped, t h i c k e n i n g t o the northwest. The matrix  b r e c c i a i s open t e x t u r e d , with  (Plate VII., A , B ) .  i s s i x inches eighteen  and  s i z e ranges from one-half  Fragments c o n s i s t o f both  porphyry r e c o g n i z a b l e  inch to  quartz-feldspar  because o f the l a r g e q u a r t z  phenocrysts,  f i n e - g r a i n e d massive m a t e r i a l , presumably completely  volcanic rocks.  by  • Average s i z e o f the rounded fragments  i n diameter w i t h  inches.  fragments separated  The middle p a r t o f the b r e c c i a c o n t a i n s  altered a higher  p r o p o r t i o n o f porphyry fragments than the b o r d e r s . The  o r i g i n a l t e x t u r e o f the a l t e r e d porphyry fragments i s  l a r g e l y preserved.  Quartz phenocrysts are u n a l t e r e d and p l a g i o -  c l a s e and mafic phenocrysts pseudomorphed by patches o f f i n e g r a i n e d white mica and q u a r t z . g r a i n s completely The matrix  surrounded by white mica  ( P l a t e VII.,H).  o f the b r e c c i a i s s i m i l a r t o the v o l c a n i c fragments,  except t h a t the quartz  Marginal  V o l c a n i c fragments c o n s i s t o f quartz  and white mica g r a i n s a r e of f i n e r g r a i n .  Breccias  Marginal  b r e c c i a s a r e t a b u l a r b o d i e s which roughly  the c o n t a c t s o f the q u a r t z - f e l d s p a r porphyry dyke  parallel  (Figures 3-1,  3-2, 3-3). A l l b r e c c i a s o c c u r i n g between dykes o f u n b r e c c i a t e d porphyry a r e a l s o i n c l u d e d i n t h i s group. The w i d t h of the m a r g i n a l b r e c c i a s i s extremely v a r i a b l e . In most p l a c e s there a r e 50 t o 100 f e e t o f b r e c c i a between the porphyry dyke and the v o l c a n i c rocks on the hanging w a l l o f the dyke; b u t l o c a l l y the e n t i r e width o f the dyke i s b r e c c i a t e d .  These b r e c c i a s continue  to a t l e a s t 1,800  ground s u r f a c e w i t h o u t apparent change.  f e e t below the However, knowledge  of the b r e c c i a s a t depth i s based on very Recognition  few d r i l l  of t h i s type of b r e c c i a i s d i f f i c u l t  core l o g g i n g and  holes.  both i n  p i t mapping, making l o c a t i o n of the  contacts  difficult. Marginal  b r e c c i a s are l e s s d i s t i n c t l y open t e x t u r e d  than  the p y r o p h y l l i t e b r e c c i a because the fragments u s u a l l y are separated percent  by v e i n q u a r t z .  Fragment composition  v o l c a n i c near the v o l c a n i c c o n t a c t  ranges from  to 100  percent  100  porphyry  near the dyke c o n t a c t and w i t h m i x t u r e s of v a r y i n g p r o p o r t i o n s between.  B r e c c i a s surrounded by u n b r e c c i a t e d  quartz-feldspar  porphyry c o n s i s t e n t i r e l y of porphyry fragments. and with  in  Where v o l c a n i c  porphyry fragments are mixed, the b r e c c i a i s a t r u e b r e c c i a , fragment movement and  rotation.  However, as the  contacts  are approached, the b r e c c i a resembles a " c r a c k l e b r e c c i a " w i t h little  fragment movement or r o t a t i o n .  Because t h e r e are no  r e t a i n i n g d i s t i n c t i v e c h a r a c t e r i s t i c s near the c o n t a c t of  beds  the  b r e c c i a s , i t i s not p o s s i b l e t o determine d i r e c t i o n of movement of fragments w i t h i n the m a r g i n a l b r e c c i a s .  Yellow Dog The  Breccia  Yellow Dog  B r e c c i a d e r i v e s i t s name from c h a r a c t e r i s t i c  rusty-brown, f e r r o a n d o l o m i t e which occurs Tabular  b r e c c i a b o d i e s range from 50 to 200  widen w i t h depth. along t h e i r length. dip steeply  as t i n y v e i n l e t s . f e e t i n width  They are exposed f o r a p p r o x i m a t e l y 800 The  (Figure 3-1,  b o d i e s t r e n d n o r t h and 3-2).  of h i g h l y a l t e r e d v o l c a n i c rocks  The  northeast  b r e c c i a s c o n s i s t of  separated  by  and feet and  fragments  s e v e r a l ages o f  quartz  and carbonate v e i n s  (Table 3-1 ) .  Because the fragments  do n o t appear r o t a t e d , the b r e c c i a resembles a " c r a c k l e b r e c c i a " more than an i n t r u s i v e b r e c c i a At present,  ( P l a t e V I I I . , A,B,C).  mining development along  the south w a l l o f the  p i t i s not adequate t o r e v e a l the r e l a t i o n s h i p between the marg i n a l b r e c c i a , the "Yellow Dog B r e c c i a s " and the porphyry dyke.  Formation o f I n t r u s i v e  Breccias  Breccias associated with ore deposits voluminous l i t e r a t u r e .  The p o o r l y  are subjects of a  exposed b r e c c i a s a t the  I s l a n d Copper mine do n o t lend themselves t o d e t a i l e d i n v e s t i g a t i o n a t present.  As mining o p e r a t i o n s  study may add i n f o r m a t i o n breccias.  A t present  Marginal  continue,  more d e t a i l e d  t o h e l p e s t a b l i s h the o r i g i n o f these  o n l y a few comments a r e p o s s i b l e .  b r e c c i a s adjacent  t o the q u a r t z - f e l d s p a r  porphyry  dyke p r o b a b l y a r e formed by upward drag o f the i n t r u d i n g dyke. The  d i s t r i b u t i o n o f fragments, q u a r t z - f e l d s p a r  porphyry near the  dyke, and v o l c a n i c near the outer margin o f the b r e c c i a , t h i s theory.  Unfortunately  w i t h i n the v o l c a n i c rocks  the absence o f r e c o g n i z a b l e  adjacent  supports units  t o the b r e c c i a s makes i t im-  p o s s i b l e t o demonstrate d i r e c t i o n o f movement o f fragments i n the breccia. The  p y r o p h y l l i t e b r e c c i a , which caps the porphyry dyke, i s  more t y p i c a l o f i n t r u s i v e b r e c c i a s a s s o c i a t e d w i t h porphyry copper deposits. formation  There a r e many t h e o r i e s which attempt t o e x p l a i n the o f t h i s type o f b r e c c i a .  1)Volcanic  Explosion  The more p o p u l a r i d e a s  Brecciation  include  (Norton and C a t h l e s , 1 9 7 3 )  caused by gas accompanying a magma which s h a t t e r s the overlying  rocks;  2) C o l l a p s e  Brecciation  (Perry, 1961)  caused by the c o l l a p s e o f o v e r l y i n g r o c k s i n t o an emptied magma chamber; 3) F a u l t B r e c c i a t i o n  (Kennedy and N o r d l i e , 1968)  caused by movement on s i n g l e f a u l t s o r by movements on one o r more i n t e r s e c t i n g f a u l t s ; 4) M u l t i p l e  Intrusion Brecciation  (Johnston and L o w e l l , 1961)  caused by repeated i n t r u s i o n and r e c e s s i o n o f a body o f magma; 5) Shock B r e c c i a t i o n  (Godwin, 1973)  caused by a shock wave p a s s i n g through a body o f rock t o surface; 6) Chemical B r e c c i a t i o n  (Sawkins, 1969)  caused by hydrothermal a l t e r a t i o n o f the rock i n v o l v i n g l a r g e changes i n volume; 7) Impact B r e c c i a t i o n  ( D i e t z , 1961)  caused by the impact o f c e l e s t i a l b o d i e s on the e a r t h ' s surface. A number o f these t h e o r i e s a r e r e j e c t e d as improbable f o r the  I s l a n d Copper examples.  The t a b u l a r n a t u r e o f the b r e c c i a  does n o t f i t the impact b r e c c i a t h e o r y .  Collapse  breccias  a n e t downward movement, w h i l e the porphyry fragments p y r o p h y l l i t e b r e c c i a suggest a n e t upward movement. breccias  imply  i n the Shock  imply a source f o r the shock waves which i s n o t e v i d e n t .  Intense hydrothermal a l t e r a t i o n w i t h i n the P y r o p h y l l i t e B r e c c i a makes the c h e m i c a l b r e c c i a t i o n t h e o r y a t t r a c t i v e a t f i r s t . However, f i e l d 1916)  s t u d i e s a t Conception Bay, Newfoundland  show t h a t v o l c a n i c beds can be t r a c e d  (Buddington,  through a zone o f  p y r o p h y l l i t e a l t e r a t i o n w i t h no change i n t h i c k n e s s  and t h a t the  v o l c a n i c t e x t u r e s a r e obscured but n o t o b l i t e r a t e d by the pyrophyllitization.  T h i s suggests l i t t l e  change i n volume.  F a u l t b r e c c i a t i o n i s another a t t r a c t i v e h y p o t h e s i s , i f one assumes t h a t the dyke i s i n t r u d e d i n t o a p r e - e x i s t i n g f a u l t zone.  However a f a u l t b r e c c i a approximately 400 f e e t  wide i m p l i e s a major f a u l t and there, i s no evidence o f g r e a t displacement between the two s i d e s o f the dyke. The theses:  f i e l d o f s p e c u l a t i o n seems thus narrowed t o two hypov o l c a n i c e x p l o s i o n or m u l t i p l e i n t r u s i o n , o r some  combination o f the two. The v o l c a n i c e x p l o s i o n theory i s very a t t r a c t i v e when the extremely f i n e - g r a i n e d n a t u r e o f the m a t r i x i n the dyke and the shallow depth o f emplacement a r e c o n s i d e r e d . tiles  Upward flow o f v o l a -  c o u l d a l s o e x p l a i n the i n t e n s e a l t e r a t i o n i n the b r e c c i a .  Northcote and M u l l e r (1972) f a v o u r t h i s h y p o t h e s i s . The m u l t i p l e i n t r u s i o n theory i s another a t t r a c t i v e h y p o t h e s i L a t e r p u l s e s o f magma r e l a t e d t o the dyke c o u l d account f o r the i n t e r n a l b r e c c i a t i o n o f and p o s s i b l y f o r the " c r a c k l i n g " o f the ore  zone. U n f o r t u n a t e l y , w h i l e p r e s e n t evidence suggests one o f these  hypotheses,  i t i s n o t s u f f i c i e n t t o d e c i d e between them o r t o even  completely e l i m i n a t e some o f the o t h e r i d e a s . The f o r m a t i o n o f the "Yellow Dog" b r e c c i a s i s another major problem.  Because o f t h e i r a t t i t u d e a t r i g h t a n g l e s t o o t h e r major  s t r u c t u r a l elements  and the o r e zone,  v e s t i g a t e d i n the d r i l l i n g  program.  the p i t , widening w i t h depth, Lamb  they were n o t thoroughly i n From t h e i r geometry w i t h i n  ( p e r s o n a l communication,  suggests t h a t they may be cappings on dykes.  197 2)  35.  Cretaceous Sedimentary Rocks Cretaceous sedimentary r o c k s o f the Queen C h a r l o t t e Group (Muller e t a l . , 1973)  disconformably  o f the Bonanza V o l c a n i c s on Copper p r o p e r t y coarse and  the s o u t h e a s t e r n  (Figures 3-1,  conglomerates w i t h  o v e r l i e formational  3-4).  interbedded  The  breccias  p a r t o f the  Island  Cretaceous r o c k s  sandstones and  siltstones  o c c a s i o n a l t h i n , p o o r - q u a l i t y c o a l seams ( P l a t e I.,  Most cobbles diorite.  w i t h i n the conglomerate are c o a r s e - g r a i n e d  Occasional  have been noted.  cobbles  are  G,H). grano-  of f r e s h q u a r t z - f e l d s p a f porphyry  Cretaceous sediments are w e l l i n d u r a t e d  not metamorphosed.  but  Hydrothermal a l t e r a t i o n and m i n e r a l i z a t i o n  are absent.  STRUCTURAL GEOLOGY Bedding Bedding w i t h i n the Cretaceous sedimentary rocks d e f i n e d and  e a s i l y measured.  c a n i c s near the d e p o s i t  along  Bedding w i t h i n the Bonanza V o l -  is difficult  s t r u c t u r e s have been d e s t r o y e d  i s well-  to r e c o g n i z e  w i t h i n the ore  and  zone.  primary Bedding  the n o r t h w a l l of the mine p i t g e n e r a l l y i s p o o r l y  but bedding i n some outcrops beyond the n o r t h e r n i s well-defined.  defined,  edge of the p i t  Good exposures o f v o l c a n i c b r e c c i a s w i t h w e l l -  d e f i n e d bedding were exposed d u r i n g the e x c a v a t i o n  f o r the  mill  buildings. A t t i t u d e s o f bedding are shown on s t e r e o n e t s Although r e l a t i v e l y  few  significant clusters.  i n Figure  3-4.  p o i n t s are shown they appear t o form From F i g u r e 3-4,  bedding w i t h i n Cretaceous sediments and s t r u c t u r a l l y conformable w i t h  i t i s apparent t h a t Bonanza V o l c a n i c s i s  s t r i k e s around 100°  and  d i p s near  3 6 .  30° southwest.  I f the beds were d e p o s i t e d roughly  horizontally,  then the t h i r t y degree s o u t h w e s t e r l y d i p o f the d i p o f the v o l c a n i c s i s the r e s u l t o f p o s t - C r e t a c e o u s  adjustment.  because the porphyry dyke i s pre-Cretaceous r i g h t a n g l e s to the bedding,  i t was  T h i s 30 degree southwest t i l t  Further,  and r o u g h l y a t  i n t r u d e d as a v e r t i c a l body. of the l a y e r e d r o c k s i n the  v i c i n i t y of the I s l a n d Copper mine i s a p p a r e n t l y the r e s u l t of movement a l o n g a f a u l t i n Rupert  Inlet.  Fractures F r a c t u r e p a t t e r n s i n the v i c i n i t y o f the I s l a n d Copper mine are complex.  The complexity appears  t o come from the  p o s i t i o n of s e v e r a l p e r i o d s of i n t e n s e f r a c t u r i n g .  An  superattempt  to c a t e g o r i z e the f r a c t u r e s on the b a s i s of geometry (Figures 3-4,  3-5)  failed  to y i e l d reasonable  data.  Faults R e c o g n i t i o n of f a u l t s i n the v i c i n i t y of the I s l a n d Copper d e p o s i t i s hampered by l a c k of o u t c r o p and  lack of d e t a i l e d  s t r a t i g r a p h i c knowledge. A i r p h o t o i n t e r p r e t a t i o n , d e s c r i b e d by Rugg and Young  (197 0),  i n d i c a t e s photo l i n e a r t r e n d s a t : 1) E to N 70° W 2) N 70°E 3) N 40° - 60°W ) ) 4) N 20° W ) The  r Subordinate  Trends  f i r s t t h r e e t r e n d s correspond  s c r i b e d by Northcote  to r e g i o n a l trends  (1970) (Figure 2-1).  The  de-  fourth trend  (N20°W) has not been r e c o g n i z e d on a r e g i o n a l s c a l e .  3 8.  7.QQ0N I  Island Copper Pit Quartz Veins within Pyrophyllite  (Oct. 1972 )  Breccia  Figure  3-5  STRUCTURE  4.500 N  »-^-*-  Fault, showing dip  r- Shear, showing dip ©  0 - 1 0 sjomple point  P-O-C,  W i t h i n the p a r t of the p i t developed t o November•1972, t h e r e a r e two prominent  f a u l t zones.  F a u l t , which corresponds t o the t h i r d  One i s the End Creek set of air-photo l i n e a r s  (Young and Rugg, 1971)and t o Northcote's set.  I t strikes  (1970) t h i r d  regional  N55°W and d i p s s t e e p l y t o the n o r t h e a s t  (Figures 3-3, 3-4).  The f a u l t i s expressed as a zone o f crushed  rock 50 t o 100 f e e t wide.  In the p i t , the End Creek F a u l t forms  the south boundary o f the porphyry dyke which i t a p p a r e n t l y o f f sets.  However a t depth the f a u l t plane and dyke d i v e r g e  3-3).  O f f s e t of a l t e r a t i o n  along the f a u l t plane  assemblages suggests normal  (Figure movement  (Figure 5 - 2 ) .  Because the End Creek F a u l t c u t s o f f the o r e zone and the alteration  p a t t e r n s , i t i s concluded t h a t movement was p o s t -  mineralization.  Copper m i n e r a l i z a t i o n i s n o t l o c a l i z e d  along  the f a u l t , which suggests t h a t the f a u l t was not a prominent f e a t u r e a t the time o f f o r m a t i o n of the orebody. A second prominent  f a u l t zone w i t h i n the p i t , the November  F a u l t , t r e n d s n o r t h e a s t and d i p s v e r y s t e e p l y . i s from 100 t o 200 f e e t wide. on the northwest s l i p movement.  The f a u l t zone  The p o s i t i o n o f the porphyry  s i d e o f the f a u l t suggests a d e x t r a l  strike-  Amount o f displacement, i f any, i s unknown.  D r i l l i n g data suggest t h a t the End Creek F a u l t d i s p l a c e s the November F a u l t .  Veins A t e n t a t i v e c o r r e l a t i o n between the v e i n s found i n the v a r i o u s p a r t s o f the ore d e p o s i t i s g i v e n i n Table 3-1. cause the v e i n s a r e too s h o r t and i r r e g u l a r  Be-  t o f o l l o w from one  zone t o another, c o r r e l a t i o n i s based on m i n e r a l o g i c s i m i l a r i t y .  TABLE -3-1 TENTATIVE VEIN CORRELATION  Set  Ore Zone  "Yellow.Dog"  Breccia  Marginal Breccia  Quartz-Feldspar Porphyry  Quartz  Silicification  (1)  Pyrophyllite Breccia  Quartz Pyrite  Quartz Pyrite  Quartz  Quartz (Milky) Chalcopyrite Pyrite. minor M o l y b d e n i t e  Quartz Chalcopyrite Pyrite  Quartz Quartz minor C h a l c o p y r i t e minor C h a l c o p y r i t e minor P y r i t e Pyrite minor M o l y b d e n i t e  Quartz Quartz Molybdenite Chalcopyrite Pyrite Pyrite minor C h a l c o p y r i t e ( S e r i c i t e Envelopes)  Quartz Molybdenite  Quartz Molybdenite Pyrite  (5)  Quartz Pyrite  Quartz  (6)  "Slips" Molybdenite minor C h a l c o p y r i t e minor P y r i t e  "Slips" Molybdenite minor C h a l c o p y r i t e minor P y r i t e  (2)  Quartz Pyrite  (3)  (4)  (Smoky)  Quartz Pyrite  (Smoky)  Dumortierite  (7)  Buff  (8) (9)  (10)  "Slips" Molybdenite minor C h a l c o p y r i t e minor P y r i t e  Dolomite  Carbonate Zeolite Pyrite minor S p h a l e r i t e Hematite Chalcopyrite  Carbonate Pyrite  Chalcopyrite Pyrite  Quartz Pyrite minor C h a l c o p y r i t e  Carbonate Pyrite mxnor S p h a l e r i t e  Carbonate  Carbonate Zeolite Pyrite minor S p h a l e r i t e  o  41. Set 1 " v e i n s " are s i l i c i f i c a t i o n Yellow Dog  of the m a t r i x i n the  B r e c c i a and q u a r t z v e i n s i n the P y r o p h y l l i t e B r e c c i a .  Veins b e l o n g i n g to t h i s s e t were not r e c o g n i z e d i n the Ore the M a r g i n a l B r e c c i a or the porphyry  dyke.  Veins of s e t 2 occur i n a l l p a r t s of the d e p o s i t . Ore  In the  Zone they are smoky q u a r t z v e i n s which have been s h a t t e r e d and  recemented w i t h m a t e r i a l from the t h i r d s e t of v e i n s In  Zone,  the Yellow Dog  the Set 4 v e i n s .  (Figure 3-6A).  B r e c c i a they are recemented w i t h m a t e r i a l from In the M a r g i n a l B r e c c i a , the  B r e c c i a , and the porphyry  Pyrophyllite  dyke, t h e r e are q u a r t z v e i n s c o n t a i n i n g  minor amounts of p y r i t e . Q u a r t z - c h a l c o p y r i t e - p y r i t e v e i n s of s e t 3 occur i n a l l p a r t s of the d e p o s i t  (Figure 3-6  A, B, C, E ) .  They are  almost h a i r l i n e v e i n s and do not have a w e l l - d e v e l o p e d orientation.  In the Ore  thin, uniform  Zone they are v e r y c l o s e l y spaced,  but  i n the other p a r t s of the d e p o s i t they are more e r r a t i c a l l y distributed. i n the Ore  Trace amounts of molybdenite  occur i n these v e i n s  Zone and q u a r t z - f e l d s p a r porphyry.  Q u a r t z - m o l y b d e n i t e - p y r i t e v e i n s of set 4 occur i n the Zone, the M a r g i n a l B r e c c i a and P y r o p h y l l i t e B r e c c i a . Ore in  In the  Zone they are c h a r a c t e r i z e d by a l t e r a t i o n envelopes sericite  (Figure 3-6,  Ore  rich  B, C, D, E, F; F i g u r e ' 3 - 5 ) .  Quartz and q u a r t z - p y r i t e v e i n s of s e t 5 are o n l y r e c o g n i z e d i n the Ore  Zone and the M a r g i n a l B r e c c i a .  are q u a r t z - p y r i t e v e i n s  (Figure 3-6,  B r e c c i a they are q u a r t z v e i n s . v e i n s and the Molybdenite  The  In the Ore  Zone they  C, E ) ; i n the M a r g i n a l r e l a t i o n s h i p between these  " s l i p s " of s e t 6 i s obscure, but s e t  5 are t e n t a t i v e l y c o n s i d e r e d o l d e r . Molybdenite  " s l i p s " c o n s t i t u t e set 6 "veins".  f r a c t u r e s u r f a c e s coated w i t h molybdenite  These are  (Figure 3-5).  The  42.  F i g u r e 3-6 SKETCHES ILLUSTRATING AGE RELATIONS OF VEINS WITHIN THE ORE ZONE A.  Set 2 q u a r t z vei.n w i t h i n b i o t i t i z e d v o l c a n i c s ( i n d i c a t e d by s t i p p l i n g ) c r o s s c u t by s e t 3 f r a c t u r e f i l l i n g c h a l c o p y r i t e , p y r i t e and q u a r t z , c r o s s c u t by a s e t 4 q u a r t z and molybdenite v e i n , c r o s s c u t by a s e t 9 carbonate v e i n . -  B.  B i o t i t i z e d v o l c a n i c s ( s t i p p l e d ) c r o s s c u t by s e t 3 f r a c t u r e f i l l i n g c h a l c o p y r i t e , p y r i t e and q u a r t z , c r o s s - c u t i n t u r n by a s e t 4 q u a r t z - m o l y b d e n i t e v e i n w i t h a s e r i c i t e envelope c r o s s hatched) which i s c u t i n t u r n by a s e t 9 carbonate v e i n .  C.  B i o t i t i z e d v o l c a n i c s ( s t i p p l e d ) c r o s s c u t by s e t 3 f r a c t u r e f i l l i n g c h a l c o p y r i t e , p y r i t e , and q u a r t z which a r e c u t i n t u r n by a s e t 4 q u a r t z - m o l y b d e n i t e v e i n w i t h an i n n e r q u a r t z - s e r i c i t e envelope and an o u t e r bleached zone. Both the q u a r t z - m o l y b d e n i t e v e i n and the a l t e r a t i o n envelopes a r e c r o s s c u t by a s e t 5 b a r r e n quartz v e i n .  D.  A h i g h l y a l t e r e d fragmental v o l c a n i c , c l o t s o f c h l o r i t e i n a s i l i c i f i e d m a t r i x , i s c r o s s c u t by a s e t 4 q u a r t z - m o l y b d e n i t e v e i n w i t h a s e r i c i t e envelope, which i s c r o s s c u t by a s e t 6 molybdenite s l i p s u r f a c e which i s c u t i n t u r n by a s e t 9 carbonate v e i n .  E.  B i o t i t i z e d v o l c a n i c s ( s t i p p l e d ) a r e c r o s s c u t by s e t 3 f r a c t u r e f i l l i n g q u a r t z , c h a l c o p y r i t e and p y r i t e , which i s c r o s s c u t i n t u r n by a s e t 4 q u a r t z and molybdenite v e i n w i t h a s e r i c i t e envelope which i s c u t by both a s e t 5 b a r r e n q u a r t z v e i n and a s e t 6 molybdenite s l i p s u r f a c e s . The molybdenite s l i p s u r f a c e i s c u t by a s e t 9 carbonate v e i n .  F.  A h i g h l y a l t e r e d fragmental v o l c a n i c c o n s i s t i n g o f c h l o r i t i z e d and b i o t i t i z e d fragments i n a s i l i c e o u s m a t r i x c r o s s c u t by a s e t 4 q u a r t z and molybdenite v e i n w i t h a s e r i c i t e envelope which i s c u t i n t u r n by two s e t 9 carbonate v e i n s . Abbreviations QV CV ff Q Mo Cp Py S  Quartz v e i n Carbonate v e i n fracture f i l l i n g Quartz Molybdenite Chalcopyrite Pyrite Sericite Number i n d i c a t e s v e i n s e t o u t l i n e d i n Table 3-1  43.  most r e c e n t movement on these  s u r f a c e s , i n d i c a t e d by  s i d e s on the molybdenite/ f i t s shown i n Table  3-1.  B r e c c i a and  the Ore  i n t o the r e l a t i v e p o s i t i o n  However the age  d e n i t e i s not known.  slicken-  o f d e p o s i t i o n o f the molyb-  Many molybdenite " s l i p s " occur  i n Marginal  Zone and a few were noted i n the porphyry  dyke. Set 7 and B r e c c i a and  s e t 8 o f v e i n s a r e r e s t r i c t e d t o the P y r o p h y l l i t e  the Yellow Dog  p o s i t i o n s w i t h i n these  Breccia respectively.  Their  zones i s c l e a r l y e s t a b l i s h e d .  relative  However,  because they cannot be c o r r e l a t e d a c r o s s the o t h e r p a r t s o f d e p o s i t , they are t r e a t e d as s e p a r a t e Carbonate v e i n s deposit  ( F i g u r e s 3-5,  v e i n s but  sets.  (set 9) a r e found i n a l l p a r t s o f 3-6).  the  These are predominantly carbonate  l o c a l l y c o n t a i n c o n s i d e r a b l e amounts o f z e o l i t e ,  and hydrocarbon.  the  Minor amounts o f s p h a l e r i t e , hematite  pyrite  and  c h a l c o p y r i t e have been noted. Veins o f s e t 10 are r e c o g n i z e d Yellow Dog  Breccia.  In the Ore  v e i n s whereas i n the Yellow Dog  o n l y i n the Ore  Zone and  Zone they a r e p y r i t e - c h a l c o p y r i t e B r e c c i a they are q u a r t z - p y r i t e -  chalcopyrite veins. Stereonet 3-5..  p l o t s o f some o f the v e i n s e t s are g i v e n on  Attempts to r e l a t e v e i n i n g g e o m e t r i c a l l y to o t h e r  elements were u n s u c c e s s f u l .  Present  knowledge o f the  SIZE AND The  ore zone a t the  various  into a detailed picture.  GEOMETRY OF THE  ORE  ZONE  I s l a n d Copper mine c o n t a i n s  of 28 0 m i l l i o n tons of 0.52  structural  structural  h i s t o r y of the d e p o s i t i s too fragmentary t o a l l o w the ages of v e i n s t o be f i t t e d  Figure  percent  copper and  reserves  0.029 p e r c e n t  J5>  M0S2 (Young and  Rugg, 1971).  I t c o n s i s t s of two  each s i d e of the porphyry dyke. c a n i c rocks on  The  p a r t s , one  b u l k of the ore  T h i s p a r t of the ore  to 600  f e e t wide and  zone i s a roughly  ground s u r f a c e .  The  approximately 5,500 f e e t long which con-  zone a p p a r e n t l y  At the ends of the planned p i t the deeper below the ground s u r f a c e .  the ore  rocks  continues  f e e t below  the  beyond t h i s depth  top of the ore  zone plunges  I t i s not known whether  this  zone i s a primary s t r u c t u r a l c h a r a c t e r i s t i c o f  zone or was  The  (Figure  t a b u l a r body 4 00  t i n u e s e s s e n t i a l l y unchanged to a depth o f 1,000  doubly p l u n g i n g  i s in vol-  the hanging w a l l o f the porphyry dyke  3-7).  on  superimposed by  second p a r t of the ore  (Figure 3-7)  adjacent  zone i s i n the  tectonism. footwall volcanic  t o the porphyry dyke and  than the hanging w a l l s e c t i o n . movement on the End  subsequent  is  smaller  I t has been d i s p l a c e d by  Creek F a u l t .  normal  Because i t i s f a r t h e r from  s u r f a c e than the hanging w a l l p a r t , i t i s not as w e l l  defined  by diamond d r i l l i n g . A minor amount of ore o c c u r s w i t h i n the dyke. bearing  quartz-feldspar  porphyry i s r e s t r i c t e d to dykes or  f a u l t e d from the main dyke contains but  the r o c k i s f o r the most p a r t  continues and  (Figure 3-7).  minor amounts of copper s u l p h i d e s  Boundaries of ore  However ore-  The main dyke along  block  locally  i t s contacts  unmineralized.  zones are assay w a l l s .  Mineralization  beyond these assay boundaries i n t o the v o l c a n i c  porphyry dyke so t h a t the o r e b o d i e s are enclosed  o f lower grade copper m i n e r a l i z a t i o n i n the v o l c a n i c  by a  rocks halo  rocks.  SULPHIDE AND  OXIDE MINERALOGY  Introduction C h a l c o p y r i t e and molybdenite  are the o n l y s u l p h i d e m i n e r a l s  r e c o v e r e d a t the I s l a n d Copper mine. major s u l p h i d e m i n e r a l makes up two  P y r i t e , the o n l y o t h e r to f i v e p e r c e n t of the o r e .  S p h a l e r i t e occurs e r r a t i c a l l y i n carbonate v e i n l e t s both w i t h i n and o u t s i d e of the ore zone. The most abundant oxide m i n e r a l i s magnetite. m i n e r a l s i n c l u d e hematite,  which i s almost  from the o x i d a t i o n of magnetite,  and  Other  invariably  leucoxene,  oxide  formed  which i s asso-  c i a t e d w i t h c h l o r i t i z e d mafic m i n e r a l s .  Chalcopyrite C h a l c o p y r i t e occurs as v e i n l e t s , as d i s s e m i n a t i o n s and s l i p surfaces.  Most c h a l c o p y r i t e i s i n s e t 3 v e i n s  A, B, C) which are 0.1mm. t h i c k . that set 3 veins  (Table 3-1)  F i e l d observations  on  (Plate I I suggest  c o n t a i n the b u l k of the copper  in  the ore zone. C h a l c o p y r i t e a l s o occurs i n s m a l l e r amounts w i t h the q u a r t z molybdenite  veins  (set 4); on s l i p  s u r f a c e s (set 6); w i t h  sphalerite i n carbonate-zeolite veins p y r i t e - p y r i t e veins although l o c a l l y  (set 10).  (set 9); and as l a t e c h a l c o -  These o c c u r r e n c e s o f c h a l c o p y r i t e ,  s p e c t a c u l a r , do not c o n t r i b u t e much copper  to  the ore zone.  Molybdenite Molybdenite surfaces.  o c c u r s i n q u a r t z v e i n s and on f r a c t u r e  There were t h r e e stages o f molybdenite  F i r s t - s t a g e molybdenite,  "slip"  mineralization.  a q u a n t i t a t i v e l y minor stage of  48.  PLATE I I  POLISHED SECTIONS  A  A s e t 3 c h a l c o p y r i t e vein c u t t i n g across a matrix d i s s e m i n a t e d magnetite.  B  A s e t 3 c h a l c o p y r i t e and quartz v e i n c u t t i n g a m a t r i x t a i n i n g d i s s e m i n a t e d magnetite.  con-  A s e t 3 c h a l c o p y r i t e and quartz v e i n c u t t i n g a m a t r i x d i s s e m i n a t e d magnetite.  with  D  Molybdenite  E  Magnetite  F  P y r i t e and magnetite  G  A s e t 4 molybdenite-quartz  H  A set 9 carbonate-sphalerite vein i n c h l o r i t i z e d  containing  and p y r i t e i n the c e n t r e o f a s e t 4 v e i n .  