"Science, Faculty of"@en . "Earth, Ocean and Atmospheric Sciences, Department of"@en . "DSpace"@en . "UBCV"@en . "Cargill, D. George"@en . "2010-02-05T01:12:09Z"@en . "1975"@en . "Doctor of Philosophy - PhD"@en . "University of British Columbia"@en . "The Island Copper deposit at Port Hardy, approximately 200 miles northwest of Vancouver, B.C., consists of two ore zones with total reserves of 280,000,000 tons of 0.52 percent copper and 0.029 percent molybdenite. Ore zones occur in Jurassic andesitic rocks in the hanging wall and footwall of a quartz-feldspar porphyry dyke. Breccias with volcanic and intrusive fragments cap the dyke and occur along the margins. Chalcopyrite and molybdenite occur in all rocks, but ore grade concentrations are restricted to volcanic rocks and marginal\r\nbreccias.\r\nThe rocks have been subjected to contact thermal meta-morphism and to hydrothermal alteration. The metamorphic aureole can be subdivided into an inner zone, adjacent to the dyke, characterized by biotite and magnetite; an intermediate, transitional zone characterized by chlorite; and an outer zone characterized by epidote. The ore zone is associated with the inner (biotite) zone and the inner part of the intermediate (transitional) zone.\r\nThe hydrothermal alteration which occurs in volcanic rocks, breccias and the porphyry dyke is characterized by formation of sericite, pyrophyllite and a kaolin group mineral. Pyrophyllite is largely restricted to the breccia which caps the dyke. Sericite and the kaolin group mineral(s) occur in the marginal breccias and in sericite envelopes on quartz veins and open fractures cutting volcanic rocks and the porphyry dyke.\r\nThere are five stages of chalcopyrite deposition and three stages of molybdenite deposition. However, field evidence supported by statistical study indicates that the first stage of copper deposition accounts for the bulk of metal in the orebody. Most of the chalcopyrite was deposited before the bulk of the molybdenite.\r\nGEOLOG format proved a quick and effective method of recording\r\nwall rock alteration observed in drill core. Statistical\r\nstudy of correlation, between abundance of alteration minerals and copper and molybdenite grades, yielded information\r\non the importance of different stages of sulphide deposition to the ore zone. However a knowledge of age relations of alteration and ore minerals was essential to an interpretation of the statistical results."@en . "https://circle.library.ubc.ca/rest/handle/2429/19613?expand=metadata"@en . "QEOLOGY OF THE \"ISLAND COPPER\" MINE, PORT HARDY, BRITISH COLUMBIA by D. George C a r g i l l B.A.Sc., U n i v e r s i t y of Toronto, 1967. MSc, Queens U n i v e r s i t y , 1970. A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n the Department of G e o l o g i c a l Sciences We accept t h i s t h e s i s as conforming t o the r e q u i r e d jitanda^JB THE UNIVERSITY OF BRITISH COLUMBIA March, 1975. In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of G e o l n a i n a l S n i f t n n P s The University of British Columbia Vancouver 8, Canada Date 23/3/75 ABSTRACT i i . The Island Copper deposit at Port Hardy, approximately 200 miles northwest of Vancouver, B. C., consists of two ore zones with t o t a l reserves of 280,000,000 tons of 0.52 percent copper and 0.029 percent molybdenite. Ore zones occur i n Jurassic a n d e s i t i c rocks i n the hanging w a l l and footwall of a quartz-feldspar porphyry dyke. Breccias with volcanic and i n t r u s i v e fragments cap the dyke and occur along the margins. Chalcopyrite and molybdenite occur i n a l l rocks, but ore grade concentrations are r e s t r i c t e d to volcanic rocks and mar-g i n a l breccias. The rocks have been subjected to contact thermal meta-morphism and to hydrothermal a l t e r a t i o n . The metamorphic aureole can be subdivided into an inner zone, adjacent to the dyke, characterized by b i o t i t e and magnetite; an intermediate, t r a n s i t i o n a l zone characterized by c h l o r i t e ; and an outer zone characterized by epidote. The ore zone i s associated with the inner (biotite) zone and the inner part of the intermediate (t r a n s i t i o n a l ) zone. The hydrothermal a l t e r a t i o n which occurs i n v o l c a n i c rocks, breccias and the porphyry dyke i s characterized by formation of s e r i c i t e , p y r o p h y l l i t e and a kaolin group mineral. Py r o p h y l l i t e i s l a r g e l y r e s t r i c t e d to th'e breccia which caps the dyke. S e r i c i t e and the k a o l i n group mineral(s) occur i n the marginal breccias and i n s e r i c i t e envelopes on quartz veins and open fractures c u t t i n g volcanic rocks and the porphyry dyke. There are f i v e stages of chalcopyrite deposition and three stages of molybdenite deposition. However, f i e l d evidence i i i . supported by s t a t i s t i c a l study indicates that the f i r s t stage of copper deposition accounts for the bulk of metal i n the orebody. Most of the chalcopyrite was deposited before the bulk of the molybdenite. GEOLOG format proved a quick and e f f e c t i v e method of re-cording wall rock a l t e r a t i o n observed i n d r i l l core. S t a t i s -t i c a l study of c o r r e l a t i o n , between abundance of a l t e r a t i o n minerals and copper and molybdenite grades, yielded informa-t i o n on the importance of d i f f e r e n t stages of sulphide deposition to the ore zone. However a knowledge of age re l a t i o n s of a l t e r a t i o n and ore minerals was e s s e n t i a l to an int e r p r e t a t i o n of the s t a t i s t i c a l r e s u l t s . iv. ACKNOWLEDGEMENTS The writer greatly appreciated the enthusiastic co-operation and assistance provided by the staff of Utah Mines Ltd., E. S. Rugg and M. J. Young of the Exploration Department and J. Lamb of the Island Copper Division were especially help-f u l . Utah Mines Ltd. provided financial support for both f i e l d and laboratory study. Dr. K. E. Northcote of the B. C. Dept. of Mines and Dr. J. E. Muller of the Geological Survey of Canada took part in many helpful discussions of the geologic setting of the deposit. The late Drs. J. A. Gower and W. H. White, the i n i t i a l super-visors of the study, greatly stimulated the writer's interest in porphyry copper deposits. Dr. A. J. Sinclair's advice on treatment and interpretation of s t a t i s t i c a l data is greatly appreciated. Dr. A. Soregaroli assumed supervision of the completion of the study and his encouragement and advice contributed greatly to the study. Dr. K. C. McTaggart made suggestions for improve-ment of the original manuscript. The writer gratefully acknowledges a National Research Council Scholarship for 1969-70 and 1970-71. V. CONTENTS Page CHAPTER 1. INTRODUCTION Location i Previous Geologic Work i Scope of the Present Investigation 3 CHAPTER 2. REGIONAL GEOLOGY 4 Introduction 4 Volcanic and Sedimentary Rocks 7 . Karmutsen Formation 7 Quatsino-Formation g Parsons Bay Formation 8 Harbledown Formation 9 Bonanza Volcanics I Q Cretaceous Rocks 11 Intrusive Rocks 12 Stocks 12 Quartz Feldspar Porphyry Dykes 12 F e l s i c Dykes and S i l l s 12 Andesite Dykes 13 Basalt-Dacite Dykes 13 Regional Structure 13 Bedding 14 Faults \" 14' Mineral Deposits and Regional A l t e r a t i o n 14 CHAPTER 3. MINE GEOLOGY Introduction 19 19 v i . Page Stratigraphic P o s i t i o n ' 19 Lithology 24 Volcanic Rocks 24 Quartz-Feldspar Porphyry Dyke 2 7 Intrusive Breccias 29 Pyrophyllite Breccia 29 Marginal Breccia 30 \"Yellow Dog\" Breccia 31 Formation of the Intrusive Breccias 32 Cretaceous Sedimentary Rocks 35 Structural Geology 35 Bedding 35 Fractures 37 Faults 37 Veins 39 Size and Geometry of the Ore Zone 44 Sulphide and Oxide Mineralogy 47 Introduction 47 Chalcopyrite 47 Molybdenite 47 P y r i t e 50 Sphalerite 52 Magnetite 52 Hematite 53 Leucoxene 53 *CHAPTER 4. COMPUTER ANALYSIS 54 Introduction 54 Data C o l l e c t i o n 54 V l l . Data Treatment Results Interpretation of Results Correlation Between Grade and Other Parameters Importance of .the Sulphide Mineralization Stages to the Ore Zone Importance of the Copper-Molybdenum Correlation E f f i c i e n c y of \"GEOLOG\" Logging Page 56 58 58 58 65 67 68 CHAPTER 5. HYDROTHERMAL ALTERATION Introduction A l t e r a t i o n Stages A l t e r a t i o n Zones Contact Thermal Metamorphism B i o t i t e Zone Tra n s i s t i o n Zone Epidote Zone Wall-rock A l t e r a t i o n S e r i c i t e and C h l o r i t e Zone S e r i c i t e Zone Pyrop h y l l i t e Zone c \"Yellow Dog\" Zone Relations Between A l t e r a t i o n Type and Sulphide Deposition S u r f i c i a l A l t e r a t i o n Formation of the A l t e r a t i o n Zones Introduction Environment of Formation Contact Thermal Metamorphism 69 69 69 70 73 73 78 80 84 84 89 95 100 104 106 108 108 108 109 VX11. Page Wall-rock Alteration 116 CHAPTER 6. FORMATION OF THE ISLAND COPPER ' 125 DEPOSIT Models o'f Formation of Porphyry Copper 125 Deposits A Tentative Model for the Formation of 128 the Island Copper Deposit Step One \u00E2\u0080\u00A2 128 Step Two \u00C2\u00B0 129 Step Three 131 CHAPTER 7. CONCLUSIONS 132 REFERENCES 134 APPENDICES 143 A. \"GEOLOG\" 143 B. Data Processing 154 C. S t a t i s t i c a l Data for: Section 195 169 Section 187 176 Section 179 182 Section 171 188 Section 163 194 Section 155 200 Section 147 r 206 I X . LIST OF TABLES Page Table 2-1 Table of Formations 2- 2 Classes of Metalliferous 15 Deposits 3- 1 Tentative Vein Correlation 40 3- 2 Rhenium Content of Some Porphyry 51 Copper Deposits 4- 1 Corr e l a t i o n Between Grade and 59 A l t e r a t i o n Intensity 4- 2 Summary of Useful Correlation 63 Results 5- 1 Mineral Assemblages - B i o t i t e 77 A l t e r a t i o n Zone 5-2 Mineral Assemblages - Transistion 79 A l t e r a t i o n Zone 5-3 Mineral Assemblages - Epidote A l t e r - 81 Ation Zone * 5-4 Mineral Assemblages - C h l o r i t e S e r i c i t e 85 A l t e r a t i o n Zone 5-5 Mineral Assemblages - S e r i c i t e A l t e r - 90 ation Zone 5-6 Mineral Assemblages - Pyrophyllite 96 A l t e r a t i o n Zone 5-7 Mineral Assemblages - \"Yellow Dog\" 101 A l t e r a t i o n Zone 5-8 Temporal Relations Between Stages of 105 A l t e r a t i o n and Sulphide Deposition 5-9 Mineral Assemblages i n Clay Size 107 Range 5-10 Summary of the C h a r a c t e r i s t i c s of the 113 A l t e r a t i o n Zones Volcanic Rocks 5-11 Summary of the C h a r a c t e r i s t i c s of the 117 A l t e r a t i o n Zones Quartz-Feldspar Porphyry A - l Coding Data For Modified \"GEOLOG\" 14 8 Sheet A-2 Letter Rock Type Code 152 X . LIST OF FIGURES Page Figure 1-1 Location Map 2 2-1 Regional Geology g 2- 2 Mines and Mineral Occurences 26 3- 1 Island Copper Mine - Geology 21 3-2 Island Copper P i t - Geology 22 3-3 Generalized Section Showing Geology 23 3-4 Island Copper Mine - Structure 26 3-5 Island Copper P i t - Structure 3g 3-6 Sketches I l l u s t r a t i n g Age Relations 43 of Veins Within the Ore Zone 3- 7 Generalized Section Showing Ore Zone 45 4- 1 Island Copper Mine - Location of 55 Cross-Section 4- 2 Generalized Section Showing A l t e r - 57 ation Divisions 5- 1 Island Copper Mine - A l t e r a t i o n 71 Zones 5-2 Generalized Section Showing A l t e r - 72 ation Zones 5-3 Schematic Diagram of S e r i c i t e Enve- 91 lopes i n the Quartz-Feldspar Porphyry 5-4 Schematic Diagram of a S e r i c i t e 91 Envelope i n Volcanic Rocks 5-5 ' S p a t i a l Relations Between A l t e r - 105 ation and Sulphide Deposition 5-6 Schematic Diagram Showing Dis- 110 t r i b u t i o n of A l t e r a t i o n Minerals -Contact Metamorphism 5-7 Thirteen Analyses of Bonanza Vol- 111 canic Rocks of an ACF Projection of the Albite-Epidote Hornfels Facies 5-8 Chemical Variations Between A l t e r a t i o n 114 Zones i n the Volcanic Rocks Schematic Diagram of Early A l t e r -ation Zones Schematic Diagram Showing D i s t r i b -t i o n of A l t e r a t i o n Minerals -Wall-rock A l t e r a t i o n - Schematic Diagram Showing D i s t r i b -t i o n of A l t e r a t i o n Minerals -\"Yellow Dog\" Zone Experimental Studies Relating to Hydrothermal A l t e r a t i o n Chemical Variations Between A l t e r -ation Zones i n the Quartz-Feldspar Porphyry \" A Schematic Comparison of A l t e r a t i o n and Mineralization i n Mafic and Inter-mediate Rocks Idealized Cross-Section of a Typ i c a l , Simple Porphyry Copper Deposit Showing i t s P o s i t i o n at the Boundary Between Plutonic and Volcanic.. Environments \"GEOLOG\" Format Modified \"GEOLOG\" Format Used at Island Copper LIST OF PLATES Lit h o l o g i e s i n the P i t Area Polished Sections B i o t i t e A l t e r a t i o n Zone Epidote A l t e r a t i o n Zone C h l o r i t e - S e r i c i t e A l t e r a t i o n Zone S e r i c i t e A l t e r a t i o n Zone Pyro p h y l l i t e A l t e r a t i o n Zone \"Yellow Dog\" A l t e r a t i o n Zone 1. GEOLOGY OF THE ISLAND COPPER MINE; PORT HARDY, B.C. CHAPTER 1: INTRODUCTION ' LOCATION The Island Copper mine i s on Rupert Inlet approximately seven miles south of the town of Port Hardy on the northern part of Vancouver Island (Figure 1-1). The mine i s accessible by public roads from Port Hardy or by sea through Quatsino Narrows into Rupert I n l e t . Barge and f r e i g h t e r docks are at the mine s i t e . Elevations on the property range from sea l e v e l to 500 feet. The area i s densely timbered and undergrowth i s thick. Annual p r e c i p i t a t i o n , which includes one or two feet of snow, normally averages seventy-five inches. Yearly temperature range i s 20\u00C2\u00B0F to 80\u00C2\u00B0F. PREVIOUS GEOLOGIC WORK Dawson (188 7) published the f i r s t maps of Northern Vancouver Island as part of a coa s t l i n e reconnaisance c a r r i e d out i n 1886. More recently, O'Rourke (1962) described the geology and the ore deposits of the area i n an unpublished study for Utah Mines Ltd. Muller (1970, 1973) mapped the area i n the summers of 1968 and 1969 as part of the Geolog-i c a l Survey of Canada'S-mapping program. Northcote (1970, 1972, 1973) mapped an eight-mile-wide s t r i p north of Rupert and Holberg Inlets at one mile to the inch (for the B.C. Department of Mines) during the summers of 1968, 1969 and 1970 and described the general geology and exploration h i s t o r y of the Island Copper deposit. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 - SCOPE OF THE PRESENT. INVESTIGATION The writer spent nine months on the Island Copper property during the summers of 1970, 1971 and 1972. During t h i s time he mapped outcrops and p i t exposures. In addition, he relogged approximately 40,000 feet of core i n d e t a i l , using a modified \"GEOLOG\" format (Blanchet and Godwin, 1972)., Approximately 70,000 feet of a d d i t i o n a l core were examined i n less d e t a i l . Mineralogy and temporal r e l a t i o n s of the a l t e r a t i o n minerals were established using thin-sections, polished sections and slabs, and X-ray d i f f r a c t i o n techniques. During the course of the study 300 thin-sections, 65 polished sections and slabs, and approximately 550 X-ray d i f f r a c t i o n patterns were examined. A s t a t i s t i c a l study of the c o r r e l a t i o n between a l t e r a t i o n , mineralogy, f r a c t u r i n g , colour index and copper and molybdenum grades was undertaken for that core relogged with the \"GEOLOG\" format. CHAPTER 2: REGIONAL GEOLOGY INTRODUCTION Vancouver Island north of Holberg and Rupert Inl e t s i s underlain by rocks of the Vancouver Group, which, as defined by Dawson (.1887), include: the Karmutsen Formation, the Quat-sino Formation, and the Bonanza Volcanics. Bancroft (1913) and Crickmay (1928) described two add i t i o n a l formations, Parson 1 Bay and Harbledown, as l y i n g between the Quatsino Formation and the Bonanza Volcanics(Table 2-1 and Figure 2-1). The Vancouver Group i s intruded by rocks of Jurassic and Te r t i a r y age and disconformably over l a i n by Cretaceous sedi-mentary rocks. The area i s one of large-scale block f a u l t s with thousands of feet of displacement. These are o f f s e t by younger s t r i k e - s l i p f a u l t s with displacements up to 2500 feet. Mapping i s hindered by paucity of outcrop and dense fo r e s t cover. Exposures are l i m i t e d to roads, streams, shorelines and rare c l i f f s . The absence of d e t a i l e d s t r a t i g r a p h i c i n -formation further complicates work i n the area. There are no recognized marker units i n volcanic rocks of ei t h e r the Kar-mutsen Formation or Bonanza Volcanics which makes i t extremely d i f f i c u l t to e s t a b l i s h displacement on f a u l t s confined to these Units. This i n turn makes i t impossible to determine the st r a t i g r a p h i c thickness of the formations. The present knowledge of the regional geology i s shown i n Figure 2-1. The geology i s established on a small scale, but addi t i o n a l s t r a t i g r a p h i c information and more exposure i s es s e n t i a l for det a i l e d i n t e r p r e t a t i o n . Table 2-1 TABLE OF FORMATIONS A f t e r Muller e t a l . (1973) Period T e r t i a r y Cretaceous J u r a s s i c T n a s s i c u ft u o \u00E2\u0080\u00A2o -H u Intrusive Contact Li t h o l o g y Nanaimo Group Greywacke, s i l t s t o n e , shale conglomerate, coal \u00E2\u0080\u00A2Disconformable Contact' Queen Charlotte Group Greywacke, conglom-erate , s i l t s t o n e , shale, c o a l \u00E2\u0080\u00A2Disconformable Contact-Long Arm Formation Greywacke, conglom-erate, s i l t s t o n e \u00E2\u0080\u00A2 UnconformaJble Contact Island I n t r u s i o n Q u a r t z d i o r i t e , grano-d i o r i t e , quartz mon-zonite, quartz-f e l d s p a r porphyry \u00E2\u0080\u0094 Intrusive Contact-Bonanza Volcanics Harbledown ^ Parson's Bay Quatsino Karmutsen (Includes i n upper p a r t i n t e r -v o l c a n i c lime-stone) A n d e s i t i c to rhyo-d a c i t e lava, t u f f , b r e c c i a Greywacke, a r g i l -l i t e , t u f f Calcareous s i l t -stone, shale, greywacke, con-glomerate, b r e c c i a Limestone B a s a l t i c l a va, p i l l o w lava, b r e c c i a Limestone Thickness (feet) 400 1,000 3,500 200 1,300 8,250 1,000 -2,500 1,000 -2,000 100 -2,500 10,000 -20,000 (1) Harbledown Formation i s c o r r e l a t e d with Bonanza Volcanics by Muller et a l . (1973). n\u00C2\u00AB110 Bedding Karmutsen Formation n-26 Bedding Quatsino Formation n--120 Bedding Parsons Bay Formation & Bonanza Volcanics n,30 Bedding Cretaceous Sediments L E G E N D CRETACEOUS LOWER JURASSIC mm Cretaceous Sediments JURASSIC and CRETACEOUS k'-^ o'J Island Intrusion Bonanza Volcanics UPPER TRIASSIC Parsons Bay Formation Quatsino Formation 23 Karmutsen Formation Contact (approximate position) K Island Copper Mine Fault, (inferred) Bedding showing dip n=lll Air Photo Lineaments NOTE : ON STEREONETS CONTOUR INTERVALS ARE NUMBER OF POINTS IN ONE PERCENT OF THE AREA. Figure 2-1 R E G I O N A L G E O L O G Y 5mi. (Map Modified After Muller et al., 1973) I VOLCANIC AND SEDIMENTARY ROCKS Karmutsen Formation Upper T r i a s s i c Karmutsen Formation, the oldest rocks i n northern Vancouver Island, underlie approximately f i f t y percent of the area (Figure 2-1). Although the s t r a t i g r a p h i c thickness of the formation has not been measured i n t h i s area, Muller et al.(1973) estimate i t to be 10,000 to 20,000 feet. Rocks of the Karmutsen Formation are predominantly por-p h y r i t i c and amygdaloidal basalt flows with rare units of pillow basalt, formational breccias and t u f f s . Six chemical analyses reported by Muller (1971) suggest a range i n comp-o s i t i o n between t h o l e i i t e s and high alumina basalts. This ' agrees with r e s u l t s of more extensive analyses of Karmutsen rocks i n the Buttle Lake Area (Surdam, 1967) and on Texada Island (Asihene, 1970). Two thi n bands of limestone occur near the top of the Karmutsen Formation. The d i s t r i b u t i o n of limestone outcrops i s e r r a t i c and suggests a series of lenses at the same general s t r a t i g r a p h i c horizon rather than one continuous bed. The lower contact of the formation has not been observed on the northern part of Vancouver Island. The upper contact with limestone of the Quatsino Formation generally i s sharp and e a s i l y recognized, although limestones and basalt l o c a l l y are interbedded over a narrow s t r a t i g r a p h i c i n t e r v a l at t h i s contact. Low-grade metamorphism of the Karmutsen Formation rocks has resulted i n pervasive c h l o r i t i z a t i o n and amygdules f i l l e d with epidote, carbonate, z e o l i t e , prehnite, c h l o r i t e , and quartz 8. Northcote (1970) reports pumpellyite, which places the rocks in the subgreenschist, pumpellyite-prehnite-quartz facies (Muller et a l . , 1973). Basaltic rocks along contacts with intrusive stocks are in many places converted to dark-coloured hornblende hornfels. Skarn zones occur sporadically along these contacts, both in the inter-lava limestones and in the basalts. Quatsino Formation The Upper Triassic Quatsino Formation, defined by DoImage (1919), paraconformably overlies the Karmutsen Formation. Distribution of this unit is shown on Figure 2-1. Quatsino Formation consists of massive limestone with rare, thin (2 to 3 inches) interbeds of tuffaceous material. The unit ranges in thickness from 100 to 2500 feet. The upper contact with the overlying Parson's Bay Formation i s gradational with limestones grading upward into carbonaceous a r g i l l i t e s . Muller and Rahmani (1970) place the upper contact at the f i r s t influx of cla s t i c material. The rocks of the Quatsino Formation show l i t t l e evidence of metamorphism except for contact metamorphic/metasomatic aureoles adjacent to intrusive stocks. Limestone near a few granitic intrusions i s partly s i l i c i f i e d . Parson's Bay Formation The Parson's Bay Formation of Upper Triassic age was established by Bancroft (1913) at Parson's Bay on Harbledown Island. The term was reintroduced by Muller et a l . (1973) as a substitute for the Upper Triassic part of the sedimentary division of the Bonanza Group. The distribution of the formation i s shown on Figure 2-1. Thicknesses range from 200 to 2,000 feet. The Quatsino-Parson's Bay contact i s gradational through a sequence of grey limestone c h a r a c t e r i s t i c of the Quatsino Formation, and black calcareous s i l t s t o n e s , shales, and lime-stones with shaley inter'beds c h a r a c t e r i s t i c of the Parson's Bay Formation. Muller et a l . (1973) define the contact as the lowest s t r a t i g r a p h i c horizon where black limestone, shale and s i l t s t o n e predominate over grey limestone. The upper contact between Parson's Bay Formation and Bonanza Volcanics i s the lowest s t r a t i g r a p h i c horizon where volcanic t u f f s , breccias or flows occur. The Parson's Bay Formation north of the mine consists of a basal black limestone grading upward into black calcareous shales and s i l t s t o n e s . A black hydrocarbon with the appearance of tar occurs l o c a l l y within the a r g i l l i t e s as fracture f i l l i n g s and along bedding planes. A few beds appear to be saturated with the hydrocarbon. On a regional scale the rocks are unmetamorphosed. Contact e f f e c t s adjacent to g r a n i t i c intrusions have not been recorded. Harbledown Formation The Lower Jurassic Harbledown Formation was defined by Crickmay (1928) on the basis of mapping on Hanson, Harbledown and Swanson Islands. Muller et a l . (1973) have reintroduced the term to designate the Lower Jurassic argillite-greywacke sequence on the islands i n Queen Charlotte Sound. They have correlated these rocks with the Bonanza Volcanics of western Vancouver Island. The l i t h o l o g y of the unit i n i t s type l o c a l i t y i s dom-inantly a r g i l l i t e and i s distinguished from rocks of the Parson's Bay Formation by i t s non-calcareous character. Bonanza Volcanics The name \"Bonanza Subgroup\" o r i g i n a l l y was applied to sed-imentary and volcanic rocks overlying the Quatsino Formation on the west side of Bonanza Lake (Gunning, 1932). Muller et a l . (1973) have r e s t r i c t e d the term \"Bonanza\" to volcanic rocks over l y i n g Lower Jurassic or Upper T r i a s s i c sedimentary rocks. The name \"Bonanza Volcanics\" i s used for t h i s formation. The d i s -t r i b u t i o n of the volcanic rocks i s shown i n Figure 2-1. The base of the Bonanza Volcanics i s the lowest lava or v o l -canic breccia overlying the Parson's Bay sediments (Muller et a l 1973). Bonanza Volcanics are overla i n disconformably by Cret-aceous sedimentary, rocks. Few outcrops and abundant f a u l t s make i t extremely d i f f i c u l t to measure the thickness of t h i s unit. The best avai l a b l e est-imate, i s 8,500 feet (Muller et a l . , 1973). The Bonanza Volcanics formation consists of bedded and mass-ive t u f f s , formational breccias and rare amygdoloidal and por-p h y r i t i c flows. P o r p h y r i t i c dykes and s i l l s intrude the lower part of the unit. Northcote (1970) reports the composition of the rocks, based on r e f r a c t i v e indices determination of glass beads made by fusing powdered rock samples, to be basalt to andesite through the bulk of the section, with some rhyodacite i n the upper part. This agrees with the r e s u l t s of nineteen chemical analyses for samples from an 8,500 foot 11. section of the Bonanza Volcanics Formations reported by Muller et a l . (1973). Regional metamorphism within the Bonanza Volcanics i s very low grade, possibly z e o l i t e f a c i e s . Plagioclase commonly i s a l b i t i z e d and sausseritized. C h l o r i t e , epidote and laumonite occur' within the matrix of volcanic breccias, i n v e i n l e t s , and in amygdules. Coarse intraformational breccias l o c a l l y are hematitized. B i o t i t e and amphibolite hornfelses occur adjacent to stocks which intrude the Bonanza Volcanics. \"Pyrobitumen\", a black hydrocarbon e r r a t i c a l l y d i s t r i b u t e d wi'thin the Bonanza rocks, generally occurs as fracture f i l l i n g s or i n the centres of zeolite-carbonate veins. Its d i s t r i b u t i o n i s not related to the p o s i t i o n of the i n t r u s i v e stocks. The Lower Jurassic age of the Bonanza Volcanics i s estab-lished by f o s s i l s i n interbedded sediments. In addition, potassium-argon whole rock dates reported by Northcote (1972), suggest a late Jurassic to early Cretaceous age. Northcote considered the whole rock ages as minimum ones and believes the volcanic rocks are s l i g h t l y older than i s suggested by these ages. Cretaceous Rocks Cretaceous rocks are divided into three u n i t s : Longarm Formation, Queen Charlotte Group and Suquash Formation (Muller et a l . , 1973). These units are described i n d e t a i l by Muller. Cretaceous rocks l i e disconformably on Bonanza Volcanics. They consist of well-indurated coarse conglomerates, 12. s i l t s t o n e s , sandstones and greywackes with occasional small> discontinupus coal seams. Muller et a l . (1973) believe that they formed during a molasse-type sedimentation cycle. INTRUSIVE ROCKS Stocks A northwest-trending zone of i n t r u s i v e stocks extends from the east end of Rupert I n l e t to Queen Charlotte Sound (Figure 2-1). These stocks range i n composition from d i o r i t e to quartz monzonite and display a wide v a r i e t y of textures. Potassium-argon age determinations reported by Northcote (1972), and Carson (1973) indicate that the stocks c r y s t a l l i z e d during the early to middle Jurassic time (179.5-148 m.y.) Quartz-Feldspar Porphyry Dykes Quartz-feldspar porphyry dykes occur along the south edge of the zone of stocks. Because they are narrow (less than 100 feet) and short (less than 500 f e e t ) , they are not shown i n Figure 2-1. Dykes are characterized by coarse, subhedral quartz arid plagioclase phenocrysts set i n a pink, very fine-grained, quartz and feldspar matrix. Phases within the stock .at the east end of Rupert Inl e t , which have textures s i m i l i a r to the quartz-feldspar porphyry dykes, suggest that the dykes are apophyses from the stocks. Radiometric age determinations have not been made on the dyke rocks. 9 F e l s i c Dykes and S i l l s F e l s i c dykes and s i l l s occur around the margins of some int r u s i v e stocks. They are less than f i v e feet wide and two or 13. three hundred feet long. These fine-grained, pink, f e l s i t i c rocks cut rocks of the Karmutsen Formation, the Quatsino Formation and the Bonanza Volcanics. Northcote (personal communication, 1971) has noted a s i m i l a r i t y between these dykes and the rhyodacit.es occuring at the top of the Bonanza Volcanics. The dykes have had l i t t l e e f f e c t on the rocks they intrude. Andesite Dykes Dykes of an d e s i t i c composition, which cut the Karmutsen Formation, the Quatsino Formation and the Parson's Bay Formation, were feeders f o r Bonanza volcanism. These dykes generally are less than ten feet wide. They are e a s i l y recognized i n the Quatsino and the Parson's Bay Formations, but are d i f f i c u l t to i d e n t i f y i n volcanic rocks of the Karmutsen Formation. Basalt-Dacite Dykes T e r t i a r y b a s a l t - d a c i t e dykes are reported by Northcote (1970) as intruding lower Cretaceous sedimentary rocks. He also reports a small plug of s i m i l a r composition intruding lower Cretaceous sediments. REGIONAL STRUCTURE The map area (Figure 2-1) i s characterized by gently dipping beds o f f s e t by a complex pattern of f a u l t s . The s t r a t a , except for the gentle dip, are e s s e n t i a l l y undeformed. Folding and f l e x u r i n g of bedding i s observed only adjacent to major f a u l t s . 