UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Hydrothermal alteration and rock geochemistry at the Berg porphyry copper-molybdenum deposit, north-central.. Heberlein, David Rudi 1984-12-31

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
831-UBC_1985_A6_7 H42.pdf [ 22.04MB ]
Metadata
JSON: 831-1.0052443.json
JSON-LD: 831-1.0052443-ld.json
RDF/XML (Pretty): 831-1.0052443-rdf.xml
RDF/JSON: 831-1.0052443-rdf.json
Turtle: 831-1.0052443-turtle.txt
N-Triples: 831-1.0052443-rdf-ntriples.txt
Original Record: 831-1.0052443-source.json
Full Text
831-1.0052443-fulltext.txt
Citation
831-1.0052443.ris

Full Text

HYDROTHERMAL ALTERATION. AND ROCK GEOCHEMISTRY AT THE BERG PORPHYRY COPPER-MOLYBDENUM DEPOSIT, NORTH-CENTRAL BRITISH COLUMBIA. by DAVID RUDI HEBERLEIN I.Sc, The University of. Southampton, England, 1980 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of Geological Sciences We accept this thesis as conforming to the reauired standard THE UNIVERSITY OF BRITISH COLUMBIA October, 1984 0 David Rudi Heberlein, 1984 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date "Tl^H 2%/fgr~ DE-6 (3/81) Abstract In recent years our understanding of the genesis of porphyry copper systems has advanced to a sufficient level to be able to construct predictive models that enhance exploration for these deposits. Our understanding of primary and secondary geochemical dispersion around these deposits is not so advanced as variables such as climate and topography cause geochemical patterns to be distorted or masked at surface with the result of different deposits having quite different geochemical characteristics. In this study the geology and geochemistry of a porphyry copper-molybdenum from the Canadian Cordillera is examined with the aim of demonstrating how primary geochemical patterns are affected by the development of a supergene enrichment blanket and leached capping. Topographic controls on the extent of leaching and supergene enrichment are also explored. The Berg porphyry copper-molybdenum deposit is in the Tahtsa Mountain Ranges, approximately 84 km southwest of Houston, central British Columbia. Mineralized zones are centered on a circa 50 Ma composite quartz monzonite stock. Hydrothermal alteration zones are similar to those of the classic model by Lowell and Guilbert. Central zones are potassic (orthoclase and biotite) while peripheral zones are propylitic (chlorite, epidote, carbonate). Intense phyllic alteration (quartz, sericite, pyrite) occurs at the north and south margins of the stock. Hypogene mineralization (characterized by pyrite, chalcopyrite and molybdenite) is concentrated in an annular zone straddling the quartz monzonite contact. Best grades are localized in altered quartz diorite and altered and hornfelsed Telkwa Formation (Hazelton Group) volcanic rocks at the east side of the deposit. The nature of these altered hornfelsed rocks has been a subject for much debate in previous studies. One school of thought suggests that they are part of a hornfels aureole associated with the quartz diorite. Others suggest that it is an alteration zone associated with the quartz monzonite stock. Thirteen diamond drill holes on a north south cross section of the deposit were logged (GEOLOG) and sampled. Outcrop samples were collected where possible close to each drill hole. Major elements were determined by XRF, trace metals by flame AAS and fluorine by specific ion electrode. A sequential extraction was used to study the distribution of copper between different host minerals. The origin of the hornfelsed rocks is solved by field mapping and geochemistry. In the field cross cutting relationships show that the quartz diorite predates the stock and that the hornfels zone is spacially related to it. Major element binary and ternary plots demonstrate that significant amounts of potassium have been added to these rocks in the mineralized zone. This implies that biotite alteration was superimposed onto an earlier hornfels. Trace metal data was partitioned into anomalous and background populations with probability graphs. In the hypogene zone Cu, Mo and Ag occur in an annular zone corresponding with the mineralogically defined potential ore zones. Fluorine is anomalous over the area of the potassic alteration zone. Lead and zinc are anomalous in peripheral haloes around the potential orebodies. These zones can be traced to surface through an extensive supergene enrichment blanket and leached capping. Three zones of supergene mineralization are recognized: supergene sulphide (covellite, digenite, chalcocite), supergene oxide (malachite/azurite, cuprite, tenorite, native Cu) and leached capping. Sulphides are the dominant host for Cu throughout most of the deposit but locally on steep slopes where supergene oxide is developed Cu is hosted in carbonate and oxide minerals. Enrichment or depletion of elements in the supergene is demonstrated with interelement ratios. Enrichment factors can be derived in two ways: a) by ratioing supergene values to hypogene values, or, ' b) by ratioing to a constant (e.g. TiO ) for each zone and then 2 ratioing this value between zones. Enrichment factors of <1 therefore imply depletion and >1, enrichment (1=hypogene grade). Results show that all elements (studied) are enriched in the supergene sulphide and oxide zones. In the leached cap Cu, Mn and Zn are depleted while Mo, Pb and Ag are significantly enriched. These elements are incorporated into immobile limonite mineral's (ferrimolybdite, jarosite, goethite etc.). - iv -Acknowledgement I would like to thank the following for their support and help with this thesis: Placer Development Limited for providing financial assistance, access to the Berg property, data files and their analytical facilities. I would especially like to thank Don Rotherham, Peter Bradshaw and Ian Thompson for their ideas and guidance during all stages of this study . W.K. Fletcher, C.I. Godwin and A.J. Sinclair who advised me on the direction and scope of the thesis and provided invaluable help in publishing Chapters 2 and 3. Maggie Elliott, Stanya Horsky and Ernie Leitz for their assistance in the laboratory and, Paul Matysek, John Milford, Peter Holbek for their interesting comments and my wife Kim for her help in preparing the final draft ofthisthesis. - v -TABLE OF CONTENTS Abstract ii Acknowledgement v List of Figures viiList of Tables... x List of Plates xCHAPTER 1. INTRODUCTION 1 1.1 GENERAL INTRODUCTION AND SCOPE OF THESIS 1 1.2 STUDY AREA 4 1.2.1 Location, Topography and Climate '..4 1.2.2 Property History 5 1.2.3 Regional Geology 7 1.2.4 Property Geology 8 CHAPTER 2. HYDROTHERMAL ALTERATION AND MINERALIZATION AT THE BERG . DEPOSIT. 11 2.1 INTRODUCTION2.2 HYPOGENE ALTERATION. . 12 2.2.1 Petrography of Alteration 13 2.2.1.1 Orthoclase zone (I)... 16 2.2.1.2 Orthoclase-biotite zone (II) 12.2.1.3 Biotite zone (III) 8 2.2.1.4 Phyllic zone (IV)...'. .......20 2.2.1.5 Propylitic zone (V)...... 24 2.3 POTASSIUM METASOMATISM OF THE TELKWA FORMATION VOLCANIC ROCKS 25 2.4 MINERALIZATION ..32.4.1 Ore Mineralization 30 2.4.1.1 Hypogene disseminated mineralization 31 2.4.1.2 Hypogene vein mineralization 32 2.5 DISCUSSION • -37 2.5.1 Events prior to emplacement of Berg intrusion ....... 37 2.5.2 Magmatic hydrothermal processes 39 2.5.3 Alteration of country rocks 45 2.5.4 Thermal collapse 48 2 . 6 CONCLUSIONS '. 50 CHAPTER 3. MODIFICATIONS OF PRIMARY GEOCHEMICAL PATTERNS BY LEACHING AND SUPERGENE ENRICHMENT 53 3.1 INTRODUCTION 53.2 GEOCHEMICAL ANALYSIS 53.2.1 Sampling..'3.2.2 Sample Preparation and Analysis 55 3.2.3 Quality Control 7 3.3 RESULTS3.3.1 Geochemical Patterns in the Hypogene Zone: Major Elements 53.3.2 Geochemical Patterns in the Hypogene Zone: Trace Elements 9 3.3.3 Geochemical Patterns in the Supergene Zone and Leached Cap 62 3.4 DISCUSSION 7 - vi -3.5 CONCLUSIONS 68 CHAPTER 4. LEACHING AND SUPERGENE ENRICHMENT AT THE BERG DEPOSIT..70 4.1 INTRODUCTION 74.2 SUPERGENE ZONATION 2 4.2.1 Supergene Profiles 73 4.2.2 Leaching and Oxidation Indices 79 4.3 DISCUSSION 80 4.4 CONCLUSIONS 5 REFERENCES 8 APPENDIX A. ANALYTICAL METHODS 94 APPENDIX B. GEOCODER: A list of symbols and codes used in GEOLOG.10'0 APPENDIX C. ANALYTICAL RESULTS • 121 - vii -LIST OF FIGURES FIGURE PAGE 1.1 Location o'f the Berg porphyry copper-molybdenum deposit 3 1.2 Local geology around the Berg deposit. Berg quartz monzonite intrusions (circa 50 Ma) crosscut hornfels related to an.older quartz diorite intrusion....... 6 1.3 Detailed geology around the mineralized zone at the Berg deposit showing distribution of major rock units and alteration zones 9 2.1 Cross sections of the Berg deposit (Fig; 1.3: section A-A ' ) showing'lithology fracture intensity, alteration zonation and Cu , M0S2 and ore mineral abundances ...17 2.2 Major element ternary plots that compare the bulk compositions of the regional Telkwa Formation volcanic rocks (field A: felsic members; field B: mafic to intermediate members) with altered and hornfelsed rocks from the mineralized zone (field c).. 27 2.3 CaO vs_ K^O plot demonstrating potassium enrichment in the altered Telkwa Formation volcanic rocks from the mineralized zone 29 3.1 Location of drill holes sampled in this study 54 3.2 Sequential extraction procedure for drill core samples ..56 3.3 Major element geochemistry of rock units from the mineralized zone . . . 58 3.4 Element zonation in the hypogene, supergene and leached : capping zones at the Berg deposit. Element lines represent the distribution of anomalous populations (Tables 3.2 and 3.3) defined from probability graphs 61 3.5 Redistribution of copper between carbonate, oxide, sulphide and silicate minerals in the hypogenesuper gene and leached cap zones. Strip plots display total, copper (dotted solid line), sulphide copper (solid line) and oxide plus carbonate copper (dotted line). Shading outlines the supergene enrichment zone 63 4.1 A schematic supergene profile illustrating the vertical distribution of primary and secondary minerals. Abbreviations are as follows: CAP=leached capping, S0X=supergene oxide zone, SUS=supergene sulphide zone, HYP=hypogene zone, RSE=residual supergene enrichment zone, ESE=enhanced supergene enrichment zone, Cc=chalcocite, Cp=chalcopyrite, Cu=native copper/cuprite, Cv=covel1ite, Dg=digenite, Fm=ferrimolybdite, Gy=gypsum, Li = limonite, Mc = malachite/azurite, Py = pyrite, Tn = tenorite. . 71 4.2 GrafLog strip plot for the top 175 ft. of BRG DH076. Vertical supergene zones.are defined from geological data illustrated at - viii -left. G-Scale symbols (Appendix B) illustrate mineral abundances. Geochemical data is displayed as histograms at the right... 75 4.3 GrafLog strip plot for the top 175 ft. of BRG DH078.... 77 4.4 'GrafLog strip plot for BRG DH080 78 4.5 A schematic cross section of the Berg deposit illustrating the relationship between super gene zones, water table (WT) , gypsum line (GL) and topography. Arrows indicate approximate paths of ground water movement from hill top to valley floor 84 - i x -LIST OF TABLES TABLE .. • PAGE 2.1 Alteration facies, zones and subzones at the Berg deposit 15 2.2 Vein and alteration envelope mineralogy... 33 3.1 Analytical precision.. 57 3.2 Trace element populations: hopogene zone (n=241) 60 3.3 Trace element populations: supergene zone (n = 98) 62 3.4 Ti02 ratio data for diamond drill hole BRG DH085 ...64 3.5 T102 ratio data for diamond.drill hole BRG DH085...... ...66 4.1 Leaching and oxidation indices • 80 LIST OF PLATES PLATE 1.1 View of the Berg deposit facing north. Note the elongate ridge that divides, the cirque into the Pump Creek (left) and Red Creek (right) drainages. Potential ore bodies underlie Red Creek valley. 2 1.2 View looking southwest across the deposit. The prominent ridge at the lower right of the view is underlain by the quartz monzonite porphyry stock (QMP) the later quartz feldspar porphyry dyke (QFP). 2 2.1 Pervasive orthoclase alteration (zone I) of quartz monzonite porphyry. The pale groundmass is composed of fine grained quartz, pink orthoclase (Or) and sericite. Large euhedral biotite crystals are unaltered; pale green plagioclase phenocrysts are pervasively sericitized 14 2.2 Orthoclase zone (zone I) alteration in quartz monzonite porphyry (crossed nicols; scale bar is 1 mm). Phenocrysts of igneous biotite (Bi) is mantled by secondary hydrothermal orthaclase (Or), locally marked by Carlesbad twinning (center of view). Phenocryst at the top right is quartz (Qz)^ The groundmass is a mosaic of quartz, orthoclase,. biotite, sericite and opaque minerals.. 14 2.3 Orthoclase-biotite zone (zone II) alteration of plagioclase biotite porphyry. Note that fine grained hydrothermal biotite is pervasive throughout the alteration envelope around a type la microvein. Type lb veins cut this earlier alteration .19 2.4 Orthoclase biotite subzone (zone II) alteration in plagioclase biotite porphyry (plane polarized light; scale bar is 1 mm). Note preferential replacement of a biotite phenocryst (Bi 1: reddish brown pleochroism) by hydrothermal biotite (Bi 2: orange-brown pleochroism) along cleavage planes. The disseminated opaque mineral is pyrite (Py) 19 2.5 Biotite subzone alteration (zone III) of hornfelsed Telkwa Formation volcanic rock. Dark colour with veining that displays only weak envelope development (potassic, when present) is characteristic of this zone. Equilibrium, between veins and potassically altered rocks is implied.. ' 22 2.6 Biotite subzone alteration (zone III) in biotite hornfels (plane polarized light; scale bar is 1 mm). Note hydrothermal biotite (Bi 2) occurring as dark felted masses at the left and center of the view 22.7 Phyllic alteration (zone IV) of quartz monzonite porphyry. Alteration intensity is related to a high density of vein filled fractures (cf . Plate 2.8)... 23 2.8 Phyllic alteration (zone IV) superimposed on highly fractured - x i -hornfels. This later stage of alteration is related to thermal collapse of the hydrothermal system 23 2.9 Propylitic. alteration (zone V) of biotite hornfels. This dark green rock is softer and less massive than original biotite hornfels alteration; original hornfelsic textures are preserved. Note the outlines of volcanic fragments (dotted outlines). The vein at the top of the sample is a late type 3b carbonate-chlorite-sphalerite . vein 35 2.10 Green propylitic alteration (zone V) of Telkwa Formation volcanic fragmental rock. Original textures are clearly visible. Lithic fragments are replaced by coarse epidote and rimmed by fine grained epidote and chlorite. Groundmass has a trachytic texture..35 2.11 Retrograde propylitization of quartz monzonite porphyry (crossed nicols; scale bar is 1 mm). Igneous biotite (Bi), partially enclosed in quartz (Qz), has been pseudomorphed by iron rich chlorite (CI). Note also the intense clouding of plagioclase phenocrysts (Pf) by fine sericite at bottom of view 36 2.12 Retrograde propylitization of plagioclase biotite porphyry (plane polarized light; scale bar is 1 mm). Sericitized plagioclase (Pf) is replaced'by iron rich epidote (Ep). A biotite (Bi) phenocryst at the bottom left of the view has been replaced by iron rich chlorite. ..36 Plate 4.1 View towards the head waters of Red Creek. Note the strongly developed gossan; yellow areas are jarositic and overlie the potential orebody. Active precipitation of ferricretes in creek beds indicates that leaching processes are active today 86 CHAPTER 1 INTRODUCTION 1.1 GENERAL INTRODUCTION AND SCOPE OF'THESIS The Berg porphyry copper-molybdenum deposit is an excellent example of a well exposed, undeformed calk-alkaline porphyry copper system with close similarities to the classic model proposed by Lowell and Guilbert (1970). Spatial relationships between rock units and mineralized and altered zones are well documented as a result of many years of exploration drilling and property mapping by Kennco Explorations (Western) Limited and more recently by Placer Development Limited. A Ph.D thesis in 1976 by Panteleyev (1976) described the deposit overall and showed that minor elements in pyrites from different rock and alteration types display a crude zonation about the deposit. A north south cross section of the property was selected for this study on the basis that it transects all rock types, alteration and mineral zones'. This study sets out to build upon the work of Panteleyev and produce an improved model for the formation of the deposit. Primary geochemical patterns are also studied with the aim of documenting the persistence of certain trace elements (from whole rock samples) to the surface through a well developed leached cap and supergene enrichment zone. The aim of this approach is to demonstrate whether a characteristic geochemical signature or 'fingerprint' for this type of deposit would remain in a highly leached terrain. Topographic effects on the intensity of - 1.-Plate 1.1 View of the Berg deposit looking north. Note the elongate central ridge that divides the cirque into Pump Creek (left) and Red Creek (right). Potential ore bodies underlie the Red Creek valley. Plate 1.2 View looking southwest across the deposit. The prominent ridge at the lower right of the view is underlain by the quartz monzonite porphyry stock (QMP) and the later quartz feldspar porphyry dyke (QFP). - 2 -Figure 1.1 Location of the Berg porphyry copper-molybdenum deposit. - 3 -leaching and supergene enrichment are also exploNred. Chapters 2, 3 and 4 were prepared for publication: Chapter 2 appearing in Economic Geology, volume 79 (Heberlein and Godwin, 1984); Chapter 3 in the Journal of Geochemical Exploration, volume 19 (Heberlein et al . , 1983) and Chapter 4 as part of a short course titled "Geochemical'Exploration Program Design" given at the Association of' Exploration Geochemists Symposium, Reno, 1984 (Godwin et al., 1984) 1.2 STUDY AREA 1.2.1 Location, Topography and Climate The Berg porphyry copper-molybdenum deposit in the Tahtsa Ranges o o of central British Columbia (53 49' north; 127 22' west), is approximately 84 km southwest of Houston and 585 km north of Vancouver, British Columbia (Fig. 1.1). Mineralized zones at the Berg bowl (Plate 1.1) on .the north east drains west into Bergeland Creek, tertiary drainages; Pump Creek in south. Local slopes are moderately talus covered at lower elevations bury the main valley floor but hav of Bergeland Creek (Plate 1.2 and deposit un d er 1 ie a cirque like flank of a gl ac ia ted vail ey that The cir que is di vi ded into two the nor th and Red Creek in the o o steep (20 t o 30 ) and are (Plate 1.1). Glacial till deposits e been incised by the north fork Figure 1.3). Outcrop is limited to - 4 -ridge crests and runoff gullies at higher elevations, while elevations it is restricted to creek channels. Local relief 1,200 m with a maximum elevation of 2,700 m (Mt. Ney). at lower reaches Climate of the Tahtsa Ranges is very variable with long cold winters and short warm summers. In the winter months (late September to early May) the ground is frozen and the surface snowbound; the entire region is subject to heavy snow fall and strong winds. Spring is short and thawing proceeds through early March to June. During this time flash floods enhanced by heavy spring storms are common. The summer season is relatively dry , but sudden rain storms are frequent. In dry periods surface runoff rapidly diminishes and most small creeks dry up. 1.2.2 Property History The Tahtsa Ranges were first prospected in the early 1900's after gold was discovered near Sibola Mountain. To the late 1920's several lead-zinc-silver, gold-tungsten and copper showings had been staked. In 1948 the Lead Empire syndicate relocated claims, originally staked in' 1929 for lead-silver, that now form part of the Berg property. The Berg copper molybdenum deposit was first recognized by virtue of its large gossan and associated geochemical anomaly (Stewart, 1967 ; Panteleyev, 1976 and 1981). Subsequently Kennco Explorations, (Western) Limited started an exploration program that eventually discovered an extensive supergene enrichment - 5 -LEGEND Intrusive Breccia Berg Quartz Monzonite Quartz Diorite Skeena Gp. Clastic Rocks Skeena Gp. Volcanic Rocks Hazelton Gp. Volcanic Rocks Hornfels Limit of Cu-Mo Mineralizatior Dike Fault Geologic Contact 1km SCALE figure i.z Local geology around cne derg aeposit. tserg quartz monzonite intrusions (circa 50 Ma) cross cut hornfels related to an older quartz diorite intrusion. - 6 -blanket over hypogene chalcopyrite and molybdenite mineralization. Drilling to 1980 confirmed reserves of 308 million tonnes of 0.348% copper and 0.052% molybdenite (with a 0.25% Cu equivalent cutoff; Rotherham, 1983, personal communication). Recent work has involved more diamond drilling and metallurgical testing by Placer Development Ltd. 1.2.3 Regional Geology The Berg deposit is centered on one of several Early to Middle Eocene quartz monzonite porphyry stocks (Fig. 1.2) that intrude Mesozoic Hazelton and Skeena Group rocks in the area (Carter, 1974, 1981; Woodsworth, 1979, 1980; Panteleyev, 1981). Hazelton Group rocks that are well exposed in the vicinity of the Berg deposit consist of a sequence of green, grey, red and maroon lithic tuffs, tuff breccias and flow units. Contacts with the Skeena Group are almost everywhere intruded by a quartz diorite intrusion (Panteleyev, 1981: Fig. 1.2). The overlying Skeena Group rocks are typically amygdaloidal and vesicular andesi'tes and basalts. Many of the flow units exhibit trachytoidal tex.tures that distinguish them from the Hazelton Group flow units. East of the property the Skeena Group is dominated by sedimentary .rocks that overlie the lower volcanic units and pinch out to the north. These rocks are fine to medium grained sandstones and siltstones with rare conglomeratic horizons. Structure in the area is relatively simple. Poorly developed open - 7 -folds with north to northeast axial trends cause local dips of 10 to 30 degrees. Normal faults and mafic dikes follow this general regional trend 1.2.4 Property Geology The area of the mineralized zone (Fig. 1.3) was first described by Stewart (1967) and later by Panteleyev (1976, 1981). Five major rock types are present. The most significant from an economic viewpoint is a quartz monzonite stock approximately 700 m in diameter that intrudes and alters hornfelsed Telkwa Formation volcanic rocks of the Hazelton Group. Contacts between' the altered volcanic rocks and the quartz monzonite stock are regular and steeply dipping (except on the west flank of the stock where the contact dips shallowly). Four intrusive phases comprise the quartz monzonite stock: a coarse grained plagioclase biotite porphyry (PBP), a quartz monzonite porphyry (QMP), a quartz plagioclase porphyry (QPP) and a porphyritic quartz feldspar porphyry (QFP). The latter unit cuts all other monzonite phases and the altered volcanic rocks to the north and south of the stock. An intrusive breccia outcrops approximately 400 metres to the south of the stock and dips steeply northwards towards the quartz monzonite contact. Alteration patterns follow the classic style proposed by Lowell and Guilbert (1970) with a core of potassic alteration - 8 -Rock Units Intrusive Breccia Quartz Feldspar Porphyry Quartz Monzonite Porphyry LEGEND Alteration Zones Ptogioclase Biotite Porphyry I KF- Qz Quartz Diorite 11 KF-Bi Altered Hornfelsed Tdkwa Fm. Ill Bi potassic Quarrz Plagioclase Porphyry 1 H J Hornfelsed Telkwa Fm. IV Qz-Se phyllic V CI - Ep propylitic Figure 1.3 Detailed geology around the mineralized zone at the Berg deposit showing distribution of major rock units and alteration zones. - 9 -(orthoclase and biotite) surrounded successively by a thin phyllic zone (quartz, -sericite and pyrite) and an extensive propylitic zone (chlorite, epidote , albite and calcite) that extends over 1 km from the deposit. Sulphide mineralization primarily is hosted by altered hornfels (Panteleyev, 1976, 1981) close to the contact with the quartz monzonite stock. This area also corresponds with the outer limit of the potassic alteration zone. Chalcopyrite is the principle copper mineral in the potential ore zone and is accompanied by minor amounts of molybdenite. An extensive pyrite halo surrounds the potential ore zone. Sulphides occur dominantly as disseminations in the quartz monzonite and quartz diorite and as veins in the hornfelsed volcanic rocks. Supergene processes are still active at Berg. Primary sulphides are being oxidized in a zone of leaching near surface. Iron oxides that remain after oxidation of the sulphides form a distinctive "limonite" gossan. Thick ferricrete platforms mark emergence of supergene waters. Limonite colour varies from orange-yellow (jarosite rich limonite) to brown or red-brown (goethite and hematite rich limonite). - 10 -CHAPTER 2 HYDRO-THERMAL ALTERATION AND MINERALIZATION AT THE BERG DEPOSIT 2.1 INTRODUCTION. Previous work on the Berg deposit has identified a consistent zonation of ore and alteration minerals about the central quartz, monzonite stock. Early studies (Stewart, 1967; Howard, 1973) recognized the presence of two distict potential ore zones; a northeast zone and a southeast zone situated close to the contact of the quartz monzonite stock in potassically. altered rocks. Panteleyev (1976, 1981) refined the geology of the deposit and recognized that ore mineralization is most abundant at the east side of the deposit in highly fractured, crescent shaped zones within "biotitic hornfels" and "biotitic quartz diorite". The origin of these biotitic rocks was not resolved in these studies. Stewart (1967) implied that these rocks are of contact thermal origin associated with the intrusion of the Berg stock. Panteleyev (1976, 1981) suggested that at least part of this zone is of hydrothermal origin, but retained the term 'biotite hornfels' and proposed that these rocks may have been first thermally metamorphosed by the quartz diorite and then hydrothermally altered after emplacement of the quartz monzonite stock. The origin of the biotitic rocks is resolved in this chapter using major element analyses to demonstrate that potassium metasomatism has occurred and that the rocks have been - 11. -hydrothermally altered. Hydrothermal alteration zones are redefined using data col-lected during the summer of 1980 and a model for the evolution of the Berg deposit is proposed to explain observed spatial and temporal relationships of ore and alteration minerals. 