c o r e i n a subhedral p y r i t e c r y s t a l . w i t h i n a c h l o r i t i z e d mafic vein.  A b b r e v i a t i o n s used on the p l a t e s cp py mg mo sp q cb  -  phenocryst.  chalcopyrite pyrite magnetite molybdenite sphalerite quartz carbonate  tuff,  49.  molybdenite  mineralization,  i s a s s o c i a t e d with c h a l c o p y r i t e  and p y r i t e and q u a r t z v e i n l e t s «0.05mm) subhedral c r y s t a l s  (Plate  Second-stage molybdenite s e r i c i t e envelopes  (set 3).  I t o c c u r s as s m a l l  I I , D).  o c c u r s i n Set 4 q u a r t z v e i n s w i t h  ( P l a t e VI., A,B,C).  Molybdenite  occurs-  as a mass of t i n y subhedral c r y s t a l s . f o r m i n g v e i n s 0.1 thick  (Plate II.,G).  T h i s a l s o i s an e c o n o m i c a l l y minor  mineralization.  T h i r d - s t a g e molybdenite veins).  cm.  Minor amounts o f p y r i t e and c h a l c o p y r i t e  occur w i t h the molybdenite. stage of molybdenite  to 2  occurs on  "slip"  surfaces  (set 6  F i e l d o b s e r v a t i o n s suggest t h a t most of the molybdenum  i n the ore zone was  d e p o s i t e d d u r i n g t h i s stage.  has been smeared i n t o a t h i n fractures.  The  (0.18% and  f i l m by movement on  but the age o f the s u l p h i d e s on the  surface i s d i f f i c u l t  Molybdenite  molybdenite the  r e l a t i v e age o f movement on the f r a c t u r e s u r f a c e s  can be determined,  Molybdenite  (<1 mm.)  The  fracture  to e s t a b l i s h .  a t I s l a n d Copper has a h i g h rhenium c o n t e n t .  c o n c e n t r a t e c o n t a i n s between 1,800  and  2,400  0.24%) rhenium c a l c u l a t e d t o 100% MoS .  This i s r i c h  2  r e l a t i v e to most porphyry  copper d e p o s i t s  (Table 3-2).  l a t i o n between the d i f f e r e n t stages o f molybdenite  ppm  The r e -  and rhenium  has not been s t u d i e d .  Py r i te P y r i t e i s u b i q u i t o u s w i t h i n the d e p o s i t and accompanies a t l e a s t f i v e s e t s of q u a r t z v e i n s ranges  from 2 t o 5 p e r c e n t and  (Table 3-1).  Pyrite  l o c a l l y i s up t o 15  content  percent.  P y r i t e w i t h i n the ore zone i s a s s o c i a t e d w i t h c h a l c o p y r i t e and molybdenite  i n v e i n l e t s and w i t h i n c h l o r i t i z e d mafic m i n e r a l s  51.  Table 3-2  RHENIUM CONTENT OF SOME PORPHYRY COPPER DEPOSITS (expressed i n ppm on 100% MoS ) 2  ( a f t e r S u t u l o v 1963, 1974)  North America  South America  McGill  1, 600  Chuquicamata  230  San Manuel  1,000  E l Teniente  440  800  E l Salvador  570  600  Andina  380  Twin Buttes  600  La Disputada  350  Pima  600  Toquepala  325  Mission  600  A r g e n t i n i a n porph.  170  Bagdad  200  Esperanza  200  Sierrita  180  Chino Cities  Service  M i n e r a l Park Island Brenda  Copper  60 2, 000 80  Cananea  700  Bingham  300  Communist World Kounrad  510  Almalyk  290  Kadzharan  300  Aigedzor Dastakert Medet  1,000 80 . 125  (Plate I I . , D , E , F ) . seminated  Outside the ore zone, p y r i t e i s d i s -  i n the porphyry  dyke as an a c c e s s o r y m i n e r a l .  P y r i t e a l s o occurs i n v o l c a n i c rocks f a r removed from  the o r e  zone. Most p y r i t e i s i n the form o f e u h e d r a l cubes but r a r e p y r i t o h e d r o n s have been  (0.5 -  2mm.)  noted.  Sphalerite Dark brown t o b l a c k s p h a l e r i t e o c c u r s i n c a r b o n a t e - z e o l i t e veins  (set 9; Table 3-1)  (Plate I I . , H ) .  The  both i n s i d e and o u t s i d e the ore zone  small  (to 1 mm.)  subhedral  sphalerite  c r y s t a l s are a s s o c i a t e d w i t h p y r i t e and more r a r e l y c h a l c o p y r i t e and s p e c u l a r hematite.  Galena  have been r e p o r t e d , w i t h  i s very r a r e .  Minute c r y s t a l s  sphalerite.  Magnetite Magnetite porphyry.  i s found both i n v o l c a n i c r o c k s and q u a r t z - f e l d s p a r  In v o l c a n i c r o c k s i t o c c u r s p r i m a r i l y as f i n e  (<.l  mm.)  d i s s e m i n a t e d g r a i n s and w i t h c h l o r i t e pseudomorphs of mafic phenocrysts.  L o c a l l y i t i s i n f r a c t u r e f i l l i n g s and q u a r t z v e i n s  ( P l a t e I I . , A,B,C).  The m a g n e t i t e - r i c h (to 10%)  v o l c a n i c r o c k s c l o s e l y corresponds  p a r t of the  t o the ore zone.  In p o l i s h e d  s e c t i o n s of m a g n e t i t e - r i c h v o l c a n i c r o c k s , magnetite o l d e r than the a s s o c i a t e d p y r i t e and c h a l c o p y r i t e . does not show c l e a r age r e l a t i o n s w i t h the In the porphyry  dyke, magnetite  pseudomorphs of mafic m i n e r a l s .  i s invariably Molybdenite  magnetite.  i s found w i t h  chlorite  Hematite  : _  Hematite o c c u r s i n two forms; f i r s t as masses o f s m a l l (<1 mm.)  dark s p e c u l a r i t e p l a t e s i n l a t e carbonate v e i n s and  second as the a l t e r a t i o n product o f magnetite near f r a c t u r e s . T h i s hematite appears t o be hypogene because  .  t h e r e i s no  obvious r e l a t i o n between .the hematite and the depth below the p r e s e n t ground  surface.  However i t cannot be c l e a r l y  correlated,  w i t h any hypogene m i n e r a l i z a t i o n o r a l t e r a t i o n events.  Leucoxene Leucoxene  i s a g e n e r a l name a p p l i e d t o v e r y f i n e - g r a i n e d  secondary t i t a n i u m m i n e r a l s .  I t i s a s s o c i a t e d w i t h masses o f  c h l o r i t e and/or white mica which form pseudomorphs a f t e r m a f i c phenocrysts  ( P l a t e V., E , F ) .  Leucoxene  i s found both i n the  q u a r t z - f e l d s p a r porphyry and the v o l c a n i c Leucoxene  rocks.  p r o v i d e s a u s e f u l method t o d i s t i n g u i s h m a f i c  from f e l d s p a r p h e n o c r y s t s when both have been a l t e r e d t o white mica.  Once leucoxene has formed,  u n a f f e c t e d by subsequent  i t a p p a r e n t l y i s s t a b l e and i s  alteration.  CHAPTER 4:  COMPUTER ANALYSIS  INTRODUCTION The  "GEOLOG" computer i n p u t format was used i n t h i s  for  three reasons:  ion  o f data by u s i n g a s t a n d a r d i z e d  data  study  (1) t o attempt t o minimize b i a s i n c o l l e c t -  i n a format where s t a t i s t i c a l  format;  (2) t o r e c o r d t h e  as w e l l as g r a p h i c a l  tests  of the c o r r e l a t i o n between copper and molybdenum grades and a l t e r a t i o n c o u l d be made; (3) t o t e s t the e f f i c i e n c y o f t h e computer format l o g g i n g system i n a d e p o s i t o t h e r  than a  " c l a s s i c " porphyry copper d e p o s i t . 40,000 f e e t o f d r i l l the c o r e o b t a i n e d logged  c o r e , which r e p r e s e n t  d u r i n g e x p l o r a t i o n o f the d e p o s i t , were  u s i n g computer i n p u t format.  forty-two  diamond d r i l l  h o l e s along  800-foot i n t e r v a l s a c r o s s q u a n t i t y o f core  one-third of  T h i s core  represents  seven s e c t i o n s spaced a t  the o r e body  (Figure 4-1).  i s b e l i e v e d l a r g e enough t o a l l o w  This statistical  tests of c o r r e l a t i o n .  DATA COLLECTION B a s i c data sheets were m o d i f i e d sheets  d e s c r i b e d by Blanchet  from o r i g i n a l  and Godwin  the m o d i f i c a t i o n s a r e d i s c u s s e d  (1972).  i n Appendix A.  "GEOLOG"  Details of In these  m o d i f i c a t i o n s , t h e number o f hydrothermal m i n e r a l s  was  i n c r e a s e d and those f e a t u r e s o f " c l a s s i c " porphyry copper d e p o s i t s n o t observed a t I s l a n d Copper were omitted. c o l l e c t i o n included:  sample l o c a t i o n , rock type,  Data  colour,  f r a c t u r e d e n s i t y , and amount and mode o f occurence o f twelve silicate  a l t e r a t i o n minerals,  t h r e e i r o n oxide m i n e r a l s and  55  f i v e sulphide minerals. To use the forms,  assuming t h e r e i s one rock type w i t h i n  an assay i n t e r v a l , rock type i s recorded and parameters are r e c o r d e d .  then a l l o t h e r  I f t h e r e i s a change of rock  type  w i t h i n the i n t e r v a l , the footage of the c o n t a c t i s recorded a l o n g w i t h a l l d a t a f o r the f i r s t rock type, d a t a f o r the second  rock type are recorded a t the r e g u l a r assay  Assay v a l u e s are assumed c o n s t a n t f o r the e n t i r e interval. drill  interval.  sample  F r a c t u r e d e n s i t y data were o b t a i n e d from  original  logs by Utah E x p l o r a t i o n g e o l o g i s t s , because u s e f u l  f r a c t u r e d e n s i t y data i s d i f f i c u l t  t o o b t a i n from s p l i t  core.  DATA TREATMENT To o b t a i n the maximum s p a t i a l i n f o r m a t i o n , data f o r d r i l l h o l e s on each s e c t i o n were a n a l y s e d independently. the two  rock types, data f o r each s e c t i o n were f u r t h e r  i n t o three p a r t s ; the hanging-wall the f o o t w a l l of the dyke of  To c o n s i d e r  each of seven  divided  of the dyke, the dyke and  ( F i g u r e 4-2).  The  three d i v i s i o n s  s e c t i o n s gave twenty-one separate batches  data f o r s t a t i s t i c a l  treatment.  Data cards from each d i v i s i o n were computer processed to  t e s t three  correlations: (1) Copper grade v e r s u s molybdenum (2) Copper grade versus f i f t e e n parameters.  grade.  separate  (3) Molybdenum grade v e r s u s the same f i f t e e n parameters. D e t a i l s of programming and of  s t a t i s t i c s used  the data are p r e s e n t e d i n Appendices  i n the  Eand G .  treatment  of  N18E  A,  fcaa^,  "A<  V  1  TV "'  C'A -"7 - ' - ; 7 'X  -4001  AN  V&:-^ -V^7;'A 2 \ 7  LEGEND  J7Z-Q  Overburden  IAA]  Breccias  K'.-'-.'l I  V--' ' - " ' - V i  .AN ^N  1. P y r o p h y l l i t e 2 . Marginal  Fig. 4-2 *?\A\  Quartz-Feldspar Porphyry  I Volcanic Rocks  -1  A\  k  ~  ~  Fault  Generalized Section Showing DIVISIONS  ' . O '  AN  1 2 0 0  RESULTS Results of the s t a t i s t i c a l 4-1.  study a r e p r e s e n t e d i n T a b l e  The t a b l e i s d e s i g n e d t o p r e s e n t c o r r e l a t i o n s between  each independent v a r i a b l e measured and copper and molybdenum grades i n a d j a c e n t columns f o r easy comparison. marked "CORR" a r e c o r r e l a ' t i o n  coefficients.  approaches u n i t y , the degree o f c o r r e l a t i o n  Columns  As t h i s v a l u e increases.  Columns l a b e l l e d "PROB" a r e the p r o b a b i l i t y o f o b t a i n i n g the c o r r e s p o n d i n g amount-of c o r r e l a t i o n from random numbers. The s m a l l e r the v a l u e i n t h i s column, the s t r o n g e r the proba b i l i t y o f a c o r r e l a t i o n between the two v a r i a b l e s .  Values  of l e s s than 0.1000 i n the "PROB" column i n d i c a t e good correlations. Dashed l i n e s i n the t a b l e i n d i c a t e i n v a l i d  correlations.  These r e s u l t from a complete absence of d a t a f o r one o f the v a r i a b l e s ; t h a t i s , e i t h e r t h e r e a r e no a s s a y s , or the i n d e pendent v a r i a b l e was n o t r e c o g n i z e d i n t h i s p a r t o f the s e c t i o n . Data p r e s e n t e d i n T a b l e 4-1 a r e summarized i n T a b l e 4-2.  INTERPRETATION OF RESULTS The r e s u l t s o f t h i s form o f d a t a treatment lend selves  them-  t o a number of i n t e r p r e t a t i o n s .  C o r r e l a t i o n Between Grade o f M i n e r a l i z a t i o n The o b j e c t  and Other  Parameters  o f s t a t i s t i c a l examination of "GEOLOG" d a t a i s  t o examine the c o r r e l a t i o n between ore grades and a l t e r a t i o n as w e l l as o t h e r parameters throughout the orebody.  This  approach i s used i n an attempt to e s t a b l i s h e m p i r i c a l l y those parameters, o t h e r than grade, t h a t would be most u s e f u l i n d e f i n i n g the orebody.  TABLE 4-1  59.  CORRELATION BETWEEN GRADE AND ALTERATION INTENSITY FOOTWALL CO GRADE CORK  PROB  DYKE MO GRADE  CORR  PROB  CU GRADE CORR  PROB  HANGING WALL MO GRADE CORR  CU GRADE  PROB  CORR  PROB  MO GRADE CORR  PROB  INDEPENDENT VARIABLE QUARTZ 147  0.0610 0.5402  -0.0621 0.6061  0.1023 0.1662  0.0081 0.8782  0.2257 0.0002  -0.0936 0.1361  155  -0.1877 0.1262  -0.2743 0.0243  0.4060 0.0000  0.3436 0.0002  0.3297 0.0000  0.3897 0.0000  163  -0.3451 0.0028  0.1869 0.1079  0.2466 0.0206  -0.2018 0.1779  0.5947 0.0000  0.5204 0.0000  171  0.2351 0.0007  0.0865 0.2077  -0.0135 0.8553  0.1871 0.9863  0.2038 0.0029  0.1093 0.1064  179  0.5851 0.0005  0.4227 0.0000  0.2811 0.0000  0.2751 0.0000  0.2237 0.0011  187  -0.2428 0.3360  0.3375 0.0000  0.3425 0.0000  195  0.2014 0.0021  -0.0668 0.5914  0.0690 0.5760  -0.0478 0.5554  0.5800 0.0000 0.2320 0.0005  0.5148 0.0000  : 0.4638 0.0000  INDEPENDENT VARIABLE "ARGILLIC" 147  0.1563 0.1694  -0.0621 0.6061  -0.2444 0.0025  0.1983 0.0136  0.0219 0.7725  155  -0.4954 0.0009  -0.2411 0.1084  -0.4926 0.0006  -0.3696 0.0003  -0.0337 0.6423  0.0276 0.7001  163  -0.1955 0.1237  -0.0586 0.6549  -0.2553 0.0196  -0.2614 0.0901  0.1237 0.2718  0.0306 0.7769  171  -0.2955 0.0001  -0.2676 0.0003  -0.2970 0.0001  -0.1489 0.0505  0.0988 0.1662  0.0617 0.3964  179  0.8211 0.0001  -0.0941 0.2634  -0.1815 0.0292  -0.4412 0.0000  -0.1569 0.0648  187  -0.4067 0.3848  -0.2807 0.0000  -0.0973 0.2120  195  -0.0082.0.8886  -0.2082 0.0930  0.1355 0.2822  -0.4704 0.0000 0.1357 0.1229  -0.2836 0.0006  -0.3444 0.0000  INDEPENDENT VARIABLE SERICITE 147  0.3480 0.0184  -0. 3189 0. 0573  -0.1031 0.3105  -0.0974 0.3389  -0.2200 0.0124  -0.2132 0.0155  155  -0.4812 0.0004  -0. 3892 0. 0039  -0.2910 0.0044  -0.1804 0.9765  -0.1304 0.1136  -0.0931 0.2645  163  -0.1017 0.4915  0. 4701 0. 0009  -0.1907 0.1623  -0.2444 0.2349  0.0593 0.6665  -0.0406 0.7589  171  -0.2952 0.0002  -0. 3633 0. 0000  0.2854 0.0092  0.1871 0.0863  0.1637 0.0782  0.0769 0.4202  -0.2942 0.0167  -0.2307 0.0487  -0.2450 0.0112  -0.2157 0.0309  -0.1592 0.0107  0.1127 0.2147  -0.0215 0.8357  0.0748 0.5406  0.3198 0.0610  0.5310 0.0021  0.2264 0.2103  0.7352  179  •  —  —  187 195  -0.6069 0.0000 0.1316 0.1012  0. 1357 0. 1229  -0.2836 0.0006  . -0.3444 0.0000  INDEPENDENT VARIABLE K-FELDSPAR 147  0.1070 0.3860  0.1928 0.1099  155  -0.2252 0.3594  -0.1123 0.6504  -0.2978 0.3992  0.0365 0.8810  163 171  0.6242 0.0130  0.1372 0.5960  179 187  -0.0466 0.8173  195  INDEPENDENT VARIABLE PYROPHYLLITE 147  -0.2337 0.1806  r0.2675 0.1525  155  -0.1651 0.6266  -0.1508 0.6561  0.1791 0.6328  0.2134 0.5700  -0.2291 0.0612  -0.2610 0.0332  -0.2219 0.0654  -0.5914 0.0000  -0.2666 0.0212  -0.3867 0.0057  -0.2799 0.0435  ._  -Q.2574 0.4385  -0.2011 0.5474  -0.3331 0.1805  163 171  -0.3026 0.0124  179 187 195  -0.7709 0.0000 -0.2605 0.0890  -0.0225 0.8566  -0.4505 0.0000  • -0.4565 0.0000  -0.2943 0.0006  -0.2067 0.0611  -0.2816 0.0546  0.2461 0.0939  60. TABLE  FOOTWALL CU GRADE CORR  PROB  -  4-1  (Cont)  DYKE MO GRADE  CORR  PROB  HANGING  CU GRADE CORR  PROB  MO GRADE CORR  INDEPENDENT V A R I A B L E 147  ,  WALL  CU GRADE  PROB  CORR  MO GRADE  PROB  CORR  PROB  DUMORTIERITE  ,  155  171  -0 . 3 2 3 3  0 .3355  - 0 . 1865 0 . 5843  xo / 195  - 0 ,.2605  0 .0890  0 .1468  0 .5767  -0.4563  0 . 0456  -0.7636  0 .0000  -0.3505  0 .0000  - 0 . 3155 0 . 1 6 7 0  - 0 . 3694 0 . 0 0 0 1  INDEPENDENT V A R I A B L E  —  -  1 "5  —  Q7  —u  u  -0 .2216  0 .4900  - 0 .1537  - 0 .1744  0 .5676  0 .2461  0 .0939  0 . 6488  CARBONATE  147  -0.. 1 5 3 8  0 .1238  0 .1888  0 .1182  0.4059  0 . 0000  0 .2881  0 .0006  - 0 .1157  0 . 0809  0 .0263  0 .6987  155  0.. 4 0 7 2  0 .0038  0 .4104  0 . 0036  0.4702  0.. 0 0 0 1  0 .5419  0 .0000  - 0 .1543  0 .1069  - 0 .2154  0 .0019  163  0.. 0 8 3 1 0 . 5 7 0 9  0 .2819  0 .0451  0.1346  0 .3265  0,. 3 5 6 4  0,. 0 3 5 7  - 0 .2184  0 .0030  - 0 . 0436 0 .5626  171  0.. 0 4 6 9  0 .1323  0.. 0 4 5 6  0.0624  0 .4769  0,. 1 5 9 0  0,. 0 6 1 5  - 0 .1986  0,. 0 0 7 8  0 .1425  0 . 0548  0.. 0289 0,. 6 3 3 5  179 187 195  -0.  0.. 4 9 1 8  .3083  0,. 0 8 5 5  0.0138  0,. 8 0 2 4  0.. 2 2 2 5  0,. 2 8 7 7  0.5529  0,. 0 0 0 0  -  0.4556  0.. 0 0 0 0  0.. 4 7 6 0 0., 0 0 0 0  -0.  0528  0.. 4 5 4 6  - 0 ,.0225  0,. 8 5 6 6  —  INDEPENDENT V A R I A B L E 147  - 0 . 3462  0.. 0 0 1 7  0,. 1 9 3 9  0.. 2267  -0.0031  0., 9 3 2 2  —  -  -0.  5143  0., 0 0 0 0  179  - 0 . 1031  0..5664  -0.2460  0.,0032  187  -0.  4504  0., 0 3 1 8  0.2653  0.,1702  0. 0848  0. 4 6 5 8  195  - 0 . ,4454  - 0 ..0230  0.. 0 0 0 0  —  0., 0 8 3 6 0.. 5 8 5 3  —  —  - 0 . 2235  0.,0072  0.,8221  INDEPENDENT V A R I A B L E  0,. 0 0 0 0  0 .2059  0 .0044  0.. 0 0 4 4  0 .1304  0,. 4 1 3 4  0,. 2 2 5 1  0.. 0 5 2 5  - 0 .1246  0,. 2 9 2 9  0,. 1924 0., 0 2 1 9  0,. 3 6 3 4  0,. 0 0 0 0  ZEOLITE  1£1 lOJ  171  0 .4200 0 .1435  Cj  - 0 ..1543  0., 1 0 6 9  0,. 1 2 9 9  0.. 1 7 6 8  - 0 ..4087  0., 0 0 0 0  - 0 ..2890  0., 0 0 0 9  - 0 ..5942  0., 0 0 0 0  - 0 ,.4208  0., 0 0 0 8  0.. 1 4 2 4  0.,2448  0., 0 8 0 2  0.. 5 4 5 3  - 0 ..0468  0.,6228  0.. 1 3 0 4  0..4134  - 0 ,.2332  0 .,1574  - 0 ..2761  0.. 0 9 2 3  CHLORITE  147  -0. 3 2 3 0  0 .,0023  - 0 ..0349  0.,7733  0 . 1 3 1 1 0. 0 9 7 3  0. 0515  0. 5 2 8 5  - 0 .,1687  0. 0083  - 0 .,1246  0.,0514  155  0. 3 9 2 9  0. 0028  0 ., 3 1 1 5  0. 0179  0.2909  0. 0 0 3 0  0. 0873  0 . 3834  - 0 . ,1139  0. 0623  - 0 . ,1780  0., 0 0 4 0  163  0. 0752  0. 5658  - 0 . ,2334  0. 0635  -0.0143  0 . 8688  0 . 3096  0 . 0505  - 0 . ,1381  0 . 0518  - 0 . ,0575  0 . 4312  171  -0. 3 7 1 0  0. 0000  - 0 . 3490  0. 0 0 0 0  -0.0213  0. 8103  0 . 0337  0 . 7269  - 0 . 1899  0. 0095  - 0 . 1323  0. 0693  179  -0.  6127  0. 0000  -0.2473  0. 0000  - 0 . 1465  0 . 0118  0. 1811  0 . 0055  0. 1021  0. 1485  187  0. 0 0 9 7  0. 9155  0.3110  0 . 0016  0. 1869  0. 0001  0. 1137  0 . 0627  195  0. 0 3 3 8  0 . 6218  0.0150  0 . 8465  0. 2862  0 . 0134  - 0 . 1297  0. 2715  - 0 . 5619  0 . 0000  - 0 . 3227  0. 0005  - 0 . 6898  0 . 0000  - 0 . 5484  0 . 0000  - 0 . 3185  0. 3546  - 0 . 2538  0 . 4648  0. 0002  - 0 . 1221  0. 3753  - 0 . 1275  0 . 3688  - 0 . 2756  0. 0000  - 0 . 2838  0. 0038  - 0 . 2 374 0 . 1 8 6 1  - 0 . 2160  0 . 1497  - 0 . 2966  0. 0462  - 0 . 0624  0 . 3574  0. 0117  INDEPENDENT V A R I A B L E  -0. 4 6 5 5  0. 0001  155  0. 6 1 8 1  0 . 1127  0. 2473  0 . 5409  163  - 0 . 2090  0 . 0594  - 0 . 1522  0 . 1725  171  - 0 . 3813  0 . 0002  - 0 . 3101  0. 0015  179  - 0 . 6307  0. 0010  -0.3847  0. 0000  187  - 0 . 6968  0. 0015  0.4162  0. 0009  195  0. 0360  0 . 7103  -0.1957  0 . 2797  147  - 0 . 2878  - 0 . 1043  0 . 4638  0 . 2814  0.4499  0 . 0469  0 . 8682  EPIDOTE  0. 0780  - 0 . 3316  0. 7322  61, TABLE 4-1  GRADE  CORR  PROB  HANGING WALL -  DYKE  FOOTWALL CU  (Cont)  MO  GRADE  CORR  PROB  CU GRADE CORR  PKOB  CORR  -0.4060  0.0029  155  CORR  PROB  INDEPENDENT VARIABLE 147  CU GRADE  MO GRADE  PROB  MO GRADE CORR  PROB  HEMATITE  0.1025  0.5740  0.0780  0.7322  0.1254  0.4127  0.2255  0.1323  -0.1826  0.1877  -0.2144  0.1200  -0.0112  0.9122  -0.1135  0.6061  163  0.1371 0.6052  0.1162  0.6595  0.2733  0.1739  0.0854  0.7275  171  0.1503  0.2234  0.0172  0.3295  0.0005  0.1974  0.0343  0.1147  0.2438  -0.2073  0.0331  179  0.1455  0.1431  0.0734  0.4724  0.0910  0.6481  0.1696  0.4039  187  -0.1383  0.5126  -0.1372  0.3531  -0.1855  195  -0.2164  0.1083  0.5311  -0.2920  0.2657.  0.3936 INDEPENDENT VARIABLE  MAGNETITE  147  0. 1659  0 .1094  0.. 2 9 8 1  0.. 0 1 3 0  0., 1 4 2 3  0.. 0 9 5 7  0. 0437  0 . 6202  0 . 2229  0 . 0012  0 . 1462  0..0312  155  0. 3228  0 .0178  - 0 . .2452  0.. 0 7 3 1  0..1809  0,.0778  0. 0120  0. 8749  0 . 1627  0 . 0116  0 . 1017  0..1142  163  0 . 1802  0 .0165  0.. 2387 0.. 0 0 1 7  0.,4038  0..0012  0. 2 4 5 5  0 . 1493  0 . 4946  0 . 0020  - 0 . 3534  0.. 0 2 7 3  171  0 . 2210  0 .0016  0., 1 7 2 6  0., 0 1 2 4  0.,3948  0.. 0 0 1 1  0.,4146  0. 0006  0. 1201  0 . 1724  - 0 . 0130  0.. 0 2 7 3  179  0 . 1237  0 .5565  - 0 ,,1593  0.. 0 0 8 9  0.,0742  0 . 2247  0. 1535  0 . 0291  0 . 1330  0.. 0 7 8 6  187  0 . 0417  0 .8329  0.,3634  0.. 0 0 2 3  —  —  0. 1366  0 . 0110  0. 1529  0,. 0 2 7 7  195  0 . 1571  0 .0430  0., 9 0 4 3  0.. 0 0 0 0  0., 7 6 9 3  0. 0000  0. 1352  0 . 3148  - 0 . ,1896  0,. 1 5 2 7  0 . 0000  0.. 2 1 0 6  0.. 0 0 7 1  INDEPENDENT V A R I A B L E  MOLYBDENITE  147  0. 4793  0. 0000  0.4489  155  0. 4374  0. 0002  0.7266 0 . 0000  0. 5 3 2 0 0. 6 7 4 6  163  0. 7 2 9 5  0. 0000  0.1970  0 . 1763  0. 0644  0. 5873  171  0. 6 6 7 0  0. 0000  0.5365  0. 0 0 0 0  0. 4 9 7 8  0. 0000  179  0. 0000  0. 0000  0.5625 0 . 0 0 0 0  0. 5 0 9 7 0. 0 0 0 0  0. 0 0 0 0  0. 4 6 6 8 0. 0 0 0 0  187 195  0. 5742  0.8188  0. 0 0 0 0  INDEPENDENT VARIABLE  FRACTURE  DENSITY  147  0. 2 7 5 8  0..0062  0. 4472  0. 0002  0.1397  0. 1029  0..1154  0. 1805  - 0 . 1539  0.,0138  0.. 0 9 3 6  0.. 1 3 6 3  155  0. 6089  0., 0 0 0 0  0. 6252  0. 0000  0.2923  0 . 0032  0.. 2 6 5 3  0. 0073  - 0 . 1736  0., 2 5 5 0  0.. 1 3 1 0  0., 0 4 0 5 0..0597  163 171  1236  0.,3292  0 . 0757  0 . 5566  0.2352  0. 1321  0..2964  0. 0646  - o . 2540  0..0009  - 0 ..1285  0. 5974  0., 0 0 0 0  0. 6188  0. 0000  0.2035  0. 0665  0.. 4 3 9 0  0. 0000  0. 0039  0., 9 1 0 9  0.. 1 2 4 6  0., 0 7 7 0  —  —  0.2275  0 . 0002  0,. 2 0 8 5  0. 0005  0. 0003  0.. 9 4 4 9  0.. 2 4 9 1  0.. 0 0 4 1  0.0499  0 . 6342  0., 1 8 3 0  0..0002  0,. 3 1 9 9  0.. 0 0 0 0  0.4953  0. 0000  0., 0 5 9 5  0.. 6 1 4 5  0,. 4 2 8 8  0,. 0 0 0 2  -0.  179  -0.  6044  0,. 0 0 0 5  187  -0.  2056  0.. 3 5 1 6  0. 4162  0.. 0 0 0 0  195  0.. 4 3 6 0  0. 0000  0.. 5 1 0 1  INDEPENDENT V A R I A B L E  0. 0000  GRAYNESS  147  0.0320  0.7600  -0.2043  0.0957  -0.1843  0.0158  -0.0461  0.5594  -0.0601  0.3410  -0.0172  0.7758  155  -0.3834  0.0058  -0.1389  0.3316  0.1316  0.1850  0.3305  0.0009  -0.0090  0.8563  0.0378  0.5515  163  -0.4828  0.0001  0.1662  0.1991  -0.2587  0.0187  -0.1382  0.4064  0.2382  0.0009  0.1729  0.0141  171  -0.1864  0.0055  -0.2094  0.0020  -0.4330  0.0000  -0.2395  0.0026  0.0220  0.7537  0.1430  0.0434  179  0.5028  0.0022  0.0734  0.2003  -0.0475  0.4166  -0.2984  0.0000  -0.1970  0.0048  187  0.1737  0.4883  -0.2235  0.0323  • '  -0.1145  0.0176  0.0277  0.6691  195  0.0592  0.4070  0.1462  0.0890  0.0313  -0.1511  0.2318  0.0891  0.4906  0.0679  0.3388  :  0.7193  62. TABLE  CORR  PROB  (Cont)  HANGING WALL  DYKE  FOOTWALL CU GRADE  4-1  MO  GRADE  CORR  PROB  CU GRADE CORR  PROB  MO CORR  INDEPENDENT V A R I A B L E  147  0.0331 0 . 7 5 8 4 , - 0 . 1 8 9 2  155  -0.3871  0.0074  -0.1094  163  -0.3306  0.0273  0.2700  187  0.2809  0.2213  195  -0.0075  0.8822  GRADE PROB  CU GRADE CORR  PROB  MO  GRADE  CORR  PROB  BLEACHING  0.1345  -0.1635  0.0490  -0.0005  0.9434  -0.1108  0.0916  -0.0172  0.7758  0.4670  0.1752  0.0830  0.3649  0.0004  0.0161  0.7940  0.0205  0.7506  -0.2164  0.0696  -0.1053  0.5383  0.2741  0.0002  0.2115  0.0040  -0.2395  0.0252  -0.0768  0.1304  0.1342  0.0405  0.1749  0.0522  -0.2295  0.0881  0.1089  0.4324  0.0723.  171 179  0.0144  0.8244  0.0849  0.3568  63, TABLE 4-2 SUMMARY OF CORRELATION Footwall  3  m u tj CN co o  rrj  u  O  Minerals  CU  cu •o  TI (0  u  o  CN  to  3  O  U  s  CJ  HangingWall  Dyke  CU tl  CD  Alteration  RESULTS  s  CD  rd u o  0)  O CN  3  w o  o  .1.  Quartz  0  0  ++  ++  2.  "Argillic"  0  0  O(-)  0  3.  Sericite  0  0  0  0  4.  K-Peldspar  0  0  0  0  5.  Pyrophyllite  .6.  Dumortierite  7.  Carbonate  0  0  0  +  O(-)  0  Zeolite  0  0  0  0  0  0  Chlorite  0  0  0  0  0  0  '8. 9.  0  0  0  10.  Epidote  11.  Hematite  0  0  0  0  0  0  12.  Magnetite  ++  0  ++  0  ++  0  Other Parameters 13.  Cu Grade  14.  MoS  15.  Fracture  16.  Bleaching  2  ++  Grade Density  ++  ++  ++  ++ ++  0  ++  ++  ++  0  ++  0  0  0  0  0  0  +  Positive  ++  Strong P o s i t i v e Negative  Correlation  Correlation  Strong Negative 0  Indefinite  Note:  Correlation  Material  Correlation  Correlation  logged i n t h e f i e l d as  " A r g i l l i c " was i d e n t i f i e d as s e r i c i t e by X-Ray d i f f r a c t i o n  The requirements consistency.  o f a u s e f u l c o r r e l a t i o n are s t r e n g t h and  An a l t e r a t i o n m i n e r a l which shows a s t r o n g  p o s i t i v e c o r r e l a t i o n w i t h grade  i n one s e c t i o n and a s t r o n g  n e g a t i v e c o r r e l a t i o n i n another s e c t i o n i s o f l i t t l e use. Although changes i n c o r r e l a t i o n w i t h rock types a r e expected, the i d e a l c o r r e l a t i o n i s the same i n the v o l c a n i c s o f both hanging-wall and f o o t w a l l .  This i s not considered a v i t a l  p o i n t , because the geometry o f the d e p o s i t ( F i g u r e 3-7) has p e r m i t t e d much b e t t e r examination  o f the hanging-wall o r e  zone than the f o o t w a l l zone. T a b l e 4-2 I l l u s t r a t e s t h a t the s t r o n g e s t p o s i t i v e e l a t i o n s f o r copper grade and h i g h molybdenite  i n v o l c a n i c rocks a r e w i t h  grades.  copper  magnetite  Quartz has a s t r o n g p o s i t i v e  c o r r e l a t i o n w i t h copper grades but n o t i n the f o o t w a l l .  corr-  i n the hanging-wall  volcanics  Minerals l e a s t associated with  (negative c o r r e l a t i o n s ) a r e p y r o p h y l l i t e , d u m o r t i e r i t e  and e p i d o t e .  S e r i c i t e has a n e g a t i v e c o r r e l a t i o n w i t h  copper  grade i n the hanging-wall v o l c a n i c r o c k s , b u t n o t i n the footwall. In  t h e q u a r t z - f e l d s p a r porphyry, magnetite,  molybdenite  grades, and h i g h f r a c t u r e d e n s i t i e s  samples w i t h h i g h copper grades.  "Argillic"  quartz, high characterize  and s e r i c i t e have  s t r o n g n e g a t i v e c o r r e l a t i o n s w i t h copper grades whereas . p y r o p h y l l i t e and d u m o r t i e r i t e have weak t o moderate n e g a t i v e correlations. Copper and h i g h f r a c t u r e d e n s i t y have s t r o n g p o s i t i v e c o r r e l a t i o n s w i t h molybdenite  grades  i n volcanic rocks.  Quartz has s t r o n g p o s i t i v e c o r r e l a t i o n w i t h molybdenite hanging-wall v o l c a n i c s , but n o t i n the f o o t w a l l .  i n the  Pyrophyllite  65. and e p i d o t e have n e g a t i v e c o r r e l a t i o n s w i t h molybdenite  in  v o l c a n i c rocks as w e l l as i n the q u a r t z - f e l d s p a r porphyry. In  the q u a r t z - f e l d s p a r porphyry,  copper  and  fracture  d e n s i t y have a s t r o n g p o s i t i v e c o r r e l a t i o n w i t h  molybdenite,  and q u a r t z and carbonate  correlations.  have moderate p o s i t i v e  P y r o p h y l l i t e , d u m o r t i e r i t e , e p i d o t e , and a r g i l l i c have n e g a t i v e c o r r e l a t i o n s w i t h  alteration  molybdenite.  Importance of Sulphide M i n e r a l i z a t i o n Stages  to the Ore  I t i s p o s s i b l e to examine the importance  of the d i f f e r e n t  stages of d e p o s i t i o n of c h a l c o p y r i t e and molybdenite zone u s i n g s t a t i s t i c a l examining  c o r r e l a t i o n data.  c o r r e l a t i o n s between grades  and  Zone  to the ore  T h i s i s approached by i n t e n s i t y of  individual  a l t e r a t i o n m i n e r a l s a s s o c i a t e d w i t h d i f f e r e n t stages of s u l p h i d e mineralization.  A s t r o n g c o r r e l a t i o n between grade and  a l t e r a t i o n m i n e r a l a s s o c i a t e d w i t h a p a r t i c u l a r stage  an  suggests  t h a t the stage i s an important c o n t r i b u t o r to the ore zone. There are f o u r stages of copper m i n e r a l i z a t i o n w i t h i n the deposit.  F i r s t - s t a g e c h a l c o p y r i t e ' m i n e r a l i z a t i o n i s represented  as t i n y v e i n l e t s c l o s e l y a s s o c i a t e d w i t h b i o t i t e and ( P l a t e I I , A and B). copper  grades  The  s t r o n g p o s i t i v e c o r r e l a t i o n between  and magnetite  supports the f i e l d  t h i s i s the most important phase of copper B i o t i t e was  magnetite  observation that  mineralization.  not r e c o g n i z e d i n the core a t the time i t was  logged  on the "GEOLOG" format. Second-stage copper m i n e r a l i z a t i o n o c c u r s as c h a l c o p y r i t e w i t h quartz-molybdenite a c t e r i z e d by a r g i l l i c copper  veins.  