14. Bedding Bedding i s well developed within the Quatsino and Parson's Bay Formations. Bedding in\u00E2\u0080\u00A2volcanic rocks i s poorly developed. A l l units are s t r u c t u r a l l y conformable, with s t r i k e s s l i g h t l y north of west and dips between 20\u00C2\u00B0 and 40\u00C2\u00B0 to the southwest. North-dipping beds i n v a r i a b l y are adjacent to major f a u l t s and are the r e s u l t of drag. Faults The area i s one of block f a u l t s o f f s e t by younger f a u l t s with substantial s t r i k e - s l i p movements. Three prominent d i r e c t i o n s of f a u l t i n g ; northwest, northeast and east-northeast are recorded (Figure 2-1). Northwest-trending f a u l t s are most obvious and possibly most important. These f a u l t s cut Cretaceous and older rocks and cause r e p e t i t i o n of large parts of the s t r a t -igraphic section. Although the stratigraphy i s not established s u f f i c i e n t l y to calculate displacements, the throws of many of these f a u l t s are several hundred to thousands of feet. Northeast f a u l t s , of secondary prominence, o f f s e t the northwest set and have s t r i k e - s l i p displacements measuring hundreds of feet. The east-northeast f a u l t s are poorly developed and t h e i r age r e l a t i v e to other f a u l t - s e t s has not been established. Mineral Deposits and Regional A l t e r a t i o n Mines and mineral occurences shown i n Figure 2-2 are divided into four groups: I 15. Table 2-2 Known or Class Probable Age Mid Jurassic 2. Jurassic and Tertiary 3. Jurassic and Tertiary Jurassic and Tertiary Upper T r i a s s i c Jurassic and Tertiary CLASSES OF METALLIFEROUS DEPOSITS (After K. E, Northcote, in Muller et a l . , 1973) Metal Example Mineralogy Porphyry Copper Lead-Zinc Skarn or Re-placement in Limestone Copper Skarns Iron Skarns Copper in Basic Volcanics Cu 0.5% MoS2 0.029% Pb, Zn, (Ag, Au) Cu (Au, Ag, Fe) Fe (Cu) Cu Island Copper H.P.H. Chalcopyrite, molybden-i t e , (bornite), magne-t i t e , pyrite, hematite Sphalerite, galena Old Sport- Chalcopyrite, bornite Benson magnetite Lake Copper-Bearing Cu Quartz Veins (Mo/Ag & Shear Zones Au, Zn) Merry Widow Minning-ton. Rick Quatsino King Magnetite, minor specularite and sulphides Chalcopyrite, bornite, native copper Chalcocite, chalco-pyrite, (pyrite, pyrrhotite, molybdenite) Host and Associated Formation Bonanza volcanics; pyro-c l a s t i c rocks of andesite and basalt composition. To a lesser extent, brecciated and altered quartz-feldspar porphyry Limestone of Sicker Group, upper Karmutsen and Quatsino Formations Sicker Group limestone, in skarnified volcanic and sedi-mentary rocks at Quatsino-Karmutsen contact. Some de-posits in Quatsino-Karmutsen limestones Quatsino Formation and/or adjacent skarnified volcanic and intrusive rocks Karmutsen Basalt, tuff and breccia Karmutsen Formation, Bonanza Volcanics, gra..itic rocks Structural Control 1. Brecciation in and adjacent to quartz-feldspar porphyry intruding Bonanza rocks presumably following shear zones. 2 . 3. Limestone-intrusive contacts folds, fractures, breccia zones and favourable horizons 4. Intrusive contacts, folds fractures, stratigraphic contacts, breccia zones 5. Amygdaloidal beds, fractures small shears in basic . volcanic rocks 6. Narrow shear zones, large fractures, fracture zones near faults and contacts Associated Alteration Epidote, c h l o r i t e , s e r i c i t e , pyrite, b i o t i t e , s i l i c a , kaolin, pyrophyllite, dumortierite, carbonate, laumonite, pyrobitumen S i l i c i f i c a t i o n , skarn Skarnification, epidote, garnet, various other calcium s i l i c a t e s including wollastonite, diopside, a c t i n o l i t e , hedenbergite, etc., and i l v a i t e . Skarnification as above May or may not be associated with carbonate and/or quartz Strong s i l i c i f i c a t i o n and/or carbonatization may or may not be present 1 Intrusive (Genetic-Spatial) S i l i c i c stocks and quartz-feldspar porphyry complex. Granitic to gabbroic and porphyri-t i c intrusions Jurassic and Tertiary intrusive of varied composition Jurassic and Tertiary intrusive of varied composition None; thought to be generated within the volcanic rocks Granitic to gabbroic and por-p h y r i t i c intrusions believed to be genetically related to these deposits o r Z7 v F I G . 2-2 1 6 . M I N E S a n d M I N E R A L O C C U R E N C E S O F N O R T H E R N V A N C O U V E R I S L A N D (Modified after Muller ef al., 1973J MILLS a-G ii o 10 a 3/ l e g e n d : L\ Porphyry Copper ED Copper Veins (3 Lead-Zinc Skarn O Copper 3kam O /ro/7 Skarn Q Copper In Volcanics A D O Mineral Occurence A I I O ^ \u00C2\u00AB , ^\u00E2\u0080\u0094A | | v_y f present or pasf producer) < f Zb/7\u00C2\u00AB of Intense alteration PORPHYRY COPPER DEPOSITS SKARN DEPOSITS 1. Bay 29, 77, (Yankee G i r l ) COPPER 2. Road 10. Frances 3. Island Copper (Bay) 11. L i t t l e Joe 4. Bay 21 12. Caledonia 5. Bay 4 13. Haw 6. Bay 7 4 14. Mor 7. Expo #1 15. North Shore, Lake, 8. Hep Jean 9. Red Dog 16. Mon, T i 17. CS 1801, 1809, 1910 IRON 18. Caledonia 19. Sun, St. C l a i r e 20. Ori SKARN DEPOSITS COPPER IN VOLCANICS LEAD-ZINC 31. Har, Expo 21. \"A\" 32. Deb 22. Haw 24 33. Haw 2 6 23. Rain, Main, #1 34. Haw 15 24. HPH, Main, #1 35. Wit, Haw 34, Haw 44 25. Norman, Contact Creek 36. Hoi 26. Laury, Anon 37. Jay, Seal 27. Expo 81, Expo 2 02, 38. Stuart j Bowerman, Dictator 39. M i l l i n g t o n , Stuart 40. AAA #48 COPPER VEINS 41. Lois i 28. Dem (Rupert) 42. CS 6422 29. CS 495 1 30. Aird 17. (1) Porphyry copper deposits (2) Skarn deposits (3) Copper Mine r a l i z a t i o n i n Volcanic Rocks ( 4 ) Vein deposits The system of c l a s s i f i c a t i o n i s that used by Carson (1968). Porphyry copper deposits on the north end of Vancouver Island are associated with bodies of quartz-feldspar porphyry which intrude the Bonanza Volcanics. A l l known porphyry copper show-ings are within a zone of hydrothermally al t e r e d Bonanza Volcanics approximately one mile wide and f i f t e e n miles long (Figure 2-2). Northcote (1970) described the a l t e r a t i o n i n t h i s zone as predominantly s i l i c i f i c a t i o n and a r g i l l i z a t i o n with l o c a l bodies of p y r o p h y l l i t i z e d breccia. A l t e r a t i o n of t h i s type i s r e s t r i c t e d to the Bonanza Volcanics. Skarn deposits of copper, iron and lead-zinc are associated with i n t r u s i v e rocks cutt i n g limestones of the upper Karmutsen Formation, the Quatsino Formations and the lower carbonate sequence of the Parson's Bay Formation (compare Figures 2-1 and 2-2). Skarns mostly occur along the limestone-intrusion contact, but at some skarn showings i n t r u s i v e rocks are not exposed. Contact a l t e r a t i o n consists of s i l i c i f i c a t i o n of the limestone and formation of epidote-andradite-magnetite skarns l o c a l l y accompanied by hedenbergite and i l v a i t e both i n lime-stones, and basalts. Chalcopyrite, p y r i t e , bornite, sphalerite and galena occur within these skarns (Table 2-2). The copper showings i n volcanic rocks are r e s t r i c t e d to the Karmutsen Formation. Chalcopyrite, bornite and native copper occur i n amygdules, fractures and small shears. Associated a l t e r a t i o n consists of minor amounts of carbonate and quartz. Vein deposits occur i n the Karmutsen Formation, the Bon-anza Volcanics and g r a n i t i c rocks (Figure 2-2). Chalcocite and chalcopyrite with p y r i t e , p y r r h o t i t e , and molybdenite occur i n shear zones, large fractures arid fracture zones near f a u l t s . Intense s i l i c i f i c a t i o n and carbonatization can be associated with the copper mineralization. 19, CHAPTER 3: MINE GEOLOGY INTRODUCTION Island Copper mine occurs in the volcanic section of the Bonanza Volcanics. Ore zones are in volcanic rocks in the hanging-wall and footwall of a quartz-feldspar porphyry dyke. The dyke contains minor amounts of chalcopyrite but very l i t t l e ore-grade material. , A detailed knowledge of the stratigraphic position, lithology and structural history of a deposit i s in many mineral deposits an obvious prerequisite to a study of the wall-rock alteration associated with the deposit. Stratigraphic position may give an indication of the depth at which the alteration formed and from this pressures can be interpreted. The lithology governs the i n i t i a l chemical response of the rocks to hydrothermal conditions. Fractures and faults which existed at the time of formation of the deposit largely control the permeability of the rocks to hydrothermal solutions and thus control the extent, the intensity and the patterns of alteration. STRATIGRAPHIC POSITION Because of the absence of detailed stratigraphic knowledge of the Bonanza Volcanics, i t i s d i f f i c u l t to determine the exact stratigraphic position of the deposit. However, i t i s possible to estimate limits for the stratigraphic position. F i r s t , the stratigraphic thickness of the Bonanza Volcanics must be established. Muller (1970) measured a section of 8,500 feet of Bonanza Volcanics and Jeletsky (1969) reports a section of 8,000 feet. These figures give an indication of the order of magnitude of the thickness of the unit. Considerable l a t e r a l thickening and thinning may be present i n t h i s v o l -canic section, but these cannot be estimated. Assuming no r e p e t i t i o n of the section due to f a u l t i n g , the Island Copper deposit i s , on the basis of geometry, about 5,000 feet s t r a t i g r a p h i c a l l y above the lower contact with the Parson's Bay Formation. However, there i s l i t t l e outcrop between t h i s contact and the mine area. Because three major northeast trending lineaments, which may represent f a u l t s , l i e between the contact and the deposit, estimates of s t r a t i g r a p h i c p o s i t i o n based s o l e l y on geometry are extremely hazardous. Surface diamond d r i l l i n g at the deposit has penetrated 1,200 feet of the s t r a t i g r a p h i c section without i n t e r s e c t i n g the Parson's Bay Formation. Assuming no r e p e t i t i o n of section i n the rocks d r i l l e d , part of the deposit formed at l e a s t 1,200 feet above the Parson's Bay Formation. Limits to the deposit's depth of formation may be estimated from t h i s data. Maximum depth would be 6,800 feet that i s the entire thickness of the Bonanza Volcanic Formation (8,000 feet) less the 1,200 feet intersected by d r i l l i n g . The minimum depth would be zero feet as the 1,200 feet of rock intersected by d r i l l i n g could represent the enti r e thickness of the Bonanza Volcanics i n the v i c i n i t y of the mine. A reasonable estimate l i e s between 1,000 and 5,000 feet. This estimate i s supported by petrologic data discussed l a t e r . 2 1 i 22 7-SOOM I4JQ0 S-SOON I.SOON ~~ Fault Contoct: Definite, Assumed \u00C2\u00AE 0-16 Sample point I 7. OOP NI 6 0 Q 0 N IBffflnj Island Copper Pit (Oct . 1972 ) F i g u r e 3 - 2 G EOLOGY : RG.C. LITHOLOGY Volcanic Rocks The Bonanza Volcanics i n the mine area are part of a p i l e of andesitic p y r o c l a s t i c rocks with wide variati o n s i n texture. These rocks form a b e l t which s t r i k e s N70\u00C2\u00B0W and dips 25\u00C2\u00B0 - 30\u00C2\u00B0 SW. Primary textures of the volcanic rocks are increasingly more vague as the dyke i s approached and disappear within 400 feet of the dyke contact (Figure 3-3). Fresh, unaltered rocks are l i t h i c t u f f s , c r y s t a l t u f f s , l a p i l l i t u f f s and formational breccias (Plate I,, A,B,C,D, E; and Plate IV., A,B) with rare beds of chert. These units have very l i m i t e d l a t e r a l extent, which makes i t impossible to correlate most i n d i v i d u a l units between sections 200 feet apart. However, an exception i s a unit of hematitized breccia, which i s exposed i n core, along the shore of Rupert I n l e t south of the p i t and i n the excavations for foundations of the m i l l b u i l d i n g . It has been traced more than 6,000 feet along s t r i k e on the south side of the deposit. Bedding and graded-bedding are observed i n good exposures of t u f f s and l a p i l l i t u f f s . Breccias l o c a l l y show bedding but tend to be massive. Few of the volcanic rocks have retained t h e i r o r i g i n a l textures. Textures are preserved i n l i t h i c l a p i l l i t u f f s , l i t h i c and c r y s t a l t u f f s and formational breccias. L i t h i c fragments generally are porp h y r i t i c sometimes with a t r a c h y t i c matrix. Many po r p h y r i t i c fragments are c r y s t a l t u f f s . In volcanic rocks near the orebody, a l t e r a t i o n i s so intense that i t i s d i f f i c u l t to determine the o r i g i n a l mineralogy of the rocks. Plagioclase phenocrysts are in v a r i a b l y a l b i t i z e d . Mafic 2 5 . PLATE I OUTCROPS AND HAND SPECIMENS A. Bonanza Volcanics - Formational Breccia Matrix and many fragments are colored box-car red by pervasive hematite. Scale on outcrop i s one inch. B. Bonanza Volcanics - L i t h i c Tuff I n t r i c a t e sedimentary and post-diagenetic structures are shown by some of p y r o c l a s t i c rocks. Scale on outcrop i s one inch. C. Bonanza Volcanics - L i t h i c L a p i l l i Tuff This sample i s t y p i c a l of volcanics on the north wall of the p i t . Bedding i s d i f f i c u l t to discern but fragmental nature of rock i s apparent. D. Bonanza Volcanics - L i t h i c L a p i l l i Tuff A t h i n section of C showing L i t h i c nature of fragments E. Bonanza Volcanics - Formational Breccia Fragments are coloured box-car red by pervasive hematite. Matrix i s coloured chalky white by z e o l i t e (laumontite). F. Quartz-Feldspar Porphyry Phenocrysts of quartz, plagioclase, and c h l o r i t e pseudomorphing mafic minerals are c l e a r l y v i s i b l e . G. Cretaceous Conglomerate A sample of conglomerate from Cretaceous outcrops south of m i l l buildings. H. Cretaceous Sedimentary Unit Discontinuous c o a l seams i n the Cretaceous s t r a t a . Abbreviations Used on the Plate q - quartz c l - c h l o r i t e f - plagioclase feldspar 26. minerals are almost invariably_ c h l o r i t i z e d , but pyroxene and amphibole phenocrysts pseudomorphed by c h l o r i t e can be recognized i n some cases. Quartz phenocrysts. have not been recognized. The matrix of the few samples that were not t o t a l l y altered i s a very fine-grained mass of a l b i t i c feldspar laths. Finer-grained volcanic rocks appear to be a combination of waterlain t u f f s and e p i c l a s t i c volcanic rocks. Breccias may have been formed by submarine mud-flow. Quartz-Feldspar Porphyry Dyke A tabular dyke of quartz-feldspar porphyry, 2,400 feet of which i s exposed i n the p i t , has been traced by d r i l l i n g for more than a mile along s t r i k e (Figures 3-1, 3-2). The dyke s t r i k e s N70\u00C2\u00B0W and dips at 50\u00C2\u00B0NE, approximately at r i g h t angles to the bedding i n the volcanic rocks. Exposure i n the p i t indicates a true width of 400 feet, which corresponds with interpretations from diamond d r i l l i n t e rsections. However the actual width of the dyke i s variable and accurate estimates are hampered by a marginal breccia (Figures 3-1, 3-2, 3-3) containing a high per-centage of dyke fragments. D i s t i n c t i o n between dyke and breccia often i s d i f f i c u l t i n the p i t and nearly impossible i n d r i l l core, p a r t i c u l a r l y when both dyke and breccia are highly altered. The form of the dyke also i s complicated by apophyses of quartz-feldspar porphyry extending from the body of the dyke (Figure 3-2). At the northwest end of the p i t the dyke i s capped by pyro-p h y l l i t e breccia whereas at the southeast end of the p i t the dyke plunges under Bonanza Volcanics. Intense a l t e r a t i o n of most of the dyke makes i t d i f f i c u l t to 28. define c l e a r l y the o r i g i n a l composition. However, the central portion of the dyke, which shows the l e a s t a l t e r a t i o n , i s granodiorite. Less-altered bodies of quartz-feldspar porphyry beyond the map area also are granodiorite (Muller et a l . , 1973). The porphyry consists of phenocrysts of quartz (5-15%), plagioclase (20-30%), and occasional mafic minerals, pseudo-morphed by c h l o r i t e (5-10%) (Plate I., F, and Plate V., A,B,C) set i n a fine-grained matrix of quartz (15-20%), plagioclase (10-25%) and potash feldspar (15-25%). Quartz phenocrysts are the most c h a r a c t e r i s t i c features of the rock. They are large (4-5mm.), subhedral and show moderate to strong embayment along the margins. Quartz phenocrysts are r e s i s t a n t to a l t e r a t i o n and p e r s i s t through a l l types and degrees of a l t e r a t i o n . Plagioclase phenocrysts are s l i g h t l y smaller (2-3mm.) than quartz phenocrysts. They generally occur i n glomeroporphs. The c r y s t a l s are mostly unzoned or normally zoned; but some complex zoning was noted. Composition of the plagioclase i s d i f f i c u l t to determine because the phenocrysts generally are altered to s e r i c i t e (Plate VI.,H). In the few specimens where the plagioclase i s re-l a t i v e l y unaltered, compositions of An 5 to 15 were obtained. However, these grains everywhere are associated with al t e r e d plagio-clases and i t i s d i f f i c u l t to e s t a b l i s h whether these represent average compositions or compositions which are more r e s i s t a n t to a l t e r a t i o n . Mafic phenocrysts are altered, e i t h e r to c h l o r i t e , epidote, carbonate, magnetite and leucoxene, or to white mica, clay minerals, p y r i t e , and leucoxene (Plate V., B,C,D,E). Rare patches of c h l o r i t e are c l e a r l y pseudomorphs of euhedral 29. ' amphiboles, but most are anhedral. Most of the fine-grained matrix of the dyke i s highly altered. However, where r e l a t i v e l y unaltered, i t consists of a microgranitic assemblage of equant quartz, subhedral plagio- \u00E2\u0080\u00A2 clase ( a l b i t i c ) and anhedral orthoclase. Orthoclase generally i s more altered than plagioclase, even i n \"fresh\" rocks, but i t s presence was confirmed by etching and staining both hand specimens and thin sections. Magnetite, leucoxene and p y r i t e are associated with c h l o r i t e pseudomorphs and probably formed as by-products during the a l t e r a -t i o n of the o r i g i n a l mafic minerals. The dyke e x h i b i t s many c h a r a c t e r i s t i c s of an epizonal pluton as outlined by Buddington (1959). I t i s po r p h y r i t i c , discordant, and exhibits contact metamorphic/metasomatic e f f e c t s . The f i n e -grained c h i l l e d margins of the dyke are now fragments i n the marginal breccia. Northcote (1970) suggested that the intrusions with which i t i s associated are c l o s e l y related to extrusive rocks in the upper part of the Bonanza Volcanics, suggesting that they are feeders for the l a t e r stages of the volcanism. The dyke i s flanked by contact breccias and capped by an explosion breccia. A l l of these c h a r a c t e r i s t i c s suggest shallow emplacement. Radiometric age determinations have not been made on the dyke. However i t i s believed contemporaneous with the grano-d i o r i t e stock at the end of Rupert Inlet which has been dated by K-Ar on b i o t i t e at 154-6 M.Y. (Northcote, 1972) Intrusive Breccias Pyrophyllite Breccia Pyrophyllite breccia occurs as a tabular body capping the 30. porphyry dyke on the northwest end of the deposit (Figures 3-1, 3-2,.3-3). The breccia zone i s approximately 350 feet wide and was traced more than 3,600 feet along s t r i k e . The breccia i s wedge-shaped, thickening to the northwest. The breccia i s open textured, with fragments separated by matrix (Plate VII., A , B ) . \u00E2\u0080\u00A2 Average si z e of the rounded fragments i s six inches i n diameter with size ranges from one-half inch to eighteen inches. Fragments consist of both quartz-feldspar porphyry recognizable because of the large quartz phenocrysts, and fine-grained massive material, presumably completely altered volcanic rocks. The middle part of the breccia contains a higher proportion of porphyry fragments than the borders. The o r i g i n a l texture of the altered porphyry fragments i s lar g e l y preserved. Quartz phenocrysts are unaltered and plagio-clase and mafic phenocrysts pseudomorphed by patches of f i n e -grained white mica and quartz. Volcanic fragments consist of quartz grains completely surrounded by white mica (Plate VII.,H). The matrix of the breccia i s s i m i l a r to the volcanic fragments, except that the quartz and white mica grains are of f i n e r grain. Marginal Breccias Marginal breccias are tabular bodies which roughly p a r a l l e l the contacts of the quartz-feldspar porphyry dyke (Figures 3-1, 3-2, 3-3). A l l breccias occuring between dykes of unbrecciated porphyry are also included i n t h i s group. The width of the marginal breccias i s extremely v a r i a b l e . In most places there are 50 to 100 feet of breccia between the porphyry dyke and the volcanic rocks on the hanging wall of the dyke; but l o c a l l y the enti r e width of the dyke i s brecciated. These breccias continue to at l e a s t 1,800 feet below the ground surface without apparent change. However, knowledge of the breccias at depth i s based on very few d r i l l holes. Recognition of t h i s type of breccia i s d i f f i c u l t both i n core logging and p i t mapping, making lo c a t i o n of the contacts d i f f i c u l t . Marginal breccias are less d i s t i n c t l y open textured than the p y r o p h y l l i t e breccia because the fragments usually are separated by vein quartz. Fragment composition ranges from 100 percent volcanic near the volcanic contact to 100 percent porphyry near the dyke contact and with mixtures of varying proportions i n between. Breccias surrounded by unbrecciated quartz-feldspar porphyry consist e n t i r e l y of porphyry fragments. Where volcanic and porphyry fragments are mixed, the breccia i s a true breccia, with fragment movement and r o t a t i o n . However, as the contacts are approached, the breccia resembles a \"crackle breccia\" with l i t t l e fragment movement or r o t a t i o n . Because there are no beds retaining d i s t i n c t i v e c h a r a c t e r i s t i c s near the contact of the breccias, i t i s not possible to determine d i r e c t i o n of movement of fragments within the marginal breccias. Yellow Dog Breccia The Yellow Dog Breccia derives i t s name from c h a r a c t e r i s t i c rusty-brown, ferroan dolomite which occurs as t i n y v e i n l e t s . Tabular breccia bodies range from 50 to 200 feet i n width and widen with depth. They are exposed for approximately 800 feet along t h e i r length. The bodies trend north and northeast and dip steeply (Figure 3-1, 3-2). The breccias consist of fragments of highly altered volcanic rocks separated by several ages of quartz and carbonate veins (Table 3-1 ) . Because the fragments do not appear rotated, the breccia resembles a \"crackle breccia\" more than an i n t r u s i v e breccia (Plate VIII., A,B,C). At present, mining development along the south wall of the p i t i s not adequate to reveal the r e l a t i o n s h i p between the mar-gin a l breccia, the \"Yellow Dog Breccias\" and the porphyry dyke. Formation of Intrusive Breccias Breccias associated with ore deposits are subjects of a voluminous l i t e r a t u r e . The poorly exposed breccias at the Island Copper mine do not lend themselves to d e t a i l e d investiga-t i o n at present. As mining operations continue, more d e t a i l e d study may add information to help e s t a b l i s h the o r i g i n of these breccias. At present only a few comments are possible. Marginal breccias adjacent to the quartz-feldspar porphyry dyke probably are formed by upward drag of the intruding dyke. The d i s t r i b u t i o n of fragments, quartz-feldspar porphyry near the dyke, and volcanic near the outer margin of the breccia, supports t h i s theory. Unfortunately the absence of recognizable units within the volcanic rocks adjacent to the breccias makes i t im-possible to demonstrate d i r e c t i o n of movement of fragments i n the breccia. The p y r o p h y l l i t e breccia, which caps the porphyry dyke, i s more t y p i c a l of i n t r u s i v e breccias associated with porphyry copper deposits. There are many theories which attempt to explain the formation of t h i s type of breccia. The more popular ideas include 1 ) V o l c a n i c Explosion Brecciation (Norton and Cathles, 1 9 7 3 ) caused by gas accompanying a magma which shatters the overlying rocks; 2) Collapse Brecciation (Perry, 1961) caused by the collapse of overlying rocks into an emptied magma chamber; 3) Fault Brecciation (Kennedy and Nordlie, 1968) caused by movement on single f a u l t s or by movements on one or more i n t e r s e c t i n g f a u l t s ; 4) Multiple Intrusion Brecciation (Johnston and Lowell, 1961) caused by repeated i n t r u s i o n and recession of a body of magma; 5) Shock Brecciation (Godwin, 1973) caused by a shock wave passing through a body of rock to surface; 6) Chemical Brecciation (Sawkins, 1969) caused by hydrothermal a l t e r a t i o n of the rock involving large changes i n volume; 7) Impact Brecciation (Dietz, 1961) caused by the impact of c e l e s t i a l bodies on the earth's surface. A number of these theories are rejected as improbable for the Island Copper examples. The tabular nature of the breccia does not f i t the impact breccia theory. Collapse breccias imply a net downward movement, while the porphyry fragments i n the pyro p h y l l i t e breccia suggest a net upward movement. Shock breccias imply a source f o r the shock waves which i s not evident. Intense hydrothermal a l t e r a t i o n within the Py r o p h y l l i t e Breccia makes the chemical b r e c c i a t i o n theory a t t r a c t i v e at f i r s t . However, f i e l d studies at Conception Bay, Newfoundland (Buddington, 1916) show that volcanic beds can be traced through a zone of pyr o p h y l l i t e a l t e r a t i o n with no change i n thickness and that the volcanic textures are obscured but not o b l i t e r a t e d by the p y r o p h y l l i t i z a t i o n . This suggests l i t t l e change i n volume. Fault b r e c c i a t i o n i s another a t t r a c t i v e hypothesis, i f one assumes that the dyke i s intruded into a pre-existing f a u l t zone. However a f a u l t breccia approximately 400 feet wide implies a major f a u l t and there, i s no evidence of great displacement between the two sides of the dyke. The f i e l d of speculation seems thus narrowed to two hypo-theses: volcanic explosion or multiple intrusion, or some combination of the two. The volcanic explosion theory i s very a t t r a c t i v e when the extremely fine-grained nature of the matrix i n the dyke and the shallow depth of emplacement are considered. Upward flow of vola-t i l e s could also explain the intense a l t e r a t i o n i n the breccia. Northcote and Muller (1972) favour t h i s hypothesis. The multiple i n t r u s i o n theory i s another a t t r a c t i v e hypothesi Later pulses of magma rela t e d to the dyke could account for the in t e r n a l b r e c c i a t i o n of and possibly for the \"crackling\" of the ore zone. Unfortunately, while present evidence suggests one of these hypotheses, i t i s not s u f f i c i e n t to decide between them or to even completely eliminate some of the other ideas. The formation of the \"Yellow Dog\" breccias i s another major problem. Because of t h e i r attitude at r i g h t angles to other major st r u c t u r a l elements and the ore zone, they were not thoroughly i n -vestigated i n the d r i l l i n g program. From t h e i r geometry within the p i t , widening with depth, Lamb (personal communication, 197 2) suggests that they may be cappings on dykes. 3 5 . Cretaceous Sedimentary Rocks Cretaceous sedimentary rocks of the Queen Charlotte Group (Muller et a l . , 1973) disconformably o v e r l i e formational breccias of the Bonanza Volcanics on the southeastern part of the Island Copper property (Figures 3-1, 3-4). The Cretaceous rocks are coarse conglomerates with interbedded sandstones and s i l t s t o n e s and occasional t h i n , poor-quality coal seams (Plate I., G,H). Most cobbles within the conglomerate are coarse-grained grano-d i o r i t e . Occasional cobbles of fresh quartz-feldspaf porphyry have been noted. Cretaceous sediments are well indurated but not metamorphosed. Hydrothermal a l t e r a t i o n and mineralization are absent. STRUCTURAL GEOLOGY Bedding Bedding within the Cretaceous sedimentary rocks i s w e l l -defined and e a s i l y measured. Bedding within the Bonanza Vol-canics near the deposit i s d i f f i c u l t to recognize and primary structures have been destroyed within the ore zone. Bedding along the north wall of the mine p i t generally i s poorly defined, but bedding i n some outcrops beyond the northern edge of the p i t i s well-defined. Good exposures of volcanic breccias with well-defined bedding were exposed during the excavation for the m i l l buildings. Attitudes of bedding are shown on stereonets i n Figure 3-4. Although r e l a t i v e l y few points are shown they appear to form s i g n i f i c a n t c l u s t e r s . From Figure 3-4, i t i s apparent that bedding within Cretaceous sediments and Bonanza Volcanics i s s t r u c t u r a l l y conformable with s t r i k e s around 100\u00C2\u00B0 and dips near 3 6 . 30\u00C2\u00B0 southwest. If the beds were deposited roughly h o r i z o n t a l l y , then the t h i r t y degree southwesterly dip of the dip of the v o l -canics i s the r e s u l t of post-Cretaceous adjustment. Further, because the porphyry dyke i s pre-Cretaceous and roughly at r i g h t angles to the bedding, i t was intruded as a v e r t i c a l body. This 30 degree southwest t i l t of the layered rocks i n the v i c i n i t y of the Island Copper mine i s apparently the r e s u l t of movement along a f a u l t i n Rupert Inlet. Fractures Fracture patterns i n the v i c i n i t y of the Island Copper mine are complex. The complexity appears to come from the super-p o s i t i o n of several periods of intense f r a c t u r i n g . An attempt to categorize the fractures on the basis of geometry (Figures 3-4, 3-5) f a i l e d to y i e l d reasonable data. Faults Recognition of f a u l t s i n the v i c i n i t y of the Island Copper deposit i s hampered by lack of outcrop and lack of d e t a i l e d s t r a t i g r a p h i c knowledge. Airphoto i n t e r p r e t a t i o n , described by Rugg and Young (197 0), indicates photo l i n e a r trends at: 1) E to N 70\u00C2\u00B0 W 2) N 70\u00C2\u00B0E 3) N 40\u00C2\u00B0 - 60\u00C2\u00B0W ) r ) Subordinate Trends 4) N 20\u00C2\u00B0 W ) The f i r s t three trends correspond to regional trends de-scribed by Northcote (1970) (Figure 2-1). The fourth trend (N20\u00C2\u00B0W) has not been recognized on a regional scale. 