2.2 HYPOGENE ALTERATION Facies of pervasive hypogene alteration are characterized by mineral assemblages described well by the terms potassic , phyllic, argillic and propylitic (Lowell and Guilbert, 1970; Rose, 1970). In this study each facies is subdivided into zones based on consistent mineral assemblages, each named after its dominant mineral component(s) . For example, the potassic alteration facies can be subdivided into the orthoclase, orthoclase-biotite, and biotite zones. Additional subzones are established on detailed mineralogical variations. These alteration facies, zones and subzones (Table 2.1) are distinguished from ore mineral zones that host sulphides as disseminations and in veins (Table 2.2). The latter also are named after their dominant mineral species. Alteration can be identified in the field for up to 1,000 m from the quartz monzonite stock, however, it is developed best in and adjacent to the intrusion. In Figure 1.3, a plan of the deposit, alteration facies (Table 2.1: zones I to V) are centered on the intrusion. The orthoclase and the orthoclase-biotite zones (zones I and II) occur within the quartz monzonite porphyry and plagioclase - 12 -biotite porphyry; the biotite zone (zone III) mainly occurs adjacent to and outside the quartz monzonite stock in altered, hornfelsed Telkwa Formation and in the quartz diorite. Phyllic alteration (zone IV) is restricted to discontinuous zones that straddle the north and south contacts of the stock. Propylitic alteration (zone V) forms a broad halo extending from about 500 m to 1,000 m from the intrusive contact. Zones II, III and IV coincide with zones of maximum fracture intensity (Fig. 2.1) and, as shown later, are related to the ore-forming processes at the Berg. Weak argillic alteration occurs locally (Fig. 10 in Panteleyev, 1981) and is characterized by kaolinite and/or montmori1lonite replacement of feldspar. Close spatial association of this alteration with pyritic zones at fractured contacts of quartz monzonite and quartz diorite intrusions which are more generally characterized by phyllic alteration, indicates that the argillization is probably supergene in origin. Consequently, this alteration type is not discussed further in this paper . 2.2.1 Petrography of Alteration Mineralogic details of the alteration zones are described, below, in the order of their sequence (I to V) in Table 2.1. This is slightly different from their spatial distribution outward from the - 13 -Plate 2.1 Pervasive orthoclase alteration (zone I) of quartz monzonite porphyry. The pale groundmass is composed of fine grained quartz, pink orthoclase (Or) and sericite. Large euhedral biotite crystals are unaltered; pale green plagioclase phenocrysts are pervasively sericitized. Plate 2.2 Orthoclase zone (zone I) alteration in quartz monzonite porphyry (crossed nicols; scale bar is 1 mm). Phenocrysts of igneous biotite (Bi) are mantled by secondary hydrothermal orthoclase (Or), locally marked by Carlesbad twinning (center of view). Phenocryst at the top right is quartz (Qz). The groundmass is a mosaic of quartz, orthoclase, biotite, sericite and opaque minerals . - 14 -TABLE 2.1. Alteration Facies, zones and subzones at the Berg Deposit Facies Zone ^ - Subzone 2 Mineralogy P0T30rthoclase (I) Or ,Ms,Bi,Mg,Cp ,Mo POT Orthoclase-Biotite (II) Or ,Bi,Ah,Ms,Mg ,Py ,Cp POT Biotite (III) Biotite-Anhydrite Bi ,Ah,Py,Cp,Mo ,Tz ,F1 PHY Quartz-Sericite (IV) Ms ,Py,He,Ka,Mm PRO Transition (V) Biotite-Chlorite Bi ,Cl,Py,Cp,Cb PRO Chlorite-Epidote (V) CI ,Ep,Ab,Cb,Py ,Mg ,G1, SI ARG • Ka ,Mm,Py 1. Roman numerals refer to alteration zones on Figure 2.1 2. Mineral are in order of abundance and are coded as follows: Ab=albite, Ah=anhydrite, Cb=carbonate, Cl=chlorite, Cp=chalcopyrite, Ep=epidote, Fl=fluorite, Gl=galena, He=hematite, Ka=kao1inite, Mg=magnetite, Mm=montmorillonite, Ms=muscovite (sericitic), Mo=molybdenite, Or=orthoclase, Py=pyrite, Qz=quartz, Sl=sphalerite, Tz=topaz. Quartz is ubiquitous to all zones. 3. POT=potassic, PHY=phyllic, PRO=propylitic and ARG=argillie. 4. The argillic kaolinite zone probably is of supergene origin. center of the deposit (Fig. 1.3). 2.2.1.1 Orthoclase zone (I): Pervasive orthoclase alteration is typified by a pink colouration of the rock due to orthoclase flooding (Plate 2.1) and is restricted to the quartz monzonite porphyry (Figs. 1.3 and 2.1). In thin section a fine grained replacement of original minerals by a mosaic of orthoclase, quartz and sericite is characteristic; rims of secondary orthoclase also occur as overgrowths on pre-existing feldspar phenocrysts and biotite (Plate 2.2). In this zone primary plagioclase is invariably clouded by fine grained sericite. Igneous hornblende is replaced by fine grained, felted masses of secondary biotite. Primary reddish biotite is variably replaced; coarser crystals show signs of alteration only along grain boundaries and cleavage planes (cf . Plate 2.4), but matrix biotite is completely replaced by felted secondary biotite that is a distinctive pale chocolate brown colour in thin section. Anhydrite is common in the orthoclase zone, occurring as euhedral crystals in the groundmass, in vein envelopes and as -fillings of vuggy cavities in early quartz veins. Sulphides, though not abundant in this zone (less than 1%), are mainly chalcopyrite that occurs as veinlets and disseminations. Secondary magnetite, ilmenite and rutile are ubiquitous. These minerals are closely intergrown with secondary biotite or chlorite where the latter replace primary mafic minerals . 2.2.1.2 Orthoclase-biotite zone (II): This type of alteration (Table 2.1) is best developed in the plagioclase biotite porphyry - 16 -Figure 2.1 Cross sections of the Berg deposit (Fig. 1.3: section A-A') showing lithology, fracture intensity, alteration zonation and Cu, MoS_ and ore mineral abundances. - 17 -(Figs. 1.3 and 2.1), however similar alteration is found sporadically in the quartz monzonite porphyry. In hand specimen (Plate 2.3) it is characterized by a tan to dark brown colouration of the groundmass from fine grained hydrothermal biotite. Hydrothermal biotite similar to that found in the orthoclase zone also replaces primary, biotite (Plate 2.4). In thin section secondary biotite either has replaced primary biotite phenocrysts (Plate 2.4) or is distributed as whisps and felted masses after pre-existing minerals. Hydrothermal biotite ranges from 5 to 10% of the rock as compared to less that 1% in the orthoclase zone. Orthoclase on the other hand is less abundant than in the orthoclase zone, occurring in vein envelopes around Type la veins (Table 2.2). Sulphide content is similar to that of the orthoclase zone (less than 1%) and pyrite to chalcopyrite ratios average 3:1 (Fig. 2.1). 2.2.1.3 Biotite zone (III) : The biotite zone of potassic alteration (Table 2.1) is developed best in rocks of more mafic composition. Therefore the biotite hornfels (originally andesitic to basaltic volcanic rocks) and the quartz diorite (13.8% mafic minerals for the quartz 'diorite compared to 7.5% for the quartz monzonite porphyry: Panteleyev, 1981) . exhibit well developed biotite alteration. The change to a biotite zone outward from the orthoclase zone is controlled by wall rock composition. Two subzones of the biotite zone, extending outwards from - 18 -Plate 2.3 Orthoclase-biotite zone (zone II) alteration of plagioclase biotite porphyry. Note that fine grained hydrothermal biotite is pervasive throughout the alteration envelope around a type la microvein. Type lb veins cut this earlier alteration. Plate 2.4 Orthoclase biotite subzone (zone II) alteration in plagioclase biotite porphyry (plane polarized light; scale bar is 1 mm). Note preferential replacement of a biotite phenocryst (Bi 1: reddish brown pleochroism) by hydrothermal biotite (Bi 2: orange-brown pleochroism) along cleavage planes. The disseminated opaque mineral is pyrite (Py). - 19 -the orthoclase zone (Fig. 2.1), are the biotite-anhydrite subzone and the biotite subzone. Each is characterized by the appearance or disappearance of specific minerals (Table 2.1 and Fig.2.1). The biotite-anhydrite subzone (Table 2.1 and Fig. 2.1), first described by Stewart (1967) as the 'quartz-topaz zone' and later by Panteleyev (1981) as the 'biotite zone', occurs immediately outside •the intrusive contact. It is variable in width and is best developed at the southeastern contact of the stock. Here it is typified by variable • amounts (15 to 35%) of. fine ' grained felted biotite that gives the rock a dark brown to black appearance in hand specimen (Plate 2.5). In thin section extremely fine grained biotite is yellowish brown to orange-brown. Quartz veins and envelopes, more common near the contact of the stock (Howard, 1973), imply that silica was added to the rock during potassic alteration. Purple anhydrite is conspicuous throughout this subzone and is found in quartz veins and as irregular grains, up to 2 mm in diameter, in the rock (Plate 2.6). Orthoclase, rare in this subzone, is restricted to alteration envelopes around some quartz-anhydrite-sulphide veins. A unique feature of this subzone is the presence in vein envelopes of trace amounts of fluorite and topaz (Stewart, 1967). Sulphides are abundant (Fig. 2.1: up to about 5% by volume) in the biotite-anhydrite subzone. Most occur in veins but " disseminations are present. Pyrite occurs with lesser amounts of chalcopyrite and molybdenite which is most significant in this subzone. Pyrite to chalcopyrite.ratios average about 2:1. - 20 -Transition to the biotite subzone (Table 2.1 and Fig. 2.1) is marked by the disappearance of ' anhydrite, topaz and fluorite; texturally both zones are similar. In the biotite subzone ghost outlines of pre-existing minerals and textures occur. Subparallel alignment of felted secondary biotite crystals in the groundmass outline pre-existing volcanic fragments that become more apparent outwards in this subzone (similar textures have been reported -at the Christmas porphyry deposit, Arizona, by Koski and Cook, 1982). Due to the fine grained nature of the biotite in this subzone it is not possible to distinguish between metamorphic and hydrothermal biotite petrographically, therefore mineral associations, textures and rock chemistry must be used to separate the biotite zone alteration from thermally metamorphosed rocks. Mineralogically the abundance of sulphides is the most diagnostic feature of this subzone (it contains both of the potential orebodies). Pyrite to chalcopyrite ratios of 1:1 are common and total sulphides reach over 5% by volume.. Molybdenite grades, generally lower than in the biotite-anhydrite subzone, decrease outwards. 2.2.1.4 Phyllic .zone (IV): Although sericite from the early potassic alteration event occurs throughout the deposit, it is most abundant in a later alteration characterized by (Table 2.1) quartz, pyrite and sericitized feldspars, especially plagioclase, in envelopes around quartz veins that crosscut earlier alteration. Most intense phyllic alteration occurs at the contact of the stock and particularly at the north and south margins (Figs. 1.3 and 2.1). Intrusive units are more strongly sericitized (Plate 2.7) than - 21 -Plate 2.5 Biotite subzone alteration (zone III) of hornfelsed Telkwa Formation volcanic rock. Dark colour with veining that displays only weak envelope development (potassic, when present) is characteristic of this zone. Equilibrium between veins and potassically altered rocks is implied. Plate 2.6 Biotite subzone alteration (zone III) in biotite hornfels (plane polarized light; scale bar is 1 mm). Note hydrothermal biotite (Bi 2) occurring as dark felted masses at the left and center of the view. - 22 -Plate 2.7 Phyllic alteration (zone IV) of quartz monzonite porphyry. Alteration intensity is related to a high density of vein filled fractures (cf. Plate 2.8). fry*".- •i-f^* . Jf.*'5jj?' I Plate 2.8 Phyllic alteration (zone IV) superimposed on highly fractured hornfels. This later stage of alteration is related to thermal collapse of the hydrothermal system. - 23 -altered, hornfelsed volcanic rocks (Plate 2.8). Fracture intensity is the main controlling factor on the intensity of phyllic alteration. Thus in the center of the deposit where rocks are relatively unfractured (Fig. 2.1: less than or equal to 10 fractures per metre) sericitization only occurs in envelopes around some quartz veins. Towards the intrusive contact, where fracture densities are maximum (Fig. 2.1: up to 100 per metre), the rock can be totally replaced by sericite as a result of the overlapping of alteration envelopes around quartz veins. The southeast contact of the stock exhibits pervasive sericitization of an intensity such that the original rock (quartz monzonite porphyry) is reduced to a soft, pale chalky rock that is crosscut by closely spaced (Fig. 2.1: 50 to 100 per metre) quartz veins (Plate 2.7). Bleaching of the rocks is the result of the complete destruction of plagioclase feldspar and partial alteration of orthoclase and mafic minerals (biotite, hornblende and chlorite) to sericite and small amounts of kaolinite. Other minerals found locally in this zone include montmorillonite, illite, calcite and hematite. 2.2.1.5 Propylitic Zone (V): A transitional zone (Table 2.1, and Figs. 1.3 and 2.1: biotite-chlorite subzone) exists between the potassic alteration facies and the propylitic zone and can be identified by the appearance of abundant chlorite and a decrease and eventual disappearance of biotite (thermal and hydrothermal) outwards from the biotite alteration zone. In hand specimen this transition is seen as a colour change from a black or brown to green (Plate 2.9). This change is marked by increasing abundances of fine - 24 -grained epidote, chlorite, albite and carbonate. Pyrite, disseminated a_nd in veins with quartz, chlorite and carbonate is the most abundant sulphide in this zone; galena and sphalerite, however, occur locally in some veins (Plate 2.9). Alteration envelopes are sericitic but poorly developed. Fragments in volcanic rocks, preserved as ghost outlines in the biotite subzone, become pronounced with distance from the stock in the propylitic zone (Plate 2.10). The cores of fragments are often replaced by coarse epidote and the margins are replaced by finer epidote and chlorite. In flow units biotite decreases in abundance until none is present, whereas iron rich chlorite (c_f_. Dahl and Norton, 1967) increases in abundance and forms irregular masses in the groundmass. Chlorite, epidote and carbonate are also found in the orthoclase, orthoclase-biotite and biotite zones. This assemblage is related to retrograde propy1itization caused by thermal collapse of the hydrothermal system (see discussion). Where retrograde propylitization occurs it is generally restricted to, or spatially related to, chlorite-carbonate-sphalerite veins (Table 2.2: type 3b). This is most common in the porphyry stock where biotite is replaced by iron-rich chlorite (Plate 2.11) and plagioclase phenocrysts are replaced' by epidote (Plate 2.12). 2.3 POTASSIUM METASOMATISM OF THE TELKWA FORMATION VOLCANIC ROCKS Previous studies of the Berg deposit are ambiguous about the - 25 -origin of the biotitized. rocks that characterize much of the mineralized zone .. Panteleyev (1981) used the term 'biotite hornfels' to describe this unit but he suggested that both true hornfels (i so chemical) and metasomatic rocks are present (cf.. Sutherland Brown, 1967). Thus these authors noted that the secondary biotite could not be ascribed dominantly as having either a contact-thermal metamorphic or a hydrothermal metasomatic origin. A distinction can be made chemically by defining hornfelsing as in situ recrystallization of a rock with little chemical gain or loss, and metasomatism as an alteration involving significant exchange of chemical components between wall rock and a hydrothermal solution. The latter process is caused by fluids permeating and reacting with the rock; therefore fracture intensity is an important control on metasomatic alteration and consanguinous ore mineralization. In the volcanic rocks adjacent to the mineralized zone the main potassium bearing mineral is biotite; orthoclase, sericite and clay minerals on average make up less than 1% of the rock. Therefore the percentage of biotite in the rock can be used in conjunction with K 0% to distinguish thermally altered from metasomatized rock. In 2 limited areas biotite contents of 10% to 20% are compatible with those- expected from the isochemical recrystallization of an intermediate to mafic volcanic rock with a K 0 content of 1.0 to " 2 1.5% (1% K 0 will form up to 14% biotite). In the potential ore 2 zone, particularly where mineralization is evident, biotite contents - 26 -r b AI203*Fe20-(K20 •Na20*CaO) (CaO*MgO*Na20) 2CaO Kp+Nap 2K20 a L Figure 2.2 Major element ternary plots that compare the bulk compositions of the regional Telkwa Formation volcanic rocks (field A: felsic members; field B: mafic to intermediate members) with altered and hornfelsed rocks from the mineralized.zone (field C). reach 50% (K 0 values from 5.0% to 7.5%) indicating addition of 2 potassium. Whole rock chemistry of the 'altered' volcanics in the vicinity of the mineralized zone compared to the chemistry of relatively fresh, albeit distant, regional equivalents (Tipper and Richards, 1976) demonstrates this gain in potassium. This is illustrated in Figure 2.2a, a ternary plot of 2 x K 0 v_s Al 0 + 2 2 3 Fe 0 - (K 0 + Na 0 + CaO) vs. (CaO + MgO + Na 0), where 2 3 2 2 2 representative samples of Berg altered volcanics (field C) and regional equivalents of the Telkwa Formation volcanics (fields A and B) have been plotted. Figure 2.2a shows that the Telkwa Formation rocks plot in two distinct fields, a low K 0 field (A) containing 2 intermediate and mafic volcanic rocks, and a high K 0 field (B) 2 representing felsic volcanics rocks. Berg altered volcanic analyses (C) cluster in the high K 0 field. Lithologica11y, however, they are 2 representative of the intermediate and' mafic volcanic rocks of the Telkwa Formation (Panteleyev, 1981; van der Heyden, 1983, personal communication). Figure 2.2b is a ternary plot of 2 x CaO v_s_ Al 0 + Fe 0 -2 3 2 3 (K 0 + Na 0 + CaO) vs K 0 +Na 0. Here Telkwa Formation volcanic 2 2.2 2' rocks plot in an elongate field trending from low CaO values (field B: felsic rocks) to high' CaO values (field A: intermediate and mafic volcanics). Berg altered volcanic rocks (field C) plot in the high CaO field. This is consistent with their original lithologies. Potassium enrichment thus is demonstrated simply by Figure 2.3, a binary plot of Ca0% _y_s K 0% where intermediate to mafic Telkwa 2 Formation volcanic rocks plot close to the CaO axis and the felsic - 28 -o o o \^ Telkwa Fm. Intermediate and mafic volcanics • Telkwa Fm. Felsic volcanics. 10 . \ • Berg altered volcanics. -8 • * i • • / / VI/ 2 VI / V / \ \ • • \0 ^ • .3 % K20 Figure 2.3 CaO vs K O plot demonstrating potassium enrichment of the altered Telkwa Formation volcanic rocks from the mineralized zone. - 29 -units plot near to the K 0 axis. It follows that Berg altered 2 volcanic analyses plot in a field of high CaO and high K 0, thus • 2 providing evidence for a metasomatic origin for the.altered volcanic rocks in the mineralized zones. In addition, field mapping has shown that thermally metamorphosed volcanic rocks are present away from the potential ore zones and are spatially related to the quartz diorite intrusion rather than to the Berg stock (Fig. 1.2). 2.4 MINERALIZATION 2.4.1 Ore Mineralization Hypogene ore mineralization (Table 2.2) at the Berg deposit is dominated by pyrite, chalcopyrite and molybdenite. Small quantities of bornite, magnetite, sphalerite, tetrahedrite, galena and trace amounts of pyrrhotite, scheelite, ilmenite, rutile and arsenopyrite have also been reported (Stewart, 1967; Howard, 1973; Panteleyev, 1981). Ratios of pyrite to chalcopyrite range from 1:1 in the potential ore zone to over 50:1 in the pyrite halo (Fig. 2.1). Total sulphide contents rarely exceed 5% by volume. The zonation of hypogene ore minerals corresponds closely to trace element zones established by Heberlein et, al . ( 1983). From an economic viewpoint the chalcopyrite zone outlines the potential hypogene ore zone which can be defined by visually estimated chalcopyrite contents exceeding 1% and a pyrite to chalcopyrite ratio of less than 4:1 (Fig. 2.1). This zone forms an almost continuous ring surrounding the stock and straddling its contact. Width is variable, ranging from less than - 10 -100 m at the west contact (Fig. 1.2) to over 400 m at the northeast contact where -the best hypogene mineralization is hosted in the altered volcanic rocks and quartz diorite (Panteleyev, 1981). Molybdenite occurrences, though sporadic, conform to a similar annular zone within the chalcopyrite zone at the intrusive contact. Pyrite, ubiquitous throughout the deposit, is concentrated in the pyrite halo that conforms with the transition between the biotite and propylitic alteration zones (Fig. 2.1). Galena and sphalerite occur in sub-economic veins in the propylitic zone between approximately 150 m and 500 m of the intrusive contact. Sphalerite, associated with minor tetrahedrite which may be responsible for locally high silver values, occurs within the potential ore zones in late, quartz-chlorite-carbonate veins (Table 2.2: type 3b). 