envelopes,  Because these v e i n s are the importance  char-  of t h i s stage o f  to the ore zone can be examined by o b s e r v i n g . t h e  degree  of ore  c o r r e l a t i o n between " a r g i l l i c " grade.  Table 4-2  and s e r i c i t e a l t e r a t i o n s to  shows t h a t i n the h a n g i n g - w a l l ore zone the  v a l u e s range from zero t o n e g a t i v e f o r " a r g i l l i c " , negative f o r s e r i c i t e .  T h i s suggests t h a t copper  but are associated  with t h i s stage o f m i n e r a l i z a t i o n does not c o n s t i t u t e a major p o r t i o n o f copper i n the Ore  zone.  T h i r d - s t a g e copper m i n e r a l i z a t i o n i s a s s o c i a t e d w i t h molybdenite on s l i p  surfaces.  I n d e f i n i t e c o r r e l a t i o n between  copper grade and f r a c t u r e d e n s i t y i n v o l c a n i c rocks as to  opposed  a s t r o n g p o s i t i v e c o r r e l a t i o n between molybdenite grade  and  f r a c t u r e d e n s i t y suggests t h a t t h i s stage of copper i s not a major c o n t r i b u t o r to the ore  zone.  F o u r t h - s t a g e copper m i n e r a l i z a t i o n i s a s s o c i a t e d with l a t e carbonate-zeolite veins.  In the h a n g i n g - w a l l ore zone t h e r e i s  an i n d e f i n i t e c o r r e l a t i o n between copper and z e o l i t e and a c o r r e l a t i o n r a n g i n g from p o s i t i v e t o n e g a t i v e f o r carbonate. suggests t h a t w h i l e l o c a l l y t h e r e may ore  This  be a c o n t r i b u t i o n t o the  zone, by t h i s stage of m i n e r a l i z a t i o n , i t i s o f l i m i t e d  importance. There are t h r e e stages o f molybdenum m i n e r a l i z a t i o n i n the  ore zone.  F i r s t , molybdenite o c c u r s w i t h copper i n the  m a g n e t i t e - r i c h zone.  The i n d e f i n i t e c o r r e l a t i o n between mag-  n e t i t e and molybdenite grade suggests a minor c o n t r i b u t i o n t o the  molybdenum ore. Second-stage  molybdenum i s i n q u a r t z - m o l y b d e n i t e v e i n s  w i t h s e r i c i t e envelopes.  I n d e f i n i t e c o r r e l a t i o n between  molybdenite grades and i n t e n s i t y of a r g i l l i c  and  sericitic  a l t e r a t i o n suggest t h a t t h i s stage o f molybdenum a l s o i s a minor c o n t r i b u t o r t o the ore  zone.  T h i r d - s t a g e molybdenum o c c u r s on s l i p s u r f a c e s . c o r r e l a t i o n between molybdenite grade and the f r a c t u r e supports the f i e l d o b s e r v a t i o n t h a t t h i s i s the major  The  strong  density contributor  of molybdenum to the ore zone. In summary, f i e l d o b s e r v a t i o n s t h a t stage-one  copper  m i n e r a l i z a t i o n and s t a g e - t h r e e molybdenum m i n e r a l i z a t i o n are the stages of s u l p h i d e m i n e r a l i z a t i o n which made the major  contri-  b u t i o n s t o the o r e zone are supported by the s t a t i s t i c a l  Importance  study.  of the Copper-Molybdenum C o r r e l a t i o n  Stong c o r r e l a t i o n between copper and molybdenite grades i s another r e s u l t o f the s t a t i s t i c a l  study.  As o u t l i n e d i n the  p r e v i o u s s e c t i o n , f i e l d evidence, supported by much o f the s t a t i s t i c a l e v i d e n c e , suggests t h a t copper and molybdenum were d e p o s i t e d a t d i s t i n c t l y d i f f e r e n t times.  However, c o r r e l a t i o n  between copper and molybdenite grades i s one o f the s t r o n g e s t c o r r e l a t i o n s o b t a i n e d i n the study.  T h i s appears t o be a paradox where two parameters  which  have a s t r o n g mathematical c o r r e l a t i o n are not, i n f a c t , related.  directly  In the case o f the copper and molybdenite grades, the  mutual v a r i a b l e ( s ) a r e unknown.  I t may  be a s p a t i a l ,  (e.g.  p r o x i m i t y to dyke) i n s t e a d bf a d i r e c t temporal r e l a t i o n s h i p . They are g e n e t i c a l l y r e l a t e d  i n t h a t they a r e both p a r t o f the  same o r e - f o r m i n g system. T h i s problem w i t h c o r r e l a t i o n between copper and. molybd e n i t e grades i l l u s t r a t e s one of the fundamental drawbacks o f using c o r r e l a t i o n analysis.  Merely because two  sets of data  have a s t r o n g mathematical c o r r e l a t i o n does not e s t a b l i s h a  d i r e c t r e l a t i o n s h i p t o each o t h e r . it  S t a t i s t i c a l c o r r e l a t i o n , whi  i s a powerful technique f o r examining  used as the s o l e c r i t e r i a between  d a t a , should n o t be  f o r determining the r e l a t i o n s h i p  parameters.  E f f i c i e n c y o f "GEOLOG" Logging For the purpose o f t h i s study, the "GEOLOG" format much f a s t e r than c o n v e n t i o n a l c o r e l o g g i n g methods.  proved  However,  d u r i n g t h i s l o g g i n g , n e i t h e r g r a p h i c l o g s nor grade e s t i m a t e s were made.  I t i s e s t i m a t e d t h a t l o g g i n g w i t h "GEOLOG" format  accompanied by a g r a p h i c l o g and grade e s t i m a t e s r e q u i r e s approximately  the same amount of time as c o n v e n t i o n a l c o r e  logging. The  advantage o f t h e "GEOLOG" format  i s i n the amount and  type o f data which a r e recorded and t h e speed w i t h which they can be t r e a t e d and r e c o v e r e d .  U s i n g t h i s format, one o b t a i n s  " q u a n t i t a t i v e , s p e c i f i c , and c o n s i s t e n t d a t a " Godwin, 1972) f o r each assay i n t e r v a l .  (Blanchet and  I t also results i n  c o l l e c t i o n o f d a t a g e n e r a l l y omitted d u r i n g r o u t i n e l o g g i n g . In format  terms o f data treatment,  data r e c o r d e d on the "GEOLOG"  i s amenable t o many types o f computer treatment as  o u t l i n e d by B l a n c h e t and Godwin (1972).  The u s u a l d e s c r i p t i v e  l o g s cannot be s a t i s f a c t o r i l y coded f o r t h i s type o f treatment. "GEOLOG", even when used without a computer, p r o v i d e s a good way o f u s i n g and r e t r i e v i n g d a t a .  A l l parameters r e c o r d e d  can be examined i n terms o f assay i n t e r v a l s . devoted  t o each parameter lends i t s e l f  The s i n g l e column  t o making a c o l o u r -  coded, s t r i p l o g p a r a l l e l t o the l i t h i c o r g r a p h i c l o g .  This  a l l o w s v i s u a l comparison o f d i f f e r e n t v a r i a b l e s and l i t h o l o g y or  grade.  CHAPTER 5:  HYDROTHERMAL ALTERATION  INTRODUCTION D i s c u s s i o n o f hydrothermal a l t e r a t i o n deposit i s divided into  five parts:  1. D i s c u s s i o n o f a l t e r a t i o n  stages.  2. D e s c r i p t i o n o f a l t e r a t i o n  types.  3. D i s c u s s i o n o f the r e l a t i o n s alteration 4. B r i e f and of  a t the I s l a n d Copper  between ore zone and  types.  review o f the r e l a t i v e importance o f hypogene  supergene a l t e r a t i o n p r o c e s s e s  i n development  alteration.  5. D i s c u s s i o n o f the formation  of alteration  zones.  ALTERATION STAGES S e v e r a l problems a r i s e when d e t e r m i n i n g alteration  r e l a t i v e ages o f  minerals:  1. The t i m e - t r a n s g r e s s i v e nature ation.  Minerals  o f hydrothermal a l t e r -  a l t e r i n response t o t h e i r  chemical  environment, which i s not n e c e s s a r i l y the same i n a l l p a r t s o f a d e p o s i t a t the same time. 2. The formation  o f the same m i n e r a l s  at different  i n the sequence o f hydrothermal a l t e r a t i o n .  times  For  example, h y d r o b i o t i t e i n the b i o t i t e zone c o u l d be a metastable phase c r e a t e d by p r o g r e s s i v e  alteration,  a phase c r e a t e d by r e g r e s s i v e a l t e r a t i o n which • p a r t i a l y destroyed  b i o t i t e , o r a mixture o f both.  3..Distinguishing alteration  envelopes which c u t  e a r l i e r pervasive a l t e r a t i o n , zoned a l t e r a t i o n  envelopes.  from c o a l e s c i n g As Hemley  and Meyer  (1967) observe, the problem i s "to a v o i d geometric p l a u s i b i l i t y 4. The c o r r e l a t i o n  f o r geometric  mistaking  fact".  o f events i n d i f f e r e n t  rock  types.  Alteration  a t the I s l a n d  Copper d e p o s i t i s d i v i d e d  two main stages on the b a s i s o f c r o s s c u t t i n g as  the m i n e r a l o g i c a l ,  assemblages.  relations  as w e l l  t e x t u r e and chemical nature o f the  Contact metamorphism by the q u a r t z - f e l d s p a r -  porphyry dyke produced a l t e r a t i o n o f the b i o t i t e , and  into  epidote types.  transition  These types o f a l t e r a t i o n are  characterized  by: 1. M i n e r a l assemblages c h a r a c t e r i s t i c metamorphism  of contact  (Winkler, 19 67) ;  2. P e r v a s i v e d i s t r i b u t i o n o f the a l t e r a t i o n  minerals;  3. L i t t l e c h e m i c a l v a r i a t i o n between d i f f e r e n t of a l t e r e d  r o c k s or a l t e r e d  and f r e s h r o c k s  types (Figure  5-7). Superimposed w a l l - r o c k a l t e r a t i o n r e s u l t e d of the c h l o r i t e - s e r i c i t e , Dog" types.  sericite, pyrophyllite  in alteration and "Yellow  These types of a l t e r a t i o n are c h a r a c t e r i z e d  by:  1. M i n e r a l assemblages c h a r a c t e r i s t i c of w a l l - r o c k alteration  (Hemley and Meyer, 1967);  2. S p a t i a l d i s t r i b u t i o n c o n t r o l l e d  by f r a c t u r e s  and  breccias; 3. Marked chemical v a r i a t i o n between d i f f e r e n t of a l t e r e d rocks  r o c k s and between a l t e r e d  fresh  ( F i g u r e s 5-8, -5-13).  The c o n t a c t metamorphism and the w a l l - r o c k w i l l be r e f e r r e d  and  types  t o as stage one and stage two  alteration respectively. r  ALTERATION ZONES Alteration  a t the I s l a n d  Copper Mine i s d i v i d e d  into  seven types on the b a s i s o f c r i t e r i a r e c o g n i z a b l e i n hand specimen.  M i n e r a l assemblages  c h a r a c t e r i s t i c o f the types  71  N1SE  LEGEND b£q  Overburden  lAAl  Breccias 1. P y r o p h y l l i 2- M a r g i n a l  K.'-'vl  Quartz-Feldspar Porphyry  I ~ ~  I Volcanic Fault  Ro<  fesa^  73. were e s t a b l i s h e d by subsequent l a b o r a t o r y study.  This section  i n c l u d e s d e s c r i p t i o n s o f the p o s i t i o n , d i s t r i b u t i o n and m i n e r a l ogy  o f each o f t h e seven types o f a l t e r a t i o n . Lowell  and G u i l b e r t  (1970) d e s c r i b e a l t e r a t i o n e f f e c t s i n  porphyry copper d e p o s i t s phyllic, argillic out, while  there  ious authors,  i n terms o f f o u r main types:  and p ' y r o p y l i t i c . i s a general  As F o u n t a i n  i n i n t r u s i v e rocks,  Therefore,  Rose(1970) and F o u n t a i n  are a p p l i e d t o  the p r a c t i c e adopted by Bray  (1969),  (1972) o f naming a l t e r a t i o n types i n  terms o f the p r i n c i p a l a l t e r a t i o n m i n e r a l s followed  variations i n  V a r i a t i o n s are i n t e n s i f i e d when a l t e r a t i o n  types, which a r e d e f i n e d volcanic rocks.  (1972) p o i n t s  s i m i l a r i t y o f usage between v a r -  i n d e t a i l t h e r e are c o n s i d e r a b l e  the d e f i n i t i o n s .  potassic,  u s u a l l y has been  i n d e s c r i b i n g the a l t e r a t i o n a t I s l a n d Copper.  Contact Thermal Metamorphism Biotite  Zone  B i o t i t i z e d rocks  are r e c o g n i z e d  macroscopically  d i s t i n c t i v e brown c o l o u r a t i o n o f the r o c k s .  by a  Ten per cent  b i o t i t e i s s u f f i c i e n t t o impart the d i s t i n c t i v e brown c o l o u r . D e s t r u c t i o n of primary t e x t u r e s w i t h i n t h i s zone r e s u l t s i n a f i n e - g r a i n e d f e l t e d rock  ( P l a t e I I I . , A,C,D.).  Boundaries o f the b i o t i t e z o n e are d i f f i c u l t  to e s t a b l i s h  because the boundaries a r e t r a n s i t i o n a l and i n many areas b i o t i t e has been d e s t r o y e d  by subsequent a l t e r a t i o n .  approximate d i s t r i b u t i o n o f the b i o t i t e Figures  5-1, 5-2.  The  zone i s shown i n  T h i s zone i s w e l l d e f i n e d on the n o r t h e a s t  (hanging-wall) s i d e o f t h e porphyry dyke where i s forms a 350f o o t wide t a b u l a r zone which p a r a l l e l s the dyke.  74.  PLATE I I I BIOTITE ALTERATION ZONE A.  P o l i s h e d s l a b from the b i o t i t e a l t e r a t i o n zone shows the absence of primary v o l c a n i c t e x t u r e s i n t h i s zone. The specimen i s c u t by a q u a r t z v e i n which i s c u t i n t u r n by a carbonate v e i n .  B.  Thin s e c t i o n of r e l a t i v e l y c o a r s e - g r a i n e d magnetite, p o s s i b l y a f t e r an amphibole.  C.  Thin s e c t i o n w i t h a b i o t i t e v e i n l e t c u t t i n g a c r o s s abundant d i s s e m i n a t e d b i o t i t e . The opaque m i n e r a l are magnetite.  D.  Thin s e c t i o n of a patch of b i o t i t e and and leucoxene.  E.  Thin s e c t i o n of a patch of c h l o r i t e c o n t a i n i n g some g r a i n s b i o t i t e i n the c e n t r e . Peripheral material i s epidote.  F.  Thin s e c t i o n showing c h l o r i t e and magnetite a l o n g a f r a c t u r e c r o s s i n g a m a t r i x c o n t a i n i n g abundant b i o t i t e . The c h l o r i t e envelope i s o f f s e t on a carbonate f i l l e d f r a c t u r e .  G.  Thin s e c t i o n w i t h c h l o r i t e on a f r a c t u r e c r o s s i n g a m a t r i x c o n t a i n i n g abundant b i o t i t e .  Abbreviations bi cb q cl mg  -  used on the biotite carbonate quartz chlorite magnetite  biotite  and containing grains  q u a r t z w i t h magnetite  plate  of  75.  On the s o u t h e a s t ( f o o t w a l l ) s i d e o f the porphyry, i s less well defined.  Normal movement on the End Creek  has d i s p l a c e d the b i o t i t e  Fault  zone i n the upper p a r t s o f the d e p o s i t  and i t has been removed by e r o s i o n ( F i g u r e s 5-1,5-2). the b i o t i t e  the zone  However,  zone reappears a t depth where the f a u l t plane  d i v e r g e s from the dyke  (Figure 5-2).  Examination o f t h i n s e c t i o n s o f b i o t i t e a vague r e l i c t  zone r o c k s r e v e a l s  p o r p h y r i t i c o r fragmental t e x t u r e w i t h pheno-  c r y s t s o f p l a g i o c l a s e arid m a f i c m i n e r a l s i n a f i n e - g r a i n e d matrix.  Table 5-1 l i s t s some m i n e r a l assemblages from the zone.  P l a g i o c l a s e p h e n o c r y s t s are s m a l l ( -<C 4mm) corroded margins. s i t i o n s , because  It is difficult  with  t o determine  ragged,  t h e i r compo-  they a r e both zoned and a l t e r e d . Where comp-  o s i t i o n s c o u l d be determined,  they range between An 5-25.  Phenocrysts g e n e r a l l y have s e r i c i t i z e d o r s a u s s u r i t i z e d c e n t r e s w i t h r e l a t i v e l y u n a l t e r e d margins. is highly  The i n t e n s i t y o f a l t e r a t i o n  variable.  M a f i c p h e n o c r y s t s g e n e r a l l y a r e pseudomorphed by ragged patches o f c h l o r i t e , b i o t i t e , e p i d o t e , carbonate and a c t i n o l i t e . C r y s t a l o u t l i n e s o f both amphibole  and pyroxene  l o c a l l y have  been p r e s e r v e d . The m a t r i x c o n s i s t s o f p l a g i o c l a s e c h l o r i t e , and minor muscovite,  ( An 20),  actinolite,  biotite,  hydrobiotite/  v e r m i c u l i t e , q u a r t z and carbonate. X-ray d i f f r a c t i o n i n d i c a t e s the presence o f s m a l l amounts of  h y d r o b i o t i t e and v e r m i c u l i t e i  n  the b i o t i t e  zone.  The  r e l a t i o n s h i p between these m i n e r a l s and b i o t i t e has not been determined,  because  o p t i c a l l y from  they a r e extremely d i f f i c u l t  biotite.  to d i s t i n q u i s h  T a b l e 5-1 MINERAL ASSEMBLAGES BIOTITE ALTERATION ZONE (from t h i n s e c t i o n s and X -•ray D i f f r a c t i o n s ) in  rr CN  vo 1 o o  o rH 1 O O  ro rH 1 o o  vo iHi o o  1 O O  X  X  X  X  Sericite  X  X  X  Epidote  X  X  X  Plagioclase An<25  Calcite Quartz Biotite Green  1  00  1 in H  VD  o  1 ro O rH  <7i \ ro o r-H  tn vo in i ro o rH  rH  -  -  X  X  -  X  X  X  X  X  X  X  X  X  X  X  X  X  X  -  X  X  X  X  X  X  X  -  X  -  -  -  -  X  -  X  X  -  -  X  -  X  -  -  X  -•  -  X  -  -  -  X  -  X  -  X  X  -  -  -  -  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  -  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  -  -  -  -  -  -  -  -  X  X  X  X  X  X  X  X  X  X  X  -  -  -  X  X  X  -  -  X  X  X  X  X  X  1 o  .  rr  rr CTl  a\ I  rr  00  V  X  A  X  X  X  X  X  X  X  X  X  v  X  X  X  x  -  -  -  -  x  -  -  -  -  -  Hydrobiotite  -  -  -  -  x  -  -  x  -  -  x  Actinolite  -  -  x  -  -  -  -  -  -  -  -  -  -  -  x  -  X  x  x  X  x  -  X  -  -  -  x  -  -  x  -  x  x  x  o o\  rH  in 1 o  03  00  Apatite  Magnetite  o ro  00  rr  Chlorite  rH . CTi rH  o rH 1 rH a\ rH  CN  03  rOr  1 o  X  o  o rHi rH a\ rH  a\  1 rH rH  i  o  X  CN  o o  ro  VD i  o  Biotite  rH O rH 1 rH 0\ rH  vo vo  O rH|  CN |  • -  CN  u o ro  x  x  -  x x  -  -  -  -  x  x  x  x  X Abundant x  Present  -  Absent  78. Opaque m i n e r a l s a s s o c i a t e d w i t h t h i s zone are and minor amounts o f hematite and leucoxene.  Magnetite  as f i n e - g r a i n e d d i s s e m i n a t i o n s , w i t h a l t e r e d mafic and as n a r r o w - f r a c t u r e f i l l i n g s  magnetite  phenocrysts  ( P l a t e I I . , A,B,C,E).  i s p r e s e n t near f r a c t u r e s and leucoxene  occurs  Hematite  i s associated with  c h l o r i t e pseudomorphs of mafic m i n e r a l s .  T r a n s i t i o n Zone The  transition  zone i s c h a r a c t e r i z e d m a c r o s c o p i c a l l y by  the presence of c h l o r i t e , and the o b l i t e r a t i o n o f primary t e x t u r e s . T h i s zone i s t r a n s i t i o n a l between an i n n e r b i o t i t e  zone, which i s  a d j a c e n t to the porphyry dyke, and an o u t e r e p i d o t e zone. r i e s are g r a d a t i o n a l and d i f f i c u l t The of  (hanging-wall)  zone  ( F i g u r e s 5-1,  5-2).  ( f o o t w a l l ) s i d e o f the dyke, the t r a n s i t i o n  defined.  side  I t i s approximately s i x hundred f e e t wide  and p a r a l l e l s the b i o t i t e west  to d e f i n e .  zone i s w e l l exposed on the n o r t h e a s t  the porphyry dyke.  Bounda-  On the south-  zone i s not w e l l  Normal movement on the End Creek F a u l t has  displaced  the zone, but i t reappears a t depth where the f a u l t plane d i v e r g e s from the dyke  ( F i g u r e 5-2).  Thin s e c t i o n s of r o c k s from the t r a n s i t i o n zone r e v e a l vague p o r p h y r i t i c and. fragmental t e x t u r e s .  There are p l a g i o c l a s e  phenocrysts and mafic phenocrysts, and fragments, chlorite,  i n a fine-grained matrix.  i n the zone are o u t l i n e d  i n Table  M i n e r a l assemblages  observed  5-2.  P l a g i o c l a s e phenocrysts g e n e r a l l y resemble b i o t i t e zone.  r e p l a c e d by  M a f i c phenocrysts are r e p l a c e d by  those of the chlorite,  e p i d o t e , a c t i n o l i t e , minor carbonate and s e r i c i t e .  The  matrix  Table 5-2 MINERAL ASSEMBLAGES IN THE TRANSITION ZONE (From t h i n s e c t i o n s and X-ray D i f f r a c t i o n s ) ro  CN  i ^ - k o  ro  rH  r-  CN  oo  cn  m  r  o  u  c T > o o r o m o ' > t f r ^ r ^  I ^ r  o  I  rH  Plagioclase  (An 20)  r  o  r  I  o  o  o  ^  H  I r o  I o  I o  X  X  X  X  X  X X  X x  Carbonate  x  -  x  Quartz  x  Chlorite  X  -  -  x  X  x  X  x  X  x  -  x  x  X  -  x  -  —  x  -  -  -  -  x  X  x  -  —  -  -  x  x  -  X  x  x  x  -  x  X  x  o  CN  CN  o  o  I  o ro  o  VD  o  ro I I  ^  T  -  x  -  x  x  x  X  x  —  —  —  x  x  -  x  x  X  x  X  X  ^  X  X  X  X  X  X  -  -  -  -  -  -  -  -  -  -  x  x  -  -  x  x  x  X -  U  iH O  x  -  -  X  O  x  X  -  o  O  x  -  -  o  x  X X -  i—I  i  CN  x  X X  -  x  rrH I I  LD  H  CN  x  r-~  r  CN  —  Magnetite  o  r  CN  —  Leucoxene  o  I  H  CN  x  Actinolite  I  r  CN  Epidote  Laumontite  O  r-  CN  X  Muscovite  o  CN  n  x  X -  -  X Abundant x Present - Absent  80. c o n s i s t s of plagioclase(An a l t e r e d to s e r i c i t e , and of  20), which i s weakly to moderately  c h l o r i t e , a c t i n o l i t e and minor amounts  quartz. X-ray d i f f r a c t i o n shows t h a t the  s e r i c i t e noted i n the  t h i n s e c t i o n s i s muscovite w i t h minor amounts of hydromica (hydromuscovite?). Opaque m i n e r a l s  w i t h i n t h i s zone are magnetite and  Magnetite i s r e s t r i c t e d t o the i n n e r p a r t of the w i t h i n two  hundred f e e t o f the b i o t i t e  i n a t e d through the matrix  of the rocks  pseudomorphs of m a f i c m i n e r a l s . c h l o r i t e pseudomorphs of m a f i c  Epidote  Zone  green e p i d o t e .  has  the zone and ( P l a t e IV.,  I t occurs  and w i t h  dissem-  chlorite  Leucoxene occurs  only  with  minerals.  macroscopically  by abundant p i s t a c h i o -  Primary t e x t u r e s o f the v o l c a n i c rocks are  w i t h i n the zone  Epidote  zone which i s  '  T h i s zone i s r e c o g n i z e d  recognized  zone.  leucoxene.  ( P l a t e IV.,  a r e l a t i v e l y uniform  A,B,C). distribution  throughout  shows no obvious r e l a t i o n to f r a c t u r e s or B, C ) .  The  zone i s w e l l exposed on the  (hanging-wall) s i d e of the dyke. g r a d a t i o n a l with  The  easily  veins  northeast  i n n e r boundary, which i s  the t r a n s i t i o n zone, i s approximately e i g h t  hundred f e e t from and  p a r a l l e l to the q u a r t z - f e l d s p a r  dyke-volcanic  ( F i g u r e s 5-1,  contact  5-2).  The  porphyry  p o s i t i o n of  the  o u t e r boundary i s not w e l l d e f i n e d because of l a c k o f exposure, however, the i n f e r r e d width o f the On  the southwest  ( f o o t w a l l ) s i d e o f the  porphyry dyke, the e p i d o t e boundary i s the End  zone i s L,200 f e e t . quartz-feldspar  zone i s w e l l d e f i n e d .  Creek F a u l t  ( F i g u r e s 5-1,  The  5-2).  inner The  Table  5-3  MINERAL ASSEMBLAGES IN THE EPIDOTE ZONE (From t h i n s e c t i o n s and X-ray D i f f r a c t i o n s ) Thin Sections a> m m CT\ oo oo ro rH c r i r H r o m I rH  I  I  X  X X X  <; r-i  co rH ^  X  X  Saponite  _  _  _  _  _  Sericite  x  x  x  x  x  Epidote  X  X  -  X  Carbonate  -  -  -  Quartz  -  -  Chlorite  x  Laumontite  -  Actinolite  '-  Plagioclase  (An<20)  ro o oo CSi rA  o r H c N r o r - ^  |  ro trH  X-ray D i f f r a c t i o n s (Matrix M a t e r i a l ) CN  ro co  CN  I  CN  I  CM  I  CN  I  I  U U U U C J O U O  U O  x  x  x  -  -  x  x  x  ?  ?  x  x  -  x  x  ?  X  X  _  _  _  _  _  x  x  x  -  -  -  x  -  -  x  x  -  -  -  x  -  -  X  X  x  x  X  X  X  X  x  X  -  -  x  -  x  X  X  x  X  X  -  -  -  _  x  -  -  -  -  -  -  X Abundant x Present ? "Questionable Identification - Absent  00  82.  PLATE IV EPIDOTE ZONE A.  Outcrop n o r t h o f the p i t showing f i n e l y bedded t u f f e p i d o t e developed along the bedding p l a n e s . The s c a l e on the photo i s one i n c h .  B.  Hand specimen from the outcrop shown i n "A", showing the development of e p i d o t e along the bedding p l a n e s .  C.  D r i l l c o r e showing patches  D.  Thin s e c t i o n showing e p i d o t e developed  of epidote i n a l a p i l l i in a tuff.  A b b r e v i a t i o n s used on the p l a t e ep  -  epidote  with  tuff.  83.  o u t e r boundary i s p a r a l l e l t o the f a u l t and 1,200  approximately  f e e t t o the south. T h i n s e c t i o n s o f r o c k s from the zone show t h a t they are  t u f f s and l i t h i c  lapilli  tuffs  ( P l a t e IV., D) w i t h patches,  v e i n l e t s , and d i s s e m i n a t e d g r a i n s o f e p i d o t e  ( P l a t e IV.,  A,B,  C,B-) .  M i n e r a l assemblages observed. i n the zone are l i s t e d i n  Table  5-3. P l a g i o c l a s e phenocrysts u s u a l l y are moderately  itized.  Composition  saussur-  o f the p l a g i o c l a s e , where p o s s i b l e t o  measure, i s s o d i c (An 5-20).  Zoned p l a g i o c l a s e  grains  commonly have s a u s s u r i t i z e d c e n t r e s and a l b i t i c rims.  Mafic  phenocrysts a r e a l t e r e d t o t a l l y t o c h l o r i t e and e p i d o t e w i t h minor amounts of carbonate, a c t i n o l i t e and  leucoxene.  The m a t r i x of the r o c k s c o n s i s t s of p l a g i o c l a s e s e r i c i t e , and very f i n e - g r a i n e d m a t e r i a l , p r o b a b l y glass.  X-ray d i f f r a c t i o n s t u d i e s of the m a t r i x  (An 20),  devitrified  indicate:  (1)  The  (2)  The presence o f a s m e c t i t e group c l a y m i n e r a l , p o s s i b l y  saponite.  s e r i c i t e noted i n t h i n s e c t i o n i s muscovite,  The  s a p o n i t e may  be p a r t of the v e r y  m a t e r i a l , but c o u l d not be d i s t i n g u i s h e d  fine-grained  optically.  P y r i t e i s the o n l y opaque m i n e r a l noted i n t h i s Small  and  zone.  (<2mm) s u b h e d r a l cubes o f p y r i t e are d i s s e m i n a t e d  through the m a t r i x .  Wall-rock A l t e r a t i o n S e r i c i t e and C h l o r i t e Zone The  s e r i c i t e and c h l o r i t e zone i s r e c o g n i z e d by  chlorite  pseudomorphs o f . m a f i c m i n e r a l s and s e r i c i t e pseudomorphs o f p l a g i o c l a s e phenocrysts.  Although i t o c c u r s both i n the  TABLE 5 - 4 MINERAL ASSEMBLAGES IN THE CHLORITE-SERICITE ZONE (From t h i n s e c t i o n s and X-ray D i f f r a c t i o n s ) Q u a r t z - f e l d s p a r porphyry 00 ro 1 o  CM H 1 O 00  CQ ro CM H 1 H 1 1 O O O CN CO CO rH  -  -  -  K a o l i n Group C l a y  -  -  -•  X  -  Sericite  x  X  X  X  Carbonate  X  X  -  Chlorite  X  Quartz  o LD CO 1 CTl ro rH  "3< CO rl ro O rH  <  o rH m 1 ini o CN -or rH  X  -  X  -  X  X  -  -  X  X  X  -  -  X  X  X  X  X  X  X  X  -  -'  X  X  X  X  -  • -  -  X. X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  Leucoxene  X  X  X  -  -  X  X  -  X  -  Magnetite  -  X  - -  -  -  X  X  X  Pyrite  -  X  X  X  X  Chalcopyrite  -  -  -  -  Plagioclase  (An 10)  (Muscovite)  - - -  CN rH rH <£> CO in r1 I I m ro ro CN o o rH rH rH —c  Volcanic Rocks  Epidote  - - X  - -  -  X X  X  X  X  -  X  -  -  Molybdenite  X  Quartz V e i n s  X  X  X  X  Carbonate V e i n s  X  - -  -  —  X  X  _  _  86. q u a r t z - f e l d s p a r porphyry dyke and v o l c a n i c r o c k s , i t i s more e x t e n s i v e i n the dyke.  In the v o l c a n i c r o c k s , i t i s r e s t r i c t e d  t o the o u t e r p a r t of a l t e r a t i o n envelopes on s e t 4 q u a r t z molybdenite  veins  A.)  (Table 3-2,  F i g u r e s 5-3,  Quartz-Feldspar  5-4).  Porphyry  C h l o r i t e - s e r i c i t e a l t e r a t i o n w i t h i n the porphyry  dyke i s  e a s i l y r e c o g n i z e d m a c r o s c o p i c a l l y by the dark green pseudomorphs of m a f i c m i n e r a l s and the p a l e green pseudomorphs o f p l a g i o c l a s e (Plate V. A ) .  This pervasive c h l o r i t e - s e r i c i t e  alteration  shows no c l e a r r e l a t i o n t o f r a c t u r e s of v e i n s i n the exposed i n the p i t .  porphyry  However, i t t e n t a t i v e l y i s regarded  l a r g e o u t e r envelopes on the narrower  as  s e r i c i t e envelopes.  The  " p e r v a s i v e " a l t e r a t i o n i n the porphyry exposed i n the p i t i s b e l i e v e d due  to c o a l e s c e n c e of these  Examination  o f t h i n s e c t i o n s confirmed t h a t the p l a g i o -  c l a s e phenocrysts are moderately A l t e r a t i o n products as determined muscovite,  envelopes.  to i n t e n s e l y  by X-ray d i f f r a c t i o n ,  w i t h minor amounts of hydromica  c a l c i t e and a k a o l i n group c l a y  altered.  mineral.  are  (hydromuscovite), Mafic phenocrysts  are a l t e r e d to c h l o r i t e w i t h minor amounts of e p i d o t e , c a r b onate and opaques  ( P l a t e V.,  B,C,D  ).  The m a t r i x i s a f i n e - g r a i n e d mixture of q u a r t z , s e r i c i t e (muscovite)  and minor amounts o f c h l o r i t e , e p i d o t e , s o d i c  p l a g i o c l a s e and opaque m i n e r a l .  K - F e l d s p a r i n the m a t r i x  which forms up to 15 per cent o f the rock i n u n a l t e r e d porphyry  i s destroyed i n t h i s  Opaque and  zone.  semi-opaque m i n e r a l s w i t h i n the  s e r i c i t e zone are magnetite,  and leucoxene.  