3 8. 7 . Q Q 0 N I Quartz Veins within Pyrophyllite Breccia 4 . 5 0 0 N \u00C2\u00BB-^-*- Fault, showing dip r- Shear, showing dip \u00C2\u00A9 0 - 1 0 sjomple point Island Copper Pit (Oct. 1972 ) Figure 3-5 STRUCTURE P-O-C, Within the part of the p i t developed to November\u00E2\u0080\u00A21972, there are two prominent f a u l t zones. One i s the End Creek Fault, which corresponds to the t h i r d set of air-photo l i n e a r s (Young and Rugg, 1971)and to Northcote's (1970) t h i r d regional set. I t s t r i k e s N55\u00C2\u00B0W and dips steeply to the northeast (Figures 3-3, 3-4). The f a u l t i s expressed as a zone of crushed rock 50 to 100 feet wide. In the p i t , the End Creek Fault forms the south boundary of the porphyry dyke which i t apparently o f f -sets. However at depth the f a u l t plane and dyke diverge (Figure 3-3). Offset of a l t e r a t i o n assemblages suggests normal movement along the f a u l t plane (Figure 5-2). Because the End Creek Fault cuts o f f the ore zone and the a l t e r a t i o n patterns, i t i s concluded that movement was post-mineralization. Copper mineralization i s not l o c a l i z e d along the f a u l t , which suggests that the f a u l t was not a prominent feature at the time of formation of the orebody. A second prominent f a u l t zone within the p i t , the November Fault, trends northeast and dips very steeply. The f a u l t zone i s from 100 to 200 feet wide. The p o s i t i o n of the porphyry on the northwest side of the f a u l t suggests a dextral s t r i k e -s l i p movement. Amount of displacement, i f any, i s unknown. D r i l l i n g data suggest that the End Creek Fault displaces the November Fault. Veins A tentative c o r r e l a t i o n between the veins found i n the various parts of the ore deposit i s given i n Table 3-1. Be-cause the veins are too short and i r r e g u l a r to follow from one zone to another, c o r r e l a t i o n i s based on mineralogic s i m i l a r i t y . TABLE -3-1 Set (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Ore Zone TENTATIVE VEIN CORRELATION \"Yellow.Dog\" Breccia Marginal Breccia S i l i c i f i c a t i o n Quartz (Smoky) P y r i t e Quartz (Milky) Chalcopyrite P y r i t e . minor Molybdenite Quartz Molybdenite P y r i t e minor Chalcopyrite ( S e r i c i t e Envelopes) Quartz P y r i t e \" S l i p s \" Molybdenite minor Chalcopyrite minor P y r i t e Carbonate Z e o l i t e P y r i t e minor Sphalerite Hematite Chalcopyrite Chalcopyrite P y r i t e Quartz (Smoky) P y r i t e Quartz Chalcopyrite P y r i t e Quartz P y r i t e Quartz Chalcopyrite P y r i t e Quartz Molybdenite Quartz \" S l i p s \" Molybdenite minor Chalcopyrite minor P y r i t e Buff Dolomite Carbonate P y r i t e Quartz P y r i t e minor Chalcopyrite Carbonate Py r i t e mxnor Sphalerite P y r o p h y l l i t e Breccia Quartz Quartz Quartz-Feldspar Porphyry Quartz P y r i t e Quartz Quartz minor Chalcopyrite minor Chalcopyrite minor P y r i t e Quartz Molybdenite P y r i t e Dumortierite Carbonate P y r i t e minor Molybdenite \" S l i p s \" Molybdenite minor Chalcopyrite minor P y r i t e Carbonate Zeo l i t e P y r i t e minor Sphalerite o 41. Set 1 \"veins\" are s i l i c i f i c a t i o n of the matrix i n the Yellow Dog Breccia and quartz veins i n the Pyrophyllite Breccia. Veins belonging to t h i s set were not recognized i n the Ore Zone, the Marginal Breccia or the porphyry dyke. Veins of set 2 occur i n a l l parts of the deposit. In the Ore Zone they are smoky quartz veins which have been shattered and recemented with material from the t h i r d set of veins (Figure 3-6A). In the Yellow Dog Breccia they are recemented with material from the Set 4 veins. In the Marginal Breccia, the Pyrophyllite Breccia, and the porphyry dyke, there are quartz veins containing minor amounts of p y r i t e . Quartz-chalcopyrite-pyrite veins of set 3 occur i n a l l parts of the deposit (Figure 3-6 A, B, C, E). They are t h i n , almost h a i r l i n e veins and do not have a well-developed uniform or i e n t a t i o n . In the Ore Zone they are very c l o s e l y spaced, but i n the other parts of the deposit they are more e r r a t i c a l l y d i s t r i b u t e d . Trace amounts of molybdenite occur i n these veins i n the Ore Zone and quartz-feldspar porphyry. Quartz-molybdenite-pyrite veins of set 4 occur i n the Ore Zone, the Marginal Breccia and Pyrophyllite Breccia. In the Ore Zone they are characterized by a l t e r a t i o n envelopes r i c h i n s e r i c i t e (Figure 3-6, B, C, D, E, F; Figure'3-5). Quartz and quartz-pyrite veins of set 5 are only recognized i n the Ore Zone and the Marginal Breccia. In the Ore Zone they are quartz-pyrite veins (Figure 3-6, C, E); i n the Marginal Breccia they are quartz veins. The r e l a t i o n s h i p between these veins and the Molybdenite \" s l i p s \" of set 6 i s obscure, but set 5 are t e n t a t i v e l y considered older. Molybdenite \" s l i p s \" constitute set 6 \"veins\". These are fracture surfaces coated with molybdenite (Figure 3-5). The 4 2 . Figure 3-6 SKETCHES ILLUSTRATING AGE RELATIONS OF VEINS WITHIN THE ORE ZONE A. Set 2 quartz vei.n within b i o t i t i z e d volcanics (indicated by stippl i n g ) crosscut by set 3 fracture f i l l i n g chalcopyrite, p y r i t e and quartz, crosscut by a set 4 quartz and molybdenite vein, crosscut by a set 9- carbonate vein. B. B i o t i t i z e d volcanics (stippled) crosscut by set 3 fracture f i l l i n g chalcopyrite, p y r i t e and quartz, cross-cut i n turn by a set 4 quartz-molybdenite vein with a s e r i c i t e envelope cross-hatched) which i s cut i n turn by a set 9 carbonate vein. C. B i o t i t i z e d volcanics (stippled) crosscut by set 3 fracture f i l l i n g chalcopyrite, p y r i t e , and quartz which are cut i n turn by a set 4 quartz-molybdenite vein with an inner q u a r t z - s e r i c i t e envelope and an outer bleached zone. Both the quartz-molybdenite vein and the a l t e r a t i o n envelopes are crosscut by a set 5 barren quartz vein. D. A highly altered fragmental volcanic, c l o t s of c h l o r i t e i n a s i l i c i f i e d matrix, i s crosscut by a set 4 quartz-molybdenite vein with a s e r i c i t e envelope, which i s crosscut by a set 6 molybdenite s l i p surface which i s cut i n turn by a set 9 carbon-ate vein. E. B i o t i t i z e d volcanics (stippled) are crosscut by set 3 fracture f i l l i n g quartz, chalcopyrite and p y r i t e , which i s crosscut i n turn by a set 4 quartz and molybdenite vein with a s e r i c i t e envelope which i s cut by both a set 5 barren quartz vein and a set 6 molybdenite s l i p surfaces. The molybdenite s l i p surface i s cut by a set 9 carbonate vein. F. A highly a l t e r e d fragmental volcanic c o n s i s t i n g of c h l o r i t i z e d and b i o t i t i z e d fragments i n a s i l i c e o u s matrix crosscut by a set 4 quartz and molybdenite vein with a s e r i c i t e envelope which i s cut i n turn by two set 9 carbonate veins. Abbreviations QV Quartz vein CV Carbonate vein f f fracture f i l l i n g Q Quartz Mo Molybdenite Cp Chalcopyrite Py Pyrite S S e r i c i t e Number indicates vein set outlined in Table 3-1 43. most recent movement on these surfaces, indicated by s l i c k e n -sides on the molybdenite/ f i t s i nto the r e l a t i v e p o s i t i o n shown i n Table 3-1. However the age of deposition of the molyb-denite i s not known. Many molybdenite \" s l i p s \" occur i n Marginal Breccia and the Ore Zone and a few were noted i n the porphyry dyke. Set 7 and set 8 of veins are r e s t r i c t e d to the P y r o p h y l l i t e Breccia and the Yellow Dog Breccia r e s p e c t i v e l y . Their r e l a t i v e positions within these zones i s c l e a r l y established. However, because they cannot be correlated across the other parts of the deposit, they are treated as separate sets. Carbonate veins (set 9) are found i n a l l parts of the deposit (Figures 3-5, 3-6). These are predominantly carbonate veins but l o c a l l y contain considerable amounts of z e o l i t e , p y r i t e and hydrocarbon. Minor amounts of s p h a l e r i t e , hematite and chalcopyrite have been noted. Veins of set 10 are recognized only i n the Ore Zone and Yellow Dog Breccia. In the Ore Zone they are p y r i t e - c h a l c o p y r i t e veins whereas i n the Yellow Dog Breccia they are quartz-pyrite-chalcopyrite veins. Stereonet p l o t s of some of the vein sets are given on Figure 3-5.. Attempts to r e l a t e veining geometrically to other s t r u c t u r a l elements were unsuccessful. Present knowledge of the s t r u c t u r a l h i s t o r y of the deposit i s too fragmentary to allow the various ages of veins to be f i t t e d into a d e t a i l e d p i c t u r e . SIZE AND GEOMETRY OF THE ORE ZONE The ore zone at the Island Copper mine contains reserves of 28 0 m i l l i o n tons of 0.52 percent copper and 0.029 percent J5> M0S2 (Young and Rugg, 1971). It consists of two parts, one on each side of the porphyry dyke. The bulk of the ore i s i n v o l -canic rocks on the hanging wall of the porphyry dyke (Figure 3-7). This part of the ore zone i s a roughly tabular body 4 00 to 600 feet wide and approximately 5,500 feet long which con-tinues e s s e n t i a l l y unchanged to a depth of 1,000 feet below the ground surface. The zone apparently continues beyond t h i s depth At the ends of the planned p i t the top of the ore zone plunges deeper below the ground surface. It i s not known whether t h i s doubly plunging zone i s a primary s t r u c t u r a l c h a r a c t e r i s t i c of the ore zone or was superimposed by subsequent tectonism. The second part of the ore zone i s i n the footwall volcanic rocks (Figure 3-7) adjacent to the porphyry dyke and i s smaller than the hanging wall section. I t has been displaced by normal movement on the End Creek Fault. Because i t i s farther from surface than the hanging wall part, i t i s not as well defined by diamond d r i l l i n g . A minor amount of ore occurs within the dyke. However ore-bearing quartz-feldspar porphyry i s r e s t r i c t e d to dykes or block faulted from the main dyke (Figure 3-7). The main dyke l o c a l l y contains minor amounts of copper sulphides along i t s contacts but the rock i s for the most part unmineralized. Boundaries of ore zones are assay walls. M i n e r a l i z a t i o n continues beyond these assay boundaries into the volcanic rocks and porphyry dyke so that the orebodies are enclosed by a halo of lower grade copper mineralization i n the volcanic rocks. SULPHIDE AND OXIDE MINERALOGY Introduction Chalcopyrite and molybdenite are the only sulphide minerals recovered at the Island Copper mine. P y r i t e , the only other major sulphide mineral makes up two to f i v e percent of the ore. Sphalerite occurs e r r a t i c a l l y i n carbonate v e i n l e t s both within and outside of the ore zone. The most abundant oxide mineral i s magnetite. Other oxide minerals include hematite, which i s almost i n v a r i a b l y formed from the oxidation of magnetite, and leucoxene, which i s asso-ciated with c h l o r i t i z e d mafic minerals. Chalcopyrite Chalcopyrite occurs as v e i n l e t s , as disseminations and on s l i p surfaces. Most chalcopyrite i s i n set 3 veins (Plate II A, B, C) which are 0.1mm. thick. F i e l d observations suggest that set 3 veins (Table 3-1) contain the bulk of the copper i n the ore zone. Chalcopyrite also occurs i n smaller amounts with the quartz-molybdenite veins (set 4); on s l i p surfaces (set 6); with sphalerite i n carbonate-zeolite veins (set 9); and as l a t e chalco-p y r i t e - p y r i t e veins (set 10). These occurrences of chalcopyrite, although l o c a l l y spectacular, do not contribute much copper to the ore zone. Molybdenite Molybdenite occurs i n quartz veins and on fracture \" s l i p \" surfaces. There were three stages of molybdenite mineralization. F i r s t - s t a g e molybdenite, a q u a n t i t a t i v e l y minor stage of 48. A B D E F H PLATE II POLISHED SECTIONS A set 3 chalcopyrite vein cutting across a matrix containing disseminated magnetite. A set 3 chalcopyrite and quartz vein c u t t i n g a matrix con-taining disseminated magnetite. A set 3 chalcopyrite and quartz vein c u t t i n g a matrix with disseminated magnetite. Molybdenite and p y r i t e i n the centre of a set 4 vein. Magnetite core i n a subhedral p y r i t e c r y s t a l . Pyrite and magnetite within a c h l o r i t i z e d mafic phenocryst. G A set 4 molybdenite-quartz vein. A set 9 carbonate-sphalerite vein i n c h l o r i t i z e d tuff, Abbreviations used on the plates cp - chalcopyrite py - p y r i t e mg - magnetite mo - molybdenite sp - sphalerite q - quartz cb - carbonate 4 9 . molybdenite mineralization, i s associated with chalcopyrite and p y r i t e and quartz v e i n l e t s (set 3). It occurs as small \u00C2\u00AB0.05mm) subhedral c r y s t a l s (Plate II, D). Second-stage molybdenite occurs i n Set 4 quartz veins with s e r i c i t e envelopes (Plate VI., A,B,C). Molybdenite occurs-as a mass of t i n y subhedral crystals.forming veins 0.1 to 2 cm. thick (Plate II.,G). Minor amounts of p y r i t e and chalcopyrite occur with the molybdenite. This also i s an economically minor stage of molybdenite mineralization. Third-stage molybdenite occurs on \" s l i p \" surfaces (set 6 veins). F i e l d observations suggest that most of the molybdenum in the ore zone was deposited during t h i s stage. The molybdenite has been smeared into a t h i n (<1 mm.) f i l m by movement on the fractures. The r e l a t i v e age of movement on the fracture surfaces can be determined, but the age of the sulphides on the fracture surface i s d i f f i c u l t to e s t a b l i s h . Molybdenite at Island Copper has a high rhenium content. Molybdenite concentrate contains between 1,800 and 2,400 ppm (0.18% and 0.24%) rhenium calculated to 100% MoS2. This i s r i c h r e l a t i v e to most porphyry copper deposits (Table 3-2). The re-l a t i o n between the d i f f e r e n t stages of molybdenite and rhenium has not been studied. Py r i te Pyrite i s ubiquitous within the deposit and accompanies at l e a s t f i v e sets of quartz veins (Table 3-1). Pyrite content ranges from 2 to 5 percent and l o c a l l y i s up to 15 percent. Pyr i t e within the ore zone i s associated with chalcopyrite and molybdenite i n v e i n l e t s and within c h l o r i t i z e d mafic minerals 51. Table 3-2 RHENIUM CONTENT OF SOME PORPHYRY COPPER DEPOSITS (expressed i n ppm on 100% MoS2) (after Sutulov 1963, 1974) North America McGill San Manuel Chino C i t i e s Service Twin Buttes Pima Mission Bagdad Esperanza S i e r r i t a Mineral Park Island Copper Brenda Cananea Bingham 1, 600 1,000 800 600 600 600 600 200 200 180 60 2, 000 80 700 300 South America Chuquicamata E l Teniente E l Salvador Andina La Disputada Toquepala Argentinian porph. Communist World Kounrad Almalyk Kadzharan Aigedzor Dastakert Medet 230 440 570 380 350 325 170 510 290 300 1,000 80 . 125 (Plate I I . , D , E , F ) . Outside the ore zone, p y r i t e i s d i s -seminated i n the porphyry dyke as an accessory mineral. Pyrite also occurs i n volcanic rocks far removed from the ore zone. Most p y r i t e i s i n the form of euhedral cubes (0.5 - 2mm.) but rare pyritohedrons have been noted. Sphalerite Dark brown to black sphalerite occurs i n carbonate-zeolite veins (set 9; Table 3-1) both inside and outside the ore zone (Plate II.,H). The small (to 1 mm.) subhedral sphalerite c r y s t a l s are associated with p y r i t e and more r a r e l y chalcopyrite and specular hematite. Galena i s very rare. Minute c r y s t a l s have been reported, with sp h a l e r i t e . Magnetite Magnetite i s found both i n volcanic rocks and quartz-feldspar porphyry. In volcanic rocks i t occurs primarily as f i n e (<.l mm.) disseminated grains and with c h l o r i t e pseudomorphs of mafic pheno-cry s t s . Locally i t i s i n fracture f i l l i n g s and quartz veins (Plate I I . , A,B,C). The magnetite-rich (to 10%) part of the volcanic rocks c l o s e l y corresponds to the ore zone. In polished sections of magnetite-rich volcanic rocks, magnetite i s i n v a r i a b l y older than the associated p y r i t e and chalcopyrite. Molybdenite does not show cl e a r age r e l a t i o n s with the magnetite. In the porphyry dyke, magnetite i s found with c h l o r i t e pseudomorphs of mafic minerals. Hematite : _ Hematite occurs i n two forms; f i r s t as masses of small (<1 mm.) dark specularite plates i n late carbonate veins and second as the a l t e r a t i o n product of magnetite near fractures. . This hematite appears to be hypogene because there i s no obvious r e l a t i o n between .the hematite and the depth below the present ground surface. However i t cannot be c l e a r l y correlated, with any hypogene mineralization or a l t e r a t i o n events. Leucoxene Leucoxene i s a general name applied to very fine-grained secondary titanium minerals. It i s associated with masses of c h l o r i t e and/or white mica which form pseudomorphs a f t e r mafic phenocrysts (Plate V., E,F). Leucoxene i s found both i n the quartz-feldspar porphyry and the volcanic rocks. Leucoxene provides a useful method to d i s t i n g u i s h mafic from feldspar phenocrysts when both have been alt e r e d to white mica. Once leucoxene has formed, i t apparently i s stable and i s unaffected by subsequent a l t e r a t i o n . CHAPTER 4: COMPUTER ANALYSIS INTRODUCTION The \"GEOLOG\" computer input format was used i n t h i s study for three reasons: (1) to attempt to minimize bias i n c o l l e c t -ion of data by using a standardized format; (2) to record the data i n a format where s t a t i s t i c a l as well as graphical tests of the c o r r e l a t i o n between copper and molybdenum grades and a l t e r a t i o n could be made; (3) to tes t the e f f i c i e n c y of the computer format logging system i n a deposit other than a \" c l a s s i c \" porphyry copper deposit. 40,000 feet of d r i l l core, which represent one-third of the core obtained during exploration of the deposit, were logged using computer input format. This core represents forty-two diamond d r i l l holes along seven sections spaced at 800-foot i n t e r v a l s across the ore body (Figure 4-1). This quantity of core i s believed large enough to allow s t a t i s t i c a l tests of c o r r e l a t i o n . DATA COLLECTION Basic data sheets were modified from o r i g i n a l \"GEOLOG\" sheets described by Blanchet and Godwin (1972). De t a i l s of the modifications are discussed i n Appendix A. In these modifications, the number of hydrothermal minerals was increased and those features of \" c l a s s i c \" porphyry copper deposits not observed at Island Copper were omitted. Data c o l l e c t i o n included: sample l o c a t i o n , rock type, colour, fracture density, and amount and mode of occurence of twelve s i l i c a t e a l t e r a t i o n minerals, three i r o n oxide minerals and 55 f i v e sulphide minerals. To use the forms, assuming there i s one rock type within an assay i n t e r v a l , rock type i s recorded and then a l l other parameters are recorded. If there i s a change of rock type within the i n t e r v a l , the footage of the contact i s recorded along with a l l data for the f i r s t rock type, data for the second rock type are recorded at the regular assay i n t e r v a l . Assay values are assumed constant for the entire sample i n t e r v a l . Fracture density data were obtained from o r i g i n a l d r i l l logs by Utah Exploration geologists, because useful fracture density data i s d i f f i c u l t to obtain from s p l i t core. DATA TREATMENT To obtain the maximum s p a t i a l information, data for d r i l l holes on each section were analysed independently. To consider the two rock types, data for each section were further divided into three parts; the hanging-wall of the dyke, the dyke and the footwall of the dyke (Figure 4-2). The three d i v i s i o n s of each of seven sections gave twenty-one separate batches of data for s t a t i s t i c a l treatment. Data cards from each d i v i s i o n were computer processed to t e s t three c o r r e l a t i o n s : (1) Copper grade versus molybdenum grade. (2) Copper grade versus f i f t e e n separate parameters. (3) Molybdenum grade versus the same f i f t e e n parameters. Details of programming and s t a t i s t i c s used i n the treatment of the data are presented i n Appendices Eand G . A , \"A< N 1 8 E fcaa^, V1 TV \"' C'A -\"7 - ' - ; 7 'X - 4 0 0 1 V&:-^ 7-V^7; 'A 2 \ AN L E G E N D J7Z-Q O v e r b u r d e n IA A ] B recc i a s 1. Py rophy l l i t e 2 . M a r g i n a l K'.-'-.'l Q u a r t z - F e l d s p a r P o r p h y r y I I Vo lcan ic Rocks ~ ~ Fault V--' '-\"'-Vi .AN ^ N Fig. 4-2 *?\A\ kA\ - 1 ' . O ' AN Generalized Section Showing DIVISIONS 1 2 0 0 RESULTS Results of the s t a t i s t i c a l study are presented i n Table 4-1. The table i s designed to present c o r r e l a t i o n s between each independent variable measured and copper and molybdenum grades i n adjacent columns for easy comparison. Columns marked \"CORR\" are correla'tion c o e f f i c i e n t s . As t h i s value approaches unity, the degree of c o r r e l a t i o n increases. Columns l a b e l l e d \"PROB\" are the p r o b a b i l i t y of obtaining the corresponding amount-of c o r r e l a t i o n from random numbers. The smaller the value i n t h i s column, the stronger the prob-a b i l i t y of a c o r r e l a t i o n between the two variab l e s . Values of less than 0.1000 i n the \"PROB\" column indicate good c o r r e l a t i o n s . Dashed l i n e s i n the table indicate i n v a l i d c o r r e l a t i o n s . These r e s u l t from a complete absence of data for one of the variables; that i s , either there are no assays, or the inde-pendent variable was not recognized i n t h i s part of the section. Data presented i n Table 4-1 are summarized i n Table 4-2. INTERPRETATION OF RESULTS The r e s u l t s of t h i s form of data treatment lend them-selves to a number of inte r p r e t a t i o n s . Correlation Between Grade of Miner a l i z a t i o n and Other Parameters The object of s t a t i s t i c a l examination of \"GEOLOG\" data i s to examine the c o r r e l a t i o n between ore grades and a l t e r a t i o n as well as other parameters throughout the orebody. This approach i s used i n an attempt to e s t a b l i s h empirically those parameters, other than grade, that would be most useful i n defining the orebody. TABLE 4-1 CORRELATION BETWEEN GRADE AND ALTERATION INTENSITY 59 . FOOTWALL CO GRADE MO GRADE CORK PROB CORR PROB 147 0.0610 0.5402 -0.0621 0.6061 155 -0.1877 0.1262 -0.2743 0.0243 163 -0.3451 0.0028 0.1869 0.1079 171 0.2351 0.0007 0.0865 0.2077 179 0.5851 0.0005 187 -0.2428 0.3360 195 0.2014 0.0021 0.2320 0.0005 147 0.1563 0.1694 -0.0621 0.6061 155 -0.4954 0.0009 -0.2411 0.1084 163 -0.1955 0.1237 -0.0586 0.6549 171 -0.2955 0.0001 -0.2676 0.0003 179 0.8211 0.0001 187 -0.4067 0.3848 195 -0.0082.0.8886 0.1357 0.1229 147 0.3480 0.0184 -0. 3189 0. 0573 155 -0.4812 0.0004 -0. 3892 0. 0039 163 -0.1017 0.4915 0. 4701 0. 0009 171 -0.2952 0.0002 -0. 3633 0. 0000 179 \u00E2\u0080\u00A2 \u00E2\u0080\u0094 \u00E2\u0080\u0094 187 195 0.1316 0.1012 0. 1357 0. 1229 147 155 163 171 179 187 195 DYKE CU GRADE MO GRADE CORR PROB CORR PROB INDEPENDENT VARIABLE QUARTZ 0.1023 0.1662 0.0081 0.8782 0.4060 0.0000 0.3436 0.0002 0.2466 0.0206 -0.2018 0.1779 -0.0135 0.8553 0.1871 0.9863 0.4227 0.0000 0.2811 0.0000 0.5800 0.0000 : 0.5148 0.0000 0.4638 0.0000 INDEPENDENT VARIABLE \"ARGILLIC\" -0.2444 0.0025 0.1983 0.0136 -0.4926 0.0006 -0.3696 0.0003 -0.2553 0.0196 -0.2614 0.0901 -0.2970 0.0001 -0.1489 0.0505 -0.0941 0.2634 -0.1815 0.0292 -0.4704 0.0000 -0.2836 0.0006 -0.3444 0.0000 INDEPENDENT VARIABLE SERICITE -0.1031 0.3105 -0.0974 0.3389 -0.2910 0.0044 -0.1804 0.9765 -0.1907 0.1623 -0.2444 0.2349 0.2854 0.0092 0.1871 0.0863 -0.2942 0.0167 -0.2307 0.0487 -0.6069 0.0000 . -0.2836 0.0006 -0.3444 0.0000 INDEPENDENT VARIABLE K-FELDSPAR 0.1070 0.3860 0.1928 0.1099 -0.2252 0.3594 -0.1123 0.6504 HANGING WALL CU GRADE MO GRADE CORR PROB CORR PROB 0.2257 0.0002 -0.0936 0.1361 0.3297 0.0000 0.3897 0.0000 0.5947 0.0000 0.2038 0.0029 0.2751 0.0000 0.3375 0.0000 -0.0668 0.5914 0.5204 0.0000 0.1093 0.1064 0.2237 0.0011 0.3425 0.0000 0.0690 0.5760 0.0219 0.7725 -0.0478 0.5554 -0.0337 0.6423 0.0276 0.7001 0.1237 0.2718 0.0306 0.7769 0.0988 0.1662 0.0617 0.3964 -0.4412 0.0000 -0.1569 0.0648 -0.2807 0.0000 -0.0973 0.2120 -0.2082 0.0930 0.1355 0.2822 -0.2200 0.0124 -0.2132 0.0155 -0.1304 0.1136 -0.0931 0.2645 0.0593 0.6665 -0.0406 0.7589 0.1637 0.0782 0.0769 0.4202 -0.2450 0.0112 -0.2157 0.0309 -0.1592 0.0107 0.1127 0.2147 -0.0215 0.8357 0.0748 0.5406 0.6242 0.0130 0.1372 0.5960 -0.2978 0.3992 0.0365 0.8810 0.3198 0.0610 0.5310 0.0021 -0.0466 0.8173 0.2264 0.2103 0.7352 147 155 163 171 179 187 195 -0.2337 0.1806 r0.2675 0.1525 INDEPENDENT VARIABLE PYROPHYLLITE -0.1651 0.6266 -0.1508 0.6561 0.1791 0.6328 0.2134 0.5700 -0.2291 0.0612 -0.2610 0.0332 -0.3026 0.0124 -0.2219 0.0654 -0.5914 0.0000 -0.2666 0.0212 -0.3867 0.0057 -0.2799 0.0435 ._ -Q.2574 0.4385 -0.2011 0.5474 -0.3331 0.1805 -0.7709 0.0000 \u00E2\u0080\u00A2 -0.2943 0.0006 -0.2067 0.0611 -0.2605 0.0890 -0.0225 0.8566 -0.4505 0.0000 -0.4565 0.0000 -0.2816 0.0546 0.2461 0.0939 TABLE 4-1 (Cont ) 60. FOOTWALL CU GRADE MO GRADE CORR - PROB CORR PROB 147 , , 155 171 -0 .3233 0 .3355 - 0 . 1865 0 . 5843 xo / 195 - 0 , .2605 0 .0890 0 .1468 0 .5767 147 -0. .1538 0 .1238 0 .1888 0 .1182 155 0. .4072 0 .0038 0 .4104 0 . 0036 163 0. . 0831 0 .5709 0 .2819 0 .0451 171 0. .0469 0. .4918 0 .1323 0. .0456 179 -0. .3083 0, .0855 187 0. .2225 0, .2877 195 -0. 0528 0. .4546 - 0 , .0225 0, .8566 147 - 0 . 3462 0. .0017 0, .1939 0. . 2267 1\u00C2\u00A31 l O J 171 -0. 5143 0. ,0000 - 0 . ,4454 0. .0000 179 - 0 . 1031 0. .5664 187 -0. 4504 0. ,0318 195 0. 0848 0. 4658 - 0 . .0230 0. ,8221 147 -0. 3230 0. ,0023 - 0 . .0349 0. ,7733 155 0. 3929 0. 0028 0. ,3115 0. 0179 163 0. 0752 0. 5658 - 0 . ,2334 0. 0635 171 -0. 3710 0. 0000 - 0 . 3490 0. 0000 179 -0. 6127 0. 0000 187 0. 0097 0. 9155 195 0. 0338 0 . 6218 - 0 . 0624 0. 3574 147 -0. 4655 0. 0001 - 0 . 2878 0. 4638 155 0. 6181 0. 1127 0. 2473 0. 5409 163 - 0 . 2090 0. 0594 - 0 . 1522 0. 1725 171 - 0 . 3813 0 . 0002 - 0 . 3101 0. 0015 179 - 0 . 6307 0. 0010 187 - 0 . 6968 0. 0015 195 0. 0360 0. 7103 - 0 . 1043 0. 2814 DYKE HANGING WALL CU GRADE MO GRADE CU GRADE MO GRADE CORR PROB CORR PROB CORR PROB CORR PROB INDEPENDENT VARIABLE DUMORTIERITE - 0 . 4 5 6 3 0 . 0456 - 0 . 3155 0 .1670 \u00E2\u0080\u0094 - \u00E2\u0080\u0094 1 \"5 Q 7 \u00E2\u0080\u0094 u u - 0 . 7 6 3 6 0 .0000 - 0 . 2216 0 .4900 - 0 .1537 0 . 6488 - 0 . 3 5 0 5 0 .0000 - 0 . 3694 0 .0001 - 0 .1744 0 .5676 0 .2461 0 .0939 INDEPENDENT VARIABLE CARBONATE 0 .4059 0 . 0000 0 .2881 0 .0006 - 0 .1157 0 . 0809 0 .0263 0 .6987 0 .4702 0. .0001 0 .5419 0 .0000 - 0 .1543 0 .1069 - 0 .2154 0 .0019 0 .1346 0 .3265 0, .3564 0, .0357 - 0 .2184 0 .0030 - 0 . 0436 0 .5626 0 .0624 0 .4769 0, .1590 0, .0615 - 0 .1986 0, .0078 0 .1425 0 . 0548 0 .0138 0, .8024 0. . 0289 0, .6335 0 .4200 0, .0000 0 .2059 0 .0044 0 .5529 0, .0000 - \u00E2\u0080\u0094 \u00E2\u0080\u0094 - 0 .1435 0. .0044 0 .1304 0, .4134 0 .4556 0. .0000 0. . 4760 0. ,0000 0, .2251 0. .0525 - 0 .1246 0, .2929 INDEPENDENT VARIABLE ZEOL ITE Cj - 0 . 0 0 3 1 0. ,9322 0. , 0836 0. .5853 0, . 1924 0. ,0219 0, .3634 0, .0000 - 0 . .1543 0. ,1069 0, .1299 0. .1768 - 0 . .4087 0. ,0000 - 0 . .2890 0. ,0009 \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u0094 - 0 . .5942 0. ,0000 - 0 , .4208 0. ,0008 - 0 . 2 4 6 0 0. ,0032 - 0 . 2235 0. ,0072 0. .1424 0. ,2448 0. ,0802 0. .5453 0 .2653 0. ,1702 - 0 . .0468 0. ,6228 0. .1304 0. .4134 - 0 , .2332 0. ,1574 - 0 . .2761 0. .0923 INDEPENDENT VARIABLE CHLORITE 0 .1311 0. 0973 0. 0515 0. 5285 - 0 . ,1687 0. 0083 - 0 . ,1246 0. ,0514 0 .2909 0. 0030 0. 0873 0. 3834 - 0 . ,1139 0. 0623 - 0 . ,1780 0. ,0040 - 0 . 0 1 4 3 0. 8688 0. 3096 0. 0505 - 0 . ,1381 0. 0518 - 0 . ,0575 0. 4312 - 0 . 0 2 1 3 0. 8103 0. 0337 0. 7269 - 0 . 1899 0. 0095 - 0 . 1323 0. 0693 - 0 . 2 4 7 3 0. 0000 - 0 . 1465 0. 0118 0. 1811 0. 0055 0. 1021 0. 1485 0 .3110 0. 0016 0. 1869 0. 0001 0. 1137 0. 0627 0 .0150 0. 8465 0. 0117 0. 8682 0. 2862 0. 0134 - 0 . 1297 0. 2715 INDEPENDENT VARIABLE EPIDOTE 0 .4499 0. 0469 0. 0780 0. 7322 - 0 . 5619 0 . 0000 - 0 . 3227 0. 0005 - 0 . 6898 0. 0000 - 0 . 5484 0 . 0000 - 0 . 3185 0. 3546 - 0 . 2538 0 . 4648 - 0 . 3 8 4 7 0. 0000 - 0 . 3316 0. 0002 - 0 . 1221 0. 3753 - 0 . 1275 0. 3688 0 .4162 0. 0009 - 0 . 2756 0. 0000 - 0 . 2838 0. 0038 - 0 . 1 9 5 7 0. 2797 - 0 . 2 374 0. 1861 - 0 . 2160 0. 1497 - 0 . 2966 0. 0462 61, 147 155 163 171 179 187 195 147 155 163 171 179 187 195 FOOTWALL MO GRADE CORR PROB CU GRADE CORR PROB - 0 . 4 0 6 0 0 .0029 0 .1371 0 .6052 0 .1162 0 .6595 0 .1503 0 .1083 0.2234 0 .0172 TABLE 4-1 (Cont ) DYKE CU GRADE MO GRADE CORR PKOB CORR PROB INDEPENDENT VARIABLE HEMATITE 0 .1025 0 .5740 0 .0780 0 .7322 HANGING WALL -CU GRADE MO GRADE CORR PROB CORR PROB - 0 . 1 8 2 6 0.1877 0 .2733 0 .1739 0 .3295 0 .0005 0 .1455 0 .1431 - 0 . 1 3 8 3 0 .5126 -0 .2144 0 .1200 0.0854 0 .7275 0 .1974 0 .0343 0.0734 0.4724 0.1254 0 .4127 0 .2255 0 .1323 - 0 . 0 1 1 2 0.9122 - 0 . 1 1 3 5 0 .6061 0 .1147 0.2438 - 0 . 2 0 7 3 0 .0331 0 .0910 0 .6481 0 .1696 0 .4039 - 0 . 1 3 7 2 0 .3531 - 0 . 1 8 5 5 0 .2657. - 0 . 2 1 6 4 0 .5311 - 0 . 2 9 2 0 0 .3936 INDEPENDENT VARIABLE MAGNETITE 147 0. 1659 0 .1094 0. .2981 0. .0130 0. ,1423 0. .0957 0. 0437 0. 6202 0. 2229 0. 0012 0. 1462 0. .0312 155 0. 3228 0 .0178 - 0 . .2452 0. .0731 0. .1809 0, .0778 0. 0120 0. 8749 0. 1627 0. 0116 0. 1017 0. .1142 163 0 . 1802 0 .0165 0. . 2387 0. .0017 0. ,4038 0. .0012 0. 2455 0. 1493 0 . 4946 0. 0020 - 0 . 3534 0. .0273 171 0 . 2210 0 .0016 0. ,1726 0. ,0124 0. ,3948 0. .0011 0. ,4146 0. 0006 0. 1201 0 . 1724 - 0 . 0130 0. .0273 179 0 . 1237 0 .5565 - 0 , ,1593 0. .0089 0. ,0742 0. 2247 0. 1535 0 . 0291 0. 1330 0. .0786 187 0. 0417 0 .8329 0. ,3634 0. .0023 \u00E2\u0080\u0094 \u00E2\u0080\u0094 0. 1366 0 . 0110 0. 1529 0, .0277 195 0 . 