2.4.1.1 Hypogene disseminated mineralization: Disseminated sulphides are widespread over the whole deposit, although they are generally economically less important than vein hosted sulphides. However concentrations of 0.5% to 1.0%. copper in disseminated sulphides occurs in the quartz diorite in the northeastern part of the deposit. Lower grade disseminated sulphide mineralization also occurs in the relatively unfractured core of the stock (zone I). For example, grades in the center of the deposit are relatively low (less than 0.2% copper) because the total sulphide content rarely exceeds 2% by volume. - 31 -2.4.1.2 Hypogene vein mineralization: Mineralization in the potential ore "zone is found primarily in veins of several generations of veins defined by megascopic cross-cutting relationships. Individual vein types la, lb, 2a, 3a, 3b, and 4a, defined in Table 2.2, can be identified on the basis of mineral assemblages in the vein and in adjacent envelope alteration. Table 2.2 shows that the earlier vein generations (types la, lb and 2a) were responsible for most of the copper and molybdenum mineralization; they are associated with orthoclase, biotite, magnetite and anhydrite which are suggestive of higher temperature environments. Later veins (types 3a, 3b and 4a), dominated by pyrite mineralization and accompanied by sphalerite, chlorite, carbonate and gypsum, have sericite alteration envelopes. Distribution of the vein types indicates that the earlier copper and molybdenite bearing fluids were concentrated along zones of high fracture permeability, close to the intrusive contact. Chlorite and carbonate bearing veins (types 3a and 3b) are generally further from the contact although they are rarely encountered in the potassic alteration zones where they are invariably late in the paragenetic sequence. The earliest veins (type la; Plate 2.3) are restricted to the quartz monzonite porphyry and plagioclase biotite porphyry phases of the stock. These veins are characteristically irregular, discontinuous, and composed of vuggy, milky quartz with common - 32 -TABLE 2.2 Vein and alteration envelope mineralogy-Vein Type Mineralogy Envelope Dominant Origin la " Qz Qz-Ms -Or -Bi magmatic 1 b ( 1) Qz -Py -Cp-Mo Qz-Bi -Ms (Cl-Ep) ma gma tic 2a(l) Qz -Mo (Ms.) magmatic 2a(2) Ah -Mo none magmatic 2a(3) Mo none magmatic 3a(l) Qz -Py -Mg-Cb--CI Qz-Ms meteoric 3a(2) Qz -Py (Cp) (Ms) me teor ic 3b(l) Qz -CI--Cb-Sl (Ms-Gy) Ms me teor ic 3b(2) Qz -CI--Cb-Sl (Ms-Py) none me teor ic 3b(3) Py. -CI -Cb-Sl (Ms ) (CI) meteoric 3b(4) Qz -Cb Ms meteoric 4a Gy none meteoric Vein types defined in text, are in order of relative age (type 1 are the oldest). Numbers in parentheses define subdivisions of general vein types. Minerals, listed in order of abundance on a volume % basis, are coded: An=anhydrite, Cb=carbonate, Cl=chlorite, Cp = chalcopyrite , G.y = gypsum, Mg=ma gne t i t e , Mo = molybdenite , Ms=muscovite (sericitic), Or=orthoclase, Py=pyrite, Qz=quartz, Sl=sphalerite; brackets indicate possible presence. anhydrite cavity fillings. Alteration envelopes are generally absent but when present consist of secondary orthoclase. More widespread and significant in terms of sulphide mineralization are the type lb veins. They are distributed throughout the porphyry stock and the surrounding altered volcanic rocks, but appear to be concentrated in a zone straddling the intrusive contact. Much of the copper and part of the molybdenum of the potential ore zones are associated with these veins. More significant quantities of molybdenum are found in type 2a veins. These are dominated by molybdenite as stringers in ribboned, milky quartz veins, or as streaks and disseminations in anhydrite or quartz-anhydrite veins. Highest densities of this vein type occur near the intrusive contact, but they can be found throughout the mineralized zone. Alteration envelopes are generally - 33 -absent but.where present are less than 1 mm wide zones of sericitization. Type 3a veins are very different from types 1 and 2 in that chalcopyrite is rare and molybdenite absent. In addition, alteration envelopes are more intense and dominated by sericite and quartz. Where best developed these envelopes overlap and completely destroy pre-existing structures, textures and mineralogies. The veins are of grey to white quartz with stringers and disseminations of pyrite. Pyrite also is disseminated within the wide envelopes. Type 3a veining is most intensely developed at the intrusive contact at the southern and northern edge of the quartz monzonite stock. These areas correspond closely with zones of pervasive phyllic alteration that result from the overlapping of type 3a vein envelopes. Abundance of type 3a veins decreases deeper in the explored part of the deposit. Type 3b veins contain much chlorite and carbonate. These veins are present throughout the deposit but become more abundant outwards from the intrusive contact in the propylitic zone. Quartz and pyrite are ubiquitous to these veins; black sphalerite is a common accessory (Plate '2.9). Vein mineralogy is controlled partially by wall rock composition; chlorite and carbonate are present where the veins cut wall rocks rich in biotite, but are sericitic where they crosscut intrusive rocks. Chlorite commonly replaces mafic minerals in this type of vein, indicating that these veins may be similar to type 3a but reflect effects of wall - 34 -Plate 2.9 Propylitic alteration (zone V) of biotite hornfels. This dark green rock is softer and hornfels alteration; original Note the outlines of volcanic vein at the top of the sample chlorite-sphalerite vein. less massive than original biotite hornfelsic textures are preserved, fragments (dotted outlines). The is a late type 3b carbonate-Plate 2.10 Green propylitic alteration (zone V) of Telkwa Formation volcanic fragmental rock. Original textures are clearly visible. Lithic fragments are replaced by coarse epidote and rimmed by fine grained epidote and chlorite. Groundmass has a trachytic texture. - 35 -Plate 2.11 Retrograde propy1itization of quartz monzonite porphyry (crossed nicols; scale bar is 1 mm). Igneous biotite (Bi), partially enclosed in quartz (Qz), has been pseudomorphed by iron rich chlorite (CI). Note also the intense clouding of plagioclase phenocrysts (Pf) by fine sericite at bottom of view. Plate 2.12 Retrograde propylitization of plagioclase biotite porphyry (plane polarized light; scale bar is 1 mm). Sericitized plagioclase (Pf) is replaced by iron rich epidote (Ep). A biotite (Bi) phenocryst at the bottom left of the view has been replaced by iron rich chlorite. - 36 -rock composition. The youngest vein generation is represented by gypsum-filled fractures. These veins generally have sub-horizontal attitudes and are rarely greater than 2 mm in width. Coarser grained fibrous gypsum veins up to 30 mm in width are also common in the intrusion. These probably formed by reaction of hypogene anhydrite bearing veins with ground waters. This classification of vein types is generalized because vein compositions undoubtedly vary along their length. In addition complicated multiple generations of veins are recognized by crosscutting vein types lb and 2a. 2.5 DISCUSSION A model of the sequence of events during the evolution of the altered and mineralized zones at the Berg deposit is proposed below' and compared to recent studies of similar porphyry deposits. 2.5.1 Events Prior to Emplacement o f Berg Intrusion Ground preparation' for the deposit began with the formation of a brittle biotite hornfels zone around the quartz diorite intrusion (Figs. 1.2 and 1.3). Intrusion of the Berg quartz - 37 -monzonite into the hornfels and quartz diorite developed intense fracture zones in the hornfels that became loci for potential ore bodies. From field observations the presence of a minor, hornfels zone associated with the quartz monzonite stock cannot be ruled out; overprinting by hydrothermal processes would have masked such a zone. Potassium-argon dates (Carter, 1974, 1981) for the quartz diorite and the quartz monzonite stock are indistinguishable (circa 50 Ma). However, field observations by the author and by Panteleyev ( 1976, 1981 ) suggest that the quartz diorite.is older than the porphyry stock because of superimposition of the alteration and mineralization zones of the porphyry, the intrusion of quartz monzonite porphyry dikes into the quartz diorite, and the spatial distribution of biotite hornfels (Fig. 1.2). As Panteleyev (1981) pointed out, the sample dated by Carter (1981) was altered hydrothermally and therefore this date probably was reset to the age of the quartz, monzonite stock. The quartz diorite might either represent a slightly older comagmatic intrusion as suggested by monzonitic phases found to the south of the property (Panteleyev, 1983, personal communication), or correspond closely to granodiorite porphyry at the Huckelberry and Ox Lake copper-molybdenum deposits (circa 82 Ma by K-Ar dating: Carter, 1974, 1981). The intrusive breccia described by Panteleyev (1981) and illustrated in Figures 1.2 and 2.1 is oogenetic with the Berg quartz monzonite, on the basis that it contains quartz monzonite fragments, dips steeply to the north and probably intersects the stock at depth. This - 38 -breccia also crosscuts the quartz diorite. 2.5.2 Magmatic hydrothermal processes Magmatic hydrothermal alteration at Berg is centered on the quartz monzonite porphyry phase of the stock, suggesting that early hydrothermal processes . were related to this unit. Alteration is similar to that at Sierrita (West and Aiken, 1982), Santa Rita (Neilsen, 1968), Ajo (Gilluly, 1946) and Yandara (Grant and Neilsen, 1975) with potassium metasomatism occurring early in the development of the deposit by the following processes (cf . Burnham, 1979): 1) differentiation of'a crystallizing hydrous melt that was accompanied by extensive fracture development above and peripheral to the solidus boundary of the magma, 2) evolution of magmatic hydrothermal fluids during crystallization that extensively reacted with the surrounding wall rocks as the fluids migrated away from the heat source (c_f. Barnes, 1979; Beane, 1982; Burnham, 1979; Helgeson, 1970; Moore and Nash, 1974; Roedder, 1971, 1972, 1979), and 3) periodic sealing of fractures by mineral deposition that caused internal pressure changes (from hydrostatic to lithostatic) resulting in rock failure. Multiple veining events observed close to the margin of the stock reflect this process. Periodic release of pressure also explains the relative lack of veining towards the center of the stock where conditions were nearly magmatic and the rocks were less likely to fail in a brittle fashion. Specifically, deformed type la quartz veins suggest that the rocks were behaving locally in a plastic fashion. - 39 -Chemical reactions producing potassic alteration of the quartz monzonite stoc-k mainly involved ion exchanges. Examples are the + + ++ addition of K and loss of Na and Ca in plagioclase to form + ++ -orthoclase, and the addition of K , Mg , OH and F to amphibole to produce biotite. As mentioned above, hydrothermal biotites can be distinguished from those of igneous origin on the basis of texture and pleochroic colour. The colour change, observed in thin section, from reddish brown in primary biotite to orange-brown in secondary biotite suggests that the composition has been altered. Liberation ++ of TiO and Fe from the igneous biotite are the most likely 2 changes as oxide minerals including magnetite, ilmenite and rutile are common close to secondary biotite. Hydrothermal biotites in the country rock change from pale orange-brown to greenish brown with increasing distance from the stock. This can be explained by the a decrease in Mg to total Fe ratio, or by partial alteration to chlorite. Chlorite^ compositions in the altered volcanic rocks were reported by Dahl and Norton (1967) to show a similar trend from high to low Mg to total Fe ratios outwards from the stock. Similar observations have been made at-Bingham (Moore and Czamanske, 1973) and at Ely and Santa Rita (Jacobs and Parry, 1976) where hydrothermal biotites nearer to the center of the system are significantly richer in phlogopite component (MgO) and depleted in TiO with respect to primary 2 - 40 -biotites . Early vein generations at Berg (Table 2.2: types la, lb, 2a and 2b) were contemporaneous with pervasive alteration. Type la veins are the earliest and are generally irregular in shape implying plastic conditions in the wall rock as noted above. Nearly magmatic o temperatures of up to 800 C have been obtained from similar veins (i.e. similar mineralogy, form and alteration assemblage) at Santa Rita (Jacobs and Parry, 1976); at Bingham earliest quartz veins gave. o o homogenization temperatures of 640 C to 725 C (Roedder, 1971). Type 2a and b veins occur near the periphery of the stock and in the adjacent country rock. In this vein type quartz deposition was accompanied by sulphide and anhydrite precipitation. Sulphide deposition could have resulted from several causes that include: sudden cooling due to pressure release, Eh-pH changes due to wall rock alteration reactions, direct chemical interaction with the wall rock (i.e. replacement of iron bearing minerals). Sulphide precipitation can be generalized by reaction 1 (cf . Beane, 1982): + ++ + Cu + Fe + 2H S + 1/40 = CuFeS + 3H + 1/2H 0 1_ 2.2 2 2 Variable amounts of disseminated mineralization in all parts of the deposit suggest that wallrock/fluid interaction must have played an important role in the deposition of sulphides. Furthermore, replacement of iron-bearing minerals by copper - 41 -sulphides and pyrite is common and may be generalized by reactions 2 to 4: + + Fe 0 + 3Cu + 6H S + 1/40 = 3CuFeS + 3H + 9/2H 0 2 3 4 2 2 2 2 or + KFe(AlSi) 0 (OH) + 4Cu + Fe 0 + 6H S + 3/40 = 3 10 2 3 4 2 2 • + KA1 Si 0 + 4CuFeS + 8H 0 + 0 + H 3 3 8 2 2 2 or + + 2KFe AISi 0 (OH) + Cu + 2H S + 0 + 12H = 3 3 10 2 2 2 - + Fe Al Si 0 (OH) + CuFeS + 2K + 3SiO' + 6H 0 4 52368 2  2 + Note that reactions 1, 2 and 3 liberate H ions into the solution + + •with the effect of decreasing the K to H ratio, at least locally + adjacent to veins. If sufficient H is liberated the solution chemistry is stable with.respect to sericite, causing destruction of orthoclase. This probably explains the presence of thin sericite envelopes around many type lb and 2 veins in the orthoclase zone. The association of anhydrite with sulphides in type lb and 2 - 42 -signifies a third possible precipitation mechanism that has been documented by Holland and Malinin (1979). Cooling of a magmatic o o hydrothermal fluid from 600 C to 400 C causes oxidation of SO 2 to H SO (equation 5): 2 4 4H 0 + 4S0 = H S + 3H SO 2 2 2 2 4 Increased SO activity of the solution in the presence of CaCl 4 '2 (Ca liberated during orthoclase replacement of calcic plagioclase) will cause anhydrite precipitation (equation 6): CaCl + H SO = CaSO + 2HC1 2 2 4 4 Removal of SO from solution concomitantly raises the H S 4 • 2 activity thus promoting sulphide precipitation and sulfidization reactions. Molybdenite generally is restricted to type 2 veins that occur in a narrow annular zone adjacent to the outer margin of the stock. This zone is outlined most clearly by grade distribution of MoS (Panteleyev, 1981) and by statistical methods (Fig. 3.4) 2 • Fluorine enrichment of the stock, as demonstrated in Heberlein et al . (1984), indicates that molybdenum was most likely transported in o the hydrothermal fluid as fluoride complexes (e.g. MoF and MoO F ) 4 3 and possibly as chloride, disilicate (Isuk- and Carmen, 1981) and molybdate complexes (Westra and Keith, 1981). Because the solubility of molybdenum is extremely temperature dependent (Smith et ..a 1 . , - 43 -1980), cooling of outward migrating, molybdenum-bearing hydrothermal fluids would.result in rapid deposition of molybdenite in a confined zone. Bloom (1983) inferred other controls for molybdenum deposition based on fluid-mineral equilibria. These involved reactions of fluorine bearing phases with wall rock minerals, particularly orthoclase under isothermal conditions. Depending on the oxidation state of the molybdenum ion certain reactions can be written to demonstrate their relationship, such as (Bloom, 1983): 3KAlSi 0 + MoF + 2H S = 3 8 4 2 o KA1 Si 0 F +6S10 + MoS + 2H 0 + 2KF _7 3 3 10 2 2 2 2 or + 3KA1S1 0 + 4MoO F + 8H S + 4H = 3 8 3 2 o KA1 Si 0 F + 2KF + 6Si0 +4MoS +10H +70 8 33 10 2  2 2 2 Note that both quartz and muscovite (fluoromuscovite) are formed; both minerals occur in type 2 veins'or their envelopes (Table 2.2). Precipitation of molybdenite (equation 10) also can result from destabilization of disilicate complexes by HC1 (equation 9) + + in the presence of Na or K if reduced sulphur is available in. solution : -44.-+ ++++ 2Na + Mo Si 0 + 2HC1 = 2Mo 2 2 5 + 2SiO .+ 2NaCl + H 0 2 2 9 ++++ + Mo + 2H S = MoS 2 2 + 4H 10 No temperature data are available for vein types' a.t Berg, however fluid inclusion studies from similar deposits have produced a range of temperatures for quartz in the molybdenite bearing veins. For example, homogenization temperatures from 350 o C (Qz-MoS -Or-Ah veins from Mineral Park, Arizona: Wilkinson e_t 2 o al . , 1982) to 650 C (Qz-MoS vein at Bingham: Moore and Nash, . 2 1974). Veins exhibiting potassic alteration envelopes (i.e. orthoclase, biotite and quartz) have yielded temperatures of 525 C at El Salvador (Sheppard and Gustafson, 1976) and 300 C to 370 C at Sierrita (Preece and Beane, 1982) implying that early vein related alteration occurred at moderate to high temperatures. Salinity determinations from fluid inclusions in these veins gave high values (i.e. in the 37 to 41 wt.% NaCl equivalent range at Sierrita) and imply that fluids responsible for this type of veining are of magmatic hydrothermal origin. 2.5.3 Alteration of. Country Rocks Hydrothermal alteration of the hornfels to the biotite zone at Berg reflects a sequence of physical and chemical changes in the escaping magmatic hydrothermal fluids as they permeate wall rocks of different bulk chemistry and move away from the heat source. o o o - 45 -Models of fluid flow and ore transport in porphyry copper systems (Norton, 1982;- Rose, 1970) imply that initial movement of fluids is upwards and away from their magmatic source and that interaction with inward migrating, heated 'meteoric waters occurs in a zone of mixing at some distance from the intrusive contact. This mixing zone probably is represented by the transition from the biotite zone to the propylitic zone at Berg. A gradation in alteration mineral assemblages and mineral compositions outwards through the. biotite zone is present. Close to the intrusion the magmatic hydrothermal fluids interacted with the country rocks and produced an assemblage dominated by biotite. Biotite development (instead of orthoclase) reflects the bulk chemistry of the biotite hornfelsed volcanic rocks which were relatively rich in Fe, Mg and Ca. Pre-existing ferro-magnesian minerals were replaced by Mg-rich-biotite and at the same time ++ Fe and TiO were liberated as in the orthoclase and 2 orthoclase-biotite zones. A similar zone is developed at the Christmas porphyry deposit in Arizona (Koski and Cook, 1982). Deposition mechanisms for the inner part of the biotite zone at Berg were probably similar to those of the orthoclase-biotite zone. However, more abundant pyrite bearing veins suggest that Fe was available in solution. The most likely source for reduced Fe was from biotitization reactions in the stock and surrounding country rocks. Outward migration of Fe and sulphur is reflected in the pronounced increase in the modal abundance of pyrite with - 46 -distance from the stock. The iron traveled away from the intrusion in.solution to be deposited.in veins and disseminations as chalcopyrite and/or pyrite. The outward disappearance of anhydrite and the onset of chloritization reactions signify increased mixing of the magmatic hydrothermal fluids with groundwaters. Mixing of fluids results in the sudden dumping of dissolved components from ++ + solution. In addition to iron these include Ca and Na which are incorporated into carbonate and albite in the propylitic zone. Mineralogical changes outwards in the biotite zone at Berg reflect changes in fluid chemistry caused by mixing. The biotite -anhydrite and the biotite subzones are of" dominantly magmatic hydrothermal origin, whereas the biotite-chlorite subzone and propylitic zone are of mixed or meteoric dominated origin. Onset of meteoric dominated hydrothermal processes is indicated by the appearance of chlorite after biotite, and the disappearance of anhydrite. As anhydrite is deposited only from hydrothermal fluids at near magmatic temperatures, its disappearance can be used to delineate the outer limit of magmatic hydrothermal alteration. Anhydrite was used in a similar way at Red Mountain by Corn (1975) to outline the extent of the potassic alteration zone. The interval, between the disappearance of anhydrite and the complete absence of biotite by chloritization represents the zone of magmatic hydrothermal and meteoric fluid mixing. It is also coincident with the outlined zones of maximum fracture intensity and potential ore bodies, thus suggesting that mixing was a major - 47 -control in the localization of mineralization. Propylitic alteration occurring outside of the mixing zone (Figs. 1.3 and 2.1) was formed by meteoric dominated fluids. Bulk chemical changes accompanying propylitization are minor. However there is a pronounced increase in total iron due to abundant pyrite in the overlapping pyrite halo. Many porphyry deposits have similar characteristics (cf_. El Teniente: Camus, 1975 ; Panguna: Ford, 1976). 2.5.4 Thermal Collapse Cooling of the Berg quartz monzonite led to the inward migration of peripheral meteoric fluids. Lateral thermal collapse had the effect of shifting the barrier between magmatic dominated-and meteoric dominated fluids inwards over earlier biotite alteration. This resulted in peripheral areas of the biotite zone undergoing alteration to, first, green biotite, and then to Fe-rich chlorite.to form a propylitic assemblage. At Berg retrograde propylitization is characterized by zones of intense chloritization restricted to areas of maximum fracture intensity in biotitized rocks. Where rocks are relatively unfractured earlier biotite is preserved. These areas are only locally propylitized adjacent to type 3b veins (Table 2.2) that probably acted as channelways for the encroaching meteoric waters. Mineralogical changes suggest that the. encroaching fluids with relatively low K to H ratios reacted at - 48 -relatively low temperature with rocks high in Ca, Fe and Mg. Temperature estimates for the propylitic assemblages by Sheppard et o al . (1971) suggest temperatures below 400 C and possibly as low as o o 160 C to 220 C. Inward encroachment of meteoric fluids occurred in two stages at the Berg deposit. Retrograde propylitization of the biotite zone and porphyry stock (as shown by the presence of Type 3b veins, chloritized biotite and epidotized plagioclase) preceded downward collapse of the system. Retrograde alteration of the quartz monzonite to a phyllic assemblage of quartz, sericite and pyrite (Plate 2.7) resulted from cooling of the stock and a decline of magmatic hydrothermal fluid output which allowed groundwaters to descend into the system. Intensely fractured margins to the stock and wallrock composition controlled the development of this alteration zone. Areas with high fracture intensity allowed heated ground waters to percolate deeply into the stock where potassium and aluminum rich rocks favored phyllic assemblage development. Biotite hornfels wall rocks were only weakly sericitized due to their more mafic corn-position (Plate 2.8). Here the development of chlorite with sericite alteration in envelopes on late quartz veins documents thermal collapse. This implies that phyllic alteration and retrograde.propylitization are similar in origin; the former occurs in peripheral areas where rocks are calcium, iron and magnesium rich, and the latter in fractured zones that had been, altered previously by magmatic hydrothermal fluids that had left potassium and aluminum rich rocks. - 49 -Low copper grades and increased pyrite to chalcopyrite ratios occur where rocks have been phyllically altered; textures suggest that pyrite has replaced pre-existing oxide and sulphide minerals. Similar observations from many other deposits suggest that late phyllic alteration of the type seen at Berg is not uncommon and that considerable modification of grades occurs. Brimhall (1980) suggests that fluids responsible for phyllic alteration (characterized by high acidity, low oxidation and high sulphidation potentials) actually leach base metals from pre-existing mineralized zones and replace original sulphides with pyrite, and silicate assemblages with sericite . 