chlorite-  Magnetite  and  PLATE V CHLORITE-SERICITE ALTERATION ZONE P o l i s h e d s l a b o f q u a r t z - f e l d s p a r porphyry showing the t e x t u r e o f the r o c k . The q u a r t z "eyes", s e r i c i t i z e d p l a g i o c l a s e and c h l o r i t i z e d mafic p h e n o c r y s t s a r e e v i d e n t . Thin s e c t i o n showing c h l o r i t i z e d m a f i c m i n e r a l s , p r o b a b l y amphiboles, w i t h magnetite and leucoxene. Thin s e c t i o n showing a c h l o r i t i z e d m a f i c p h e n o c r y s t w i t h p y r i t e and leucoxene. The subhedral opaques a r e p y r i t e and and the l a t h - s h a p e d opaques leucoxene. T h i n s e c t i o n shows a mass o f c h l o r i t e a l t e r i n g t o white mica. The two l a r g e opaque g r a i n s a r e p y r i t e and the s m a l l e r ones a r e leucoxene. Thin s e c t i o n showing a mass o f white mica w i t h l a t h s o f leucoxene. T h i s i s a p p a r e n t l y a m a f i c p h e n o c r y s t which has a l t e r e d t o c h l o r i t e and then t o white mica l e a v i n g the leucoxene u n a f f e c t e d . The same t h i n s e c t i o n as "E" w i t h the n i c o l s c r o s s e d . Thin s e c t i o n showing r o s e t t e s o f c h l o r i t e . Thin s e c t i o n showing a mass o f c h l o r i t e surrounded mica.  A b b r e v i a t i o n s used on the p l a t e q f leu ser cl PY  ~  quartz plagioclase feldspar leucoxene s e r i c i t e (white mica) chlorite pyrite  by white  leuocoxene are a s s o c i a t e d w i t h c h l o r i t e pseudomorphs of phenocrysts  ( P l a t e V.,  mafic  B,C,D).  B.)  V o l c a n i c Rocks  W i t h i n v o l c a n i c rock, c h l o r i t e - s e r i c i t e a l t e r a t i o n i s r e s t r i c t e d to the outer p a r t of s e r i c i t e envelopes around quartz v e i n s  ( P l a t e VI., D:  F i g u r e 5-4).  This  alteration  i s d i s t i n g u i s h e d m a c r o s c o p i c a l l y b y ' i t s l i g h t green c o l o u r which c o n t r a s t s w i t h the c h a l k y white c o l o u r of the  sericite  envelopes. T h i n s e c t i o n study  i n d i c a t e s t h a t t h e r e are patches o f -  c h l o r i t e r e p l a c i n g mafic phenocrysts,  as w e l l as r o s e t t e s o f  secondary c h l o r i t e  c h l o r i t e patches  ( P l a t e V.,G).  The  o c c a s i o n a l l y are rimmed by s e r i c i t e  ( P l a t e V.,  H).  P l a g i o c l a s e g r a i n s have been i n t e n s e l y a l t e r e d to c o v i t e , hydromica  (hydromuscovite),  mus-  and a k a o l i n group c l a y  mineral. The m a t r i x c o n s i s t s of q u a r t z , s e r i c i t e  (muscovite),  k a o l i n group c l a y m i n e r a l , c h l o r i t e , magnetite and Magnetite and  leucoxene u s u a l l y are a s s o c i a t e d w i t h  pseudomorphs o f mafic  a  leucoxene. chlorite  minerals.  S e r i c i t e Zone The  sericite  zone occurs both  i n q u a r t z - f e l d s p a r porphyry  and v o l c a n i c rocks where i t i s r e c o g n i z e d m a c r o s c o p i c a l l y the c h a l k y white c o l o u r of the rocks caused by the a l t e r a t i o n of c h l o r i t e to  sericite.  total  by  T a b l e 5-5 MINERAL ASSEMBLAGES IN THE SERICITE ZONE (From t h i n s e c t i o n s and X-ray D i f f r a c t i o n s ) Quartz-feldspar porphyry  V o l c a n i c Rocks  o in  CQ  O ro I O  (< cn I ' O  CQ a> I O  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  K a o l i n Group C l a y  -  -  -  -  -  x  -  x  -  x  x  x  x  x  -  Pyrophyllite  -  -  x  -  x  -  -  -  -  ?  -  -  -  Quartz  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  Pyrite  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  Chalcopyrite  _  _  _  _  _  _  _  _  _  _  _  Molybdenite  -  x  x  -  x  -  -  Quartz Veins  X  x  x  x  X  -  x  Carbonate V e i n  -  -  x  x  -  x  -  O  CT\ i CN  O  CTi I  rH i  CN  O  I  CN  rj< O  rH I  LO O O  I  VO  rJ"00COrHrHrHrrrJ<rH  Sericite  (Muscovite)  X x ?  _  _  X -  _  X -  H  r n . - I C N C ^ t T i C Q I rr I I ro l o i f o r o i O C N O O I ^ O  CO rH CO rH rH «3<  -  _  X -  -  x  X -  -  -  -  -  -  Abundant Present Doubtful I d e n t i f i c a t i o n Absent  -  -  -  Figure 5"3  Figure 5~4 SCHEMATIC  DIAGRAM  OF A SERICITE ENVELOPE IN  VOLCANIC  ROCKS  A.)  Quartz-Feldspar  Porphyry  S e r i c i t e a l t e r a t i o n o c c u r s as envelopes on (Plate VI., F:  F i g u r e 5-3)  fractures  which makes i t d i f f i c u l t  the d i s t r i b u t i o n of the a l t e r a t i o n  ( F i g u r e s 5-1,  to d e f i n e  5-2).  Thin s e c t i o n s of rocks from t h i s zone i n d i c a t e t h a t pseudomorphs o f mafic m i n e r a l s are a l t e r e d to s e r i c i t e . of s e r i c i t e which have r e p l a c e d c h l o r i t e c o n t a i n  chlorite Patches  leucoxene  d i s t i n g u i s h i n g them from s e r i c i t e r e p l a c i n g p l a g i o c l a s e .  Plag-  i o c l a s e phenocrysts are r e p l a c e d t o t a l l y by f i n e - g r a i n e d  inter-  growths o f s e r i c i t e and a k a o l i n group c l a y m i n e r a l . phenocrysts are u n a f f e c t e d by the  Quartz  alteration.  The m a t r i x of the r o c k i s a l t e r e d t o a mixture of white mica, q u a r t z , minor c l a y and opaques.  Quartz g r a i n s w i t h i n the  m a t r i x are separated completely from each o t h e r by mica and  the.white  clay.  X-ray d i f f r a c t i o n i n d i c a t e s t h a t the s e r i c i t e i s muscovite and the c l a y i s a k a o l i n group c l a y m i n e r a l . Opaque and semi-opaque m i n e r a l s a s s o c i a t e d w i t h t h i s are leucoxene  and p y r i t e .  Leucoxene o c c u r s as t i n y  zone  {•C 0.1mm)  g r a i n s i n patches o f s e r i c i t e which r e p l a c e c h l o r i t e .  Pyrite  o c c u r s as s m a l l ( < 1mm)  through-  out the m a t r i x .  There  subhedral g r a i n s disseminated  i s no obvious r e l a t i o n s h i p between  q u a r t z - s u l p h i d e v e i n s and s e r i c i t e  B.)  V o l c a n i c Rocks  Sericite alteration to envelopes around F i g u r e 5-4). envelopes  alteration.  i n the v o l c a n i c r o c k s i s r e s t r i c t e d  quartz-molybdenite  veins  ( P l a t e VI.,A,B,C,:  Primary t e x t u r e s are d e s t r o y e d t o t a l l y w i t h i n the  ( P l a t e VI,,D,E).  The approximate  p o s i t i o n of the  93.  PLATE VI SERICITE ZONE A.  S e r i c i t e envelopes on q u a r t z v e i n s c u t t i n g b i o t i t i z e d v o l c a n i c rocks. The s c a l e of the photo from the bottom t o the s k y - l i n e i s approximately f o r t y f e e t .  B.  A c l o s e r view o f a s e r i c i t e envelope (white band behind the hammer handle) c u t t i n g b i o t i t i z e d v o l c a n i c s .  C.  A s m a l l e r s e r i c i t e envelope a s s o c i a t e d w i t h a q u a r t z v e i n c o n t a i n i n g molybdenite. The rock i s a l a p i l l i t u f f w i t h c h l o r i t i z e d fragments i n a s i l i c i f i e d m a t r i x .  D.  A polished rocks.  E.  A p o l i s h e d s l a b from the inner p a r t o f a s e r i c i t e in volcanic rocks.  F.  S e r i c i t e envelope i n the q u a r t z - f e l d s p a r porphyry. envelope i s l o c a l l i z e d a l o n g a f r a c t u r e .  G.  A p o l i s h e d s l a b o f a t r a n s i t i o n from c h l o r i t e - s e r i c i t e zone to s e r i c i t e zone i n the porphyry. S c a l e i s on t h e c h l o r i t e s e r i c i t e zone.  H.  A polished  slab of a t y p i c a l  s e r i c i t e envelope i n v o l c a n i c  slab of s e r i c i t i z e d quartz-feldspar  Abbreviations  used on the p l a t e  q - quartz ser - s e r i c i t e c l - chlorite  envelope The  porphyry.  94.  sericite  zone i s shown i n F i g u r e  schematically  i n Figure  the  and  illustrated-  5-2.  Envelopes o f s e r i c i t e zone and  5-1,  a l t e r a t i o n c u t rocks o f the  i n n e r p a r t o f the t r a n s i t i o n zone.  biotite  Most envelopes  are c l e a r l y  r e l a t e d to Set 4 quartz-molybdenite v e i n s  3-5,  However, t h e r e are some envelopes on f r a c t u r e s  3-6).  which do not c o n t a i n q u a r t z - m o l y b d e n i t e v e i n s . B,C,D,E, i l l u s t r a t e s  sericite-rich  (Figures  P l a t e VI/  envelopes a d j a c e n t  to  A, quartz  veins. Figure  5-4  i s a schematic diagram o f a s e r i c i t e  in v o l c a n i c rocks. three p a r t s :  an  A "typical"  envelope i s d i v i d e d i n t o  i n n e r zone c o n t a i n i n g p y r o p h y l l i t e and  of a k a o l i n group c l a y m i n e r a l , chlorite,  envelope  sericite  s e r i c i t e and hydromica.  r a r e l y i s present.  The  and  an o u t e r  zone of  i n n e r p y r o p h y l l i t e zone  M i n e r a l assemblages observed i n the  zone are l i s t e d i n Table  traces  sericite  5-5.  In t h i n s e c t i o n , s e r i c i t e pseudomorphs o f p l a g i o c l a s e m a f i c phenocrysts can be d i s t i n g u i s h e d from the m a t r i x because they c o n t a i n s l i g h t l y c o a r s e r - g r a i n e d Pseudomorphs o f m a f i c m i n e r a l s  only  sericite.  i n p l a c e s can be  the presence o f leucoxene, a m i n e r a l  and  identified  not formed w i t h  by  pseudomorph  after plagioclase. Most of the "white mica" noted i n t h i n s e c t i o n s i s s e r i c i t e However p y r o p h y l l i t e , a k a o l i n group c l a y m i n e r a l (hydromuscovite) were i d e n t i f i e d  by X-ray  and  hydromica  diffraction.  P y r o p h y l l i t e Zone Most p y r o p h y l l i t e  a l t e r a t i o n occurs  i n a b r e c c i a which  caps the q u a r t z - f e l d s p a r porphyry dyke on the northwest  end  Table 5-6 MINERAL ASSEMBLAGES IN THE PYROPHYLLITE ZONE Thin  Sections  X-ray D i f f r a c t i o n s Fragments  VO O CN  < O< m rH  rH CN rH  O  X  X  1  White Mica Pyrophyllite Muscovite  1  rH  rH  -r-  O rr  u  1  CN  X  X  o rH CN rH  O  <x> rH  1  X  1  <  n CN rH  CN CO CN  O  U  O VO rH  X -  X X X X X X x - - -  rH r-  x  x  Quartz  X  X  Leucoxene  -  -  Pyrite  X  X  Quartz V e i n s  x - x  Carbonate Veins  x  -  X  x X  X X  X X  X  u  Q  1  H  rH  vo rH  U  H rI  r-  I  I  O  X  X  X  x  -  -  X  X  X  X  X  -  i—1  Q  rH  rH  1  O  i  U  < o rH CN O  1  VO rH  o r~ I 00 rrH  in m I m CN rH  rH  rH U  rH W  rH  rH r-»  rH rI  m i  .1  U  U  < in ro rH O  1  VO rH  U  X  -  X x  Abundant Present Absent  X X  -  X  X  X  X  -  X  X  X  X  x  X  -  -  x  X  -  x  x  x  x  x  x  x  x  x  -  X  -  X  -  U  x  x  X  1  W  X  K a o l i n Group C l a y Dumortierite  Matrix  X  -  -  -  X  of the d e p o s i t The  (Figures  p y r o p h y l l i t e zone i s c h a r a c t e r i z e d  dumortierite.  i t s diagnostic  by p y r o p h y l l i t e and  Pyrophyllite i s i d e n t i f i e d macroscopically  extreme s o f t n e s s  The  5-1, 5-2).  and soapy f e e l .  b l u e t o mauve  by i t s  D u m o r t i e r i t e i s r e c o g n i z e d by  colour.  b r e c c i a i s a t a b u l a r body capping the dyke.  It i s  approximately 350 f e e t wide and has been t r a c e d  3,600 f e e t along  strike.  quartz-feldspar  I t i s wedge shaped, t h i c k e n i n g  as the  porphyry dyke plunges t o the northwest. W i t h i n the b r e c c i a , v o l c a n i c and  fragments, porphyry fragments  m a t r i x have been p y r o p h y l l i t i z e d .  canic  Primary t e x t u r e s  fragments a r e completely d e s t r o y e d  texture  o f the q u a r t z - f e l d s p a r  Thin sections  of volcanic  fragments show t h a t i s o l a t e d i n very  ( "C2^y) white micas and c l a y s .  of quartz-feldspar  they  fine-grained  It is difficult  fragments from m a t r i x i n t h i n  Thin sections  (Plate V I I , , B ) , but the  porphyry fragments i s unchanged.  c o n s i s t o f t i n y quartz g r a i n s  volcanic  of v o l -  to d i s t i n g u i s h  section. porphyry fragments show  t h a t p l a g i o c l a s e and m a f i c p h e n o c r y s t s a r e t o t a l l y a l t e r e d t o white micas and c l a y . can F).  White mica pseudomorphs o f m a f i c m i n e r a l s  s t i l l be r e c o g n i z e d by the presence o f leucoxene Quartz p h e n o c r y s t s appear u n a f f e c t e d  ( P l a t e V.,E,  by the a l t e r a t i o n .  M a t r i x o f porphyry fragments c o n s i s t s o f q u a r t z g r a i n s ounded by white micas and c l a y  ( P l a t e VII.,H).  X-ray d i f f r a c t i o n o f m a t e r i a l fragments and b r e c c i a m a t r i x  surr-  from v o l c a n i c and porphyry  (Table  5-6) i n d i c a t e s t h a t most o f  the white mica i s p y r o p h y l l i t e , r a r e l y accompanied by muscovite, and  a k a o l i n group c l a y m i n e r a l . D u m o r t i e r i t e occurs as r o s e t t e s  D) and as v e i n l e t s  dn the m a t r i x  (Plate VII.., E,F,G,) t h a t  (Plate VII  l o c a l l y have  colloform  98.  PLATE V I I PYROPHYLLITE ALTERATION ZONE A.  Outcrop o f p y r o p h y l l i t e b r e c c i a . The q u a r t z - f e l d s p a r porphyry fragments are apparent; the v o l c a n i c fragments are d i f f i c u l t t o see.  B,  The same o u t c r o p o f p y r o p h y l l i t e b r e c c i a from a s l i g h t l y g r e a t e r d i s t a n c e t o show the t e x t u r e o f the b r e c c i a . A hand specimen o f a q u a r t z v e i n w i t h i n the p y r o p h y l l i t e breccia. The v e i n appears t o c u t the b r e c c i a , but t h i n s e c t i o n examination shows p y r o p h y l l i t e growing i n t o the vein.  D.  Dumortierite rosettes  E.  Dumortierite v e i n i n g matrix of p y r o p h y l l i t e  F.  A c l o s e r view o f the d u m o r t i e r i t e v e i n shown i n "E". The upper p a r t o f the photograph c o n s i s t s o f needles o f dumortierite. The lower p a r t i s q u a r t z and p y r o p h y l l i t e .  G.  A mass o f d u m o r t i e r i t e matrix.  H.  T y p i c a l m a t r i x i n the p y r o p h y l l i t e b r e c c i a . Quartz g r a i n s are surrounded and separated by white mica, mostly p y r o p h y l l i t e ,  i n a p y r o p h y l l i t e matrix. breccia.  needles i n a q u a r t z and p y r o p h y l l i t e  A b b r e v i a t i o n s used on the p l a t e pp du q QFP Vole  -  pyrophyllite dumortierite quartz quartz-feldspar Volcanic  porphyry  99.  100. texture  ( P l a t e VII  E).  T i n y needles o f d u m o r t i e r i t e along the  margins of these v e i n l e t s extend f l a k e s o f white mica  i n t o g r a i n s of q u a r t z and  ( P l a t e VII,,F,G) s u g g e s t i n g t h a t  i t e p o s t d a t e s q u a r t z and white  into  dumortier-  mica.  Opaque and semi-opaque m i n e r a l s a s s o c i a t e d w i t h the pyrop h y l l i t e zone are leucoxene  and p y r i t e .  Leucoxene o c c u r s w i t h -  i n masses of white mica pseudomorphs of mafic p h e n o c r y s t s . Small  (< 2mm)  s u b h e d r a l c r y s t a l s of  p y r i t e are d i s s e m i n a t e d  through the m a t r i x .  "Yellow Dog" The breccias  Zone  "Yellow Dog"  zone i s r e s t r i c t e d to the "Yellow  ( F i g u r e 5-1).  The  zone i s c h a r a c t e r i z e d by  brown f r a c t u r e f i l l i n g s of f e r r o a n dolomite t r a n s e c t o t h e r a l t e r a t i o n zones. "Yellow Dog"  Dog"  rusty-  (Table 5-7) , which  Although a l l p a r t s of the  zone have the c h a r a c t e r i s t i c brown f r a c t u r e - . ;  f i l l i n g m a t e r i a l , the type of a l t e r a t i o n of fragments b r e c c i a v a r i e s w i t h . t h e i r d i s t a n c e from the Near the dyke, fragments  w i t h i n the  porphyry dyke.  i n the b r e c c i a e x h i b i t  alteration  c h a r a c t e r i s t i c of the s e r i c i t e zone i n v o l c a n i c r o c k s , and t h e r e i s complete A, B, C ) .  d e s t r u c t i o n of primary t e x t u r e s ( P l a t e V I I I . ,  V o l c a n i c fragments  from the porphyry dyke  i n p a r t s o f the b r e c c i a  ( F i g u r e s 5-1,  5-2,  farthest  north w a l l of p i t )  show a l t e r a t i o n c h a r a c t e r i s t i c of the c h l o r i t e - s e r i c i t e w i t h p a r t i a l d e s t r u c t i o n of primary t e x t u r e s .  zone  Breccia matrix  i s q u a r t z r e g a r d l e s s of p o s i t i o n r e l a t i v e t o the dyke.  TABLE 5-7 MINERAL ASSEMBLAGES IN THE "YELLOW DOG" ZONE (From X - r a y . D i f f r a c t i o n s ) ^ rH i O  Quartz Plagioclase Sericite  (An 10)  rH CM n i i i  Q  Q  Q  Q  i  Q  w i  w h i i  Q  Q  Q  co i  Clay S i z e Fraction Separate <3ffl  CO>H>H>H>H>H>H>H>H  rHrH  X  X  X X  -  - -  (Muscovite) X  X  X  X  X  - -  X  X  X  - -  - -  x x  -  X  X  X  X  X  -  X  X X  K a o l i n Group C l a y Pyrophyllite  X -  X -  X -  X -  X -  -  -  X -  X -  x X - -  Chlorite  -  ?  ?  -  -  ?  -  -  -  _ -  X x ?  Calcite  -  -  -  -  -  -  -  -  -  - -  -  Ferroan Dolomite  X  X  X  X  X  X  -  X  X  - -  Pyrite  X  ?  X  -  *  X  -  -  X  -  -  Abundant Present Doubtful Identification Absent  102.  PLATE V I I I II  YELLOW DOG II ZONE  A.  A p o l i s h e d s l a b o f b r e c c i a showing the e x t e n t and i n t r i c a c y of q u a r t z v e i n i n g w i t h i n the b r e c c i a .  B.  A p o l i s h e d s l a b showing quartz v e i n s , dark gray, c u t t i n g s e r i c i t e a l t e r a t i o n which c o n t a i n s e x t e n s i v e f r a c t u r e f i l l i n g pyrite. The q u a r t z v e i n s are c u t by l a t e r carbonate v e i n s .  C.  A p o l i s h e d s l a b showing q u a r t z v e i n i n g c u t t i n g a s e r i c i t i z e d v o l c a n i c fragment.  Abbreviations q cb ser PY  used on the p l a t e  quartz carbonate sericite pyrite  103.  104. RELATIONS BETWEEN ALTERATION . TYPE AND Two  SULPHIDE DEPOSITION  stages of a l t e r a t i o n and  d e p o s i t i o n complicate deposition.  The  m u l t i p l e stages of metal  r e l a t i n g a l t e r a t i o n type to  sulphide  r e l a t i o n s h i p i s f u r t h e r complicated  s u p e r p o s i t i o n of w a l l - r o c k  by  a l t e r a t i o n on c o n t a c t metamorphism.  T h i s r e s u l t s i n some stages of metal d e p o s i t i o n being but not temporally  the  spatially,  r e l a t e d to a c e r t a i n type of a l t e r a t i o n .  T h i s s e c t i o n i s d i v i d e d i n t o d i s c u s s i o n s of s p a t i a l and o r a l r e l a t i o n s between a l t e r a t i o n types and  stages of  tempsulphide  deposition. The  s p a t i a l r e l a t i o n s h i p between the ore  a t i o n zones i s shown s c h e m a t i c a l l y  i n Figure  zone and  5-2.  Figure  shows s p a t i a l r e l a t i o n s between types of a l t e r a t i o n and stage of metal d e p o s i t i o n .  The  However t r a c e s of c h a l c o p y r i t e and  The  "Yellow Dog"  morphism and of the ore  v o l c a n i c rocks.  set 4 v e i n s  ore  (Table  rocks.  The  (20-30 f e e t ) f u r t h e r away from  'Yellow. Dog" b r e c c i a r e l a t i v e to the Chalcopyrite  meta-  boundary  adjacent  i n the b r e c c i a o c c u r s as  coarse  quartz i n the  3-1).  Temporal r e l a t i o n s h i p s between metal d e p o s i t i o n a l t e r a t i o n type are o u t l i n e d i n Table 5-8. w i t h the  3-1).  b r e c c i a c u t s a l l zones of c o n t a c t  I t i s t e n t a t i v e l y c o r r e l a t e d with set 4 veins  zone  quartz  (Table  g r a i n s i n v e i n l e t s and w i t h t r a c e s of molybdenite i n veins.  each  molybdenite occur i n  extends i n t o the u n a l t e r e d  the dyke i n the  5-5  no ore grade m a t e r i a l .  set 3 and  zone moves s l i g h t l y  alter-  p y r o p h y l l i t e b r e c c i a which i s  not shown on the diagram c o n t a i n s  veins t e n t a t i v e l y believed  the  "Yellow Dog:  The  and  problem  a l t e r a t i o n type i s shown by the  table.  While the b u l k of the a l t e r a t i o n w i t h i n the b r e c c i a i s s e r i c i t e ,  105.  Figure  5-5  S P A T I A L R E L A T I O N S BETWEEN A L T E R A T I O N TYPE AND S U L P H I D E D E P O S I T I O N  INTRUSIVE ROCKS  VOLCANICROCKS  QUARTZ- MARGINAL FELDSPAR BRECCIA  CONTACT METAMORPHISM BIOTITE "ONE  SW. WALL-ROCK  ORE  TRANSITION "ONE  UNALTERED EPIDOTE ZONE  ZONE  NE.  ALTERATION  Sericite  Envelopes  XXXXXXXX iXXXXXXXXX) X  X  X  X  x  X  x  x  x  METAL DEPOSITION 1.)  Copper (3)  * S t a g e one two  (4)  Stage  three (6)-  Stage four Stage 2.)  X  Stage  five  X  X  p.  X  (9)  X  X  X  X  (10)  xxxxxxx  XXXXXXXXXXXXXX  CXXXXXXXXX5  X x  )  X  X  x  x  X x  ;  X  X  X  X  X  X  X  X  X  X  X  X  X X X  X  X  X  X  <  Molybdenum S t a g e one  (3)  Stage  (4)  'Stage  two three  X  (6)  x  x  X  X  X  X  X  X  X  x  x  x  X  X  X  X  X  X  X  x  x  x  xxxxxxxxx: xxxxxxxxxxxxxx: •xxxxxxxx  Notes (1)  Numbers i n p a r e n t h e s e s r e f e r v e i n sets (Table 3-1).  Legend  to  xxx x  (2) S t a g e one - c o p p e r a n d s t a g e t h r e e molybdenum a r e t h e m a j o r c o n t r i b u t o r s o f m e t a l t o t h e o r e zone.  x  X  X  -  Abundant  -  Always P r e s e n t  -  Present Locally  1 Table  5-8  TEMPORAL RELATIONS BETWEEN STAGES OF ALTERATION AND SULPHIDE DEPOSITION  VEIN SET ( T a b l e 3-1)  STAGES OF METAL DEPOSITION Copper  Molybdenum  -  "  3  S t a g e One  S t a g e One  4  S t a g e Two  S t a g e Two  6  Stage Three  Stage Three  —  8 9 10  ALTERATION T Y P E  C o n t a c t Thermal (Biotite, Transition and E p i d o t e T y p e s )  Wall-rock Alteration (Pyrophyllite, Sericite, and C h l o r i t e - S e r i c i t e Types)  " Y e l l o w Dog" Orange f e r r o a n d o l o m i t e Stage  Four  Stage F i v e  '•  1  106. formed d u r i n g the stage o f w a l l - r o c k a l t e r a t i o n , t h e orange f e r r o a n d o l o m i t e which g i v e s the zone i t s name i s formed  later.  SURFICIAL ALTERATION A t many o r e d e p o s i t s , a major problem i n t h e study o f hydrothermal a l t e r a t i o n i s d i s t i n g u i s h i n g and s e p a r a t i n g supergene from hydrogene e f f e c t s .  S u r f i c i a l e f f e c t s a t the  I s l a n d Copper d e p o s i t a r e minimal and have n o t obscured.hydrothermal a l t e r a t i o n .  '  Two c o n d i t i o n s a t t h e I s l a n d Copper d e p o s i t i n d i c a t e t h e absence o f s u r f i c i a l e f f e c t s .  F i r s t , t h e r e i s an absence o f  abundant i r o n o x i d e s and copper o x i d e s i n t h e upper p a r t o f the d e p o s i t .  I n t h e c e n t r a l p a r t o f the p i t ,  the subcrop s u r f a c e  has a zone o f i r o n and copper o x i d e s a p p r o x i m a t e l y one i n c h  thick.  T h i s c o n t r a s t s w i t h o t h e r m i n e r a l showings on the n o r t h end o f Vancouver I s l a n d which commonly are covered by gossans exceeding 100 f e e t i n t h i c k n e s s . Second, t h e r e i s a l a c k o f secondary enrichment o f t h e o r e body.  Secondary copper s u l p h i d e m i n e r a l s have n o t been observed  i n hand specimen o r p o l i s h e d s e c t i o n .  There i s no r e l a t i o n  between copper grade and d i s t a n c e below the subcrop s u r f a c e , as would be expected w i t h secondary enrichment o f an o r e zone. A study which g i v e s some i n s i g h t i n t o s u r f i c i a l e f f e c t s was made on core samples from d r i l l hole no. 216 (Figure 4-1), a v e r t i c a l hole.  Clay-sized material  (-^.2 microns) was sep-  a r a t e d from 13 samples from t h i s hole t o t e s t f o r d i f f e r e n c e s i n t h e m i n e r a l o g y o f the c l a y - s i z e d f r a c t i o n near the bedrock s u r f a c e compared  w i t h the deeper p a r t s o f t h e h o l e .  The  m i n e r a l assemblages f o r t h e d i f f e r e n t samples a r e t a b u l a t e d  107.  Table 5-9 MINERAL ASSEMBLAGES IN CLAY SIZE RANGE DDH. C-216 0)  N -P U fd d  fd  O  o  e  o u m  cu  a. CO T3 rH o CM  •H O •H  X  -  a; +J •H O rH rC! u X  cd  CD 4->  U  CD CO  48'  a X  77*  X  -  -  X  120'  X  X  -  205'  X  X  224'  X  257 '  CD  4J -H c -H rH 0 fd  ?  •H rH rH •H 5-1 O 6 •c o g  cu +J •H S-l >i  -  -  -  '-  X  X  ?  -  -  X  X  X  -  -  -  X  X  X  -  -  X  -  X  X  -  455'  X  -  X  -  X  -  -  745'  X  -  - • X  -  -  -  767'  X  -  X  X  -  -  -  782'  X  -  X  -  X  -  -  800'  X  -  X  X  -  -  -  804'  X  -  X  X  X  -  -  813'  X  X  X  X  X  -  Notes:  1/ X x ? -  -  major phase minor phase questionable absent  2/ V e r t i c a l  identification  hole  3/ 20' o f overburden  108. i n Table 5-9.  There i s no i n c r e a s e i n v a r i e t y or amount of  c l a y m i n e r a l s i n the samples from the upper p a r t s o f the hole i n d i c a t i n g t h a t the e f f e c t s of s u r f i c i a l  a l t e r a t i o n are v e r y  minor.  FORMATION OF'THE ALTERATION ZONES Introduction T h i s s e c t i o n reviews a v a i l a b l e data on the environment of  f o r m a t i o n and d i s c u s s e s the f o r m a t i o n o f :  Contact Metamorphism  Environment of The  2.)  1.)  Stage 2, Wall-rock  Stage 1,  Alteration.  Formation  I s l a n d Copper d e p o s i t i s r e l a t e d s p a t i a l l y t o the  q u a r t z - f e l d s p a r - p o r p h y r y dyke.  I n t r u s i v e bodies o f t h i s  nature are b e l i e v e d c o e v a l w i t h and p r o b a b l y f e e d e r s f o r ext r u s i v e r o c k s i n the upper p a r t o f the Bonanza V o l c a n i c s . S t r a t i g r a p h i c data the dyke, and  (Chapter 3), the p o r p h y r i t i c t e x t u r e of  i t s accompanying b r e c c i a t i o n , suggest the d e p o s i t  formed i n a n e a r - s u r f a c e , low p r e s s u r e environment. Temperatures of f o r m a t i o n of a l t e r a t i o n zones have not been determined.  P r e l i m i n a r y s t u d i e s of samples from many  d i f f e r e n t ages o f q u a r t z v e i n s i n d i c a t e f l u i d s m a l l f o r d e t e r m i n i n g temperatures  inclusions  w i t h a v a i l a b l e equipment.  I n d i r e c t methods of e s t i m a t i n g temperatures  by  comparing  m i n e r a l assemblages w i t h those formed e x p e r i m e n t a l l y inconclusive. temperatures  While  too  proved  e x p e r i m e n t a l data g i v e upper l i m i t s f o r  of f o r m a t i o n o f some m i n e r a l s p r e s e n t i n n a t u r a l  assemblages, they do not i n d i c a t e lower Diamond d r i l l i n g  limits.  shows t h a t the ore zone i s i n a c o n s t a n t  p o s i t i o n r e l a t i v e t o the dyke and has the same mineralogy  and  109. grade through  1,200  f e e t of s t r a t i g r a p h i c t h i c k n e s s .  While  data a t extreme depths i s scanty, a l t e r a t i o n p a t t e r n s seem changed w i t h depth, the superimposed  except  little  f o r v a r i a t i o n s i n the mineralogy  of  alteration.  Contact Thermal Metamorphism Contact metamorphic e f f e c t s are summarized i n Table  5-10.  D i s t r i b u t i o n of m i n e r a l assemblages c h a r a c t e r i s t i c of t h i s are shown s c h e m a t i c a l l y i n F i g u r e Rocks of b i o t i t e and hornfels. Volcanics  Chemical  5-6.  t r a n s i t i o n zones are a l t e r e d t o a  a n a l y s e s of t h i r t e e n samples of Bonanza  (Muller, 1970)  a r e l a t i v e l y complete sampling  types, were p l o t t e d on an ACF  blages c o u l d be expected  t o determine which m i n e r a l assem-  (Figure 5-7).  Eleven of t h i r t e e n  p l o t t e d i n the c h l o r i t e - e p i d o t e - t r e m o l i t e f i e l d . w i t h m i n e r a l s assemblages found (Table 5-10).  of the rock  diagram of the A l b i t e - E p i d o t e  H o r n f e l s F a c i e s (Winkler, 1967)  e p i d o t e zones  stage  i n the b i o t i t e ,  This  samples  corresponds  transition  and  Lack o f m i n e r a l o g i c data f o r a n a l y s e d  r o c k s makes i t i m p o s s i b l e to c a l c u l a t e where the a n a l y s e s would p l o t on an A'KF  diagram.  A problem remaining  i s whether or not abundant b i o t i t e i n  the b i o t i t e zone r e p r e s e n t s metasomatism i n a d d i t i o n t o c o n t a c t metamorphism.  Analyses  c a l c i u m are presented  f o r potassium,  i n F i g u r e 5-8.  sodium, magnesium and Because o n l y a few  analyses  are a v a i l a b l e o n l y a r i t h m e t i c means and range are p l o t t e d . The a r i t h m e t i c mean o f potassium  i n b i o t i t e zone samples  i s s l i g h t l y h i g h e r than t h a t from t r a n s i t i o n and e p i d o t e zone samples, but i s below the mean and w i t h i n the range o f a n a l y s e s from f r e s h r o c k s .  