1571 0 .0430 0. .2106 0. .0071 0. ,9043 0. .0000 0. ,7693 0. 0000 0. 1352 0. 3148 - 0 . ,1896 0, .1527 INDEPENDENT VARIABLE MOLYBDENITE 147 0. 4793 0. 0000 0.4489 0. 0000 0. 5320 0. 0000 155 0. 4374 0. 0002 0.7266 0. 0000 0. 6746 0. 0000 163 0. 7295 0. 0000 0.1970 0. 1763 0. 0644 0. 5873 171 0. 6670 0. 0000 0.5365 0. 0000 0. 4978 0. 0000 179 0.5625 0. 0000 0. 5097 0. 0000 187 195 0. 5742 0. 0000 0.8188 0. 0000 0. 4668 0. 0000 INDEPENDENT VARIABLE FRACTURE DENSITY 147 0. 2758 0. .0062 0. 4472 0. 0002 0 .1397 0. 1029 0. .1154 0. 1805 - 0 . 1539 0. ,0138 0. .0936 0. .1363 155 0. 6089 0. ,0000 0. 6252 0. 0000 0 .2923 0. 0032 0. .2653 0. 0073 - 0 . 1736 0. ,2550 0. .1310 0. ,0405 163 -0. 1236 0. ,3292 0. 0757 0 . 5566 0 .2352 0. 1321 0. .2964 0. 0646 - o . 2540 0. .0009 - 0 . .1285 0. .0597 171 0. 5974 0. ,0000 0. 6188 0. 0000 0 .2035 0. 0665 0. .4390 0. 0000 0. 0039 0. ,9109 0. .1246 0. ,0770 179 -0. 6044 0, .0005 \u00E2\u0080\u0094 \u00E2\u0080\u0094 0 .2275 0. 0002 0, .2085 0. 0005 0. 0003 0. .9449 0. .2491 0. .0041 187 -0. 2056 0. .3516 0 .0499 0. 6342 0. ,1830 0. .0002 0, .3199 0. .0000 195 0. 4162 0. .0000 0. .4360 0. 0000 0 .4953 0. 0000 0. .5101 0. 0000 0. ,0595 0. .6145 0, .4288 0, .0002 0 .0320 0 .7600 - 0 . 3 8 3 4 0 .0058 - 0 . 4 8 2 8 0 .0001 - 0 . 1 8 6 4 0 . 0 0 5 5 0 .5028 0 .0022 0 .1737 0 . 4 8 8 3 0 .0592 0 .4070 - 0 . 2 0 4 3 0 .0957 - 0 . 1 3 8 9 0 .3316 0 .1662 0 .1991 - 0 . 2 0 9 4 0 .0020 0 .0679 0 .3388 INDEPENDENT VARIABLE GRAYNESS - 0 . 1 8 4 3 0 .0158 - 0 . 0 4 6 1 0 .5594 0 .1316 0 .1850 0 .3305 0 .0009 - 0 . 2 5 8 7 0 .0187 - 0 . 1 3 8 2 0 .4064 - 0 . 4 3 3 0 0 . 0 0 0 0 - 0 . 2 3 9 5 0 .0026 0.0734 0 .2003 - 0 . 0 4 7 5 0 .4166 - 0 . 2 2 3 5 0 .0323 '\u00E2\u0080\u00A2 : 0.1462 0 .0890 0 .0313 0 . 7 1 9 3 - 0 . 0 6 0 1 0 .3410 - 0 . 0 0 9 0 0 .8563 0 .2382 0 .0009 0 .0220 0 .7537 - 0 . 2 9 8 4 0 .0000 - 0 . 1 1 4 5 0 .0176 - 0 . 1 5 1 1 0 .2318 - 0 . 0 1 7 2 0 .7758 0 .0378 0 .5515 0 .1729 0 .0141 0 .1430 0 .0434 - 0 . 1 9 7 0 0.0048 0 .0277 0.6691 0 .0891 0 .4906 62. TABLE 4-1 (Cont ) 147 155 163 171 179 187 195 FOOTWALL CU GRADE MO GRADE CORR PROB CORR PROB 0 .0331 0 . 7 5 8 4 , - 0 . 1 8 9 2 0 .1345 - 0 . 3 8 7 1 0 .0074 - 0 . 1 0 9 4 0 .4670 DYKE CU GRADE MO GRADE CORR PROB CORR PROB INDEPENDENT VARIABLE BLEACHING - 0 . 1 6 3 5 0 .0490 - 0 . 0 0 0 5 0.9434 0 .1752 0 .0830 0 .3649 0 .0004 - 0 . 3 3 0 6 0 . 0 2 7 3 0 .2700 0 .0723 . - 0 . 2 1 6 4 0 .0696 - 0 . 1 0 5 3 0 .5383 0 .2809 0 . 2 2 1 3 - 0 . 0 0 7 5 0 . 8 8 2 2 0 .0144 0 .8244 - 0 . 2 3 9 5 0 .0252 0 .1749 0 .0522 HANGING WALL CU GRADE MO GRADE CORR PROB - 0 . 1 1 0 8 0 .0916 0 .0161 0 .7940 0 .2741 0 .0002 - 0 . 0 7 6 8 0 .1304 0 .0849 0.3568 - 0 . 2 2 9 5 0 .0881 CORR PROB - 0 . 0 1 7 2 0.7758 0 .0205 0 .7506 0 .2115 0 .0040 0 .1342 0 .0405 0 .1089 0.4324 SUMMARY A l t e r a t i o n Minerals .1. Quartz 2. \" A r g i l l i c \" 3. S e r i c i t e 4. K-Peldspar 5. Py r o p h y l l i t e .6. Dumortierite 7. Carbonate '8. Z e o l i t e 9. C h l o r i t e 10. Epidote 11. Hematite 12. Magnetite Other Parameters 13. Cu Grade 14. MoS2 Grade 15. Fracture Density 16. Bleaching TABLE 4-2 63, OF CORRELATION RESULTS Footwall CD rrj u O 3 CJ CU t l m u tj CN co o s Dyke cu \u00E2\u0080\u00A2o o 3 U CU TI (0 u CN to O s Hanging-Wall CD rd u o 3 o 0) O CN w o 0 0 0 0 0 0 0 0 0 0 ++ O(-) ++ 0 0 0 0 0 0 0 ++ 0 0 0 0 0 0 0 0 0 0 0 ++ + 0 0 0 0 O(-) 0 0 0 ++ 0 0 0 0 0 0 ++ ++ 0 ++ 0 0 ++ ++ ++ ++ 0 0 ++ ++ 0 ++ 0 0 + P o s i t i v e C o r r e l a t i o n ++ Strong P o s i t i v e C o r r e l a t i o n Negative C o r r e l a t i o n Strong Negative C o r r e l a t i o n 0 I n d e f i n i t e C o r r e l a t i o n Note: Mat e r i a l logged i n the f i e l d as \" A r g i l l i c \" was i d e n t i f i e d as s e r i c i t e by X-Ray d i f f r a c t i o n The requirements of a useful c o r r e l a t i o n are strength and consistency. An a l t e r a t i o n mineral which shows a strong p o s i t i v e c o r r e l a t i o n with grade i n one section and a strong negative c o r r e l a t i o n i n another section i s of l i t t l e use. Although changes i n c o r r e l a t i o n with rock types are expected, the i d e a l c o r r e l a t i o n i s the same i n the volcanics of both hanging-wall and footwall. This i s not considered a v i t a l point, because the geometry of the deposit (Figure 3-7) has permitted much better examination of the hanging-wall ore zone than the footwall zone. Table 4-2 I l l u s t r a t e s that the strongest p o s i t i v e corr-e l a t i o n s for copper grade i n volcanic rocks are with magnetite and high molybdenite grades. Quartz has a strong p o s i t i v e c o r r e l a t i o n with copper grades i n the hanging-wall volcanics but not i n the footwall. Minerals l e a s t associated with copper (negative correlations) are py r o p h y l l i t e , dumortierite and epidote. S e r i c i t e has a negative c o r r e l a t i o n with copper grade i n the hanging-wall volcanic rocks, but not i n the footwall. In the quartz-feldspar porphyry, magnetite, quartz, high molybdenite grades, and high fracture d e n s i t i e s characterize samples with high copper grades. \" A r g i l l i c \" and s e r i c i t e have strong negative c o r r e l a t i o n s with copper grades whereas . pyr o p h y l l i t e and dumortierite have weak to moderate negative c o r r e l a t i o n s . Copper and high fracture density have strong p o s i t i v e c o r r e l a t i o n s with molybdenite grades i n volcanic rocks. Quartz has strong p o s i t i v e c o r r e l a t i o n with molybdenite i n the hanging-wall volcanics, but not i n the footwall. P y r o p h y l l i t e 65. and epidote have negative correlations with molybdenite i n volcanic rocks as well as i n the quartz-feldspar porphyry. In the quartz-feldspar porphyry, copper and fracture density have a strong p o s i t i v e c o r r e l a t i o n with molybdenite, and quartz and carbonate have moderate p o s i t i v e c o r r e l a t i o n s . Pyrophyllite, dumortierite, epidote, and a r g i l l i c a l t e r a t i o n have negative co r r e l a t i o n s with molybdenite. Importance of Sulphide Mineralization Stages to the Ore Zone It i s possible to examine the importance of the d i f f e r e n t stages of deposition of chalcopyrite and molybdenite to the ore zone using s t a t i s t i c a l c o r r e l a t i o n data. This i s approached by examining co r r e l a t i o n s between grades and i n t e n s i t y of i n d i v i d u a l a l t e r a t i o n minerals associated with d i f f e r e n t stages of sulphide mineralization. A strong c o r r e l a t i o n between grade and an a l t e r a t i o n mineral associated with a p a r t i c u l a r stage suggests that the stage i s an important contributor to the ore zone. There are four stages of copper mineralization within the deposit. F i r s t - s t a g e chalcopyrite'mineralization i s represented as t i n y v e i n l e t s c l o s e l y associated with b i o t i t e and magnetite (Plate I I , A and B). The strong p o s i t i v e c o r r e l a t i o n between copper grades and magnetite supports the f i e l d observation that t h i s i s the most important phase of copper mineralization. B i o t i t e was not recognized i n the core at the time i t was logged on the \"GEOLOG\" format. Second-stage copper mineralization occurs as chalcopyrite with quartz-molybdenite veins. Because these veins are char-acterized by a r g i l l i c envelopes, the importance of t h i s stage of copper to the ore zone can be examined by observing.the degree of c o r r e l a t i o n between \" a r g i l l i c \" and s e r i c i t e a l t e r a t i o n s to ore grade. Table 4-2 shows that i n the hanging-wall ore zone the values range from zero to negative for \" a r g i l l i c \" , but are negative for s e r i c i t e . This suggests that copper associated with t h i s stage of mineralization does not constitute a major portion of copper i n the Ore zone. Third-stage copper mineralization i s associated with molybdenite on s l i p surfaces. Indefinite c o r r e l a t i o n between copper grade and fracture density i n volcanic rocks as opposed to a strong p o s i t i v e c o r r e l a t i o n between molybdenite grade and fracture density suggests that t h i s stage of copper i s not a major contributor to the ore zone. Fourth-stage copper mineralization i s associated with l a t e carbonate-zeolite veins. In the hanging-wall ore zone there i s an i n d e f i n i t e c o r r e l a t i o n between copper and z e o l i t e and a corre-l a t i o n ranging from p o s i t i v e to negative for carbonate. This suggests that while l o c a l l y there may be a contribution to the ore zone, by t h i s stage of mineralization, i t i s of l i m i t e d importance. There are three stages of molybdenum mineralization i n the ore zone. F i r s t , molybdenite occurs with copper i n the magnetite-rich zone. The i n d e f i n i t e c o r r e l a t i o n between mag-netit e and molybdenite grade suggests a minor contribution to the molybdenum ore. Second-stage molybdenum i s i n quartz-molybdenite veins with s e r i c i t e envelopes. Indefinite c o r r e l a t i o n between molybdenite grades and i n t e n s i t y of a r g i l l i c and s e r i c i t i c a l t e r a t i o n suggest that t h i s stage of molybdenum also i s a minor contributor to the ore zone. Third-stage molybdenum occurs on s l i p surfaces. The strong c o r r e l a t i o n between molybdenite grade and the fracture density supports the f i e l d observation that t h i s i s the major contributor of molybdenum to the ore zone. In summary, f i e l d observations that stage-one copper mineralization and stage-three molybdenum mineralization are the stages of sulphide mineralization which made the major c o n t r i -b u t i o n s to the ore zone are supported by the s t a t i s t i c a l study. Importance of the Copper-Molybdenum Correlation Stong c o r r e l a t i o n between copper and molybdenite grades i s another r e s u l t of the s t a t i s t i c a l study. As outlined i n the previous section, f i e l d evidence, supported by much of the s t a t -i s t i c a l evidence, suggests that copper and molybdenum were deposited at d i s t i n c t l y d i f f e r e n t times. However, c o r r e l a t i o n between copper and molybdenite grades i s one of the strongest c o r r e l a t i o n s obtained i n the study. This appears to be a paradox where two parameters which have a strong mathematical c o r r e l a t i o n are not, i n f a c t , d i r e c t l y related. In the case of the copper and molybdenite grades, the mutual variable(s) are unknown. I t may be a s p a t i a l , (e.g. proximity to dyke) instead bf a d i r e c t temporal r e l a t i o n s h i p . They are g e n e t i c a l l y related i n that they are both part of the same ore-forming system. This problem with c o r r e l a t i o n between copper and. molyb-denite grades i l l u s t r a t e s one of the fundamental drawbacks of using c o r r e l a t i o n analysis. Merely because two sets of data have a strong mathematical c o r r e l a t i o n does not e s t a b l i s h a d i r e c t r e l a t i o n s h i p to each other. S t a t i s t i c a l c o r r e l a t i o n , whi i t i s a powerful technique for examining data, should not be used as the sole c r i t e r i a for determining the r e l a t i o n s h i p between parameters. E f f i c i e n c y of \"GEOLOG\" Logging For the purpose of t h i s study, the \"GEOLOG\" format proved much f a s t e r than conventional core logging methods. However, during t h i s logging, neither graphic logs nor grade estimates were made. It i s estimated that logging with \"GEOLOG\" format accompanied by a graphic log and grade estimates requires approximately the same amount of time as conventional core logging. The advantage of the \"GEOLOG\" format i s i n the amount and type of data which are recorded and the speed with which they can be treated and recovered. Using t h i s format, one obtains \"quantitative, s p e c i f i c , and consistent data\" (Blanchet and Godwin, 1972) for each assay i n t e r v a l . I t also r e s u l t s i n c o l l e c t i o n of data generally omitted during routine logging. In terms of data treatment, data recorded on the \"GEOLOG\" format i s amenable to many types of computer treatment as outlined by Blanchet and Godwin (1972). The usual d e s c r i p t i v e logs cannot be s a t i s f a c t o r i l y coded for t h i s type of treatment. \"GEOLOG\", even when used without a computer, provides a good way of using and r e t r i e v i n g data. A l l parameters recorded can be examined i n terms of assay i n t e r v a l s . The single column devoted to each parameter lends i t s e l f to making a colour-coded, s t r i p log p a r a l l e l to the l i t h i c or graphic log. This allows v i s u a l comparison of d i f f e r e n t variables and l i t h o l o g y or grade. CHAPTER 5: HYDROTHERMAL ALTERATION INTRODUCTION Discussion of hydrothermal a l t e r a t i o n at the Island Copper deposit i s divided into f i v e parts: 1. Discussion of a l t e r a t i o n stages. 2. Description of a l t e r a t i o n types. 3. Discussion of the re l a t i o n s between ore zone and a l t e r a t i o n types. 4. B r i e f review of the r e l a t i v e importance of hypogene and supergene a l t e r a t i o n processes i n development of a l t e r a t i o n . 5. Discussion of the formation of a l t e r a t i o n zones. ALTERATION STAGES Several problems aris e when determining r e l a t i v e ages of a l t e r a t i o n minerals: 1. The time-transgressive nature of hydrothermal a l t e r -ation. Minerals a l t e r i n response to t h e i r chemical environment, which i s not necessarily the same i n a l l parts of a deposit at the same time. 2. The formation of the same minerals at d i f f e r e n t times i n the sequence of hydrothermal a l t e r a t i o n . For example, hydrobiotite i n the b i o t i t e zone could be a metastable phase created by progressive a l t e r a t i o n , a phase created by regressive a l t e r a t i o n which \u00E2\u0080\u00A2 p a r t i a l y destroyed b i o t i t e , or a mixture of both. 3..Distinguishing a l t e r a t i o n envelopes which cut e a r l i e r pervasive a l t e r a t i o n , from coalescing zoned a l t e r a t i o n envelopes. As Hemley and Meyer (1967) observe, the problem i s \"to avoid mistaking geometric p l a u s i b i l i t y for geometric f a c t \" . 4. The c o r r e l a t i o n of events i n d i f f e r e n t rock types. A l t e r a t i o n at the Island Copper deposit i s divided into two main stages on the basis of cross cutting r e l a t i o n s as well as the mineralogical, texture and chemical nature of the assemblages. Contact metamorphism by the quartz-feldspar-porphyry dyke produced a l t e r a t i o n of the b i o t i t e , t r a n s i t i o n and epidote types. These types of a l t e r a t i o n are characterized by: 1. Mineral assemblages c h a r a c t e r i s t i c of contact metamorphism (Winkler, 19 67) ; 2. Pervasive d i s t r i b u t i o n of the a l t e r a t i o n minerals; 3. L i t t l e chemical v a r i a t i o n between d i f f e r e n t types of a l t e r e d rocks or alt e r e d and fresh rocks (Figure 5-7). Superimposed wall-rock a l t e r a t i o n resulted i n a l t e r a t i o n of the c h l o r i t e - s e r i c i t e , s e r i c i t e , p y r o p h y l l i t e and \"Yellow Dog\" types. These types of a l t e r a t i o n are characterized by: 1. Mineral assemblages c h a r a c t e r i s t i c of wall-rock a l t e r a t i o n (Hemley and Meyer, 1967); 2. S p a t i a l d i s t r i b u t i o n c o n t r o l l e d by fractures and breccias; 3. Marked chemical v a r i a t i o n between d i f f e r e n t types of altered rocks and between altered and fresh rocks (Figures 5-8, -5-13). The contact metamorphism and the wall-rock a l t e r a t i o n w i l l be referred to as stage one and stage two respectively. r ALTERATION ZONES Al t e r a t i o n at the Island Copper Mine i s divided into seven types on the basis of c r i t e r i a recognizable i n hand specimen. Mineral assemblages c h a r a c t e r i s t i c of the types 71 N1SE fesa^ L E G E N D b\u00C2\u00A3q O v e r b u r d e n lAAl Brecc ias 1. Pyrophy l l i 2- M a r g i n a l K.'-'vl Q u a r t z - F e l d s p a r Po rphyry I I Volcanic Ro< ~ ~ Fault 73. were established by subsequent laboratory study. This section includes descriptions of the po s i t i o n , d i s t r i b u t i o n and mineral-ogy of each of the seven types of a l t e r a t i o n . Lowell and Guilbert (1970) describe a l t e r a t i o n e f f e c t s i n porphyry copper deposits i n terms of four main types: potassic, p h y l l i c , a r g i l l i c and p'yropylitic. As Fountain (1972) points out, while there i s a general s i m i l a r i t y of usage between var-ious authors, i n d e t a i l there are considerable v a r i a t i o n s i n the d e f i n i t i o n s . Variations are i n t e n s i f i e d when a l t e r a t i o n types, which are defined in i n t r u s i v e rocks, are applied to volcanic rocks. Therefore, the pra c t i c e adopted by Bray (1969), Rose(1970) and Fountain (1972) of naming a l t e r a t i o n types i n terms of the p r i n c i p a l a l t e r a t i o n minerals usually has been followed i n describing the a l t e r a t i o n at Island Copper. Contact Thermal Metamorphism B i o t i t e Zone B i o t i t i z e d rocks are recognized macroscopically by a d i s t i n c t i v e brown colouration of the rocks. Ten per cent biotite i s s u f f i c i e n t to impart the d i s t i n c t i v e brown colour. Destruction of primary textures within t h i s zone r e s u l t s i n a fine-grained f e l t e d rock (Plate I I I . , A,C,D.). Boundaries of the biotitezone are d i f f i c u l t to e s t a b l i s h because the boundaries are t r a n s i t i o n a l and i n many areas b i o t i t e has been destroyed by subsequent a l t e r a t i o n . The approximate d i s t r i b u t i o n of the b i o t i t e zone i s shown i n Figures 5-1, 5-2. This zone i s well defined on the northeast (hanging-wall) side of the porphyry dyke where i s forms a 350-foot wide tabular zone which p a r a l l e l s the dyke. 74. PLATE I I I BIOTITE ALTERATION ZONE A. Polished slab from the b i o t i t e a l t e r a t i o n zone shows the absence of primary volcanic textures i n t h i s zone. The specimen i s cut by a quartz vein which i s cut i n turn by a carbonate vein. B. Thin section of r e l a t i v e l y coarse-grained b i o t i t e and magnetite, possibly a f t e r an amphibole. C. Thin section with a b i o t i t e v e i n l e t c u t t i n g across containing abundant disseminated b i o t i t e . The opaque mineral grains are magnetite. D. Thin section of a patch of b i o t i t e and quartz with magnetite and leucoxene. E. Thin section of a patch of c h l o r i t e containing some grains of b i o t i t e i n the centre. Peripheral material i s epidote. F. Thin section showing c h l o r i t e and magnetite along a fracture crossing a matrix containing abundant b i o t i t e . The c h l o r i t e envelope i s o f f s e t on a carbonate f i l l e d f r a c t u r e . G. Thin section with c h l o r i t e on a fracture crossing a matrix containing abundant b i o t i t e . Abbreviations used on the plate b i - b i o t i t e cb - carbonate q - quartz c l - c h l o r i t e mg - magnetite 75. On the southeast (footwall) side of the porphyry, the zone i s less well defined. Normal movement on the End Creek Fault has displaced the b i o t i t e zone i n the upper parts of the deposit and i t has been removed by erosion (Figures 5-1,5-2). However, the b i o t i t e zone reappears at depth where the f a u l t plane diverges from the dyke (Figure 5-2). Examination of thi n sections of b i o t i t e zone rocks reveals a vague r e l i c t p o r p h y r i t i c or fragmental texture with pheno-crysts of plagioclase arid mafic minerals i n a fine-grained matrix. Table 5-1 l i s t s some mineral assemblages from the zone. Plagioclase phenocrysts are small ( - o o r o m o ' > t f r ^ r ^ U rH r- CN oo cn CN r- r-~ LD r- iH o o VD I I I I I I I I i\u00E2\u0080\u0094I rH CN CN ro ro r o r o r O r H r o ^ r H r H i I I I I I ^ o o o o o o o o o o o o o o rH CN CN CN CN CN CN CN O O O ^ T ^ Plagioclase (An 20) X X X X X X X X X x - x - x Muscovite x x X x x x x x x x x x X x Epidote \u00E2\u0080\u0094 \u00E2\u0080\u0094 x x \u00E2\u0080\u0094 \u00E2\u0080\u0094 x x x x \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u0094 x Carbonate x - x x - - - - x - - x - x Quartz x - x - x X X - X X X x X x Ch l o r i t e X X X X X X X X X X X X X X Laumontite - x - - - - - - - - - - - -A c t i n o l i t e - x - x - - x X - X - - - -Leucoxene - - - - - - - - - - - x x -Magnetite X - - - x - X x x - - x x x X Abundant x Present - Absent 80. consists of plagioclase(An 20), which i s weakly to moderately altered to s e r i c i t e , and c h l o r i t e , a c t i n o l i t e and minor amounts of quartz. X-ray d i f f r a c t i o n shows that the s e r i c i t e noted i n the thin sections i s muscovite with minor amounts of hydromica (hydromuscovite?). Opaque minerals within t h i s zone are magnetite and leucoxene. Magnetite i s r e s t r i c t e d to the inner part of the zone which i s within two hundred feet of the b i o t i t e zone. I t occurs dissem-inated through the matrix of the rocks and with c h l o r i t e pseudomorphs of mafic minerals. Leucoxene occurs only with c h l o r i t e pseudomorphs of mafic minerals. Epidote Zone ' This zone i s recognized macroscopically by abundant p i s t a c h i o -green epidote. Primary textures of the volcanic rocks are e a s i l y recognized within the zone (Plate IV., A,B,C). Epidote has a r e l a t i v e l y uniform d i s t r i b u t i o n throughout the zone and shows no obvious r e l a t i o n to fractures or veins (Plate IV., B, C ) . The zone i s well exposed on the northeast (hanging-wall) side of the dyke. The inner boundary, which i s gradational with the t r a n s i t i o n zone, i s approximately eight hundred feet from and p a r a l l e l to the quartz-feldspar porphyry dyke-volcanic contact (Figures 5-1, 5-2). The p o s i t i o n of the outer boundary i s not well defined because of lack of exposure, however, the i n f e r r e d width of the zone i s L,200 feet. On the southwest (footwall) side of the quartz-feldspar porphyry dyke, the epidote zone i s well defined. The inner boundary i s the End Creek Fault (Figures 5-1, 5-2). The Table 5-3 MINERAL ASSEMBLAGES IN THE EPIDOTE ZONE (From th i n sections and X-ray Diffractions) Thin Sections X-ray D i f f r a c t i o n s a> m m CT\ (Matrix Material) oo oo ro rH c r i r H r o m o r H c N r o r - ^ I I I | CN CN CN CM CN <; co rH ro ro ro I I I I I r-i rH o oo t - co U U U U U ^ CSi rA rH C J O U O O Plagioclase (An<20) X X X X X X x x x - -Saponite _ _ _ _ _ _ x x x ? ? S e r i c i t e x x x x x x x - x x ? Epidote X X - X X X _ _ _ _ _ Carbonate - - - x x x - - - x -Quartz - - - x x - - - x - -Chlori t e x X X x x X X X X x X X Abundant x Present Laumontite - - - x - x X X x X X ? \"Questionable I d e n t i f i c a t i o n A c t i n o l i t e ' - - - - x - - - - - - - Absent 00 82. PLATE IV EPIDOTE ZONE A. Outcrop north of the p i t showing f i n e l y bedded t u f f with epidote developed along the bedding planes. The scale on the photo i s one inch. B. Hand specimen from the outcrop shown i n \"A\", showing the development of epidote along the bedding planes. C. D r i l l core showing patches of epidote i n a l a p i l l i t u f f . D. Thin section showing epidote developed i n a t u f f . Abbreviations used on the plate ep - epidote 8 3 . outer boundary i s p a r a l l e l to the f a u l t and approximately 1,200 feet to the south. Thin sections of rocks from the zone show that they are t u f f s and l i t h i c l a p i l l i t u f f s (Plate IV., D) with patches, v e i n l e t s , and disseminated grains of epidote (Plate IV., A,B, C,B-) . Mineral assemblages observed. i n the zone are l i s t e d i n Table 5-3. Plagioclase phenocrysts usually are moderately saussur-i t i z e d . Composition of the plagioclase, where possible to measure, i s sodic (An 5-20). Zoned plagioclase grains commonly have saussuritized centres and a l b i t i c rims. Mafic phenocrysts are a l t e r e d t o t a l l y to c h l o r i t e and epidote with minor amounts of carbonate, a c t i n o l i t e and leucoxene. The matrix of the rocks consists of plagioclase (An 20), s e r i c i t e , and very fine-grained material, probably d e v i t r i f i e d glass. X-ray d i f f r a c t i o n studies of the matrix ind i c a t e : (1) The s e r i c i t e noted i n t h i n section i s muscovite, and (2) The presence of a smectite group clay mineral, possibly saponite. The saponite may be part of the very fine-grained material, but could not be distinguished o p t i c a l l y . P y r i t e i s the only opaque mineral noted i n t h i s zone. Small (<2mm) subhedral cubes of p y r i t e are disseminated through the matrix. Wall-rock A l t e r a t i o n S e r i c i t e and C h l o r i t e Zone The s e r i c i t e and c h l o r i t e zone i s recognized by c h l o r i t e pseudomorphs of.mafic minerals and s e r i c i t e pseudomorphs of plagioclase phenocrysts. Although i t occurs both i n the TABLE 5 - 4 MINERAL ASSEMBLAGES IN THE CHLORITE-SERICITE ZONE (From thin sections and X-ray Di f f r a c t i o n s ) Quartz-feldspar porphyry Volcanic Rocks o CN rH rH \"3< < CQ LD \u00E2\u0080\u0094c <\u00C2\u00A3> CO CO o 00 CM ro CM H CO in r- r- rH m ro H H 1 1 I 1 I l 1 in 1 1 1 1 O CTl m ro ro ro o i o O O O CN ro CN o o O CN o 00 CO CO rH rH rH rH rH rH rH - r Plagioclase (An 10) - - - - - - X - X - - X Kaolin Group Clay - - -\u00E2\u0080\u00A2 X - X - X X X - -S e r i c i t e (Muscovite) x X X X X X X X X X X X Epidote Carbonate X X - - - ' X X X X - \u00E2\u0080\u00A2 - -C h l o r i t e X X . X X X X X X X X X X Quartz X X X X X X X X X X X X Leucoxene X X X - - X X - - X -Magnetite - X - - - X X X - - - X Pyrite - X X X X - X - X X X X Chalcopyrite - - - - - - - - X - -Molybdenite X -Quartz Veins X X Carbonate Veins X - - - \u00E2\u0080\u0094 X X _ _ X X 86. quartz-feldspar porphyry dyke and volcanic rocks, i t i s more extensive i n the dyke. In the volcanic rocks, i t i s r e s t r i c t e d to the outer part of a l t e r a t i o n envelopes on set 4 quartz-molybdenite veins (Table 3-2, Figures 5-3, 5-4). A.) Quartz-Feldspar Porphyry C h l o r i t e - s e r i c i t e a l t e r a t i o n within the porphyry dyke i s e a s i l y recognized macroscopically by the dark green pseudomorphs of mafic minerals and the pale green pseudomorphs of plagioclase (Plate V. A). This pervasive c h l o r i t e - s e r i c i t e a l t e r a t i o n shows no c l e a r r e l a t i o n to fractures of veins i n the porphyry exposed i n the p i t . However, i t t e n t a t i v e l y i s regarded as large outer envelopes on the narrower s e r i c i t e envelopes. The \"pervasive\" a l t e r a t i o n i n the porphyry exposed i n the p i t i s believed due to coalescence of these envelopes. Examination of th i n sections confirmed that the plagio-clase phenocrysts are moderately to intensely alt e r e d . A l t e r a t i o n products as determined by X-ray d i f f r a c t i o n , are muscovite, with minor amounts of hydromica (hydromuscovite), c a l c i t e and a kaolin group clay mineral. Mafic phenocrysts are al t e r e d to c h l o r i t e with minor amounts of epidote, carb-onate and opaques (Plate V., B,C,D ). The matrix i s a fine-grained mixture of quartz, s e r i c i t e (muscovite) and minor amounts of c h l o r i t e , epidote, sodic plagioclase and opaque mineral. K-Feldspar i n the matrix which forms up to 15 per cent of the rock i n unaltered porphyry i s destroyed i n t h i s zone. Opaque and semi-opaque minerals within the c h l o r i t e -s e r i c i t e zone are magnetite, and leucoxene. Magnetite and PLATE V CHLORITE-SERICITE ALTERATION ZONE Polished slab of quartz-feldspar porphyry showing the texture of the rock. The quartz \"eyes\", s e r i c i t i z e d plagioclase and c h l o r i t i z e d mafic phenocrysts are evident. Thin section showing c h l o r i t i z e d mafic minerals, probably amphiboles, with magnetite and leucoxene. Thin section showing a c h l o r i t i z e d mafic phenocryst with py r i t e and leucoxene. The subhedral opaques are p y r i t e and and the lath-shaped opaques leucoxene. Thin section shows a mass of c h l o r i t e a l t e r i n g to white mica. The two large opaque grains are p y r i t e and the smaller ones are leucoxene. Thin section showing a mass of white mica with laths of leucoxene. This i s apparently a mafic phenocryst which has altered to c h l o r i t e and then to white mica leaving the leucoxene unaffected. The same thi n section as \"E\" with the n i c o l s crossed. Thin section showing rosettes of c h l o r i t e . Thin section showing a mass of c h l o r i t e surrounded by white mica. Abbreviations used on the plate q - quartz f - plagioclase feldspar leu - leucoxene ser - s e r i c i t e (white mica) c l - c h l o r i t e PY ~ p y r i t e leuocoxene are associated with c h l o r i t e pseudomorphs of mafic phenocrysts (Plate V., B,C,D). B.) Volcanic Rocks Within volcanic rock, c h l o r i t e - s e r i c i t e a l t e r a t i o n i s r e s t r i c t e d to the outer part of s e r i c i t e envelopes around quartz veins (Plate VI., D: Figure 5-4). This a l t e r a t i o n i s distinguished macroscopically b y ' i t s l i g h t green colour which contrasts with the chalky white colour of the s e r i c i t e envelopes. Thin section study indicates that there are patches of -c h l o r i t e replacing mafic phenocrysts, as well as rosettes of secondary c h l o r i t e (Plate V.,G). The c h l o r i t e patches occasionally are rimmed by s e r i c i t e (Plate V., H). Plagioclase grains have been intensely altered to mus-covite, hydromica (hydromuscovite), and a kaolin group clay mineral. The matrix consists of quartz, s e r i c i t e (muscovite), a kaolin group clay mineral, c h l o r i t e , magnetite and leucoxene. Magnetite and leucoxene usually are associated with c h l o r i t e pseudomorphs of mafic minerals. S e r i c i t e Zone The s e r i c i t e zone occurs both i n quartz-feldspar porphyry and volcanic rocks where i t i s recognized macroscopically by the chalky