2.6 CONCLUSIONS Re-evaluation of the alteration and mineralization characteristics of the Berg porphyry copper-molybdenum deposit has led to the following conclusions: 1) The 50 Ma Berg quartz monzonite stock was emplaced into a zone of hornfels that had previously formed around an older quartz diorite intrusion. This hornfels zone acted as a brittle medium promoting fracture development during the emplacement and cooling of the Berg stock. 2) Fractures developed around the Berg stock acted as channelways for magmatic hydrothermal fluids that were responsible for potassium metasomatism of the quartz monzonite and surrounding -50 -hornfelsed volcanic rocks. 3) Initial* ore mineral deposition probably occurred by simple replacement reactions (of sulphides for iron bearing igneous minerals) or by reaction of iron (liberated during biotitization) with copper ions and reduced sulphur in solution. Cooling accompanying sudden pressure release likely was an important precipitation mechanism within the intrusion. Later ore mineral deposition occurred at lower temperatures (inferred from phyllic and propylitic assemblages) by mixing with cool, less acid meteoric waters that encroached inwards towards the stock. Precipitation occurred in a zone of mixing (outlined by the disappearance of anhydrite and the onset of retrograde propylitization) by disassociation of base metal chloride and bisulphide complexes. 4) Potential orebodies are localized within zones of maximum fracture intensity that coincide with altered biotite hornfels. Where there was no pre-existing hornfels (i.e. on the west side of the stock) alteration zones are telescoped and ore mineralization is weak. Applications of this study to property and regional exploration include: 1) Exploration on a regional scale should look for ore zones around 50 Ma monzonite stocks which have intruded hornfelsed zones formed by earlier dioritic and quartz dioritic intrusions. 2) Thin section and hand specimen analysis can be used to indicate favorable potassic alteration of such hornfels. This - 51 -alteration can also be demonstrated using simple major element ratios to compare potentially altered rocks with fresh regional equivalents. 3) Detailed surface mapping should concentrate on fracture and vein density and distribution, alteration type and sulphide, occurrence (including pyrite to chalcopyrite ratios). 4) Diamond drill-holes to test potential ore zones should be located over zones of intense fracturing and potassic alteration. - 52 -CHAPTER 3 MODIFICATIONS OF PRIMARY GEOCHEMICAL PATTERNS BY LEACHING AND SUPERGENE ENRICHMENT 3.1 INTRODUCTION Geochemical exploration for porphyry copper-molybdenum deposits has relied on the detection of secondary dispersion haloes formed by these elements (Coope, 1973). Recently, however, there has been an improvement in both our understanding of the genesis of porphyry mineralization (Lowell and Guilbert, 1970; Rose and Bert, 1979 Burnham, 1979, Titley, 1982) and in 1ithogeochemical data for trace element distributions in porphyry systems (e.g. Olade and Fletcher, 1975, 1976, and Chaffee 1976). Application of these data is limited by the lack of information on the influence of supergene processes on the primary geochemical patterns. This chapter, therefore, reports firstly on the geochemical patterns in the hypogene zone of the Berg porphyry copper molybdenum deposit, and secondly on the modification of these patterns by supergene processes . 3.2 GEOCHEMICAL ANALYSIS 3.2.1 Sampling Outcrops were' sampled and core collected from 13 diamond drill holes on a north-south section of the deposit. Drill core was logged using the GE0L0G system (Blanchet and Godwin, 1972 ; Godwin e_t. al . , - 53 -1771 111 „7nr t A i 21 o QFP QMP QPP PBQP Breccia Quartz Diorite Hornfels tt 'tVtV-tVtV-* t.t.t • t' J t t t x> . X X X X X X + + + + + \+ + -t-• + + + tt t t /X X X X X x) X X +• + + + + + + + + + + + +1 +• + + + + X XX >l \+ + + -t-•+ +J + + X X X v X 2 5 300m A A A A Figure 3.1 Locations of diamond drill holes sampled for this study. - 54 -1984) and every alternate 10 ft. interval was sampled; a total of 450 samples we're taken (Appendix C). Wherever possible chip samples were collected from outcrop within a 50 ft. radius of each drill site. Precipitate and stream sediment samples were collected from the main drainages on .the property (Red and Pump Creeks). Fine sediment samples were taken at 150 ft. intervals along the entire length of each creek; precipitates were collected over several weeks from six locations. At all locations water pH was determined using liquid indicator solution. 3.2.2 Sample Preparation and Analysis Rock and stream sediment samples were reduced to minus 100 mesh by repeated crushing and pulverizing in a jaw crusher and ceramic disc mill. Precipitate samples were homogenized using an agate pestle and mortar. Digestion was by hot concentrated nitric-perchloric acids an.d copper, molybdenum, zinc, lead, cadmium, nickel, cobalt, silver and manganese were determined by flame atomic absorption (Appendix A). Major elements were determined on the same samples by X-Ray fluorescence (XRF) using 10 g pressed powder pellets. Fluorine was determined by specific ion electrode after a sodium car bonate/potas si urn nitrate fusion. Sequential extraction techniques were used to study distribution of elements (particularly copper) between mineral - 55 -Sequential Extraction Extraction Phases Dissolved 10% HCI Ammonium Oxalate KCI03/HCI HNO^/HCIO^ (4:1) Carbonates, adsorbed Amorphous oxides Sulphides Silicates Figure 3.2 Sequential extraction procedure for drill core samples. -.56-phases in rocks and stream precipitates. The procedure for core samples is summarized in Figure 3.1 (details of the sequential extractions used on outcrop samples are detailed in Appendix A). Extract solutions were analysed for copper, molybdenum, calcium and iron by flame atomic absorption. 3.2.3 Quality Control Estimation of total precision for all geochemical analyses were determined using the method of Thompson and Howarth (1976, 1978). Precision estimates are summarized in Table 3.1. Table 3.1. Analytical Precision (95% level; n= 29) Oxide Precision Element Precision Cu . 15% Mo 25% Pb 30% Zn 15% Ni 20% Co 20% Ag 35% Mn 25% F • 60% Si0„ Al90o Fe^O^ MgO CaO Na„0 K 6 Ti0„ P 0 r2U5 1% 5% 15% 10% 10% 20% 10% 15% 20% After method .of Thompson and Howarth (1976, 1978) 3.3 RESULTS 3.3.1 Geochemical Patterns in the Hypogene Zone: Major Elements Major element distribution within the hypogene zone strongly reflects the compositional variations of the host rocks (Fig. 3.3) - 57 -%SiQ2 %Fe203 %MgO %CaO %TiQ2 QMP | PBQP | HORN f QMP PBQP f HORN |< QMP | PBQP | HORN | QMP | PBQP | HORN | QMP | PBQP |, HORN \ 76 12 13 12 74 72 11 10 12 11 11 10 20 70 9 10 9 68 66 < > < > 8 7 < > 9 8 8 7 64 6 7 6 62 60 58 56 < 5 4 3 2 > < 6 5 4 3 < > < 5 4 3 2 < > < 10 < : i > 54 52 1 o 2 1 < > 1 0 00 I Figure 3.3 Major element geochemistry of rock units from the mineralized zone. The most obvious pattern is the sharp contrast between the altered hornfelsed volcanic rocks and the quartz monzonite stock. The former are characterized by high Fe 0 , TiO and MgO contents due to an 2 3 2 ' abundance of mafic minerals (hornblende, biotite and chlorite). Figure 3.3 illustrates the major element variations for each rock type from the mineralized zone. Variation in the major element content within the phases of the stock can be correlated with the relative amount of biotite and plagioclase present . CaO concentrations largely reflect the presence of anhydrite, gypsum and calcite in late hydrothermal veins (Heberlein and Godwin, 1984). Distribution of Na 0 and K 0 reflects hydrothermal alteration. 2 2 •Anomalously high K 0 concentrations (i.e. greater than 4.3% - from 2 log probability graphs) are arranged in an annular zone that corresponds to areas of secondary biotite and orthoclase alteration (Figs. 1.3 and 2.1). Na 0 is concentrated towards the center -of the 2 stock with values decreasing gradually outwards. Rock type similarly influences Na 0 distribution. The PBP unit (Fig. 1.3) has higher 2 values than the other intrusive phases and this is attributed to a higher modal percentage of plagioclase (19%; oligoclase to andesine). Highest Na 0 values occur in the intrusive breccia pipe 2 south of the stock. 3.3.2 Geochemical Patterns in the Hypogene Zone: Trace Elements Zonation of trace elements within the hypogene zone can be demonstrated by defining 'anomalous' sub-populations by partioning - 59 -(on rock type and alteration) with the aid of cumulative, log probability gr'aphs (Sinclair, 1974, 1976). A statistical summary of the 'anomalous' high populations and low populations for each element is shown in Table 3.2. On a cross section of the deposit (Fig. 3.4), the high population for copper forms a prominent annular zone that straddles the intrusive contact. Within this zone the greatest concentrations of copper occur in the altered hornfels close to areas having a high chalcopyrite/pyrite ratios (Fig. 2.1). Copper grade decreases away from the intrusive contact. Table 3.2 Trace element populations: hypogene zone (n= 241) Element Threshold XI SI X2 S2 Cu 300 1348 1252 109 51 Mo 102 320 243 80 80 Zn 88 153 70 39 25 Pb 23 36 4 10 84 Ni 21 28 6 15 2 Co 16 29 6 13 2 Ag 2.31 2 . ,91 0. .49 1 . 24 0 Thresholds determined by probability graphs (Sinclair, 1974). XI and X2 refer to the means of the high and low populations, respectively. SI and S2 refer to the standard deviations of those populations. All values are in parts per million. Molybdenum also occurs in an annular zone that is entirely enclosed within the copper zone (Fig. 2.1). Highest molybdenum grades are found at the contact of the stock. Silver and fluorine distributions are similar to those of copper and molybdenum, however the silver anomaly is more restricted and the fluorine anomaly is more extensive (particularly to the south of the intrusion). Lead and zinc sub-populations form distal haloes around the ore shell.and - 60 -Q. < O LU z LU O DC LU 0_ (0 -Pb —Zn -Zn -Ag -Mo -Zn -Mo -Pb Pb -Cu Mo -K -Pb < o Z -Ag -Cu K -F —Mo -Ag -Cu -Pb -Pb LU z LU <D O 0. >-I Pb K Ag -Mo —Cu -Zn K -Mo -Ag Cu -Pb -Zn N T T.I, l|v 1 ' Figure 3.4 Element zonation in the hypogene, supergene and leached capping zones at the Berg deposit. Element lines represent the distribution of anomalous populations (Tables 3.2 and 3.3) defined from probability graphs. - 61 -a second, poorly developed halo is inside the cop-per zone. developed within the intrusive, 3.3.3 Geochemical Patterns in the Supergene Zone and Leached Cap Primary trace element zonation patterns (Fig. 3.4; Table 3.3) persist to the surface with little modification by supergene processes. The copper zone becomes wider in the supergene zone with maximum grades at the intrusive contact, whereas silver and fluorine anomalies are absent from the leached cap at the north and south Table 3.3. Trace element populations: supergene (n=98) Element Threshold XI SI X2 S2 Cu 1610 2300 390 1000 700 Mo 90 170 61 60 39 Zn 209 590 235 36 . 18 Pb 21 ' 36 17 10 5 Ag 0.60 2.45 0.55 0.39 0 See Table 3.1 for ex planation sides of the intrusion, respectively. Although hypogene geochemical patterns are largely retained in the supergene and leached cap, there.has been considerable vertical redistribution of elements. This has been investigated using a sequential extraction and inter-element ratios . The sequential extraction technique (Fig. 3.2) allows-the partitioning of copper between carbonate, oxide, sulphide and silicate minerals to be studied. When plotted on a cross section of - 62 -Figure 3.5 Redistribution of copper between carbonate, oxide, sulphide and silicate minerals in the hypogene, supergene and leached capping zones at the Berg deposit. Strip plots display total copper (dotted solid line), sulphide copper (solid line) and carbonate plus oxide copper (dotted line). Shading outlines the enriched zone. - 63 -the deposit. (Fig. 3.5), the results show that sulphides (KC10 I 3 extractable copper) are the principle host for copper. Nevertheless in some areas (BRG DH078 and 085: Fig. 2.1 and 3.5) an increase in 10% HC1 extractable and ammonium oxalate extractable copper (especially near the surface), accompanied by a decrease in KC10 - 3 extractable copper, indicates oxidation is occurring at the top of the supergene zone (SUS) to form a supergene oxide zone. In addition, supergene oxide minerals are found in fault zones and adjacent to mafic dikes that cross cut the mineralized zone. Supergene oxide (SOX) is best developed in drill holes BRG DH078 and 085 but nowhere on the section does SOX copper exceed SUS. Molybdenum shows a similar distribution to copper with molybdenite as the dominant species in the hypogene and supergene zones. Ferrimo1ybdite is widespread in highly oxidized areas where iron oxides are abundant. Other molybdenum minerals have been reported (Panteleyev, 1976, 1981) and include several oxides species (blanchardite; an iron-mo1ybdenum spinel [FeMoO ] and sibolaite; a 4 hitherto unknown molybdenum oxide species [MoO ] (Norton and 2 . Mariano, 1967) . Redistribution of elements is also studied using interelement ratios. In this instance we have used the ratio of trace element concentrations to TiO on the basis that: 2 1) TiO is primarily hosted in resistant minerals such as 2 rutile, ilmenite, and magnetite and hence it is particularly - 64 -resistant to redistribution during weathering, and 2) Concentrations of TiO are reasonably consistent in the 2 intrusion (0.41% + 0.15%) and the altered hornfels (0.91% + 0.20%) Results normalized to the underlying hypogene zone, are expressed by the following ratio: x x M/ (TiO ) HM/R(Ti02) Where "M" represents the element of interest, "x" the supergene or leached capping zone and "h" .the hypogene zone. Table 3.4 TiO ratio data for diamond drillhole BRG DH078 Zone - z — — Cu Mo Pb Zn Ag Mn CAP 0.3 13.0 2 . 8. 0.7 11 .3 1 . 3 SOX 4.2 10 . 2 4.6 1.8 5 . 4 0.6 SUS n . p . n . p . n . p . n . p , . n . P • n . p . HYP 1.0 1.0 1.0 1.0 1 .. 0 1.0 Abbreviations: CAP= leached cap, S0X= Supergene oxide zone, SSX= Supergene sulphide zone and HYP= Hypogene zone, n.p.= zone not present. There is considerable local variation in this ratio.. For example in three samples collected near drill hole BRG DH078, the ratio for copper ranges from 0.299 to 0.336. Nevertheless, when an average value is used, consistent trends emerge. Average ratios of less than - 65 -1.0, therefore imply that the element has been depleted from a zone and values greater than 1.0 imply enrichment. Thus, in drill hole BRG DH078 (Fig. 3.5; Table 3.4), situated.above the water- table, all elements are enriched in the supergene enrichment zone (SUS and SOX zones). In the overlying CAP, copper, manganese and zinc are depleted (leached) but molybdenum, lead and silver are enriched. In BRG DH085 (Fig. 3.5; Table 3.5), close to the water table in an area where the supergene enrichment zone is close to the surface, all elements studied are enriched at the surface. Table 3.5 TiO ratio data for diamond drill hole BRG DH085 2 Zone Cu Mo Pb Zn A 8 Mn CAP n . p . n . p . n . p . n . p . n • P • n . p . SOX 4.2 2.8 3.6 14.0 1 .3 1 .6 SSX 1 . 2 0.8 0.6 1 . 7 1 .4 0.5 HYP 1.0 1.0 1.0 •1 . 0 1 .0 1 . 0 n.p.=zone not present. Ferricretes samples taken from several locations on the property show high values for all elements studied (Cu 950, Mo 2250, Pb 377, Zn 245, Ag 4, Mn 155 and- F 480 ppm) suggesting that elements leached from the capping are being tied up with the limonite minerals. - 66 -3.4 DISCUSSION Trace element distribution patterns in the hypogene zone, with coincident copper and molybdenum amomalies and more distal accumulations of lead and zinc, are similar to patterns reported for other porphyry deposits (Theodore and Nash, 1973; Chaffee, 1976; Olade and Fletcher, 1976). The association of silver with copper and molybdenum zones as well as with the distal lead and zinc zones has been .reported for other deposits e.g. Kalamazoo (Chaffee, 1976). This differs from deposits such as Ely (McCarthy and Gott, 1978) where silver is enriched primarily in the lead-zinc zone. Comparing hypogene patterns to those of the leached capping it is apparent that, except for elimination of zinc due to leaching by highly acidic ground water, the relative patterns (for the elements studied) are only slightly modified. Furthermore, despite oxidation and leaching since the last glaciation (in the Pleistocene) a considerable proportion of copper in outcrop samples is still present either as secondary or, especially in topographic lows, primary sulphides. This in part reflects the rugged topography and the rapid mechanical' as well as chemical weathering of the deposit. Where oxidation and leaching have exceeded mechanical erosion (as is the case at drill hole 78), copper, manganese and zinc have been depleted whereas there is surface enrichment of molybdenum, lead and silver. Enrichment of molybdenum in the Berg gossan and leached cap was also reported by Panteleyev (1976, 1981) and enrichment of both lead and molybdenum is consistent with the presence of - 67 -ferrimolybdite and possible plumbojarosite on may also be immobilized in jarosite, but this Berg. the ha s prop not er ty . Silver been proven at Clastic material in the drainage derived from the deposit should initially contain anomalous concentrations of several elements associated with a variety of weathering products. Thus, copper can be incorporated into sediments as primary or secondary sulphides, as secondary oxide and carbonates (near dikes) or associated with limonite. Molybdenum may be present as molybdenite, ferrimolybdite or oxide minerals, or' together with lead and silver in limonitic gossan fragments and amorphous oxide precipitates. Zinc is generally associated with iron and manganese oxides which precipitated where acidic ground waters encountered neutral surface waters. Continued leaching accompanied by reduction in relief would probably result in a mo1ybdenum-1ead-si1ver-f1uorine signature in rocks at the surface above the deposit. 3.5 CONCLUSIONS The following conclusions can be made from this study 1) Trace elements form distinct annular zones around the intrusion - 68 -within the hypogene zone. These zones are only slightly modified by leaching and supergene processes. Zinc being highly mobile in the supergene environment is removed from the supergene and leached capping. Copper is primarily hosted in sulphides in the supergene and hypogene zones. Development of supergene oxide assemblages in areas of intense leaching is shown by an increase in carbonate and oxide associated copper. There has been considerable vertical redistribution of elements during leaching. In highly leached areas Mo, Ag and Pb are concentrated in the leached capping with respect to the hypogene zone, whereas Zn, Cu and Mn are depleted in the leached cap and supergene zone. Copper, Mo, Pb, Zn, Ag and Mn are all anomalous in the creeks draining the deposit. Cu can be present as detrital primary or secondary sulphides (as a result of rapid physical weathering of the deposit) or associated with Zn and Mn in oxides precipitated directly from solution. Mo can be present as detrital molybdenite, ferrimolybdite or as oxides such as blanchardite and sibolaite. Pb and Ag are associated with jarosite and primary sulphides . A highly leached deposit of this type will show a surface rock Mo-Pb-Ag-F signature over the mineralized zone. - 69 -CHAPTER 4 LEACHING AND SUPERGENE ENRICHMENT AT THE BERG DEPOSIT 4.1 INTRODUCTION Previous chapters primarily have been concerned with hypogene processes that are responsible for the development of mineralization, alteration and geochemical patterns at the Berg deposit and modifications of these patterns by supergene processes. In this chapter mineralogical and geochemical characteristics of supergene profiles from three drill holes (BRG DH076, 078, 080; Fig. 3.1.) are described in detail and a model for topographic control on the development of these profiles is outlined. Hypogene mineralization at Berg is overlain by an extensive blanket of supergene enrichment (Stewart, 1967; Panteleyev, 1981) that varies in thickness from 48 ft.to over 330 ft. A leached capping overlies the enriched zone and its thickness is closely related to the surface topography (Figs. 3.5 and 4.5). Maximum thicknesses of 75 ft. have been recorded from drill holes on or close to the ridge crests. On steep hillsides the cap is thinner, in the. order of three to 15- ft. while on valley floors it is thin (less than 5 ft.) or absent. - 70 -ZONE X O 0. < * UJ (/> QC UJ </> UJ 51 y GYPSUM ^1 Q. >1 MINERALOGY PY, CP.Mo. GY.Cv Cc .09 .Mc.Tn .Cu . Fm.Li I i J_u.. — ___J_L'4— -JJ_1 Figure 4.1 A schematic supergene profile for the Berg deposit illustrating the vertical distribution of primary and secondary minerals. Abbreviations are as follows: CAP=leached capping, SOX=supergene oxide zone, SUS=supergene sulphide zone, HYP=hypogene zone, RSE=residual supergene enrichment zone, ESE=enhanced supergene enrichment zone, Cc=chalcocite, Cp=chalcopyrite, Cu=native copper/cuprite, Cv = covel1ite , Dg = digenite, Fm=ferrimolybdite, Gy=gypsum, Li=limonite, Mc=ma1achite/azurite, Py=pyrite, Tn = tenorite . - 71 -4.2 SUPERGENE ZONATION A generalized vertical profile through the supergene zone showing distribution of supergene and hypogene minerals is illustrated in Figure 4.1. The base of the supergene zone is sharp and delineated by the 'gypsum line' (Panteleyev, 1981; Heberlein et  al . , 1983). This line marks the level where fractures become sealed by hypogene gypsum; this level is interpreted as the maximum- depth of ground water interaction with hypogene minerals. Elevation of the gypsum line crudely parallels surface topography. Three distinct supergene zones have been identified: a supergene sulphide zone (SUS), a supergene oxide zone (SOX) and a leached cap (CAP). Each zone is characterized by an assemblage of secondary minerals . a) the SUS zone is characterized by covellite, digenite and chalcocite (Panteleyev, 1981). These minerals occur as sooty black coatings on, or replacements of, hypogene sulphides (pyrite and chalcopyrite) and as fracture fillings. The SUS zone, is found at or immediately below the water table and is superimposed onto hypogene mineralization. b) the SOX zone, though not universally developed, is present at the top of the SUS. This zone is typified by copper oxides (cuprite and tenorite), carbonates (malachite, and azurite): and sulfates (brochanthite and chalcanthite) accompanied by some limonite. The most widespread SOX mineral is cuprite which occurs as small (100 to - 72 -500 u) euhedral crystals with granular indigenous limonites in boxwork cavities. Tenorite and rare native copper are found as coatings on fractures and in boxworks. Malachite and azurite occur rarely as disseminations, fracture fillings and/or coatings on SOX minerals, but are most abundant close to mafic dikes that crosscut the mineralized zone. In outcrop close to drill hole BRG DH080 these minerals form discrete pellets up to 5 mm in diameter. Other-minerals encountered in the SOX include: antlerite (Panteleyev, 1981) and delafossite (Owens, 1968). c) the CAP zone is ubiquitous to the deposit and extends from the surface down to the enriched zone with gradational contacts. This zone is characterized by an abundance of limonite minerals (goethite, hematite, jarosite, ferrimolybdite and other unidentified species of iron oxides and sulfates) that occur as boxwork fillings after hypogene sulphides (indigenous limonite), as fracture fillings (fringing limonite) and as laminated to botryoidal coatings on outcrops (transported limonite; cf . Blanchard, 1968). 