Magnesium a n a l y s e s are  potassium  essentially  the same i n f r e s h r o c k s , t r a n s i t i o n , e p i d o t e and ( b i o t i t e  zones.  110.  INTRUSIVE ROCKS Q.F.P.  VOLCANIC ROCKS MARGINAL BRECCIA  SW. ALTERATION MINERALS Quartz Plagioclase Biotite Hydrobiotite Vermiculite Chlorite Actinolite Epidote Magnetite Saponite(?) Muscovite  BIOTITE ZONE  TRANSITION ZONE  EPIDOTE ZONE  UNALTERED  ORE ZONE  NE.  -  - - - -  - - - - - -  LEGEND Alteration Minerals Always Present Usually Present - - - - Locally Present - - . -  FIGURE 5-6 SCHEMATIC DIAGRAM SHOWING DISTRIBUTION OF THE ALTERATION MINERALS CONTACT METAMORPHISM  FIGURE 5-7 Thirteen Analyses of Bonanza Volcanic Rocks on an ACF Projection of the Albitc-F.pidote Hornfels Facies (ACF Projection After Winkler, 1967) (Analyses Published by Mueller, 1970)  (^ANALYSIS  112. These data suggest t h a t formation  of b i o t i t e  involved  little  metasomatism. A n a l y s e s f o r sodium and  calcium,  which show e s s e n t i a l l y  no v a r i a t i o n between samples of f r e s h rocks  and  those from  c o n t a c t metamorphic zones support the s u g g e s t i o n metasomatism i s i n v o l v e d  i n the  Manganese i s s l i g h t l y d e p l e t e d to samples from f r e s h r o c k s , but the mean value of f r e s h  formation  that  little  o f these zones. .  i n b i o t i t e zone samples  t r a n s i t i o n and  epidote  relative  zone samples,  i s w i t h i n the range of a n a l y s e s  from samples  rocks.  C o n t a c t metamorphism of a s i m i l a r nature i s r e p o r t e d  from  s e v e r a l other porphyry copper d e p o s i t s where much of the ore in  a n d e s i t i c w a l l rocks  Panguna  (Fountain,  Safford  (Robinson, 1966)  adjacent  to an  1972), E l T i e n t e and  i n t r u s i v e or b r e c c i a .  (Howell and M o l l o y , 1960),  Mess Creek  are the b e s t documented examples.  is  (Sutherland  Figure  5-9  Brown,  1970)  i s a schematic  diagram comparing the d i s t r i b u t i o n of the e a r l y a l t e r a t i o n zones at  I s l a n d Copper to Panguna, E l T i e n t e , and  Safford.  The  distr-  b u t i o n a t Mess Creek i s too complex f o r t h i s type o f diagram. Figure epidote  5-9  shows t h a t the h o r n f e l s  it  a t the o t h e r  be a f u n c t i o n o f the width o f the i s r e l a t i v e l y narrow (400  other  transition,  zones) a t I s l a n d Copper i s r e l a t i v e l y narrow compared  with a l t e r a t i o n zones d e s c r i b e d may  (biotite,  deposits.  intrusive.  This  At I s l a n d Coppe  f e e t ) w h i l e i t i s much wider a t  the  deposits. The  c l o s e s p a t i a l c o r r e l a t i o n between b i o t i t e and  m i n e r a l i z a t i o n at Panguna and diagram.  E l Tiente  B i o t i t e a t E l T i e n t e and  f e a t u r e , w h i l e a t Panguna and have not been e s t a b l i s h e d .  copper  i s a l s o i l l u s t r a t e d on  th  Safford i s c l e a r l y a pre-ore  Mess Creek, the exact  age  relations  TABLE 5-10 SUMMARY OF THE CHARACTERISTICS OF THE ALTERATION ZONES IN VOLCANIC ROCKS  -WALL-ROCK ALTERATION  .CONTACT METAMORPHISM BIOTITE  TRANSITION  EPIDOTE  CHLORITE SERICITE  SERICITE  PYROPHYLLITE  DEFINING MINERALS  Biotite  Chlorite  Epidote  Chlorites Sericite  Sericite  Pyrophyllite & Dumortierite  TEXTURES  Destroyed  Partially Destroyed  Destroyed  ^ZONES^^  PLAGIOCLASE PHENOCRYSTS  MAFIC PHENOCRYSTS  Partially Destroyed  Distinct  Destroyed  Albitic (An 5-25) Slight to moderate sericitiza t i o n and saussuritization  Albitic (An5-25) S l i g h t to moderate sericitiza t i o n and saussuritization  Albitic (An5-25) Moderate saussuritization  Altered to: Muscovite Minor Kaolinite Hydromica  Altered to: Muscovite Kaolinite  Altered t o : Pyrophyllite Muscovite Kaolinite  Altered to: Biotite Chlorite Epidote Carbonate Actinolite  Altered to: Chlorite Epidote Actinolite Carbonate Sericite  Altered to: Chlorite Epidote Carbonate Actinolite  Altered to: Chlorite Muscovite Carbonate  Altered to: Muscovite Minor Kaolinite  Altered to: Pyrophyllite Muscovite Minor Kaolinite  "YELLOW  DOG"  R u s t y Orange Dolomite Partially Destroyed  Moderately altered to: Muscovite Kaolinite  Altered to: Chlorite Muscovite  MATRIX  Plagioclase Biotite Chlorite Muscovite Actinolite Hydrobiotite Vermiculite Carbonate Quartz  Plagioclase Muscovite Chlorite Quartz Actinolite Hvdromica  Plagioclase Chlorite Muscovite Glass Saponite(?)  Muscovite Kaolin Chlorite Quartz  Quartz Muscovite Kaolinite  Quartz Pyrophyllite Kaolin Muscovite Dumortierite  Quartz Sericite Carbonate Plagioclase  OXIDES  Magnetite Leucoxene Hematite  Magnetite Leucoxene  Leucoxene  Magnetite Leucoxene  Leucoxene  Leucoxene  Leucoxene  SULPHIDES  P y r i te Chalcopyrite Molybdenite  Pyrite Chalcopyrite Molybdenite  Pyrite  Pyrite Minor Chalcopyrite Molybdenite  Pyrite  Pyrite  Pyrite Chalcopyrite Molybdenite  114  o POTASSIUM  CHEMICAL VARIATIONS BETWEEN ALTERATION ZONES IN THE VOLCANIC ROCKSFIGURE- 5-3  ^ cx a.  /  /  /  /  <r  1-  O X  SODIUM  ~  a.  \ \"  o  1  —I—:  ,  f-4,  MAGNESIUM — £ CL QL  \  \ \ 9  O CALCIUM  ~ E  i~  — + •  to  Q MANGANESE — E  o. a.  X  -RANGE  rO Q a.  g CO  <  r-  g  o cr  UJ 00  \ MEAN COA/TACT  ALTERATION  WAt-L,  ZONES  /ROCK  115,  FIGURE 5-9 SCHEMATIC DIAGRAM OF EARLY ALTERATION ZONES PANGUNA  ( F o u n t a i n , 1973)  Volcanics  Intrusive  Hornfels  Quartz D i o r i t e (Diameter 4,000')  Fresh  Epidote, C h l o r i t e Pyrite, Calcite, Albite, K-feldspar  Hornblende Magnetite Albite .  ORE ZONE -Secondary  Biotite-  1,000'  EL TIENTE  (Howell and M o l l o y , 1960)  Volcanics  Intrusive  Fresh  Hornfels Braden  Fm.  Epidote, C a l c i t e Tourmaline, Magnetite Specularite  Green S e c o n d a r y B i o t i t e  (Diameter 3,000')  -ORE ZONE _,1, 000'  SAFFORD - SAN JUAN STOCK  (Robinson, 1966)  Volcanics  Intrusive  Fresh  Hornfels Quartz Monzonite  Chlorite  Biotite  Epidote,  Chlorite  (Diameter 2,000')  Copper M i n e r a l i z a t i o n ^1,000'  ISLAND COPPER Volcanics  Intrusive  Fresh  Hornfels  Quartz-Feldspar Porphyry  c o  (Width 400')  •H •P •H  tn c m  M E-i  ZONE  CU •M O •r-i  a w -jl,000'  Wall-rock  Alteration  Stage 2 a l t e r a t i o n i s c h a r a c t e r i z e d by the f o r m a t i o n of s e r i c i t e , k a o l i n i t e and p y r o p h y l l i t e .  Sericite,  d i s c u s s i o n , r e f e r s t o f i n e - g r a i n e d potassium P o l y t y p e s of the mica were not determined. to  a K a o l i n group m i n e r a l or m i n e r a l s .  mixture  of the IT and  as used  mica  in this  (muscovite).  Kaolinite  refers  Pyrophyllite i s a  2M p o l y t y p e s i n approximately  equal  proportions. These m i n e r a l s occur i n : quartz-molybdenite  v e i n s and  and q u a r t z - f e l d s p a r porphyry  1) envelopes  of a l t e r a t i o n  on  f r a c t u r e s c u t t i n g v o l c a n i c rocks r e s p e c t i v e l y , and  2) i n b r e c c i a s  c o n t a i n i n g fragments of both v o l c a n i c rocks and q u a r t z - f e l d s p a r porphyry. 5-11 and 5-10  and  M i n e r a l assemblages are summarized i n T a b l e s 5-10.and  t h e i r d i s t r i b u t i o n s are shown s c h e m a t i c a l l y i n F i g u r e s 5-11.  D i s t r i b u t i o n of these m i n e r a l s produces zones  on the s c a l e o f : F i g u r e s 5-3  1) and envelope and  5-4  zoning w i t h i n s e r i c i t i c and v o l c a n i c r o c k s .  and  are schematic envelopes  2) the whole d e p o s i t . diagrams of m i n e r a l  i n q u a r t z - f e l d s p a r porphyry  In v o l c a n i c r o c k s , envelopes  c o n s i s t of  p r o g r e s s i v e zones g r a d i n g from an i n n e r p y r o p h y l l i t e - k a o l i n i t e and minor s e r i c i t e assemblage a d j a c e n t t o the v e i n , through an i n t e r m e d i a t e assemblage o f s e r i c i t e and minor k a o l i n i t e , an o u t e r s e r i c i t e and c h l o r i t e Envelopes  to  assemblage.  i n q u a r t z - f e l d s p a r porphyry,  are somewhat  d i f f e r e n t from those i n v o l c a n i c r o c k s and c o n s i s t o f a r e l a t i v e l y narrow i n n e r zone o f s e r i c i t e and k a o l i n i t e and a broad o u t e r zone o f s e r i c i t e and c h l o r i t e . i n these  P y r o p h y l l i t e i s not  found  envelope's.  Pervasive s e r i c i t i c  ( s e r i c i t e and k a o l i n i t e ) a l t e r a t i o n of  rock fragments i n the maginal b r e c c i a s i s due  t o c o a l e s c i n g of  TABLE 5-11 SUMMARY OF THE CHARACTERISTICS OF THE ALTERATION ZONES IN QUARTZ-FELDSPAR PORPHYRY ZONES  BIOTITE  TRANSITION  EPIDOTE  CHLORITE SERICITE  SERICITE  PYROPHYLLITE  DEFINING MINERALS  Chlorite Sericite  Sericite  Pyrophyllite & Dumortierite  TEXTURES  Distinct  Distinct  QUARTZ PHENOCRYSTS  Unchanged  Unchanged  PLAGIOCLASE PHENOCRYSTS  Altered t o : Muscovite Carbonate Kaolinite  Altered t o : Muscovite Kaolinite  Altered t o : Pyrophyllite Minor Muscovite Kaolinite  MAFIC PHENOCRYSTS  Altered t o : Chlorite Minor Epidote Carbonate  Altered t o : Muscovite Kaolinite  Altered t o : Pyrophyllite Muscovite Kaolinite  Altered t o : Chlorite Sericite  MATRIX  Quartz Musco.'ite Chlorite Epidote Plagioclase  Quartz Muscovite Kaolinite  Quartz Pyrophyllite Kaolinite Muscovite  Muscovite Kaolinite Quartz Plagioclase  OXIDES  Magnetite Leucoxene  Leucoxene  Leucoxene  Leucoxene  SULPHIDES  Pyrite Chalcopyrite  Pyrite  Pyrite  Pyrite  Distinct Unchanged  "YELLOW DOG" Rusty Orange Dolomite  Distinct Unchanged  Altered to: Muscovite  118. INTRUSIVE  VOLCANIC  ROCKS Q.F.P.  ROCKS MARGINAL BRECCIA  BIOTITE ZONE  TRANSITION ZONE  EPIDOTE ZONE  UNALTERED  ORE ZONE  sw.  NE.  ALTERATION MINERALS Quartz Muscovite Kaolinite Pyrophyllite Molybdenite Chalcopyrite Pyrite  FIGURE LEGEND Alteration Minerals  DISTRIBUTION OF THE ALTERATION MINERALS  Always P r e s e n t Usually Present - - - L o c a l l y Present -  INTRUSIVE ROCKS Q.F.P.  SW.  5-10  SCHEMATIC DIAGRAM SHOWING  WALL-ROCK ALTERATION  VOLCANIC ROCKS MARGINAL BRECCIA  BIOTITE ZONE  TRANSITION ZONE  EPIDOTE ZONE  UNALTERED  ORE ZONE  NE,  . ^  <  . "Yellow Dog"Brecc <3 A  ALTERATION MINERALS Quartz Dolomite Muscovite Kaolinite Plagioclase Chlorite Calcite Pyrite Chalcopyrite Molybdenite LEGEND Alteration Minerals Always P r e s e n t Usually Present L o c a l l y Present- -_  FIGURE 5-11 SCHEMATIC DIAGRAM SHOWING DISTRIBUTION OF THE ALTERATION MINERALS "Yellow Dog" Zone  119. the  i n n e r p a r t s of s e r i c i t i c envelopes.  However, as the marginal  b r e c c i a s grade i n t o the capping " p y r o p h y l l i t e " b r e c c i a 5-2)  the m i n e r a l  with minor  (Figure  assemblage changes to p y r o p h y l l i t e and  kaolinite  sericite.  In the  "Yellow Dog"  b r e c c i a , rock  fragments are a l t e r e d  p e r v a s i v e l y . Near the q u a r t z - f e l d s p a r porphyry dyke, the assemblage i s s e r i c i t e and  kaolinite.  assemblage i s s e r i c i t e and  chlorite.  i s t e n t a t i v e l y b e l i e v e d due  mineral  Away.from the dyke, This pervasive  the  alteration  to c o a l e s c i n g a l t e r a t i o n envelopes  around v e i n s . Development o f the d i f f e r e n t m i n e r a l  assemblages i n the  superimposed a l t e r a t i o n can be e x p l a i n e d by hydrogen i o n metasomatism  (Hemley and  Jones, 1966).  T h i s process  requires  hydrothermal s o l u t i o n s be r i c h i n hydrogen i o n s and solutions hydrolize s i l i c a t e minerals cations into solution.  solution.  these  r e l e a s e of metal  R e s u l t i n g r a t i o s of metal ions are  p r i n c i p a l f a c t o r i n determining with  causing  that  s t a b i l i t y of m i n e r a l s  the  i n contact  However, the net e f f e c t of these r e a c t i o n s i s the  removal of metal c a t i o n s and  the u l t i m a t e a l t e r a t i o n product i s  quartz. Figure e t a l . , 1959,  5-12  shows r e s u l t s of experimental  1961,  1970)  studies  to i n v e s t i g a t e e f f e c t s o f  r a t i o s of metal c a t i o n s to hydrogen i o n s on m i n e r a l i n simple  systems.  The  (Hemley  different stabilities  diagrams show r a t i o s of metal i o n s  hydrogen i o n s p l o t t e d a g a i n s t  temperature.  These diagrams g i v e c o n s i d e r a b l e of hydrogen i o n metasomatism. composed of K-Feld'spar and  to  Figure  quartz.  i n s i g h t i n t o the 5-12A  represents  process a  rock  I f a hydrothermal s o l u t i o n  at 250°C c o n t a i n i n g hydrogen ions i s i n t r o d u c e d  into this  rock along a f r a c t u r e , potassium f e l d s p a r a d j a c e n t  to the f r a c t u r e  120.  FIGURE 5-12  EXPERIMENTAL STUDIES RELATING TO HYDROTHERMAL ALTERATION System  K 0-AI 0 -SiQ -H 0 2  2  3  2  2  600 Quartz Present 15,000 ps! 400 PyrophylKte\K-Mica\ a E «  2O0  K-Feldspar  Kaolinite  J  L o g m  I  After Hemley  I  (1959)  / m ^ ,  K C |  System  I  Na2O.-AI2O3.Si2O-.!  600 Quartz Present 15,000 psi  Pyro. 400 U  — I Kaolinite  d  E a  200  i  I » 2 logm N  a  C  (  I I 4 /m , /  H  I  I  6  After Hemley e t al. (1961)  I  C  System CesO-.A! 0 -SiQ -M 0 2  3  2  2  600 Quartz Present Andalusite ou  Anorthite  4 0 0 Pyrophyllite  d E a  14,500 psi  Montrnorillile  Kaolinite 200  i  I I  Log m c a C u / ^ H C I  I  I  I  After HemleyetaL (1970)  L. 121. w i l l be a l t e r e d to K - m i c a : ( s e r i c i t e ) .  I f more  hydrothermal  s o l u t i o n i s added to the rock, a l t e r a t i o n of K - f e l d s p a r t o  K-  mica w i l l move outward from the c r a c k and K-mica a d j a c e n t to the c r a c k w i l l a l t e r to k a o l i n i t e . developed  Thus, two  a d j a c e n t to the c r a c k by one  F i g u r e 5-12B  alteration  hydrothermal  zones are fluid.  i l l u s t r a t e s what would happen f o r rocks con-  s i s t i n g of sodium f e l d s p a r and q u a r t z and F i g u r e 5-12C rocks c o n s i s t i n g of c a l c i u m f e l d s p a r s and  for  quartz.  M i n e r a l zoning w i t h i n s e r i c i t e envelopes  cutting volcanic  rocks can be e x p l a i n e d by the theory of hydrogen i o n metasomatism. The  i n n e r p y r o p h l l i t e - r i c h zone r e p r e s e n t s i n t e n s e base l e a c h i n g .  The  i n t e r m e d i a t e s e r i c i t e and k a o l i n i t e zones r e p r e s e n t  l e a c h i n g of bases and perhaps potassium chlorite-sericite  The  outer  zone r e p r e s e n t s base l e a c h i n g from the  feld-  spars, but not the mafic  minerals.  T h i s i n t e r p r e t a t i o n i s supported the case of I s l a n d Copper sericite  enrichment.  by the chemical data, i n  ( F i g u r e 5-8).  Samples from the  zone c o n t a i n l e s s sodium, c a l c i u m , magnesium  manganese than  partial  and  samples from e i t h e r f r e s h rocks or b i o t i t e ,  t r a n s i t i o n and e p i d o t e zones. to o t h e r a l t e r a t i o n zones and p y r o p h y l l i t e zone  Potassium  content i s high  fresh rocks.  relative  Samples from the  (those shown on the f i g u r e , a r e from the  p y r o p h y l l i t e b r e c c i a ) i n d i c a t e f u r t h e r d e p l e t i o n of a l l metals including  potassium.  In s e r i c i t i c envelopes  c u t t i n g q u a r t z - f e l d s p a r porphyry,  the z o n a t i o n i s not as w e l l developed. k a o l i n i t e p a r t of the envelopes  However, i n n e r  i n d i c a t e s a g r e a t e r degree o f  base l e a c h i n g than the o u t e r c h l o r i t e and i s supported  sericite-  by chemical a n a l y s e s  sericite  ( F i g u r e 5-13).  zone.  This  There i s l e s s  sodium, c a l c i u m , magnesium and manaanese i n the s e r i c i t e  zone  122.  Figure 5-13 C H E M I C A L VARIATIONS B E T W E E N ALTERATION  Z O N E S IN  QUARTZ-FELDSPAR  PORPHYRY  30,000 I 3.000  E a. Da  10,000 I L 0 0 0  a-  Legend E3---Q  N a  O — O C a  ©—© K A — A M n  0—©Mg  Alteration  Zones  than i n the c h l o r i t e and  s e r i c i t e zone, but potassium i s higher  i n the s e r i c i t e than i n the c h l o r i t e - s e r i c i t e  zone.  Formation of the s e r i c i t e - k a o l i n i t e assemblage w i t h i n fragments i n the m a r g i n a l  b r e c c i a corresponds to the formation  the i n n e r p a r t s of the s e r i c i t i c envelopes. represents  rock  The  of  entire breccia  an area of i n t e n s e base l e a c h i n g .  Formation of the p y r o p h y l l i t e b r e c c i a w i t h of p y r o p h y l l i t e and  k a o l i n i t e and minor  by extreme base l e a c h i n g . w e l l as the other metals zonation w i t h  i t s assemblage  (relict?)  sericite is  That i s the removal of potassium as (Figures 5-8  and  5-13  .  This  vertical  the zone of most i n t e n s e l e a c h i n g above zones of  l e s s i n t e n s e l e a c h i n g i s w e l l documented i n the Butte, Montana (Meyer e t a l . , 1968)  literature.  S i l v e r t o n , Colorado  bank and Luedke, 1961;  Luedke and  Japan  Snedogarian Zone, B u l g a r i a  (Iwao, 19 62)  and  (Bur-  Hosterman, 1971), Usugu, (Randonova,  and Velinova,1970) are p a r t i c u l a r l y w e l l - d e s c r i b e d  examples.  In terms of the theory o f hydrogen i o n metasomatism, t h i s zoning can be e x p l a i n e d by an i n c r e a s e i n c o n c e n t r a t i o n  of  hydrogen ions as s o l u t i o n moves upward.  Hemley and Meyer  (1967) suggest t h a t i n c r e a s e d p r o d u c t i o n  o f hydrogen i o n s i s  due  to more d i s s o c i a t i o n of s t r o n g e r  temperatures and  p o s s i b l y production  u r i c a c i d by o x i d a t i o n o f H^S w i t h oxygenated meteoric  i n o r g a n i c a c i d s a t lower of strongly ionized sulph-  as hydrothermal s o l u t i o n s mix  water.  The  remaining  problem i s  p y r o p h y l l i t e forms so abundantly i n s t e a d of k a o l i n i t e . f a c t o r y e x p l a n a t i o n has  satis-  not been found.  D i s t r i b u t i o n o f the a l t e r a t i o n zones c o m p r i s i n g imposed a l t e r a t i o n  A  why  ( F i g u r e 5-2)  o f f e r s considerable  the  super-  insight  i n t o movement o f hydrothermal s o l u t i o n s d u r i n g t h i s stage  of  alteration.  breccias  The most i n t e n s e l e a c h i n g i s i n the m a r g i n a l  124. w h i l e t h e r e are zones of l e a c h i n g a d j a c e n t to f r a c t u r e s i n v o l c a n i c r o c k s and q u a r t z - f e l d s p a r porphyry. f r e s h hydrothermal  This  suggests  f l u i d s flowed upward through the m a r g i n a l  b r e c c i a s and outward i n t o both the porphyry  and v o l c a n i c r o c k s .  The bulk of the f l u i d p r o b a b l y c o n t i n u e d up through the m a r g i n a l b r e c c i a s i n t o the p y r o p h y l l i t e b r e c c i a s and e v e n t u a l l y t o s u r f a c e .  125. CHAPTER 6:  FORMATION OF THE ISLAND COPPER DEPOSIT  MODELS OF FORMATION OF PORPHYRY COPPER DEPOSITS  Both e m p i r i c a l and g e n e t i c models have been proposed f o r porphyry copper d e p o s i t s .  E m p i r i c a l models a r e c o n s t r u c t e d by  l i s t i n g a number o f parameters f o r many d e p o s i t s and i n t e g r a t i n g them i n t o an i d e a l d e p o s i t . tiated of  L o w e l l and G u i l b e r t (1970)  ini-  t h i s approach t o porphyry copper d e p o s i t s u s i n g d e p o s i t s  the southwestern U n i t e d S t a t e s p l u s Bethlehem, E l Salvador  and Toquepala.  De G e o f f r e y and W i g n a l l  (1972) expanded the  model t o i n c l u d e many o f the d e p o s i t s o f t h e Canadian  Cordillera.  In 1974, G u i l b e r t and L o w e l l re-examined t h e i r model and d e v e l oped s u b c l a s s e s t o e x p l a i n v a r i a t i o n s i n zoning.  F i g u r e 6-1A  i s the r e v i s e d G u i l b e r t and L o w e l l model o f a l t e r a t i o n  zoning  i n m a f i c and i n t e r m e d i a t e r o c k s .  altera-  tion  Similarities  zones p r e d i c t e d by the model and those  Copper d e p o s i t  between  found  a t the I s l a n d  (Figure 5-2) i n c l u d e :  1. An i n n e r b i o t i t e zone.  zone which corresponds  2. An o u t e r p r o p y l i t i c zone which c o n t a i n s e p i d o t e and minor amounts o f s e r i c i t e .  w i t h the o r e chlorite,  3. A p h y l l i c zone w i t h i n the b i o t i t e zone c o r r e s p o n d i n g to the c h l o r i t e - s e r i c i t e zone w i t h i n the q u a r t z - f e l d s p a r porphyry.  Some obvious  d i f f e r e n c e s a t I s l a n d Copper d e p o s i t a r e :  1. Lack o f K-Feldspar  i n the v o l c a n i c r o c k s .  2. Lack o f a p y r i t e - r i c h 3. R e v e r s a l o f c h l o r i t e p r o p y l i t i c zone.  s h e l l surrounding  the ore zone.  and e p i d o t e - r i c h p o r t i o n s i n the  4. V e i n l e t s o f c a l c i t e c u t t i n g a l l a l t e r a t i o n  zones.  126,  ZONING IN MAFIC TO INTERMEDIATE HOST ROCKS DIABASE* ANDESITE- DIORITE  FRESH  'NORMAL; ZONING IN INTERMEDIATE HOST ROCKS QUARTZ MONZONITE- GRANODIORITE  VEINS q-ep-gnsi AQ-du-Corb!  VEINS fl-tp-grt-tl Ag-Au-CorM  CALCITIC  ^ • v  ^ F R E S H  PROPYLITIC\  \ \ \ \ \ \\  LOW GRADE ORE LOW TOTAL SULFIOE  ep>pn m ,b  OISSEMINATED  DEEP CENTRAL ASSEMBLAGE  I V E I \ L .ETS ETS M'CRCVEl.^Lt-Sr '• VElNLET / ' V ". srcCK*OHKl  '/I DEEP PERIPHERAL ASSEMBLAGE  I N T R U Sl Ip VEDI H O O URCE ) Q M p Q K ES ST-S O R STO( C?K Schematic comparison o f a l t e r a t i o n and m i n e r a l i z a t i o n i n m a f i c and i n t e r m e d i a t e rocks ( A f t e r G u i l b e r t and L o w e l l , 1974)  Volcdn Aucanquilcha f  High-ttmptroturr._ tumaroft  . 5  m t u g m  msok-uvn)  PORPHYRY STOCK \ \ ' | Native sulfur deposits with some pyr/tt & morcos/to  El Quevai Cerro Marqu«izl  PHANERITIC r r — n SRANOOIORITE I + I HYDROTHERMAL INTRUSION BRECCIA LIMESTONE HORIZON ||||| RQCKJTYPES  El Salvador*. Mocha  *8  Los Pftlamtxesl,  Si.  Los LOTOS Fortuna Grano diorite, Chuguicsmata  +  +  +  + + + + + + +  + +  + ^  PLUTON of PHANERITIC \ f GRANOOIOBITE Ptgmotitt bodies HORIZONTAL S C A L E  B.  (some as vertical):  ALTERATION SILICIFICATION 4 r^n ADVANCED ARGILLIC t ... I PROPTLITIC  + + + +  SERICITIC fgggj Kilometers  POTASSIUM SILICATE [ijjjjjj  I d e a l i z e d c r o s s s e c t i o n o f a t y p i c a l , simple porphyry copper d e p o s i t showing i t s p o s i t i o n a t the boundary between p l u t o n i c and v o l c a n i c environments. ( A f t e r S i l l i t o e , 1973) FIGURE 6-1  127. 5. S p h a l e r i t e occurs  throughout the  deposit.  6. P y r i t e exceeding c h a l c o p y r i t e i n the Inner zone feldspar porphyry).  (quartz-  7. A l t e r a t i o n p a t t e r n s which are much more complex i n the Inner zone ( q u a r t z - f e l d s p a r p o r p h y r y ) . 9. P y r o p h y l l i t e forming  a major a l t e r a t i o n  Another problem w i t h attempting d e p o s i t i n t o the G u i l b e r t and L o w e l l model i s e n t i r e l y s p a t i a l .  The  a l t e r a t i o n zones formed i n one the c e n t e r .  zone.  to f i t the I s l a n d Copper (1974) model i s t h a t  the  i m p l i c i t assumption i s t h a t system which grew outward from  T h i s concept does not f i t the evidence  at  the  I s l a n d Copper d e p o s i t . The  second type of model, the g e n e t i c model i s c o n s t r u c t e d  by f i t t i n g d i f f e r e n t d e p o s i t s t o g e t h e r system.  Sutherland  Brown  i n t o an  (1969) i n i t i a t e d  ore-forming  t h i s approach w i t h  prophyry copper d e p o s i t s i n the Canadian C o r d i l l e r a . u s i n g southwest U.S.  d e p o s i t s and  the i d e a .  and  Hutchison  fit  (1973) has  Hodder (1972) expanded i t f u r t h e r to  for  again expanded the model  porphyry type d e p o s i t s w i t h c o e v a l Sillitoe  f o l l o w e d the L o w e l l and  l a t e r a l a l t e r a t i o n zoning,  i n the a l t e r a t i o n .  The  (1971) ,  E l T i e n t e i n C h i l e , expanded  i n c l u d e s t r a t a f o r m massive s u l p h i d e d e p o s i t s i n the Sillitoe  James  but  system.  ( F i g u r e 6-1B)  to  volcanism. G u i l b e r t (1970) p a t t e r n  introduced v e r t i c a l  variation  S i l l i t o e model i s a b e t t e r approximation  of the s i t u a t i o n a t the I s l a n d Copper d e p o s i t p a r t i c u l a r l y i f G u i l b e r t and L o w e l l ' s and  intermediate  (1974) r e v i s e d zoning p a t t e r n s f o r m a f i c  rocks are used.  128. A TENTATIVE MODEL FOR  THE  FORMATION OF THE  ISLAND COPPER DEPOSIT  Models d i s c u s s e d i n the p r e v i o u s s e c t i o n c o n s i d e r a l t e r a t i o n p a t t e r n s of a number of d e p o s i t s and e x p l a i n them i n terms of one ore-forming  system.  T h i s approach i g n o r e s the time  relations  between the d i f f e r e n t a l t e r a t i o n p a t t e r n s and  the  of a system  The f o l l o w i n g  e v o l v i n g over a p e r i o d of time.  model i s proposed  Step  possibility  f o r development of the I s l a n d Copper d e p o s i t .  One I n t r u s i o n of the porphyry dyke i s the f i r s t major  s t r u c t u r a l event.  These porphyry dykes are c o e v a l w i t h Bonanza  v o l c a n i s m and p r o b a b l y are f e e d e r s f o r a c i d v o l c a n i c r o c k s i n the upper p a r t of the f o r m a t i o n .  Although  the exact mechanism  of t h e i r f o r m a t i o n i s not known, the m a r g i n a l b r e c c i a s and p y r o p h y l l i t e b r e c c i a were formed contemporaneously w i t h of the dyke.  the  intrusion  F r a c t u r i n g of v o l c a n i c host r o c k s a l s o accompanied  dyke emplacement. A c o n t a c t metamorphic a u r e o l e i n the v o l c a n i c r o c k s marked by b i o t i t e , t r a n s i t i o n and e p i d o t e zones developed to the q u a r t z - f e l d s p a r porphyry wider  dyke.  adjacent  These zones are much  than metamorphic a u r e o l e s p r e d i c t e d from Jaeger's  c a l c u l a t i o n s f o r a u r e o l e s formed by c o n d u c t i v e heat T h i s suggests  (1957)  transfer.  l a t e r a l heat t r a n s f e r by c i r c u l a t i n g water as w e l l  as c o n d u c t i o n .  Water c o u l d be e i t h e r f o r m a t i o n a l water trapped  d u r i n g d e p o s i t o n of v o l c a n i c s or m e t e o r i c water which penet r a t e d the v o l c a n i c p i l e .  T h i s type of hydrothermal  would be r e l a t i v e l y s h o r t l i v e d dyke would c o o l  rapidly.  system  (a few hundred years) as  the  129. Step  Two Step two i n f o r m a t i o n o f the d e p o s i t i s marked by changes  i n flow p a t t e r n s and nature of the hydrothermal  solutions.  During s t e p one, hydrothermal s o l u t i o n s moved l a t e r a l l y t o form c o n t a c t a l t e r a t i o n  zones on each s i d e o f the dyke.  These s o l u t i o n s a i d e d c o o l i n g o f the dyke by c o n v e c t i v e t r a n s f e r o f heat, but do not appear t o have a f f e c t e d the chemical compositions o f the w a l l r o c k s . Flow p a t t e r n s o f hydrothermal s o l u t i o n s d u r i n g s t e p two are shown by d i s t r i b u t i o n of superimposed (Figure 5-2).  Hydrothermal  alteration  s o l u t i o n s moved upward through  m a r g i n a l b r e c c i a s and p y r o p h y l l i t e b r e c c i a and l a t e r a l l y f r a c t u r e s i n t o both q u a r t z - f e l d s p a r porphyry and  through  volcanic  rocks. T h i s change i n the p a t t e r n o f hydrothermal f l o w i s due to a change i n the p o s i t i o n of the heat source d r i v i n g the The primary heat source i s no l o n g e r the dyke, which r a p i d l y , but a deeper magma chamber which F i g u r e s 2-1 and 2-2  i s cooling  feeds the dyke.  show d i s t r i b u t i o n o f i n t r u s i v e and  v o l c a n i c r o c k s on t h i s p a r t o f Vancouver suggested t h a t t h i s e n t i r e area was of b a t h o l i t h i c dimensions.  system.  Island.  altered  Northcote  u n d e r l a i n by an  (1970)  intrusive  A l a r g e i n t r u s i v e mass such as  this  would p r o v i d e a long term heat source. There are two d i s t i n c t phases  t o t h i s hydrothermal  system:  1) Copper d e p o s i t i o n and 2) Molybdenum d e p o s i t i o n . Although some copper was  d e p o s i t e d i n q u a r t z - f e l d s p a r porphyry,  v o l c a n i c r o c k s and b r e c c i a s , copper i n ore grade q u a n t i t i e s i s c o n f i n e d t o v o l c a n i c rocks, the m a r g i n a l and breccia.  "Yellow  In v o l c a n i c r o c k s , copper i s d e p o s i t e d as  Dog" fracture  fillings  i n t i n y c l o s e l y spaced f r a c t u r e s .  "Yellow Dog" b r e c c i a s , veins.  i t occurs i n r e l a t i v e l y  V a r i a t i o n i n mode o f occurence  amounts o f molybdenite a r e a s s o c i a t e d i s predominantly a stage o f copper  large quartz  i s due t o v a r i a t i o n  i n the s i z e o f f r a c t u r e s a v a i l a b l e t o f i l l .  it  In m a r g i n a l and  Although minor  with t h i s chalcopyrite, deposition.  L o c a l l i z a t i o n o f ore grade q u a n t i t i e s o f copper i n v o l c a n i c rocks and the m a r g i n a l and "Yellow Dog" b r e c c i a s i s due p r i m a r i l y to p h y s i c a l c o n t r o l s o f o r e d e p o s i t i o n . Volcanic are  rocks a d j a c e n t t o the q u a r t z - f e l d s p a r  porphyry dyke  i n t e n s e l y f r a c t u r e d as a r e s u l t o f dyke i n t r u s i o n , and the  b r e c c i a s c o n t a i n e d abundant v o i d space. was an e a r l y event i n t h i s system.  Copper  deposition  I f the porphyry dyke were  s t i l l warm t h e r e would be a l a t e r a l geothermal  gradient  pushing  hydrothermal s o l u t i o n s away from the dyke i n t o a v a i l a b l e permeable zones, c r a c k l e d v o l c a n i c s and b r e c c i a s . c o n t r o l s , w h i l e they may be e q u a l l y  Chemical  important, are not o b v i o u s .  Although some molybdenite o c c u r s i n q u a r t z - f e l d s p a r  porphyry,  v o l c a n i c r o c k s and b r e c c i a s , r e c o v e r a b l e amounts a r e c o n f i n e d to m a r g i n a l b r e c c i a s , v o l c a n i c rocks and the "Yellow Dog" breccia.  Molybdenite o c c u r s i n q u a r t z v e i n s w i t h envelopes  o f s e r i c i t i c a l t e r a t i o n and on f r a c t u r e s u r f a c e s (molybdenite s l i p s ) which c u t these envelopes.  Although movement on these  f r a c t u r e s o c c u r r e d a f t e r development o f s e r i c i t e the time o f molybdenite d e p o s i t i o n Molybdenite d e p o s i t i o n t h i s stage o f hydrothermal highly acid. i t e deposition  envelopes,  i s unknown.  i s r e l a t e d t o the l a t e r p a r t o f a c t i v i t y when the s o l u t i o n s were  The reasons f o r the r e s t r i c t e d areas o f molybdeni s p r o b a b l y due t o a v a i l a b i l i t y o f f r a c t u r e s f o r  131. the s o l u t i o n s t o move through.  Molybdenite d e p o s i t i o n on  the f r a c t u r e s u r f a c e s which do not have accompanying  sericitic  a l t e r a t i o n t e n t a t i v e l y i s b e l i e v e d formed as the l a s t in this  event  system.  Step Three Formation o f c a r b o n a t e - z e o l i t e v e i n s i s the l a s t step i n the f o r m a t i o n a t the d e p o s i t .  D i s t r i b u t i o n o f these v e i n s i n  a l l rock types and c u t t i n g a l l a l t e r a t i o n zones i n d i c a t e s a change i n the flow p a t t e r n s of the hydrothermal  solutions.  The m a r g i n a l and p y r o p h y l l i t e b r e c c i a s are not the p r i n c i p a l c o n d u i t f o r hydrothermal a c t i v i t y as they w e r e j d u r i n g step two. Mineralogy o f the v e i n s and l a c k o f a s s o c i a t e d w a l l - r o c k alteration  suggest a change i n the nature of the s o l u t i o n s .  Veins c o n s i s t o f carbonate  ( p r i n c i p a l l y c a l c i t e ) and  zeolite  (laumonite) w i t h minor amounts of p y r i t e , s p h a l e r i t e , and pyrobitumen.  T h i s m i n e r a l assemblage  from low temperature a l k a l i n e hydrothermal In the W a i r a k e i geothermal system v e i n s superimposed  hematite,  suggests d e p o s i t i o n solutions.  ( S t e i n e r , 1953)  zeolite  on a zone of a r g i l l i z e d rock are b e l i e v e d  formed by a l k a l i n e - r i c h waters a t the end o f the hydrothermal system.  That i s , they began as a c i d r i c h water and l o s t  hydrogen  ions through r e a c t i o n s  rocks.  (base l e a c h i n g ) w i t h the w a l l  I f the system a t I s l a n d Copper were s i m i l a r ,  of superimposed  their  the zone  a l t e r a t i o n by base l e a c h i n g has moved downward.  T h i s i s a more r e a s o n a b l e e x p l a n a t i o n than p o s t u l a t i n g a change from an a c i d to an a l k a l i hydrothermal  system.  132. CHAPTER 7:  CONCLUSIONS  The f o l l o w i n g c o n c l u s i o n s are drawn from t h i s study:  1)  The copper-molybdenum d e p o s i t o f Utah Mines L t d . formed i n v o l c a n i c irocks a d j a c e n t to a c o e v a l porphyry dyke i n a n e a r - s u r f a c e environment.  2)  Ore and a l t e r a t i o n zones formed on both s i d e s o f the dyke.  3)  A l t e r a t i o n assemblages are d i v i d e d i n t o seven zones, which can be mapped on the b a s i s o f megascopic c h a r a c t e r i s t i c s .  4)  A l t e r a t i o n assemblages (i) (ii)  symmetrically  formed d u r i n g two  stages:  Pre-ore c o n t a c t a l t e r a t i o n c o m p r i s i n g the b i o t i t e , t r a n s i t i o n and e p i d o t e zones. W a l l r o c k a l t e r a t i o n c o m p r i s i n g the" chlorite-sericite, sericite, pyrophyllitic and "Yellow Dog" zones. 1  5)  Pre-ore c o n t a c t a l t e r a t i o n i s a c o n t a c t metamorphic a u r e o l e on both s i d e s o f the dyke. Little metasomatism i s i n v o l v e d i n the f o r m a t i o n o f t h i s aureole.  6)  W a l l r o c k a l t e r a t i o n formed a f t e r the dyke was l a r g e l y c o o l e d i n a hydrothermal system l o c a l l i z e d i n b r e c c i a s around the margins of the dyke.  7)  The b u l k o f the copper was d e p o s i t i o n o f molybdenum.  8)  The copper ore zone i s c l o s e l y s p a t i a l l y r e l a t e d to the i n n e r p a r t o f the c o n t a c t metamorphic a u r e o l e r i c h i n b i o t i t e and magnetite. However, d e p o s i t i o n o f copper m i n e r a l i z a t i o n p o s t - d a t e s c o n t a c t metamorphism.  9)  A l t h o u g h copper and molybdenum are s p a t i a l l y c l o s e l y r e l a t e d , the bulk o f the molybdenum d e p o s i t i o n p o s t - d a t e s copper m i n e r a l i z a t i o n . D e p o s i t i o n o f molybdenum i s c l o s e l y r e l a t e d t e m p o r a l l y to the f o r m a t i o n o f superimposed alteration.  10)  The  d e p o s i t e d p r i o r to  "GEOLOG" format i s an e f f i c i e n t method of  133. l o g g i n g core i n t h i s type o f d e p o s i t . I t y i e l d s a core l o g amenable to e i t h e r computer o r v i s u a l interpretation. 11)  S t a t i s t i c a l c o r r e l a t i o n s t u d i e s between abundance of a l t e r a t i o n m i n e r a l s and ore grade y i e l d s data on r e l a t i o n s between o r e grade and f o r m a t i o n and d i s t r i b u t i o n o f a l t e r a t i o n assemblages. However, c o r r e c t i n t e r p r e t a t i o n of s t a t i s t i c a l s t u d i e s r e q u i r e s a d d i t i o n a l data on age r e l a t i o n s between a l t e r a t i o n ' assemblages and ore m i n e r a l s .  134. REFERENCES  Asihene, K.A.B., 1970,  The Texada Formation o f B r i t i s h  and i t s a s s o c i a t e d magnetite c o n c e n t r a t i o n s :  Columbia  Unpublished  Phd T h e s i s , Univ. C a l .  B a n c r o f t , J.A.,  1913,  Geology o f the c o a s t and i s l a n d between  the S t r a i t o f Georgia and Queen C h a r l o t t e Sound, Geol. Surv. Can., Mem.  Blanchet, P.H.  B.C.:  2 04.  and Godwin, C.I., 1972,  "Geolog System" f o r  computer and manual a n a l y s i s o f g e o l o g i c data from porphyry and o t h e r d e p o s i t s :  Econ. G e o l . , v.67, p.796-  813.  Bray, R.E.,  1969,  Igneous  at Bingham, Utah:  Buddington, A.F.,  1916,  r o c k s and hydrothermal a l t e r a t i o n  Econ. G e o l . v.64, p. 34-49.  Pyrophyllitization, pinitization  s i l i c i f i c a t i o n of r o c k s around C o n c e p t i o n Bay,  and  Nfld.:  Jour. Geol., v.24, p. 130-152.  Buddington, A.F.,  1959,  G r a n i t e emplacement w i t h s p e c i a l  r e f e r e n c e to North America:  B u l l . G e o l . Soc.  Am.,  v.70, p. 671-748.  Burbank, W.S.  and Luedke,  R.G.,  1961,  Geology and ore d e p o s i t s  o f the Eureka and a d j o i n i n g d i s t r i c t : P r o f . Paper no.  535.  U.S.  G e o l . Surv.,  135. Carson,  D.J.T., 1968,  M e t a l l o g e n i c study of Vancouver I s l a n d  w i t h emphasis on the r e l a t i o n s h i p of p l u t o n i c rocks to mineral deposits:  Carson,  D.J.T., 1973,  G e o l . Surv. Can.,  Crickmay, C.H.,  1928,  Phd.  The  T h e s i s , C a r l e t o n Univ.,  p l u t o n i c rocks o f Vancouver I s l a n d :  Paper 72-44.  The  s t r a t i g r a p h y of Parson  Univ. of C a l . , P u b l . Geol. S c i . , v.18,  Dawson, G.M.,  1887,  Ottawa.  Report  Bay,  B.C.:  p. 51-63.  on a g e o l o g i c a l examination  o f the  n o r t h e r n p a r t of Vancouver I s l a n d and a d j a c e n t c o a s t s : Geol. Surv. Can.,  Ann.  Rept. 1886,  De G e o f f r y , J . , and W i g n a l l , T.K., of  v.2,  1972,  P t . B, p. 1-107.  A statistical  g e o l o g i c a l c h a r a c t e r i s t i c s of porphyry  study  copper-  molybdenum d e p o s i t s i n the C o r d i l l e r a n b e l t - a p p l i c a t i o n to  the r a t i n g of porphyry  prospects:  Econ. Geol., v. 6,7,  p. 656-668.  D i e t z , R.S., impact  1961, scar?:  D i e t z , R.S.,  1964,  G e o l . , v.72,  Dolmage, V., of  1919,  V r e d e f o r t Ring s t r u c t u r e : Jour. Geol, v.69,  meteorite  p. 499-516.  Sudbury S t r u c t u r e as an Astrobleme: p. 412-434.  Quatsino  Sound and  c e r t a i n mineral deposits  the west c o a s t of Vancouver I s l a n d , B.C.:  Can.,  Sum.  Jour.  Rept.  1918.  Geol.  Surv.  136. F l o y d , A.,  and B j e r r i n g , J.H.,  1969,  Parametric and  non-  p a r a m e t r i c c o r r e l a t i o n s and t e s t s of s i g n i f i c a n c e : Unpublished Manual, Univ. B.C.  F o u n t a i n , R.J.,  1972,  Computing Centre.  G e o l o g i c a l . r e l a t i o n s h i p s i n the Panguna  porphyry copper d e p o s i t , B o u g a i n v i l l e I s l a n d , New Econ. G e o l . , v.67,  Freeman, L . C ,  1965,  Guinea:  p. 1049-1064.  Elementary A p p l i e d S t a t i s t i c s :  John  Wiley & Sons, p. 108-119, 187-198.  Godwin, C.I., 1973,  Shock b r e c c i a t i o n , an unrecognized mechanism  f o r b r e c c i a f o r m a t i o n i n the porphyry environment: Assoc. Can. Proceedings, v.25, p.  G u i l b e r t , J.M.,  and L o w e l l , J.D.,  1974,  p a t t e r n s i n porphyry ore d e p o s i t s : Met.  1932,  Quadrangle,  V a r i a t i o n s i n zoning Can.  I n s t . Min. &  Rept.  P r e l i m i n a r y r e p o r t on Nimpkish  Vancouver I s l a n d , B.C.:  Lake  Geol. Surv.  Can.,  1913A, p. 22-35.  Hemley, J . J . , 1959, K2O  9-12.  B u l l . , p. 99-109.  Gunning, H.C.,  Sum.  Geol.  Some m i n e r a l o g i c a l e q u i l i b r i a  - AI2O3 - Si02 - H2O:  Hemley, J . J . , and Jones, W.R.,  Am.  1966,  p. 538-569.  system  J o u r . S c i . , v.57, p. 241-270.  Chemical a s p e c t s of hydro-  thermal a l t e r a t i o n w i t h emphasis on hydrogen Econ. Geol., v.59,  i n the  metasomatism:  1 3 7 .  Hemley, J . J . , and Meyer, C., 1967, W a l l - r o c k a l t e r a t i o n :  in  geochemistry o f hydrothermal o r e d e p o s i t s , ed. H.L. Barnes. Hemley, J . J . , Meyer, C , and R i c h t e r , D.H., 1961, Some a l t e r a t i o n r e a c t i o n s i n the system Na20 -  A I 2 O 3  - SiC>2 -  H 2 O :  U.S.  Geol. Surv., P r o f . Paper 424D, p. 338-340. Hemley, J . J . , Montoya, J.W., N i g r i n i , A., and V i n c e n t , H.A., 1970,  Some a l t e r a t i o n r e a c t i o n s i n the system CaO - A^O-^ -  SiG^ - 2 H  0 :  S o c  «  Min. G e o l . Japan, S p e c i a l Issue No. 2,  p. 58-63. Howell, F.H., and M o l l o y , J.S., 1960, Geology o f the Braden o r e body, C h i l e , South America: Hutchison, R.W.,  Econ. G e o l . , v.55, p. 864-905.  and Hodder, R.W.,  1972, P o s s i b l e t e c t o n i c and  m e t a l l o g e n i c r e l a t i o n s h i p s between porphyry copper and massive s u l p h i d e d e p o s i t s :  C.I.M. B u l l . , . p .  34-40.  Iwao, S., 1962, S i l i c a and a l u n i t e d e p o s i t s o f the Usuga Mine: a geochemiocal c o n s i d e r a t i o n o f an e x t i n c t geothermal area i n Japan:  Japanese J o u r . G e o l . Geogr. v.33, p. 131-141.  Jaeger, J.C., 1957, The temperature i n the neighbourhood o f a c o o l i n g i n t r u s i v e sheet:  Amer. J o u r . S c i . , v.255, p.306-  318. James, A.L., 1971, H y p o t h e t i c a l diagrams o f s e v e r a l porphyry copper d e p o s i t s :  Econ. G e o l . v.66, p. 43-47.  J e l e t s k y , J.A., 1969, Mesozoic and T e r t i a r y s t r a t i g r a p h y o f n o r t h e r n Vancouver  Island  (92E, 92L, 1021):  Can., Paper 69-1A, p. 126-134.  G e o l . Surv.  138. Hemley, J . J . , and Meyer, C ,  1967, W a l l r o c k a l t e r a t i o n : \ i n  geochemistry o f hydrothermal ore d e p o s i t s , ed. H.L.  Hemley, J . J . , Meyer, C ,  and R i c h t e r , D.H.,  r e a c t i o n s i n the system Na 0 2  AI2O3  Barnes.  1961, Some a l t e r a t i o n ,  - Si0  2  - H 0:  U.S.  2  Geol. Surv., P r o f . Paper 424D, p. 338-340.  Hemley, J . J . , Montoya, J.W., 1970,  Nigrini,A.,  and V i n c e n t ,  Some a l t e r a t i o n r e a c t i o n s i n the system CaO  SiC>2 - H 0:  H.A., -  AI2O3  Soc. Min. G e o l . Japan, S p e c i a l Issue No.  2  -  2,  p. 58-63.  Howell, F.H.,  and M o l l o y , J.S., 19 60, Geology o f the Braden o r e -  body, C h i l e , South America:  Hutchison, R.W.,  Econ. G e o l . , v.55, p. 864-905.  and Hodder, R.W.,  1972,  P o s s i b l e t e c t o n i c and  m e t a l l o g e n i c r e l a t i o n s h i p s between porphyry copper and massive s u l p h i d e d e p o s i t s :  Iwao, S.,  1962,  C.I.M. B u l l . , p. 34-40.  S i l i c a and a l u n i t e d e p o s i t s o f the Usuga Mine:  a geochemical c o n s i d e r a t i o n of an e x t i n c t geothermal a r e a i n Japan:  James, A.L.,  Japanese J o u r . G e o l . Geogr. v.33, p. 131-141.  1971,  H y p o t h e t i c a l diagrams o f s e v e r a l porphyry  copper d e p o s i t s :  J e l e t s k y , J.A.,  1969, Mesozoic and T e r t i a r y s t r a t i g r a p h y o f  n o r t h e r n Vancouver Can.,  Econ. Geol. v.66, p. 43-47.  Island  (92E, 92L, 1021):  Paper 69-1A, p. 126-134.  G e o l . Surv.  139. Johnston,  W.P.,  and L o w e l l , J.D.,  1961,  Geology and o r i g i n of  m i n e r a l i z e d b r e c c i a p i p e s i n Copper B a s i n , A r i z o n a : G e o l . , v.56,  p. 916-940.  Kennedy, G.C,'and N o r d l i e , B.E., deposits:  L o w e l l , J.D.,  1968,  Econ. Geol., v.63,  and G u i l b e r t , J.M.,  The  g e n e s i s of diamond  p. 495-503.  1970,  L a t e r a l and  vertical  a l t e r a t i o n - m i n e r a l i z a t i o n zoning i n porphyry Econ. Geol., v.65,  Luedke, R.G.,  Econ.  ore d e p o s i t s :  p. 373-408.  and Hosterman, J.W.,  mine, San Juan Co.,  Colo.:  1971, U.S.  Clay minerals  Geol. Surv.,  Longfellow  P r o f . Paper,  750-C, p . C 1 0 4 - l l l .  Meyer, C ,  1968,  Ore d e p o s i t s a t Butte, Montana:  of the U n i t e d S t a t e s ,  M u l l e r , J.E.,  1970,  M u l l e r , J.E.,  1971,  Vancouver I s l a n d (92E, K, L,  1021):  Paper 69-1A, p. 27-29.  Chemistry  and p e t r o l o g y of some Mesozoic  v o l c a n i c r o c k s of Vancouver I s l a n d , B.C.: Can.,  deposits  1933-1967, p. 1373-1416.  Northern  Geol. Surv. Can.,  Ore  Paper 71-lB,  M u l l e r , J.E., Northcote,  Geol.  Surv.  p.5-10.  K.E.,  and C a r l i s l e , D.,  1973,  Geology  and m i n e r a l d e p o s i t s of A l t e r Bay  - Cape S c o t t map  (92L-102I) Vancouver I s l a n d , B.C.:  Geol, Surv.  Open F i l e Rept., Sept.,  1973.  area  Can.,  140. Muller,J.E.,  and  Rahami, R.A.,  of northern 1B,  Vancouver I s l a n d :  Geol.  1970,  Surv. Can.,  Petroleum Resources, Geol.  p.  1972,  I s l a n d Copper Mine:  and M u l l e r ,  and m i n e r a l i z a t i o n :  Norton, D.L.  B u l l . , p.  and  Exploration  B.C.  Dept. of Mines  E x p l o r a t i o n and M i n i n g i n  J.E.,  1972,  Volcanism,  Vancouver I s l a n d :  Can.  plutonism Inst.  Min.  49-57.  Cathles,  of exsolved  L.M.,  1973,  vapor from magmas:  Breccia pipes Econ. Geol.,  - products V.68,  p.  546.  O'Rourke, J.E.,  1962,  Geology and  Vancouver I s l a n d :  Perry,  V.D.,  1961,  pipes:  Min.  Radonova, T.G., of the  and  The Eng.,  ore d e p o s i t s  s i g n i f i c a n c e of m i n e r a l i z e d p.  northern  breccia  367-376.  Velinova,  I., 1970,  secondary q u a r t z i t e s i n the  S c i . , A, No.  of  Utah Mines L t d . , P r i v a t e Report.  The  alunite facies  svednogorian zone:  Problems of hydrothermal ore d e p o s i t i o n , Geol.  B.C.  293-304.  Northcote, K.E.,  & Met.,  1970-  p. 254-278.  Petroleum Resources, Geol.  B.C.,  Paper  Rupert I n l e t - Cape S c o t t map-area:  Mining i n B.C.,  Northcote, K.E.,  sediments  •  Dept. o f Mines and  and  Upper T r i a s s i c  p.11-18.  Northcote, K.E.,  and  1970,  2, p.  368-372.  I n t e r . Union  54 0-  141. Robinson, R.F.,  and Cook, A.,  1966,  The S a f f o r d copper d e p o s i t ,  Lone S t a r M i n i n g D i s t r i c t , Graham Co., A r i z o n a : Geology of the Porphyry Copper D e p o s i t s ,  in  Southwestern  North America, ed. T i t l e y and H i c k s , p. 251-266.  Rose, A.W.,  1970,  Zonal r e l a t i o n s o f w a l l r o c k a l t e r a t i o n  and  s u l p h i d e d i s t r i b u t i o n a t porphyry copper d e p o s i t s :  Econ.  Geol., v.66, p. 515-542.  Sawkins, F . J . , 1969,  Chemical b r e c c i a t i o n , an u n r e c o g n i z e d  mechanism f o r b r e c c i a f o r m a t i o n ? :  Econ. G e o l . , b.64,  p. 613-617.  Sillitoe,  R.H.,  deposits:  S t e i n e r , R.H., New  1973,  Econ. G e o l . , v.68, p. 799-815.  1953,  Zealand:  Surdam, R.C.,  The tops and bottoms of porphyry copper  1967,  Hydrothermal rock a l t e r a t i o n a t W a i r a k e i , Econ. G e o l . , v.48, p.  Low  1-13.  Grade metamorphism o f the  Group - B u t t l e Lake area, Vancouver  Island,  Karmutsen B.C.:  u n p u b l i s h e d Phd t h e s i s , Univ. C a l .  Sutherland Brown, A.,  1969, M i n e r a l i z a t i o n i n B r i t i s h  and the copper and molybdenum d e p o s i t s :  Columbia  C.I.M. B u l l . ,  p. 26-40.  Sutherland Brown, A., Mining i n B.C.,  1970, Mess Creek: B.C.  Resources, p. 49-57. '  Department  Geol., Exploration  of Mines and Petroleum .  142. Sutulov, A.,  1974,  Copper p o r p h y r i e s :  Univ. of Utah P r i n t i n g  S e r v i c e s , p. 141-170.  Sutulov, A.,  1963,  Molybdenum and  rhenium r e c o v e r y  from porphyry  coppers; Univ. of Concepcion, C h i l e , p. 31-40.  Winkler,  H.G.F., 1967,  Springer-Verlag,  Young, M.J.,  and  Petrogenesis p.65.  Rugg, E.S.,  1971,  of the I s l a n d Copper d e p o s i t : 40.  of metamorphic r o c k s :  Geology and m i n e r a l i z a t i o n Western Miner, V.44,  p.  31-  143. APPENDIX A  "GEOLOG"  The development and use o f the "GEOLOG" format f o r r e c o r d i n g d r i l l i n g d a t a - i s d e s c r i b e d by Blanchet and Godwin (1972).  The system used  f o r recording d r i l l i n g  Copper i s a m o d i f i e d form o f one o f the e a r l i e r  data a t I s l a n d "GEOLOG"  formats  (Figure A - l ) which was loaned t o the w r i t e r i n t h e s p r i n g o f 1971.  E a r l y core l o g g i n g a t I s l a n d Copper i n d i c a t e d t h a t  l i m o n i t e was n e g l i g i b l e and t h a t v e r y l i t t l e  f r a c t u r e data  c o u l d be o b t a i n e d from the s p l i t c o r e ; t h e r e f o r e , these s e c t i o n s were removed from the data sheets f o r t h i s  study.  Copper and  molybdenum assays were added t o the "GEOLOG" sheet i n s t e a d o f being r e c o r d e d on a separate format used F i g u r e A-2. illustrated  "ASSAYLOG" sheet.  The r e s u l t a n t  f o r core l o g g i n g a t I s l a n d Copper are shown i n Coding  sheets f o r the "GEOLOG" data sheets a r e  as Tables A - l , A-2.  144.  FIGURE A - l "GEOLOG" Format A f t e r B l a n c h e t and Godwin,  (1972)  G  L  O  L  O  G HOLE NUMBER  CHAHMAH.HOOO  D BE  T Y P E OF H O L E ? D O H  DEPTH  CON-  BOTTOM  ITACTS,  OF  (FAULTS  L  INTERVAL  DYKES  DESCRIBED  '-LETTER CODE  T Y E M 0 o F 1 IR .2  _S CAL E S j NAMES •  L  ROCK TYPE  L .  H  ..  COLOUR CODE M N U OR N C V 0 0 * R L C M 0 U A U E u n 15  LEX  O  L  E  G  S  E  O  L  PROPERTY: F R A C T U R E S  ROCK  HOST  USE  a  ESTM I ATES SS YL S* *lll«tsli O N0 A M h ifl.A A  0 U M A I L N  r  E  i  »  N  L  G  I  O  L  O  G PAGE  LOGGED a r :  A L T E R A T I O N  A S S E M B L A G E S  "one  h!'»  E E I  I J. |_.L  -r-  J_l..  xi  _ U _  4-1 i  OF  t« ««. ram  or occun./v.tvOL.)  65 { •* ! I7_f 1 •K+H4-H•j  TT -LI  o?  j «»!  MINERAL  70 ! Tl TI 7J T4 "< J  ! I ! I M i i I I I ! I '• i i  L  I  i  i I  | l  M  ! I  !  I  i  ;! i  I I I ! ! !  ' HUM  i I I  -U-L  ......  I  J J  TI-OS  MINERALIZATION  L1M0NITES  >DE OF OCCURRENCE/7.1V0L.I Of MINERAL  ALL FRACS  ,4  -L..L i i  O  - p  ! J  I •  PRi'JC.  TO  J  R  COMPANY:  OftiSWOLO LTD. Aim.  I  I !  I  !  !  !  I  ! !  M i l  L L  M M  M i j  Ml!  j  |  -TJ  FIGURE A-2 Modified  "GEOLOG" Format Used a t I s l a n d Copper  Contac t s , Faults , teDth  to  Bottom of I n t e r v a l Described Rock Type type  Mod"  Colour Code Qualify Mir.»r».l  Gin  3  iz  TTtT QZ ARGLI  KA MM MS KF J  J  L  i  J  i i  i  PP  i_  L  DU  i  CB I !  i £  ZE CL  EP  HEM MG i  LI  !  FY CF i  i  T-rr  MO  i—I—r  BN PR  rr CU ASSAY  MO ASSAY I  I  L  148, TABLE A - l Coding Data f o r the M o d i f i e d "GEOLOG" Sheet  12 3  8 9 10 11 ROCK TYPE  INTERVAL CNT OVB CAP SUP TRN FLT DYK FRX REM  4 l e t t e r rock name from T a b l e A-3  Contact Overburden Capping Supergene Transition Fault Dyke F r e s h Rocks Remarks  Open f o r l o c a l name characteristic etc.  13 14 15 16 COLOUR CODE 14  13 SHADE 9 7 5 3 1  BLEACHING  No Comment White L i g h t Gray Medium Gray Dark Gray Black  L N D  No comment Lighter Normal Darker  B P T  Blue(ish) Purple(ish) Tan(Brownish)  15 16 COLOUR R 0 Y G  Red(ish) Orange(ish) Yellow(ish) Green(ish) 17 18  DEFINING MINERAL 2 l e t t e r mineral code, i f a p p l i c able (from Table)  149. 19 TEXTURE OR 1.  STRUCTURE  IGNEOUS ROCK. . a. Porphyry Estimated % Phenocrysts 10% 10-40% 40-60% 1 2 3 5 6 7  Groundmass Texture  b. E I H # & 2.  Phaneritic Aphanitic Non P o r p h y r i t i c  D V A S P  Equigranular Inequigranular Graphic Miarolitic Ophitic  Diabasic Vesicular Amygdaloidal Spherulitic Poikilitic METAMORPHIC ROCK  SEDIMENTARY ROCK  L N U K XX B F T R  60% 4 8  Q L F G Y M J Z  Laminated T h i n Bedded Medium Bedded T h i c k Bedded Cross Bedded Bioclastic Fissile Clastic Oolitic  Porphyroblastic Lineated Foliated Granulose Slaty Migmatic Spare Spare  20 GRAIN SIZE Igneous  Sediment . 9 8 7 6 5 4  Boulder Cobble  Megapeg Peg  Pebble  Coarse Medium  Rock (phenos  Granule Sand  3 2 1  F i n e Grained Aphanitic Glassy  Silt Clay 21 22 23 FRACTURES 21  Fracture Density L  =  low  A  = above medium  i f Pfy)  150. F  =  Fair  H  =  high  M  =  Medium  X  =  Extreme  22 23 Percent with Sulphides/Percent with F a u l t 0  2.5 + 2/5  Material  5  50 + 5  1  10 +  5  6  60 + 5  2  20 +  5  7  70 + 5  3  30 +  5  8  80 + 5  4  40 +  5  9  90+5  ALTERATION ASSEMBLAGES 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 Mode o f Occurence 0  No Comment  5  1  Veins  6  2  Veins  P e r v a s i v e c u t by Envelopes  3  V e i n s = Envelopes  7  P e r v a s i v e c u t by V e i n s  4  Veins  8  P e r v a s i v e replacement of one m i n e r a l  9  Pervasive  Envelopes Envelopes  Envelopes  25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 Amount 0  (Percent)  2.5 + 2.5  5  50 + 5  1  10 +  5  6  60 + 5  2  20 +  5  7  70 + 5  3  30 +  5  8  80 + 5  4  40 +  5  9  90 + 5  MINERALIZATION 63 65 67 69 71 Mode o f Occurence 1  Veins  6  Moderate v e i n l e t s and disseminations  151, D i s s e m i n a t i o n s and some v e i n l e t s  Veins, v e i n l e t s , fracture f i l l i n g s and minor disseminations  D i s s e m i n a t i o n s and minor v e i n l e t s  Veins and some d i s s e m i n ations  Disseminations  V e i n l e t s ' and moderate disseminations Veinlets  = Disseminations 64 66 68 70 72 Amount  (Percent)  0  0  5  3 •'+ 1  1  .13 + .13  6  6 + 2  2  .37 + .13  7  12 + 4  3  .75 + .25  8  24 +:;8.  4  1.5 + .5  9  More than 34  152.  TABLE A-2 LETTER ROCK TYPE CODE IGNEOUS ROCKS General Types dyke igneous plutonic volcanic porphyry Dyke Rocks alaskite* aplite diabase (dolerite) lamprophyre pegmatite  DYKE IGNS PLNC VLCC PPRY ALSK APLT DIAB . LAMP PEGM  P l u t o n i c Rocks alaskite* breccia diorite gabbro granite granodiorite monzonite quartz d i o r i t e (tonalite) q u a r t z gabbro q u a r t z monzonite (adamelite) syenite trondhjemite Ultramafic Plutonic anorthosite dunite hornblendite norite peridotite pyroxenite serpentinite  ALSK BRPL DRIT GBBR GRNT GRDR MONZ QZDR QZGB ZQMZ SYEN TRDJ Rocks  Feldspathodial Plutonic feldspathoidal diorite feldspathoidal gabbro feldspathoidal monzonite feldspathoidal syenite Miscellaneous Plutonic carbonatites  - ANRS DNIT HBLD NORT PRDT PRXN SRPN Rocks - FDDR - FDGB - FDMZ - FDSY - CRBN  V o l c a n i c Rocks andesite basalt breccia dacite diabase (dolerite) feldspathoidal andesite feldspathoidal basalt feldspathoidal latite latite phonolite quartz b a s a l t quartz l a t i t e rhyodacite rhyolite trachyte  -  ANDS BSLT BRVL DCIT  - DIAB - FDAN - FDBS -  FDLT LTIT PNLT QZBS QZLT RYDC RYLT TRCT  METAMORPHIC ROCKS P r o g r e s s i v e Metamorphism amphibolite - AMPB gneiss ~ " - GNSS granofels - GRFL granulite - GRNL greenschist - GRSC greenstone - GRSN l i t - p a r - l i t g n e i s s - LTGN migmatite - MGMT mixed g n e i s s - MXGN orthogneiss - ORGS paragneiss - PRGS phyllite - PHYL quartzite - QZIT schist - SCHS serpentine - SRPN slate - SLTE Contact Metamorphic Rocks c a l e - s i l i c a t e r o c k - CLCC hornfels - HRFL marble - MRBL pyroclasite - PRCL pyroxenite - PRXN skarn - SKRN tactite - TCTT  TABLE A-2 LETTER ROCK TYPE CODE CONTINUED C a t a c l a s t i c Metamorphic augen g n e i s s cataclasite mylonite SEDIMENTARY ROCKS Detrital & Epiclastic argillite arkose breccia claystone conglomerate .greywacke mudstone guartzose sandstone sandstone shale siltstone  Rocks - AUGN - CCLS - MLNT  Rocks -  ARGL ARKS BRCC CLSN CGLM GRWK MDSN  -  QZSS SNDS SHLE SLSN  C h e m i c a l - b i o g e n i c Rocks carbonaceous r o c k s chert c l a s t i c limestone coquina dolomite evaporite ironstone limestone o o l i t i c limestone phosphorite  -  CRBC CHRT CLLS COQN DOLM EVPR IRNS LSTN OOLS PSPR  P y r o c l a s t i c Rocks agglomerate breccia ignimbrite tuff  -  AGLM BRPC IGMB TUFF  BRECCIAS, U n s p e c i f i e d O r i g i n Undivided - BRXX M a i n l y Angular Fragments - BRA M a i n l y Rounded Fragments - BRR - with 4th character 0-9, g i v i n g % o f m a t r i x t o t o t a l rock  154. APPENDIX B DATA PROCESSING  The  computer program d e s c r i b e d  (1973) paper was Copper.  The  not  object  a l t e r a t i o n to ore o f the d e p o s i t , achieve. portions:  used i n the  i n Blanchet and  treatment of data from  o f t h i s study was  rather  than to b u i l d a b a s i c g e o l o g i c  which the B l a n c h e t system was  designed  Data from each c r o s s - s e c t i o n were d i v i d e d hanging w a l l , dyke and  Data s e l e c t e d  f o o t w a l l , to o b t a i n  fracture density,  a l t e r a t i o n m i n e r a l s and  copper and  scale.  On  Grade v a l u e s are  Data p r o c e s s i n g  was  r e f l e c t i o n , i t was  recorded  using  considered was  to  treated  i n t e r v a l data.  done a t UBC  Computing Centre Floyd  and  J.H.  using Bjerring  T h i s program i s designed to compute c o r r e l a t i o n s  between d i f f e r e n t p a i r s of v a r i a b l e s and t e s t s of the  results.  The  i n t e r v a l v a r i a b l e s and  v a r i a b l e s of the The  twelve  molybdenum grades.  l i b r a r y program UBC-CORR programed by A.  and  the  are:  amount o f the  be c l o s e r to o r d i n a l data than to i n t e r v a l data and accordingly.  to  core.  