white colour of the rocks caused by the t o t a l a l t e r a t i o n of c h l o r i t e to s e r i c i t e . Table 5-5 MINERAL ASSEMBLAGES IN THE SERICITE ZONE (From thin sections and X-ray Diffractions) Quartz-feldspar Volcanic Rocks porphyry CQ o in O (< CQ CT\ CTi rH rH r n . - I C N C ^ t T i C Q ro cn a> i I i rj< LO I H I rr I I ro I I I O O O I I O l o i f o r o i O ' O O CN CN CN O O VO O C N O O I ^ O r J \" 0 0 C O r H r H r H r r r J < r H CO rH CO rH rH \u00C2\u00AB3< S e r i c i t e (Muscovite) X X X X X X X X X X X X X X X Kaolin Group Clay - - - - - x - x - x x x x x -Pyrophyllite - - x - x - - - - - - ? - - -Quartz X X X X X X X X X X X X X X X Pyrite x x x x x x x x x x x x x x x Chalcopyrite _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Molybdenite - x x - x - - - - x - - - - -Quartz Veins X x x x X X X X X - - - - - x Carbonate Vein - - x x - - - - - - - - - x -X Abundant x Present ? Doubtful I d e n t i f i c a t i o n Absent Figure 5\"3 Figure 5~4 SCHEMATIC DIAGRAM OF A SERICITE ENVELOPE IN VOLCANIC ROCKS A.) Quartz-Feldspar Porphyry S e r i c i t e a l t e r a t i o n occurs as envelopes on fractures (Plate VI., F: Figure 5-3) which makes i t d i f f i c u l t to define the d i s t r i b u t i o n of the a l t e r a t i o n (Figures 5-1, 5-2). Thin sections of rocks from t h i s zone indicate that c h l o r i t e pseudomorphs of mafic minerals are altered to s e r i c i t e . Patches of s e r i c i t e which have replaced c h l o r i t e contain leucoxene di s t i n g u i s h i n g them from s e r i c i t e replacing plagioclase. Plag-ioclase phenocrysts are replaced t o t a l l y by fine-grained i n t e r -growths of s e r i c i t e and a kaolin group clay mineral. Quartz phenocrysts are unaffected by the a l t e r a t i o n . The matrix of the rock i s al t e r e d to a mixture of white mica, quartz, minor clay and opaques. Quartz grains within the matrix are separated completely from each other by the.white mica and clay. X-ray d i f f r a c t i o n indicates that the s e r i c i t e i s muscovite and the clay i s a kaolin group clay mineral. Opaque and semi-opaque minerals associated with t h i s zone are leucoxene and p y r i t e . Leucoxene occurs as t i n y {\u00E2\u0080\u00A2C 0.1mm) grains i n patches of s e r i c i t e which replace c h l o r i t e . P y r i t e occurs as small ( < 1mm) subhedral grains disseminated through-out the matrix. There i s no obvious r e l a t i o n s h i p between quartz-sulphide veins and s e r i c i t e a l t e r a t i o n . B.) Volcanic Rocks S e r i c i t e a l t e r a t i o n i n the volcanic rocks i s r e s t r i c t e d to envelopes around quartz-molybdenite veins (Plate VI.,A,B,C,: Figure 5-4). Primary textures are destroyed t o t a l l y within the envelopes (Plate VI,,D,E). The approximate p o s i t i o n of the 93. PLATE VI SERICITE ZONE A. S e r i c i t e envelopes on quartz veins c u t t i n g b i o t i t i z e d volcanic rocks. The scale of the photo from the bottom to the sky-line i s approximately for t y feet. B. A clo s e r view of a s e r i c i t e envelope (white band behind the hammer handle) cutt i n g b i o t i t i z e d volcanics. C. A smaller s e r i c i t e envelope associated with a quartz vein containing molybdenite. The rock i s a l a p i l l i t u f f with c h l o r i t i z e d fragments i n a s i l i c i f i e d matrix. D. A polished slab of a t y p i c a l s e r i c i t e envelope i n volcanic rocks. E. A polished slab from the inner part of a s e r i c i t e envelope in volcanic rocks. F. S e r i c i t e envelope in the quartz-feldspar porphyry. The envelope i s l o c a l l i z e d along a fr a c t u r e . G. A polished slab of a t r a n s i t i o n from c h l o r i t e - s e r i c i t e zone to s e r i c i t e zone i n the porphyry. Scale i s on the c h l o r i t e -s e r i c i t e zone. H. A polished slab of s e r i c i t i z e d quartz-feldspar porphyry. Abbreviations used on the plate q - quartz ser - s e r i c i t e c l - c h l o r i t e 94. s e r i c i t e zone i s shown in Figure 5-1, and i l l u s t r a t e d -schematically i n Figure 5-2. Envelopes of s e r i c i t e a l t e r a t i o n cut rocks of the b i o t i t e zone and the inner part of the t r a n s i t i o n zone. Most envelopes are c l e a r l y r e l a t e d to Set 4 quartz-molybdenite veins (Figures 3-5, 3-6). However, there are some envelopes on fractures which do not contain quartz-molybdenite veins. Plate VI/ A, B,C,D,E, i l l u s t r a t e s s e r i c i t e - r i c h envelopes adjacent to quartz veins. Figure 5-4 i s a schematic diagram of a s e r i c i t e envelope in volcanic rocks. A \" t y p i c a l \" envelope i s divided into three parts: an inner zone containing p y r o p h y l l i t e and traces of a kaolin group clay mineral, s e r i c i t e and an outer zone of c h l o r i t e , s e r i c i t e and hydromica. The inner p y r o p h y l l i t e zone r a r e l y i s present. Mineral assemblages observed i n the s e r i c i t e zone are l i s t e d i n Table 5-5. In t h i n section, s e r i c i t e pseudomorphs of plagioclase and mafic phenocrysts can be distinguished from the matrix only because they contain s l i g h t l y coarser-grained s e r i c i t e . Pseudomorphs of mafic minerals i n places can be i d e n t i f i e d by the presence of leucoxene, a mineral not formed with pseudomorph af t e r plagioclase. Most of the \"white mica\" noted i n t h i n sections i s s e r i c i t e However p y r o p h y l l i t e , a kaolin group clay mineral and hydromica (hydromuscovite) were i d e n t i f i e d by X-ray d i f f r a c t i o n . P y r ophyllite Zone Most p y r o p h y l l i t e a l t e r a t i o n occurs i n a breccia which caps the quartz-feldspar porphyry dyke on the northwest end Table 5-6 MINERAL ASSEMBLAGES IN THE PYROPHYLLITE ZONE Thin Sections X-ray D i f f r a c t i o n s Fragments Matrix VO < < < o n CN i\u00E2\u0080\u00941 rH o rH rH rH in O < m rH < CN CO W u Q Q rH o in m U W ro CN rH O CN rH CN CN r~ m rH 1 1 rH rH 1 rH 1 1 H rH H rH 1 I I rH rH rH 1 rH O 1 rH O r- O O r - r- O 00 m r-\u00C2\u00BB r- O CN -r- O 1 VO vo I I I 1 i VO r- CN i .1 I VO rH CN rr u rH U rH rH U O U O U rH rH rH U U U rH White Mica Pyro p h y l l i t e Muscovite Kaolin Group Clay Dumortierite Quartz Leucoxene Pyrite Quartz Veins Carbonate Veins X X X X X X x x - x X x X X X X X X - - X X x -X X X X X X x - x X x - - - -X X X X X X - X x - - -- X x - - -X X X X X X X X - X X X X X X X X x X - - x X -x x x x x x x x x X - X - - -X Abundant x Present Absent of the deposit (Figures 5-1, 5-2). The p y r o p h y l l i t e zone i s characterized by p y r o p h y l l i t e and dumortierite. P y r o p h y l l i t e i s i d e n t i f i e d macroscopically by i t s extreme softness and soapy f e e l . Dumortierite i s recognized by i t s diagnostic blue to mauve colour. The breccia i s a tabular body capping the dyke. I t i s approximately 350 feet wide and has been traced 3,600 feet along s t r i k e . I t i s wedge shaped, thickening as the quartz-feldspar porphyry dyke plunges to the northwest. Within the breccia, volcanic fragments, porphyry fragments and matrix have been p y r o p h y l l i t i z e d . Primary textures of v o l -canic fragments are completely destroyed (Plate VII,,B), but the texture of the quartz-feldspar porphyry fragments i s unchanged. Thin sections of volcanic fragments show that they consist of ti n y quartz grains i s o l a t e d i n very fine-grained ( \"C2^y) white micas and clays. I t i s d i f f i c u l t to d i s t i n g u i s h volcanic fragments from matrix i n t h i n section. Thin sections of quartz-feldspar porphyry fragments show that plagioclase and mafic phenocrysts are t o t a l l y a l t e r e d to white micas and clay. White mica pseudomorphs of mafic minerals can s t i l l be recognized by the presence of leucoxene (Plate V.,E, F). Quartz phenocrysts appear unaffected by the a l t e r a t i o n . Matrix of porphyry fragments consists of quartz grains surr-ounded by white micas and clay (Plate VII.,H). X-ray d i f f r a c t i o n of material from volcanic and porphyry fragments and breccia matrix (Table 5-6) indicates that most of the white mica i s p y r o p h y l l i t e , r a r e l y accompanied by muscovite, and a kaolin group clay mineral. Dumortierite occurs as rosettes dn the matrix (Plate VII D) and as v e i n l e t s (Plate VII.., E,F,G,) that l o c a l l y have colloform 98. PLATE VII A. B, D. PYROPHYLLITE ALTERATION ZONE Outcrop of py r o p h y l l i t e breccia. The quartz-feldspar porphyry fragments are apparent; the volcanic fragments are d i f f i c u l t to see. The same outcrop of pyr o p h y l l i t e breccia from a s l i g h t l y greater distance to show the texture of the breccia. A hand specimen of a quartz vein within the p y r o p h y l l i t e breccia. The vein appears to cut the breccia, but thin section examination shows pyrop h y l l i t e growing into the vein. Dumortierite rosettes i n a pyr o p h y l l i t e matrix. E. Dumortierite veining matrix of p y r o p h y l l i t e b r e c c i a . F. A closer view of the dumortierite vein shown i n \"E\". The upper part of the photograph consists of needles of du-mor t i e r i t e . The lower part i s quartz and p y r o p h y l l i t e . G. A mass of dumortierite needles i n a quartz and p y r o p h y l l i t e matrix. H. Typical matrix i n the pyr o p h y l l i t e breccia. Quartz grains are surrounded and separated by white mica, mostly pyrophyllite, Abbreviations used on the plate pp - py r o p h y l l i t e du - dumortierite q - quartz QFP - quartz-feldspar porphyry Vole - Volcanic 99. 100. texture (Plate VII E). Tiny needles of dumortierite along the margins of these v e i n l e t s extend into grains of quartz and into flakes of white mica (Plate VII,,F,G) suggesting that dumortier-i t e postdates quartz and white mica. Opaque and semi-opaque minerals associated with the pyro-p h y l l i t e zone are leucoxene and p y r i t e . Leucoxene occurs with-i n masses of white mica pseudomorphs of mafic phenocrysts. Small (< 2mm) subhedral c r y s t a l s of p y r i t e are disseminated through the matrix. \"Yellow Dog\" Zone The \"Yellow Dog\" zone i s r e s t r i c t e d to the \"Yellow Dog\" breccias (Figure 5-1). The zone i s characterized by rusty-brown fracture f i l l i n g s of ferroan dolomite (Table 5-7) , which transect other a l t e r a t i o n zones. Although a l l parts of the \"Yellow Dog\" zone have the c h a r a c t e r i s t i c brown fractur e - ;. f i l l i n g material, the type of a l t e r a t i o n of fragments within the breccia varies with .their distance from the porphyry dyke. Near the dyke, fragments i n the breccia e x h i b i t a l t e r a t i o n c h a r a c t e r i s t i c of the s e r i c i t e zone in volcanic rocks, and there i s complete destruction of primary textures (Plate VIII., A, B, C). Volcanic fragments i n parts of the breccia farthest from the porphyry dyke (Figures 5-1, 5-2, north wall of p i t ) show a l t e r a t i o n c h a r a c t e r i s t i c of the c h l o r i t e - s e r i c i t e zone with p a r t i a l destruction of primary textures. Breccia matrix i s quartz regardless of p o s i t i o n r e l a t i v e to the dyke. TABLE 5-7 MINERAL ASSEMBLAGES IN THE \"YELLOW DOG\" ZONE (From X-ray.Diffractions) Clay Size ^ Fraction rH rH CM n w w h co Separate i i i i i i i i i O Q Q Q Q Q Q Q Q <3ffl CO>H>H>H>H>H>H>H>H rHrH Quartz X X X X X X X X X X X Plagioclase (An 10) - - - - - - - - - x x S e r i c i t e (Muscovite) X - X X X X X - X X X Kaolin Group Clay X X X X X - - X X x X Pyrophyllite - - - - - - - - - - - X Abundant x Present Chlor i t e - ? ? - - ? - - - _ - ? Doubtful I d e n t i f i c a t i o n C a l c i t e - - - - - - - - - - - - Absent Ferroan Dolomite X X X X X X - X X - -Pyrite X ? X - * X - - X - -102. PLATE VIII II YELLOW DOG II ZONE A. A polished slab of breccia showing the extent and i n t r i c a c y of quartz veining within the breccia. B. A polished slab showing quartz veins, dark gray, c u t t i n g s e r i c i t e a l t e r a t i o n which contains extensive f r a c t u r e -f i l l i n g p y r i t e . The quartz veins are cut by l a t e r carbonate veins. C. A polished slab showing quartz veining c u t t i n g a s e r i c i -t i z e d volcanic fragment. Abbreviations used on the plate ser PY q cb quartz carbonate s e r i c i t e p y r i t e 103. 104. RELATIONS BETWEEN ALTERATION . TYPE AND SULPHIDE DEPOSITION Two stages of a l t e r a t i o n and multiple stages of metal deposition complicate r e l a t i n g a l t e r a t i o n type to sulphide deposition. The r e l a t i o n s h i p i s further complicated by the superposition of wall-rock a l t e r a t i o n on contact metamorphism. This r e s u l t s i n some stages of metal deposition being s p a t i a l l y , but not temporally related to a c e r t a i n type of a l t e r a t i o n . This section i s divided into discussions of s p a t i a l and temp-ora l r e l a t i o n s between a l t e r a t i o n types and stages of sulphide deposition. The s p a t i a l r e l a t i o n s h i p between the ore zone and the a l t e r -ation zones i s shown schematically i n Figure 5-2. Figure 5-5 shows s p a t i a l r e l a t i o n s between types of a l t e r a t i o n and each stage of metal deposition. The p y r o p h y l l i t e breccia which i s not shown on the diagram contains no ore grade material. However traces of chalcopyrite and molybdenite occur i n quartz veins t e n t a t i v e l y believed set 3 and set 4 veins (Table 3-1). The \"Yellow Dog\" breccia cuts a l l zones of contact meta-morphism and extends into the unaltered rocks. The boundary of the ore zone moves s l i g h t l y (20-30 feet) further away from the dyke i n the 'Yellow. Dog\" breccia r e l a t i v e to the adjacent volcanic rocks. Chalcopyrite i n the breccia occurs as coarse grains i n v e i n l e t s and with traces of molybdenite in quartz veins. I t i s t e n t a t i v e l y correlated with set 4 veins i n the ore zone (Table 3-1). Temporal re l a t i o n s h i p s between metal deposition and a l t e r a t i o n type are outlined i n Table 5-8. The problem with the \"Yellow Dog: a l t e r a t i o n type i s shown by the table. While the bulk of the a l t e r a t i o n within the breccia i s s e r i c i t e , 105. F i g u r e 5-5 S P A T I A L RELATIONS BETWEEN ALTERATION TYPE AND SULPHIDE DEPOSITION I N T R U S I V E ROCKS VOLCANIC-ROCKS QUARTZ-FELDSPAR MARGINAL CONTACT METAMORPHISM UNALTERED BRECCIA B I O T I T E \"ONE TRANSITION \"ONE EPIDOTE ZONE SW. ORE ZONE NE. WALL-ROCK ALTERATION S e r i c i t e Envelopes XXXXXXXX iXXXXXXXXX) X X X X X x x x x METAL DEPOSITION 1 . ) Copper * Stage one ( 3 ) X X X p. XXXXXXXXXXXXXX x x x x x x x X Stage two (4) CXXXXXXXXX5 X X X X X X X Stage t h r e e (6)- X X X ) x x x x ; X X X Stage f o u r (9) X X X X X X X X X X < Stage f i v e ( 1 0 ) X X X X 2.) Molybdenum Stage one ( 3 ) X X X X X X X x x x Stage two (4) X X X X X X X X x x x 'Stage t h r e e (6) x x x x x x x x x x x : x x x x x x x x x x x x x x : \u00E2\u0080\u00A2 x x x x x x x x Notes (1) Numbers i n parentheses r e f e r to Legend v e i n s e t s (Table 3 - 1 ) . x x x - Abundant (2) Stage one - copper and stage t h r e e - x x - Always P r e s e n t molybdenum a r e the major c o n t r i b u t o r s X X - P r e s e n t L o c a l l y o f metal to the ore zone. 1 1 T a b l e 5-8 TEMPORAL RELATIONS BETWEEN STAGES OF ALTERATION AND SULPHIDE DEPOSITION VEIN STAGES OF METAL ALTERATION TYPE SET DEPOSITION (Table 3-1) Copper Molybdenum - \" \u00E2\u0080\u0094 C o n t a c t Thermal ( B i o t i t e , T r a n s i t i o n and E p i d o t e Types) 3 Stage One Stage One 4 Stage Two Stage Two W a l l - r o c k A l t e r a t i o n ( P y r o p h y l l i t e , S e r i c i t e , and C h l o r i t e - S e r i c i t e Types) 6 Stage Three Stage Three 8 \"Yellow Dog\" Orange f e r r o a n d o l o m i t e 9 Stage Four '\u00E2\u0080\u00A2 10 Stage F i v e 106. formed during the stage of wall-rock a l t e r a t i o n , the orange ferroan dolomite which gives the zone i t s name i s formed l a t e r . SURFICIAL ALTERATION At many ore deposits, a major problem i n the study of hydrothermal a l t e r a t i o n i s di s t i n g u i s h i n g and separating supergene from hydrogene e f f e c t s . S u r f i c i a l e f f e c t s at the Island Copper deposit are minimal and have not obscured.-hydrothermal a l t e r a t i o n . ' Two conditions at the Island Copper deposit indicate the absence of s u r f i c i a l e f f e c t s . F i r s t , there i s an absence of abundant i r o n oxides and copper oxides i n the upper part of the deposit. In the ce n t r a l part of the p i t , the subcrop surface has a zone of iro n and copper oxides approximately one inch thick. This contrasts with other mineral showings on the north end of Vancouver Island which commonly are covered by gossans exceeding 100 feet i n thickness. Second, there i s a lack of secondary enrichment of the ore body. Secondary copper sulphide minerals have not been observed i n hand specimen or polished section. There i s no r e l a t i o n between copper grade and distance below the subcrop surface, as would be expected with secondary enrichment of an ore zone. A study which gives some ins i g h t into s u r f i c i a l e f f e c t s was made on core samples from d r i l l hole no. 216 (Figure 4-1), a v e r t i c a l hole. Clay-sized material (-^ .2 microns) was sep-arated from 13 samples from t h i s hole to tes t f o r differences i n the mineralogy of the cl a y - s i z e d f r a c t i o n near the bedrock surface compared with the deeper parts of the hole. The mineral assemblages f o r the d i f f e r e n t samples are tabulated 107. Table 5-9 MINERAL ASSEMBLAGES IN CLAY SIZE RANGE DDH. C-216 fd O o e o u m cu 0) \u00E2\u0080\u00A2H CD rH CD a; 4J rH cd 4-> +J -H \u00E2\u0080\u00A2H N a. \u00E2\u0080\u00A2H \u00E2\u0080\u00A2H c 5-1 cu -P CO O -H O +J U T3 \u00E2\u0080\u00A2H O rH 6 \u00E2\u0080\u00A2H fd rH U rH 0 \u00E2\u0080\u00A2 c S-l d o CD rC! fd o >i a CM CO u g 48' X X - X ? - -77* X - - X - ' - X 120' X X - X ? - -205' X X X X X - -224' X - X X X - -257 ' X - X X - -455' X - X - X - -745' X - - \u00E2\u0080\u00A2 X - - -767' X - X X - - -782' X - X - X - -800' X - X X - - -804' X - X X X - -813' X X X X X -Notes: 1/ X major phase x minor phase ? questionable i d e n t i f i c a t i o n - absent 2/ V e r t i c a l hole 3/ 20' of overburden 108. in Table 5-9. There i s no increase in v a r i e t y or amount of clay minerals i n the samples from the upper parts of the hole i n d i c a t i n g that the e f f e c t s of s u r f i c i a l a l t e r a t i o n are very minor. FORMATION OF'THE ALTERATION ZONES Introduction This section reviews available data on the environment of formation and discusses the formation of: 1.) Stage 1, Contact Metamorphism 2.) Stage 2, Wall-rock A l t e r a t i o n . Environment of Formation The Island Copper deposit i s related s p a t i a l l y to the quartz-feldspar-porphyry dyke. Intrusive bodies of t h i s nature are believed coeval with and probably feeders f o r ex-trusive rocks i n the upper part of the Bonanza Volcanics. Stratigraphic data (Chapter 3), the p o r p h y r i t i c texture of the dyke, and i t s accompanying br e c c i a t i o n , suggest the deposit formed i n a near-surface, low pressure environment. Temperatures of formation of a l t e r a t i o n zones have not been determined. Preliminary studies of samples from many d i f f e r e n t ages of quartz veins indicate f l u i d i nclusions too small for determining temperatures with available equipment. Indirect methods of estimating temperatures by comparing mineral assemblages with those formed experimentally proved inconclusive. While experimental data give upper l i m i t s for temperatures of formation of some minerals present i n natural assemblages, they do not indicate lower l i m i t s . Diamond d r i l l i n g shows that the ore zone i s i n a constant p o s i t i o n r e l a t i v e to the dyke and has the same mineralogy and 109. grade through 1,200 feet of s t r a t i g r a p h i c thickness. While data at extreme depths i s scanty, a l t e r a t i o n patterns seem l i t t l e changed with depth, except for variations i n the mineralogy of the superimposed a l t e r a t i o n . Contact Thermal Metamorphism Contact metamorphic e f f e c t s are summarized i n Table 5-10. D i s t r i b u t i o n of mineral assemblages c h a r a c t e r i s t i c of t h i s stage are shown schematically i n Figure 5-6. Rocks of b i o t i t e and t r a n s i t i o n zones are altered to a hornfels. Chemical analyses of thirteen samples of Bonanza Volcanics (Muller, 1970) a r e l a t i v e l y complete sampling of the rock types, were plotted on an ACF diagram of the A l b i t e - Epidote Hornfels Facies (Winkler, 1967) to determine which mineral assem-blages could be expected (Figure 5-7). Eleven of thirteen samples plotted i n the chlorite-epidote-tremolite f i e l d . This corresponds with minerals assemblages found i n the b i o t i t e , t r a n s i t i o n and epidote zones (Table 5-10). Lack of mineralogic data for analysed rocks makes i t impossible to cal c u l a t e where the analyses would plot on an A'KF diagram. A problem remaining i s whether or not abundant b i o t i t e in the b i o t i t e zone represents metasomatism i n addition to contact metamorphism. Analyses for potassium, sodium, magnesium and calcium are presented i n Figure 5-8. Because only a few analyses are avai l a b l e only arithmetic means and range are plotted. The arithmetic mean of potassium i n b i o t i t e zone samples i s s l i g h t l y higher than that from t r a n s i t i o n and epidote zone samples, but i s below the mean and within the range of potassium analyses from fresh rocks. Magnesium analyses are e s s e n t i a l l y the same i n fresh rocks, t r a n s i t i o n , epidote and (biotite zones. 110. INTRUSIVE ROCKS VOLCANIC ROCKS Q.F.P. MARGINAL BRECCIA BIOTITE ZONE TRANSITION ZONE EPIDOTE ZONE UNALTERED SW. ORE ZONE NE. ALTERATION MINERALS Quartz Plagioclase Biotite Hydrobiotite Vermiculite Chlorite Actinolite Epidote Magnetite Saponite(?) Muscovite -- - - --- - - - - -LEGEND Alteration Minerals Always Present Usually Present - - - - -Locally Present - - . -FIGURE 5-6 SCHEMATIC DIAGRAM SHOWING DISTRIBUTION OF THE ALTERATION MINERALS CONTACT METAMORPHISM FIGURE 5-7 Thirteen Analyses of Bonanza Volcanic Rocks on an ACF Projection of the Albitc-F.pidote Horn-fels Facies (ACF Projection After Winkler, 1967) (Analyses Published by Mueller, 1970) (^ANALYSIS 112. These data suggest that formation of b i o t i t e involved l i t t l e metasomatism. Analyses for sodium and calcium, which show e s s e n t i a l l y no v a r i a t i o n between samples of fresh rocks and those from contact metamorphic zones support the suggestion that l i t t l e metasomatism i s involved i n the formation of these zones. . Manganese i s s l i g h t l y depleted i n b i o t i t e zone samples r e l a t i v e to samples from fresh rocks, t r a n s i t i o n and epidote zone samples, but the mean value i s within the range of analyses from samples of fresh rocks. Contact metamorphism of a s i m i l a r nature i s reported from several other porphyry copper deposits where much of the ore i s i n andesitic wall rocks adjacent to an i n t r u s i v e or breccia. Panguna (Fountain, 1972), E l Tiente (Howell and Molloy, 1960), Safford (Robinson, 1966) and Mess Creek (Sutherland Brown, 1970) are the best documented examples. Figure 5-9 i s a schematic diagram comparing the d i s t r i b u t i o n of the early a l t e r a t i o n zones at Island Copper to Panguna, E l Tiente, and Safford. The d i s t r -bution at Mess Creek i s too complex for t h i s type of diagram. Figure 5-9 shows that the hornfels ( b i o t i t e , t r a n s i t i o n , epidote zones) at Island Copper i s r e l a t i v e l y narrow compared with a l t e r a t i o n zones described at the other deposits. This may be a function of the width of the i n t r u s i v e . At Island Coppe i t i s r e l a t i v e l y narrow (400 feet) while i t i s much wider at the other deposits. The close s p a t i a l c o r r e l a t i o n between b i o t i t e and copper mineralization at Panguna and E l Tiente i s also i l l u s t r a t e d on th diagram. B i o t i t e at E l Tiente and Safford i s c l e a r l y a pre-ore feature, while at Panguna and Mess Creek, the exact age r e l a t i o n s have not been established. TABLE 5-10 SUMMARY OF THE CHARACTERISTICS OF THE ALTERATION ZONES IN VOLCANIC ROCKS .CONTACT METAMORPHISM -WALL-ROCK ALTERATION ^ZONES^^ BIOTITE TRANSITION EPIDOTE CHLORITE SERICITE SERICITE PYROPHYLLITE \"YELLOW DOG\" DEFINING MINERALS B i o t i t e C h l o r i t e Epidote C h l o r i t e s S e r i c i t e S e r i c i t e P y r o p h y l l i t e & Dumortierite Rusty Orange Dolomite TEXTURES Destroyed P a r t i a l l y Destroyed D i s t i n c t P a r t i a l l y Destroyed Destroyed Destroyed P a r t i a l l y Destroyed PLAGIOCLASE PHENOCRYSTS A l b i t i c (An 5-25) S l i g h t to moderate s e r i c i t i z -a t i o n and s a u s s u r i t i z -a t i o n A l b i t i c (An5-25) S l i g h t to moderate s e r i c i t i z -a t i o n and s a u s s u r i t i z -a t i o n A l b i t i c (An5-25) Moderate s a u s s u r i t i z -a t i o n A l t e r e d t o: Muscovite Minor K a o l i n i t e Hydromica A l t e r e d t o : Muscovite K a o l i n i t e A l t e r e d t o : P y r o p h y l l i t e Muscovite K a o l i n i t e Moderately a l t e r e d t o : Muscovite K a o l i n i t e MAFIC PHENOCRYSTS A l t e r e d t o : B i o t i t e C h l o r i t e Epidote Carbonate A c t i n o l i t e A l t e r e d t o: C h l o r i t e Epidote A c t i n o l i t e Carbonate S e r i c i t e A l t e r e d t o: C h l o r i t e Epidote Carbonate A c t i n o l i t e A l t e r e d t o: C h l o r i t e Muscovite Carbonate A l t e r e d t o : Muscovite Minor K a o l i n i t e A l t e r e d t o : P y r o p h y l l i t e Muscovite Minor K a o l i n i t e A l t e r e d t o : C h l o r i t e Muscovite MATRIX P l a g i o c l a s e B i o t i t e C h l o r i t e Muscovite A c t i n o l i t e H y d r o b i o t i t e V e r m i c u l i t e Carbonate Quartz P l a g i o c l a s e Muscovite C h l o r i t e Quartz A c t i n o l i t e Hvdromica P l a g i o c l a s e C h l o r i t e Muscovite Glass Saponite(?) Muscovite K a o l i n C h l o r i t e Quartz Quartz Muscovite K a o l i n i t e Quartz P y r o p h y l l i t e K a o l i n Muscovite Dumortierite Quartz S e r i c i t e Carbonate P l a g i o c l a s e OXIDES Magnetite Leucoxene Hematite Magnetite Leucoxene Leucoxene Magnetite Leucoxene Leucoxene Leucoxene Leucoxene SULPHIDES P y r i te C h a l c o p y r i t e Molybdenite P y r i t e C h a l c o p y r i t e Molybdenite P y r i t e P y r i t e Minor Cha l c o p y r i t e Molybdenite P y r i t e P y r i t e P y r i t e C h a l c o p y r i t e Molybdenite 114 o POTASSIUM ^ cx a. MAGNESIUM \u00E2\u0080\u0094 \u00C2\u00A3 C L Q L O CALCIUM ~ E Q MANGANESE -\u00E2\u0080\u0094 E o. a. -RANGE \ MEAN CHEMICAL VARIATIONS BETWEEN ALTERATION ZONES IN THE VOLCANIC ROCKS-to FIGURE- 5-3 / / / / pn,mb OISSEMINATED I V E I \ L E T S M'CRCVEl.^Lt-Sr '\u00E2\u0080\u00A2 VElNLET / ' V \" . s rcCK*OHKl DEEP CENTRAL ASSEMBLAGE INTRUSIVE HOST-SOURCE (?) QMp-Qlp DIKES OR STOCK .'/I DEEP PERIPHERAL ASSEMBLAGE 126, Schematic comparison of a l t e r a t i o n and mineralization i n mafic and intermediate rocks (After Guilbert and Lowell, 1974) Volcdn . Aucanquilcha f 5 m t u g m msok-uvn) El Quevai Cerro Marqu\u00C2\u00ABizl High-ttmptroturr._ tumaroft *8 Native sulfur deposits with some pyr/tt & morcos/to El Salvador*. Mocha Los Pftlamtxesl, Si. Los LOTOS Fortuna Grano -diorite, Chuguicsmata PORPHYRY STOCK \ \ ' | PHANERITIC rr\u00E2\u0080\u0094n SRANOOIORITE I + I HYDROTHERMAL INTRUSION BRECCIA LIMESTONE HORIZON ||||| RQCKJTYPES + + + + + + + + + + + + + ^ PLUTON of PHANERITIC \ f GRANOOIOBITE Ptgmotitt bodies + + + + HORIZONTAL S C A L E (some as vertical): Kilometers ALTERATION SILICIFICATION 4 r^n ADVANCED ARGILLIC t ... I PROPTLITIC SERICITIC fgggj POTASSIUM SILICATE [ijjjjjj B. Idealized cross section of a t y p i c a l , simple porphyry copper deposit showing i t s po s i t i o n at the boundary between plutonic and volcanic environments. (After S i l l i t o e , 1973) FIGURE 6-1 127. 5. Sphalerite occurs throughout the deposit. 6. P y r i t e exceeding chalcopyrite i n the Inner zone (quartz-feldspar porphyry). 7. A l t e r a t i o n patterns which are much more complex i n the Inner zone (quartz-feldspar porphyry). 9. Pyrophyllite forming a major a l t e r a t i o n zone. Another problem with attempting to f i t the Island Copper deposit into the Guilbert and Lowell (1974) model i s that the model i s e n t i r e l y s p a t i a l . The i m p l i c i t assumption i s that a l t e r a t i o n zones formed i n one system which grew outward from the center. This concept does not f i t the evidence at the Island Copper deposit. The second type of model, the genetic model i s constructed by f i t t i n g d i f f e r e n t deposits together into an ore-forming system. Sutherland Brown (1969) i n i t i a t e d t h i s approach with prophyry copper deposits i n the Canadian C o r d i l l e r a . James (1971) , using southwest U.S. deposits and E l Tiente i n C h i l e , expanded the idea. Hutchison and Hodder (1972) expanded i t further to include strataform massive sulphide deposits i n the system. S i l l i t o e (1973) has again expanded the model (Figure 6-1B) to f i t porphyry type deposits with coeval volcanism. S i l l i t o e followed the Lowell and Guilbert (1970) pattern for l a t e r a l a l t e r a t i o n zoning, but introduced v e r t i c a l v a r i a t i o n i n the a l t e r a t i o n . The S i l l i t o e model i s a better approximation of the s i t u a t i o n at the Island Copper deposit p a r t i c u l a r l y i f Guilbert and Lowell's (1974) revised zoning patterns for mafic and intermediate rocks are used. 128. A TENTATIVE MODEL FOR THE FORMATION OF THE ISLAND COPPER DEPOSIT Models discussed i n the previous section consider a l t e r a t i o n patterns of a number of deposits and explain them i n terms of one ore-forming system. This approach ignores the time r e l a t i o n s between the d i f f e r e n t a l t e r a t i o n patterns and the p o s s i b i l i t y of a system evolving over a period of time. The following model i s proposed for development of the Island Copper deposit. Step One Intrusion of the porphyry dyke i s the f i r s t major s t r u c t u r a l event. These porphyry dykes are coeval with Bonanza volcanism and probably are feeders for acid volcanic rocks i n the upper part of the formation. Although the exact mechanism of t h e i r formation i s not known, the marginal breccias and the p y r o p h y l l i t e breccia were formed contemporaneously with i n t r u s i o n of the dyke. Fracturing of volcanic host rocks also accompanied dyke emplacement. A contact metamorphic aureole i n the volcanic rocks marked by b i o t i t e , t r a n s i t i o n and epidote zones developed adjacent to the quartz-feldspar porphyry dyke. These zones are much wider than metamorphic aureoles predicted from Jaeger's (1957) ca l c u l a t i o n s for aureoles formed by conductive heat tr a n s f e r . This suggests l a t e r a l heat transfer by c i r c u l a t i n g water as well as conduction. Water could be either formational water trapped during depositon of volcanics or meteoric water which pene-trated the volcanic p i l e . This type of hydrothermal system would be r e l a t i v e l y short l i v e d (a few hundred years) as the dyke would cool r a p i d l y . 