4.2.1 Supergene Profiles Three types of supergene profiles related to topographic environment have been observed at the Berg deposit. Each is characterized by different combinations of supergene zones (CAP, SOX and SUS) and by different geochemical patterns. Geological and geochemical data for three diamond drill holes (BRG DH076, 078 and 080 located in Fig. 3.1) representing the supergene profiles are illustrated in Figures 3.2, 3.3 and 3.4 (GrafLog strip plots). For - 73 -each profile the plots document geological data (rock type [column 1] and visually estimated percentages of alteration and ore minerals [columns 2 to' 9] with the G-Scale [Appendix B]) at. the left of the figure. Geochemical data for copper, molybdenum, zinc, lead, silver, fluorine and manganese are displayed as strip plots on the right hand side of the figures. Details of profiles found in the three holes follow: 1) BRG DH076 (Fig. 4.2) collared in an incised valley at the edge of Red Creek (Plates 1.1 and 4.1) where the water table is at or near surface (depending on season). Here the supergene profile contains coexisting SUS (covellite, digenite and chalcocite) and hypogene sulphides (pyrite and chalcopyrite). Leaching of copper near surface is weak and hypogene sulphides are only partially oxidized and are commonly coated with SUS minerals. These are present in trace amounts to the gypsum line at 120 ft. with highest concentrations between 53 ft. and 80 ft. Trace amounts of SOX minerals occur between 70 ft. and 80 ft. Element strip plots in Figure 4.2 show that supergene enrichment is very weak and only zinc displays any enrichment (enrichment factor [ef] of appro.ximately 2) in the SUS. In outcrop lead (ef = 5) and silver (ef=6+) are considerably enriched while copper, zinc and manganese are depleted . 2) BRG DH078 (Fig. 4.3), collared on a steep south facing slope, intersected a thick, well developed supergene enrichment zone that underlies a thin (13 ft.) CAP, characterized by an abundance of - 74 -PUCER 0EVEL0PM6NT LTD BE«G CU-MQ PORPWPV. PPQP£RTY M3IIIII 'a-3 - i 'ft > > 5?? "3 J-US ±4* • illr •5?T -± = '5 9 a I I p : § 11SI 1 0-• I 0-i I! I I :« i'i 58 I ° » « « i i • • Tit • 13 • I] 3L • • I ! ! | I "{'" } I :>!!!! rrtr » o o o o • j • • ° i 3 8 8 I •"I*"" 1 IN TERNA TIONAL GEOSfSrEWS CORPORArION GRAF. LOG Figure 4.2 GrafLog strip plot for the top 175 ft. of BRG DH076. Vertical supergene zones are defined defined from geological data, illustrated at left. G-Scale symbols (Appendix B) illustrate mineral abundances. Geochemical data is displayed as histograms at the right - 75 -limonite and a lack of secondary copper minerals. Supergene enrichment occurs in two distinct zones. An upper Residual Supergene Enrichment zone (RSE: Fig. 4.1) and a lower contiguous Enhanced Supergene Enrichment zone (ESE: Fig. 4.1) Geochemical patterns in Figure 4.3 show that the ESE is highly enriched in copper (ef=6), molybdenum (ef= 2), zinc (ef=1.5) and silver (ef=1.2) while the RSE is only weakly enriched in copper (ef=2), molybdenum (ef= 2), zinc (ef= 1.2), lead (ef=l.l) and silver (ef=1.4). In the overlying CAP molybdenum (ef=10) and silver (ef=6) are considerably enriched but copper, zinc and manganese are depleted. 3) BRG DH080 (Fig. 4.4), close to the ridge crest, contains'a thick (60 ft.) partially leached and oxidized zone with abundant limonite mantling partially decomposed hypogene sulphides. Small amounts of SUS are present. Hypogene sulphides increase in abundance to the gypsum line (260 ft.). Limonite decreases and is absent below 66 ft. Geochemical patterns in this profile show little enrichment in the SUS zone with copper, (ef=1.3), silver (ef=1.3) and fluorine (ef=1.5) displaying weak enrichment. Other elements, except silver (ef=2), maintain hypogene grades (ef=l) to the surface where limonite is most abundant. - 76 -DATE: M/02/14 PLACER DEVELOPMENT LTD BERG CU MO PORPHYRY, PROPERTY, B.C. LE6END: KM-OI is s: i 3 HALE i* -n •>ECT Sal CDZ COUJ o o a -7-n • - 3< -> ».« - 3< > -> . -J1 -3->».o - 3< 100 o- 3* -J--y -ff-IM.O-- 3" I I 71 mv> i 11% ( < II i • • :1 • • DNE' too . — — ISO o- ^— — I -• - — - ISO 0-i 5 ' 5 j INTERNATIONAL GEOSYSTEMS CORPORATION GRAF » LOG Q»T£;APRIL 10/64 PLACER DEVELOPMENT LTD BERG CU-MO PORPHYRY PROPERTY B.C. LCBEM): KM-41 fjncnHoeo fill sou i* -oo -1> If [J--- \r • j • I • )• ) I - V - 3 J" too 0- ^ :)• »>•• * -u--ii-! SOD 0 [}-• u-• ti ll SSO 0- ^ -'.)' • ;7--3-- :r i 7 if »18 •3 ? M I :i • • • z: • i • ] i :8 3 £ s s T I] I] -Ji ] :i i zi z i • i "-P i i j 4-,-:««* s» j :s » » s s ZT tzzi ZD "J Jz :z • • i :• ZD • 8 K I toe.o- -Zl :zi 13 Z) i • M 8 i i £8 81|i °iI 5 8 8 IT :ZJ IT ID :ZI Z) :z :zi o 5 S 8 I 5 INTERNATIONAL GFOSYSTEMS CORPORATION GRAF » LOG 4.2.2 Leaching and Oxidation Indices Supergene zones in Chapter 3 were identified quantitatively-using a sequential extraction. Here the same approach.is used to define oxidation (0 ) and leaching indices (L ). These indices are i i. ratios of specific extractions to each other and to total copper values in the hypogene zone. These ratios quantify the intensity of copper leaching in the CAP for different topographic environments. 1) Leaching index (L ): This is a measure of the amount of metal i depletion at the surface and is expressed by: c h L = 100[ (Cu )/ (Cu )] i t t where: c=CAP,.h=hypogene, Cu = copper, t = total copper (HNO /.HC10 3 4 digestion). L is therefore the percentage of copper remaining i at the surface in a particular location. 2) Oxidation index 0 : This value is a measure of the partitionin; i of a copper between oxide and sulphide minerals in the CAP and is expressed as: c c 0 = 100[ Cu / Cu ] i ox sx where: c=CAP, Cu=copper, ox=10%HCl plus NH OX extractable copper, 4 sx=KC10 extractable copper. 0 is expressed as a percentage with 3 i high values indicating more intense oxidation. - 79 -Table 4.1 summarizes the indices for copper in drill holes BRG DH076, 078 and. 080. Results show that all locations are at least partially oxidized and variably leached. 0 values suggest that in i spite of the apparent absence of SUS from the CAP at least 50% of the copper is present in these minerals (note that the sequential extraction technique used removes oxide copper before sulphides are attacked by a sulphide selective KC10 extraction, c_f. Olade and 3 Fletcher, 1976). Maximum leaching and oxidation has occurred in the CAP of BRG DH078 (steep hillside) where 8% of the hypogene copper grade remains at surface. An 0 value of 50% implies that half of i this copper is associated with oxide minerals (limonites) and the remainder as microscopic SUS minerals. Leaching is at a minimum at BRG DH080 (ridge crest) where 50% of the hypogene grade remains in outcrop; 35% is associated with oxide minerals. BRG DH076 displays modest amounts of leaching and oxidation in the CAP where 17% of the hypogene grade remains (as SUS and hypogene minerals), 30% in oxide minerals . Table 4.1 Leaching and oxidation indices Index Drill hole 080 078 076 L. 10% 25% 8% 01 ' • 29% 83% 15% _ I 4.3 DISCUSSION A model for topographic control in the development of supergene profiles at Berg (and other deposits) must take into account the - 80 -variable nature of the near surface zone of oxidation. Studies of supergene processes by Blanchard ( 1968) and others (cf . Anderson, 1982; Emmons, 1917; Sato, 1960) have shown that the ability of groundwater to react with sulphide minerals in the zone of oxidation is controlled by: 1) fracture permeability that restricts the free movement of air, rain and other surface water to the water table, 2) the abundance of sulphide minerals, particularly along fractures (as is typical for hypogene mineralization) over a large area, 3) removal by flushing of oxidation products that would otherwise shield fresh sulphides from further oxidation, 3) reactivity or neutralizing ability of the wall rocks, 4) temperature (chemical activity is approximately doubled with o each 10 C increase in temperature within the temperature range likely (Blanchard, 1968), 5) depth to water table, and 6) climate . At Berg three of the above factors can be considered to be uniform'for the purpose of this discussion. Wall rock reactivity is assumed to be low as- the_ dominant gangue minerals are quartz and feldspar. Fracture intensity, although difficult to quantify is high in the near surface environment (> 50 fractures per m of drill core; Fig. 2.1). Temperature of ground water (and hence reactivity) is assumed to remain constant throughout the summer season. - 81 -Figure 4.5 is a schematic cross section of part of the Berg deposit (Fig 2.1). Supergene profiles are plotted with observed gypsum line (GL) and interpreted water table (WT) levels (derived from the approximate depth of SUS mineralization). Bearing in mind the controls on oxidation processes listed above, conclusions about the oxidation and leaching potential of ground waters for each topographic environment can be made. Partial leaching and oxidation of the CAP at the ridge top (BRG DH080; L =50%, 0 =29%) can be explained by rapid migration i i of ground-waters (broken arrows) downhill from the zone of non-saturation (stippled) leaving all but the smallest fractures air filled for much of the time. Hypogene sulphides oxidize relatively slowly under these conditions, and oxidation products build up a protective mantle that retards further oxidation. Oxide (limonite) mantles are observed on most sulphide grains from this environment. Periodic recharge of this zone by meteoric waters accelerates oxidation by leaching soluble oxidation products and exposing fresh surfaces for oxidation. Copper in the weakly developed supergene. enrichment zone also can be derived from the downhill migration of metal bearing ground-waters (solid arrows) rather than vertical migration to the water table. Limonite fracture fillings in the hillside environment and intense leaching (L =8%) suggest that the non-saturated zone is i being continually flushed by acidic ground waters (sulphuric acid derived from oxidation uphill) and that fractures are wet most of - 82 -the time. Contribution to and dilution of the ground-water by meteoric waters is minimal on the hillside as most water is removed as runoff. The presence of only small amounts of copper as sulphide is suggested by an 0 value of 83% in the CAP at BRG DH078. The i shallow depth of water table implies that mechanical erosion (mass wasting) is keeping pace with the downward migration, of the water table. SOX overprinting (vertical hatching) on SUS in BRG DH078 indicates that a recent drop in water, table has occurred. As SOX is not widespread at Berg this cannot be a regional phenomenon (cf . Casino: Godwin, 1976). Development of the SOX is more easily explained by a seasonal fluctuation in water table level in a zone of intermittent saturation (WT1 to WT2; Fig. 4.1). This contributes to the strong- supergene enrichment observed at this location by periodically leaching and oxidizing the upper portion of the original SUS and redeposition of copper in the ESE at the lower, water table level (WT2; Fig. 4.1, fine cross hatching; Fig. 4.5). Coexistence of hypogene and SUS minerals, low L and 0 values i i (8 and 15% respectively) and the presence of springs, and seepages at. the valley floor (Fig. 4.5; Plate 4.1) suggest that the water table is at the surface in BRG' DH076. Here acidic metal bearing ground-waters emerge at surface and deposit limonite minerals to form thick ferricrete platforms in the valley floors. Below surface SUS minerals are deposited onto freshly exposed hypogene sulphides. Development of a strongly enriched zone is prevented by constant removal of SUS by mechanical erosion. - 83 -076 Figure 4.5 A schematic cross section of the Berg deposit illustrating the relationship between supergene zones, water table (WT), gypsum line (GL) and topography. Arrows indicate the probable path of migrating ground water as it travels from hill top to valley floor . - 84 -4.4 CONCLUSIONS Although a limited data base has been used in this study the conclusions below suggest that a close relationship exists between the type.and intensity of supergene profile and topographic environment. These are as follows: 1) Supergene enrichment, is best developed where zones with low Py/Cp ratios (< 3:1) coincide with areas of maximum fracture intensity (i.e. close to the intrusive contact: see Panteleyev, 1981: Figures 24 and. 25; Fig 2.4). 2) The gypsum line (GL) represents the maximum depth of groundwater penetration. This line separates supergene above from hypogene below. The supergene zone can be divided into mineralogically distinct zones that are spatially related to the water table (WT). SUS zone occurs at and below the water table and coincides with a zone of groundwater saturation. SOX, found above the water table is developed in a zone of intermittent saturation and the CAP zone is developed in an unsaturated zone. 3) The type of supergene pro topographic environment. In vail by down cutting creeks is procee leaching, supergene development file developed is dependent on ey floors where mechanical erosion ding more rapidly than oxidation and is weak. In this environment - 85 -Plate 4.1 View towards the head waters of Red Creek. Note the strongly developed gossan; yellow areas are jarositic and overlie the potential orebody. Active precipitation of ferricretes in creek beds indicates that leaching processes are active today. - 86 -hypogene sulphides remain, albeit partially altered, at surface with or without secondary SUS minerals. In the ridge crest environment chemical weathering is proceeding more rapidly than mechanical weathering to produce a thick leached capping underlain by weak SUS mineralization. Seasonal water table fluctuation causes the upper part of the SUS at the steep hillside environment to become oxidized to a SOX assemblage. A) Restricted development of SOX mineralization is due to local water table movements rather than a regional uplift event. 5) Malachite/azurite mineralization is localized close to mafic dikes that were a souce of carbonate for soluble copper reduction. - 87 -REFERENCES Anderson, J.A., 1982. Characteristics of leached capping and characteristics of appraisal: i_n Titley, S.R. (ed.), "Advances in Geology of Porphyry Copper Deposits, Southwest North America": Univ. Ariz. Press, Tuscon, Chapter 12, p. 275-295. Barnes, H. L . , 1979. Solubilities of Ore Minerals: -i_n Barnes, H.L. (ed.), "Geochemistry of Hydrothermal Ore Deposits": Holt, Rinehart and Winston, Inc., New York, p. 404-460. Beane, R.E., 1982. Hydrothermal alteration in silicate rocks: jLn. Titley, S.R. (ed.), "Advances in Geology of the Porphyry Copper Deposits, Southwest North America": Univ. Ariz. Press, Tuscon, Chapter 5, p. 117-137. Beaudoin, P. and Mortensen., E., 1973. Final report, Berg property exploration activity, 1973: unpublished private report, Canex Placer Limited, 10 p. Blanchard, R., 1968. Interpretation of Leached outcrops: Nevada Bur Mines Bull. 66, 196 p. Blanchet, P.H. and Godwin, C.I. , 1972. "GE0L0G system" for computer and manual analysis of geological data from porphyry and other deposits. Econ. Geol., v 67, p. 796-813. Bloom, M.S., 1983. Geochemistry of fluid inclusions and hydrothermal alteration in vein and fracture controlled mineralization, stockwork molybdenum deposits: unpublished PhD Thesis, The University of British Columbia, 151 p. Brimhall, G.H., 1980. Deep hypogene oxidation of porphyry copper potassium silicate protore at Butte, Montana: a theoretical evaluation of the copper remobilization hypothesis: Econ. Geol., v. 75, p. 384-409. Burnham, C.W., 1979. Magmas and hydrothermal fluids: ±n_ Barnes, H.L., (ed.), Geochemistry of Hydrothermal Ore Deposits, 2nd ed. New York, Wiley Interscience, p. 76-136. Camus, F., 1975. Geology of the El Teniente orebody with emphasis on wallrock alteration: Econ.Geol., v. 70, p. 1341-1372. Carter, N.C., 1974. Geology and geochronology of porphyry copper and molybdenum deposits in west-central British Columbia: unpublished Ph.D. thesis, The University of British Columbia, 236 p. Carter, N.C., 1981. Geology and geochronology of porphyry copper and molybdenum deposits in west-central British Columbia: B.C. Ministry of Energy, Mines and Pet. Res. Bull. 64, 150 p. Chaffee, M.A., 1976 . Geochemical exploration techniques based on - 88 -distribution of selected elements in rocks, soils and plants, Mineral Butte copper deposit, Pinal County, Arizona. U.S. Geol. Surv., Bull., 1278-D, 55 p. Coope, J.A., 1973. Geochemical prospecting for porphyry copper type mineralization - a review. Jour. Geochem. Expl., v 2, p. 81-102. Corn, R.M., 1975. Alteration-mineralization zoning, Red Mountain, Arizona: Econ. Geol., v. 70, p. 1437.-1447. Dahl, C.l. and Norton, D., 1967. Mineralogical and petrographic service report,- Berg project: private report, Kennco Explorations, (Western) Limited, 15 p. Drummond, A.D. and Godwin, C.I., 1976. An empirical evaluation of alteration zoning: CIM., Special Vol. 15, p. 52-63. Eastoe, C.J., 1978. A fluid inclusion study of the Panguna. porphyry copper deposit, Papua New Guinea: Econ. Geol., v. 73, p. 721-748. Emmons, W.H., 1917. The Enrichment of Ore Deposits: U.S. Geol. Survey Bull. , 625, 530 p . Feather, C.E. and Willis, J.P., 1975. A simple method for background and matrix correction of spectral peaks in trace element determination by X-ray fluorescence spectrometry. X-ray. Spec., v 5, p. 41-49. Ford, J.H., 1976. A chemical study of alteration at the Panguna. porphyry copper deposit, Bougainville, Papua New Guinea: Econ. Geol., v. 73, p. 703-720. Gilluly, J., 1946. The Ajo mining district, Arizona: U. S . Geol. Survey Prof. Paper 209, 112 p. Godwin-, C.I., 1976. Casino: in_ Porphyry Deposits of the Canadian Cordillera: C.I.M. Spec. Vol. 15, Paper 35, p. 344-354. Godwin, C.I., Blanchet, P.H., Chen. T., Mah, H.J., and Champigny, N., 1982. Applications of the computer-based GE0L0G System to exploration and development data: Western Miner, February, p. 77-82. * Godwin, C.I., Champigny, N., Heberlein, D.R., Gorzynski, G.A. and Blanchet, T., 1984. Enhancements to sampling using the GE0L0G system: ±n_ Geochemical Exploration Program Design. - a short course: Assoc. Explor. Geochem. Symposium, Reno. Grant, J.N. and Neilsen, R.L., 1975. Geology and geochronology of the Yandara porphyry copper deposit, Papua New Guinea: Econ. Geol., v. 70, p. 1157-1174. - 89 -Guilbert, J.M. and Lowell, J.D., 1974. Variations in zoning patterns in porphyry ore doposits. C.I.M. Bull., v 67, No. 742, p 99-109. Heberlein, D.R"., Fletcher, W.K. and Godwin, C.I., 1983. Lithogeochemistry of hypogene, supergene and leached cap samples at the Berg porphyry copper-molybdenum deposit, central British Columbia: J. Geochem. Expl., v. 19, p. 595-609. Heberlein, D.R. and Godwin, C.I., 1984. Hypogene alteration at the Berg porphyry copper-molybdenum deposit, north-central, British Columbia: Econ. Geol., v. 79, p. 902-918. Helgeson, H.C., 1970. A chemical and thermodynamic model of ore deposition in hydrothermal systems: Mineral. Soc. Amer. Spec. Paper 3, p. 155-186. Holland, D.H. and Malinin, S.D., 1979. The solubility and occurrence of non-ore minerals: i_n_ Barnes, H.L. (ed.), "Geochemistry of Hydrothermal Ore Deposits": Holt, Rinehart and Winston, Inc., New York, p. 461-508. Howard, D.A., 1973. Final report of exploration activity on the Berg property for 1972: Placer Development Limited, Vancouver, B.C., private report, 27 p. Isuk, E.E. and Carman, J.H., 1981. The system ^2^2© with implications for molybdenum melts: Econ. Geol., v. 76, p. 2222-2235. T., 1976. A comparison of the e from some basin and range stocks: 1029-1035. Koski, R.A. and Cook, D.S., 1982. Geology of the Christmas porphyry deposit, Gila County, Arizona: ±n_ Titley, S.R. (ed.), "Advances in Geology of the Porphyry Copper Deposits, Southwest North America": Univ. Ariz. Press, Tuscon, Chapter 17, p. 353-373. Lowell, J.D. and Guilbert, J.M., 1970. Lateral and vertical zoning in porphyry ore deposits: Econ. Geol., v. 65, p. 373-408. McCarthy, J.R. Jr. and Gott, G.B., 1978. Robinson (Ely) mining district near Ely, White Pine County, Nevada. In: T.G. Lovering and J.H. McCarthy Jr. (editors). Conceptual models in exploration geochemistry. Jour, Geochem. Expl., Spec, Issue, 9 , p. 225-232. McKeague, J.A. and Day, J.H., 1966. Dithionite and oxalate extractable iron and aluminium as aids in differentiating various classes of soils. Can. Jour. Soil Science, v 46, p. 13-22 . Na2Si205-K2Si 2°5 -MoS transport in sil ic at bs, D.C. and Par ry, geochemistry of biot Econ. Geol., v . 71 , - 90 -Moore, W.J. and Czarhanske, G.K., 1973. Compositions of biotites from unaltered monzonitic rocks in the Bingham mining, district, Utah: Econ. Geol., v. 68, p. 269-280. Moore, W.J.and Nash, J.T., 1974. Alteration and fluid inclusion studies of the porphyry copper orebody at Bingham-, Utah: Econ. Geol., v. 69, p. 31-45. Neilsen, R.L., 1968. Hypogene texture and mineral zoning in a copper bearing granodiorite porphyry stock, Santa Rita, New Mexico: Econ. Geol., v. 63, p. 37-50. Norton, D.L., 1982. Fluid and heat transport phenomenon typical of copper bearing pluton environments, Southwest Arizona: i_n Titley, S.R. (ed.), "Advances in Geology of the Porphyry Copper Deposits, Southwest North America": Univ. Ariz. Press, Tuscon, Chapter 3, p. 59-72. Norton, D. and Mariano, A.N., 1967. Sibolaite, Mo0, a new mineral from the Sibola Mountains, British Columbia; i_n Berg Examination. Progress report, 1966, private report, Kennco Explorations (Western) Limited, 7 p. Olade, M.A.D. and Fletcher, W.K., 1974. Potassium chlorate -Hydrochloric acid; a sulphide - selective leach for bedrock geochemistry. Jour. Geochem. Explor, v 3, p. 337-344. Olade, M.A.D. and Fletcher, W.K., 1975. Primary dispersion of-rubidium and strontium around porphyry copper deposits, Highland Valley, British Columbia. Econ. Geol., v 70, p. 15-21. Olade, M.A.D. and Fletcher, W.K., 1976. Trace element geochemistry of the Highland Valley and Guichon Creek batholith in relation to porphyry copper mineralization. Econ. Geol., v 71, p. 733-748. -Owens, D., 1968. Mineralogical investigation of a sample of copper-molybdenum ore from Kennco Explorations, (Western) Limited, British Columbia, Mines Branch Investigation Report, IR 68-30, Dept. of .Energy, Mines and Pet. Res., 8 p. Panteleyev, A.J., 1976. Geological setting, mineralization and aspects of zoning at' the Berg porphyry copper-molybdenum deposit, Central British Columbia: unpublished Ph.D. thesis, The University of British Columbia, 235 p. Panteleyev, A., 1981. Berg porphyry copper-molybdenum deposit; geologic setting, mineralization, zoning and pyrite geochemistry: B.C. Ministry of Energy, Mines and Pet. Res. Bull 66, 158 p. Preece, R.K., III, and Beane R.E., 1982. Contrasting evolutions of hydrothermal alteration in quartz monzonite and quartz diorite wall rocks at the Sierrita porphyry copper deposit, Arizona: - 91 -Econ. Geol., v. 77, p. 1621-1641. Roedder, E., 1971. Fluid inclusion studies on the porphyry type ore deposits at Bingham, Utah; Butte, Montana; Climax, colourado: Econ. Geol., v. 66, p. 98-120. Roedder, E., 1972. Composition of fluid inclusions: U.S. Geol. Surv., Prof. Paper 440-JJ, 164 p. Roedder, E., 1979.. Fluid inclusions as samples of ore Barnes, H.L. (ed.), "Geochemistry of Hydrothermal Deposits": Holt, Rinehart and Winston, Inc. New Y p. 684-737. Rose, A.W., 1970. Zonal relationships of wall rock alteration and sulphide distribution at porphyry copper deposits: Econ. Geol., v. 65, p. 920-936. Rose, A.W. and Burt, D.M., 1979. Hydrothermal alteration: i_n Barnes, H.L.