Q u a n t i t y o f a l l v a r i a b l e , except grades, was a semi-quantitative  picture  into three  as amenable to computer p r o c e s s i n g  grayness, b l e a c h i n g ,  Island  to r e l a t e hydrothermal  maximum amount of s p a t i a l data from the  (1969).  Godwin's  program can  to perform  handle nominal, o r d i n a l  w i l l c a l c u l a t e c o r r e l a t i o n s between  same or d i f f e r e n t s i z e s .  c o r r e l a t i o n between copper grade and  both i n t e r v a l v a r i a b l e , use of C o r r e l a t i o n  the  (Pearson's r ) .  an F - t e s t of the  significance  molybdenum grade,  standard Pearson's C o e f f i c i e n t The  s i g n i f i c a n c e of  s i g n i f i c a n c e i s determined "R".  by  155. C o r r e l a t i o n s between grades and o t h e r v a r i a b l e s a r e mixed c o r r e l a t i o n s between i n t e r v a l and o r d i n a l d a t a and the s t a t i s t i c a l t e s t used i s Jaspen's C o e f f i c i e n t o f M u l t i s e r i a l Correlation.  T h i s uncommon t e s t i s d e s c r i b e d by Freeman  Once a g a i n , the s i g n i f i c a n c e o f the c o r r e l a t i o n s by F - t e s t s .  •  (1965).  i s determined  "Listing"  of a t y p i c a l  input  n  UNIVERSITY PF PJG CENT F ' < ; *************** ********** LIST I : M G t«t*»sts«*«t**»tt*»*t*»*t*«*Si»*  A.M.  8. C .  CUMM'ir  1>.  $LIST 1 2 3 4  5  7 a  10  II 13 15 12  1*  17 18 19 70 71  . .  23 24 25 26 27 793 2 30 31 32 313 3 , 3 5 35 37  ?»  3?  A AO l 42 A3 A<. 45 4 9 4. 7 A-3 •=;>  »1  SSIuNQN CAKG 1 = 100 P = 20 C=0 CARG Sit UN »HATF IV 6 = -TQATA tC Li Ml' I Lf (20),XX(201 OAT A i>LXA Rc AO ( 3 n2 fX )-.2 1 IX, XX Furi.-Ul I 1 Fl.0.3X.F1.0,4X.F1.0. X . 2 ( 4 XX.. 3!1 FX. IFI ..00 ).) 5X21.,I 'J.) F'l ,.02 .A IX . Fl.F. .A1 X . F 1 Fl . .0 30 .. 21 .01XX.F3.3.T1.12X.A1.3X.AIX1 X. 1 I) ii.XX.,., 2 2 I . 1 X1.)1 .i X4•X . SI 1XX..A4I . X .1 M A11. 1 I,A3 OX. I A 3 DU 3 1 l= b 4 I F ( Xfc I 1.) rSLVIK I XIII = XII) • X ( i 1+=1. \0I I ) wKlTc (6.1 GO IT, 3 3 ) (XI I 1.1 = 1.20) 13 r.jr-iAri ix• 1 i:F 3 . 0. F6. 2 . Fr>. 3 ) S TOP 93 93 9 bOZMZ 9M. 'J 2^.L1 94B1 21i b0 7 '3 91 2 .'. 9\ ' 324L1 92 • 109 1 73 91 19 „il 3 3--/:y . M 2' 32 A F122 H2 71 491 1.-; •>li".Y..'-iZ9 iM35 91.12 Bl 9490 l •: 56.J/.MZ9M 2411 9182 Bl .9 3 610Z 9:9 52 A L721 10 ftl 93 lo 722UZMZ 7 25H 57 1 . 3 133 231 10 10 9 3 4 7L L9 92 9 92 92 2) 94jZ'-!Z 7L 923L I a 2 30 94 91 21 00,4 l'.)OJ/..v,/. 92 5 9 LI / 82 55 1210 21 00 9 1 0 2 7LX9 X2 5 H 7593 90 95 92 10 700 1 4 10 , . W_7 1 X . X• 69 ,25L1 93 10 91 53 51 /•oW 1 < t > • 1 b J3 U S 5 11 60 1 0 92 10 9920 90 9 91 1 01• > l -: L v.--:-.. , ' , !5 5 G21 . 1 71 1 1 9 7 0 2 . " , rf .I'JsA.-iUS 3:JG b LI 92 10 9j -.sfi ,2-, 143A:\H)S3,'JG•5 I 92 9291 53 9 3 J2 OP, 5 3L 1500ZMZ7N 3 2 A 1 . 130 90 55 3 A )20 i .-. 131:jZU/ 24L1 71/il 10 91 9L >I 1 31 00/ 1 7 LI93 9A A9 93 H-0 Ol,./ 1673.)-/<i;/ii• V. •N V :i2 /9 y2 24A0 37 1 91 91 9 2 o 0O . ,/ 91 974 371 !)3 90 92 2;, 1 JOvJZHZ 9L 92'.-1371-12 90 9 2'.Oi.v 09 2 0 5 J91. /. 9 12/4 3 7133 10 23 1o 2 140/MZ 9L 92 4137133 10 95 32 2 2 ' • : > £ . < / ' / L 9 2 1 = . , 1 3 7 1 3 3 1 0 1 0 9 ) 9 2 /7 . i:'-' 2 3 00/'•' 9• 1/ .. 9 • 33 71 S3 11 ;b 1 i ol.. 2'. iw/M9 ZL 9 Af 7332 »3 j 1 5 2 550/KZJL A A7 3.13 10 93 12 26-.0/..MZ 9 A A7 33 3 10 1 92.91 '.j io 0 2 r3 9Z91-.iZ9 AA 7 ,,,,3 10 9-.93 1 / '  • /  1  1  7  U I  A  SOMA  I  HI  a 7. "  Z  -, /  7>  JAM/  •  i.ji  !L  A  5  A-J  A  .17  'IJ  •  1  t:i  •>',  .....:•(>  I;!J,;Z,'I7  'i  J)  •7  ;L  -  i  1  158.  •  . " V •J- -r L.' 7 > 7 '- 7 : • > O .2 : Nj- T x rAA r- „ .—  Z  °  ^  c  • ;  •  r~ r  *\  *-  f. r\ fl  .-,  ^ C7*f«' fl fi l n ^ fl f>? c N  -  r  -J" ,*•  "T«  fl  <y -y  c  p  —i  ~i  7-'77* ip . + • L P L P P P 07P- P, .* -j*'-^ •7*  t  p  •X iT>  000-.IP-;  —  •-7  -*  LP -7-  -> 7 cT- 7 s  f-  1  ^ •0 >rrcr •A A— <P J T LP p.  P,  PJ .-^  .+  .4.  pv  r~<  O  TO —'  ^-i  — 10 —'  •t  c  O  —J — r1 0  0-  •7  1  ~J PJ —(  0  •7*  •t ip  p.  7 i>C*' rO C7cO p Ps'  fl  •—;  s  0OO O crp >O  O_, •Cr  fl  fl fl fl P . ' Cr 1> IT"  s  ."r7 > *v -r —  .»  ti  1> 0'  O  7-  fl ; p  -  O  fl  > O P JPJ7 c0J rP fl fl cr 7) PM P J cr  —  O aO 0 0 < fl 0c < va- — 0 0  O < — <  7  "*  7- •7  o  7.  •7-  Pv -t ^  fl  -r rr  c-  P. 7. - cr'r fl fl P  vj-  P  f\p.' T-  fl fl  C 7— 0 CC C O <— < —1  —  •7> r>  «t  •t . f ^J-O  r  ~"  .,  —«fl  -T-  o •  .—  •17  '7  _  T .7 7  7 - _7- 7 fl. _ -  —  c c  7  7- .'7*  CP rj* •T ~fl 7- rP ? fl  —  fl —  —  —  -p  fl  <y A IT 0"  •-.  — . •''.-; 7 . 7 -7 0 7; C~0— •-, 77 . -'"777 r — -7*P."-7 -r -J -t fl ~~ -1 O ^ 7  —  '  O Pv  7 ^ 0O crCr  fl  ^ PJPJ Cs, 't m PJ"V rf r\l•X ~tfl flfl flfl n -> CT A fl •-rPJ PJ —• —• •\jr\i fl ~- ^ .T- X fl fl afl fl -flfl T fl cn crfl fl-i'fl r. -rfl fl 7 . fl 7 P T > 'J 7 c* IP .p-LA Tc•Jr- -fs. PJ ^> Jfl -rrr\flo inr- LP. r- — .0, -*7^Oi?*.*^fl :CP> r- f-•T.t-IP fl 7 J- p -r < :vrr -r fl fl PJ L 0fl7- x> P * -crfl •C irA.7-* - P >.jr PJ P fl, PJ PJ^, A.fl ^- ,j r y s; rc -r -r -<r fl fl fl fl fl fl fl fl -J-f -? -r•r < fl P; fl fl ro ^ PJ PJ tV P.PJ rv < P J aL L -J r \ < * . P J A . fl fl fl fl •P a> • cr ^ ?• 7 >0 o»cr c.r - 7-7- •> 7 >7 > IT ifl rr cr CT 7 ^-_7-r>i> 7- IA > -T» 7*^rO A C .D ' O O O— J 3 t —i _) .-J 77 '7 _' _ J _i -J _i _ j " 7 _l _ j _ ) 7»A — I — I _ J J — ' J — 1 _ J _ J J — : J 1 j 1 •V* -J P O CT- 7* 7* T *>—1'r—17- fl fl p fl • X X A A — t ( 7 > c r 7 7 . • r fl i*r > *r O X X. -v >: J _i -.0 ~ x _ <^ :M M2177?M r " L:r v" ^X " <Y. >j _ >j \ -~ 7". M —; fl -s,' -sj KJ-SJ r^"C > < v r A : -: >r7 X KS O2fl fl — 0 PcJr. cv0fl*?fl-rfln V ' 0 ' flO fl O ALP •pr— O"7 O ' *j"7.'7 17fl .'1: fl•;i ,f fl O •7O , Oflfl 7 "C 0 .-fl!cf,fl flflA0 > C? 1O?O O / C 7 > > P . J O P O O fl fl _P.0 ro o> -3 C - M -t- 'P ir 17%O PJ P r- A.•7 0 c c- A flA • O— »P JA fl I —1 P PV J A *t fl -t  T,  -t 1 7IP fl fl • P  1  cr  fl  1  -t .f fl fl,  7-  7  s  iP -t  p-  PJ  •7> :LiP  1  p  -J _ J  —/  -7*  N N  sj  ~>  x  -%i  f\  Is  •0  —1  7-  fl  C7  ^ .p  fl  .fl f  <>• 'O -o  ^-j  'J3  —  _J  ••<  i~i  —1  u  7-  **  1  c  P|  •7-  7*  —  _J  > "> •  _j  <  -J"  -f  p)  c:-  "P  PJ •t  Pv •T> O  -j  -.3  A  ~'  —*  _J -J - J  r.p  > •  ."-J  ~£  NJ  •r > •»J  S  s; NJ M PJ pj fl -* Lf\  ;~  >  -  '";  '7  "J "~  PJ  Ti  1j ~i  -r.  :>  ro.  .0  ;P  fl.  -vt  •7-  —  r->_  T.  .P  r- .  T>  T."  —'  -,; --J  PJ Pj  "J •7^  V-  '.7  '-5  •t  fl-  s  .-4  —*  fl  > "> " _J  —  •7  ..•>  P.' 7 •7"  p~  7'"^ 7*  r-j  PJ P' Pj  ^  \l  p-  \5:  •t s.*  N*  Pv  1  >  ••f  >^  •<  -.^  •£  _i _!  ~*  1.<  7>  >;  "7  fl.  P|  >:  13  --»  PI  1  r—crrcO—* PJ -rAHP -0 r- cn(7-e f-i ifl vf if> fl O fl P T" . ' «c r- r- P- r- r- r- ci a tia;0,O ua •:- ac .c cr i r tr cr M  A  Ti T>  PJ  -t  •r- p-  fl  O — •< ^ V  A  fl P r- O tr CTc t•/c _tJO_ t c. _ t> fl  PJ  159.  0  X. 1 " X X X *<*i| '.A  LA  LA  'X  A  x in x '.A x| X  'A  X 'X .fi;  'A  -r> X  -i o •-7-  o •  o  m  M  ,-1  N  7*  fji  —i  O  x x .x T • r- r- cx* r- ' x t—i x x • •V i x -r  , ...  ^  CT»  A  AJ  X  •n . rr* x x > x > :> V. ~£ K ' x -y x -- o x; .t-o c o-^^ T  Z  > n — r  _» IA  '7* X L A 7" f^j X .--O - 1  x x. T -1 ...  r-  X  X, O O - I  O O O <~i O ~ >O O O O O '  ?! o r> o o  o  <-, jr,  f  iA X  '.A  ^  -M  ^-  ,f  .A  :A  ..A  -0  X  X  sj-  'A  X  o  o  CO  'Ji- x  ^  ~?  X ^~  _j -< _J Y  X  o s m io (V (M TvJ A.'  ^ in  o  X  x  —*  AJ  -•- X X  X X X X  4-  X  C7>  X X  .i  iTJ L A rJ X  Or  A  :A  xx • X  :T>  A J A J <\J  if>|iTl  o o o  C O <  c CT*  o r-  I M  q  X'  V  _i  ~j rr *—  st  3">  -xf  ;r A  IT)  O-  x x r— x rr o  C  <r ^  >?• <T vf • AJ AJ < N ) < ~ s l : CM T<  R  N»  •>  4  vf v!  •>  fSJ f\J A j  r-t  X X  -A  X  O — i "T A  ^ A  '  _ J  i^-  _J  J^  -vJ "•"  :  r*- • S  .J I —J  I '  A X *J  -j} <A -C ' r~i <\i X  ^ •vj  X  <l  T  A  C  «* '  ^  -sj rvj  Nl ^  '  M  -^1 ;  NJ N  N  f-j t^J ~>J A A  -or-  LA  A  o s- Ol  d ;Y  "AO* LA A  -o V  •7-  X  .A  A  160.  C .1  A  P "1  x x v fv  -vj  cr> > ,> X X  rA fv ' A X  ;  :r cr cr cr cr ,  tA  -J  , X AJ A.' -\! AJ • 'A AJ X  r  -A  r-  x •  e- o cr cr cr  O O O Oj  O O O O Or  -H  o _i O x T:  o  cn to  x  A.' rs,'  cr- x :o x x x LA  ;  LA x '  cr rr -4"  A  .A  AJ  A. AJ  i x x -' OX  m  AJ A  •A A A x A !A • 17 x LAA :A A 'A '  X ' A • A -<  x. 3  7.  X X :A X r«* -vl y *£  .v: UJ —< 1 L  1  •A  X  X  X  •/>  n ST  17 -•J i^J  0rro cr-0 or~Or--<r—  •.A —f ' A X .A O  -n  LA  rt  CT>  3  •T: ~T  X X. X •  -^f -si ^  A 'A  o X  '  rt  r-J •"> o v_  o  r^-A  o  o  ol  x'  O —• ' r— T)  |0  T  r-  A  •—i  */l LU ' > \ ' I  - i -r.  .-r-  r-> o  ~*\  _J  ZD < CL  O  Mr|U-  '  X< T . O— <A J •7* O rv AJe;rdc-AJ^ c-r\.' r*.  V  X  C-  CA  < ^-i  C-  C  rv; A j  X  X r - -r |  •-* AJ  x  vT X  X rt  LU  r- f j u Lu U  CVo .Aj A l rv A J A . CM f \ !M f , I/, r- x —« r »  CO AJ  -A.  T y p i c a l Computer Output  C.MR xxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  P.f s  NC.  7761 57  UNIVFRSITY  OF  B C CCHPUT INS  CLN'TRE  MTStCCIA!)  #««****»«.«»&»**«• THIS JOB SUBMITTED THFCUGH FRENT DESK REACKR »*******•*«*»***«*•» CARG **LA5T S I G f . f : \ W-\S: 1 3:27: 57 F P I CEC. 17/71 US:"; "C'-RC-" S I G N ^ : ) r n AT 13:3Cr:.A O M Fkl DEC. 17/71 ilub- WATFIV (: T CAT A fXPCUTIOH B E G I N S  13:29:53 FPi DEC 17/71 > ' ( ' > •  « * 3 r  *S!C-:.r.N  f I  • » .  j  CP II E i £NSIB lL >ANKX/('17), 2 D) AI TwA •X /X(17) 3 5 READ!9,1,ENO=2)X,XX A 1 EC. -WA1 (12X ,F1.0 , 3X, FI .0,4X, FI .0, IX, 2 ( 1X,F 1.0) ,'tX, 81 IX,FI .0! ,6X, 2( 1 1X,F 1. 0) , 1 6X,F 3. ?, 1 X,F3. 3, Tl ,12X,A1 ,3X, Al ,4X ,A1 , IX ,? ( IX ,A1 ), 4X, 8 [ IX 2,A 1 ), 6X, 2( IX, Al ) , 16X, A 3,IX,AJ ) • f  ~  7 <)  OTJ3 l =••,, l • >  t  I ) +1 .0 (t.,13) (X =1 , ( " > : ' ) TO r: IF  3  S  ( XXI  ! ).ME.BLAMO  X ( I ) = X  13  FI  2 "  FrAr.  XII)  =  XII)  I I ) , 1  Al  +1.0  I  MRITE  11  13  M.P  [ I X , 1 '3T4  .0  , F6.  2,  Ft  17 )  .3 I  CTTTTTrTLT.  E.V) J CATA CUFF USAGE HJt f ! C!)0t =S24 BYTE, S A K K A Y AR1 E36ABY-TES,TOTAL AREA AV A IL Ab 1L024 EC0 = P.YTES CC.^PI LE T I ^E0= .14 SEC.EXECUTUN T1ME = 7.14 SEC,WATF V I - VERSION 1 LEVEL 2 A 1U 9G 7U 0ST 0AT5= 12-17-71  •  164.  < y— < vI  it  7 * —  cr  u c:  y  CEPEMDENT VAS I ABLECU- GP. D TYPE uNt: CATb'.CP.Y Cl- THE N!>i-1 NT f. RV Al VARIABLE CiSEKvATIH.'-.'S NY E CATEGORY GF THE NGN-INTERVAL VARIABLE PP; OBSERVATIONS VI CMO C NC CATEGORY OF TFE NCR!-1 NT EP V AL VARIABLE 01); OBSERVATION'S IM CNL Y I ABLE C V)ERr.RP FAl VAR VARIABLE 7f3aj-S VON CO OR LR E CORRELATION TEST PR 03 I S TYPE .0009 C. 2 3 82CODE 0 232 /YS 0. C0C2 C 274 1 233 0.0003 -0 .2540 23 3 -0.0 0. 5?4 7 233 0 7, 2 0. 271<3 0. ] 237 33 0. 0065 c.-:r -3 ; INVALID 0 .0 223 KF INV AL I D CO C" 2.3 3 RP 0. 0 I NVALID 2 33 i:u 0.0030 -C .2184 2 33 -0. <-0S 7 0 .00 GO -C. 1 3 b 1 0 .0594 -r. 2090 f-P 233 C.60 52 C. 1371 FF'-'. 2 33 0. 0165 0. 180 RAG 2 33 -0 .0 0.7295 -C-RO 233 "KP;  IN  ONLY  CR  ;K—LT  •JP . E R A APCL  2  OEPENOENT VARIABLE = MC-GftD TYPE = A KF: OBSERVATIONS I.N CM'v ONE CATEGORY OF TKC NOk-INTERVAL. VARIABLE PP ; CBSF.'VATtGNS IM C'KLY ONE CATEGORY OF THE N'ON-I NT EP.V4L VARIABLE CO; OBSERVATIONS IM ONLY ONE CATEGORY OF THE iNOf.-I NTERVAL VARIABLE VARIABLE CW .V UV eA KT C F RY IA CC .F P CCFRtLAT IONCCO( T= EST PROB SJ s H J C.MS '/AT PERLE C CF D GRAYS 232 2 5 C.I729 6 O.C1A1 OK—LT 253 ?.' 5 f.,')15 6 C.COAO NO.FFA 233 2 5 -C.12SE fe 0.0597 _ .^ _ . _^ C.iiC* 6 APGI. 23 3 2 5 0.0306 6 0 .7769 •S 233 2 5 -C.C'.Ofc 6 C. 7589 KF 233 2 5 0.0 6 0.0 INVALID PP 233 2 5 O.C 6 0.0 INVALID I'U 2J3 2 5 CjO 6 CO INVALID CTJ ZT3 7 5 -'..('A3; 5 0 .5026 C7  =077(0"  ?  1  ~  V  2E  CL  FP HE*-' f>r,  2:3  22 3 •  233' 223 223  2  2  2 2 2  5  5  5 5 5  ;  -C.2A9G  -r. r«,75  ft  ft  0.0009  C.A 312  -(.'.1522 6 0 .1725 0. 1 102 6 0.0595 0.2387 6 0.0017  r  P I C T IONARY  OF  CCKPFLATICN  COOES  cones  r.UTT.vANS S YMMET RIC :  Cr.EFi  KM1 T ER M I CiM 3. Ci" C l' f^FT 1 WUsKALS L L !•: i- F IC I L M l!F HANK A SSIL I A PI LN !G ) CI'RFELAT IC,\ (ETA) 5. CF CLLTISERIAL CORR E AT 6. RFARSCfS COEFFICIENT J F C UK RE 1. A TI ON (R) 1.  2.  F l.?* VMS  COEFFICIENT  IC I  OF  OF  DE  PREDICTABILITY NAT  (LAMDA)  (THETA)  "'ATIO  JASFCNS  CSUFFICIENT  L  I C N  1 N,)  S 10;. i I" IC. A M . ' . E TEST !.:Ji)l: S 1. RL^RSCNS CK I-SMASH) TEST W IT H YATPS CCFRF.CTIUN 2. I'AI.S- W h ITM!" Y L-TEST 3. »t*SOIvS Ch I-S.j-JAS in TEST SIGMF I C.MICE TEST FOR G ,l  (  ..^^...j... .....„.,„.  tS. E-IESr CP $ tOJ-UFICAKCe OF M 7. F-1ES1 CF SIGNIFICANCE-CF R EX I. CUT ICN 7 W-MATH!) fS IGr.OFF  CNTR XX>XXXXXXXXXXXXXXXXXXXX>X>XXX>X>XXXXXXXXXXXXXXXXXXXXXX;:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX^XXXXXXXXXXXXXXXXXXXXXXXXXXXX RRS NO. 7761:7 UNIVERSITY OF B C COM? U7I t.'S CENTRE PTSIECUl) 13:29:5? FRI DEC 17/71 .  .  ;  ^  \  j •  \ I  L'SER CARG DEPARTMENT: GEOL * -t *  *  * * *> ; • . * ** *  CN AT 13:30:04  O F F Al 13:J1:14  ELAPSED TIKE 74.323 SEC. CPU TIKE USED 25.243 SEC. STOP..1CF USED 971 .786 PAGE-SEC. CARDS READ 26 7 LIN'S PRINTED 126 CARDS PUNXhEC 0 DRUM READS 97 RATE FACTOR .0 APPOX. COST O TF HIS RUN C42.91 RC-FR. .00 * * 5-FUR «• SI l.:i-AGi: **LAST SIC.NON WAS: 13 12-17-71 ****  * ** » * £ * V.:  -* # * *: *  1  FAGLS  lK I N ! I L :  * «• * * ****  * <;• t. *  c  1  ••11:51  APPENDIX C STATISTICAL DATA FOR: S e c t i o n 195 S e c t i o n 187 S e c t i o n 179 S e c t i o n 171 S e c t i o n 163 S e c t i o n 155 S e c t i o n 147  SECTION  CEP EMOEMT KE;  OBSERVATIONS  V Ar I API  r  IN  NLH3ER OF 08SERVATIGNS  -  C M Y  —  f;C r i l ' . A I . I  CU-GRD ONE  TYPE  CATEGORY  VAR I A R L E TYPE  VOtCANICS  C OF R COOE  CE  =  THE  4 NON-INTERVAL  CORRELATION  VARIABLE  TEST CODE  PROB  24 1 245 2 AS  2 2  245  2  5 c,  ARC-L M S. ' KF PP  2<o 2 45  2 2  5 c  - 0 . C C32  6 6 6 6 6  0.1316  6  0.10  5 5  0 . C' - 0 . 2 6 0 5  6 6  0.0 0 . 0 890  DU  245 2 45 2 45  - 0 . 2 324 5  - 0 . 0 5 2 fJ 0 . 0 643  6 6  0 . 4 5 46  GR A Y S DK — LT NO.ERA 0 2  CB ZF Cl. EP  '  VARIABLE  195  245 245  2 2 2  5 5  245 2 45  HEM  245  MAG  2 45 245  MO-GPO  5 5  2  A  2 2 4  • —  5 5 5 6  0 . 0 5 92 - 0 . C 0 7 5 0.4  162  0.201 A  '  0.4070 0.8P22 - 0 . 0 0 . 0 0 21 0.8E86 12  0 . 3 709  6  0.46 58  0.0338  6  0.6218  0 . 0 3 6 (. - 0 . 2 164 0.1571  6 6 6  0 . fl 0 3 0.5311 0 . 0 4 30  0.  7  5742  - 0 . 0  INVALID -  171.  < >  cc sjoc <*•  IT  O  cr- a ir  N C l —< vt" <" -C •-< vO vCf\l f ro r-  Pv, C  r-  cc  o o o c-  o a  < >  vC  -o  vO  K- m  cr cr- c Cv rf- O  O  'c e o o o  I  <  — •<  IM LP-  vO -0 r--  ^  < > <T m  (/• <f C' O I - v i »£• r-j  ^  P^  O  |c- c-0  „  v--' C.-'  C. O  C : >C- rv vt h  ro r v vT r v O rt |r\! C ? C- Pv,' r\l  S  (  I  I  I  UP  v_  c  II  >-  •Pi  .Pi  LA  u~  LT.  LP LO LP. LP. LP LT. IT.  .n IT-  LP,  o  _J  c <1 C' II  _J »—i  -  >-  _  !  >—•  <-v UJ  a.  >• r—  pj  f\! (\! rsi (\J KOjlft)(\j  l\i  LL.  i—' ( _ . »  UJ  |LP LP IP IT LT\ UP LP- l/>, LP, LP. IP LP <r vT v t - <r vr v r -4- vt -r <r <r -t CM CM Pvi Pvl Pv. P-J Pv! f\J rv r\j r\i PJ r\j rv  t—  r—  L P UP  >  >3  <f  rs:  N *  'P. v f  UJ  <  >  rc  ~p'  P£ UJ  CL UJ  UJ  O  -J •»  (M  OO  <'  C  rv) r v p; c\|  >  o  1/1  >  ct:  LU  <  U-  <  >  OP  > I  or. o u.  ip, u .  a  2:  CL  D u;•  c  u  !N  Li U  i i a1  U  <i CL  o  v f  S HCT I O N  DF PI1'NDE NT KF  =  —  UYKF  CU-GRO  CCiMPI. F X  TYPE  =  4  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  THF  N P N - 1 NT E R V A |_  Zt;  OBSERVATIONS  TN  CNLY  CNF  CAT EGORY  OF  THF  NON- INTER VAt  VAR T A B L E  HFK;  OBSERVATIONS  IN  C M Y  P NF  C AT FG C R Y  OF  THF  N O N - I NT E R V A L  VARIABIE  V AKT  ;  V A F: T A B L F  ]9 5  ALLF  GR A Y S PK — L T NC.FRA GZ AF.C-.L F S-  NUM3FR OF 0 3 S E R V AT I C M S 1 ( 9 1 0 o 170 1.70 ]. 7 0 1.7 0  V AO f A Ml F TYI'F  • •  C OR R CO F F  5  ~>  h  0.0390  6  0 . A053  6  0.0 522 - 0 . 0  C,  0. 5 1A8  5  -''.«.'•:: 30 -0.2^1.3  6 6 6  r  >  r.,  KF  1 70  2  5  o.. r  1.70  2  5 5  - 0 . 4  • 1 70  CR  170  Z F CL  I 7 0 1 70  tP HFM  1 7 0 170  MAG  170  MC-GI D  170  7  2 2 2 •}  >->  .  - 0 .  0  0.  Coi.6  0 . 0 0 76  t  0. 0  505  6  O.OCOO  - 0 . 3 !:;0? 0. AF 56  6  0.000 2 0.00 00  6  0.0  6  0 .0  0 . 0 ] 5 0  6  0 . 8hb5 0 .0  5 5  - 0 . 1 c- 5 7 0.0  6 6  i  C . 9 OA  3  6  - 0 . 0  6  0 . B 1 8 fi  7  - c o  r  '+  PPOR  Oi 1 A 6 2  PP PU  TEST F. O O F  0 . 1 7 <• 9  ~>  y •y 2 2  CORP. F I A T I ON  V A R I A B L I"  I N V A L I L)  INVALID  0.2797 I NVAL I D  U-l  0  < > 2  < >  m cr ^  c  r«-  o.  cc.  si  in no  0 0 c_ 0 0 0 0  CC CsJ  O c  4-  0  0  c  fC D.' < <t  OJ . -1 CC •0 cc 0 CC *—<  r—'  0 CO c ro D 0  c.  o o  or. r : x-  <. <  < >  0  0  0  to o  «i  ^ <  > >  >  < <  <  I/",  o,  xC- sC  > > >  u l LL OL U LO' UJ 1— (— t —  2:  2T  I  I  —< -t  cr,  J_  <T  o<r —< rP5  Kt - J (cr o  c ?  ••G r ^  • •  ii!  c o <r m c  fi —1 o  o c  c  ..' <_' CO O  c  <r  I  >  170 c  >  >Ci-'  c CO 1  CO  (—  2!  c  ^  c c  Ln  CO CO'.  m  ir. m  1^ i f .  Lr,  t—  1—  > _i  UJ  LU . _J O li! < CO — >  >  <•  —'  cv  K; rv,  oj  0 0  0 0  0 0  k'-o OJ 0! O! OJ Of  kv^i  vj-  >  L-.  . ~*  »—.  W;CO *!  CO  t—4  ct  i—  1— 1—  < >  n 0o 0  0 0  >  Li.. CL UJ CO-  u.'  0  77* ~7  <  —  '—'  <r  Lu. _J  >M  a:  ..  f.iO  <r, CJ «_•> CJ  >1  <r  I  i_Li LL' LLJ  II  CJ  00  LL LL IL.  1—  0 Cr' LO'  r*  C  < < •>  •X ~"  or LU U.' U.'  LL C-. C' — h-  -t.'. < ' u.:  >  c- CT" sO: •0  .—,  1—i  0 0  t—  >  «J  c c o< 37" I.!..'  2T  LL LU i . o*: X  U9  OLj  <  <  jf—  .t— r-r-  r~  r- r -  r-t.  rr  c  - 0  GO CIO c o CO  o o  r- r- r~ o- 0- r~  <. O  1 1 O  t<: rvj _. 0 0 u- a o c s; ^ a  O 170  -  w  r>. c j  u  C L0.  2. O  I ZD CJ  S E O T II. N  CEPENDENT KF; HEN'; VAE  VARIABIE  OBSERVATIONS OBSERVATIONS  I ABLE  N U M B E R OF . DBS ERVAT IONS 84  GRAYS OK — 1 . T  86  NO.ERA  86  QI APGl.  B6 fi 6  f' S KO  8 6 86  P P  nu CB ZF CL EP H E ,M NAG  [v'O-GRO  IN IN  8 6 86 8 6 8 6 86 86 86 86 8 6  3 « 5 - -  =  ONLY ONLY  HA N G I NOW A L L  CU-GRO 0ME ONE  CATEGORY CATEGORY  V A ••-1 A B L F TYPE 2 2  TYPE  C 0!-' R COTE  -0  2 2 4  .1511  6 6  PROB  '  0.2318 O.C881 0.6145 0 .5914 0 . 0 93 0  - 0 . 0 2 1 5 0 . 0  6 6  0 . 835 7 0 . 0  - 0 . 2816 - 0 . 1 7 4 4  6 •  0.0546  0 . 2 251  5  - 0 . ? J3 2 0 .286 2 - 0 . 2 1 6 0 0. 0  6  0.1353 0 . 4 66F  5 5  TEST CODE  6 6 6  (  .5 5 5 5  VARIABLE VARIABLE  -C.f 68 - G . 2 0 82  0 .0695  2 2  C O R R E L AT ION  -C.2295  2 ">  NON-INTERVAL NUN-INTERVAL  S  2  2  THE THE  4  < 3  2 2  2  OE OF  =  V O L T A N IC. S  6 6 6  0.5676 0 . 0 525 0 . 1 5 74  6  0 . 0  6 6 6  0 .1497  7  INVALID  H A  0. 0 0.3148 0 . 0 0 00  INVALID  C E P E NOE NT  V AR I A O L E  =  MO-CRO  TYPE  =  4  KF;  OH SE R V A T I O N S  IN  CNLY  CNF  C AT EG CP Y  OF  THE  NCN - 1 R T F F V AL  VARIABLE  HEN;  OBSERVATIONS  I.N  ONLY  ONE  C A T POOR Y  OF  THE  NON-1  VARIABLE  VARIABLE  GRAYS DK.— L T  NUMBER OF OBSERVATIONS  V ARI A B L E TYPE  COR R C C; 0!  NTEIWAL  CORR F L A T  2  0.0  1  6  0.  8 6 86  (.• . 1 0 8 9  0  ZE'  8 6  CL  86  EP  8 6  (.  8 6 86  2. 2  5  - 0 . 1 8 9 6  86  4  6  0.46 6 8  GZ  86  AR G L  8 6  NS  8 6  KF  86  PP  F6  FO  F'r.  CE  86  H FM N" AG GO-GF0  PROB  C'4  2 2 2 2 2 2 2 2 2 2 2  NO.FRA  TF ST CODE  TON  4906  5  o. 4; > P  6 6  5  0 . 0 <:•'<(:  6  0 . 0 0 0 2 0 . 5 7 6 0  r,  0 . 1. 3 5 5  6  0 . 2 8 2 2  c,  0 . 0 7 4 8  6  5  0 .0  6  0. 54 06 0 .0  5  0. ?  6  0 . 0 9 3 9  ;  61  •  . 4 3 2 4  - o . ] i >; 4  6  0 . 7 0  -0.124c. - 0 . 2 7 61  6  0 . 2 9 2 9  6  0 . 0 9 2 3  c  - 0 . 1 2 9 7  6  0 . 2 7 1 5  r;  - 0 . 2 9 66  6  0  ^  6  0 . 0  6  0.  •5 s 5  t;  0.  0  INVALID  75  .0462 INVALID 152 7 . 0 0 0 0  SECTION  DEPENDENT  =  OBSERVATIONS  IN  KF;  OBSERVATIONS  IN  ONLY  ONE  PR;  OBSERVATIONS  IN  ONLY  GNE  GU;  OBSERVATIONS  IN  CNLY  CNE  HEM;  OBSERVATIONS  IN  CNLY  CNE  NO  VARIABLE  E OCT W A L L  CM:  NUMBER CF OBSERVATIONS  •  — N U . ERA  TYPE  OAltGlJRY  OE  I'll L  CATEGORY  OF  CATEGORY  OF  CATEGORY CAT FGORY  V A R I A B L E , TYPE '  CORR CODE  4 NON-1NIERVAL  VARIABLE  TEE  N C N - 1 N T E R V AL  VARIABLE  TE*F  NON-INTERVAL  VARIABLE  OF  T HE  NON-INTERVAL  VARIABLE  OF  THE  R O N - 1 NT E R V A l .  VARIABLE  2  5  0.1737  2  5  0 . 2 EG9  2  5  - 0 . 2Cbfc  5  - C  2B  - 2  2 8  2  .5  MS  28  2  5  KF  28 •  CORRELATION  2 P.  A POL  HTJ  =  28 TB  G7.  PP  VOLCANICS  OBSERVATIONS  GRAYS DK, — L T  ONLY  —  CU-GRD  MS:  KO-GRO;  ^  VARIABLE  1.87  •  -2 8 7TJ—'  242E  - 0 . 4 0 6 7 C O  TEST CODE 6 f> 5 6 6  '  PROB  0.4883 0.2213 0.  iblb  0.3360 0.3848  6  O.G  INVALID INVALID  2  5  C O  6  0 . 0  2  5  0 . 0  6  0 . 0  INVALID  ~TTD  5  DTD  I NVAL1U  2  K  C3  28  2  5  6  0 . 2 877  ZE  20  2  5  -G.4504  6  0.031R  CL rp  ' 2 0 28  2 2  .5 5  C.CC97 -C6<G68  6 6  0.9155 0.0015  HFM P7TG"  28 TE  2 2  MQ-GPD  0  4  .  5  0 . 2 22?  0 . 0 0 ; (341 I  6 5  0^0 0.8329  INVALID  5 0  0 . 0  0  0 . 0  INVALID  TYPE = 4  MO-GRO GRAYS; NO C B S E S 7 A T TONS DK—LT; NO OBSERVATIONS NO.FRA; NO OBSERVATIONS az; NO OBSERVATIONS ARGL ; NO OBSERVATIONS MS; NO OR SO i-l VAT IONS KF; NO OBSERVATIONS P P ; NO OBSERVATIONS OU ; NO OBSERVATIONS CR; NO OBSERVATIONS Z F ; NO OBSERVATIONS CL ; NO OBSERVATIONS EP; NO OBSERVATIONS HEM ; NO OBSERVATIONS MAG; NO OBSERVATIONS CU-GRO; NO OBSERVATIONS VARIABLE GRAYS DK—LT NO.ERA Ql ARGL • MS KF  nu  CB ZE CL FP HEM CU-GRD  NUMBER OF OBSERVAT IONS  VARIABLE TYPE  0 0  2  "TT  C  0 C  0 o C  0 0 0 0 TT  2 2 2 2 2 ~7~ 2 2 2 2  2 T  4  CORR CODE C  0 ~0" 0 0 0 0 0  ~J) 0 0 0 0  c o 0  CORRELATION CO 0.0 "TTTTT  0. 0 0.0 0.0 0. 0 0.0  TT7CT 0. o 0.0 0.0 0. 0 0 .0 0.0 •0. 0  TEST CODE 0 0  PROB 0.0 C  O  ~TJ  0  C 0 0 0 ~~u~  o  0 0 0 0 TJ"  0 .0 0. c 0 .0 C  O  0.0 "TTTO O.C C O  0.0 C O C O  "TJ7TT C O  INV AL ID INVALID INVALID I NVALID 1NVALID INVAL ID INVALID INVALID INVALID I NV A L ID I NVALID INVAL ID INVALID INVALID INVAL ID INVALID  — j -  DEPENDENT MO-GPD; NO  CU-GRD  OBSERVATIONS  VARIABLE  "  VARIABLE =  GRAYS DK—LI NO.FRA Ql ARGL MS KF FT—' DU OB 1 IE CL FP FTF MAG MO-GRD  NUMBER OF OBSERVATIONS -  117 TT7 1 17 117 117 117 117 TT7 117 .1 17 117 117 117 TT7 117 0  !  "  —  VARIABLE TYPE  '  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4  TYPE = 4 [  CORR CODE  !  5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0  '  :  CORRELATION  •  -0.2235 -i).2^b 0. C<i . 0.580C -0.4704 -0.6069 -0.C466 -U . / /0 9 -C.7636 0 .5529 0.2653 0.311C 0.4162 • -0. 1303 0.3634 0.0 cc  TEST CUDE  :  6 5 6. 6 6 6 6 F~ 6 6 6 6 6 5 6 0  PROB  C. 0323 O.U252 0.6 342 -0.0 0.0000 0.0000 C.8173 ^TJTTJ -0.0 -0.0 C.17C2 0.0016 0.0009 0.5126 C.0023 0.0  :  I N V A L I D  DEPENDENT GRAYS ; DK—LT ; NO.ERA ; QZ ; AR GL ; RS ; KE ,  VARIABLE  =  MO-GRD  TYPE  =  4  NO C B S E R V A T I O N S NO  OBSERVATIONS NO O B S E R V A T I O N S NO O B S E R V A T I O N S  ,  NO O B S E R V A T I O N S N O 0 B S E RV A T I O N S NO O B S E R V A T I O N S  PP ;  NO  OBSERVATIONS  OU, CB  NO NO  OBSERVAT IONS OBSERVATIONS  Z E ; NO O B S c R V A 1 J O N S CL NO O B S E R V A T I O N S NO O B S E R V A T I O N S EPHEM ;  NO  DBS ERVAT  NAG! CU-GRD ;  NO  OBSERVATIONS  NO  OBSERVATIONS  VARIABLE  '  NO.  ERA. QZ  ,  •'  TEST CO O F  PROB  2  0 -.  0.. 0  0  G.O  INVAL  0  0.0  0  0. 0  C  2 2  0  0.0  0  0.0  INVALID INVALID  C  0. 0  0  0.0  INVALID  0  0.0  0  0 . 0  c.  0. 0  0  C .0  INVALID I NV A L I D  2 2 2  o .  CORRELATION  2  c  .  COPR CGDE  p  0  MS KF DU CB  VARI A RLE TYPE  0.  0  ARGL  .PP  IONS  NUMBER OF OBSERVATIONS  GRAYS DK — L T  ~  c  0 0  ID  0  0.0  0  o.o  INVALID  0  0.0  0  0 .0  INVALID  I 2  0  0. 0  0  0 . 0  0  0.0  0  0 . 0  INVALID INVALID  2 2  c  0.0  0  0 . 0  INVAL  0  0.0  0  0 . 0  INVALID  ZE  0  CL  0  EP HE M  0  2  0  o.o  0  0 . 0  INVALID  0  2  c  0.0.  0  0 . 0  .2  0  0. c  0  0 . 0  INVALID INVALID  \->  4  0  0.0  0  0 . 0  INVALID  vo  MAG CU-GRD  0 c  .  .  ID  SECTION  DEPENDENT  VARIABLE  VARIABLE  NUMBER OF OBSERVATIONS  187  =  —  HANOINGWALL  CU-GRD  VARIABLE TYPE  TYPE  CORR CODE  4 92  2  5  498 498  2 2  5  2  AR GL  498 4<"-8  2  5.  I^S KF  49 8 4 98  ?  PP DU  49b 49 8  CB  498  2 2  ZE  4c-8 498  GRAYS UK—1. T NO.ERA QZ  CL EP HEM MAG MU-GRD  "*  '498 49 8 498 296  =  VOLCANICS  4  C O R R E L AT I O N .  TEST CODE  PROB  - 0 . 1 1 4 5 - 0 . 0 76 B  6 6  0.1304  5  0.1830  5  n . 3 37 5 - 0 . 2 8 0 7  6. 6  0.0002 - 0 . 0  6  5 5 •  - 0 .  159 2  6  0.0107  0.2 264  6  5 5  -0.2'M3 - 0 . 2 2 1 6  6 6  0.2103 0 . 0 006  5  0.143 5  2  5  - 0 . 04 6 8  6 6  2  0.1869  2  5 5  -0.2756  2 2 4  5 5 6  - 0 . 1 3 / 2 0 . 136 6 0.488 6  2  Z  6 6 6 6 7  0.0176  0.0000  0.4900 0 . 0 0 44 0.6228 0.0001 0.0000 •0.3531 0.0110 - 0 . 0  00  o  DEPENDENT  VARIABLE  =  Mn - G R D  CORR CORE  VAR 1 A B L E  NUM3FP OBSERVAT  GRAYS DK—LT  290 296 296  2 2  5  296  2  5  . 296  2 2  5 5  2 2 2  5 • 5 5 5 5  N G . E RA QZ ARGL MS KF PP DU  =  4  C O R B E L AT I O N  0 . 0 27 7 0.124 2  2  2 96 , 29 6 2 96 2 96 296  TEST CODE  0.6691  0.319 9  6 6  0.040 5 0.0000  0.342 5  6  0.0000  0973  6  0.2120  - 0 . 1 1 2 7 0.7352  6 6  -0.206 7 -0.15 37  6 6  0.214 7 0.0002 0.0611 0.6488  0. 0 6 5 9  6 6  0.3146 0.4134 0 . 0 6 2 / C.0038 0.0277  - 0 .  296  CL •EP  2^6 296  2 2  .b 5  HEN  2 96  2  -0. 185 5  2 96  2 4  5 5  6 6 6  0.1529  6  6  0.4886  7  MAG CU-GRD  296  .  PROB  6  2 2  CB ZE  '  .  OF IONS  VARIABLE TYP E  TYPE  •  0. 1304 I >, I 1 3  f  -0.2 83 8  0.2657 - 0 . 0  SECTION  OF P E N H E M T  V A R I A P. I F  OK—LT  OBSERVATIONS  IN  MS  OBSERVATIONS O B S E RV A T I O N S  IN IM  OBSERVATIONS OBSERVATIONS  IN TN  OBSERVATIONS  IN  KF PP  .di  HEM  MO-GRD  NO  VARIABLE  NUMBER OF OBSERVATIONS 39  ~£-  NO.FRAQZ  39 39  APGL  39  MS KF PP. DU CB ZE CL  =  ONLY ONLY ONLY  --  FOOTWALL  . 0 U-G.:i.0. Cr-E ONE ONE  VOLCANICS  TYPF  CATEGORY CATEGORY C AT F G O R Y  =  4  OF OF OE  TEE THE THE  N G N - I INTERVAL N G N - 1 NT F R V A L N O N - I N TF F V AL  VARIABLE VARIABLE VARIABLE  CNLY  Cr-E  CATEGORY  CF  THE  N G N - I NT E R V A|.  VARIABLE  ONLY ONLY  ONE ONE  CATEGORY CATEGORY  OF OF  THE THE  NO N - I N T E R V A L MON-INTFRVAL  VARIABLE VARIABLE  OBSERVATIONS  GRAYS ? _? DK — L T  •  179  '  39 39 39 39 3 9 39 39 3 9  EP H EM  39  MAG MC-GRD  39 0  VARIABLE TYPE 2 2 9  2 2 2 2 O  c 2 2 2 2  ->  ->  /..-  2 4  •  CORR CODE  TEST CODE  CORRELATION  5 5  C. 5 02 8 0.0  5 5  - 0 . 6 0 4 4 0 . 5 051  5  0.8211  6  o.o  .6  5 5 5 5  0  .  0  "  .  PROB  6 6  0 .0022 0. 0  6 6  0.00 05 0.000 5  6  0.oooi  ,  0.0  o. c""  0 .0  6  C O  0.0  6  0 .0  5  - C. 30B3 - 0 . 10 3 1  5  - C . 6 1 2 7  6 6 _ 6  5 5  - C . 6 3 0 7  6  5 c  0.1237  6 6  0.0  0  0.0  0.0855 0.5664 0.0001 .0. 0 0 1 0 0.0 0 .5565 0.0  rEPFNHENT GRAYS ; DK—LT ; NG.FRA ; QZ ;  MG  VARIABLE  CBSERVAT  NO NO  OBSERVATIONS DBS ERVAT IONS  NO  OBSERVATICRS  NO NO RO  OBSERVATIONS CBS ERVAT IONS  DU CB,  NO  OBSERVATIONS  KG NO  OBSERVATIONS  4  OBSERVATIONS  NO'  N A G;  NO  OBSERVAT. IONS C B S E R V A T IONS OBSERVATION S OBSERVATIONS  NO  OBSERVATIONS  VARIABLE  =  OBSERVATIONS  CL EP; H E M ; CU-GRD;  TYPE  ICRS  MS ; KF ; PP  NO NO  MC-GRD  OBSERVATIONS  RO  ARGL ,  ZE;  •=  N U M B E R OF OBSERVATICNS  VARIABLE 1YPE  CORP CODE  CORRELATION  C  2  CK — I T  0  2  NO.FRA  0  2  0  0 . 0  0 0  CZ  C  2  C  0 . 0  0  2  0  0 . 0  0 . 0 0.0  0  0  0 . 0  I NV A L I U  0  0  2 2  0.0  0  0 . 0  0. 0  INVALID  PP  0  2  C  o  0 . 0 0. 0  INVALID INVALID INVALID INVAL ID  .  0  -.  '  NS KF  0  O.O.  PROB  •GRAYS  ARGL  0  TEST CODE  ' 0" "  GO  C  2  0  CB  C  2  C  " '  •"  0.  0 0  "  0 . 0  0  C O  0 0  0 .0 0 . 0  7E  C  2  0  0. 0  Cl  0  2  0  0 . 0  0 0  0 . 0 0 .0 0. 0 0.0  FP  0  2  _ q  0 . 0  0  0 .0  HEM  C  2  0 . 0  o  o. c  0  0 .0  0 . 0  0  0 . 0  MAG CU-GPD  '  •  0 . 0  0  C  2  0  0  4  0  ' . .  " 6 . 0  '  INVALID INVALID INVALID •  IMVAL  ID  INVALID INVALID INVALID "INVALID I N V A L ID I NV A L I D  SECTION  DEPENDENT  VARIABLE =  D K — L T ; OBSERVATIONS KF; O B S E R V A T I O N S 'DO; O B S E R V A T I O N S VARI ABLE  GR AYS — LT NO .FRA CZ ARGL MS KF PP CU CR ZE CL EP HEM MAG MO-GPD DK  179 —  IN ONLY IN ONLY I N ONLY  NUMBER OF • 0 3 S E R V A T IONS 3 37 52 308 3 38 33 8 338 338 33 8 338 • ' 3'3 8 338 338 338. 338 3 38 336  DYKE  CU-GRD  TYPE  ONE C A T E G O R Y ONE CATEGORY CNF C A T E G O R Y  VARIA8LE TYPE 2 2 2 2 -> <L  2 2 2 2 2 2 • 2 2 2 2 4  COMPLEX  = 4  OF THE N O N - I N T E R V A L V A R I A B L E OF T H E NON- INTER VAL V A R I A B L E OF THE NON-INTERVAL VAR I A B L E  CORP. COCE  COP.RE LAT ION  c•  0.C734 C .0 0.2275 0.4227 -0 .0 94 1 -0.2 942 CO -0.2 574 0. 0. 0.0138 -0.2 4 6 0 -0.2473 -0.3847 -0.14 5 5 -0.1593 0.56 2 5  5 5 5 13 5 5 5 5 5 5 5 5 5 6  TE ST CODE 6 . 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7  PROB  C 2003 CO 0 .0002 -0. 0 0.2634 0.0107 0. 