129. Step Two Step two i n formation of the deposit i s marked by changes i n flow patterns and nature of the hydrothermal solutions. During step one, hydrothermal solutions moved l a t e r a l l y to form contact a l t e r a t i o n zones on each side of the dyke. These solutions aided cooling of the dyke by convective transfer of heat, but do not appear to have affected the chemical compositions of the wall rocks. Flow patterns of hydrothermal solutions during step two are shown by d i s t r i b u t i o n of superimposed a l t e r a t i o n (Figure 5-2). Hydrothermal solutions moved upward through marginal breccias and p y r o p h y l l i t e breccia and l a t e r a l l y through fractures into both quartz-feldspar porphyry and volcanic rocks. This change i n the pattern of hydrothermal flow i s due to a change i n the p o s i t i o n of the heat source d r i v i n g the system. The primary heat source i s no longer the dyke, which i s cooling r a p i d l y , but a deeper magma chamber which feeds the dyke. Figures 2-1 and 2-2 show d i s t r i b u t i o n of i n t r u s i v e and al t e r e d volcanic rocks on t h i s part of Vancouver Island. Northcote (1970) suggested that t h i s entire area was underlain by an i n t r u s i v e of b a t h o l i t h i c dimensions. A large i n t r u s i v e mass such as t h i s would provide a long term heat source. There are two d i s t i n c t phases to t h i s hydrothermal system: 1) Copper deposition and 2) Molybdenum deposition. Although some copper was deposited i n quartz-feldspar porphyry, volcanic rocks and breccias, copper i n ore grade quantities i s confined to volcanic rocks, the marginal and \"Yellow Dog\" breccia. In volcanic rocks, copper i s deposited as fracture f i l l i n g s i n ti n y c l o s e l y spaced fractures. In marginal and \"Yellow Dog\" breccias, i t occurs i n r e l a t i v e l y large quartz veins. V a r i a t i o n i n mode of occurence i s due to v a r i a t i o n i n the size of fractures available to f i l l . Although minor amounts of molybdenite are associated with t h i s chalcopyrite, i t i s predominantly a stage of copper deposition. L o c a l l i z a t i o n of ore grade quantities of copper i n volcanic rocks and the marginal and \"Yellow Dog\" breccias i s due primarily to physical controls of ore deposition. Volcanic rocks adjacent to the quartz-feldspar porphyry dyke are intensely fractured as a r e s u l t of dyke i n t r u s i o n , and the breccias contained abundant void space. Copper deposition was an early event i n t h i s system. If the porphyry dyke were s t i l l warm there would be a l a t e r a l geothermal gradient pushing hydrothermal solutions away from the dyke into a v a i l a b l e permeable zones, crackled volcanics and breccias. Chemical controls, while they may be equally important, are not obvious. Although some molybdenite occurs i n quartz-feldspar porphyry, volcanic rocks and breccias, recoverable amounts are confined to marginal breccias, volcanic rocks and the \"Yellow Dog\" breccia. Molybdenite occurs i n quartz veins with envelopes of s e r i c i t i c a l t e r a t i o n and on fracture surfaces (molybdenite s l i p s ) which cut these envelopes. Although movement on these fractures occurred a f t e r development of s e r i c i t e envelopes, the time of molybdenite deposition i s unknown. Molybdenite deposition i s rel a t e d to the l a t e r part of t h i s stage of hydrothermal a c t i v i t y when the solutions were highly acid. The reasons for the r e s t r i c t e d areas of molybden-i t e deposition i s probably due to a v a i l a b i l i t y of fractures for 131. the solutions to move through. Molybdenite deposition on the fracture surfaces which do not have accompanying s e r i c i t i c a l t e r a t i o n t e n t a t i v e l y i s believed formed as the l a s t event i n t h i s system. Step Three Formation of carbonate-zeolite veins i s the l a s t step i n the formation at the deposit. D i s t r i b u t i o n of these veins i n a l l rock types and cutt i n g a l l a l t e r a t i o n zones indicates a change i n the flow patterns of the hydrothermal solutions. The marginal and p y r o p h y l l i t e breccias are not the p r i n c i p a l conduit for hydrothermal a c t i v i t y as they werejduring step two. Mineralogy of the veins and lack of associated wall-rock a l t e r a t i o n suggest a change i n the nature of the solutions. Veins consist of carbonate ( p r i n c i p a l l y c a l c i t e ) and z e o l i t e (laumonite) with minor amounts of p y r i t e , sphalerite, hematite, and pyrobitumen. This mineral assemblage suggests deposition from low temperature a l k a l i n e hydrothermal solutions. In the Wairakei geothermal system (Steiner, 1953) z e o l i t e veins superimposed on a zone of a r g i l l i z e d rock are believed formed by a l k a l i n e - r i c h waters at the end of the hydrothermal system. That i s , they began as acid r i c h water and l o s t t h e i r hydrogen ions through reactions (base leaching) with the wall rocks. If the system at Island Copper were s i m i l a r , the zone of superimposed a l t e r a t i o n by base leaching has moved downward. This i s a more reasonable explanation than postulating a change from an acid to an a l k a l i hydrothermal system. 132. CHAPTER 7: CONCLUSIONS The following conclusions are drawn from t h i s study: 1) The copper-molybdenum deposit of Utah Mines Ltd. formed i n volcanic irocks adjacent to a coeval porphyry dyke i n a near-surface environment. 2) Ore and a l t e r a t i o n zones formed symmetrically on both sides of the dyke. 3) A l t e r a t i o n assemblages are divided into seven zones, which can be mapped on the basis of megascopic c h a r a c t e r i s t i c s . 4) A l t e r a t i o n assemblages formed during two stages: (i) Pre-ore contact a l t e r a t i o n comprising the b i o t i t e , t r a n s i t i o n and epidote zones. ( i i ) Wallrock a l t e r a t i o n comprising the\"1 c h l o r i t e - s e r i c i t e , s e r i c i t e , p y r o p h y l l i t i c and \"Yellow Dog\" zones. 5) Pre-ore contact a l t e r a t i o n i s a contact meta-morphic aureole on both sides of the dyke. L i t t l e metasomatism i s involved i n the formation of t h i s aureole. 6) Wallrock a l t e r a t i o n formed a f t e r the dyke was la r g e l y cooled i n a hydrothermal system l o c a l l i z e d i n breccias around the margins of the dyke. 7) The bulk of the copper was deposited p r i o r to deposition of molybdenum. 8) The copper ore zone i s c l o s e l y s p a t i a l l y r e l a t e d to the inner part of the contact metamorphic aureole r i c h i n b i o t i t e and magnetite. However, deposition of copper mineralization post-dates contact metamorphism. 9) Although copper and molybdenum are s p a t i a l l y c l o s e l y related, the bulk of the molybdenum deposition post-dates copper mineralization. Deposition of molybdenum i s c l o s e l y related temporally to the formation of superimposed a l t e r a t i o n . 10) The \"GEOLOG\" format i s an e f f i c i e n t method of 133. logging core i n t h i s type of deposit. I t y i e l d s a core log amenable to either computer or v i s u a l i n t e r p r e t a t i o n . 11) S t a t i s t i c a l c o r r e l a t i o n studies between abundance of a l t e r a t i o n minerals and ore grade y i e l d s data on r e l a t i o n s between ore grade and formation and d i s t r i b u t i o n of a l t e r a t i o n assemblages. However, correct i n t e r p r e t a t i o n of s t a t i s t i c a l studies requires a d d i t i o n a l data on age r e l a t i o n s between alteration' assemblages and ore minerals. 134. REFERENCES Asihene, K.A.B., 1970, The Texada Formation of B r i t i s h Columbia and i t s associated magnetite concentrations: Unpublished Phd Thesis, Univ. Cal. Bancroft, J.A., 1913, Geology of the coast and i s l a n d between the S t r a i t of Georgia and Queen Charlotte Sound, B.C.: Geol. Surv. Can., Mem. 2 04. Blanchet, P.H. and Godwin, C.I., 1972, \"Geolog System\" for computer and manual analysis of geologic data from porphyry and other deposits: Econ. Geol., v.67, p.796-813. Bray, R.E., 1969, Igneous rocks and hydrothermal a l t e r a t i o n at Bingham, Utah: Econ. Geol. v.64, p. 34-49. Buddington, A.F., 1916, P y r o p h y l l i t i z a t i o n , p i n i t i z a t i o n and s i l i c i f i c a t i o n of rocks around Conception Bay, Nfl d . : Jour. Geol., v.24, p. 130-152. Buddington, A.F., 1959, Granite emplacement with s p e c i a l reference to North America: B u l l . Geol. Soc. Am., v.70, p. 671-748. Burbank, W.S. and Luedke, R.G., 1961, Geology and ore deposits of the Eureka and adjoining d i s t r i c t : U.S. Geol. Surv., Prof. Paper no. 535. 135. Carson, D.J.T., 1968, Metallogenic study of Vancouver Island with emphasis on the r e l a t i o n s h i p of plutonic rocks to mineral deposits: Phd. Thesis, Carleton Univ., Ottawa. Carson, D.J.T., 1973, The plutonic rocks of Vancouver Island: Geol. Surv. Can., Paper 72-44. Crickmay, C.H., 1928, The stratigraphy of Parson Bay, B.C.: Univ. of Cal., Publ. Geol. S c i . , v.18, p. 51-63. Dawson, G.M., 1887, Report on a geological examination of the northern part of Vancouver Island and adjacent coasts: Geol. Surv. Can., Ann. Rept. 1886, v.2, Pt. B, p. 1-107. De Geoffry, J . , and Wignall, T.K., 1972, A s t a t i s t i c a l study of geological c h a r a c t e r i s t i c s of porphyry copper-molybdenum deposits i n the C o r d i l l e r a n b e l t - a p p l i c a t i o n to the r a t i n g of porphyry prospects: Econ. Geol., v. 6,7, p. 656-668. Dietz, R.S., 1961, Vredefort Ring structure: meteorite impact scar?: Jour. Geol, v.69, p. 499-516. Dietz, R.S., 1964, Sudbury Structure as an Astrobleme: Jour. Geol., v.72, p. 412-434. Dolmage, V., 1919, Quatsino Sound and c e r t a i n mineral deposits of the west coast of Vancouver Island, B.C.: Geol. Surv. Can., Sum. Rept. 1918. 136. Floyd, A., and Bjerring, J.H., 1969, Parametric and non-parametric c o r r e l a t i o n s and tests of s i g n i f i c a n c e : Unpublished Manual, Univ. B.C. Computing Centre. Fountain, R.J., 1972, Geological.relationships i n the Panguna porphyry copper deposit, Bougainville Island, New Guinea: Econ. Geol., v.67, p. 1049-1064. Freeman, L . C , 1965, Elementary Applied S t a t i s t i c s : John Wiley & Sons, p. 108-119, 187-198. Godwin, C.I., 1973, Shock brecciation, an unrecognized mechanism for breccia formation in the porphyry environment: Geol. Assoc. Can. Proceedings, v.25, p. 9-12. Guilbert, J.M., and Lowell, J.D., 1974, Variations i n zoning patterns i n porphyry ore deposits: Can. Inst. Min. & Met. B u l l . , p. 99-109. Gunning, H.C., 1932, Preliminary report on Nimpkish Lake Quadrangle, Vancouver Island, B.C.: Geol. Surv. Can., Sum. Rept. 1913A, p. 22-35. Hemley, J . J . , 1959, Some mineralogical e q u i l i b r i a i n the system K2O - AI2O3 - Si02 - H2O: Am. Jour. S c i . , v.57, p. 241-270. Hemley, J.J., and Jones, W.R., 1966, Chemical aspects of hydro-thermal a l t e r a t i o n with emphasis on hydrogen metasomatism: Econ. Geol., v.59, p. 538-569. 1 3 7 . Hemley, J. J . , and Meyer, C., 1967, Wall-rock a l t e r a t i o n : i n geochemistry of hydrothermal ore deposits, ed. H.L. Barnes. Hemley, J. J . , Meyer, C , and Richter, D.H., 1961, Some a l t e r a t i o n reactions i n the system Na20 - A I 2 O 3 - SiC>2 - H 2 O : U.S. Geol. Surv., Prof. Paper 424D, p. 338-340. Hemley, J.J., Montoya, J.W., N i g r i n i , A., and Vincent, H.A., 1970, Some a l t e r a t i o n reactions i n the system CaO - A^O-^ -SiG^ - H 2 0 : S o c \u00C2\u00AB Min. Geol. Japan, Special Issue No. 2, p. 58-63. Howell, F.H., and Molloy, J.S., 1960, Geology of the Braden ore-body, Ch i l e , South America: Econ. Geol., v.55, p. 864-905. Hutchison, R.W., and Hodder, R.W., 1972, Possible tectonic and metallogenic re l a t i o n s h i p s between porphyry copper and massive sulphide deposits: C.I.M. Bull.,.p. 34-40. Iwao, S., 1962, S i l i c a and alunite deposits of the Usuga Mine: a geochemiocal consideration of an extinct geothermal area i n Japan: Japanese Jour. Geol. Geogr. v.33, p. 131-141. Jaeger, J.C., 1957, The temperature i n the neighbourhood of a cooling i n t r u s i v e sheet: Amer. Jour. S c i . , v.255, p.306-318. James, A.L., 1971, Hypothetical diagrams of several porphyry copper deposits: Econ. Geol. v.66, p. 43-47. Jeletsky, J.A., 1969, Mesozoic and Te r t i a r y stratigraphy of northern Vancouver Island (92E, 92L, 1021): Geol. Surv. Can., Paper 69-1A, p. 126-134. 138. Hemley, J.J., and Meyer, C , 1967, Wallrock a l t e r a t i o n : \ i n geochemistry of hydrothermal ore deposits, ed. H.L. Barnes. Hemley, J. J . , Meyer, C , and Richter, D.H., 1961, Some a l t e r a t i o n , reactions i n the system Na 20 - A I 2 O 3 - S i 0 2 - H 20: U.S. Geol. Surv., Prof. Paper 424D, p. 338-340. Hemley, J. J . , Montoya, J.W., N i g r i n i , A . , and Vincent, H.A., 1970, Some a l t e r a t i o n reactions i n the system CaO - A I 2 O 3 -SiC>2 - H 20: Soc. Min. Geol. Japan, Special Issue No. 2, p. 58-63. Howell, F.H., and Molloy, J.S., 19 60, Geology of the Braden ore-body, Ch i l e , South America: Econ. Geol., v.55, p. 864-905. Hutchison, R.W., and Hodder, R.W., 1972, Possible tectonic and metallogenic r e l a t i o n s h i p s between porphyry copper and massive sulphide deposits: C.I.M. B u l l . , p. 34-40. Iwao, S., 1962, S i l i c a and alunite deposits of the Usuga Mine: a geochemical consideration of an extinct geothermal area i n Japan: Japanese Jour. Geol. Geogr. v.33, p. 131-141. James, A.L., 1971, Hypothetical diagrams of several porphyry copper deposits: Econ. Geol. v.66, p. 43-47. Jeletsky, J.A., 1969, Mesozoic and T e r t i a r y stratigraphy of northern Vancouver Island (92E, 92L, 1021): Geol. Surv. Can., Paper 69-1A, p. 126-134. 139. Johnston, W.P., and Lowell, J.D., 1961, Geology and o r i g i n of mineralized breccia pipes i n Copper Basin, Arizona: Econ. Geol., v.56, p. 916-940. Kennedy, G.C,'and Nordlie, B.E., 1968, The genesis of diamond deposits: Econ. Geol., v.63, p. 495-503. Lowell, J.D., and Guilbert, J.M., 1970, L a t e r a l and v e r t i c a l a l t e r a t i o n - mineralization zoning i n porphyry ore deposits: Econ. Geol., v.65, p. 373-408. Luedke, R.G., and Hosterman, J.W., 1971, Clay minerals Longfellow mine, San Juan Co., Colo.: U.S. Geol. Surv., Prof. Paper, 750-C, p.C104-lll. Meyer, C , 1968, Ore deposits at Butte, Montana: Ore deposits of the United States, 1933-1967, p. 1373-1416. Muller, J.E., 1970, Northern Vancouver Island (92E, K, L, 1021): Geol. Surv. Can., Paper 69-1A, p. 27-29. Muller, J.E., 1971, Chemistry and petrology of some Mesozoic volcanic rocks of Vancouver Island, B.C.: Geol. Surv. Can., Paper 71-lB, p.5-10. Muller, J.E., Northcote, K.E., and C a r l i s l e , D., 1973, Geology and mineral deposits of A l t e r Bay - Cape Scott map area (92L-102I) Vancouver Island, B.C.: Geol, Surv. Can., Open F i l e Rept., Sept., 1973. 140. Muller,J.E., and Rahami, R.A., 1970, Upper T r i a s s i c sediments of northern Vancouver Island: Geol. Surv. Can., Paper 1970-1B, p.11-18. \u00E2\u0080\u00A2 Northcote, K.E., 1970, Rupert Inlet - Cape Scott map-area: B.C. Dept. of Mines and Petroleum Resources, Geol. Exploration and Mining i n B.C., p. 254-278. Northcote, K.E., 1972, Island Copper Mine: B.C. Dept. of Mines and Petroleum Resources, Geol. Exploration and Mining i n B.C., p. 293-304. Northcote, K.E., and Muller, J.E., 1972, Volcanism, plutonism and mineralization: Vancouver Island: Can. Inst. Min. & Met., B u l l . , p. 49-57. Norton, D.L. and Cathles, L.M., 1973, Breccia pipes - products of exsolved vapor from magmas: Econ. Geol., V.68, p. 54 0-546. O'Rourke, J.E., 1962, Geology and ore deposits of northern Vancouver Island: Utah Mines Ltd., Private Report. Perry, V.D., 1961, The s i g n i f i c a n c e of mineralized breccia pipes: Min. Eng., p. 367-376. Radonova, T.G., and Velinova, I., 1970, The alunite f a c i e s of the secondary quartzites i n the svednogorian zone: Problems of hydrothermal ore deposition, Inter. Union Geol. S c i . , A, No. 2, p. 368-372. 141. Robinson, R.F., and Cook, A., 1966, The Safford copper deposit, Lone Star Mining D i s t r i c t , Graham Co., Arizona: i n Geology of the Porphyry Copper Deposits, Southwestern North America, ed. T i t l e y and Hicks, p. 251-266. Rose, A.W., 1970, Zonal r e l a t i o n s of wallrock a l t e r a t i o n and sulphide d i s t r i b u t i o n at porphyry copper deposits: Econ. Geol., v.66, p. 515-542. Sawkins, F.J., 1969, Chemical br e c c i a t i o n , an unrecognized mechanism for breccia formation?: Econ. Geol., b.64, p. 613-617. S i l l i t o e , R.H., 1973, The tops and bottoms of porphyry copper deposits: Econ. Geol., v.68, p. 799-815. Steiner, R.H., 1953, Hydrothermal rock a l t e r a t i o n at Wairakei, New Zealand: Econ. Geol., v.48, p. 1-13. Surdam, R.C., 1967, Low Grade metamorphism of the Karmutsen Group - Buttle Lake area, Vancouver Island, B.C.: unpublished Phd thesis, Univ. Cal. Sutherland Brown, A., 1969, Min e r a l i z a t i o n i n B r i t i s h Columbia and the copper and molybdenum deposits: C.I.M. B u l l . , p. 26-40. Sutherland Brown, A., 1970, Mess Creek: Geol., Exploration Mining i n B.C., B.C. Department of Mines and Petroleum . Resources, p. 49-57. ' 142. Sutulov, A., 1974, Copper porphyries: Univ. of Utah P r i n t i n g Services, p. 141-170. Sutulov, A., 1963, Molybdenum and rhenium recovery from porphyry coppers; Univ. of Concepcion, C h i l e , p. 31-40. Winkler, H.G.F., 1967, Petrogenesis of metamorphic rocks: Springer-Verlag, p.65. Young, M.J., and Rugg, E.S., 1971, Geology and mineralization of the Island Copper deposit: Western Miner, V.44, p. 31-40. 143. APPENDIX A \"GEOLOG\" The development and use of the \"GEOLOG\" format for recording d r i l l i n g data-is described by Blanchet and Godwin (1972). The system used for recording d r i l l i n g data at Island Copper i s a modified form of one of the e a r l i e r \"GEOLOG\" formats (Figure A-l) which was loaned to the writer i n the spring of 1971. Early core logging at Island Copper indicated that limonite was n e g l i g i b l e and that very l i t t l e fracture data could be obtained from the s p l i t core; therefore, these sections were removed from the data sheets for t h i s study. Copper and molybdenum assays were added to the \"GEOLOG\" sheet instead of being recorded on a separate \"ASSAYLOG\" sheet. The resultant format used for core logging at Island Copper are shown i n Figure A-2. Coding sheets f o r the \"GEOLOG\" data sheets are i l l u s t r a t e d as Tables A - l , A-2. 144. FIGURE A - l \"GEOLOG\" Format After Blanchet and Godwin, (1972) C H A H M A H . H O O O B E OftiSWOLO LTD. C O M P A N Y : G L O L O G D R I L L H O L E G S E O L O G I O \u00E2\u0080\u00A2 . .. PROPERTY: LOGGED a r : Aim. T Y P E OF HOLE? D O H PRi'JC. C O N -I T A C T S , ( F A U L T S a D Y K E S ESTIMATES 0 ASAYS *lll\u00C2\u00ABtsli ON Mlf.ihAL* DEPTH TO BOTTOM OF I N T E R V A L D E S C R I B E D _S CAL E Sj NAMES \u00E2\u0080\u00A2 H O S T R O C K R O C K T Y P E U S E ' - L E T T E R CODE T COLOUR Y CODE E M N U M OR 0 o N C V 0 0 * F 1 R L C M 0 U I A U E R u n .2 1 5 ,4h!'\u00C2\u00BB 0 U M A I L N r E i \u00C2\u00BB N L LEX -L. .L i i F R A C T U R E S A L L F R A C S I J. |_.L A L T E R A T I O N A S S E M B L A G E S >DE OF OCCURRENCE/7.1V0L.I Of MINERAL - r - J _ l . . E I E _ U _ J L - p 4-1 ! i -LI J L ' HUM . . . . . . J L J L L O G L1M0NITES HOLE NUMBER PAGE OF M I N E R A L I Z A T I O N t\u00C2\u00AB \u00C2\u00AB\u00C2\u00AB. ram TI-OS x i \"one or occun./v.tvOL.) o? M INERAL \u00E2\u0080\u00A2 j 65 { \u00E2\u0080\u00A2* ! I7_f 1 j \u00C2\u00AB\u00C2\u00BB! 70 ! Tl J TI j 7J| T4 -TJ \"< \u00E2\u0080\u00A2 T 7, 73 | \u00E2\u0080\u00A2K+H4-H-TT ! I ! I M i i I I I ! I '\u00E2\u0080\u00A2 i i I i I i M | l ! I ! I i ; ! i I I I ! ! ! i I I I I ! I ! ! -U -L I ! ! ! I M i l M M M i j M l ! FIGURE A-2 Modified \"GEOLOG\" Format Used at Island Copper Contac ts , Fau l t s , t e D t h to Bottom of I n t e r v a l Described Rock Type type Mod\" Colour Code Q u a l i f y Mir.\u00C2\u00BBr\u00C2\u00BB.l G i n 3 i z TTtT QZ ARGLI KA MM MS KF J L i i i J L i i J i_ PP DU CB i ! i i I ! ZE i \u00C2\u00A3 CL EP T - r r i\u00E2\u0080\u0094I\u00E2\u0080\u0094r r r HEM MG LI FY CF MO BN PR CU ASSAY MO ASSAY I I L TABLE A - l Coding Data for the Modified \"GEOLOG\" Sheet 148, 1 2 3 INTERVAL CNT Contact OVB Overburden CAP Capping SUP Supergene TRN Tra n s i t i o n FLT Fault DYK Dyke FRX Fresh Rocks REM Remarks 13 14 15 16 COLOUR CODE 8 9 10 11 ROCK TYPE 4 l e t t e r rock name from Table A-3 Open for l o c a l name c h a r a c t e r i s t i c etc. 13 SHADE No Comment 9 White 7 Light Gray 5 Medium Gray 3 Dark Gray 1 Black L N D 14 BLEACHING No comment Lighter Normal Darker 15 16 COLOUR R Red(ish) 0 Orange(ish) Y Yellow(ish) G Green(ish) B Blue(ish) P Purple(ish) T Tan(Brownish) 17 18 DEFINING MINERAL 2 l e t t e r mineral code, i f a p p l i c -able (from Table) 149. 19 TEXTURE OR STRUCTURE 1. IGNEOUS ROCK. . a. Porphyry Groundmass Texture Phaneritic Aphanitic b. Non Porphyritic E Equigranular I Inequigranular H Graphic # M i a r o l i t i c & Ophitic Estimated % Phenocrysts 10% 10-40% 40-60% 60% 1 2 3 4 5 6 7 8 D Diabasic V Vesicular A Amygdaloidal S S p h e r u l i t i c P P o i k i l i t i c 2. SEDIMENTARY ROCK METAMORPHIC ROCK L Laminated N Thin Bedded U Medium Bedded K Thick Bedded XX Cross Bedded B B i o c l a s t i c F F i s s i l e T C l a s t i c R O o l i t i c Q Porphyroblastic L Lineated F F o l i a t e d G Granulose Y Slaty M Migmatic J Spare Z Spare Sediment . 20 GRAIN SIZE Igneous Rock (phenos i f Pfy) 9 8 7 6 5 4 3 2 1 Boulder Cobble Pebble Granule Sand S i l t Clay Megapeg Peg Coarse Medium Fine Grained Aphanitic Glassy 21 22 23 FRACTURES 21 Fracture Density L = low A = above medium 150. F = F a i r M = Medium H = high X = Extreme 22 23 Percent with Sulphides/Percent with Fault Material 0 2.5 + 2/5 5 50 + 5 1 10 + 5 6 60 + 5 2 20 + 5 7 70 + 5 3 3 0 + 5 8 80 + 5 4 40 + 5 9 9 0 + 5 ALTERATION ASSEMBLAGES 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 Mode of Occurence 0 No Comment 1 Veins 2 Veins Envelopes 3 Veins = Envelopes 4 Veins Envelopes 5 Envelopes 6 Pervasive cut by Envelopes 7 Pervasive cut by Veins 8 Pervasive replacement of one mineral 9 Pervasive 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 Amount (Percent) 0 2.5 + 2.5 5 50 + 5 1 10 + 5 6 60 + 5 2 20 + 5 7 70 + 5 3 30 + 5 8 80 + 5 4 40 + 5 9 90 + 5 MINERALIZATION 63 65 67 69 71 Mode of Occurence 1 Veins 6 Moderate v e i n l e t s and disseminations 151, Veins, v e i n l e t s , fracture f i l l i n g s and minor dissem-inations Veins and some dissemin-ations Veinlets' and moderate disseminations Veinlets = Disseminations Disseminations and some v e i n l e t s Disseminations and minor v e i n l e t s Disseminations 64 66 68 70 72 Amount (Percent) 0 0 1 .13 + .13 2 .37 + .13 3 .75 + .25 4 1.5 + .5 5 3 \u00E2\u0080\u00A2'+ 1 6 6 + 2 7 12 + 4 8 24 +:;8. 9 More than 34 152. TABLE A-2 LETTER ROCK TYPE CODE IGNEOUS ROCKS General Types dyke igneous plutonic volcanic porphyry Dyke Rocks a l a s k i t e * a p l i t e diabase (dolerite) lamprophyre pegmatite Plutonic Rocks a l a s k i t e * breccia d i o r i t e gabbro granite granodiorite monzonite quartz d i o r i t e (tonalite) quartz gabbro quartz monzonite (adamelite) syenite trondhjemite DYKE IGNS PLNC VLCC PPRY ALSK APLT DIAB . LAMP PEGM ALSK BRPL DRIT GBBR GRNT GRDR MONZ QZDR QZGB ZQMZ SYEN TRDJ Ultramafic Plutonic Rocks anorthosite - ANRS dunite hornblendite norite p e r i d o t i t e pyroxenite serpentinite DNIT HBLD NORT PRDT PRXN SRPN Feldspathodial Plutonic Rocks feldspathoidal d i o r i t e - FDDR feldspathoidal gabbro - FDGB feldspathoidal monzonite - FDMZ feldspathoidal syenite - FDSY - ANDS - BSLT - BRVL - DCIT - DIAB - FDAN - FDBS - FDLT - LTIT - PNLT - QZBS - QZLT - RYDC - RYLT - TRCT Miscellaneous Plutonic carbonatites Volcanic Rocks andesite basalt breccia dacite diabase (dolerite) feldspathoidal andesite feldspathoidal basalt feldspathoidal l a t i t e l a t i t e phonolite quartz basalt quartz l a t i t e rhyodacite r h y o l i t e trachyte METAMORPHIC ROCKS Progressive Metamorphism amphibolite - AMPB gneiss ~ \" - GNSS granofels - GRFL granulite - GRNL greenschist - GRSC greenstone - GRSN l i t - p a r - l i t gneiss- LTGN migmatite - MGMT mixed gneiss - MXGN orthogneiss - ORGS paragneiss - PRGS p h y l l i t e - PHYL quartzite - QZIT sc h i s t - SCHS serpentine - SRPN slate - SLTE Contact Metamorphic Rocks c a l e - s i l i c a t e rock- CLCC hornfels - HRFL marble - MRBL pyro c l a s i t e - PRCL pyroxenite - PRXN skarn - SKRN t a c t i t e - TCTT - CRBN TABLE A-2 LETTER ROCK TYPE CODE CONTINUED Ca t a c l a s t i c Metamorphic Rocks augen gneiss - AUGN c a t a c l a s i t e - CCLS mylonite - MLNT SEDIMENTARY ROCKS D e t r i t a l & E p i c l a s t i c Rocks a r g i l l i t e - ARGL arkose - ARKS breccia - BRCC claystone - CLSN conglomerate - CGLM .greywacke - GRWK mudstone - MDSN guartzose sandstone - QZSS sandstone - SNDS shale - SHLE s i l t s t o n e - SLSN Chemical-biogenic Rocks carbonaceous rocks - CRBC chert - CHRT c l a s t i c limestone - CLLS coquina - COQN dolomite - DOLM evaporite - EVPR ironstone - IRNS limestone - LSTN o o l i t i c limestone - OOLS phosphorite - PSPR Pyr o c l a s t i c Rocks agglomerate - AGLM breccia - BRPC ignimbrite - IGMB t u f f - TUFF BRECCIAS, Unspecified Origin Undivided - BRXX Mainly Angular Fragments - BRA Mainly Rounded Fragments - BRR - with 4th character 0-9, giving % of matrix to t o t a l rock 154. APPENDIX B DATA PROCESSING The computer program described i n Blanchet and Godwin's (1973) paper was not used i n the treatment of data from Island Copper. The object of t h i s study was to r e l a t e hydrothermal a l t e r a t i o n to ore rather than to b u i l d a basic geologic picture of the deposit, which the Blanchet system was designed to achieve. Data from each cross-section were divided into three portions: hanging wall, dyke and footwall, to obtain the maximum amount of s p a t i a l data from the core. Data selected as amenable to computer processing are: grayness, bleaching, fracture density, amount of the twelve a l t e r a t i o n minerals and copper and molybdenum grades. Quantity of a l l variable, except grades, was recorded using a semi-quantitative scale. On r e f l e c t i o n , i t was considered to be closer to o r d i n a l data than to i n t e r v a l data and was treated accordingly. Grade values are i n t e r v a l data. Data processing was done at UBC Computing Centre using l i b r a r y program UBC-CORR programed by A. Floyd and J.H. B j e r r i n g (1969). This program i s designed to compute co r r e l a t i o n s between d i f f e r e n t pairs of variables and to perform s i g n i f i c a n c e tests of the r e s u l t s . The program can handle nominal, o r d i n a l and i n t e r v a l variables and w i l l c alculate c o r r e l a t i o n s between variables of the same or d i f f e r e n t s i z e s . The c o r r e l a t i o n between copper grade and molybdenum grade, both i n t e r v a l variable, use the standard Pearson's C o e f f i c i e n t of Correlation (Pearson's r ) . The s i g n i f i c a n c e i s determined by an F-test of the s i g n i f i c a n c e of \"R\". 155. Correlations between grades and other variables are mixed cor r e l a t i o n s between i n t e r v a l and ordinal data and the s t a t i s t i c a l t e s t used i s Jaspen's C o e f f i c i e n t of M u l t i s e r i a l Correlation. This uncommon tes t i s described by Freeman (1965). Once again, the s i g n i f i c a n c e of the correlations i s determined by F-tests. \u00E2\u0080\u00A2 \" L i s t i n g \" of a t y p i c a l input n A.M. UNIVERSITY PF 8. C . C U M M ' i r PJG CENT F'<; 1>. *************** ********** LIST I :MG t\u00C2\u00ABt*\u00C2\u00BBsts\u00C2\u00AB*\u00C2\u00ABt**\u00C2\u00BBtt*\u00C2\u00BB*t*\u00C2\u00BB*t*\u00C2\u00AB*Si\u00C2\u00BB* $LIST 1 SSIuNQN CAKG 1 = 100 P = 20 C=0 2 CARG 3 Sit UN \u00C2\u00BBHATF IV 6 = -TQATA 4 tC Li Ml' I Lf 5 7 a 10 OAT A i>L A Rc AO ( 3 . 1 Furi.-Ul I 12X 1 X . F 1 . 0 ) , 2 A 2 I . 1 X . 1 i X \u00E2\u0080\u00A2 X(20),XX(201 / ' \u00E2\u0080\u00A2 / nf)-2 IX, XX Fl.0.3X.F1.0,4X.F1.0. Fl .'J. F'l .0. IX. Fl .0.10X 1) .4X . SI 1 X . 41 ) . ii X , 2 1 1 1X . 2 ( 1 X . F I . 0 ) . .F3.2.1.F3.3. X . A I I . 7X. U I . A1 4X.3!1X.FI.)T1.12X.A1.3X. 1X.,M . I OX. A3 . 5X,A 1 . -IX,21 I XAA3 I II 12 13 1* 1 5 13 DU 3 1 = 4 I F ( X A I 1 ) \u00E2\u0080\u00A2X ( i 1 = .\ I I ) wKlTc (6.1 GO IT, 3 r.jr-iAri ix l b fc . rSLVIK I XIII = XII) + 10 3 ) (XI I 1.1 = 1.20) \u00E2\u0080\u00A2 1 i:F 3 . 0. F6. 2 . Fr>. 3 ) 17 18 19 70 71 S TOP S O M A bOZMZ 9M. 'J 2^.L1 94B1 9 I H I 93 93 '3 91 1 b 2i 0 7 23 2 .'. Z 9\ '3 24L1 92 \u00E2\u0080\u00A2 10 9 1 a 7. \" 7 3 91 1 9 \u00E2\u0080\u009Eil 1 24 3 3-/: M2 y. '3 2 A F 2 1H2 71 4 91 1.-; 25 \u00E2\u0080\u00A2>li\".Y.'