(ed.), "Geochemistry of Hydrothermal Ore Deposits": New York, Holt, Rinehart and Winston, Inc., p. 173-235. Sato, M., 1960. Oxidation of sulphide ore bodies: 1, Geochemical environments in terms of Eh and pH: Econ. Geol., v. 55, p. 928-961. fluids: in Ore or k , Sheppard, S.M.F., Nielson, R.L., and Taylor, H.P., Jr., 1971. Hydrogen and oxygen isotope ratios in minerals from porphyry copper deposits: Econ. Geol., v. 66, p. 512-542. Sheppard, S.M.F.and Gustafson, L ..B . , 1976. Oxygen and hydrogen isotope ratios in the porphyry copper deposit at El Salvador, Chile: Econ. Geol., v. 71, p. 1549-1559. Sinclair, A.J., 1974. Selections of threshold values in geochemical data using probability graphs. Jour. Geochem. Explor., v. 3, p. 129-150. Sinclair, A.J., 1976. Applications of probability graphs in mineral exploration. Assoc. Explor. Geochem., Spec. Vol., No 4, 95 p. Smith, R.W., Norman, D. i". and Popp, C.J., 1980. Calculated solubility of molybdenite in hydrothermal solutions: Geol. Soc. Amer., Abstracts with Programs, v. 13, p. 12. Stewart, G.O.M., 1967. Berg examination, progress report, 1966; private report, Kennco Explorations, (Western) Limited, 86 p. Sutherland Brown, A., 1967. Berg: B. C. Ministry of energy, Mines and Pet. Res., Ann. Rept., 1966. p. 105-111. Theodore, T.J. and Nash, J.T., 1973. Geochemical and fluid zonation at Copper Canyon, Lander County, Nevada: Econ. Geol., - 92 -v. 68, p 565-570. Thompson, M. and Howarth, R . J . , 1976. Duplicate analysis in geochemical practice, part 1. Analyst, 101, p. 690-698. Thompson, M. and Howarth, R.J., 1978. A new approach to the estimation of analytical precision. Jour. Geochem. Explor., v. . 9, p. 23-30. Tipper, H.W. and Richards, T.A., 1976. Jurassic stratigraphy and history of north central British Columbia: Geol. Surv. Canada Bull. 270, 73 p. Titley, S.R., 1982. The Style and Progress of Mineralization and Alteration in Porphyry Copper Systems: American Southwest: in. Titley, S.R. (ed.), "Advances in Geology of the Porphyry Copper Deposits, Southwest North America": Univ. Ariz. Press, Tuscon, Chapter 5, p. 93-116. West, R.T. and Aiken, D.M., 1982. Geology of the Sierrita-Esperanza deposit, Pima mining district, Pima.County, Arizona: in. Titley, S.R. (ed.), "Advances in Geology of the Porphyry Copper Deposits, Southwest North America": Univ. Ariz. Press, Tuscon, Chapter 21, p. 433-465. Westra, W.W. and Keith, S.B., 1981. Classification and genesis of stockwork molybdenum deposits: Econ. Geol., v. 76, p. 844-873. Wilkinson, W.W., Vega, L.J. and Titley, S.R., 1982. Geology and ore deposits at Mineral Park, Mohave County, Arizona: In Titley, S.R. (ed.), "Advances in Geology of the Porphyry Copper Deposits, Southwestern North America": Univ. Ariz. Press, Tuscon, Chapter 26, p. 523-541. Woodsworth, G., 1978. East margin of the Coast Range Plutonic Complex in the Whitesail map area: Current Research, Geol. Surv. Can., part A, Paper 78-1A, p. 25-29. Woodsworth, G., 1979. Geology of the Whitesail map area: Current Research, Geol. Surv. Can., part A, Paper 79-1A, p. 25-29. Woodsworth, G.J., 1980. Geology of the Whitesail Lake (93 E) map area. Geological Survey of Canada., open file map 708. - 93 -APPENDIX A ANALYTICAL TECHNIQUES - 93a -SUMMARY OF SAMPLES COLLECTED Drill hole Depth Samples BRG DH021 522' 24 BRG DH025 446" 15 BRG DH026 452"' 21 BRG DH068 363' 16 BRG DH069 601' 24 BRG DH076 697' 31 BRG DH078 1001' 49 BRG DH080 407' 20 BRG DH082 . 657' 32 BRG DH085 978' 46 BRG DH088 1002' 49 BRG DH089 487' 23 BRG DH092 1997' 70 Other samples collected: Duplicate samples 70 Stream "sedimerut 23 Stream precipitate 7 Outcro p 40 Ferr icrete ]_ TOTAL 597 - 94 -SEQUENTIAL EXTRACTION - CORE SAMPLES Stage A. 1) Weigh out 0.2 grams of sample. 2) Leach in 20 ml of 10% HC1 in ultrasonic bath for 30 minutes. 3) Centrifuge and decant aliquot. Stage B 1) Dissolve 24.9 grams of ammonium oxalate (monohydride) and 12.6 grams of oxalic acid (dihydrate) in 1 litre of distilled water; adjust pH to 3.5. 2) Leach residue from Stage A in 20 ml of solution while shaking for 12 hours. 3) Centrifuge and decant aliquot. Stage C 1) Add 0.4 grams of potassium chlorate, 0.5 ml of concentrated HN0 and 4.0 ml of concentrated HC1 to residue from Stage B. 3 o 2) Leach sample for 2 hours in hot air bath (80 C). 3) Add 15.5 ml of distilled water to bring final volume to 20 ml. 4) Centrifuge and decant aliquot. Stage J2 1) Add 2ml of HnO /HC10 (4:1) to residue and evaporate to dryness 3 4 in hot air bath. 2) Leach with 2.5 ml of 6 M HC1; bring to 10 ml by' adding 7.5 ml of distilled water. - 95 -SEQUENTIAL EXTRACTION - SURFACE SAMPLES STAGE A 1) Weigh out 0.2 grams of sample. -2) Leach with 10 ml of 4 M HC1 while in ultrasonic bath for 2 hours . 3) Centrifuge- and decant aliquot. Stage B_ 1) Add 0.2 grams of potassium chlorate (KC10 ), 2 ml of 3 concentrated HC1 and 0.25 ml of concentrated HNO . o 3 2) Leach sample in hot air bath for 2 hours (80 C). 3) Add 7.5 ml of distilled water to bring final volume to 10 ml. 4) Centrifuge and decant. Stage C_ 1) Add 2 ml of HNO /HC10 (4:1) to residue from Stage B. 3 4 2) Evaporate to dryness in hot air bath. 3) Leach with 2.5 ml of 6 M HC1 and warm for 1 hour. 4) Add 7.5 ml of distilled water to bring up to 10 ml. - 96 -.OPERATING CONDITIONS FOR TECKTRON VARIAN AAS Element- Scale Slit (u) Ma Wavelength N 0 # A 2 ir C H 2 2 Cu Normal 50 3 3247 .5 No 20 2.5 Ca Normal 100 5 4226 .0 Yes 20 a . r . Fe Normal 50 5 3719.0 No 20 2.5 K Normal 200 5 7664 .0 No 20 2.5 Na Normal 100 5 5890.0 No 20 2.5 Zn Normal 100 6 2138 .0 No 20 2 . 5 Mo Expanded 100 5 3132 .6 Yes 20 -+ Acetylene gas used as required. # Air flow rate ( /second) Burner rotated. - 97 -STANDARD ANALYTICAL METHODS USED Element Units Digestion BY PLACER DEVELOPMENT LTD. Time Range Method # Mo ppm C HNO /HC10 3 4 4 hrs 1- 1000 AAS Cu ppm C HNO /HC10 3 4 4 hr s 2-4000 AAS Zn ppm C HNO /HC10 3 4 4 hr s 2-3000 AAS Pb ppm C HNO /HC10 3 4 4 hr s 2-3000 AAS-bkg Cd ppm C HNO /HC10 4 hr s 0. 2-200 AAS-bkg 3 4 Ni ppm C HNO /HCLO 3 4 4 hr s 2- 2000 AAS Co ppm ,C HNO /HC10 3 4 4 hr s 2-2000 AAS Ag ppm C <a HNO /HC10 3 4 4 hrs 0. 2-20 AAS-bkg F ppm Na CO /KNO F 30mi n 40 -4000 SIE 2 3 3 # Atomic Absorption Spectrometry. Atomic Absorption with background correction. + Specific Ion Electrode. @ Na CO /KNO Fusion 2 3 3 - 98 -XRF OPERATING CONDITIONS- MAJOR AND TRACE ELEMENTS ELEMENT LINE TARGET CRYSTAL Kv/Ma COLL COUNT VAC GAIN WIN LL TIME Si K Cr PET 50/40 F F ON 128 700 150 10 Al K Cr PET 50/40 C F ON 128 700 150 10 Fe K Cr LIF200 50/35 F F ON 128 700 150 10 Ca K Cr LIF200 50/16 F F ON 128 700 150 10 Mg . K Cr TLAP 50/40 C F ON 128 47 0 150 10 K K Cr LIF200 50/35 F F ON 128 700 150 10 Na K Cr TLAP 50/40 C F ON 128 700 150 10 Ti K Cr LIF200 50/35 F F ON 128 700 150 10 P K Cr PET 50/40 C F ON 64 280 150 10 ELEMENT PEAK ( 20) BKG • Si 109 . 14 113 . 30 Al 145 . 19 139 .00 Fe. 57 . 54 56 .00 Ca 113 . 17 110 .40 Mg 45 . 21 44 . 00 K 136 . 75 132 .15 Na 55 . 20 53 . 30 Ti 86 . 20 91 .00 P 89 . 61 92 .60 - 99 -APPENDIX B 1 GEOCODER: A List of symbols and codes used in GEOLOG 1. GEOCODER and GEOLOG are trademarks of International Geosystems Corporation. - 100 -SYSTEM International Geoayatems Corporation -101-/ I a i-4v FLAG SPEC UNIQUE ID OF PROJECT OR SUB-PROJECT DRILL PRE-f HO IX LE T y 'TP PE AVERSE NUMBER SIZE OF CORE on HOLE G E 0 L C MONTH > G C S E D B V A S S T BY D R 1 OR 1 L L E RIS) L L E 0 M ON T H 1 Y R R I G TYPE OR 1L LING T1 ME -HRS SURVEYED|CO-OBD BY 1 SY STEM GRID AZIMUTH PAGE 0F> a1 D E N 6 B 0 2 0 1 • TTT I I | | j b i- P R J < 5 u 1 1 I 1 N 1 ¥ 1 —1—phi 1 1 1 \ P t R 1 1 1 Y 1 on 1 PRC 1 aii ) J 1 I : t T 1 • 1 S U 8 • 1 1 1 1 1 1 PROJECT 1 1 1 1 1 1 1 l c s s- TUF IN'G PT =Coilar FROM -TO- TOTAL DEPTH/LENGTH CLOCKWS A Z M F. TRUf N V-ANG "oV» HASH TOT A L = T D . AZM . V-ANG. N»E • EL NORTHING ^i,1,' EASTING Vis! E LEVATI0N JJ^ d | | J 1 1 II I 1 1 1 II 1 1 1 1 hi l-l 1 | 1 1 I 1 1 j 1 1 . . e / /-/-HORIZON FLAG RECOVERY T-MODL^ ROCK TM1 J TM 2 0 M 1 T X 1 TX 2 FF ^ * t CF Fs'MI R, B1 STRUCt I D STRIKE AZM DIP to Rt. or PLUNGE A 0 r i z w i B T 1 0 1 C Y c B M G 1 i X H X 1 I P U Y ttrn CP IT Stl GL ires YY SI FA Mh Al A R Mz Y 1 t N I A I M | | 1 || | !„„,•,., R • c o v. 1 1 1 1 1 1 1 | I I j 1 | I I ] 1 1 1 S I S I L Unll of L . r, o 1 /> -4- .XT 1 • 1 2. ' 1 I.I 1 1 1 1 1 1 I I I 1 1 1 I 1 1 1 1 i 1 1 1 n L A 2 ON E FLAG MorF ROD Ffl P E r m 'n E NVIR- B J roc* «*«£ _L ^ HI J"' OM2 TX 3 TX4 SR P-N sH % Ri B2 STRUC2 I D AZM OIF /»>« > to Rt iPr* K F ... M U C L E P H E How Ami PR MO SL !HowAmt H 1 w 2 )W 2 i .t N A M 1 1 1 II 1 1 1 S 6 I U " 1 1 9 1 ROD - > 1 L i i i .1 r) 6 7 8 in 1 L 112 1 1 J 1 141115 1 ie 17 | 10 19 20 2 1 22 123 24 25 21 10 31 .12 33 M .55 37 3H '9 40 .] 1 4 2 4 3 4 4 '15 4 0 'I 7 48 49 51 52 5 1 54 55 35 Li i_7 50 59 60 61 62 63 64 65 66 67 6H 63 70 71 72 73 74 75 76 77 78 79 80 i A--<*»r I«m FIIB or Fl»g = COMaoiil*. MAX Or U IN RECOVERY SS = Samp/eSenal No-A 7 A ? A 3 A 4 A 5 A 6 A 7 A a 1 A 9 m H- •It Flig-COU. IhOn Co' 2f-B8=SS rVo.P'oupa From SS It To s s H From S S f In S S it r • 0 m SS It r P s s /I From S S H lo SS t HASH TOTAL n Fr ^FItg,Rnn, «n f* *n * no. Ot - PP # . d*tln»o 0 J 2 3 4 5 e 7 SN 9 o 1 1 2 — j -._. .... — — 3 4 — — --- .... ... — 5 .... — — — — -- — — .... — — — 1 ' j - — — — — 6 1 7 — _. — — "- --I. il J:: . 1 j — 8 i 1 | — <3 -10 — — — ... — .... 11 — — — — 1 — - - — 1_2_ 13 L 1 IM — — — ... ... ~ — ! -— 1-1 -- — — — — ! — — .... -- . 1 .. 1 1 1 — 15 — 16 — ; — - ! f ' - — — 17 — — — --[ I IS — ! ' ...... _.!-.. '• I • . i ' , . I'J — \ " — — — _ — ; --— 20 — — — — .... 21 . ; i • i 22 1 ^ - -- --— — — — — — _ — 23 i _.. — — — 2-1 — — — — 25 — — — — — _ 26 27 - 28 — 29 30 31 32 33 34 35 36 37 I 38 / 2 4 5 6 V 8 9 10 1 1 1 2 1 1 1-1 15 1G 17 Ifl 1 9 20 21 22 2 J 2-1 15 no 2 7 2'3 29 30 31 32 3 3 i-1 35 Kj| .17 IB 40 4 1. 4 2 43 44 4 5 4 6 4 7 48 49 50 51 52 53 54 55 ',6 57 58 59 60 61 62 64 •")5 66 67 68 69 70 7 1 72 7 3 74 75 76 77 78 79 Identity Dat a Survey Data Upper Tier G eod a t a Lower!n G eod a t e V ! 3 4 5 6 7. S = Alpha S 2 -Two ? - Seven 0 = Alpha O I o, i = Alpha I Alpha Z oo o O F- SCALE o < • n o t n o T a it o 3 < • 3 0 0 c o ro i Assgn Scale Description Value Value 55+ X shattered 45 9 extremely well fractured 36 8 very well fractured 28 7 well fractured 21 6 fairly well fractured 15 •5 moderately fractured 10 4 fairly lightly fractured 6 3 lightly fractured 3 2 very lightly fractured . 1 1 slightly fractured 0 0 unfractured NOTE: It can be seen that the assigned value of each scale value is the sum of the scale values from 0; for instance, the assigned value of scale 2 = 3 = 0 + 1 + 2 and the assigned value of scale 3=6 =0+1+2+3, and so on. • 3 SCALE A 1-CSAJUCTBR PERCENTAGE G-SCALE for recording on GEOFORM the estimated percentage presence of any ore-type or alteration mineral of possible diagnostic importance, or other parameters, interval-by-interval, or'the estimated percent of each associat ed rock type present in an interval in addition to principal one. To start with, for percentage amounts ten percent k over, up to lOOt, the obvious relationships prevail — 1 - 101, 2 • 20%, 3 • 301 and so on, to B - 801, 9 - 90% and the Roman Num eral X - 10 - loot. For percentage amounts below lot, we start off with the value, one-third of a percentage point, represented by the ast erisk, * , the star of the G-Scale; that is, * • -3t. Symmetric ally above and below the * are the two 'bent' ones the right bracket, ) - It, which is like a greater than, appropriate be cause It > .3t, and the left bracket, ( • .It, which is like the less than, also appropriate because . 1 < -3t. Again symmetric ally above and below these bent ones are the plus sign, • m 2.5t and the alnus sign, - " -031. Finally, above and below the • and - are the equal sign, • for St and the period or dot, . • .01t for just a dot or trace. And, of course, 0 • nil " O.Ot. Two other useful values are represented by the slash, / • present but estimate impossible, having an assigned value of .07t, and the question nark, 7 * possibly present, having an assigned value of Ot: NOTE IN PARTICULAR I) chat Uw I 1 ) I . ut u order of ujnicudt apart/ 1) that the • • -'pert/ 3) chat the • ) • t - ere a nultipla ot 1 apart; and 4) that Uw 8 4 3 1-4- are ot the considereble separation between thete tcele valuta, the G-Scele it a powerful ettimeting tool yuijrt between ttu .1 end .4% but with a little Mt of practice it should not be too herd to distinguish 'ALE iLUE X ASSIGNED VALUE loot RAN G E DECODED 2-DIGIT FORM Ut Essentially 1001 90 85 to 99 90 80 75 to <8S 80 70 65 to <75 70 60 55 to <6S 60 SO 45 to • 55 50 40 35 to «45 40 30 25 to OS 30 20 15 to <25 20 10 7 to <15 10 5 3 to < 7 51 2.5 2 to < 3 2+ 1 .5 to < 2 It • .3 .2 to <.5 .3 ( .1 .OS to <.2 .1 - .03 .o2 to ».0S 03 . .01 Trace • «.02 01 0 / 7 0 .07 0 Nil, Absent „ . Estimate Pre"nfmpossible Possibly Present 00 07 77 ere elto en order of ntgnl tude a niltipl* of 3 epert. Beceuee it eught be difficult to distin-betveen .3 end J tims .J • 1». H- SCALE HOW OR B-SC A L E MODE OF B - S C A I< E OCCURRENCE O R Sym bol Description 0 - Fresh, prirtary rccMZ) fx lot ltza) , _ Amygdaloids (A), minor Hacroveins(>) A " and/or scattered Crystals ID) DFT.RFE 2 - Hacroveins(>) and Veins(V) 1 Veins(V) and fCr<*../Dn „-3 " Da^ticnite.Y, {^(Q)« in ^ t\ - Veins (V), and/or occasional Envelopes(E) 0 F PERVAS-I IVE- 5 - Veins(V), and/or abundant Envelopes(E) I • " 1 , Pervasive (P) or 1 uss I Veins (V) ,Hicroveins(<) Disseminations(D)J THAM \ Selvages(S),Envelopes(E) NESS 6 -INCREAS- 7 INC I CR£A- l m " ? T" \ I THAM I Pervasive(P) or Disseminations(D), Veins(V), Microveins(<).Selvages(S) I Envelopes(E) with mjch Breccia fillingd), StocKworK(K) and/or Sheeting(S) KJSsive(M) and/or Lamina ted/Bedded (L) 'HOW' j^" Description A (unyijdaloids,cavity fUlj B Blebs U,g I breccia filling* C Coatings £ encrustations • clasts D Disseminations I seat.x'ls E Envelopes F Framework crystal! G Gouge H Halt-s I eyas, augan J interstitial K stocKworK L Laminaeions/beddad M Hassiva N Nodules 0 spots P Pervasive 0 patches, as in Quilts R Rosettes ( x'l clusters S Selvages $ Sheeting T sTainings, as in Tarnish U eU-hedral crystals V Veins > nvacrovelns < microveins,frac fillLngs W boxworx X Massive and/or lairv^na^ed^/ Y dalmationita 81.050 Z fresh. prkm*ry rock Intarnattonal Oaoayatama Corporation Vinoouvir, Canada -10*+-GEOLOG" SYSTEM International Qeoayetemt Corporation GRAIN SIZE ft CHARACTERISTICS 1 GNEOUS, MCTAMiRPHlC i CH£MICAL Classy Extremely fine grained (aphanitic) Pine grained Medium grained (granular) C o a r a a grained Very coarse grained Pegmatltic Megapegma-titic Cjttra-coarse megapegma-titic PARTICLE DIAMETER RANGE 2 -.004 ,-7 2°- 1-2 - 16 ,5 -7S0-THE S-S C A L E FOR GRAIN OR PARTICLE SIZE. ASSGH SYM<««W GENERAL VORKSm 1.SSGN VALUE BOd MR DETAIL WORK* >BQL ^ALUE .003 m • .008 .03 .12 3.3 13 c I* 4m 2m CLAY SIZE V.FINE SILT FINE SILT MEDIUM SILT COARSE SILT V.FINE SAND FINE SAND MEDIUM SAND COARSE SAND GRIT GRANULE V.SrtALL PEBBLE SMALL PEBBLE MEDIUM PEBBLE LARGE PEBBLE SMALL COBBLE LARGE COBBLE SMALL BOULDER MEDIUM BOULDER LARGE BOULDER V. LARGE BOULDER m m .0OJ .177 . 707 362 724 1450 VOLCANI-CLASTICS coarse • nail 1 a p 1 1 1 i large 1 a p i 1 1 i cobble-size b o a b s b blocks boulder-size bombs & blocks extra large bombs S blocks .01 .OJ 2.5 5 90 100 -I Coaraa-Pr ic i. ion NOTE:l.It is quite permissible to intermix the alphabetic symbols with the numeric symbols of this S-Scale, whenever detail work d«3rands it — no conflict ensues by doing so. 2. Use the S-Scale for Fine Fraction (FF) , Coarse Fraction (CF) and Max Particle kM P) in F(39,40,442)/ 3. For Seriate Texture, in which the Grain Size varies gradually or continuously, enter significant Fine Particle size in FF, ui F(39)/ oivi the Large end of the range in MxP, in F(42)/ This «-scale, used for the Per Cent CF , is the G - Scale COLUMN J 9 40 4 I 4 2 / FF CF »C MP UPPER TIER Fine Coarse Percent Maximum HEADINGS Fraction Fraction Coarse Particle (SCALE) ( S -Sea le) (S-Scale) (C-Scale) (S-Scale) :—— — = — — 3 —a ;; . .; _ .: m m m * L SR " = RN"" SH 0/C LOWER TIER Degree of Degree of Shape or Open/Closed HEADINGS Sorting Rounded- Spheric Structure r.ess ity Equigranular (SCALE) (N-Scale IN-scale IC , P , M , L , /Inequigran. 1 CO 9) 1 to 9) P . B , E or" H-Scilel ( 0 , C , E . I ) -105-GEOLOG"SYSTEM lnlarnailon«lQM«ytt*fns Corporation GRAIN SIZE ir CHARACTERISTICS DECR£E Of SOHTINC 1SU riticMiy poorly iort«d vtry poorly tor Ltd poorly sor r.«d nad#r*rtly poorly sorted •Oder *te ly toe ted »->Jirt »t • 1 y we 11 tor ted well tot ltd v«(y we 11 torted ciutMly well DCGREE Or HOUMDHLSi 40L • itctMly *n<jul*r very ancjulAr •tnqular aoderttely angular inittHd i*t« •toder*Lely rOundeu rounded vrry rounded eatieawly rounded iHAPtlalph-O HI CITY 11-9) •QOO P o tt-ftceie 1-9 OPEN (0) or CLOSED (C) bTKUCTURt or EUUI-IE) or iNtUUl-(1) I* KAN U LAW 6-op»n/i>.*r ted • ftw )oi i ly ol 1*1 y«r p*w t l -dm nut U>ULII-.ng one «not(it:i C"Cloe*o/ini.ci **> )ui ity ot per licit* or toucti t 4 1 L For Open ex Closed Structure tMatrix-supported or Frarework-supported), enter 0 or C in F(42)L For Degree of Sorting <S«) and Degree of toundneae (RM) , enter 1 to 9 in F(39,40)L For Shape, enter C,F,M,L,P,B OR E (see triangular diagram) or, for Sphericity, 1 to 9 in F(41)L LC -COLOUR The GEOSYSTEM LC-Colour Code is an abbreviated, 2-character version of the more detailed GEOSYSTEM Colour Code (LBHU)• LC is for Lightness-Colour. Lightness L-Scale Colour Range C-Scale EXAMPLES C28 Lower Tier C29 Lower Tier w white* (also in C29) R Red 9R palest red=pale pink 9 palest U brown (Umber) 8R pale red = pink a pale 0 Orange 7R light red 7 light T Tan (khaki) 6R. lighter red 6 lighter (m.light) Y Yellow 5R medium red 5 medium (50% " ) L Lime (Y-G) 4R darker red 4 darker (m.dark) G Green 3R dark red 3 dark Q aQua (B-P) 2R very dark red 2 very dark B Blue 1R darkest red 1 darkest V Violet (B-P) W white (dead white) N black (Noir, P Purple W white (dead white) Nil=0% lightness) M Mauve (P-R) 9 off-white (*White=100% " ) W White (also in C28) N black (jet black) A grAy N black (jet black) N black (Noir) 1A charcoal black $, as a suffix after any colour code, becomes -ish, as in R$ = reddish. In any 2-colour-code combination, as in GB, the first is pronounced as though it has an -ish as suffix GB = greenish blue. Examples —-R$ reddish RO reddish orange YL yellowish lime U$ brownish OR orangish red GB greenish blue OS orangish AR grayish red BG bluish green T$ tannish RA reddish gray UG brownish green Y$ yellowish AB grayish blue OU orangish brown G$ greenish BA bluish gray etc. etc. B$ bluish AG grayish green 7C leucocratic P$ purplish GA greenish gray 5C mesocratic A$ grayish GY greenish yellow 3C melanocratic (C for -Cratic) LBHU-COLOUR Grayness Scale In Geosystera Colour, the three components of colour are Lightness, w white Brightness and Hue. Think of the 24 hues as being equally spaced 9A palest gray around the equator of the.colour sphere. The Lightness is the 8A pale gray vertical component along the axis of the sphere, with white at the 7A light gray north pole, black at the south pole and medium gray at the compon-6A lighter gray intersection of the axis with the equatorial plane. The third 5A medium gray ent, Brightness, is the radial distance' from and perpendicular to 4A darker gray the axis: full brightness (ie, brilliant) can only be attained at 3A dark gray the equatorial surface of the sphere. 2A very dark gray 1A darkest gray N black (Noir) LBHU L- Scale of . B-Scale of HU, Range of HUES Code Examples LIGHTNESS BRIGHTNESS R RED 96R palest brighter red (pink) OR orangish-red W white U BROWN (Umber) 53U medium dull brown RO reddish-orange 9 palest -c 9 brilliant 0 ORANGE 790 light brilliant orange YO yellowish-orange 8 pale(v.light) 3 v.bright T TAN 7 T light (moderate*) tan OY orangish-yellow 7 light -c 7 bright Y YELLOW 87T pale bright yellow GY greenish-yellow 6 '1ighter(m.1. ) 6 brighter L LIME YG yellowish-green 53YG med. dull yellowish-green 5 medium -c 5 moderate G GREEN BG bluish-green 34BG dark duller bluish-green 4 darker (m.d.) 4 . duller Q AQUA GB greenish-blue 3 dark -c 3 dull B BLUE 22B v.dark v.dull blue PB purplish-blue 2 v.dark -c 2 v.dull V VIOLET BP bluish-purple 3 BP dark (moderate*) bluish-1 darkest -c 1 grayish P PURPLE purple RP reddish-purple 65RP lighter moderate reddish-N black (Noir) A gray M MAUVE purple PR purplish-red 1A darkest gray R RED (repeated) 2A v.dark gray (-c = any colour) (any L value 1 - 9) * moderate presumed because LBHU (with any B-value) » any colour B value left blank Lower tier: 28 29 30 31 (and plus any HU) GEOLOG "SYSTEM Iniai national Qaoairale>niGo<poiat ion IM- SCALE A SINGLE-DIGIT, NUMERICAL N-SCALE, for describing degrees of lightness, brightness, degree of roundedness and sorting, and intensity, etc., in their natural sequence from 1 to 9 or from zero to ten, with 5 always in the central, median position. In most respects, the N-Scale is very simple, but it has certain aspects that need some dis cussion. The N-Scale extends from 0 to 10, with the 10 being represented by the Roman Numeral X, to preserve the single-digit form. As shown in Fig. A, ten equal intervals lie between these ele ven points, 0 to X. In this case, the eleven points mark the divisions between the ten inter vals. However, the N-Scale is better described as consisting of 9 equal intervals with a half interval at the top and bottom. This is illustrated in Fig. B, in which the digits 1 to 9 are located at the centre of nine equal, unit intervals and the 0 and X are at the outside ends of the two half-intervals. The zero represents complete absence; the X, complete presence. For instance, 0 can rep resent complete absence of lightness, which is jet black (N)j while X can represent complete lightness, which is dead white (W). 5 then represents medium gray, ranging from 4.5 to 5.5, a full interval. In contrast, the range of 0 - N » black is from 0 to 0.5 and the range of X - W • white is from 9.5 to 10, because nothing is blacker than black and nothing whiter than white. Unlike other GEOSYSTEM Scales, the N-Scale requires no assigned values: 1 is It 2 is 2; 3 is 3i and so on. For some applications of the N-Scale, the zero position and/or the X position may be blank. In its application to intensity, the nil intensity exists but the complete (X) intensity does not. Note in particular that the scale values 0 to X or 1 to 9 or 0 to 9, etc., are used in some of the other scales, as for instance, in the T-Scale, part of the S-Scale, and part of the G-Scale, but in all these instances they' have assigned values and therefore cannot be used in place of the N-Scale. Note also another characteristic of the N-Scale is that 3 and 7 are always unqualified (weak, strong; soft, hard, etc.); the 2 and 3 usually have a very as a qualifier; the 4 and 6 usually have a fairly as a qualifier; and the 1 and 9 usually have an ex treats ly as a qualifier. 