0 0.4385 0.0 ' 0.802 4  INVALID  INVALID INVALID  0.0032 0.0000 0.0000 0.1431 0.00 89 -CO  00  DEPENDENT DK—LT; KF; RU 5  VARIABLE  OBSERVATIONS OBSERVATIONS OBSERVATIONS  VARIABLE  IN IN IN  NUMBER OF OBSERVATICNS  = •  CNLY ONLY ONLY  iV0-GR0 ONE CNF 0NE  TYPE  CATEGORY CAT E 0 0 * Y C A T I 0 OR Y  VARIABLE TYPE .  CORR GOOF  OF OF OF  =  4  THF THF THE  NON-INTERVAL N C N - I NT FT V AL NGN-INTERVAL  COR  RELATION  VARIABLE VARIABl E VARIABLE  TEST 0 0 CE  PROB  GRAYS OK—LT  3 36 52  2 2  q  6  0. 4]66  0 .0  6  NO.EPA  30 7  2  5  0 .0  '• . 2 0 8 5 0.2811  6 6  0.000 5 O.OCOO .  6 6  0 .0292 0.04 87  6  0.0 0 .5474  INVALID  0.0 0.6335  INVALID  QZ  - 0 . 0 4 7 5  337  2  5  ARGL RS  2 37 33 7  2 2  5 5  KF  3 37  2  PP  3 37  2  5 5  3 37 33 7 337  2 2 2  337  2.  33 7 3 37  •?  2  3 3 7 336  2 4  5 6  DU CB ZE  .  CL EP .HEN MAG CU-GRD  •  -0.1815 - 0 . 2 3 0 7 0 .0  6  5  -0.2011 0. 0  5  - 0 . 0 2 8 9  6  5  - 0 . 2 2 3 5  5 5  - 0 . 1 4 6 5 - 0 . 3 3 1 6  6 6 6  5  .  0.0734  6  0 .074 2 0 .562 5  7  t  6  0 .0072 0.0118 0.0002 0.4724 0.2247 -0 .0  INVAL  ID  SECTION  OF P E N D E N T DK—LT; KF;  CU-GRD,  TYPE  VOLCANICS  =  4  OBSERVATIONS  IN  CNLY  ONE  CATEGORY  OF  THE  NO N - I N T E R V A L  VARIABLE  IN  ONLY  ONE  CATEGORY  OF  THE  NON-INTERVAL  VARIABLE  GRAYS DK—LT. NO.FRA  Ql  NUMBER OF OBSERVATIONS  V A R I A BL E TYPE  271  2  63 202  2 2 2  272  CORP. CODE  5 5  ->  MS . KF PP  272  2 2  5  c, •  27 2 2.7 2  2  5  DU  n  5  CB  272  ?E  272 2 72  2 2  5  2  5  2  2 72  -0.2984  5  2.72 2 72  CORRELATION  5 5  ARGL  CL EP  ,  =  HA N G I N G W A L L  OBSERVATIONS'  VARIABLE  .  VARIABLE  —  179  -  TE S T CODE 6 6  PROB  C.COCO  •0 . ? 0 . r 0 0 3  6  0.2751  6  -0.4412  -o'.o  - 0 . 2 4 5 0 0.0  6 6 6  - 0 . 3 38 1 - 0 . 3 83 5  6 6  . 0 . 1 8 0 5  0.4200 0.1429  6 6  0. 1811 - 0 . 1 2 2 1  6  HEM  272  2  5 5  0.0910  6 6  MAG  272  2  5  0 . 1 5 35  6  MO-GRD  228  4  6  0  7  .5097  .  O.C 0 .9449 O.OCCp 0.0112 0.0 0. 1282 - 0 . 0 0 .2448 0.0055 0.3753 0 .6481 0.0291 - 0 . 0  DFPENDENT  VAPIA3LE  =  Mf)-GRO  OK—IT;  OBSERVATIONS  IN  0 N LY  ONE  KF;  OBSERVATIONS  IN  ONLY  ONE  PP;  OBSERVATIONS  IN  ONL Y  DO;  OBSERVATIONS  IN  ONLY  ONE ONE  VAR  IABLE  GRAYS D K — LT NO.FRA OZ AR OL MS KF PP DU CB ZE CL FP FTFM" MAG CU-GP D  N U M B E R OF G B S E R V AT I O N S  TYPE  CAT  r G C R Y OF  CAT  EGCRY  THE THE 0 A T E G OP Y O F T H E C AT7XFRY~0 F T H F  VARIABLE TYP E  CORR CODE  2 26  6?  2  1 58 228 2 28 22 8 2 28  2 2 2 ->  2 28 22 8 2 20 228 228 .228  2 2 2 2 2 2  278 228  ? 2  228  •= 4  or  N O N - I N T E R VAL N O N - I NT E R V Al. NON-INTERVAL T I N - I N f ER V A L "  C O R K F L A T ION  J-CJ 1 97 0 0 . 0 " 5 5 r,  5  0 .2492 0.2237 - 0 . ]. 6 5 -0.2157 __0. U C  5  0 70  5  0.0  5 c r,  55 5 6  0.?055 0.0 8 0 2 0.1021 - 0 . 1 2 75 0 . R . O F  0.1310 0.5C97  VAR I A B L E VARIABLE VARI A B L E VARTABLE  T ES T CODE 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7  PROB  0 .0048 0.0 0 . 0 0 41 0 .0011 0.0 64 8 0.0309 0 .0 0.0 0 .0 0 .0044 0.5453 0.1485 0.3688 0.4039 0 .0786 -0.0  INVALID  I N V A L ID INVALID INVALID  SECTION  DEPENDENT — LT;  VARIABLE  OBSERVATIONS  VARIABLE  GRAYS DK—LT N O . ERA GZ ARGL N'S KF  IN  N U M B E R OF • OBSERVATIONS 279 16 2 3 1 2 2 2 2  HO BO 80 30  PP  2 80  DU  2 80  CB  2 80  ZE  2 8C  CL  2 8O  EP  2 80  -  ONLY  171  FOOTWALL  CU-GRD ORE  2  TYPE  C A T FGOR Y  V A RI A B L E TYPE  VOL C A N I C S  CORR CEDE 5 5  o  r,  2  5  OF  THE  NCN-1RTFRVAL  C O R R FL AT  - 0 . 1864 C O 0.5974 0.2351  2  - 0 . 2 9 5 5  2  - 0 . 2 9 ^ 2  2  0 - 0 . - 0 . 0  2 2 2 o  5 5 5  ION  .6242 3 0 26 3 2 3 3 .0469  VARIABLE  TEST CODE  6 6 6 6 6 6  0.0055 0.0 -0.0 0.000 7 0 .0001 C.0002  6  0.0130 0.0124  6  0.3355  6  0.4918  - 0 . 5 1 4 3  6  5  - C . 3 7 1 0  6  5  - 0 . 3 8 1 3  6  0 .0002  0. 1503  6  0 . ? 21C  6  0.1083 0.0016 0 . 1 0 16 O.OCOO 0.4013 -0.0  H EM  2 30  2  MAG  230  PY-MODE  2<U  2 2  26 0  2  CP-NODE  15 7  2  MO-GRD  0.0804  2 30  6  4  0.6670  7  PY  PROB  5 5  - 0 . 1 2 0 3  6  - 0 . 2 7 6 3  6  0.0000 •  C  O  SECTION  DEPENDENT  DK—LT; .  VV  OBSERVATIONS  VAR I ARL E  GR AYS DK--LT NO.FRA 0 7. ARGL MS KF PP  .nu  CB 7E CL EP HEM MAG .... PY —MODE PY C E-MODE CU-GRD  I ABLE  IN CM.Y  .NUMBER OF OBSERVATIONS. 2 79 16 221 2 BO 2R0 280 2 80 2 80 2 30 280 2 8C 2 80 . . 2 80 2 80 230 261 2 60 157 280  -  - " FOOTWALL vc 11:7ANFes  ~1 7 1  MC-GRD  ONE  TYPE  C AT EG C RY  VARIABLE TYRE  CORR CODE  2  ? 2 7  2 2 2 2 2 2 2 2 2 2 2 2 2 2 4  5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6  = 4  OF THF  NGN-INTERVAL  CORRELATION  • - 0 . 2 0 94 0. 0 0.618 8 0.0865 -0.2676 -0 . 363 3 0.1372 -0.2219. -0.1865 0.1323 -0.4 45 4 -0.3 490 - 0 . 3101 0.2234 0. 1726 -0.I14C -0.3 38 5 -0.10 8 7 0.6670  VARIABLE  TEST CODE 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7  PROB  0.0020 0.0 -0 .0 0.2077 0. 0C03 O.OGOO • 0. 59 60 0.0654 0.5843 0.0456 0.0000 0.0000 0.0018 0.0172 0.0124 0.1211 0.0000 0.2497 -0. 0  INVALID  CO  S E C T TOM  DEPENDENT  VAR T A B L E  =  171  DYKE  CU-GRD  TYPE  COMPLEX  =  A  DK—LT; ZE5  OBSERVATIONS OBSERVATIONS  IN IN  ONLY ONLY  ONE ONE  CATEGORY CATEGORY  OF OF  THE THF  NON-INTERVAL NON-INTERVAL  VARIABLE VARIABLE  EP;  OBSERVATIONS  IN  ONLY  CNE  CATEGORY  OF  THF  NON-INTERVAL  VARIABLE  V A R T AR! F  N U M B E R OF OBSERVATIONS  GRAYS  VARIABLE TYPE  C.() R R CODE  C O R R E L A T I ON]  185  2  5  - 0 . 4 3 3 0  5  2  5  2  5  DK — L T NO.FRA  . 1 1 2  TF S T CODE  P ROB  6  0.0000  C O  6  0 . 0  0.2035  6  0 . 0 6 6 5  QZ  1_85  2  5  - 0 . 0 1 3 5  6  0 . 8353  ARGL  185  2  5  -oV2970  6  0.0001  MS  185  2  5  0 . 2 85 A  6  0.0092  KF  185  2  5  - 0 . 2 9 7 8  6  0.3992  PP  185  2  5  - 0 . 5 9 1 A  6  0.0000  DU  185  2  5  - C A 5 3 6  6  0.0A56  185  2  5  _0.C62A  6  0.A769  ZE  185  2  5  CL  185  2  5  EP  185  2  5  0 . 0  6  C O  HEM  185  2  5  0.3295  6  0.0005  5  0. 39A8  6  0.0011  177  2  5  - 0 . 1 4A2  6  0 . 1156 0.8A14  CB-  MAG PY-MQQF  •  •  18 5  . 2  0.6 - 0 . 0 2 1 3  6 6  PY  177  2  5  0.0133  6  CP-MODE  1AA  2  5  - C . 2 8 9 2  6  MO-GRD  165  A  6  0 . 5 3 6 5  7  "  0 . 0  INVALID  INVALID  0.8103  0.00A5 - 0 . 0  INVALID  SECTION 171  DEPENDENT VARIABLE = D K — L T ; OBSERVATIONS ZE; OBSERVATIONS EP; OBSERVATIONS VARIABLE GRAYS DK—LT NO.FRA QZ ARGL MS KF PP DU OB  DYKE COMPLEX  MG-GRD  TYPE = 4  IN ONLY ORE CATEGORY OF THE NON- INTER VAL VARIABLE I N ONLY ORE CATEGORY OF THE NON-INTERVAL VARIABLE IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE  NUMBER OF OBSERVATICNS  VARIABLE TYPE"  CORR CODE  185 5 112 18 5 185 18 5 185 165 185 . . 1 85  2 2 2 _2 2 2 2 2 2 2  5 5 5 _5 5 5 5 5 .5 5  CORRELATI ON -0.2395 0.0 0.439C 0_. 0 294  6-6 6 6 6 6 6 6 6 6  -0.T489  0. 1871 0.0365 -0.2666 -0.3155 _ 0 -1590  ZE  1T5  2  5  0-0" ~ " '  CL  185  2  5  0. 0337  EP  1 85  2  5  0.0  165 185 177 17 7 144 185  2 2 2 2 2 4  5 5 5 5 5 6  HEM MAG PY-MODE PY CP-MODE CU-GRD  TE ST CODE  0.1974 0.4 146 -0_._1 514 -0.034 5 -0.1466 0.5365  —  6"  6 6  6 6 6 6 6 7  PROB 0.0026 0 .0 O.OOOl 0. 69 62 0.0505 0.0 863 0.8810 0.0212 0.1670 0 .06 15  0.0 ~  0. 7269 0.0  0.0343 0.0006 0.0983 0.66 48 0.1500 -0.0  I N V A L I D  INV~ATTU INVALID  SECTION  .  DEPENDENT  VARIABLE  =  171  -  HAMGINGWALL  CU-GRD  TYPE  =  VOLCANICS  A  DK—LT;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  THE  NON-INTERVAL  VARIABLE  DU;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  THF  NON - INTER VAL  VARIABLE  VARIABLE  N U M B E R OF OBSERVATIONS  VARIABLE TYPE  CORR CODE  CORRELATION  TEST CODE  PROB  GRAYS  226  2  5  0.0220  6  0.7537  DK—LT  A  2  5  0 . 0  6  0 . 0  NO.FRA  226  2  5  0.CC39  6  QZ  226  2  5  0.2038  6  ARGL  226  2  5  C.C9P8  6  x\ll J^  MS  226  2  5  0 . 1 6 3 7  6  0.078 2  KF  226  2  5  0.3198  6  0.0610  - 0 . 3 8 6 7  PP  226  2  5  DU  226  2  5  CB  226  2  5  0 . 0 - 0 . 1 9 8 6  6 6 6  0 .0029 b  0.0057 0 . 0 0.0078  ZE  226  2  5  j-_0.5 9 A 2  6  0.0000  CL  22 6  2  5  " - 0 . 1 8 9 9  6  0 . 0 0 9 5  EP  2 26  2  5  - 0 . 3 1 8 5  6  0.35A6  HEM  226  2  5  C.11A7  6  0.2A38  MAG  226  2  5  0.1201  6  0.172A  PY-MODE  215  2  5.  0. 1AC5  6  0 . 0 5 3 9  PY  214  2  5  - 0 . 0 2 16  6_  0. 7536  CP-MODE  17A  2  5  0.1159  6  226  A  6  O.A978  7  MO-CRD  •  INVALID  0.9109  0 . 1 6 0 6 - 0 . 0  INVALID  SECTION  DEPENDENT DK—LT; DU;  VARIABLE  OBSERVATIONS OBSERVATIONS  VARIABLE  CNLY ONLY  N U M B E R OF OBSERVATIONS  GRAYS DK — I T NO.FRA CZ ARGL MS KF PP DU CB ZE CT EP HEM MAG PY-MODE PY CP-MODE CU-GRD  IN IN  =  :  171  H A N G I N G WALL  NO-GR D ONE ONE  226 4 226 226  2 2 2 2  226 2 26 226 226 226 2 26 226 ~T2T> 226 226 22 6 215 214 174 226  _2 2 2 2 2 2 2 2 2 2 2 2 2 2 4  TYPE  CATEGORY CATEGORY  VARIABLE TYPE  :  -  CORR CODE 5 5 5 5  • :  5 ~5 5 5 5 5 5 5~ 5 5 5 5 . 5 5" 6  OF OF  =  THE THE  VOLCANICS  4 NON-INTERVAL NON-INTERVAL  CORRELATION  VARIABLE VARIABLE  TEST CODE  0.1430. 0.0 0.1246 0.1093  6 6 6 6  0.0617 0 . 0 7 6 9" 0.5310 -0.2799 G.O 0.142 5 -0.4208 - C . l 323 -0.2538 -0.2073 -0.0130 -0.0120 - 0 . 1 538 -C.C942 C.4S78  6 6 6 6 6 6 6 6 6 6 6 6 6 "5 7  PROB  0.0434 0.0 0.C770 0.1064 £_* 3 9 6 i _ ' rJ.~42 02~~ 0.0021 0.0435 0.0 0 . 0 548 0.0008 0.0693 0.4648 0.0331 0.8558 0.8462 0 . 0270 0T25B0 - 0 . 0  INVALID  INVALID  !  SECTION  DEPENDENT  VARIABLE  163  =  —  EDOTWALL  CU-GRD  VOL CAN I C S  TYPE  =  4  KF;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  THE  NON-INTERVAL  VARIABLE  PP;  OBSERVATIONS  IN.  ONLY  ONE  CATEGORY  OF  THE  NGN- INTERVAL  VARIABLE  DU;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  THE  NON-INTERVAL  VARIABLE  ZE;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  THE  NON-INTERVAL  EP;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  C F_ J  HEM;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  VARIABLE  NUMBER  OF  OBSERVATICNS GRAYS  VARIABLE TYPE  CORR  76  2  5  76 76  2  K. .-'  2  5  Ql  2  ARGL  76 76  2  5 5  MS  76  2  5  " KF  THE  V A R I A B L E_  NON-I NTEEVAL  CORRELATION  - 0 . 4 8 2 8 - 0 . 3 30 6  V AR I A B LE  TF S T CODE  CODE  DK — L T NO . F R A  VARIABLE  H E__NGN- I NT E R V AL  PROB  6  0.0001  6  0.0273  - 0 . 1 2 3 6  6  - 0 .  3451  6  0.3292 0. 0028  - 0 . 1 9 5 5 - 0 . 101 7  6  0 .1237  6  0.4915  "~  76  2  5  0.0  PP  76  2  5  C O  INVAL1D  nu  76  2  0.0 0. 0  6 6  INVALID  76  2  5  0.0 0.0  6  ZE  76  2  0.5709  5  0.0831 0 . 0  CL EP HEM  76 76 76  2 2 2  5  6 6  0 .0  6 6  MAG MO-GRD  76 76  2 4  C O 0 .0  6 7  0.5873  CB  5  0.0752 0.0 0.0  5 6  0.  4946  - 0 . 0 6 4 4  I NVALID INVALID  0. 565 8  0. 0020  INVALID INVAL ID  DEPENDENT  VARIABLE-  =  MC-GRD  .  TYPE  =  4  KF; PP; OU; ZE; EP;  CBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS  IN IN IN I NT IN  CNLY CNLY ONLY T. N E T ' CNLY  ONE CATEGORY ONE CATEGORY ONE CATEGORY C R E " C A T C G C RY ONE C A T E G O R Y  OF OF OF OF' OF  THE THE THE TEE THE  NOM- INTERVAL NON-INTERVAL NON-INTERVAL N C N - I N T E RV AL NON-INTERVAL  HEN;  CBSERVATIONS  IN  ONLY  ONE  OF  THE  NON-INTERVAL  VARIABLE  NUMBER GE OBSERVATIONS  GRAYS  76 76 76 76 76  DK—LT NO.FRA  07 ARGl I-'S  '  CATEGORY  VARIABLE TYPE  CORR CODE  2 2 2 2 2  5 5 5 5 5  CORRELATION  0. 162 2 0.2700 -0.0757 0.186 9 -0. 0586  VARIABLE VARIABLE VARIABLE V A R T A B L E~~ VARI ABLE VARIABLE  TEST CODE  PROB  6 6 . 6 6 6  0.1991 0.0723 0.5566 0.10 79 0.6549  KF PP DU  775  T  5"  0.4 7 0 T  6  0.C0C9  76 76 76  2 2 2  5 5 5  0.0 0.0 0.0  6 6 6  0.0 0.0 0.0  INVALID INVALID INVALID  ZE  76  2  5  0.0  0.0  INVALID  0.0 . 0  INVALID INVALID  CB  CT  EP HEM  MAG  CU-GRD  2  76  !  7b  76 76  76 76  :  2  2 2  2 4  5  ~  5  5 5  5 6  :  0.2619  -0 .2334 0.0 0.0  -0.3534 -0.0644  6  0.0451  6  6  6 6  6 7  ~ 0.0635 .  0  0.0273 0.5873  ;  "'  SECTION  DEPENDENT K E;  VARIABLE  OBSERVATIONS  163  =  IN  ONLY  THE  NON-INTERVAL  VARIABLE  OF OF  THE THE  NON-INTERVAL NON-INTERVAL  VARIABLE VARIABLE  IN I N  CNLY  ONE Ci\E  IN  EP;  OBSERVATIONS  IN  ONLY CNLY  ONE ONE  .91 91  MS KF  91 91  PP.  91 91  DU CB  91  ZE  91  CL  91  EP HEM  91  MAG MO-GPD  91 91 48  EGORY  CATEGORY CATEGORY  OF  THE  NON-INTERVAL  VARIABLE  CATEGORY  OF  THE  NCN-INTERVAL  VARIABLE  VARIABLE TYP E  "  4  OF  OBSERVATIONS C B S E R V A T IONS  QZ ARGL  =  CAT  CB S E R V A T I O N S  91 91 47  TYP F  CATEGORY  PP;  GRAYS DK—LT NO.FRA  COMPLEX  ONE  DU; ZE;  N U M B E R (3 F OBSERVATIONS  DYKE  CJH^GRD  C N LY  V ARIAELE  —  CORR CODE  CORRELATION  2  5  2 c 2 2 2 2  5 5  •> i_  5  0.0  2 2 2 2 2 2 2  5  5  0.0 0.1346  5  C .0  4  5 5 5 5  5 5  - 0 . ?.587 - 0 . 2 1 6 4 0.2352 0.246 6 - 0 . 2 5 5 3 - 0 . 1 9 0 7 0. 0  -0.014 3 0. 0  TEST CODE 6 6 6  0.0187 0.C696 0.1321 0.0206  6 6  C.C196  6 6  0.1623  6 6 6  0.0 0 .0  0.0  0.32 65 0.0  6 6  5  0.2733  6  5 6  0.4038  6  0.  7  197C  PROB  '  0.8688 0.0 0.1739 0.0012 0.1763  DEPENDENT.VARIABLE  =  MC-GRD  TYPE  =  4  KF;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  THE  N C N - 1 R T E R V AL  VARIABLE  PP;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  THE  N O N - I N T EE V A L  VARIABLE  DU; ZE ; EP;  OBSERVATIONS D B S ERV ATTOTiS CBSERVATIONS  IN IN IN  ONLY CNLY ONLY  CNE C A T E G O R Y ONE " C A T E G O R Y CNE CATEGORY  OF T H E OF "THE OF T h E  N C N - 1 NT ER V A L NON-INTER VAL NON-INTERVAL  VARIABLE VARIABLE ' VARIABLE  VARIABLE  MS  48  KF  4~3  2  PP  48  2  DU  48  CB ZE CL  . 4 8  48"  LT  48  NO.FRA  47  07.  48  ARGL  48  :  ,  VARIABLE TYPE  2 2 2 2 2 2  GRAYS DK—  N U M 3 E R OF OBSERVATIONS  j-p  CORR CODE  CORRELATION  5"  "  TEST CODE  PROB  . 1 3 82  6  0 .406 4  5  - 0 . 1053  6  0 . 5383  5  0.2864  6  0.0646  5  - 0 . 2 0 1 8  6  0.1779  5  - 0 . 2614  6  0.C9C1  5  - 0 . 2 4 4 4  0 . 0  5  0 . 0  6  0 . 0  INVALID  2  5  0 . 0  6  0 . 0  INVALID  48  2  5  0.3564  6  48  2  5  0. 0  6  O.C  2  5  0.3096  6  0.0505  0 . 7 2 7 5  2  5  •  0.2349  6  / 4 -g  5  6  0 . 0  :  "  0 . 0  6  INVALTO ~  0.0357 INVALID  0 . 0 r N V A L T D ~ '  HEM  48  2  5  0.0854  6  MAG  48  2  5  0.245 5  6  0 . 1 4 9 3  GU-GRD  48  4  6  0.197C  7  0.1763  VO ^1  98.  O Q O _ J - J —J  < > if  . . .  o  <  < < <:  ID  N0 O  if'  cr> L' vo w po °" CC Ovj o m in o — r - r-  c  -  •—1  1  c.  O o o  rv so x c «->  o o • • o O I  o c- c -  CC Cx.  > >  x 100 C  JT' vC <J -O sC O  Cl  >  > >  CL L X LL' I— t»—«  I  I  r—  sfO  r—' t—  ^ »—» I I  Osl  .H  C  X  Kr on  co O*  LL. X U_ X X X  X  i£ o >c ^  >  ^L  t—i  21 X li  p c o -f m  CO if. — :  r-  o o x p C O XC ^ p o o  az cz rr  -x. < <. <  m  cr-  x o o o c o  cr  <  < < < > > >  c  X  OO L'\  K  < O c  c X  L  C'  C  C  m.  m  r- r-l r-. oo cc ro- r X  1  00  '  rr,  u . LO, (_. CO rf- co sT OJ  o,. — :  —' r -  LO  C  Co  if-  LT. m i n  X O  c-  Ln  IT:  LT.  O0  OJ  I I  O  LL  X X C> >  >  j' x _ c u ci  H X X X  o uo' uo, i r  in  tr  o Q.  f_2  < co  o x  > > > >  X' CO  X  —  >  CO O J OvJ  Ov Ov, OJ O j t v n j o^ oo oo  '<0  _J - I -> _ !  *z <z *r  1?  '_• U  L  U  •Z' "2. T <0  -r  CO  >  <  Jj  02  >  H  <  CL X'  —  0\l O": ro. NT O  o ro. r* ro ro f ; 0"l  0 ro v  -  ro. f,  ro f  O I ^,!  o;  LL! CO  OO CO  O- X  X:  CO 0 0  C  Q 10 CZ  I  0>  CO  V- <  <I I X i 'X iL  •  c  X  .  O0  X  a no Jo.  UJ  >  X  O  c. X  (0-  X  X  *o  X  I  I c.  CL  U  OX  99.  O 3  < < < > > > Z Z 2  < >  >* t—(  oc  c L U LD  _J  t—*  < <. •—  Cll  CL  ct  X X co co  <l < Ci  LU  LU _l CC  co  < < > > 0> > _J —1 —J  •  < > > > >  <3. u_  <_' X  <z  * •—  X  —  !  _>  <"  —  LU CL  X «—  1—  >  x  <a  o x  "fi oo  IT  ~z  1—1 (-. LU oO  CJ . •  1  LL' i .  LL  LL O  X. CO  p 77  i—  •—  <  '  a:  U..' _J  LU  cc <  LJ  i_  " ~r77 •—> i—  •—  < <  > > > >  of  ct'  r, o  o  o  o  OO  OL  >c  -c  vU  00  00 X'  •'vl c, JO: •'L;  X  O  _'  o  e  o  c  u  U0\ wT.  0J  0s;  oo O J  i  :<0  roi ro,  X'  1  CO  ~o  CJ  t  X  o  ZJ  |  X  X  o  JO  U"  c  o  1  r~  L^  r\j oo 0 00  u <O f~i r o f . r—iO J  ^rj a r—\Ov' i—f r -  o  o  r \ 'X  c  UJ  If.  OJ  CN.'  1  o  r-  ao L".  O  X  NC  00  1 1  1  r  if-.  1  U-' CO  ,lf\ LO L-0 r  LP. I f :  uo. 1':  Lf. LO  If',  If!  r  in  UJ CL  — > Of  O j oo  V:  OJ  ro  rr,  ro. . ~ oj  CO  1—  OJ  Oj  oo o„i  r v r o ro.  <-  >  t_'  Of  CO  X  a;  rf  X.  a.i 111 w. 0 0 or. CO. oo  O  C;  LLI  c  CJ  CJ  o " OO OO t o 77 Z c o-* CO '—1 X  c-  O  O  <  _J  0~  1  L.  o  oo LT. i r r - po - J - CC' , — i oo c O' ro r o r- LT, c OM CO OJ —< o f~t CO . ~ T c <r  OL  1_J  >-  •.—1 OJ  LT'  o •  CJ." r. 0 L L LU I— 1—  00 <*  X'  o  CJ  Ci  LJ X  •\i o  JO  LL  CO Lw  Z7*  o  kco cr  CT  ain r- o  w  o  x  i—  !  s  CO  > > _l _l  X  O-  LL'  X  «-•  o  V r\; r-  c  Or.  <r  — 1— <  L-'  CJ  O  C  X'  QL  c  >~ C J  -z o  o  if-.  c  LU c.  X  XI  o>  00 LU  LL  *1  LO  r-  > > > > CL cr. Cx  U_' L L ' L U 50 2 * X CO CO  •  X  1— — (  CO C J  !!  LL.'  i —  <  1  1  L-< X «L «C  h -  1— t— <T  ^L  i—4  1—(  1  c  X  X'  1 1  \ X  LL' U J OL X  Ii  <  7T7.  • T x 1 1 LU  t  V- t— u- X <z 2r z.  •—•  X 0>  LL LU  a.  Cr-  CO  if X  CJ  O "~ i—  x <r X'  •>  ^  -c o ' X  T  C  ro, r~< CO r n t O,) O J Ov! 0 0 o.)  ~< ';  O,  ^1  oo r o r o rfi f°. r o OJ  OO " V  m  IO.  OJ  ro — i 1 r—1 - o oo r - O0 o.: X ' O J ,—' oo 0".  0":  1  Z> CO  z:  oc, a  LOi LLl CO 0 0  X'  _J  X  • •• —J  u. x  it  •»  «  cX  > co  > o  1- < X  1 1  iC  o  CJ. X i—'  X  00-  _J  00  X  i7  co  <  X  CL X  10 u.; X  1X X  ~J. X X X  <  >  ~j. X  X  C rx'  X  CO  v  ^ 1 1 ZD X  X'  X  1  >-  OJ  SECTION  DEPENDENT  VAR I A B L E  155  =  - -  FOOTWALL  CU-GRD  VOLCANICS  TYPE  =  4  KF;  CBSERVATIONS  IN  ONLY  CN E  CATEGORY  OF  THE  NCN-I NTERVAL  VARIABLE  PP;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF OF  THE THE  NON-INTERVAL NON-INTERVAL  VARIABLE VARIABLE  DU5  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  ZE;  CBSERVATIONS  IN  ONLY  ONE  CAT EGCRY  OF  THE  NCN-INTERVAL  VARIABLE  HEM;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  THE  NCN-INTERVAL  VARIABLE  VARI  ABLE  NUMBER OF OBSERVATIONS  GRAYS DK—LT  70 70  NO.  FRA  VARIABLE TYPE  CORR CODE  C O R R EL A T  ION  2 2  5 5  70  2  5  0. 6089  GZ  70  2  5  ARGL MS KF  70  2 2  5  - 0 . 1 8 7 7 - 0 . 4 9 54  5 5  70 70  t; -*  - 0 . 3 6 3 4 - 0 . 3 8 7 1  - 0 . 4 8 1 2 0 .0 0.0  PP  7 0  2 2  DU CB  70  2 2  ZF CL  70 70 70  5 5  2 2  5 5  EP HEM  70 70  2  5 5  0 . ( 18 1  MAG  70  5  HO-GRD  70  0 . 3 22 8 0 . 4 3 74  2 2 4  6  TEST CODE 6  0.C058  b b~  0 . 0 0 74  0. 0  0.0000  6  0.  6  0 .0009  1262  6  0.0004  6  0.0  6  0 .0  6 6 6 6 6  0.0038  0. 0 0.407 2 0.0 0. 3929  PROB  0.0 0 .0 0.0028 0.1127 0.0  6  0.0178  7  0  .0002  DEPENDENT KE; PP; CU; ZE HEN  VARIABLE  MO-GRD  TYPE  CBSERVATIONS OBSERVATIONS C B S E R V A T IONS  I N CNLY CNE CATEGORY I N ONLY CNE CATEGORY I N ONLY ONE CATEGORY CB STTRVATTTJR7r~T¥ T N L Y CNE CATTGORY O B S E R V A T I O N S I N ONLY ONE C A T E G O R Y  VARI ABLE GRAYS DK—LT NO.ERA QZ ARGL .'MS KH PP . DU CB ZE CL EP HFM MAG CU-GRD  NUMBER OF OBSERVATICNS 70 70 70 70 70 70 10  70 70 70 70 70  10  70 70 70  VAR T ABL E TYPE 2  2 2 2 2 2 2 2 2 2 2 2 2 2  2 4  CORR CODE 5 5 5 5 5 b 5 .  5  5 5 5 5 5 6  OF CF OF OF" CF  = 4  THE N O M - I N T E R V A L THE N C N - I N T E R V A L THE N O N - I N T E R V A L T H E " N O M - INTERVAL THE N O N - I N T E R V A L CORRELATION - 0 . 138 9 -0 .1094 0.6252 - 0 . 2743 -0.2411 -0.3892  o. o  0.0 0. 0 0.4104 0.0 0. 3115 " 0 .2473 0.0 - 0 . 2452 0.4374  VAR I A B L E VARIABLE VARIABLE VARIABLE" VARIARLE  TEST CODE ~6" 6 6 6 6 6 ~6~ 6 6 6 6 6 6 6 7  PROB "0.3316 0.4670 0.0000 0.0243 0 .1084 0.0039  ' o. o 0.0 0.0 0.0036 0.0 0.C179  "TNVAL'I D INVAL ID I NVALID INVAL ID  ~ 0 . 5"4"09~  0.0 0.0731 0.0002  INVAL ID  SECTION  DEPENDENT  VARIABLE  155  =  - -  OVKE  CU-GRD  COMPLEX  TYPE  =  4  DU;  OBSERVATIONS  IN  ONLY  CNE  CATEGORY  OF  THE  ZE;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  THE  EP;  CBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  THE  VAR  NCN-INTERVAL NON-INTERVAL NON-INTERVAL  VAR  VARIABLE  IABLE  NUMBER OBSERVAT  GRAYS DK — L T NO.ERA  119 120 120  2 2 2  5 5' 5  0.1316  120  2  5  0.4060  6 6 6 6  - 0 " . 4 9 2 6"  6  QZ ARGL  OF IONS  VARIABLE TYPE  1 20  2  MS  120  2  . KF  120  2  CORR CODE  PP  1 20  2  DU  120  2  CB  120  2  5 5 5 5 5 5  ZE  120  2  5  CL  120  2  5  EP  120  2  5  HEM  120  2  5  MAG  12 0  2  5  120  4  6  MO-GRD  C O P R EL AT  ION  0.1752 0.2923  !ES_T_ CODE  6 6  0 .0001  6  0.0  6  0.0030 0 .0  6  - 0 . 2 2 5 2  6  0.  1791  _0_.470 2 0. 0 0.2909 0.0 - 0 . 1 8 2 6 0. 1 8 0 9 0. 7266  PROB  0 . 1 8 50 0.0830 0.0032 _0 . 0 0 0 0 0.0000 0.0044 0.3594 0.6328 0.0  - 0 . 2 9 1 0  0.0  IABLE  V AR I A B L E  6  6 6  C.l877  6  0.0778 -0 . 0  7  DEPENDENT DU; ZE ; EP;  VARIABLE  OBSERVATIONS OB'S E R V A T I O N S OBSERVATIONS  VARIABLE  NUMBER OF 0 3 S ERV AT I O N S  GRAYS DK—LT  119 120  NO.ERA QZ ARGL MS K E  120 1 20 120 120 120 120  PP : DTT CB • ZE CL EP. HEM fTATJ" CU-GRD  IN IN IN  T2TT 120 120 120 120 I 20  MO-CRD  CNLY ONLY ONLY  CNE ONE ORE  2 2 2 2 2 T  CORP. CODE 5 5 ~ 5 5 5 5 5 5  —5-  2  5  2 2 2 2  5  TZTV 120  CATFGCRY CATEGORY CATEGORY  VARIABLE TYPE 2 2  TYPE  4  5 5 5  OF OF OF  =  THE THE TEE  4 NCN-INTERVAL NON-INTERVAL N O N - I N T ER V A L  CORRELATION  0 . 3 305 0. 364 9 " 0 . 2 65 3 0.3436 - 0 . 3 6 9 6 -0.1R04 -0.1123 0.2134 "T .0 " • 0.5419 0.0 0.087 3 0.0 - 0 . 2 1 4 4 ' O.012 0 0. 7266  VARIABLE VARIABLE VARIABLE  TEST CODE 6 6 ~6~ 6 6 6 6 6 6 6 6 6 6  ~6~  PROB  0.0009 0.0004 O.C073 0.0002 0.0003 0 .0765 0.6504 0.5700 "0.0 0.0000 0.0 0 .3834 0.0 0.1200 ~0.87^5 -0.0  -  SFCTION  DEPENDENT  VARIABLE  =  155  ,  —  HANG1NGWALL  CU-GRD  TYPE  V O L C A M CS  =  4  KF;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  THF  NON-INTERVAL  VARIABLE  DU;  OBSERVATIONS  IN  ONLY  ONE  CATEGORY  OF  THE  NON-INTERVAL  VARIABLE  VARIABLE  NUMBER OF OBSERVATICNS  VARIABLE TYPE  293 292 291 293 2_93 ~2~93  2 2  GRAYS DK—LT NO.FRA  QZ  ARGL  ~MS KF  PP  :  2  2 2 2  COPR CODE  5 5 5 5 5 : 5  293  2  5  29 3  2  5  DU  293  2  5  CB  293  2  5  293  2  ZE  _ FP HEM MAG MO-GRD  _ 293 293 293 292  _ 2 2 2 4  ' '  5  _____ 5 5 5 6  CORRELATION  -0.0O9C 0.0 16 1 -0.0736 0.3297 . -0 .033 7 -0. 1304" 0.0  -0.2 29 1 0.0  -0.1983  -0.154 3  - C . l l 3 9' -0.6898 -0.0112 0.1627 0.6746  TEST CODE  6 6 6 6 6 6  PROB  0.8563 0.7940 0.2550 0.0000 0. 642J 0.1136 INVALID  6  0.0  6  0.0612  6  0.0  6  0.0040  6  6 6 6 6 7  INVALID  ___ L_ _ C  10<  }  0.0623 -0.0 0.9122 0.0116 - C O T a —  a  OFPENDENT  f  =  KF;  CBSERVATIONS  IN  ONLY  ONE  OBSERVATIONS  IN  GNLY  ONE  NUMBER OF OBSERVATIONS  TYPE  MC-GRP  DU;  VARIABLE  .  VARIABLE  CATEGORY CAT EGCRY  VARIABLE TYPE  CCRR CODE  =  4  OF  THE  NON-INTERVAL  VARIABLE  OF  THE  NCN-INTERVAL  VARIABLE  TEST CODE  CORRELATION  GRAYS OK—LT  29?  2  5  0 . 03 7 8  291  2  0. 0205  NO.ERA  2 90  5 5  6 6  0 . 131 0  6  0 . 3 89 7 0.0276  6 " 6  01  2  _ _  292  -  5" 5 .  -  PROB  0.5515 C. 7 5 0 6 0 .0405 - 0 . 0 0.7001  . ARGL  292  ->  MS KF  292 292  2  5  -C.C93 1  6  0  2  5  I NVALID  292  2  DU  292  5 5  6 6  C O  PP  c. o -0 .2610  6  0.0332 0.0  INVAL ID  CB ZE  2 2 2  6  U.0019 0.1768  CL  292 2 92 292  5  EP HEM  292 2 92  2 2  .5 5  - 0 . 5 4 84  6 6  - 0 . 1 1 3 5  6  ' 2 9 2  2  5  0.1017  6  292  4  b  0.6746  /  MAG. CU-GRD  _  •  2  5  0.0 "  - 0 . 7 1 5 ? " - 0 . 1 2 9 9 - 0 . 1 7 8 0  '  .2645  0.0040 0.0000 0.6061 0.1142 - 0 . 0  O  S E C T I CIV  UEMENLiEM KF; DU;  IN IN  N U M B E R CF UBSERVAI 1LNS  --  FCQTlnALL  VOLCANICS  CU-GRD ~ ' " T Y P E =  V A E 1 A HLT:  OBSERVATIONS OBSERVATIONS  VARIABLE  147  ONLY CNLY  ONE CNE  CATEGORY CATrCORY  VARIABLE TYPI  OF OF  CCRR C O D E '  THE THE  4 NGN-INTERVAL NON- INTERVAL  CORRFLATION TEST " C O D E  2 2  5 c  0.0320 0. 033 1  1 IB  2  1 1 8.  : 2  5 5  0.2758 0.0610  118' 1 1 8  2 2  0.34 80  KF  1 1 8  2  5 — : 5 5  PP DU  118 1J 8  2 2  5 5  - 0 . 2 3 3 7 C o  CB •  118  ,2  - 0 . 1  1 E CL  118 118  2 2 2  5 5 ~  GRAYS DK--LT  1 1 8 118  NO.FRA OZ ARGL MS  FP HEM. MAG MO-GRD  1 18 •  "~  5 c  .  C.T 563  -  6 6  —  0 . 0  c  .  3 8  - 0.^462 -0.32 30  118  2  5  - 0 . 4 6 5 5 - 0 . 4 0 6 0  118  2 4  5  0.1659  6  0.4793  8 3  VARIABLE VARIABLE  " .  PROB  0 .7601 0. 7584  6  0.00 62  6  0.5402  6 ' 6  0. 1694 0.0184  6  0.0  6 6  0 .0  6 6  0.12 38 0v001-7  6 6  0 . 0 0 2 3 0.0001  6  0.0029 0 .1094  6 7  0.1806  C.OOCO  DEPENDENT KF; CU; H E M;  V A R I AEI  OBSERVATIONS OBSERVATIONS OB S E f l V A T I 0 N S  VARIABLE  GRAYS D K tT-  IN IN I N  NUMBFR OF OBSERVATT CNS  E  =  MO-C-RD  ONLY O N E C A T EG C R Y ONLY ONE CATEGORY CN-bV-&NE- CATEGORY .VAR T A B L E TYPE  83  :  B3  TYPE  CORP. CODE 5  -55  = 4  OF THE OF THE OF -TH E  N O N - I NT E R V A L NON-INTERVAL N O N - I NT E R V A L  CORRELATION  - 0 . 2 C 4 3 — 0.1 892 0 .447 2  8 3  -22  QZ  83  2  5  ARGL  83  - 0 .  2  MS  83  2  5 5 5  - 0 . 3 2 7 3 - 0 . 3 1 8 9  NO.FRA  K F  •—P-PDU CB ZE CL EP HEM MAG CU-GRD  83  2  -&383 83 83 8 3 83  -22  5  2  5  2  5  2  5  2  -8-383 83  2 4  0621  0.0 —0 .2675 0.0  -5-  0. 1888 0.1939 - C . 0 3 4 9 - 0 . 2 8 7 8 • 0 . 0  5  0.2581  6  0.4793  5  VARIABLE VAR I A B L E V Aft I A B L E  TEST CODE 6 —6 6 6 6 6 6 -66 6 6 6 6 6 7  PROB 0.0957 -Or 13450.0002 0.6061 0.0128 0.0573 0.0  INVAL ID  0.15250 .0  INVAL ID  C.1182 0.2267 0.7733 0.4638  -0-.0 0.0130 0. 0000  -INVAL ID  SECTION  CEP ENIJEN i PP; DU;  vmrrmrr  CBSERVATIONS OBSERVATIONS  VARIABLE  IN IN  NUMBER OF UBSbRVAllLNS  GRAYS DK—LT NO.FRA 07  147  188 183 167 138  CNLY ONLY  —  DYKE  ~C"n=_RrjONE ONE  TYPE  CATEGORY CATEGORY  VARIABLF TTP_—  CORR  2 2 2 2  5 5 5 5  DU CB  .  188 188 188 188 188  2 2 2 2 2 -22 2 2 2 4  5 5 5 5 5  _eCL EP HEM MAG MG-GRD  188 1 88 18 8 188 188  5 5 5 5 6  ^  OF.THE CF THE  xcTjtr-  liraMS KE pp  COMPLEX  4 NCN-I N T E R V A L NGN-INTERVAL  CORR F L A T  ION  - 0 . 1 8 4 2 - 0 . 1 6 3 5 0.139 7 C.102 3 -=0.244 4 - 0 . 1 031 0.1070 0.0 0. 0 0 .4059 -_C.003 ] 0.1311 0 .4499 0. 1025 0. 1423 0.4489  VARIABL E VARIABL E  TEST XOTjr 6 6 6 6 6 6 6 6 6 66 6 6 6 7  PROB  0.0158 0 .0490 0.1029 0.1662 -C-.C025-0.3105 0.3860 0 .0 0.0  I N V A L ID INVALID  0.00 00 -0-;9 3220.0973 0.0469 0.5740 0.0957 -0.0 -K)  O CO  D E P E N D E N T  y-  V A R I A B L E  =  M G - G R D  T Y P E  =  4  P P ;  C B S E R V A T I G N S  I N  C N L Y  O N E  C A T E G O R Y  O F  T H E  N O N - I N T E R V A L  D U ;  O B S E R V A T I O N S  VAR  I A B L E  I N  C N L Y  C N E  C A T E G O R Y  O F  T H E  N O N - I N T E R V A L  V A R  T A B L E  VARIAELE  N U M B E R  O F  O B S E R V A T I O N S  GRAYS  DK—LT  -NCHrFR-AQZ A R G L MS KF PP  EHC B  7E CL E P H E M  MT6-GC U - G P D  188 188 -1-6-7188 188 188 188 188 -l-fi-8188 188 18 8 188 1 88 HrB-8188  VARIABLE TYPE 2 2 2 2 2 2 2 -22 2 2 2 2 -2-  C O R R  C O R R E L A T I O N  C O D E  5 5  -5-  5 5 5 5 -f>-  5 5 5 5 5 -5-  6  T E S T  PROB  C O D E  -0.0461 - C .'005 —0.11540. 0 C 8 1 -0.1983 -0.0S74 0. 1928 0.0 -~G. 0 - -0.?«8 1 0.0836 0. 051 5 0.0780 0.070 0 0. 043 7 0 .4489  6 6 -6— 6 6 6 6 6  -6 6  6 6 6 6 -6  0. 5594 C. 9434 0.-18050. 8782 0.0136 0.3389 0.10 99 0.0 0.0 0.0006 0.5853 0.5285 0.7322  0.6967 0.6202•0.0  I N V A L I D - I N V A L I D  SECTION  UtPENUENI KF; DU;  V7rPT7TEtE ~  CBSERVATIONS OBSERVATIONS  VARIABLE  GRAYS OK—LT NO.FRA 07  ARGL MS KF PP DU CB  _eCL EP HEM MAG MO-GFD  14 7---HANGINGW A L L  CTJ - CR fr  2  IN CNLY IN CNLY  VARIABLE  285 28 5 286  2 2 2 2  286 286 286 2 86 286  -2-rTfr-  286 286 286 286 28 3  -TYPE = 4  ONE CAT EGGPY ONE CATEGORY  NUMBER OF OBSERVAI I LNS-  TYTTT  ~2  <_ 2 2 2 -_2 2 2 2 4  VOLCANICS  OE T H F NON-INTERVAL OF T H E NON-INTERVAL  CORR  CORRELATION  -CODE"  - 5 "  5 5 5  5 5 5 5 5 5 6  -0.0601. -0.1108 -0.153 9 0. 2257 — 0.0219 -0.2200 0.0 -0.1651 0.0 -0.1157 -0. !<>2 4 -0.1667 -0.5619 0.1254 0.2229 0. 5 320  VARIABLE VARIABLE  TEST XOOE~  6 6 6 6 -6~ 6 6 6 6 6 6 6 6 6 7  PROB  0.3410 0.0916 0.0138 0.0002 •0. 7 72 50.0124 0. 0 0.6266 0.0  INVALID INVAL ID  0 . 0 8 0 9  0.021-90.0083 -0.0 0.4127 0.0012 -0.0  NJ H O  DEPENDENT KF; OU;  VARIABLE  CBSERVATIONS CBSERVATIONS  VARIAPLE  GRAYS OK—LT HMO. FRAr OZ ARGL MS KF PP -fttiCB ZE CL EP HEN  KAGCU-GRD  IN CNLY IN L N L Y  NUMBER OF OBS E RV AT I CN S 282 2 62 -_-83283 2F3 2 83 283 2F3 -2-8-3283 283 283 283 2 83 2 83 283  =  M 0 - GftD ONE CNE  CATEGORY OF CATEGORY OF  VARIABLE TYP E 2 2 j  2 2 2 2 2 2 2 2 -2-  TYPE  _ _  CORP. CODE 5 5 _5_._ 5 5 5 5 5 -55 5 5 5  5 •56  = 4  THE THE  NON-IK TFF VAL NCN-1NTE RV AL  CORRELAT ION  -0.0172 - 0 . 048 7 -0.093 6 0. 197 6 -0.0478 -0.2 132 0. 0 - 0 . 1 SO 8 ---OvO0.0263 0.3634 -0.1246 -0.3227 0.2255 - 0 . 146 20.532C  VARIABLE VARIABLE  TEST CODE 6 6 — 6 -  6 6 6 6 6 —66 6 6 6 6  PROB  0.7758 0.4735 0.1361 0.0012 0.5554 0 .0 155 0.0 0.6561 0.00. 69 87 0.0000 0.0514 C.0C05 0.1323 0.0312-0.0  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0052718/manifest

Comment

Related Items