-iZ 9 iM 5 91.12 Bl 94 90 l \u00E2\u0080\u00A2: 26 56.J/.MZ 9M 3 2411 9182 Bl .9 3 -, / 27 610Z 9:9 5 2 A L 1 72 10 ftl 9 3 l o 7 3 72 J A M / 7L 9 2 5 1.1 7332 10 10 9 3 7> 29 4 2UZMZ 7L 9 25H 9 3 31 9 2 92 2 ) \u00E2\u0080\u00A2 i.ji 30 94jZ'-!Z 7L 9 23L I a 2 3 0 9 4 91 2 1 00,4 31 l'.)OJ/..v,/. !L 9 2 5 LI 9 / 8 2 55 1210 21 00 9 32 1 0 2 A X X 7L 92 5 H 7593 90 95 92 10 70 0 1 4 33 10 5 ,.W XX 71. , 925L1 93 10 91 53 51 /\u00E2\u0080\u00A2o W 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 6 5 2 511 60 10 10 9 29 0 91 A-J 0 1 \u00E2\u0080\u00A2> 35 l -: v.--:-.. 3,',! G 5 1.1 71 11 92 90 .17 91 9 7 02.\", 35 .I'JsA.-iUS 3:JG b LI 92 rf 1 10 9 j \u00E2\u0080\u00A2 -.sfi ,2-, . . 37 143A:\H)S 3,'JG 5 3 LI 'IJ 9 2 9291 53 9 3 J2 OP, ?\u00C2\u00BB 1500ZMZ 7N \u00E2\u0080\u00A25 2 A 1.1 30 90 55 3 A )2 0 i .-. 3? 131:jZU/ t:i 3 24L1 71/il 10 91 9 L> I1 31 00/ AO 16 3.)/ ii 2 7N 9 2 ALI \u00E2\u0080\u00A2>', 91 9 A 93 H-0 Ol,./ Al 1 7 - A3 1 JOvJZHZ 9L 9 2'.-13 71-12 9 0 9 ' i 2'. 09 J) A<. 2 0 5 J / .1 / 91. 92 4 3 7133 10 2 3 1 o Oi.v45 2 140/MZ 9L 9 2 413 7133 10 9 5 3 2 4.9 2 2'\u00E2\u0080\u00A2:>\u00C2\u00A3. 26-.0/.MZ ;L 9 A A 7 33 3 10 1 0 92. 91 '.j i -\u00C2\u00BB1 2 r3 9Z -iZ 91. 9 AA 7 ,,3 10 io 9-. 93 1 158. .\"V \u00E2\u0080\u00A2J- -r \u00E2\u0080\u00A2 \u00E2\u0080\u00A2-. \u00E2\u0080\u00A2X iT> p T L.' .\u00E2\u0080\u0094 \u00E2\u0080\u00A2 ; \u00E2\u0080\u0094 \u00E2\u0080\u0094 ~ \u00E2\u0080\u0094 7 7. \u00E2\u0080\u00A2' \" - 7 \". \u00E2\u0080\u0094 -7 c c 0 \u00E2\u0080\u0094 \u00E2\u0080\u0094 - 7 - .\u00E2\u0080\u0094 .7 Z \u00C2\u00B0 ^ c ' 7> 7 ' \u00E2\u0080\u00A2 - 7 : 7; C 0 \u00E2\u0080\u00A2-, .7 r '-7 \u00E2\u0080\u0094 '.; -7* -7 7 0 \u00E2\u0080\u00A2-7 0 0 -; '7 \u00E2\u0080\u00A217 7- 7 7 *\ j- T x r A r-r~ r \u00E2\u0080\u009E\u00E2\u0080\u00A2> O .-, - .2 : -r -J -t fl \u00E2\u0080\u0094 \u00E2\u0080\u0094 fl \u00E2\u0080\u0094 P. p \u00E2\u0080\u0094\u00C2\u00AB fl -.IP _ . , fl. _ \u00E2\u0080\u0094 _ N *- f. r\ fl A -p ~ -~1 O ^ 7 7 fl A ^ f\u00C2\u00AB' fl ~i \u00E2\u0080\u0094i \u00C2\u00ABt 0 p. P. 7. \u00E2\u0080\u0094 *v cr rr \u00E2\u0080\u00A2A \u00E2\u0080\u00A27> r> 7- cr 'r \u00E2\u0080\u00A27- 7- \u00E2\u0080\u00A271 .\"r 7> \u00E2\u0080\u00A27* IT fi lf> N rP fl \u00E2\u0080\u00A2T ~r fl -J\" ,*\u00E2\u0080\u00A2 fl t ip -j* , r .* .+\u00E2\u0080\u00A2 LP LP P LP P \u00E2\u0080\u00A2t . f J^- P, PJ .-^ A \u00E2\u0080\u0094< PJ vj- .4. .+ \u00E2\u0080\u00A2t fl P. Pv -t ^ fl 7 - fl ; p .\u00C2\u00BB -r \u00E2\u0080\u00A2t ip fl n ^ ? c 7- ? - \"T\u00C2\u00AB 7 s cT- 71 P- P- -7- f- 7- P pv T LP fl \"* O p. -T- 0-i7> C*' f\ p.' fl p Ps' T-7> cr fl fl PJ PJ PJ O fl C7 OO cr o \u00E2\u0080\u00A2 -* C7 0 T O \u00E2\u0080\u0094' ^-i \u00E2\u0080\u00941 \u00E2\u0080\u0094' 0 O \u00E2\u0080\u0094 0 \u00E2\u0080\u00A2\u00E2\u0080\u0094; 7) r~< CC CO \u00E2\u0080\u0094< \u00E2\u0080\u0094< \u00E2\u0080\u00941 ~ \" ti fl fl cr -r PM PJ 0 O O O O _, c- rr cr 7- \u00E2\u0080\u00A27s fl cr p> O \u00E2\u0080\u00A2Cr o O 0 O 0 a \u00E2\u0080\u0094J r\u00E2\u0080\u00941 c 0 O <\u00E2\u0080\u0094< fl 0 0' c a- 0 s 0 1> IT\" fl Cr Pv 7^ O 0 O cr Cr fl rf r\l ~t fl fl *t fl -t A fl -t \u00E2\u0080\u00A2 -r PJ PJ \u00E2\u0080\u0094\u00E2\u0080\u00A2 \u00E2\u0080\u0094\u00E2\u0080\u00A2 fl -t .f fl fl, ^ PJ PJ Pv Cs, 't N* m \ l PJ \"V \u00E2\u0080\u00A2t PJ Pj \u00E2\u0080\u00A2\j r\i PJ \u00E2\u0080\u00A2t fl T, \u00E2\u0080\u00A2X fl 1 fl fl n -> CT1 ~- ^ 7-a-7 P T> 'J1 7 .T- X fl fl fl fl -fl T fl cn cr fl fl - i ' r. -r- 7. -r. fl fl r\ fl in LP. \u00E2\u0080\u0094. LA -0 IP fl fl \u00E2\u0080\u00A2 P x> .0 P,1 -* ^ i?*. fl :P iP -t .t-IP fl * fl IP. LA fl \u00E2\u0080\u00A2J- -J- -r r- f-\u00E2\u0080\u00A2T 71 '\"^ 7* 7- p- P-p- p~ T cr fs. p> p- 7 s \u00E2\u0080\u00A27\" P-cr \u00E2\u0080\u00A27^ \u00E2\u0080\u00A2Cr r-> r- :> fl ;P PJ fl PJ ^, .-4 fl. fl, A. fl ^- ,j r y s; \5: rc \u00E2\u0080\u00A2t s.* ^ -J- -f -? -r \u00E2\u0080\u00A2r 0 o\u00C2\u00BB cr .cr 7* \u00E2\u0080\u00A27> :LiP \u00E2\u0080\u00A2P \u00E2\u0080\u00A27- a> \u00E2\u0080\u00A2> -T\u00C2\u00BB 7* O '.7 r^-7- 7-7- \u00E2\u0080\u00A2> 7> 7> \u00E2\u0080\u00A2T> O IT ifl fl A fl \u00E2\u0080\u00A27-rr cr fl CT fl 7^ -7-r> i> 7- IA C 'J3 '.D '-5 ..\u00E2\u0080\u00A2> O -.3 O O t\u00E2\u0080\u0094 'J T. r->_ A _ 3 13 \u00E2\u0080\u0094 1 - J _ J \u00E2\u0080\u0094 / \u00E2\u0080\u0094I \u00E2\u0080\u0094I _i -J Is _J -J _' _i _j ** \"-7 \u00E2\u0080\u0094' -J \u00E2\u0080\u00941 _J _J \u00E2\u0080\u0094: -J -J1 j 1 -j \u00E2\u0080\u0094i \u00E2\u0080\u0094* _) .-J _J -J - J 7 ~' 7-\u00E2\u0080\u0094 _l _j _J _) ~* -J _i _! 7\u00C2\u00BB O CT- 7* 7* -7* *T> 'r 7-7- P r- p \u00E2\u0080\u00A2 A \u00E2\u0080\u00941 \u00E2\u0080\u00941 \u00E2\u0080\u00941 -^j fl fl \u00E2\u0080\u0094 fl \u00E2\u0080\u0094' \u00E2\u0080\u0094-t ( \u00E2\u0080\u0094 * .p .P 7> cr r- . T> fl 71 \u00E2\u0080\u00A2V* 7. \u00E2\u0080\u00A2r 7> A AN N :< M sj M \u00E2\u0080\u0094; _ J _ J _j _ J -s,' .\"-J KJ r^J _i :r v\" ^ X N J M 7 M .-0 fl T.\" \u00E2\u0080\u00A2< x .< X >: _j _j >: A x ^ :-: >r 7\ -~ 7\". i*r > > \"> > \"> \" > \u00E2\u0080\u00A2 > r - \"L X ;~ -\"> *r X 21 7? \u00E2\u0080\u00A2r > -~< O > X < -.^ vr X. >; > > -v \u00E2\u0080\u00A2\u00E2\u0080\u00A2< \u00E2\u0080\u00A2 < -,; --J -sj -SJ \"C ~\u00C2\u00A3 s; NJ K M \u00E2\u0080\u00A2\u00C2\u00BBJ \u00E2\u0080\u00A2\u00C2\u00A3 Y.c i~i 0 cr. 0 *? n ~> fl 'V C7 '0 fl A \u00E2\u0080\u0094 fl \u00E2\u0080\u00A2p '7 \"7 ' *j \"J \"~ 7. '\"; fl '.1: fl fl -> -1 ? ? S 2 fl \u00E2\u0080\u00A2\u00E2\u0080\u00A2f \u00E2\u0080\u00A27 fl \"C \"7 fl \u00E2\u0080\u0094-. fl fl fl --\u00C2\u00BB p \u00E2\u0080\u00941 P.J PJ cv fl -r fl fl O fl O O LP c:- \"P r\u00E2\u0080\u0094 O PJ O -P '7 17/ O O ~i S \u00E2\u0080\u00A2 ; i ,f O C OO C O -7> O O fl 7> O 0 !cf, A 0 c O \u00E2\u0080\u0094\u00C2\u00BB PJ A \u00E2\u0080\u00A2 fl ^ .p I_P .0 ro o> \u00E2\u0080\u00A27 -3 C - M fl -t- 'P Ti ir 1 j \u00E2\u0080\u00941 -V PJ pj fl -* Lf\ >^ fl 17% O , P| PJ fl. P r-A. \u00E2\u0080\u00A27 fl 0 P--%i A fl A .fl f1 fl PJ PI f\ \u00E2\u0080\u00A20 <>\u00E2\u0080\u00A2 'O -o r\u00E2\u0080\u0094 rc cr O \u00E2\u0080\u0094* PJ A -r HP -0 r- cn (7-e f-i M ifl vf if> Ti T> O PJ fl -t P \u00E2\u0080\u00A2r- p- fl T\" O \u00E2\u0080\u00A2\u00E2\u0080\u0094< ^ fl A fl fl PJ P r- O u \u00C2\u00ABc r- r- P- r- r- r- ci a ti a; 0, O.' u \u00E2\u0080\u00A2 a:- a. cc cr i r tr V cr tr CT c \u00E2\u0080\u00A2 t/ c t_J O t_ c. t_> A 159. m M ,-1 N 7* fji \u00E2\u0080\u0094 i O A J A J <\J if>|iTl X X X, O O , ... - I T Z _ \u00C2\u00BB . i >n r\u00E2\u0080\u0094 I A X ^~ iTJ L A '7* X L A 7\" rJ X f^ j X .--O - 1 x x x -y -1 ... . T ^ ~ ? X r- o s o m .t- i o c (V (M TvJ A.' ^ ^ i n o r- q C7> X CT\u00C2\u00BB A X \u00E2\u0080\u00A2.n r* x x _j -< _J _ i > x > :> Y X' V V. x ; I M r- ' x t\u00E2\u0080\u0094i x x \u00E2\u0080\u00A2 \u00E2\u0080\u00A2V X i X ~\u00C2\u00A3 K ' x -- o o o o o o o \u00E2\u0080\u00A2 Or ?! o r> o o X. -1\" X X X *<*i| 0 ' . A L A L A 'X O O <~i O ~> f<-, jr, ^ - M ^ - , f X sj-x x r\u00E2\u0080\u0094 x rr o x -r st A J -xf ~j rr ;r \u00E2\u0080\u0094i \"T *\u00E2\u0080\u0094 A A ' IT) -vJ \"\u00E2\u0080\u00A2\" i A X '.A -0 ^ _ J _ J : A i^ - r*- \u00E2\u0080\u00A2 J ^ S ' A X -j} O - T I .J I \u00E2\u0080\u0094J x in x '.A x| A X ' A -r> X ' A X 'X .fi; o c \u00E2\u0080\u00A2-7- CT* O O O O O O ' o o o CO 'Ji- x A C \u00C2\u00AB* ' X X X X 4- >?\u00E2\u0080\u00A2 \u00E2\u0080\u00A2> O M NJ N N f-j t^ J ~>J d ;Y A -or- \" A O * A LA A LA A -i C O < r-t X X - A X o s- Ol -o V \u00E2\u0080\u00A27- X . A A 160. C .1 A P \"1 cr> > ,> X X tA e- o cr cr cr x A.' rs,' ; -4\" m A AJ A . A J . A X ' A \u00E2\u0080\u00A2 A -< \u00E2\u0080\u00A2A x. 3 7. 17 X X : A X x \u00E2\u0080\u00A2 A LA r\u00C2\u00AB* -vl \u00E2\u0080\u00A2/> y * \u00C2\u00A3 n ST 17 \u00E2\u0080\u00A2.A \u00E2\u0080\u0094f ' A X .A O -n rr cr o O -< 0 o -0 r~ r- r\u00E2\u0080\u0094 -vj x x v fv rA fv 'A X ; -J 'A AJ X :r cr cr cr cr , , X AJ A.' -\! AJ \u00E2\u0080\u00A2 r - A r - x \u00E2\u0080\u00A2 O O O O Or -H o cn to cr- x :o x x x LA A A x A !A \u00E2\u0080\u00A2 A :A A X 'A ' -\u00E2\u0080\u00A2J i^J r-J O O O Oj cr rr LA x ' 1 X X X X . X \u00E2\u0080\u00A2 -^ f -si ^ ' \u00E2\u0080\u00A2\"> o o o o o l -A O \u00E2\u0080\u0094\u00E2\u0080\u00A2 ' v_ r^- r\u00E2\u0080\u0094 T) x ' A J A i x x -' 3 O X \u00E2\u0080\u00A2T: ~T o A 'A X LA rt CT> |0 T A - i -r. r- .-r- r-> o ~*\ o _i O x T: .v: UJ \u00E2\u0080\u0094< 1 L rt \u00E2\u0080\u00A2\u00E2\u0080\u0094i */l LU ' > \ ' I Mr- X '('>-\u00E2\u0080\u00A2 \u00C2\u00AB * 3 r #\u00C2\u00AB\u00C2\u00AB****\u00C2\u00BB\u00C2\u00AB.\u00C2\u00AB\u00C2\u00BB&\u00C2\u00BB**\u00C2\u00AB\u00E2\u0080\u00A2 THIS JOB SUBMITTED THFCUGH FRENT DESK REACKR \u00C2\u00BB*******\u00E2\u0080\u00A2*\u00C2\u00AB*\u00C2\u00BB***\u00C2\u00AB*\u00E2\u0080\u00A2\u00C2\u00BB *S!C-:.r.N CARG **LA5T S I G f . f : \ W-\S: 1 3:27: 57 F P I CEC. 17/71 US:\"; \"C'-RC-\" S I G N ^ : ) r n AT 13:3C:r.A OM Fkl DEC. 17/71 f ilub- -WATFIV (: T CAT A \u00E2\u0080\u00A2\u00C2\u00BB. I fXPCUTIOH B E G I N S j f CP M.P II E i)Iw\u00C2\u00A3NSIl> X(17),XX(17) 2 DATA BLANK/' \u00E2\u0080\u00A2/ 3 5 READ!9,1,ENO=2)X,XX A 1 EC. -WA1 (12X ,F1.0 , 3X, FI .0,4X, FI .0, IX, 2 ( 1X,F 1.0) ,'tX, 81 IX,FI .0! ,6X, 2( 1 1X,F 1. 0) , 1 6X,F 3. ?, 1 X,F3. 3, Tl ,12X,A1 ,3X, Al ,4X ,A1 , IX ,? ( IX ,A1 ), 4X, 8 [ IX 2,A 1 ), 6X, 2( IX, Al ) , 16X, A 3,IX,AJ ) \u00E2\u0080\u00A2 ~ OTJ3 l =\u00E2\u0080\u00A2, l \u00E2\u0080\u00A2> t IF ( XXI ! ) . M E . B L A M O XII) = XII) +1.0 7 3 X ( I ) = X I I ) + 1 . 0 S M R I T E (t.,13) (X I I ) , 1 = 1 , 17 ) <) (\">:') TO r: 11 13 FrAr. Al [ I X , 1 '3T4 .0 , F6. 2, Ft .3 I FI 2\" C T T T T T r T L T . 13 E.V) \u00E2\u0080\u00A2 J CATA CUFF USAGE HJt f ! C!)0t = S24 BYTES ,A K K A Y ARE A -136 BYTES,TOTAL AREA AV A IL AbL E = 1024C0 P.YTES CC.^PI LE T I ^E = 0.14 SEC.EXECUT UN T1ME = 7.14 SEC, WATF I V - VERSION 1 LEVEL 2 AUGUST 1970 0AT5= 12-17-71 164. < y\u00E2\u0080\u0094 < v - 7-* I \u00E2\u0080\u0094 it c r u c: y CEPEMDENT VAS I ABLE CU- GP. D TYPE \" K P; CiSEKvATIH.'-.'S IN ONLY PP; OBSERVATIONS VI CM Y 01); OBSERVATION'S IM CNLY uNt: CATb'.CP.Y Cl- THE N!>i-1 NT f. RV Al VARIABLE ONE CATEGORY GF THE NGN-INTERVAL VARIABLE CNC CATEGORY OF TFE NCR!-1 NT EP V AL VARIABLE VARIABLE CR /YS ; K \u00E2\u0080\u0094 L T \u00E2\u0080\u00A2JP . E R A 0 7, A P C L KF RP i:u faj-V)ER 73 S r.RV Al PF IONS VARI ABLE TYPE CORR COLE CORRELATION TEST CODE PR 03 f-P F'-'. RAG -C-RO 232 233 23 3 2 3 3 2 33 223 2.3 3 2 33 2 33 2 3 3 2 33 2 33 233 C. 2 3 82 C 274 1 -0 .2540 0. 5?4 7 0. ] 237 c.-:r -3 ; 0 .0 C\" -C .2184 -0. <-0S 7 -C. 1 3 b 1 -r. 2090 C. 1371 0. 180 2 0.7295 0 .0009 0. C0C2 0.0003 -0.0 0. 271<3 0. 0065 CO 0. 0 0.0030 0 .00 GO 0 .0594 C.60 52 0. 0165 -0 .0 INVALID INV AL I D I NVALID OEPENOENT VARIABLE = MC-GftD TYPE = A KF: OBSERVATIONS I.N CM'v ONE CATEGORY OF TKC NOk-INTERVAL. VARIABLE PP ; CBSF.'VATtGNS IM C'KLY ONE CATEGORY OF THE N'ON-I NT EP.V4L VARIABLE CO; OBSERVATIONS IM ONLY ONE CATEGORY OF THE iNOf.-I NTERVAL VARIABLE VARIABLE .VJ-UeK CF '/ARIA-RLE CCF.P CCFRtLAT ION TEST PROB CWSsHVAT JC.MS TYPE CCDF CCO(= GRAYS 232 2 5 C.I729 6 O.C1A1 OK\u00E2\u0080\u0094LT 253 ?.' 5 f.,')15 6 C.COAO NO.FFA 233 2 5 -C.12SE fe 0.0597 C7_ . ^ _ ? . _^ C.iiC* 6 = 0 7 7 ( 0 \" 1 ~ APGI. 23 3 2 5 0.0306 6 0 .7769 \u00E2\u0080\u00A2VS 233 2 5 -C.C'.Ofc 6 C. 7589 KF 233 2 5 0.0 6 0.0 INVALID PP 233 2 5 O.C 6 0.0 INVALID I'U 2J3 2 5 CjO 6 CO INVALID CTJ ZT3 7 5 -'..('A3;; 5 0 .5026 2E 2:3 2 5 -C.2A9G ft 0.0009 CL 22 3 \u00E2\u0080\u00A2 2 5 -r. r\u00C2\u00AB,75 ft C.A 312 FP 233' 2 5 -(.'.1522 6 0 .1725 HE*-' 223 2 5 0. 1 102 6 0.0595 f>r, 223 2 5 0.2387 6 0.0017 r P I C T I ONARY OF C O O E S C C K P F L A T I C N cones 1. r.UTT.vANS SYMMETRIC C O E F F I C I E N T O F P R E D I C T A B I L I T Y ( L A M D A ) 2. F l.?* VMS Cr.EFi: I C I KM1 O F DE T ER M NAT I CiM ( T H E T A ) 3. Ci\" C l' f^FT 1 WUsKALS L L !\u00E2\u0080\u00A2: i- F IC I L M l!F HANK A SSIL I A PI LN !G ) CI'RFELAT IC,\ \"'ATIO (ETA) 5. J A S F C N S C S U F F I C I E N T CF CLLTISERIAL CORR E L AT I C N 1 N,) 6. RFARSCfS COEFFICIENT J F C UK RE 1. A TI ON (R) S 10;. i I\" IC. AM.'.E TEST !.:Ji)l: S 1. RL^RSCNS CK I-SMASH) TEST W IT H YATPS CCFRF.CTIUN 2 . I'AI.S- Wh ITM!\" Y L-TEST 3. \u00C2\u00BBt*l,SOIvS Ch I-S.j-JAS in TEST SIGMF I C.MICE TEST FOR G ( ..^ .^..j... .....\u00E2\u0080\u009E.,\u00E2\u0080\u009E. tS. E-IESr CP $ tOJ-UFICAKCe OF M 7. F-1ES1 CF SIGNIFICANCE-CF R EX I. CUT ICN 7 W-MATH!) fS IGr.OFF CNTR XX>XXXXXXXXXXXXXXXXXXXX>X>XXX>X>XXXXXXXXXXXXXXXXXXXXXX;:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX^XXXXXXXXXXXXXXXXXXXXXXXXXXXX RRS NO. 7761:7 UNIVERSITY OF B C COM? U7I t.'S CENTRE PTSIECUl) 13:29:5? FRI DEC 17/71 . . ; ^ \ j \u00E2\u0080\u00A2 L'SER CARG \ I DEPARTMENT: GEOL * - t * * CN AT 13:30:04 * * * >;\u00E2\u0080\u00A2. O F F Al 13:J1:14 * * * * ELAPSED TIKE 74.323 SEC. CPU TIKE USED 25.243 SEC. * * * * STOP..1CF USED 971 .786 PAGE-SEC. * * * \u00C2\u00BB CARDS READ 26 7 * \u00C2\u00A3 * V.: LIN'S PRINTED 126 -* # F A G L S l:K I N ! I L 1 * *: * CARDS PUNXhEC 0 * \u00C2\u00AB\u00E2\u0080\u00A2 * * DRUM READS 97 * * * * RATE FACTOR 1 .0 * <;\u00E2\u0080\u00A2 t. * APPcOX. COST OF THIS RUN C42.91 * * 5- \u00C2\u00AB\u00E2\u0080\u00A2 FUR SI l.:i-AGi: RC-FR. .00 **LAST SIC.NON WAS: 13 \u00E2\u0080\u00A2\u00E2\u0080\u00A211:51 12-17-71 APPENDIX C STATISTICAL DATA FOR: Section 195 Section 187 Section 179 Section 171 Section 163 Section 155 Section 147 S E C T I O N 1 9 5 \u00E2\u0080\u0094 f ; C r i l ' . A I . I V O t C A N I C S C E P E M O E M T V A R I A B L E - C U - G R D T Y P E = 4 K E ; O B S E R V A T I O N S I N C M Y O N E C A T E G O R Y C E T H E N O N - I N T E R V A L V A R I A B L E V A r I A P I r N L H 3 E R O F V A R I A R L E C OF R C O R R E L A T I O N T E S T P R O B 0 8 S E R V A T I G N S T Y P E C O O E C O D E GR A Y S 2 4 1 2 5 0 . 0 5 9 2 6 0 . 4 0 7 0 D K \u00E2\u0080\u0094 L T 2 4 5 2 5 - 0 . C 0 7 5 6 ' 0 . 8 P 2 2 N O . E R A 2 A S 2 5 0 . 4 1 6 2 6 - 0 . 0 0 2 2 4 5 2 c, 0 . 2 0 1 A 6 0 . 0 0 2 1 A R C - L 2 < o 2 5 - 0 . C C 3 2 6 0 . 8 E 8 6 M S. ' 2 4 5 2 c 0 . 1 3 1 6 6 0 . 1 0 1 2 K F 2 4 5 5 0 . C' 6 0 . 0 I N V A L I D P P 2 4 5 2 5 - 0 . 2 6 0 5 6 0 . 0 8 9 0 -D U 2 4 5 2 - 0 . 2 3 2 4 6 0 . 3 7 0 9 C B 2 4 5 2 5 - 0 . 0 5 2 fJ 6 0 . 4 5 4 6 Z F 2 4 5 5 0 . 0 6 4 3 6 0 . 4 6 5 8 C l . 2 4 5 5 0 . 0 3 3 8 6 0 . 6 2 1 8 E P 2 4 5 A \u00E2\u0080\u00A2 \u00E2\u0080\u0094 5 0 . 0 3 6 (. 6 0 . fl 0 3 H E M 2 4 5 2 5 - 0 . 2 1 6 4 6 0 . 5 3 1 1 M A G 2 4 5 2 5 0 . 1 5 7 1 6 0 . 0 4 3 0 ' M O - G P O 2 4 5 4 6 0 . 5 7 4 2 7 - 0 . 0 < < > < > II >-c _J c L U <1 a. C' >\u00E2\u0080\u00A2 ct: r \u00E2\u0080\u0094 II - >-_! > _J o OO \u00C2\u00BB\u00E2\u0080\u0094i >\u00E2\u0080\u0094\u00E2\u0080\u00A2 LL. (_.\u00C2\u00BB i \u00E2\u0080\u0094 ' 1/1 t\u00E2\u0080\u0094 > < ' C U J > UJ < <-v > rc P \u00C2\u00A3 ~p' U J U J CL U J U J O - J \u00E2\u0080\u00A2\u00C2\u00BB < U -< > IT O cc s j -oc <*\u00E2\u0080\u00A2 o o o c-I vC -o vO ^ (/\u00E2\u0080\u00A2 cr- a Pv, C N C l vO vC-ir r- o cc a \u00E2\u0080\u0094< vt\" <\" -C \u00E2\u0080\u00A2-< f\l f - \u00E2\u0080\u00A2\u00E2\u0080\u0094< ro r-IM LP- cr cr- c K- m Cv rf- O O C. O O \u00E2\u0080\u00A2Pi .Pi LA u~ LT. LP. LP. LP LT. IT. rv) rv p; c\| p j f\! (\! rsi (\J Oj r \u00E2\u0080\u0094 L P UP 'P. >3 < f N * v f rs: CM CM O P > or. o I u. rv C-ro r v vT r v O v t |r\! C ? rt h C- ( - Pv,' r\l U P I |c- c-I I |LP LP IP IT LT\ UP , LP, LP. IP LP -4- vt -r 5 O i 1 A 6 2 h 0 . 0 3 9 0 P K \u00E2\u0080\u0094 L T 1 0 o ~> 0 . 1 7 <\u00E2\u0080\u00A2 9 6 0 . 0 5 2 2 N C . F R A 1 7 0 y r> 0 . A 0 5 3 6 - 0 . 0 G Z 1 . 7 0 \u00E2\u0080\u00A2y C , 0 . 5 1 A 8 6 - 0 . 0 AF.C-.L ]. 7 0 2 5 - ' ' . \u00C2\u00AB . ' \u00E2\u0080\u00A2 : : 3 0 6 0 . C o i . 6 F S- 1.7 0 2 r., - 0 . 2 ^ 1 . 3 6 0 . 0 0 7 6 K F 1 7 0 2 5 o . . r t 0 . 0 I N V A L I L) P P 1 . 7 0 2 5 - 0 . 4 5 0 5 6 O . O C O O P U \u00E2\u0080\u00A2 1 7 0 7 5 - 0 . 3 ! : ; 0 ? 6 0 . 0 0 0 2 C R 1 7 0 2 0 . A F 5 6 6 0 . 0 0 0 0 Z F I 7 0 2 >-> 0 . 0 6 0 . 0 I N V A L I D C L 1 7 0 2 0 . 0 ] 5 0 6 0 . 8 h b 5 t P 1 7 0 \u00E2\u0080\u00A2} . 5 - 0 . 1 c - 5 7 6 0 . 2 7 9 7 H F M 1 7 0 5 0 . 0 6 0 . 0 I N V A L I D M A G 1 7 0 r i C . 9 OA 3 6 - 0 . 0 M C - G I D 1 7 0 '+ 6 0 . B 1 8 fi 7 - c o U - l or. r: x-<. < \u00C2\u00AB i fC D.' ^ < > > < < < > > > u l L L OL U LO' UJ 1\u00E2\u0080\u0094 (\u00E2\u0080\u0094 t \u00E2\u0080\u0094 2 : 2 T I I J_ i i ! c o. I/\", o, m cc. c r s i ^ i n r\u00C2\u00AB- no \u00E2\u0080\u0094< -t cr, \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 > LL LL IL. 1\u00E2\u0080\u0094 170 c a : u . ' > >- .. ^ Ci-' f.iO c c CO CO'. c ' \u00E2\u0080\u0094 ' CO 0 0 i_Li LL' LLJ Cr' (\u00E2\u0080\u0094 t \u00E2\u0080\u0094 1\u00E2\u0080\u0094 LO' CJ LU . CO _J UJ O l i ! < CO \u00E2\u0080\u0094 > n o c v II > > > < \u00E2\u0080\u00A2 1 _ i \u00E2\u0080\u0094 ' > Lu. 2! _J c L-. CJ 0 0 M . ~* \u00C2\u00BB\u00E2\u0080\u0094. LL C-. C ' \u00E2\u0080\u0094 < W; CO h- c- CT\" > * ! -t.'. < \u00E2\u0080\u00A2 0 sO: CO ct C ' u . : > . \u00E2\u0080\u0094 , 1\u00E2\u0080\u0094i t\u00E2\u0080\u00944 c c o< i \u00E2\u0080\u0094 1\u00E2\u0080\u0094 1\u00E2\u0080\u0094 37\" I.!..' < < < \u00E2\u0080\u0094 > \u00E2\u0080\u00A2> 2T r r \u00E2\u0080\u00A2X ~\" or c Li.. LU U.' U.' CL - 0 UJ GO CIO c o U9 0 0 t \u00E2\u0080\u0094 CO- CO > \u00C2\u00ABJ OLj <. 1 < 1 LL LU i . O o * : O X < < > 0 0 CC r\u00E2\u0080\u0094' 0 OJ .-1 c_ 0 CsJ O CO c CC \u00E2\u0080\u00A20 0 4- c ro c. c c 0 0 0 0 c D 0 0 CC *\u00E2\u0080\u0094< c o 2 0 < > o o 0 0 0 to o xC- sC Kt - J o- . c j u O C L0. 2. O I ZD CJ S E O T II. N 3 \u00C2\u00AB 5 - - HA N G I NOW A L L V O L T A N IC. S C E P E N D E N T V A R I A B I E = C U - G R O T Y P E = 4 K F ; O B S E R V A T I O N S I N O N L Y 0 M E C A T E G O R Y O E T H E N O N - I N T E R V A L V A R I A B L E H E N ' ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N U N - I N T E R V A L V A R I A B L E V A E I A B L E N U M B E R O F . V A \u00E2\u0080\u00A2\u00E2\u0080\u00A2-1 A B L F C 0!-' R C O R R E L A T I O N T E S T P R O B D B S E R V A T I O N S T Y P E C O T E C O D E G R A Y S 8 4 2 <3 - 0 . 1 5 1 1 6 ' 0 . 2 3 1 8 OK \u00E2\u0080\u0094 1 . T 8 6 2 S - C . 2 2 9 5 6 O . C 8 8 1 N O . E R A 8 6 2 0 . 0 6 9 5 6 0 . 6 1 4 5 QI B 6 2 - C . f ( 6 8 6 0 . 5 9 1 4 A P G l . fi 6 2 - G . 2 0 8 2 6 0 . 0 9 3 0 f' S 8 6 .5 - 0 . 0 2 1 5 6 0 . 8 3 5 7 K O 8 6 2 5 0 . 0 6 0 . 0 I N V A L I D P P 8 6 2 5 - 0 . 2 8 1 6 6 \u00E2\u0080\u00A2 0 . 0 5 4 6 n u 8 6 5 - 0 . 1 7 4 4 6 0 . 5 6 7 6 C B 8 6 2 0 . 2 2 5 1 6 0 . 0 5 2 5 Z F 8 6 2 - 0 . ? J 3 2 6 0 . 1 5 7 4 C L 8 6 \"> 5 0 . 2 8 6 2 6 0 . 0 H A E P 8 6 2 5 - 0 . 2 1 6 0 6 0 . 1 4 9 7 H E ,M 8 6 2 5 0 . 0 6 0 . 0 I N V A L I D N A G 8 6 2 0 . 1 3 5 3 6 0 . 3 1 4 8 [v'O-GRO 8 6 4 6 0 . 4 6 6 F 7 0 . 0 0 0 0 C E PE NOE NT V AR I AOL E = MO-CRO T Y P E = 4 K F ; OH SE R V A T I O N S I N CNLY CNF C AT EG CP Y OF THE NCN - 1RT F FV AL V A R I A B L E HEN; O B S E R V A T I O N S I.N ONLY ONE CAT POOR Y OF THE NON - 1 NTEIWAL V A R I A B L E V A R I A B L E NUMBER OF V ARI A B L E COR R CORR FLAT TON TF ST PROB O B S E R V A T I O N S T Y P E C C; 0! CODE GRAYS C '4 2 0 . 0 1 6 0 . 4 9 0 6 DK.\u00E2\u0080\u0094 LT 8 6 2 (.\u00E2\u0080\u00A2 . 1 0 8 9 6 0 . 4 3 2 4 NO.FRA 8 6 2 5 o . 4 ; >; P 6 0 . 0 0 0 2 GZ 8 6 2 5 0 . 0 <:\u00E2\u0080\u00A2'<(: 6 0 . 5 7 6 0 AR GL 8 6 2 r , 0 . 1. 3 5 5 \u00E2\u0080\u00A2 6 0 . 2 8 2 2 NS 8 6 2 c , 0 . 0 7 4 8 6 0 . 5 4 0 6 KF 8 6 2 5 0 . 0 6 0 . 0 I N V A L I D PP F 6 2 5 0 . ? 6 1 6 0 . 0 9 3 9 FO F'r. 2 \u00E2\u0080\u00A2 5 - o . ] i >; 4 6 0 . 7 0 7 5 CE 8 6 2 s - 0 . 1 2 4 c . 6 0 . 2 9 2 9 Z E ' 8 6 2 5 - 0 . 2 7 6 1 6 0 . 0 9 2 3 CL 8 6 2 c - 0 . 1 2 9 7 6 0 . 2 7 1 5 EP 8 6 (. r ; - 0 . 2 9 6 6 6 0 . 0 4 6 2 H F M 8 6 2. t ; 0 . ^ 6 0 . 0 I N V A L I D N\" AG 8 6 2 5 - 0 . 1 8 9 6 6 0 . 1 5 2 7 G O - G F 0 86 4 6 0 . 4 6 6 8 0 . 0 0 0 0 S E C T I O N 1 . 8 7 \u00E2\u0080\u0094 E OCT W A L L V O L C A N I C S D E P E N D E N T V A R I A B L E = C U - G R D T Y P E = 4 M S : O B S E R V A T I O N S I N O N L Y C M : O A l t G l J R Y O E I ' l l L N O N - 1 N I E R V A L V A R I A B L E K F ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T E E N C N - 1 NT E R V AL V A R I A B L E P R ; O B S E R V A T I O N S I N O N L Y G N E C A T E G O R Y O F TE*F N O N - I N T E R V A L V A R I A B L E G U ; O B S E R V A T I O N S I N C N L Y C N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E H E M ; O B S E R V A T I O N S I N C N L Y C N E C A T F G O R Y O F T H E R O N - 1 NT E R V A l . V A R I A B L E K O - G R O ; N O O B S E R V A T I O N S V A R I A B L E N U M B E R C F V A R I A B L E , C O R R C O R R E L A T I O N T E S T ' P R O B O B S E R V A T I O N S T Y P E ' C O D E C O D E G R A Y S 2 8 2 5 0 . 1 7 3 7 6 0 . 4 8 8 3 DK, \u00E2\u0080\u0094 L T \u00E2\u0080\u00A2 2 P. 2 5 0 . 2 E G9 f> 0 . 2 2 1 3 \u00E2\u0080\u0094 N U . E R A TB 2 5 - 0 . 2 C b f c 5 0 . iblb G7. 2 B - 2 5 - C 2 4 2 E 6 0 . 3 3 6 0 A P O L 2 8 2 . 5 - 0 . 4 0 6 7 6 0 . 3 8 4 8 M S 2 8 2 5 C O 6 O . G I N V A L I D K F 2 8 \u00E2\u0080\u00A2 2 5 C O 6 0 . 0 I N V A L I D P P \u00E2\u0080\u00A2 - 2 8 2 5 0 . 0 6 0 . 0 I N V A L I D ^ HTJ 7TJ\u00E2\u0080\u0094' 2 K ~ T T D 5 D T D I N V A L 1 U C 3 2 8 2 5 0 . 2 2 2 ? 6 0 . 2 8 7 7 Z E 2 0 2 5 - G . 4 5 0 4 6 0 . 0 3 1 R C L ' 2 0 2 . 5 C . C C 9 7 6 0 . 9 1 5 5 r p 2 8 2 5 - C 6 < G 6 8 6 0 . 0 0 1 5 H F M 2 8 2 . 5 0 . 0 6 0 ^ 0 I N V A L I D P7TG\" TE 2 5 0 ; (341 I 5 0 . 8 3 2 9 M Q - G P D 0 4 0 0 . 0 0 0 . 0 I N V A L I D MO-GRO TYPE = 4 GRAYS; DK\u00E2\u0080\u0094LT; NO.FRA; a z ; ARGL ; NO C B S E S 7 A T TONS NO OBSERVATIONS NO OBSERVATIONS NO OBSERVATIONS NO OBSERVATIONS NO OR SO i-l VAT IONS NO OBSERVATIONS NO OBSERVATIONS NO OBSERVATIONS NO OBSERVATIONS NO OBSERVATIONS NO OBSERVATIONS NO OBSERVATIONS NO OBSERVATIONS NO OBSERVATIONS NO OBSERVATIONS MS; KF; PP; OU ; CR; ZF ; CL ; EP; HEM ; MAG; CU-GRO; VARIABLE GRAYS DK\u00E2\u0080\u0094LT NO.ERA NUMBER OF OBSERVAT IONS 0 0 Ql ARGL \u00E2\u0080\u00A2 MS KF nu CB ZE CL FP HEM \" T T C 0 C 0 o C 0 0 0 0 TT VARIABLE TYPE 2 2 2 2 2 2 ~7~ 2 2 2 2 2 CU-GRD T 4 CORR CODE C 0 ~0\" 0 0 0 0 0 ~J) 0 0 0 0 c CORRELATION C O 0 . 0 \"TTTTT 0. 0 0 . 0 0 .0 0. 0 0 . 0 TT7CT 0. o 0 . 0 0 . 0 0. 0 0 .0 o 0 0 . 0 \u00E2\u0080\u00A20. 0 TEST CODE 0 0 ~TJ 0 C 0 0 0 ~~u~ o 0 0 0 0 T J \" PROB 0 . 0 C O 0 .0 0. c 0 .0 C O 0 . 0 \"TTTO O . C C O 0 . 0 C O C O \"TJ7TT C O INV AL ID INVALID INVALID I NVALID 1NVALID INVAL ID INVALID INVALID INVALID I NV A L ID I NVALID INVAL ID INVALID INVALID INVAL ID INVALID \u00E2\u0080\u0094 j -DEPENDENT VARIABLE = CU-GRD TYPE = 4 MO-GPD; NO OBSERVATIONS ! \u00E2\u0080\u0094 \" [ ' : VARIABLE NUMBER OF VARIABLE CORR CORRELATION TEST PROB OBSERVATIONS TYPE CODE CUDE GRAYS - 117 2 5 \u00E2\u0080\u00A2 -0.2235 6 C. 0323 D K \u00E2\u0080\u0094 L I TT7 2 5 -i).2^b : 5 O.U252 NO.FRA 1 17 2 5 0. C C U - G R D c 4 0 0 . 0 0 0 . 0 I N V A L I D vo S E C T I O N 1 8 7 \u00E2\u0080\u0094 H A N O I N G W A L L V O L C A N I C S D E P E N D E N T V A R I A B L E = C U - G R D T Y P E = 4 V A R I A B L E N U M B E R O F V A R I A B L E C O R R C O R R E L A T I O N T E S T P R O B O B S E R V A T I O N S T Y P E C O D E . C O D E G R A Y S 4 9 2 2 5 - 0 . 1 1 4 5 6 0 . 0 1 7 6 U K \u00E2\u0080\u0094 1 . T 4 9 8 2 5 - 0 . 0 76 B 6 0 . 1 3 0 4 N O . E R A 4 9 8 2 5 0 . 1 8 3 0 6. 0 . 0 0 0 2 Q Z \"* 4 9 8 2 5 n . 3 3 7 5 6 - 0 . 0 AR GL 4<\"-8 2 5. - 0 . 2 8 0 7 6 0 . 0 0 0 0 I^S 4 9 8 ? 5 - 0 . 1 5 9 2 6 0 . 0 1 0 7 K F 4 9 8 2 5 \u00E2\u0080\u00A2 0 . 2 2 6 4 6 0 . 2 1 0 3 P P 4 9 b Z 5 - 0 . 2 ' M 3 6 0 . 0 0 0 6 D U 4 9 8 2 5 - 0 . 2 2 1 6 6 0 . 4 9 0 0 C B 4 9 8 2 5 0 . 1 4 3 5 6 0 . 0 0 4 4 Z E 4 c - 8 2 5 - 0 . 0 4 6 8 6 0 . 6 2 2 8 C L 4 9 8 2 5 0 . 1 8 6 9 6 0 . 0 0 0 1 E P ' 4 9 8 2 5 - 0 . 2 7 5 6 6 0 . 0 0 0 0 H E M 4 9 8 2 5 - 0 . 1 3 / 2 6 \u00E2\u0080\u00A2 0 . 3 5 3 1 M A G 4 9 8 2 5 0 . 1 3 6 6 6 0 . 0 1 1 0 M U - G R D 2 9 6 4 6 0 . 4 8 8 6 7 - 0 . 0 00 o D E P E N D E N T V A R I A B L E = M n - G R D T Y P E = 4 V A R 1 A B L E N U M 3 F P O F V A R I A B L E C O R R C O R B E L A T I O N T E S T P R O B O B S E R V A T I O N S T Y P E C O R E C O D E G R A Y S 2 9 0 2 0 . 0 2 7 7 6 0 . 6 6 9 1 D K \u00E2\u0080\u0094 L T 2 9 6 2 0. 1 2 4 2 6 0 . 0 4 0 5 N G . E R A 2 9 6 2 5 0 . 3 1 9 9 6 0 . 0 0 0 0 QZ . 2 9 6 2 5 0 . 3 4 2 5 6 0 . 0 0 0 0 A R G L . 2 9 6 2 5 - 0 . 0 9 7 3 6 0 . 2 1 2 0 MS 2 9 6 , 2 5 - 0 . 1 1 2 7 6 0 . 2 1 4 7 K F 2 9 6 2 5 0 . 7 3 5 2 6 0 . 0 0 0 2 P P 2 9 6 2 \u00E2\u0080\u00A2 5 - 0 . 2 0 6 7 6 0 . 0 6 1 1 D U 2 9 6 2 5 - 0 . 1 5 3 7 6 0 . 6 4 8 8 C B 2 9 6 2 5 \u00E2\u0080\u00A2 0. 0 6 5 9 6 0 . 3 1 4 6 Z E 2 9 6 2 5 0 . 1 3 0 4 6 0 . 4 1 3 4 C L 2 ^ 6 2 .b I >, I 1 3 f 6 0 . 0 6 2 / \u00E2\u0080\u00A2EP 2 9 6 2 5 - 0 . 2 8 3 8 6 C . 0 0 3 8 H E N 2 9 6 2 5 - 0 . 1 8 5 5 6 0 . 2 6 5 7 M A G 2 9 6 2 5 0 . 1 5 2 9 6 0 . 0 2 7 7 ' C U - G R D 2 9 6 . 4 6 0 . 4 8 8 6 7 - 0 . 0 S E C T I O N 1 7 9 - - F O O T W A L L V O L C A N I C S OF P E N H E M T V A R I A P. I F = . 0 U - G . : i . 0 . T Y P F = 4 O K \u00E2\u0080\u0094 L T M S K F P P . d i H E M M O - G R D O B S E R V A T I O N S I N O B S E R V A T I O N S I N O B S E RV A T I O N S I M O B S E R V A T I O N S I N O B S E R V A T I O N S TN O B S E R V A T I O N S I N NO O B S E R V A T I O N S O N L Y C r - E C A T E G O R Y O F T E E N G N - I I N T E R V A L V A R I A B L E O N L Y O N E C A T E G O R Y O F T H E N G N - 1 NT F R V A L V A R I A B L E O N L Y O N E C AT F G O R Y O E T H E N O N - I N T F F V A L V A R I A B L E C N L Y C r - E C A T E G O R Y C F T H E N G N - I NT E R V A|. V A R I A B L E O N L Y O N E C A T E G O R Y O F T H E NO N - I N T E R V A L V A R I A B L E O N L Y O N E C A T E G O R Y O F T H E M O N - I N T F R V A L V A R I A B L E V A R I A B L E N U M B E R O F V A R I A B L E C O R R C O R R E L A T I O N T E S T P R O B O B S E R V A T I O N S T Y P E C O D E C O D E G R A Y S 3 9 2 5 C . 5 0 2 8 6 0 . 0 0 2 2 ? _ ? D K \u00E2\u0080\u0094 L T ~\u00C2\u00A3- 2 5 0 . 0 . 6 0 . 0 N O . F R A - 3 9 9 \u00E2\u0080\u00A2 5 - 0 . 6 0 4 4 6 0 . 0 0 0 5 Q Z 3 9 2 5 0 . 5 0 5 1 6 0 . 0 0 0 5 A P G L 3 9 2 5 0 . 8 2 1 1 6 0.oooi \u00E2\u0080\u00A2 MS ' 3 9 2 o.o .6 , 0 . 0 K F 3 9 2 5 0 . 0 \" 6 o. c\"\" P P . 3 9 O c 5 0 . 0 6 C O D U 3 9 2 5 0 . 0 6 0 . 0 C B 3 9 2 5 - C . 3 0 B 3 6 0 . 0 8 5 5 Z E 3 9 2 5 - 0 . 1 0 3 1 6 0 . 5 6 6 4 C L 3 9 2 5 - C . 6 1 2 7 _ 6 0 . 0 0 0 1 E P 3 9 -> 5 - C . 6 3 0 7 6 . 0 . 0 0 1 0 H E M 3 9 -> /..-5 0 . 0 6 0 . 0 M A G 3 9 2 5 0 . 1 2 3 7 6 0 . 5 5 6 5 M C - G R D 0 4 c 0 . 0 0 0 . 0 r E P F N H E N T V A R I A B L E \u00E2\u0080\u00A2= M C - G R D T Y P E = 4 G R A Y S ; M G O B S E R V A T I O N S D K \u00E2\u0080\u0094 L T ; RO C B S E R V A T I C R S N G . F R A ; NO O B S E R V A T I O N S Q Z ; NO D B S E R V A T I O N S A R G L , NO O B S E R V A T I C R S M S ; NO O B S E R V A T I O N S K F ; NO C B S E R V A T I O N S P P R O O B S E R V A T I O N S D U NO O B S E R V A T I O N S C B , K G O B S E R V A T I O N S Z E ; NO O B S E R V A T I O N S C L NO' O B S E R V A T . I O N S E P ; N O C B S E R V A T I O N S H E M ; NO O B S E R V A T I O N S N A G ; N O O B S E R V A T I O N S C U - G R D ; NO O B S E R V A T I O N S V A R I A B L E N U M B E R O F V A R I A B L E C O R P C O R R E L A T I O N O B S E R V A T I C N S 1 Y P E C O D E \u00E2\u0080\u00A2 G R A Y S C 2 0 O . O . CK \u00E2\u0080\u0094 I T 0 2 ' 0\" \" \" ' 0 . 0 \" N O . F R A 0 2 0 0 . 0 C Z C 2 C 0 . 0 A R G L . 0 2 0 0 . 0 N S 0 2 0 0 . 0 K F -. ' 0 2 0 0 . 0 P P 0 2 C \u00E2\u0080\u00A2 \" 0 . 0 G O C 2 0 C O C B C 2 C \u00E2\u0080\u00A2 0 . 0 7 E C 2 0 0 . 0 C l 0 2 0 0 . 0 F P 0 2 _ q 0 . 0 H E M C 2 ' 0 ' \" 6 . 0 ' M A G C 2 0 . 0 . 0 C U - G P D 0 4 0 . 0 . 0 T E S T P R O B C O D E 0 0 . 0 I N V A L I D 0 0 . 0 I N V A L I D 0 0 . 0 I N V A L I D 0 0 . 0 \u00E2\u0080\u00A2 I M V A L I D 0 0 . 0 I NV A L I U 0 0 . 0 I N V A L I D o 0 . 0 I N V A L I D 0 0 . 0 I N V A L I D 0 0 . 0 I N V A L I D 0 0 . 0 I N V A L I D 0 0 . 0 I N V A L I D 0 0 . 0 I N V A L I D 0 0 . 0 I N V A L I D o o . c \" I N V A L I D 0 0 . 0 I N V A L I D 0 0 . 0 I NV A L I D SECTION 179 \u00E2\u0080\u0094 DYKE COMPLEX DEPENDENT VARIABLE = CU-GRD TYPE = 4 D K \u00E2\u0080\u0094 L T ; OBSERVATIONS IN ONLY ONE CATEGORY OF THE KF; OBSERVATIONS IN ONLY ONE CATEGORY OF THE 'DO; OBSERVATIONS IN ONLY CNF CATEGORY OF THE NON-INTERVAL NON- INTER VAL NON-INTERVAL VARIABLE VARIABLE VAR I ABLE VARI ABLE NUMBER OF \u00E2\u0080\u00A2 VARIA8LE CORP. COP.RE LAT ION TE ST PROB 03SERVAT IONS TYPE COCE CODE GR AYS 3 37 2 c \u00E2\u0080\u00A2 0.C734 6 . C 2003 D K \u00E2\u0080\u0094 LT 52 2 5 C .0 6 C O I N V A L I D NO .FRA 308 2 5 0.2275 6 0 .0002 CZ 3 38 2 5 0.4227 6 -0. 0 ARGL 33 8 -> 5 - 0 . 4 4 1 2 6 - o ' . o M S 2 7 2 2 c, \u00E2\u0080\u00A2 - 0 . 2 4 5 0 6 0 . 0 1 1 2 . K F 2 7 2 2 5 0 . 0 6 0 . 0 P P 2 7 2 2 5 - 0 . 3 3 8 1 6 . 0 . 1 8 0 5 DU 2.7 2 n 5 - 0 . 3 8 3 5 6 0 . 1 2 8 2 C B 2 7 2 2 - 0 . 4 2 0 0 6 - 0 . 0 ? E 2 7 2 2 5 0 . 1 4 2 9 6 0 . 2 4 4 8 C L 2 7 2 2 5 0 . 1 8 1 1 6 0 . 0 0 5 5 E P 2 7 2 2 5 - 0 . 1 2 2 1 6 0 . 3 7 5 3 H E M 2 7 2 2 5 0 . 0 9 1 0 6 0 . 6 4 8 1 M A G 2 7 2 2 5 0 . 1 5 3 5 6 0 . 0 2 9 1 . , M O - G R D 2 2 8 4 6 0 . 5 0 9 7 7 - 0 . 0 D F P E N D E N T V A P I A 3 L E = M f ) - G R O T Y P E \u00E2\u0080\u00A2= 4 O K \u00E2\u0080\u0094 I T ; O B S E R V A T I O N S IN K F ; O B S E R V A T I O N S I N P P ; O B S E R V A T I O N S IN 0 N LY ONLY ONL Y O N E O N E O N E C A T r G C R Y C A T E G C R Y 0 A T E G OP Y OF or O F T H E THE THE DO; O B S E R V A T I O N S IN ONLY ONE C A T 7 X F R Y ~ 0 F T H F T N O N - I N T E R V A L N O N - I NT E R V Al . N O N - I N T E R V A L I N - I N f ER V A L \" VAR I A B L E V A R I A B L E VARI A B L E VARTABLE VAR I A B L E GRAYS NUMBER OF GBSERV AT IONS 2 2 6 V A R I A B L E TYP E D K \u00E2\u0080\u0094 LT NO.FRA OZ AR OL MS K F PP DU C B Z E C L F P FTFM\" MAG CU-GP D 6 ? 1 58 2 2 8 2 28 22 8 2 28 2 28 22 8 2 20 2 2 8 2 2 8 .228 278 228 2 2 8 2 2 2 2 -> 2 2 2 2 2 2 ? 2 CORR CODE 5 5 r, 5 5 5 5 c r, 5 5 5 6 C ORKFLAT ION J - C J 1 97 0 0 . 0 \" 0 .2492 0 . 2 2 3 7 - 0 . ]. C 6 5 - 0 . 2 1 5 7 __0. U 0 70 0.0 0 . ? 0 5 5 0.0 802 0 . 1 0 2 1 - 0 . 1 2 75 0 . R . O F 0 . 1 3 1 0 0 . 5 C 9 7 T E S T CODE 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 PROB 0 .0048 0.0 0.00 41 0 .0011 0.0 64 8 0 . 0 3 0 9 0 .0 0.0 0 .0 0 .0044 0 . 