5 is always the middle, intermediate, moderate, etc. -X -9 -8 -7 -6 -5 -4 -1 -2 -1 -0 Fig.A -0 Fig.B N•SCALE Some of the more comon applications of che N-Scale are X 9 extremely well sorted or graded or fossilized Ii very well sorted or ripple-marked 7 well sorted or re-worked, etc. 6 fairly well sorted 5 intermediately sorted 4 fairly poorly sorted 1 poorly sorted 2 very poorly sorted I extremely poorly sorted 0 unsorted illustrated in the following X exceptionally high amount or intensity of alteration or 9 extremely high of mineralization 8 very high or of fracturing 7 high or silicification 6 fairly high or induration 5 moderate or sphericity, etc. 4 fairly low 3 low 2 very low 1 extremely low 0 nil Lightness X » W = white 9 palest red or any colour 8 pale red (pink) 7 light red 6 lighter red 5 medium red 4 darker red 3 dark red 2 very dark red 1 darkest red 0 - N ' black IN for Noir) Brightness X 9 brilliant red or any colour 8 very bright red 7 bright red 6 brighter red S moderate red 4 duller red 3 dull red 2 very dull red 1 dullest red 0 Round ad naaa/Angulari ty X 9 extremely rounded 8 very rounded 7 rounded 6 sub-rounded 5 intermediate 4 sub-angular 3 angular 2 very angular 1 extremely angular 0 Alteration Facies in Porphyry Environment * • Ju^njsuc, Abundant * - ;or,.Tiwiily p r «j s «j n t; ood . ibun . * • ur.cotnaori *> minor J • jriqinjt A L T E R A T I 0 N M I N £ R A L S QZ BI MS CLAY CL EP CB OTHER KA MM 9 jilici:/t|ujrti flooding • • • • cnlori-uotdusic • • -7 UQCiSSlC • • t * MG , AH,T0,AK 6 advanced jnjill ic t • PP, T0, TE S phyllis/«jnaissenoui • - T0, FL, TE 4 Kt" - stable J -3 int«*rra»jJi4ta jrqillic - • • -2 aontraorillonitic - - - • • - • 1 propyl uu - 0 - t • AB , ZE 0 fresh, prinary rock » i GEO LOG'S YSTEM lnltrn«iioMiG*o«yil*mt Corpora I ion MINERALS AC actinolice CZ clinozoisics Hi hematite j magnetite NF nepheline TA talc AD aJaUna CF cot f ini ce min.comb'n, undi t* NI niccolite 44.N1 TL tellurides,gen Te AB albite CU copper,native Cu HE hematite alone TN tennantiteS0CUS6Sb«As AM dlmandi ce CO cordierite H> HE)MG TE tenorite 80Cu Al alunLce CV covellite 66Cu H« HE-MG OL oliv ine(chrysolice) TT tecrahednte CutSb AX amphiDoles,gen CI cupr i te 8 9Cu IK HE<MG OP opal TX TT,TN undIf AA andalus ice MG magnetite alone 00 opaques,geri TZ topaz AC jnvj les i ce 68Pb OX oxides,gen TO tourmaline All annydrite HB hornblende (see B*) OR orthopyroxene,gen TR cremolice AN anor chlte DC dlckite HU huebnerite 61W AP apatite DC d igen i te HM hydromica (IL) PH phlogopi te AR dragonl te. DI diopside HY hypersthene PF plagioclase(see K:) AS arsenopyrite 4 5As DO dolomite PT platinum Pt UR uraninite(pitchblende AO isoestos D: dolomite : calcite PO powellite 58Mo,W 9 2Ut AU dug L te min.comb'n.undif * IL ante (HM) PS psilomelane Mn UX uranium minerals,gen~ AT ax inice DO dolomice alone IM ilmenite 32Ti PY pyrite 47Fe A: aiucice I see M:) 5dCu D> DO>CA PL pyrolusite AE acgerine D" DO-CA JO ]adeice PX pyroxene,gen VA vanadinite 7]Pb,llV J< DO<CA JA jarosite PP pyrophyl1iCe VE vesuvianice CA calcice alone JO jordisite 60Mo PR pyrrhotite bOFe BA ojrite PN pentlandlte BC uecy 1 KA kaolin WD wad Mn • other BI Biotite KY kyanice WO wollasconite B: biotite : hornDlende EN enarg1te KF K-spar,orchoc lase 02 quartz,gen HP wolframite 62W Tun.camb'n.undit* ES enstdtite K ; K-spar : plagioclase OA quartz,agate WN wulfenite S6Pb*26Mo BI biocice alone EP epidote min.comb'n,undI£* QC quartz-carbonate a> BI >HB ER ery ch rite 30Co KF K-spar alone OH quartz,chert B- BI-HB K> KF>PF QM quartz,amethyst ZE zeolices,gen B< BKHB FO forster ite K- KF-PF QX quartz,crystals ZI zircon HB hornblende alone FA fayalite K< KFCPF OS quartz-seric i te ZO zois i te FT lamacinice PF plagioclase alone QT quartz-tourma1ine as bismuth in i te 708i FX celdspar9,gen QR quartz,rutilaced BO bornite b )Cu FO feldspathoids,gen OV quartz vein,massive XX any mineral Bit orocnan t i te 5 bCu FR terberice w YY • • FM f errimolybdice 40MO LM laumoncice 2Z FL 11uor i te 4 9F LU lawson i te XY • • CA ca iclte (see 0: ) CL galena d6Pb LU leuc ite RC rhodochroslce Mn ca carbonates ,<jen C : galena : sphalerite LE leucoxene RN rhodonite M XI ) minerals identl-CT cassicer i ce 79Sn min.comb'n, undit" LI 1imonlte RU rucile 60Ti X2 ) tied elsewhere CE cerussite 7 7PD GL galena alone HF ma f ics,gen Yl ) or later CM cnaican th i ce 25Cu. C> GL>SL MA magnesite 4BMgO SA sanidine CC chalcocice,gen accu CL'SL MG magnecice(seen:) 72Fe SC scapolite C> • on ec.mm C< CL<SL MC malachite StiCu SZ scorzalite A 0 D E N D U M : C. " on gangue SL sphalerite alone M: malachice i azurite SF sericite-fluorite CP chalcopyrIte 35Cu min.comb'n,und1£* assemolage CL chlor i te GA garnet MC malachice alone SH scheelite 64W CD chloricoid GS glass,gen M> MOAZ MS sericite (MU) CR chromice 4 6Cr GN glauconite M» MC-AZ SE serpentine CK chrysocolla 36Cu CC glaucophane M< MC<AZ SD siderite 48Fe OL chrysolite(olivine) CO goethi ce AZ azurite alone SI silliman i te CS chrysoc ile CD gold Au SV si lver CN cinnabar tJ6Hq CR graphite C MN manganite 68Mn SS silver & sulphosalts CY clay CR greenockite 78Cd MT marcasite SO sodallte C: clay ; muscovite GS gre isen,gen MR mar ipos i ce SL sphaler ite (see G:) mm. comb'n,und i c• CY gypsum ML melnikovite 67Zn CY clay alone MI micas,gen SP spnene 0 > CY>.1U MO molybdenite 60Mo ST s caurol1te CY-.1U HA halice MZ monaz i te SB stionice 72SO < Cl<;MU IIV he lvice MM moncmot* 11 Ion i te 3u sulphates,gen MU rauscovice alone HE hematice,earchy 70Fe MU muscovite (see C:) SX sulpnides,gen HS hemacice,specularite MS ser ic ice SR spe rry11te CX clinopyroxene,gen GEOLOG'SYSTEM InurnaltonalGMtyslanit Corporation MINERALS RECAP SUMMARY OF SOME IMPORTANT GENERAL MINERALS assemblage AX amphiboles PF CB carbonates PX CC chalcoc i te QZ CX cl inopyroxene SF FX feldspars FD £eldspathoids SS GL glass SU G$ greisen SX LI 1imonite TL MF oafics TX 00 opaques UX OX oxides ZE ro i RECAP SUMMARY OF MINERAL COMBINATIONS* Bi biotite i hornblende C: clay : muscovite Ds dolomite i calcite G: galena i sphalerite Hi hematite i magnetite Kt K-spar i plagioclase Mi malachite i azurite NOTES 1. Re: Use of Mineral Codes as Qualifying Miner al (Qalmin),QMI fc QM2,in field F(32-34)/L on GEOFORM: Enter Code of any mineral (such as hornblende-HB) followed by estimated percent present in that interval, using G-Scale (such as * for .3% or 2 for 201, thereby creating the 3-character Qaloin Codes, HB* and 1182. (See GEOFORM Header) 2. Re: Use of Mineral Codes as any mineral XX or TY in fields F(67-68)/L and F(75-76)/Li Enter Code of observed mineral (such as CT» cassiterite) in Upper Tier 67-68 or 75-76: How it occurs in Lower Tier 67 or 75; and the es timated percent amount in Lower Tier 68 or 74, respectively (See GEOFORM Header below) *min.comb'n,undlf>mineral combination, undifferentiated. For instance, use B: where proportion of BI 4 HB cannot be given. Note that many of the metallic minerals have i of the identified metal shown at right. Quartz,S\ in veins; Epidote,.IX in blebs; Cassiterite..3t in microveins; Marcasite, It disseminated-81.050 International Qeoayatame Corporation Vanoouvar, Canada GEOLOG'SYBTEM Inter national OMaystem. Corpora 11 on ROCKS Tha first 4 lettara of a rock type na«e ia its preferred Coda (granite - GRAN - GR and diorite - DIOR - DR) where GR i DR are the Short Forma, used for forming compound rock names (granodiorite - GRCR, quartz diorite • QZDR), but if 4th letter is a vowel (as in aplite) , that vowel ia replaced by the next consonant (aplite « APLT, argillite - ARGL, and andesite • ANDS), and if a double letter occurs within the first 4 (as in agglomerate) on* ia dropped (to become AGLM) I CODE FORM ACID ADAM (OZMZ) AGLM AGXX ALAS ALNT AMPH AMFB ANDS AN/D AN * F AN 5 L AN0R APLT AP/D ARGL ARKS AUTC SHORT ROCK TYPE NAME FORM acidic rock,gen C0AL C0 adamellite > C0AN quartz monzonite CPSA agglomerate C0BT " alt'v form C0SB alaskite C0LG alnoite (B0NE) amphibolite C0NG CG " alt'v form CGXX CG andesite CGEC " dyke CGEV " flow CGIG " sill CGVL anorthosite CGVC aplite Cj3QN CQ " dyke AR argillite AK arkose AC autoclastic rock AO QM AG AG AL AM AM AN AP BENT BN bentonite BN/B " bed BASL BS basalt BS/D " dyke BS»F " flow BASC basic rock.gen(MAFC) BI3C BC bioclastic rock,gen BONE bone coal BRXX BR breccia,gen BRAC autoclastic breccia BRAF " flow BRAI " intrusion " BRCQ carbonate-quartz " BRQC quartz-carbonate " BRVC volcaniclastic " • BRVL volcanic " BRCL chlorite CARS. carbonatite CRBN " alt'v form CHER CH chert CLIN clinopyroxinite (or use PERD.CX) CYSH CS clayshale CLAY CY claystone 0/CY clay unconsol.as in overburden DACT DC DIAB DB DB/D DBSL DIAT DI DYKE 0/ /D DI0R DR OR/D DRSL DRIF D0LM D0 D0RF D0/B DUNT ECLG EPIC EC EPVC EV EXTR EX FALT FELS FL FL0W IF coal " anthracite " semi-anthracite bituminous " cub-bituminous * lignite " bone conglomerate " alt'v form " epiclastic " epivolcaniclast " igneous " volcanic volcaniclastic coquina dacite diabase " dyke " sill diatomite dyke(dike)rock " alt'v form diorite " dyke " sill drift, glacial dolomite " reef " bed dunite eclogite epiclastic rock* epivolcaniclastic* (•see Definitions) extrusive rock fault(zone)or FAUL felsite flow rock CABR GB gabbro MAFC MP mafic rock,gen GNIS CN gneiss MFIC MF " alt'v form GNES GN " alt'v(regular) MFVL " volcanic GRAN GR granite (TRAP) TP mafic rock • trap GRTC GT granitic rock MARB marble GRNT GT alt'v form MARL marl or marlstone GRDR GD granodiorite MSXX MX massive any min XX GD/D " dyke MS0X " oxides GRFL granofels MSSI " silicates GRBL granoblastite MSSU " sulphates •GRLT granulite°granolite MSSX * sulphides GSCH Gt greenschist MARK meta-arkose GSTN GS greenstone MTBC MB metabioclastite GWAC CW greywacke-graywacke METM MT metamorphic rock.gn. GWTF " tuff MTDB metadiabase GRIT grit MTSD MS metasediments,gen MTVL metavolcanics,gen MTVC metavoleaniclast-HARZ harzburgite(PERD.0L) ics,gen HBIT hornblendite MIGM migmat ite II0RN hornfels MILL mill-rock HRNF alt'v form MINT minette (BRHY) hypocrystaline brec M0NZ MZ monzonite MUDS MD mudstone MYLN mylonite IGNS IG igneous rock MISS unlogged part of DH IGNM ignimbrite INTR IN intrusive rock NELS nelsonite NFS Y nepheline syenite JASP jasper N0RD nordmarkite JSPD jasperoid N0RT norite 0LGB olivine gabbro KIMB kimberlite 0RGN orthogneiss 0RPY orthopyroxinite(PERD LAHR 1 ahar 0VER 0/ overburden" CX) LAMP LM lamprophyre 0/CY clay, unconsol LM/D " dyke 0/GV gravel " LAPL LP lapi llis tone 0/SN sand * LATR later i te 0/SI silt LATT LT latite 0/MD mud " LAUR laurvikite (S0IL) so i 1 LAVA LV lava (TILL) till, glacial LHER lherIO1ite LIMS LS limestone LS/B " bed LSRF " reef LSSQ " sequence L0ST lost core I PAGN paragneiss PEGH PG pegmatite PERD peridotite PERT perthosite PHON phonolite PHY L PH phyllite PICR picrite PPXX PP porphyry ,gen PPFX " .feldspar PPFO " , feldspar-quartz PPQF " .quartz-feldspar PPQZ " .quartz PYRC PC pyroclastic rock (AGPC) agglomerate (BRPC) " breccia PYRX pyroxenite QZIT quartzite QZDR QD quartz diorite QZGB QG quartz gabbro QZMZ QM quartz monzonite QZPH QP quartz phyllite QZ/V quartz vein(s) QZVN alt'v form RHYL RY rhyolite RHYD RD rhyodacite ROCK RX rock,gen RX-1 rock-1 ' RX-2 rock-2 • (EC-1) epiclastic-rock-1 * (EV-11 epivolcaniclas.-1 * (MS-1) metased.-rock-1 * (VL-1) volcanic-rock-1 * (VC-1) volcaniclas-rock-l« (•identified laterl SI SI SN SI SH SL SCHI SCHS SCYL SEAT SEDM SERP SAND 10/SN) SILT (0/SI) SHAL SNSI SNSH SNCG SHSI SISN SISH SICG SLAT SOIL SYEN SY SYDR TACT TILL TLIT TING TONL TRAC TCAN TRAP TR JN TUFF TFAQ TFLP TF XT TFXL TFWL TUFS TC TF schist alt'v form scyelite seatearth sedimentary rock serpentinite sandstone sand unconsol siltstone silt unconsol shale sandstone with SI with shale " with conglom " with siltstone siltstone with SN " with shale " with conglom (•interbedded,50t-) slate soil (overburden) syenite syenodiorite tactite till, glacial tillite tinguaite tonolite trachyte trachyandesite trap tronghjemite tuff " .aquagene " .lapilli " .crystal .crystal lapilli " .welded tuffasite ULMF UM ultramafic rock ULBS UB ultrabasic .alt'v V0LC VL volcanic rock VLCC VC volcaniclastic rock VEIN /V vein < < < < < < microveins . > > > > > macrovein WEBS websterite WEHR wehrlite MOTS THAT 1) The above table is alphabetic by rock type names, not by their Codes 2) Somm rock types have more Chan one Code: the second is an alternative form; both are acceptable by the System and both may be used in the same project and sane log, as for instance to distinguish between two different rock units hav i ng the same rock type )) Codes in brackets are the Codes of rock types not in their alphabetic position ROCK-TYPE QUALIFIERS In addition to Typifying and Qualifying Minerals, two other factors of importance qualify a rock namely. Environment of Emplacement and Rock-Type Qualifier, both of which are 2-letter codes that are to be entered side-by-side in the Lower Tier, directly below Rock Type. Alternatively, Rock-Body Form and/or Provenance may be entered in these same two fields. . ENV ~ ENVIRONMENT OF EMPLACEMENT RTQ — ROCK-TYPE QUALIFIER AC autoclastic AN andesitic SL slaty AL allochthonous AP aplitic SY syenitic AO aeolian AR argillaceous TF tuffaceous AT autochthonous AX arkosic UM ultramafic BH biohermal BN bentonitic VL volcanic BK brackish-water CH cherty BR back-reef CY clayey BS biostromal CO coaly CO continental CG conglomeratic EC epiclastic (non-volcanic) DC dacitic EV epivolcaniclastic DB diabasic FL fluvial, fluviotile DR dioritic FR fore-reef DO dolomitic GF glacio-fluvial FL felsitic GL glacial, glacio-lacustrine GB gabbro ic IN intrusive GR granitic LC lacustrine GN gneissic LG lagoonal HR hornfelsic MR marine, gen LT latitic MS marine, shallow LS limey MM marine, moderate depth MF mafic MD marine, deep water MZ monzonitic NM non-marine PG pegmatitic PC pyroclastic PH phyllitic PL plutonic PP porphyritic SD sedimentary RY rhyolitic SV sub-volcanic RD rhyodacitic VL volcanic, gen Sit schisty, -ose VC volcaniclastic SH shaly SI silty RBF -- ROCK-BODY FORM B/ bed c/ contact zone D/ dyke F/ fault zone F= flow N/ volcanic neck P/ pipe s/ seam S= sill S# stock $/ stringer zone V/ vein PRV — PROVENANCE or SOURCE OF ROCK PARTICLES M* metamorphic X* mixed P* plutonic Y* pyroclastic S* sedimentary V* volcanic (*The asterisk may be replaced with a G-Scale percentage M3 = 30% metamorphic P4 = 40% plutonic S6 = 60% sedimentary) GEOLOG*SYSTEM lnl«intiion«iQ*o«|r<lwntCoipoi<lion Upper Tier / Bi •T, MODE THK-HESS STRUC 1 Feature I 0 STRIKE AZIMUTH clockwise froa True North >90*l D I P < to right tf * or Tops[ PLUNGE downi(linear) Lower Tier L Bx -T2 STRUC 2 Feature I • AZIMUTH T ! 0 I P or or a i PLUNGE 48 49 SO 51 52 53 54 | SS 56 The azimuth of a strike is measured clockwise from True North and is expressed as a 3-digit number, even if less than 100*, as for instance, 037 and 175, to distinguish from dips, which are 2-digit. An azimuth that is due north is better expressed as 360 rather than 000. The strike of a dipping planar feature that is not ver tical could be given as either of two values which would differ by 180*i however, in GEOLOG, use the convention of facing along that direction of strike that places the direction of dip to observer's right. If tops are down, still take strike so that dip is to right, but record dip as angle greater than 90*. If planar feature is vertical, face strike direction that places the presumed top or youngest surface to the right. If taking attitude of planar feature having thickness, such as dyke, distinguish attitude of top with T in 54 from attitude of bottom with B. However, normally record attitude of top of dyke when From-footage marks inter section with top and record attitude of bottom surface when From-footage marks bottom. STRUCTURE T - s c A r. • MODE THICKNESS Assgn Scale Bedding Splitting or Value Value Description Textural Tern 2 to < 2 mo < 5 mm 1 3 mm mn 0 1 varved laminated ) ) ) fissile PS .5 to < 2cm 1 cm 2 very thin flaggy 11 2 to < 5cm 3 cm 3 thin slabby SB 5 to <20cm 10 cm 4 aed. thin ) ) ) % 20 to <50cn 30 cm 5 medium blocky BK .5 to < 2 m 1 a 6 med. thick 1 ) 2 to < 5 m 3 m 7 thick ) \ 5 to < 20 m 10 a 8 very thick ) J 1 massive MX >20 a 30 a 9 extrmly thk } ) The Bx and B2 in F(48)/L, for bedding mode thickness, can also be used for the more general Ti_ and Tj, for mode thickness of litho-features, such as dykes, coal seams, veins, etc., which must be identified in the feature I D fields, F(49-50)/L. FEATURE IDENTITIES AX axis of. any fold - may replace x with: A anticline S syncline 0 drag fold, etc. BN banding BD bedding; BI, B2 . . specific beds (alt.form, B/) CV cleavage; IC, 2C . . specific cleavages C/ contact ; CI, C2 . . ' • contacts (alt.form, CN) U/ dyke; 01, 02 . . specific dykes (alt.form, DK) - may use DT • dyke top, OB • dyke bottom F/ fault; Fl, F2 . . specific faults (alt.form, FL) FB flow banding FZ fault zone FS fracture set ' (SF • single fracture) GN gneissosity JS joint set (Sj~- single joint) LS lens LN ln.eation; LI, L2 . . . specific lineations S/ seam; SI, S2 . . Sit shear $/ stringer SS slickensides U/ unconformity; V/ vein; VI, V2 . . << microveins >> macrovein VC vein, calcite VQ vein, quartz etc. specific seams UA angular unconformity specific veins 00 o o I AM algal matted A* amygdaloidal Afi animal bored,burrowed AP aplitic AG augen structured BN banded BD bedded BC bioclastic BI bioturbaceous=dis-turbed by animals BK blocky BT botryoidal BR brecciated (C casted (X crystal-casted (F flute-casted (L load-casted CA cataclastic CM chilled margin CT clastic CS closed-structured framework supported CG clay-galled CC concretionary KR crackled CR crenulated XB cross-bedded XC cross-cutting DF drag-folded* en ech. shearing EQ equigranular FZ feldspar zoned F$ fissile FY flaggy FL flaser-structured FT flattened FB flow banded F2 folded slightly F3 " lightly F5 " moderately F7 " strongly F9 " tightly FO foliated FS fossiliferous F( "-calcareous FC "-carbonaceous FF "-faunal FG "-graphitic FM "-marine FN "-non-marine FP "-plants GP glomero-porphyritic GN gneissic Gj graded-bedded GT granitic GB granoblastic GL granulosa GF graphic GY greasy, sectile HT heterogeneous HO homogeneous HF hornfelsic structured TEXTURES IM imbricated IQ inequigranular IB interbedded IN interstitial LM laminated LB lensoid-banded (streaky) LN lenticular LE lineated LS listric-surfaced LL lit-par-lit LT lithic >> macroveined MX massive << microveined MC mud-cracked MY mylonitic ND nodular OS open-structured -disrupted, matrix-supported PW partings & whisps of coal PG pegmatitic PL peletoidal PS penecontemp.slumped PH phyllitic PI pisolitic, pea-like PK poikilitic PP porphyritic PB porphyroblastic TG ptigmatic RP rain-printed RW reworked R7 strongly RW R5 moderately RW R3 lightly RW R2 slightly RW RB ribbon-like, -banded RM ripple-marked M7 strongly RM M5 moderately RM M3 lightly RM (etc.) RA asymmet. RM RS symmet. RM SC schistose SR scoured SB slabby SL slaty SS soft sediment slumping SP sparry SK stockworked SW stromatolitic ST stylolitic TC trachytic, trachytoid TG ptigmatic UF uniform textured W veined VS vesicular VG vuggy WL welded TYPIFYING & QUALIFYING MINERALS TYPIFYING MINERALS AND QUALIFYING MINERALS, MATERIALS a DESCRIPTORS ROCK- 2-Code for Forming Typifying Minerals Minerals 3-Code Qualifying, Materials, Miner als fc Descriptors N 0 T E i The third character, t, present in many of the 3-character codes, ia to be either replaced with a G - Scale percentage estimate of the amount of the mineral or material present, ... or left blank 8 I actinolite albite andalusite calcite clay c 1 inozois ito cordierite dolomite epidote feldspar,gen garnet glaucophane graphite AC Afl BI CA CA GC GR ACt Aflt AMG AMt AAt ARG ARK BEN BIO BII BIT BL BR% CAL CAt CB* CR» Clit CYI CZI CCR CPU CO I COB CGI C0» COQ cat XT* actinolitlc albitized aiuygdaloidal " , t amyg's andalusic argillaceous arkosic hemat ite hornblende hyperathene jadei te K-apar kyanite laumonite lawsonite HE* hematitic tiat hornbleodic HY% hypersthenic EPt . EVP EV% FX I FLD FE* G At GC% GR* CRT GY* JDt KF% KYt LM% LWI jadeite » K-feldspathic . kyanitic laumonitic lawsonitic bentonitic bioclastic biotitic bituminous 1 bleached, n-1-9, N-Scale breccia t calcareous calcitic I carbonates carbonaceous t cherty t clayey clinozoisitic coalyb co.rash " partings and whiaps * per cent cobbly conglomeratic t cordieritlc* coquinoid % coquina t crystals DO DOt dolomitized,ic epidotized evaporitlc " per cent feldspathic feldapathoidal ferruginous garnetiferoua glaucophanoua graphitic gritty gypsifarous limonite Lit limonitic LIM limey LPt lapilli t LTt lithic t (RXt) LCn leached, n-1-9 N-Scale Micas,gen. MI MIt micaceous MRt miarolitic i.uDntmor 11 Ion ite MM MMt montmor11Ionic muscovite MU MUt muscovitic " sericite MS MSt sericitic MTt matrix t MUD muddy nepheline NP NFt nephelinltic olivine OL OL* olivine t OQZ orthoquartztic PAR partings PEB pebbly PHS phosphatic pyrite PY PY» pyritlc PYN pyritic-nodular PYT pyritic-tubea pyrophylllte PP PPt pyrophy11itic pyroxene PXt pyroxinltic py rrhotite PR PR* pyrrhotitic quartz,gen QZ QZ* quartzltlc.osa - a>jate OA OA* agatized - chert QC QCt cherty t - vein,mass. QV QVt mass. QZ-Vtl RXt t rock frags RTL rootlets rutile RU RUt rutilitlc sericite MS MSt sericitic serpentine SE SE* serpentinizad a ider ite SO SD* sideritic sil Lii.iinlte SI Sit silliminitic SAN sandy SN* " * SIL silty SLt silty SIF siliclfied -siliceous SFn -n»needle hardness SLT slatey S-E seat-earth 1 staurolite ST ST* staurolitlc topaz T2 TZt topaz t tourmaline TO TOt tourraallnlzed tremolite TR TRt treraolitic TKt tuffaceous vst vesicular XNt xenollthic zeolite ZE ZE* zeolltic zoisite ZO zot zoisitic * cordierite and coal have the same 2-letter code - CO , but both are not likely to occur together COAL MATERIALS SUMMARY PET peat, peaty LIG lignite,-ic SBT sub-bituminous BIT bituminous BTH ", high volatile BTM med. volatile VTL ", low volatile SMA semi-anthracite Kbit anthracite RECAP SUMMARY Clayey to Cobbly CYt clayey MUD muddy SHt shaly SIL silty SN* sandy PEB pebbly COB cobbly APPENDIX C ANALYTICAL RESULT -121-DOH 021 II 39109 68. 08 14 . 96 3. 14 1 . 48 3. 50 3. 47 39110 67 . 78 14 . 95 3. 45 1 . 58 3. 35 3. 62 39112 67 . 53 14 . 96 3. 27 1 . 62 3. 45 3. 90 391 14 67 . 64 14 . 96 3. 42 1 . 64 3. 25 4 . 09 391 16 66. 89 14 . 82 2. 83 1 . 44 5. 86 1 . 80 391 18 67 . 61 14 . 96 2. 86 1 . 49. 3. 19 3. 96 39120 68 . 10 14 . 97 3. 26 1 . 52 2. 60 4 . 16 39122 67. 75 14 . 97 3 1 1 1 . 63 2. 88 4 27 39124 67 . 35 14 . 96 3. 38 1 . 82 3. 35 3 93 39125 62 . 1 1 14 . 92 8. 68 6 . 13 2. 58 1 . 07 39152 67 . 34 14 93 3. 84 1 . 87 3. 38 3. 94 39154 67 . 78 14 . 94 3 14 1 90 3. 27 4 . 22 39156 67 . 66 14 . 94 3. 54 1 87 3. 03 4 . 15 DDH 025 -38150 63 . 42 14 91 8 . 36 4 . 7 1 2 67 O 34 39176 58 99 17 . 28 9 . 99 5 .21 3 .67 0 .37 39178 60 08 15 99 9 .65 6 .52 2 .91 0 .69 39180 62 .90 17 .42 6 .94 3 .52 3 96 0 .07 39182 59 98 16 . 7 1 8 .79 5 .74 3 .71 0 .85 DDH 026 20 39130 60. 34 14 . 94 1 1 . 50 5 . 68 1 . 45 0 39 132 60 38 14 . 79 10. 23 6 . 64 3. 10 0 13 39134 60. 22 14 . 75 10. 32 6 . 92 3. 05 0. 14 39136 56. 87 14 . 74 13 07 7 49 3 43 0. 43 39 138 67 37 14 95 7 .27 4 . 19 1 12 0 39 39140 60 65 14 60 10 45 6 .89 2 .80 0 37 39142 55 34 14 77 12 .72 8 .74 2 .98 0 .54 39144 59 20 14 .83 10 .96 6 83 3 .23 0 .51 39146 63 1 1 14 .80 7 .47 6 .00 3 .46 0 .23 39 148 57 .97 14 .84 11 .90 7 .40 2 .76 0 .66 DDH 068 39 194 60 .07 16 .58 8 .20 5 .35 4 . 44 0 .67 39 196 56 . 75 15 . 45 10 .OO 8 .66 4 .64 1 . 13 39198 56 .87 16 .45 1 1 .35 6 .37 4 . 45 0 .25 39200 59 .29 15 31 9 .77 7 .95 2 .97 0 .69 39202 58 . 13 15 . 18 10 .42 7 .53 3 81 1 21 39204 59 .71 15 . 