5 4 5 3 0 . 1 4 8 5 0 . 3 6 8 8 0 . 4 0 3 9 0 . 0 7 8 6 -0.0 I N V A L I D INVAL ID I N V A L I D I N V A L I D S E C T I O N 1 7 1 F O O T W A L L V O L C A N I C S D E P E N D E N T V A R I A B L E - C U - G R D T Y P E \u00E2\u0080\u0094 L T ; O B S E R V A T I O N S I N O N L Y O R E C A T F G O R Y O F T H E N C N - 1 R T F R V A L V A R I A B L E V A R I A B L E G R A Y S N U M B E R O F \u00E2\u0080\u00A2 O B S E R V A T I O N S 2 7 9 D K \u00E2\u0080\u0094 L T N O . E R A G Z A R G L N'S K F P P DU C B Z E C L E P H EM M A G P Y - M O D E P Y C P - N O D E M O - G R D 1 6 2 3 1 2 HO 2 B O 2 8 0 2 3 0 2 8 0 2 8 0 2 8 0 2 8 C 2 8 O 2 8 0 2 3 0 2 3 0 2 < U 2 6 0 1 5 7 2 3 0 V A R I A B L E T Y P E 2 o 2 2 2 2 2 2 2 o 2 2 2 2 2 4 C O R R C E D E 5 5 r, 5 5 5 5 5 5 5 5 C O R R F L A T I O N - 0 . 1 8 6 4 C O 0 . 5 9 7 4 0 . 2 3 5 1 - 0 . 2 9 5 5 - 0 . 2 9 ^ 2 0 . 6 2 4 2 - 0 . 3 0 2 6 - 0 . 3 2 3 3 0 . 0 4 6 9 - 0 . 5 1 4 3 - C . 3 7 1 0 - 0 . 3 8 1 3 0 . 1 5 0 3 0 . ? 2 1 C - 0 . 1 2 0 3 - 0 . 2 7 6 3 0 . 0 8 0 4 0 . 6 6 7 0 T E S T C O D E P R O B 0 . 0 0 5 5 6 6 6 6 6 6 0 . 0 - 0 . 0 0 . 0 0 0 7 0 . 0 0 0 1 C . 0 0 0 2 0 . 0 1 3 0 6 6 6 6 6 6 0 . 0 1 2 4 0 . 3 3 5 5 0 . 4 9 1 8 0 . 0 0 0 0 \u00E2\u0080\u00A2 C O 0 . 0 0 0 2 6 6 6 6 6 7 0 . 1 0 8 3 0 . 0 0 1 6 0 . 1 0 1 6 O . O C O O 0 . 4 0 1 3 - 0 . 0 S E C T I O N ~1 7 1 D E P E N D E N T V V I A B L E - M C - G R D D K \u00E2\u0080\u0094 L T ; OBSERVATIONS IN CM.Y ONE C AT EG C RY OF THF NGN-INTERVAL VARIABLE . VAR I ARL E .NUMBER OF VARIABLE CORR CORRELATION TEST PROB OBSERVATIONS. TYRE CODE CODE GR AYS 2 79 2 \u00E2\u0080\u00A2 -0.20 94 6 0.0020 DK--LT 16 ? 5 0. 0 6 0.0 INVALID NO.FRA 221 2 5 0.618 8 6 -0 .0 0 7. 2 BO 7 5 0.0865 6 0.2077 ARGL 2R0 2 5 -0.2676 6 0. 0C03 MS 280 2 -0 . 363 3 6 O.OGOO \u00E2\u0080\u00A2 KF 2 80 2 5 0.1372 6 0. 59 60 PP 2 80 2 5 -0.2219. 6 0.0654 .nu 2 30 2 5 -0.1865 6 0.5843 CB 280 2 5 0.1323 6 0.0456 7E 2 8C 2 5 -0.4 45 4 6 0.0000 CL 2 80 2 5 -0.3 490 6 0.0000 EP . .2 80 2 5 -0. 3101 6 0.0018 HEM 2 80 2 5 0.2234 6 0.0172 MAG 230 2 5 0. 1726 6 0.0124 .... PY \u00E2\u0080\u0094MODE 261 2 5 -0.I14C 6 0.1211 PY 2 60 2 5 -0.3 38 5 6 0.0000 C E-MODE 157 2 5 -0.10 8 7 6 0.2497 CU-GRD 280 4 6 0.6670 7 -0. 0 CO - \" FOOTWALL vc 11:7ANFes TYPE = 4 S E C T TOM 1 7 1 D Y K E C O M P L E X D E P E N D E N T V A R T A B L E = C U - G R D T Y P E = A D K \u00E2\u0080\u0094 L T ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E Z E 5 O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H F N O N - I N T E R V A L V A R I A B L E E P ; O B S E R V A T I O N S I N O N L Y C N E C A T E G O R Y O F T H F N O N - I N T E R V A L V A R I A B L E V A R T A R ! F N U M B E R O F V A R I A B L E C.() R R C O R R E L A T I ON] TF S T P R O B O B S E R V A T I O N S T Y P E C O D E C O D E G R A Y S 1 8 5 2 5 - 0 . 4 3 3 0 6 0 . 0 0 0 0 D K \u00E2\u0080\u0094 L T 5 2 5 C O 6 0 . 0 I N V A L I D N O . F R A . 1 1 2 2 5 0 . 2 0 3 5 6 0 . 0 6 6 5 Q Z 1_85 2 5 - 0 . 0 1 3 5 6 0 . 8 3 5 3 A R G L 1 8 5 2 5 -oV2970 6 0 . 0 0 0 1 M S 1 8 5 2 5 0 . 2 8 5 A 6 0 . 0 0 9 2 K F 1 8 5 2 5 - 0 . 2 9 7 8 6 0 . 3 9 9 2 P P 1 8 5 2 5 - 0 . 5 9 1 A 6 0 . 0 0 0 0 D U 1 8 5 2 5 - C A 5 3 6 6 0 . 0 A 5 6 C B - \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1 8 5 2 5 _ 0 . C 6 2 A 6 0 . A 7 6 9 Z E 1 8 5 2 5 0 . 6 6 \" 0 . 0 I N V A L I D C L 1 8 5 2 5 - 0 . 0 2 1 3 6 0 . 8 1 0 3 E P 1 8 5 2 5 0 . 0 6 C O I N V A L I D H E M 1 8 5 2 5 0 . 3 2 9 5 6 0 . 0 0 0 5 M A G 1 8 5 . 2 5 0 . 3 9 A 8 6 0 . 0 0 1 1 P Y - M Q Q F 1 7 7 2 5 - 0 . 1 4 A 2 6 0 . 1 1 5 6 P Y 1 7 7 2 5 0 . 0 1 3 3 6 0 . 8 A 1 4 C P - M O D E 1 A A 2 5 - C . 2 8 9 2 6 0 . 0 0 A 5 M O - G R D 1 6 5 A 6 0 . 5 3 6 5 7 - 0 . 0 SECTION 171 DYKE COMPLEX DEPENDENT VARIABLE = MG-GRD TYPE = 4 D K \u00E2\u0080\u0094 L T ; OBSERVATIONS IN ONLY ORE CATEGORY OF THE NON- INTER VAL VARIABLE ZE; OBSERVATIONS IN ONLY ORE CATEGORY OF THE NON-INTERVAL VARIABLE EP; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE VARIABLE NUMBER OF VARIABLE CORR CORRELATI ON TE ST PROB OBSERVATICNS TYPE\" CODE CODE GRAYS 185 2 5 -0.2395 6-- 0.0026 DK\u00E2\u0080\u0094LT 5 2 5 0.0 6 0 .0 I N V A L I D NO.FRA 112 2 5 0.439C 6 O.OOOl QZ 18 5 _2 _ 5 0_. 0 294 6 0. 69 62 ARGL 185 2 5 - 0 . T 4 8 9 6 0.0505 MS 18 5 2 5 0. 1871 6 0.0 863 KF 185 2 5 0.0365 6 0.8810 PP 165 2 5 -0.2666 6 0.0212 DU 185 2 . 5 -0.3155 6 0.1670 OB . . 1 85 2 5 _ 0 -1590 6 0 .06 15 ZE 1T5 2 5 0-0\" ~ \" ' \u00E2\u0080\u0094 6 \" 0.0 ~ INV~ATTU CL 185 2 5 0. 0337 6 0. 7269 EP 1 85 2 5 0.0 6 0.0 I N V A L I D HEM 165 2 5 0.1974 6 0.0343 MAG 185 2 5 0.4 146 6 0.0006 PY-MODE 177 2 5 -0_._1 514 6 0.0983 PY 17 7 2 5 -0.034 5 6 0.66 48 CP-MODE 144 2 5 -0.1466 6 0.1500 CU-GRD 185 4 6 0.5365 7 -0.0 S E C T I O N 1 7 1 - H A M G I N G W A L L V O L C A N I C S . D E P E N D E N T V A R I A B L E = C U - G R D T Y P E = A D K \u00E2\u0080\u0094 L T ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E D U ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H F N O N - I N T E R V A L V A R I A B L E V A R I A B L E N U M B E R O F V A R I A B L E C O R R C O R R E L A T I O N T E S T P R O B O B S E R V A T I O N S T Y P E C O D E C O D E G R A Y S 2 2 6 2 5 0 . 0 2 2 0 6 0 . 7 5 3 7 D K \u00E2\u0080\u0094 L T A 2 5 0 . 0 6 0 . 0 I N V A L I D N O . F R A 2 2 6 2 5 0 . C C 3 9 6 0 . 9 1 0 9 Q Z 2 2 6 2 5 0 . 2 0 3 8 6 0 . 0 0 2 9 A R G L 2 2 6 2 5 C . C 9 P 8 6 x\llbJ^ MS 2 2 6 2 5 0 . 1 6 3 7 6 0 . 0 7 8 2 K F 2 2 6 2 5 0 . 3 1 9 8 6 0 . 0 6 1 0 P P 2 2 6 2 5 - 0 . 3 8 6 7 6 0 . 0 0 5 7 D U 2 2 6 2 5 0 . 0 6 0 . 0 I N V A L I D C B 2 2 6 2 5 - 0 . 1 9 8 6 6 0 . 0 0 7 8 Z E 2 2 6 2 5 j - _ 0 . 5 9 A 2 6 0 . 0 0 0 0 C L 2 2 6 2 5 \" - 0 . 1 8 9 9 6 0 . 0 0 9 5 E P 2 2 6 2 \u00E2\u0080\u00A2 5 - 0 . 3 1 8 5 6 0 . 3 5 A 6 H E M 2 2 6 2 5 C . 1 1 A 7 6 0 . 2 A 3 8 M A G 2 2 6 2 5 0 . 1 2 0 1 6 0 . 1 7 2 A P Y - M O D E 2 1 5 2 5 . 0 . 1 A C 5 6 0 . 0 5 3 9 P Y 2 1 4 2 5 - 0 . 0 2 1 6 6_ 0 . 7 5 3 6 C P - M O D E 1 7 A 2 5 0 . 1 1 5 9 6 0 . 1 6 0 6 M O - C R D 2 2 6 A 6 O . A 9 7 8 7 - 0 . 0 S E C T I O N 1 7 1 - H A N G I N G WALL V O L C A N I C S D E P E N D E N T V A R I A B L E = N O - G R D T Y P E = 4 D K \u00E2\u0080\u0094 L T ; O B S E R V A T I O N S I N C N L Y ONE C A T E G O R Y OF T H E N O N - I N T E R V A L V A R I A B L E D U ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y OF T H E N O N - I N T E R V A L V A R I A B L E V A R I A B L E N U M B E R OF V A R I A B L E C O R R C O R R E L A T I O N T E S T P R O B O B S E R V A T I O N S T Y P E C O D E C O D E G R A Y S 2 2 6 2 5 0 . 1 4 3 0 . 6 0 . 0 4 3 4 DK \u00E2\u0080\u0094 I T 4 2 5 0 . 0 6 0 . 0 I N V A L I D N O . F R A 2 2 6 2 5 0 . 1 2 4 6 6 0 . C 7 7 0 C Z 2 2 6 2 5 0 . 1 0 9 3 6 0 . 1 0 6 4 ARGL 2 2 6 _2 5 0 . 0 6 1 7 6 \u00C2\u00A3_* 3 9 6 i _ MS 2 2 6 2 ~5 0 . 0 7 6 9\" 6 ' rJ.~42 02~~ KF 2 2 6 2 5 0 . 5 3 1 0 6 0 . 0 0 2 1 P P 2 2 6 2 5 - 0 . 2 7 9 9 6 0 . 0 4 3 5 DU 2 2 6 2 5 G . O 6 0 . 0 I N V A L I D C B 2 2 6 2 5 0 . 1 4 2 5 6 0 . 0 5 4 8 ZE 2 2 6 2 5 - 0 . 4 2 0 8 6 0 . 0 0 0 8 CT : ~T2T> 2 5~ - C . l 3 2 3 6 0 . 0 6 9 3 EP 2 2 6 2 5 - 0 . 2 5 3 8 6 0 . 4 6 4 8 HEM 2 2 6 2 5 - 0 . 2 0 7 3 6 0 . 0 3 3 1 MAG 2 2 6 2 5 - 0 . 0 1 3 0 6 0 . 8 5 5 8 P Y - M O D E 2 1 5 2 \u00E2\u0080\u00A2 5 . - 0 . 0 1 2 0 6 0 . 8 4 6 2 PY 2 1 4 2 5 - 0 . 1 5 3 8 6 0 . 0 2 7 0 C P - M O D E 1 7 4 : 2 : 5\" - C . C 9 4 2 \"5 0 T 2 5 B 0 ! C U - G R D 2 2 6 4 6 C . 4 S 7 8 7 - 0 . 0 S E C T I O N 1 6 3 \u00E2\u0080\u0094 E D O T W A L L V O L C A N I C S D E P E N D E N T V A R I A B L E = C U - G R D T Y P E = 4 K F ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E P P ; O B S E R V A T I O N S I N . O N L Y O N E C A T E G O R Y O F T H E N G N - I N T E R V A L V A R I A B L E D U ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E Z E ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E E P ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y C F_ J H E _ _ N G N - I N T E R V A L V A R I A B L E_ H E M ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N O N - I N T E E V A L V A R I A B L E V A R I A B L E N U M B E R O F V A R I A B L E C O R R C O R R E L A T I O N T F S T P R O B O B S E R V A T I C N S T Y P E C O D E C O D E G R A Y S 7 6 2 5 - 0 . 4 8 2 8 6 0 . 0 0 0 1 D K \u00E2\u0080\u0094 L T 7 6 2 K. .-' - 0 . 3 3 0 6 \"~ 6 0 . 0 2 7 3 N O . F R A 7 6 2 5 - 0 . 1 2 3 6 6 0 . 3 2 9 2 Ql 7 6 2 5 - 0 . 3 4 5 1 6 0 . 0 0 2 8 A R G L 7 6 2 5 - 0 . 1 9 5 5 6 0 . 1 2 3 7 M S 7 6 2 5 - 0 . 1 0 1 7 6 0 . 4 9 1 5 \" K F 7 6 2 5 0 . 0 C O I N V A L 1 D P P 7 6 2 5 0 . 0 6 0 . 0 I N V A L I D nu 7 6 2 0 . 0 6 0 . 0 I N V A L I D C B 7 6 2 5 0 . 0 8 3 1 6 0 . 5 7 0 9 Z E 7 6 2 5 0 . 0 6 0 . 0 I N V A L I D C L 7 6 2 5 0 . 0 7 5 2 6 0 . 5 6 5 8 E P 7 6 2 5 0 . 0 6 C O I N V A L I D H E M 7 6 2 0 . 0 6 0 . 0 I N V A L I D M A G 7 6 2 5 0 . 4 9 4 6 6 0 . 0 0 2 0 M O - G R D 7 6 4 6 - 0 . 0 6 4 4 7 0 . 5 8 7 3 D E P E N D E N T V A R I A B L E - = M C - G R D . T Y P E = 4 K F ; C B S E R V A T I O N S I N C N L Y O N E C A T E G O R Y O F T H E N O M - I N T E R V A L V A R I A B L E P P ; O B S E R V A T I O N S I N C N L Y O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E O U ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E Z E ; O B S E R V A T I O N S I NT T. N E T ' C R E \" C A T C G C RY O F ' T E E N C N - I N T E R V A L V A R T A B L E~~ E P ; O B S E R V A T I O N S I N C N L Y O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E H E N ; C B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E V A R I A B L E N U M B E R G E ' V A R I A B L E C O R R C O R R E L A T I O N T E S T P R O B O B S E R V A T I O N S T Y P E C O D E C O D E GRAYS 76 2 5 0. 162 2 6 0.1991 D K \u00E2\u0080\u0094 L T 76 2 5 0.2700 6 . 0.0723 N O . F R A 76 2 5 -0.0757 6 0.5566 07 76 2 5 0.186 9 6 0.10 79 A R G l 76 2 5 -0. 0586 6 0.6549 I-'S 775 T 5\" : 0.4 7 0 T 6 0 . C 0 C 9 ; K F 76 2 5 0.0 6 0.0 INVALID P P 76 2 5 0.0 6 0.0 INVALID D U 76 2 5 0.0 6 0 . 0 INVALID C B 76 2 5 0.2619 6 0.0451 Z E 76 2 5 0.0 6 0.0 INVALID C T ! 7b : 2 ~ 5 -0 .2334 6 ~ 0.0635 \"' E P 76 2 5 0.0 6 0.0 INVALID H E M 76 2 5 0.0 6 . 0 . 0 INVALID M A G 76 2 5 -0.3534 6 0.0273 C U - G R D 76 4 6 -0.0644 7 0.5873 S E C T I O N 1 6 3 \u00E2\u0080\u0094 D Y K E C O M P L E X D E P E N D E N T V A R I A B L E = C J H ^ G R D T Y P F = 4 K E ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E P P ; CB S E R V A T I O N S I N C N L Y O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E D U ; O B S E R V A T I O N S I N C N L Y C i \ E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E Z E ; C B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E E P ; O B S E R V A T I O N S I N C N L Y O N E C A T E G O R Y O F T H E N C N - I N T E R V A L V A R I A B L E V A R I A E L E N U M B E R ( 3 F V A R I A B L E C O R R C O R R E L A T I O N T E S T P R O B O B S E R V A T I O N S T Y P E C O D E C O D E G R A Y S 9 1 2 5 - 0 . ? . 5 8 7 6 0 . 0 1 8 7 D K \u00E2\u0080\u0094 L T 9 1 2 5 - 0 . 2 1 6 4 6 0 . C 6 9 6 N O . F R A 4 7 c 5 0 . 2 3 5 2 6 0 . 1 3 2 1 Q Z . 9 1 \" 2 5 0 . 2 4 6 6 6 0 . 0 2 0 6 A R G L 9 1 2 5 - 0 . 2 5 5 3 6 C . C 1 9 6 M S 9 1 2 5 - 0 . 1 9 0 7 6 0 . 1 6 2 3 K F 9 1 2 5 0 . 0 6 0 . 0 P P . 9 1 \u00E2\u0080\u00A2> i _ 5 0 . 0 6 0 . 0 D U 9 1 2 5 0 . 0 6 0 . 0 C B 9 1 2 5 0 . 1 3 4 6 6 0 . 3 2 6 5 Z E 9 1 2 5 C . 0 0 . 0 C L 9 1 2 5 - 0 . 0 1 4 3 6 ' 0 . 8 6 8 8 E P 9 1 2 5 0 . 0 6 0 . 0 H E M 9 1 2 5 0 . 2 7 3 3 6 0 . 1 7 3 9 M A G 9 1 2 5 0 . 4 0 3 8 6 0 . 0 0 1 2 M O - G P D 4 8 4 6 0 . 1 9 7 C 7 0 . 1 7 6 3 D E P E N D E N T . V A R I A B L E = M C - G R D T Y P E = 4 K F ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N C N - 1 R T E R V A L V A R I A B L E P P ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N O N - I N T EE V A L V A R I A B L E D U ; O B S E R V A T I O N S I N O N L Y C N E C A T E G O R Y O F T H E N C N - 1 NT ER V A L V A R I A B L E Z E ; D B S E R V A T T O T i S I N C N L Y O N E \" C A T E G O R Y O F \" T H E N O N - I N T E R V A L V A R I A B L E ' E P ; C B S E R V A T I O N S I N O N L Y C N E C A T E G O R Y O F T h E N O N - I N T E R V A L V A R I A B L E V A R I A B L E N U M 3 E R O F V A R I A B L E C O R R C O R R E L A T I O N T E S T P R O B O B S E R V A T I O N S T Y P E C O D E C O D E G R A Y S 4 8 \" 2 5\" \" . 1 3 8 2 6 0 . 4 0 6 4 D K \u00E2\u0080\u0094 LT 4 8 2 5 - 0 . 1 0 5 3 6 0 . 5 3 8 3 N O . F R A 4 7 2 5 0 . 2 8 6 4 6 0 . 0 6 4 6 07. 4 8 2 5 - 0 . 2 0 1 8 6 0 . 1 7 7 9 A R G L 4 8 2 5 - 0 . 2 6 1 4 6 0 . C 9 C 1 M S 4 8 2 5 - 0 . 2 4 4 4 6 0 . 2 3 4 9 : K F 4~3 2 : 5 \u00E2\u0080\u00A2 0 . 0 6 0 . 0 I N V A L T O ~ P P 4 8 2 5 0 . 0 6 0 . 0 I N V A L I D D U 4 8 2 5 0 . 0 6 0 . 0 I N V A L I D C B 4 8 2 5 0 . 3 5 6 4 6 0 . 0 3 5 7 Z E 4 8 2 5 0 . 0 6 O . C I N V A L I D C L . 4 8 2 5 0 . 3 0 9 6 6 0 . 0 5 0 5 , j -p /4-g 2 5 \" 0 . 0 6 0 . 0 r N V A L T D ~ ' H E M 4 8 2 5 0 . 0 8 5 4 6 0 . 7 2 7 5 M A G 4 8 2 5 0 . 2 4 5 5 6 0 . 1 4 9 3 G U - G R D 4 8 4 6 0 . 1 9 7 C 7 0 . 1 7 6 3 VO 1^ 98. az cz < < < < rr -x. <. < CC Cx. < <: > > > > r\u00E2\u0080\u0094' t \u00E2\u0080\u0094 ^L ^ \u00C2\u00BB\u00E2\u0080\u0094\u00C2\u00BB I I li o Q. f_2 > > CL L X LL' I\u00E2\u0080\u0094 t-t\u00E2\u0080\u0094i \u00C2\u00BB\u00E2\u0080\u0094\u00C2\u00AB I I 21 X .H LL. X U_ X X X X X LL X X C-> > > j' x _ c u ci o x < co <0 > 02 > > > > _J - I -> _ ! *z CL X ' < CO CO OO X : 0 0 O - X C Q 1 0 CZ I cr o x 100 C C l H X X X X ' CO X \u00E2\u0080\u0094 > '<0 < J j 0> LL! H CO < > i f cr- m x o o o c o . . . o o x CO if. \u00E2\u0080\u0094 : N0 r - O ID rv so x c \u00C2\u00AB-> Osl c o O* C c X L O Q O _ J - J \u00E2\u0080\u0094J < < < > > > p C O X p c o -f m if' c \u00E2\u0080\u00A2 \u00E2\u0080\u0094 1 cr> L'- vo o m in o \u00E2\u0080\u00941 O o o c. C ^ p o o o c-w \u00C2\u00B0\" po CC r -c -JT' vC c ^ r - r - l r - . oo cc ro- r -X X 1 0 0 LO rr, K ' o,. \u00E2\u0080\u0094 : C ' C C CO OJ OvJ 0\l \u00E2\u0080\u0094 O\": ro. NT O o uo' uo, i r m . m i n if- LT. m i n tr Ov Ov, OJ O j o ro. r o r* ro f; 0\"l v - o ; C Co I I t v n j o^ oo oo 0 ro ro. f, O I ,^! CO V- < c. X O X (0-X X I I c. C L OX U 99. co < > O 3 < < < > > > Z Z 2 oc >* Cr- o a- \u00E2\u0080\u00A2\i o , \u00E2\u0080\u0094 i oo c O' ro c t\u00E2\u0080\u0094( i f - . in L. r o r- LT, c OM CO c c O O - r- o o O r, o > 0 > > 00 c. LU C JO OO OL >c o JO r~ \u00E2\u0080\u00A2 _J \u00E2\u0080\u00941 \u00E2\u0080\u0094J >~ C J <3. < > > > > LL \u00E2\u0080\u00A2 T x <_' u_ L U t 1 1 LU -z \u00E2\u0080\u00A2\u00E2\u0080\u0094\u00E2\u0080\u00A2 V- t\u00E2\u0080\u0094 u- X o X <\" . \u00E2\u0080\u00A2 \u00C2\u00ABL \u00C2\u00ABC s o X O _ ' X ' o c o ZJ O o o r \ ' X 00 c U J LL 1 t | 1 1 1 1 r 1 _> Ii LL' U J LL' LL.' o \u00E2\u0080\u00A2 \u00E2\u0080\u0094 OL X i . X C J < L U h - i \u00E2\u0080\u0094 1\u00E2\u0080\u0094 (\u00E2\u0080\u0094 CL > LL LL X . OL X 1\u00E2\u0080\u0094 X O CO 1_J \u00C2\u00AB\u00E2\u0080\u0094 a : U- ' X ' > > > > L L CO x CL QL cr. Cx c o , l f \ LO L-0 r LP. I f : u U0\ wT. 1': uo. Lf. LO I f ' , I f ! r in I f . OJ O j oo V : 0 J 0s; oo O J O J O j r v r o ro. oo o\u00E2\u0080\u009Ei ~z Of 1\u00E2\u0080\u0094 1\u00E2\u0080\u0094( !! > > >- <-1\u00E2\u0080\u00941 _ l _ l _ J > (-. X I Or. Z7* 0 ~ i _ x C i .\u00E2\u0080\u00A2\u00E2\u0080\u00941 OJ t_' L U 00 CO oO <* \" ~r 77 if \u00E2\u0080\u00A2 i \u00E2\u0080\u0094 \u00E2\u0080\u00A2 \u00E2\u0080\u0094 \u00E2\u0080\u00A2\u00E2\u0080\u0094> i \u00E2\u0080\u0094 X C J L O O \"~ Z 77 x o j ^ t O,) O J Ov! 0 0 o.) ^1 O J OO \"V O J o.: X ' O J ,\u00E2\u0080\u0094' oo i \u00E2\u0080\u0094 '\u00E2\u0080\u00941 ' -c o ' X \u00E2\u0080\u00A2 \u00E2\u0080\u0094 T X 1 X ' < < < Z> CO p > > > > z: oc, 77 of ct ' Of CO a LLI LOi LLl a.i 111 CO 00 w. 00 a ; r f or. CO. oo X ' 1 - < _ J 00 X C L 10 u.; 1 X ~J. X X > O J C X . O C ; X _J > X CJ. 00- X i7 X X X X < ~j. X X rx' X 1 X co X X CO \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00BB 1 < v ^ 1 u. x \u00C2\u00AB o i C i\u00E2\u0080\u0094' 1 1 ZD \u00E2\u0080\u0094J it cX o X >- X X ' > CT kco cr oo LT. ir r - po - J - CC' S E C T I O N 1 5 5 - - F O O T W A L L V O L C A N I C S D E P E N D E N T V A R I A B L E = C U - G R D T Y P E = 4 K F ; C B S E R V A T I O N S I N O N L Y C N E C A T E G O R Y P P ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y D U 5 O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y Z E ; C B S E R V A T I O N S I N O N L Y O N E C A T E G C R Y H E M ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N C N - I N T E R V A L V A R I A B L E O F T H E N O N - I N T E R V A L V A R I A B L E O F T H E N O N - I N T E R V A L V A R I A B L E O F T H E N C N - I N T E R V A L V A R I A B L E O F T H E N C N - I N T E R V A L V A R I A B L E V A R I A B L E N U M B E R O F V A R I A B L E C O R R C O R R EL A T I O N O B S E R V A T I O N S T Y P E C O D E G R A Y S 7 0 2 5 - 0 . 3 6 3 4 D K \u00E2\u0080\u0094 L T 7 0 2 5 - 0 . 3 8 7 1 N O . F R A 7 0 2 5 0 . 6 0 8 9 G Z 7 0 2 5 - 0 . 1 8 7 7 A R G L 7 0 2 5 - 0 . 4 9 5 4 MS 7 0 2 t ; - * - 0 . 4 8 1 2 K F 7 0 2 5 0 . 0 P P 7 0 2 5 0 . 0 DU 7 0 2 5 0 . 0 C B 7 0 2 5 0 . 4 0 7 2 Z F 7 0 2 5 0 . 0 C L 7 0 2 5 0 . 3 9 2 9 E P 7 0 2 5 0 . ( 1 8 1 H E M 7 0 2 5 0 . 0 M A G 7 0 2 5 0 . 3 2 2 8 H O - G R D 7 0 4 6 0 . 4 3 7 4 T E S T C O D E 6 b b~ 6 6 6 6 6 6 6 6 6 6 6 7 P R O B 0 . C 0 5 8 0 . 0 0 7 4 0 . 0 0 0 0 0 . 1 2 6 2 0 . 0 0 0 9 0 . 0 0 0 4 0 . 0 0 . 0 0 . 0 0 . 0 0 3 8 0 . 0 0 . 0 0 2 8 0 . 1 1 2 7 0 . 0 0 . 0 1 7 8 0 . 0 0 0 2 DEPENDENT V A R I A B L E MO-GRD TYPE = 4 K E ; C B S E R V A T I O N S IN P P ; O B S E R V A T I O N S IN CU; C B S E R V A T IONS IN CB STTRVATTTJR7r~T\u00C2\u00A5 O B S E R V A T I O N S I N ZE HEN CNLY CNE CATEGORY ONLY CNE CATEGORY ONLY ONE CATEGORY T N L Y CNE CATTGORY ONLY ONE C A T E G O R Y OF CF OF OF\" CF THE N O M - I N T E R V A L THE N C N - I N T E R V A L THE N O N - I N T E R V A L T H E \" N O M - INTERVAL THE N O N - I N T E R V A L VAR I A B L E V A R I A B L E V A R I A B L E V A R I A B L E \" V A R I A R L E V A R I A B L E NUMBER OF VAR T ABL E CORR O B S E R V A T I C N S T Y P E CODE GRAYS 70 2 D K \u00E2\u0080\u0094 L T 7 0 2 5 N O . E R A 70 2 5 QZ 7 0 2 5 ARGL 7 0 2 5 .'MS 7 0 2 5 KH 10 2 b PP 7 0 2 5 . . DU 70 2 5 5 CB 70 2 ZE 7 0 2 5 CL 7 0 2 5 EP 10 2 HFM 7 0 2 5 MAG 7 0 2 5 C U - G R D 7 0 4 6 C O R R E L A T I O N - 0 . 138 9 - 0 . 1 0 9 4 0 . 6 2 5 2 - 0 . 2 7 4 3 - 0 . 2 4 1 1 - 0 . 3 8 9 2 o. o 0 . 0 0 . 0 0 . 4 1 0 4 0 . 0 0 . 3 1 1 5 \" 0 . 2 4 7 3 0 . 0 - 0 . 2 4 5 2 0 . 4 3 7 4 TEST CODE ~6\" 6 6 6 6 6 ~6~ 6 6 6 6 6 6 6 7 PROB \" 0 . 3 3 1 6 0 . 4 6 7 0 0 . 0 0 0 0 0 . 0 2 4 3 0 . 1 0 8 4 0 . 0 0 3 9 ' o. o 0 . 0 0 . 0 0 . 0 0 3 6 0 . 0 0 . C 1 7 9 ~ 0 . 5\"4\"09~ 0 . 0 0 . 0 7 3 1 0 . 0 0 0 2 \" T N V A L ' I D INVAL ID I N V A L I D INVAL ID INVAL ID S E C T I O N 1 5 5 - - O V K E C O M P L E X D E P E N D E N T V A R I A B L E = C U - G R D T Y P E = 4 D U ; O B S E R V A T I O N S I N O N L Y C N E C A T E G O R Y O F T H E Z E ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E E P ; C B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N C N - I N T E R V A L N O N - I N T E R V A L N O N - I N T E R V A L V A R I A B L E V A R I A B L E V A R I A B L E V A R I A B L E N U M B E R O F V A R I A B L E C O R R O B S E R V A T I O N S T Y P E C O D E G R A Y S 1 1 9 2 5 DK \u00E2\u0080\u0094 L T 1 2 0 2 5' N O . E R A 1 2 0 2 5 QZ 1 2 0 2 5 C O P R E L A T I O N A R G L MS . K F P P D U C B Z E C L E P H E M M A G M O - G R D 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 2 2 2 2 2 2 2 2 2 2 2 4 5 5 5 5 5 5 5 5 5 5 5 6 0 . 1 3 1 6 0 . 1 7 5 2 0 . 2 9 2 3 0 . 4 0 6 0 - 0 \" . 4 9 2 6\" - 0 . 2 9 1 0 - 0 . 2 2 5 2 0 . 1 7 9 1 0 . 0 _ 0 _ . 4 7 0 2 0 . 0 0 . 2 9 0 9 0 . 0 - 0 . 1 8 2 6 0. 1 8 0 9 0 . 7 2 6 6 !ES_T_ C O D E 6 6 6 6 P R O B 6 6 6 6 6 6 6 6 6 6 6 7 0 . 1 8 5 0 0 . 0 8 3 0 0 . 0 0 3 2 _0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 4 4 0 . 3 5 9 4 0 . 6 3 2 8 0 . 0 0 . 0 0 0 1 0 . 0 0 . 0 0 3 0 0 . 0 C . l 8 7 7 0 . 0 7 7 8 - 0 . 0 D E P E N D E N T V A R I A B L E M O -CRD T Y P E = 4 D U ; O B S E R V A T I O N S I N C N L Y Z E ; O B ' S E R V A T I O N S I N O N L Y E P ; O B S E R V A T I O N S I N O N L Y C N E C A T F G C R Y O F T H E N C N - I N T E R V A L V A R I A B L E O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E O R E C A T E G O R Y O F T E E N O N - I N T ER V A L V A R I A B L E V A R I A B L E G R A Y S D K \u00E2\u0080\u0094 L T N U M B E R O F 0 3 S E R V A T I O N S 1 1 9 1 2 0 N O . E R A QZ A R G L M S K E P P : D T T C B \u00E2\u0080\u00A2 Z E C L E P . H E M fTATJ\" C U - G R D 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 T 2 T T 1 2 0 1 2 0 1 2 0 1 2 0 I 2 0 V A R I A B L E T Y P E 2 2 2 2 2 2 2 T 2 2 2 2 2 TZTV 1 2 0 4 C O R P . C O D E 5 5 ~ 5 5 5 5 5 5 \u00E2\u0080\u00945-5 5 5 5 5 C O R R E L A T I O N 0 . 3 3 0 5 0 . 3 6 4 9 \" 0 . 2 6 5 3 0 . 3 4 3 6 - 0 . 3 6 9 6 - 0 . 1 R 0 4 - 0 . 1 1 2 3 0 . 2 1 3 4 \" T . 0 \" \u00E2\u0080\u00A2 0 . 5 4 1 9 0 . 0 0 . 0 8 7 3 0 . 0 - 0 . 2 1 4 4 ' O . 0 1 2 0 0 . 7 2 6 6 T E S T C O D E 6 6 ~ 6 ~ 6 6 6 6 6 6 6 6 6 6 ~6~ P R O B 0 . 0 0 0 9 0 . 0 0 0 4 O . C 0 7 3 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 7 6 5 0 . 6 5 0 4 0 . 5 7 0 0 \" 0 . 0 0 . 0 0 0 0 0 . 0 0 . 3 8 3 4 0 . 0 0 . 1 2 0 0 ~ 0 . 8 7 ^ 5 -- 0 . 0 S F C T I O N 1 5 5 \u00E2\u0080\u0094 H A N G 1 N G W A L L V O L C A M C S D E P E N D E N T V A R I A B L E = , C U - G R D T Y P E = 4 K F ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H F N O N - I N T E R V A L V A R I A B L E D U ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N O N - I N T E R V A L V A R I A B L E V A R I A B L E N U M B E R O F V A R I A B L E C O P R C O R R E L A T I O N T E S T P R O B O B S E R V A T I C N S T Y P E C O D E C O D E G R A Y S 293 2 5 -0.0O9C 6 0.8563 D K \u00E2\u0080\u0094 L T 292 2 5 0.0 16 1 6 0.7940 N O . F R A 291 2 5 -0.0736 6 0.2550 Q Z 293 2 5 0.3297 . 6 0.0000 A R G L 2_93 2 5 -0 .033 7 6 0. 642J ~ M S : ~2~93 2 : 5 -0. 1304\" 6 0.1136 K F 293 2 5 0.0 6 0.0 I N V A L I D P P 29 3 2 5 -0.2 29 1 6 0.0612 DU 293 2 5 0.0 6 0.0 I N V A L I D CB 293 2 5 -0.1983 6 0.0040 Z E 293 2 ' ' 5 -0.154 3 6 ___CL_10<_} _ _ _ _____ - C . l l 3 9' 6 0.0623 F P 293 2 5 -0.6898 6 -0.0 H E M 293 2 5 -0.0112 6 0.9122 M A G 293 2 5 0.1627 6 0.0116 M O - G R D 292 4 6 0.6746 7 - C O T a \u00E2\u0080\u0094 a O F P E N D E N T V A R I A B L E = M C - G R P K F ; C B S E R V A T I O N S I N O N L Y O N E D U ; O B S E R V A T I O N S I N G N L Y O N E C A T E G O R Y C A T E G C R Y T Y P E = 4 O F T H E N O N - I N T E R V A L O F T H E N C N - I N T E R V A L V A R I A B L E V A R I A B L E f V A R I A B L E N U M B E R O F V A R I A B L E C C R R C O R R E L A T I O N T E S T P R O B O B S E R V A T I O N S T Y P E C O D E C O D E . G R A Y S 2 9 ? 2 5 0 . 0 3 7 8 6 0 . 5 5 1 5 O K \u00E2\u0080\u0094 L T 2 9 1 2 5 0 . 0 2 0 5 6 C . 7 5 0 6 N O . E R A 2 9 0 2 _ _ -5 0 . 1 3 1 0 6 0 . 0 4 0 5 01 2 9 2 5\" - 0 . 3 8 9 7 6 \" - 0 . 0 . A R G L 2 9 2 -> _ 5 . 0 . 0 2 7 6 6 0 . 7 0 0 1 M S 2 9 2 2 5 - C . C 9 3 1 6 0 . 2 6 4 5 K F 2 9 2 2 5 c . o 6 C O P P 2 9 2 2 5 - 0 . 2 6 1 0 6 0 . 0 3 3 2 D U 2 9 2 \u00E2\u0080\u00A2 2 5 0 . 0 6 0 . 0 C B 2 9 2 2 5 \" - 0 . 7 1 5 ? \" ' U . 0 0 1 9 Z E 2 9 2 2 - 0 . 1 2 9 9 6 0 . 1 7 6 8 C L 2 9 2 2 5 - 0 . 1 7 8 0 6 0 . 0 0 4 0 E P 2 9 2 2 .5 - 0 . 5 4 8 4 6 0 . 0 0 0 0 H E M 2 9 2 2 5 - 0 . 1 1 3 5 6 0 . 6 0 6 1 M A G . ' 2 9 2 2 5 0 . 1 0 1 7 6 0 . 1 1 4 2 C U - G R D 2 9 2 4 b 0 . 6 7 4 6 / - 0 . 0 I N V A L I D INVAL ID O S E C T I CIV 1 4 7 - - F C Q T l n A L L V O L C A N I C S U E M E N L i E M V A E 1 A HLT: C U - G R D ~ ' \" T Y P E = 4 K F ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F T H E N G N - I N T E R V A L V A R I A B L E D U ; O B S E R V A T I O N S I N C N L Y C N E C A T r C O R Y O F T H E N O N - I N T E R V A L V A R I A B L E V A R I A B L E N U M B E R C F V A R I A B L E C C R R C O R R F L A T I O N T E S T P R O B U B S E R V A I 1 L N S T Y P I C O D E ' \" C O D E G R A Y S 1 1 8 2 5 0 . 0 3 2 0 . 6 0 . 7 6 0 1 D K - - L T 1 1 8 2 c 0 . 0 3 3 1 6 0 . 7 5 8 4 N O . F R A 1 I B 2 5 0 . 2 7 5 8 6 0 . 0 0 6 2 OZ 1 1 8 . : 2 5 0 . 0 6 1 0 C . T 5 6 3 - \u00E2\u0080\u0094 6 0 . 5 4 0 2 A R G L 1 1 8 ' 2 \"~ 5 \u00E2\u0080\u0094 : 6 ' 0 . 1 6 9 4 MS 1 1 8 2 5 0 . 3 4 8 0 6 0 . 0 1 8 4 K F 1 1 8 2 5 0 . 0 6 0 . 0 P P 1 1 8 2 5 - 0 . 2 3 3 7 . 6 0 . 1 8 0 6 D U 1 J 8 2 5 C o 6 0 . 0 C B \u00E2\u0080\u00A2 1 1 8 , 2 5 - 0 . 1 c 3 8 6 0 . 1 2 3 8 5 ~ 6 0 v 0 0 1 - 7 1 E 1 1 8 2 - 0 . ^ 4 6 2 \" C L 1 1 8 2 5 - 0 . 3 2 3 0 6 0 . 0 0 2 3 F P 1 1 8 2 c - 0 . 4 6 5 5 . 6 0 . 0 0 0 1 H E M . \u00E2\u0080\u00A2 1 1 8 2 5 - 0 . 4 0 6 0 6 0 . 0 0 2 9 M A G 1 1 8 2 5 0 . 1 6 5 9 6 0 . 1 0 9 4 M O - G R D 8 3 4 6 0 . 4 7 9 3 7 C . O O C O D E P E N D E N T V A R I A E I E = M O - C - R D TYPE = 4 K F ; O B S E R V A T I O N S I N O N L Y O N E C U ; O B S E R V A T I O N S I N O N L Y O N E H E M ; OB S E f l V A T I 0 N S I N C N - b V - & N E -C A T E G C R Y O F C A T E G O R Y O F C A T E G O R Y O F T H E N O N - I NT E R V A L T H E N O N - I N T E R V A L - T H E N O N - I NT E R V A L V A R I A B L E V A R I A B L E V Aft I A B L E V A R I A B L E G R A Y S D K tT-N U M B F R O F O B S E R V A T T C N S 83 : B3 N O . F R A Q Z A R G L M S K F \u00E2\u0080\u00A2\u00E2\u0080\u0094P-P-D U C B Z E C L E P H E M M A G C U - G R D 8 3 8 3 8 3 8 3 8 3 - & 3 -8 3 8 3 8 3 8 3 8 3 - 8 - 3 -8 3 8 3 . V A R T A B L E T Y P E - 2 -2 2 2 2 2 - 2 -2 2 2 2 2 2 4 C O R P . C O D E 5 -5-5 5 5 5 5 5 5 5 5 5 - 5 -5 6 C O R R E L A T I O N - 0 . 2 C 4 3 \u00E2\u0080\u0094 0 . 1 8 9 2 0 . 4 4 7 2 - 0 . 0 6 2 1 - 0 . 3 2 7 3 - 0 . 3 1 8 9 0 . 0 \u00E2\u0080\u0094 0 . 2 6 7 5 0 . 0 0 . 1 8 8 8 0 . 1 9 3 9 - C . 0 3 4 9 - 0 . 2 8 7 8 \u00E2\u0080\u00A2 0 . 0 0 . 2 5 8 1 0 . 4 7 9 3 TEST CODE 6 \u00E2\u0080\u0094 6 6 6 6 6 6 - 6 -6 6 6 6 6 6 7 PROB 0 . 0 9 5 7 - O r 1 3 4 5 -0 . 0 0 0 2 0 . 6 0 6 1 0 . 0 1 2 8 0 . 0 5 7 3 0 . 0 0 . 1 5 2 5 -0 . 0 C . 1 1 8 2 0 . 2 2 6 7 0 . 7 7 3 3 0 . 4 6 3 8 -0-.0 0 . 0 1 3 0 0 . 0 0 0 0 INVAL ID INVAL ID -INVAL ID S E C T I O N 1 4 7 \u00E2\u0080\u0094 D Y K E C O M P L E X CEP ENIJEN i v m r r m r r ~C\"n=_Rrj- T Y P E ^ 4 P P ; C B S E R V A T I O N S I N C N L Y D U ; O B S E R V A T I O N S I N O N L Y O N E C A T E G O R Y O F . T H E O N E C A T E G O R Y C F T H E NCN-I N T E R V A L NGN- I N T E R V A L V A R I A B L E V A R I A B L E V A R I A B L E N U M B E R O F G R A Y S D K \u00E2\u0080\u0094 L T N O . F R A 0 7 M S K E p p DU C B U B S b R V A l l L N S 1 8 8 1 8 3 1 6 7 1 3 8 l i r a -1 8 8 1 8 8 1 8 8 1 8 8 . 1 8 8 _e-C L E P H E M M A G M G - G R D 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 V A R I A B L F T T P _ \u00E2\u0080\u0094 2 2 2 2 2 2 2 2 2 - 2 -2 2 2 2 4 C O R R xcTjtr-C O R R F L A T I O N 5 5 5 5 5 5 5 5 5 5 5 5 5 6 - 0 . 1 8 4 2 - 0 . 1 6 3 5 0 . 1 3 9 7 C . 1 0 2 3 - = 0 . 2 4 4 4 - 0 . 1 0 3 1 0 . 1 0 7 0 0 . 0 0 . 0 0 . 4 0 5 9 - _ C . 0 0 3 ] 0 . 1 3 1 1 0 . 4 4 9 9 0 . 1 0 2 5 0 . 1 4 2 3 0 . 4 4 8 9 TEST X O T j r 6 6 6 6 P R O B 6 6 6 6 6 6 -6 6 6 6 7 0 . 0 1 5 8 0 . 0 4 9 0 0 . 1 0 2 9 0 . 1 6 6 2 - C - . C 0 2 5 - -0 . 3 1 0 5 0 . 3 8 6 0 0 . 0 0 . 0 0 . 0 0 0 0 - 0 - ; 9 3 2 2 -0 . 0 9 7 3 0 . 0 4 6 9 0 . 5 7 4 0 0 . 0 9 5 7 - 0 . 0 I N V A L I D I N V A L I D - K ) O CO D E P E N D E N T V A R I A B L E = M G - G R D T Y P E = 4 y-P P ; C B S E R V A T I G N S D U ; O B S E R V A T I O N S I N I N C N L Y C N L Y O N E C N E C A T E G O R Y C A T E G O R Y O F O F T H E N O N - I N T E R V A L T H E N O N - I N T E R V A L V A R I A B L E V A R T A B L E VARIAELE GRAYS D K \u00E2\u0080\u0094 L T -NCHrFR-A-QZ A R G L M S K F P P EH-C B 7E C L E P H E M MT6-G-C U - G P D N U M B E R O F O B S E R V A T I O N S 188 188 -1-6-7-188 188 188 188 188 -l-fi-8-188 188 18 8 188 1 88 HrB-8-188 VARIABLE TYPE 2 2 2 2 2 2 2 -2-2 2 2 2 2 - 2 -C O R R C O D E 5 5 -5-5 5 5 5 -f>-5 5 5 5 5 -5-6 C O R R E L A T I O N -0.0461 - C .'005 \u00E2\u0080\u00940.1154-0. 0 C 8 1 -0.1983 -0.0S74 0. 1928 0.0 -~G. 0 - --0.?\u00C2\u00AB8 1 0.0836 0. 051 5 0.0780 0.070 0 0. 043 7 0 .4489 T E S T C O D E 6 6 -6\u00E2\u0080\u0094 6 6 6 6 6 -6 -6 6 6 6 6 -6 PROB 0. 5594 C. 9434 0.-1805-0. 8782 0.0136 0.3389 0.10 99 0.0 0.0 0.0006 0.5853 0.5285 0.7322 0.6967 0.6202-\u00E2\u0080\u00A20.0 I N V A L I D - I N V A L I D SECTION 14 7---HANGINGW A L L VOLCANICS UtPENUENI V7rPT7TEtE ~ 2 CTJ - CR fr -TYPE = 4 KF; CBSERVATIONS IN CNLY ONE CAT EGGPY OE THF NON-INTERVAL VARIABLE DU; OBSERVATIONS IN CNLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE VARIABLE NUMBER OF OBSERVAI I LNS-GRAYS O K \u00E2\u0080\u0094 L T NO.FRA 0 7 ARGL MS KF PP DU CB _e-CL EP HEM MAG MO-GFD 285 28 5 286 286 286 286 2 86 286 -2-rTfr-286 286 286 286 2 8 3 VARIABLE TYTTT 2 2 2 2 ~ 2 <_ 2 2 2 -_-2 2 2 2 4 CORR - C O D E \" - 5 \" 5 5 5 5 5 5 5 5 5 6 CORRELATION -0.0601. -0.1108 -0.153 9 0. 2257 \u00E2\u0080\u0094 0.0219 -0.2200 0.0 -0.1651 0.0 -0.1157 -0. !<>2 4 -0.1667 -0.5619 0.1254 0.2229 0. 5 320 TEST XOOE~ 6 6 6 6 -6~ 6 6 6 6 6 6 6 6 6 7 PROB 0.3410 0.0916 0.0138 0.0002 \u00E2\u0080\u00A20. 7 72 5-0.0124 0. 0 0.6266 0.0 0 . 0 8 0 9 0.021-9-0.0083 -0.0 0.4127 0.0012 -0.0 INVALID INVAL ID NJ H O DEPENDENT VARIABLE = M 0 - G ft D TYPE = 4 KF; CBSERVATIONS IN CNLY ONE CATEGORY OF THE NON-IK TFF VAL VARIABLE OU; CBSERVATIONS IN LNLY CNE CATEGORY OF THE NCN-1NTE RV AL VARIABLE VARIAPLE GRAYS O K \u00E2\u0080\u0094 L T HMO. FRAr OZ ARGL MS K F PP -ftti-CB - ZE CL EP HEN KAG-CU-GRD NUMBER OF OBS E RV AT I CN S 282 2 62 -_-83-283 2F3 2 83 283 2F3 -2-8-3-283 283 283 283 2 83 2 83 VARIABLE TYP E 2 2 j _ _ 2 2 2 2 2 2 2 2 -2-283 CORP. CODE 5 5 _5_._ 5 5 5 5 5 -5-5 5 5 5 5 \u00E2\u0080\u00A25-6 CORRELAT ION -0.0172 -0. 048 7 -0.093 6 0. 197 6 -0.0478 -0.2 132 0. 0 -0.1 SO 8 ---OvO-0.0263 0.3634 -0.1246 -0.3227 0.2255 - 0 . 146 2-0.532C TEST CODE 6 6 \u00E2\u0080\u0094 6 -6 6 6 6 6 \u00E2\u0080\u00946-6 6 6 6 6 PROB 0.7758 0.4735 0.1361 0.0012 0.5554 0 .0 155 0.0 0.6561 0.0-0. 69 87 0.0000 0.0514 C.0C05 0.1323 0.0312--0.0 "@en . "Thesis/Dissertation"@en . "10.14288/1.0052718"@en . "eng"@en . "Geological Sciences"@en . "Vancouver : University of British Columbia Library"@en . "University of British Columbia"@en . "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en . "Graduate"@en . "Geology of the Island Copper mine, Port Hardy, British Columbia"@en . "Text"@en . "http://hdl.handle.net/2429/19613"@en .