30 9 .36 6 .27 4 .32 1 81 DDH 069 39206 66 .64 16 .32 2 .26 1 .51 4 . 14 1 . 17 39208 71 .55 14 .59 1 .56 1 .27 0 .20 1 .95 39210 71 .42 13 .99 2 .24 2 .32 0 .30 1 . 14 39212 70 .00 14 .64 3 .36 2 .82 0 .82 0 .86 39214 68 .26 15 58 3 .28 2 .72 1 . 17 1 . 72 39216 69 .76 14 .34 2 .32 1 ,94 0 .61 3 . 34 39218 72 • 16 14 . 26 2 . 15 1 .25 0 .35 1 .97 39220 69 .78 14 .38 2 .55 1 83 0 .42 2 .37 39222 68 .62 15 .20 1 .81 1 .74 2 .85 1 .09 39224 65 .03 15 .79 4 . 18 1 .63 4 . 17 1 .50 39226 65 .71 16 .74 2 .52 1 .78 4 .73 2 .09 39228 65 .60 16 .68 1 .99 1 . 1 1 5 .79 1 .73 DDH 076 3. 13 0. 50 0. 14 37252 68 .54 14 3. 12 0. 52 0. 15 37255 68 .86 14 3. 03 0. 52 0. 15 37256 67 .07 14 2 . 86 0. 54 0. 14 37258 68 .20 14 5. 12 0. 45 0. 17 37260 69 .03 14 3 73 0. 54 0. IS 37262 68 . 16 14 2 99 0. 47 0. 14 37264 65 .96 14 2 92 0. 49 0. 14 37266 65 .64 14 3. 07 0. 51 0. 14 37268 65 .84 14 2. 31 1 . 02 0. 22 37270 66 .05 14 2 . 84 0. 54 .0- 15 37272 67 .70 14 2 89 0. 47 0. 14 37274 68 .84 14 2 94 0 50 0. 14 37276 37278 37280 70 66 65 .32 .28 . 12 14 14 14 3 76 0 93 0. 12 37282 66 .55 14 3 .85 1 . 17 . 0 19 2 .80 1 . 16 0 .20 DDH 078 1) 4 .57 0 92 0 .20 37226 67 .41 14 3 .47 1 .02 0 : 15 37228 37230 68 68 .80 .30 14 14 19 33 37232 67 .09 14 3 58 1 . 0. 37234 66 .65 14 3. 3 1 1 . 12 0. 19 37236 66 .27 14 3. 31 1 . 1 1 0. 18 22 37238 59 .32 14 2 84 1 . 09 0. 37239 67 .65 14 2 3 43 35 0. 1 79 08 0. 0 15 17 16 37242 37244 65 68 .90 .00 14 14 3 . 34 1 . 33 0. 37246 68 .03 14 2 94 1 .09 0 16 37247 65 .68 14 3 .41 0 .97 0 . 19 37250 67 .25 14 2 .86 1 . 1 1 0 . 18 37201 37202 37203 65 65 67 .83 .85 .25 14 14 14 4 OO 0 .85 0, 15 37204 67 .59 14 2 . 14 1 .07 0. 20 37205 66 .95 14 3 .55 0 88 0 21 37207 66 .79 14 2 . 34 1 . 1 1 0 33 3720B 66 . 77 14 2 . 15 1 . 13 0 20 37209 66 .79 14 . 1 .63 1 . 10 0 18 37210 3721 1 66 67 .88 . 17 14 14 . .93 . 38 . 18 37213 66 .99 14 6 0 0 37214 57 .86 14 6 4 .50 .86 0 1 .36 .46 0 0 . 12 . 13 37215 37216 67 66 .95 .71 14 14 5 . 26 5 -65 0 0 .47 .48 0 0 , 10 . 16 37219 66 .96 14 5 . 19 0 .47 0 . 16 37222 66 .49 14 5 .25 0 .37 0 . 13 37224 67 .41 14. 6 .23 0 .45 0 . 18 DDH 080 6 .90 0 .39 0 . 14 37314 60 .98 14 . 6 .57 0 .40 0 . 16 37316 68 .76 14 . 5 .67 0 .43 0 .20 37318 68 . 37 14 . 6 .26 0 .39 0 .27 37320 67 94 14 . 37322 69.54 14. 37324 71.21 14. 37326 71.08 14. 37328 67.23 14. 37330 66.91 14. 37332 69.97 14. .96 2 .94 2 . 13 3 .21 1 .68 4 .09 0 .48 0 . 16 .96 3 .58 2 .52 1 .76 2 .07 3 .85 0 .50 0 . 16 .97 3 85 2 .47 2 .84 3 .04 3 .32 0 .56 0 . 18 .96 3 .97 2 . 76 1 .80 2 .27 3 .70 0 .51 0. 19 .96 3 .87 2 .07 1 .93 1 .80 3 .94 0 .44 0. 17 .95 4 01 2 .43 2 .21 1 88 4 .24 0 .47 0. 17 .97 3 .94 3 .04 3 .47 2 85 3 .37 0 .58 0. 22 .97 3 .36 2 .45 3 .82 2 .63 4 .77 0 .44 0. 19 .95 4 .87 2 .61 3 .05 3 .41 3 .20 0 .55 0. 21 .97 4 .73 2 . 18 3 . 14 3 . 1 1 3 .57 0 .51 0. 19 96 3 .83 2 .21 2 . 23 2 .77 4 . 13 0 .46 0. 16 .95 2 . 75 1 .59 2 .84 3 . 16 3 .83 0 .39 0. 15 .86 2 . 14 1 .97 2 .68 2 .59 3 .89 0 .32 0. 15 .96 3 .40 2 .58 3 . 18 4 . 18 3 .30 0 .53 0. 21 .97 3 .90 2 . 27 4 .35 2 .99 4 . 1 1 0 .47 O. 19 .96 3 .27 2 .25 3 .68 3 .02 4 .03 0 .47 0. 18 97 3 .53 2 .53 1 .43 3 .69 4 .02 0 51 o. 17 97 3 27 1 .92 0 .97 3 .67 3 .93 0 48 0. 16 97 2 .88 2 . 12 1 .45 3 . 78 4 .07 0. 52 0. 19 96 4 .25 1 .65 3 . 33 2 .61 3 .82 0. 50 0. 18 97 3 .46 1 .53 3 .95 3 .43 3 .64 0. SI 0. 20 95 3 50 2 06 3 .41 2 .98 4 68 0. 53 0. 20 89 7 .81 3 .67 7 .53 3 .07 2 .26 0. 99 0. 22 96 4 .35 1 .65 2 .60 2 OS 4 .46 0. 48 0. 18 27 4 16 2 .53 6 .23 0 .68 6 .33 0. 45 0. 21 96 3 16 2 00 2 . 16 3 .53 3 .91 0 50 0. 16 97 3 1 1 1 83 2 .69 2 .75 4 OB 0. 45 0 19 92 3 82 1 .87 5 .26 1 .59 5 14 0. 42 0. 19 92 3 64 2. 03. 4 .39 0 .62 5. .25 0. 48 0. 20 97 4. 37 2 . .47 3 . 15 2 25 4 42 0. 60 0. 22 96 4. 68 3. 57 1 89 3. 04 3. 70 0. 68 0. 23 96 4 . 08 2 . 72 1 78 3. 32 3. 64 0. 56 0. 19 97 3. 72 2. 68 1 . 67 1 . 98 4 . 94 0. 49 0. 18 96 3 89 2 35 2 29 3. 60 3. 87 0. 52 0. 20 97 3. 38 2 . 08 3. 05 3. 39 4. 01 0. 45 0. 20 97 3. .46 2 06 3. 02 3. 84 3 57 0. 48 0. 19 96 3. 78 2 12 2 . 87 4 . 24 3. 26 0. 49 0. 18 96 3. 29 2 25 2. 89 4 . .28 3 .40 0. 49 0. 19 97 3. 05 2. 13 2. 77 4 .03 3 .67 0. 49 0. 18 96 3 23 2 . 15 2. .76 4 54 3 44 0. 46 0. 19 94 7. 37 4 . 67 7. 04 2. .90 3 54 0. 87 0. 21 97 3. 14 1 . 61 3. .39 2 85 3. .55 0. 39 0. 16 96 3 19 t . 99 3 .09 4 .34 3 .63 0. 50 0. 17 97 2. 98 1 . 77 3 66 3 .25 4 01 0. 48 0. 18 97 3. 40 2 . 48 2 .94 3 84 3 .60 0. 54 0. 20 96 2. 84 2. 00 3. 06 3 55 3 97 0. 47 0. 18 74 4 . 23 3. 79 io. 58 0. 06 5. 56 0. 48 0. 19 96 2. 59 2. 86 4. 20 0. 07 4 . 30 0. 36 0. 15 89 2. 88 2. 47 S. 31 0. 09 4. 47 0. 35 0. 17 96 2 34 2 . 27 4 . 72 0. 85 4 . 63 0. 37 0. 17 97 i 84 0. 95 2. 27 2. 95 4 . 90 0. 4 i 0. 17 84 1 . 87 1 . 70 3. 85 0. 83 4 . 03 0 3 0. 16 48 2. 12 1 . 90 6. 05 0. 1 1 3. 74 0. 40 0. 17 93 2. 65 1 81 5. 64 0. 95 4 . 98 0. 37 o 17 91 3. 55 2 . 20 5. 43 0. 20 5. 17 0. 38 0. 17 97 2. 72 1 . 40 1 . 12 2. 72 4. 54 0. 48 0. 16 SAMPL PROJ MO CU ZN PB CO NI CO AG F mn DDH 021 39108 0146 6 1520 231 18 3 .3 28 12 0 .52 500 440 39 109 0146 6 181 36 13 0 . 2 17 15 0 .33 360 4 10 39110 0146 4 59 44 24 0 .3 15 13 0 .27 420 470 391 1 1 0146 4 4 1 156 66 2 .0 16 12 0 .75 500 415 391 12 0146 4 1 17 45 13 0 .4 15 14 0 .25 380 415 391 13 0146 4 96 25 1 1 0 .2 12 1 1 0 .32 380 340 391 14 0146 4 74 36 19 0 3 16 13 0 .24 380 480 391 15 0146 4 80 91 36 0 8 19 16 0 .58 440 126 39151 0146 3 326 36 1 1 0 3 13 12 0 .90 380 349 39152 0146 4 101 283 12 2 .8 18 13 1 .77 420 386 39153 0146 3 306 92 9 0 . 7 16 12 1 . 10 440 324 39154 0146 4 234 378 12 3 6 15 12 3 .86 105 430 39 155 0146 4 339 212 10 1 9 15 12 1 .65 440 357 39156 - 0146 4 35 34 8 0 .4 17 14 0 .25 420 360 DDH 025 39150 0146 69 2290 185 18 1 4 19 29 2 .57 720 345 39176 0146 170 2720 224 19 1 . 7 22 47 2 .67 640 440 39177 0146 140 2010 1 12 8 0 6 21 39 1 .78 700 460 39178 0146 51 2560 88 1 1 0 .5 19 36 2 .89 740 470 39179 0146 380 1850 90 7 0 .8 19 32 1 . 77 840 320 39180 0146 96 2730 183 33 2 .0 18 32 1 .79 880 610 39181 0146 140 3120 127 17 1 .0 19 32 2 .60 1040 38 39182 0146 . 42 3050 80 12 0 8 19 49 2 . 17 840 4 20 39183 0146 260 3950 53 3 0 4 17 4 1 2 .95 1500 34 39184 0146 100 3850 38 3 0 4 17 31 1 . 9 1 1 120 19 39185 0146 210 26G0 155 37 1 7 22 30 2 . 13 920 323 39186 0146 25 2630 620 14 5 .5 20 30 2 .76 780 610 39187 0146 310 1740 990 84 13 7 13 13 4 . 13 800 7 20 39188 0146 230 2740 62 10 1 . 3 12 1 1 1 .65 1200 29 39189 0146 160 2090 770 29 7 2 16 17 2 .40 1 120 47 DDH 026 39130 0146 6 830 106 13 0 3 15 26 2 13 480 460 39131 0146 17 500 B4 26 1 . 2 15 24 1 . .33 600 275 39132 0146 13 630 115 45 1 . 2 16 26 10 680 365 39133 0146 13 680 62 10 0. 7 1 1 19 1 . 34 700 171 39 134 0146 40 510 56 9 0. 4 16 42 1 . 98 600 303 39135 0146 5 3010 61 14 0. 4 17 34 8 440 304 39136 0146 24 2060 208 10 1. 1 24 52 2 . 10 620 570 39137 0146 3 1040 99 8 1. 0 21 32 1 04 460 360 39138 0146 7 2100 129 12 1. 1 20 25 1 . 44 640 275 39139 0146 10 1090 48 9 0. 5 14 28 1 . 55 560 215 39140 0146 16 1890 144 15 1 4 20 39 2 . 90 580 340 3914 1 0146 34 1430 143 10 i: 2 21 36 1 . 69 600 340 39 142 0146 12 2780 132 18 0. 6 19 31 2 . 73 600 460 39143 0146 36 1290 70 12 0. 6 14 27 1 . GO 740 262 39144 0146 18 1850 61 1 1 0. 5 18 39 2 . 58 660 213 39145 0146 16 1550 7 1 9 0 4 18 4 1 1 . 57 560 233 39146 0146 270 2660 73 13 o. 9 15 30 3. 07 680 245 39147 0146 60 910 68 14 0. 4 17 38 1 . 73 740 248 39148 0146 27 1480 98 29 0. 7 15 49 2 . 88 640 286 39149 0146 7 760 66 14 0 6 17 31 1 . 47 480 243 SAMPL PROJ MO CU ZN PB CD NI CO AG F MN ODH 068 39190 0146 3 7 10 96 35 1 . 2 10 12 24 260 105 39191 0146 3 219 60 23 0. 4 1 1 20 3. 31 380 4 20 39192 0146 3 127 65 13 0 4 19 30 1 . 03 480 530 39193 0146 4 196 57 28 0. 5 23 32 1 22 500 490 39194 0146 3 600 109 50 0. 9 16 20 9 360 730 39195 0146 3 162 112 16 0. 6 19 33 0 95 480 940 39196 0146 5 188 189 40 1 . 4 15 23 2. 23 460 109 39197 0146 4 1 18 94 1 1 0. 4 16 26 1 . 46 4 20 750 39198 0146 3 650 145 88 1. 3 1 1 17 22 220 940 39199 0146 3 275 88 46 0. 8 14 20 3 2 1 220 380 39200 0146 2 139 169 17 2 5 13 22 1 57 380 7 20 39201 0146 2 104 92 23 1 . 9 7 10 1 55 320 337 39202 0146 3 230 92 7 1 7 16 35 0 8 1 340 680 39203 0 146 2 182 63 7 1 . 2 16 29 0 7 1 380 550 39204 0146 3 77 60 5 1 . 2 14 29 0 45 340 450 39205 0146 5 14 1 57 8 1 . 3 14 24 0 68 340 3 14 DDH 069 39206 0146 160 1600 19 7 0 5 12 13 0 98 840 72 39207 0146 170 37B 55 23 0 4 10 8 2 76 620 76 39208 0 146 130 315 30 17 0. 3 8 7 2 49 940 56 39209 0146 240 120 38 15 0. 2 9 5 1 32 940 94 39210 0146 150 930 55 14 0. 5 12 9 1 50 720 1 14 3921 1 0146 63 1310 151 12 1. 4 1 1 9 0 45 840 185 392 12 01.46 74 1960 1 18 17 2 . 7 13 10 0 55 900 175 392 13 0146 72 1310 128 13 1 . 9 12 12 0 4 1 900 236 39214 0146 75 2 360 176 13 1 . 2 13 14 0 66 640 282 392 15 0146 2 10 4200 77 10 0 9 14 1 1 0 72 540 99 392 16 0146 180 4000 8 1 9 1 . 1 1 1 10 1 17 880 1 15 39217 0146 92 4 400 76 7 0 8 13 12 1 16 940 85 39218 0146 1 12 3190 58 7 0 8 10 9 1 04 820 49 39219 0146 26 2070 53 5 0. 6 1 1 1 1 0 58 800 107 39220 0146 156 5000 59 5 0 8 12 10 1. 50 800 74 3922 1 0146 110 4 150 227 9 2 . 1 1 1 12 1 . IR 820 186 39222 0146 350 1710 27 7 0. 7 12 10 1 31 1060 87 39223 0146 130 1600 35 9 0 6 12 1 1 1 77 800 1 1 1 39224 0146 97 920 23 5 0. 9 13 17 0 92 720 78 39225 0146 120 1550 20 5 0 4 1 1 14 1 34 760 7 1 39226 0146 190 1430 25 6 0. 4 13 12 1 .54 820 8 1 39227 0146 64 1010 28 15 0 7 10 10 1. 65 820 53 DDH 076 37258 0106 16 850 25 3 0 2 13 13 0 .60 860 63 37260 0106 160 720 27 5 0 .3 13 15 0 .46 920 85 37262 0106 16 710 28 10 0 .2 13 15 0 .5 1020 105 37264 0106 10 570 39 20 0 .4 13 14 0 .49 920 156 37266 0106 240 990 31 13 0 .3 13 18 0 .67 1000 79 37268 0106 37 1100 38 11 0 . 2 13 22 0 .66 1 180 101 37270 0101 132 440 26 9 0 .2 13 22 0 .40 880 86 37272 0106 66 830 66 10 0 3 21 16 0 .51 800 178 37274 0106 133 850 40 12 0 8 17 16 0 .66 940 100 37276 0106 410 830 33 11 0 .2 15 15 0 . 53 840 73 37278 0106 41 660 25 8 0 .2 17 14 0 .43 1040 too 37280 0106 26 920 62 13 0 4 18 18 0 .73 880 121 37282 O106 63 80O 42 14 0 3 16 16 0 .69 800 122 Tntfi(NCNTr^r^ — <T-rNQi_n~r*n«cN'»ininoi — c.inoO0i-f-Or--OOin-NOi^n-ONONuioinin'-n-^'-w(Nniri'>-'-.r\i'-— C") — —(*).*) — — — CN*- — — — CN EN TJ OOOOOOOOQOOOOOOOOOOQOOOOOOOQOOQ ajr^omooiocnwmoojmeommncnmOOvoooioiooOOO OOOOOOOOOOOOOOOOOOOOO'-^OO'-O'-'-N'-«O«O0)UIUHNONI/»*- CNCN«>U)I©CN — nonm-a-wo — M^DCN — — — OJCN — — — — — — — — — — — — — — — — »- — ,- — — — — CN cNnmo)in*t*Jvoi'*'- — — - — — — — — CN CN in v — — in - — — — CN OOnnr--NnOOOOOOOOOOOOO'-Oo6oOOO'-0 incN — co — c_o — oowcor-»ij3ij?a.i^inincocNCNr^ — - •»«»-  — — n — cooQnoooin — inr**r^r*(ir'g'tnoo — CN r- o r- — Ooir^wu>4nr)f*)0"-O(0in o< in o " T CN — — •"••"wniBPi'-OOOOOQOOOOOOOOQOOOO ^^OCNCN©a_*»lflVOeOa)*»OCNtN*»^ t>u)eofflCiomooij?i£(jvOO>coo)0)toco 0-Ooi--000000-0«PtOO OvtN^vvinuJUJiom-nintDva.'QrOu) ln«^nlnn•Jtonlnnli^lJ^lnlflmconln — m — — — — «- — — — — — ,- — ,-,-,-.-«-moddoodododdodddvdd n<r^^»i>^ — — — 0"~cNr_ — isrncoiDr"-^ — — — GN — CN — - »• ^ ^ CO N ^lUllDcoOll»ln*•v9lnOu)li^NOlnulOn(^^^^^olOOnno•• ii.'i,,Ooi,,vain*,jnwPHDnnNnw(Dn,'C.hn(,)nin*j on—'- — — 8— CN — r*-^OCJiCN(J1lPCNr^'7 — llOOtOCD (fitnnr^nnotMPicNCNCNinvipoinr*-OnOOOOOOOOOOOOOOOOOOOOOOOvOOOQO o o O o o o o o I 3 o o o o O O O 5 lOO CM 00 IS n 11 5 ts r~ D in c > ai in in 00 m N o ' Ci a o o u> -r c~ n o oo c cNioOinOeor^mii)r)OCT)r--r*-Or*0( ooooooooooooooooooooooooooooooo CN co OnTnniCMcmo OD CO © CO O CD _______ _ _ ______ Onnnnnnnnnonnnnnnn(*innnnnr!("ifionnrin t-oO)0-tT>o-0)o.aimo.cnooooooooooo — ' ooooooooooooooooooo Oninujt^cooiO'-CNnvintcr'Coo.o-^M — — — — — — — CNCNCNfNCNCNCNCNCNCNr.On Innnnnnnonrtnnnnnpinnn OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOO tPtPttincoo>i0tf>^r*[C<j3nr,-in_ninincoeo-Dr^in tnii>cNn^oojij3a)ii3-n_ocN<jDCNno^LnCTCNp a)OCNO>ior«'C,)^,eN(jJCNnO'"t*> - inv,»u)^Ou>tNOr^nin^v,»'vn — <NOcv»toininr»*^'(BCN inr**0)-NOr^nr*mvtotDiocNOcNfnnu)oo^-onu.eoootpo ior>*»nvu>iOr*-t0in«u»cnr^cn'»u>coioinioi^n oo*»ooeN<o-,a»(0^'rt«Nio*- — — — — *-CN — CN UJ n r- «- — — — •»•• — cs ~ — •vwowvprt — CN—« dob'" ••nddo'-dddddddoddoconwvddoodddddood'- 6 6 6 6 6 6 ntp — annineonoi« - lnlnOOn^u(PU)OOunlr. nuine-ino«nani0an*ra)N(pin9 •WCNCNCN — — CN n CN CN CN — r«> u? OT n — — — — r> — — o^f.(Dff)^alcDal^••0^)0,T••a)U)^^D^OQIJ)C^M^••tfOO''Tffl^ncv^cP.N(J)Ov . _ _ ______ -jpO-^cNfNCN-neNcn^irjinncNCNOJvcNtN — CNIO OioasOCNOO">oof-'-tDr^in-ncN'»CN^--r- n — C 8QQ30QOiOOcOinOiOtn'»nOOOQOOOOCQOOQOOt«''-^OinOOOOOOOO OOOOOr**'ioON'- — u? OCOCN — o »J m n - ^Ouir^Oflotnr^eoipvda — COIT-CNI^O — CN a)rro-^Lnr- — CNCNCNO— •*cioninnvhO«oiC mu>r"-innre<NM~voincoininr*»_ncofl-> — — vmicN  — — — — o 888888888888888888888888.8888888888888888888 to r-O^B^fflmo•-N^'Tl/i^P^a3(J)O^M^^^r)^^a)(7)ClXl^cotno••Nn^lntf^ala)0••«n'J ,NN0iwnnr)nnnnnnn^niiTnT'JTfi-OO00,-'',"-,-'",-""nfif(PiN XfNCNCNCNCNCNCNCNCNCNCNtNCNCNNtNCNCNCNWCNCNCNCNC' WCNCNCNCNCNWCNCNOIOICNOICNCNCNCNCNO* Onr>nr>nr>f*-f*>r>r.r.or>p>nnr>r)r.r)P>r)p)nr nnnnnnnnnnnnnnnnnrin -124-DDH 082 37284 67. 38 14 . 96 3 . 18 3. 06 1 . 79 2 . 66 4 . 73 0. 46 0. 16 37286 66. 20 14. 97 5. 43 1 . 63 2 . 92 1 . 76 4. 78 0. 44 0. 18 37288 67. 05 14 . 96 3. 87 1 . 86 2. 60 3. 83 3. 68 0 53 0. 18 37290 67. 70 14 . 96 3. 10 2 . 19 1 . 77 4 . 13 3. 99 0. 51 0. 16 37292 65. 98 14. 95 3. 52 1 . 94 2 . 86 4 . 26 4 . 58 0. 49 0 17 37294 67. 84 14. 96 3. 05 2. 51 1 . 68 2. 88 4 . 92 0. 46 0. 16 37296 66. 83 14 . 97 3. 93 2 . 72 2. 30 1 . 59 5. 23 0. 44 0. 18 37298 68. 11 14 . 96 3. 58 1 . 75 1 . 71 2. 84 4. 76 0. 42 0. 17 37300 71 . 26 14. 86 2 . 00 1 . 49 2. 28 2 . 16 4 . 32 0 30 0. 14 37302 68. 39 14. 96 2. 44 1 . 70 2. 20 2. 76 5. 31 0. 37 0. 16 37304 67. 48 14 . 96 3. 22 2 . 06 1 . 96 2 . 69 5. 46 0 40 0. 16 37306 67. 52 14. 97 2. 87 1 . 94 2 . 26 2 . 90 5. 26 0. 43 0. 15 37308 66 74 14 . 97 3. 64 1 . 94 2 . 68 3. 41 4. 41 0. 42 0. 16 37310 67. 88 14 . 96 3. 25 1 . 75 2. 27 2. 79 5. 00 0. 36 0. 13 37312 67. 28 14 . 97 2. 51 1 . 71 3. 21 2 . 79 5. 22 0. 38 0. 16 37382 66. 48 14. 93 4 . 86 3. 41 1 . 39 4. 36 2 . 70 0. 81 0. 13 37384 61 . 35 14. 92 7 . 98 5. 23 1 . 66 3. 59 3. 25 1. 20 0. 17 37386 52. 21 14 . 93 10. 10 8 . 97 5. 93 1 . 64 4. 27 0. 95 0. 12 37388 59. 20 14 . 91 8. 84 6. 37 2. 87 2. 90 2. 85 1. 24 0. 16 37390 67. 4 1 14. 94 2. 98 2. 32 2. 48 2 . 36 5. 43 0. 52 0. 16 37392 55. 60 14 . 93 8. 44 4 . 94 7. 25 1 . 36 5. 67 1. 13 0. 27 37394 58. 51 14 . 93 8. 88 5. 97 4 . 47 2 . 39 2 . 57 1. 29 0. 21 37396 57. 59 14 . 92 9. 83 6. 96 2. 79 2. 74 3. 03 1. 31 0. 15 37398 59. 45 14 . 98 6. 61 3. 50 6. 10 1 . 77 4 . 93 0. 96 0. 19 37400 68. 77 14. 95 1 . 20 1 . 48 2 . 32 1 . 95 7 . 11 0. 32 0. 16 37402 71 . 95 14. 71 0. 78 1 . 17 3. 44 1 . 48 5. 38 0. 20 0. 12 37404 70. 27 14 . 87 1 . 03 1 . 20 3. 46 1 . 74 5 85 0. 22 0. 14 37406 66. 86 14 . 96 1 . 23 1 . 75 4 . 22 1 . 79 7 . 08 0. 30 0. 16 37408 68. 77 14. 96 1 . 36 1 . 77 3. 07 1 . 51 6. 34 0. 30 0. 15 37410 68. 52 14 95 1 . 27 1 . 64 3 10 1 . ia b u u. lb 37412 67 43 14 95 1 . 37 1 81 4 . 32 1 78 6 . 34 0 31 0. 16 37414 66. 67 14 . 94 1 . 18 1 74 5 .24 2 .06 6 .37 0 .29 0. 15 37416 65 68 14 97 1 19 1 24 5. 54 2 12 7 .00 0 . 30 0. 19 37418 66 ,53 14 97 1 . 15 1 42 <<• 81 2 . 15 6 .79 0 28 0. 16 37420 68 .64 14 90 0 87 1 18 4 .43 2 35 5 .97 o .27 0. 15 37422 67 . 34 14 .93 1 .20 1 .71 4 .35 2 .42 6 .29 0 .30 0. 16 37424 66 .41 14 .97 1 01 1 .27 5 . 10 1 .88 7 . 20 0 . 28 0. 17 37426 66 .45 14 .96 1 . 15 1 .35 5 .04 1 .85 7 .07 0 .28 0. 16 DDH 088 37334 69. 02 14 95 3 .79 2 .40 0 .79 2 .96 3 . 77 0 .64 0. 16 37336 60 53 14 .90 9 .25 6 . 16 2 .38 1 .78 2 .99 1 . 14 0. 21 37338 64 .42 14 .95 6 .65 3 .60 2 .49 1 .96 3 .74 0 .86 0. 15 37340 56 . 26 14 .91 9 .77 5 .47 7 .44 0 .85 3 .71 1 .07 0. 19 37342 57 .27 14 .91 9 .66 6 . 13 5 .27 2 . 12 2 .74 1 . 19 0. 19 37344 60 .07 14 .86 9 .85 5 .87 3 .06 1 . 12 3 .41 1 . 17 0. 20 37347 63 .71 14 .89 7 .36 4 .70 2 .55 2 . 24\ 2 .57 1 .01 0. 18 37348 57 .39 14 .92 1 1 .80 5 .64 3 .65 2 .01 2 .58 1 .29 o IB 37350 62 .30 .14 .94 7 .57 4 .29 4 .21 2 :21 2 .26 0 98 0 . 18 37352 59 .02 14 .97 8 .72 4 . 13 6 .32 1 .49 3 OO 0 .97 0 .23 37354 54 .08 14 .98 9 .46 6 .03 8 .84 1 .56 2 .63 1 . 12 0 .23 37356 56 . 11 14 .94 1 1 .28 5 .77 5 .37 2 00 2 .41 1 .22 0 .22 37358 57 .71 14 .97 9 .39 4 .78 6 .01 1 .42 3 .30 1 .05 0 . 24 37361 56 . 17 14 .95 1 1 38 6 .03 5 . 18 1 .61 2 .49 1 . 14 0 .21 37363 58 .08 14 .97 12 .04 7 .50 0 .36 1 . 77 2 .46 1 . 27 0 . 17 37370 62 .28 14 .95 6 .21 4 . 10 5 .23 2 .56 2 .55 0 .84 0 .21 37372 55 .87 14 .97 9 . 14 5 . 14 7 .43 2 .41 2 .81 1 .06 0 . 19 37374 55 .51 14 .94 10 .24 5 .39 7 .02 2 .73 2 .30 1 . 15 0 .20 37376 61 .37 14 .93 6 .89 4 .40 6 . 18 1 86 2 .52 0 .81 0 . 18 37378 55 .94 14 .97 8 .99 3 .69 9 .84 0 .74 3 .82 1 .09 0 .21 ••4 7 .08 2 . 33 ~ • DDH 089 39158 48 .83 14 . 30 13 .57 13 .80 3 .50 0 .88 2 .73 1 . 34 O 25 39160 67 . 22 14 . 14 7 .42 4 .87 1 .08 0 .80 4 .56 0 .63 0 13 39162 66 .93 14 .25 8 OO 3 .05 2 .36 0 .45 4 .85 O .71 O. 17 39164 68 .93 14 .93 5 OO 1 .07 3 .68 0 . 29 4 .05 0 .53 0 1 1 39166 65 .06 14 .95 5 .89 5 .70 2 .20 0 .38 3 .37 0 .92 0 19 39168 65 .02 14 .53 9 14 4 .95 1 .44 0 .04 4 .07 1 .05 0 .25 39170 54 . 26 14 .83 12 .70 8 . 17 5 . 10 0 88 2 .43 1 .26 O . 19 39172 60 .02 14 88 10 .20 6 .49 2 .99 1 . 10 2 . 53 1 .07 O . 17 39174 60 . 74 14 .85 9 .41 7 OI 2 .41 0 83 2 .96 1 .04 0 23 ODH 092 f) 37428 70 .88 14 .97 4 .33 1 . 35 1 .37 0 . 15 4 .34 0 . 34 O . 15 37430 69 .58 14 .97 2 .95 1 .33 2 .56 1 .48 4 .49 0 .30 0 13 37432 68 .97 14 .97 2 .41 1 .60 2 .03 2 . 35 5 .08 0 . 36 O 15 37434 68 .98 14 .97 2 .28 1 . 27 2 .35 2 .26 5 .22 0 36 0. 14 37436 68 .45 14 .98 2 .70 1 .55 2 .41 2 . 24 5 .02 0 . 36 0 15 37438 70 .50 14 .97 3 .49 1 .62 1 .36 0 46 5 13 0 36 O 15 37440 51 . 76 14 .93 10 . 79 9 .48 5 26 1 . 27 4 21 1 .09 O .21 37442 50 .99 14 .85 1 1 .81 1 1 .26 4 37 0 83 3 .65 1 .04 0 19 37444 58 .06 14 .97 9 .08 5 . 23 4 .41 1 93 3 . 70 1 .04 O 17 37446 55 . 45 14 .97 1 1 .72 5 .64 4 85 1 . 23 3 79 1 .06 0 18 37448 55 . 44 14 98 10 .55 4 .95 8 OO 1 . 22 2 44 0 . 97 0 21 37450 48 . 24 14 .96 10 .89 9 .65 8 .63 1 . 80 3 .43 1 .08 0 28 37452 51 .09 14 .97 9 .33 8 . 28 8 69 2 02 3 33 1 .05 0 26 37454 57 .87 14 .97 8 .50 4 . 76 5 50 2 56 3 .50 1 . 1 1 0 18 37456 55 . 13 14 .97 9 .79 5 .71 6 78 2 26 2 93 1 . 18 0 20 37458 58 . 35 14 .97 9 .50 5 .45 4. 36 1 59 3 . 32 1 .04 0, 17 37464 58 .97 14 97 8 . 16 4 91 4 .82 2 21 3 .34 0 96 0. 21 37466 60 .79 14 97 6 95 4 .04 3 98 3. 08 3 44 1 . 10 0. 45 37468 66 .48 14 97 3 .62 1 .80 4. 38 2 86 3 30 o 58 0 20 37470 66 . 1 1 14 97 4 03 2 .4 1 3 94 2. 69 3 60 0 .53 0. 13 37472 66 .67 14 97 6 30 1 70 2 06 1 . 67 4 18 0 49 0. 1 1 37474 64 89 14 97 2 4 1 2 27 4 41 2 42 6 19 0. 46 0. 21 37476 57 24 14 . 98 8 72 5 . 23 5. 31 1 . 76 4 . 07 0. 97 0. 23 37478 64 04 14 . 97 5. 99 2 . 78 4. 44 1 . 92 2 . 91 0. 84 0. 35 37480 55 09 14 97 7 . 43 6. 67 6. 43 2 06 4 64 0 9 1 0. 26 37482 50. 07 14 98 9. 26 8 38 7 . 85 1 . 72 4 . 99 1 08 0. 28 37484 62 27 14 97 6 01 2 . 51 5 . 29 2 . 59 3 30 0 99 0. 50 37486 65 19 14 . 98 4 . 02 1 . 7 1 4 . 83 2 . 81 3 58 0 76 0. 28 37488 59. 97 14 . 97 7 . 93 3. 64 5. 88 2 . 66 2 . 42 1. 01 0. 21 37490 65 . 21 14 . 96 5. 46 2 . 68 4 . 06 2 . 43 2 . 64 0. 81 0. 25 37494 58 65 14 . 98 8 . 10 3. 84 6. 54 2 . 53 2 68 1. 09 0. 20 37496 64 . 38 14 . 98 5. 88 2 . 38 4 . 00 1 . 55 3 87 0. 85 0. 27 37498 67 . 23 14. 97 2 . 68 1 . 70 4 . 43 1 . 74 4 . 62 0. 54 0. 15 37500 46. 51 14 . 95 1 1 . 95 10. 93 7 . 46 O. 92 4 . 77 0. 99 0. 22 39102 58 . 55 14 . 98 7 . 51 4 . 15 6. 29 1 . 34 4 . 59 0. 92 0. 18 39104 67 . 82 14 . 97 2 . 12 1 . 44 4. 19 0. 39 6 12 0. 32 0. 16 39106 69. 33 14 . 98 3. 27 2 . 00 2. 82 0. 14 4 . 62 0. 53 0. 15 OOH 085 373B1 0135 1020 4 100 570 13 5 0 17 37382 0135 480 2 1 10 124 7 1 0 17 37383 0135 510 3190 2 10 6 1 . 5 18 37384 0135 380 3510 78 9 2 2 20 37385 0135 400 3 160 137 10 1 1 18 37386 0135 310 4400 135 10 0. 6 1 12 37387 0135 680 2020 68 8 0 3 24 37388 0135 290 5500 63 9 0 4 23 37389 0 1 35 1 10 2570 70 4 0 3 22 37390 0135 690 2650 39 9 0 4 23 3739 1 0 1 35 380 40O0 1 10 18 0 9 26 37392 0 1 35 550 2 1 10 134 46 1 . 6 59 37393 0 1 35 680 1540 92 24 0 9 68 37394 0135 180 2800 91 1 1 0 5 24 37395 0 1 35 290 2250 54 9 0. 6 26 37396 0 1 35 320 2170 52 6 0 4 23 37397 0 1 35 4 50 3220 347 324 3 a 2 1 37398 0135 300 2250 39 2 t 0 6 24 37399 0135 690 4700 30 9 0 3 19 37400 0135 970 1350 15 4 0 2 13 37401 0135 630 B40 15 6 0. 2 16 37402 0135 590 6 10 to 7 0 2 13 37403 0135 840 960 13 7 0 2 14 37404 0 1 35 4 90 14O0 14 8 0 1 14 37405 0 1 3b 580 1360 1 1 7 0 3 13 3 7 406 0135 590 1060 18 1 1 0 2 15 37407 0135 7 30 8 10 2 1 10 0 3 14 37408 0135 1080 8 10 18 1 1 0 4 14 37409 0 1 35 960 600 19 13 0 2 13 374 10 0 1 35 980 8 30 22 1 2 0 . 3 14 374 1 1 0135 640 1060 15 10 0 2 14 374 12 0135 840 1 170 4 1 20 0 6 15 374 13 0135 360 800 145 29 1 6 16 374 14 0135 5 10 820 33 17 0 . 5 16 374 15 0135 430 980 15 8 0 3 15 374 16 0135 370 1200 25 14 0 5 15 374 17 0135 430 1 100 26 17 0 . 3 16 374 18 0135 250 860 27 17 0 3 15 374 19 0135 260 880 23 16 0 . 2 13 37420 0135 630 980 15 10 0 . 2 13 3742 1 0135 340 980 20 10 0 . 1 13 37422 0135 570 780 14 9 0 1 14 37423 0135 950 820 44 12 0 4 15 37424 0135 840 880 49 23 0 6 14 37425 0135 2 15 950 60 2 1 0 . 5 16 37426 0135 320 1580 65 22 0 .6 15 ODH 088 20 5 1400 18 37340 0129 330 19 2 . 38 1220 15 3734 1 0129 130 24 2 . 69 1300 13 37342 0129 48 28 2 . 80 1300 17 37343 0129 26 23 1 . 96 1 160 13 37344 0129 160 55 2 . 50 1400 45 37345 0129 150 29 1 . 74 1360 23 37346 0129 330 35 7 1330 23 37347 0129 76 3 1 2 . 56 960 350 37348 0129 22 20 2 . 00 1360 25 37349 0129 23 3 1 6 1 180 64 37350 0129 20 35 16 1 140 10 3735 1 0129 170 32 12 1360 10 37352 0129 25 28 6 960 580 37353 0129 160 34 2 . 15 10O0 54 37354 0129 1020 29 2 . 00 1200 23 37355 0129 22 23 10 840 2 16 37356 0129 66 25 2 . 14 1280 45 37357 0129 38 19 7 1360 20 37358 0129 84 9 1 . (8 1200 1 1 37359 0129 56 8 1 14 1280 7 1 37360 0129 (4 7 0. 80 880 43 3736 1 0129 53 6 1 . 32 1020 46 37362 0129 260 8 1 50 960 65 37363 0129 20 8 1 47 100O 60 37364 0129 66 9 1 . 00 1480 93 37365 0129 320 8 0 6 1 1400 84 37366 0129 14B 9 0 80 1600 1 1 37367 0129 98 8 0. 57 1280 10 37368 0129 260 7 0 90 1400 66 37370 0129 86 8 1 02 1200 56 3737 1 0129 1 1 9 1 20 1240 72 37372 0129 28 9 0 95 1060 83 37373 0129 4 30 10 0 .59 1360 55 37374 0129 3 1 8 0 67 1240 52 37375 0129 260 9 0 96 1 180 97 37376 0129 1950 9 0 .66 I2B0 79 37377 0179 93 8 0 . 7 1 1280 20 37378 0129 230 8 0 .67 1 120 65 37379 0129 230 7 0 . 72 1000 53 37380 0129 45 8 0 .80 1 160 58 8 0 53 1 100 50 9 1 . 26 1200 20 9 0 . 76 1280 12 1 1 1 .08 1520 12 9 1 .64 1240 1 1 2150 84 28 0 7 16 36 7 700 860 2 180 114 17 1 1 18 28 2 .61 740 127 2910 38 4 0 2 18 40 1 .83 1040 3 1 1760 28 4 0 1 16 30 1 . 10 50O 258 2350 34 6 0 1 15 37 1 . 80 500 323 29 10 5 1 7 0 1 16 31 1 .80 880 G70 1780 33 3 0 1 13 31 1 . 23 540 2.1 J 1350 41 6 0 1 13 27 1 . 75 780 2 19 1840 34 3 0. 1 15 43 2 .06 620 332 2300 39 4 0. 1 18 42 1 . 66 760 278 1240 43 7 0. 1 16 30 1 .57 560 220 3170 39 6 0. 1 15 50 3 . 75 520 220 1420 40 1 1 0. 1 14 3 1 1 . 90 540 192 2 180 48 5 0. 1 15 36 2 .60 160 276 2030 55 6 0. 2 18 35 2 .60 520 384 1520 49 6 0. 1 16 40 1 . 55 560 2-14 2130 48 7 0. 1 16 47 3 . 45 260 4 10 3500 45 12 0. 2 17 38 3 . 10 720 34 1 450O 46 10 0 2 16 47 5 70O 344 1920 57 5 0 1 15 29 2 *10 340 325 2900 55 8 0. 2 20 45 2 . 99 700 470 6100 46 6 0. 3 22 58 5 600 208 1220 43 7 0. 1 18 29 1 . 40 320 288 2850 77 1 1 0. 2 23 53 3 . 62 420 550 1370 56 7 0. 1 22 40 1 . 50 380 280 3380 4 1 6 0 2 21 33 6 520 238 12 10 64 50 0. 2 26 31 1 . 30 BOO 2<I0 1070 38 7 0. 1 19 24 1 . 2 1 4 20 237 2720 45 6 0 1 18 29 2 . 65 520 232 1730 34 8 0. "1 20 23 1 . 80 540 162 21 10 72 7 0 2 31 34 2 . 13 7 20 3 1 1 3800 65 5 0. 3 18 36 3 . 20 700 287 1700 54 2 0. 1 16 27 1 . 49 660 267 1870 78 5 0. 2 2 1 35 2 . 60 500 337 1890 58 5 0. 1 19 29 2 .04 963 32 1670 47 14 0 1 18 25 3 OO 640 274 1280 40 6 0. 1 15 23 1 . 39 500 306 2010 74 26 0. 2 19 32 3 7 1 148 700 5300 1950 1550 35. 0 15 27 185 560 400 1840 74 12 0. 2 19 23 2 . 47 540 590 DDH 009 39157 0146 8 390 103 1 1 1 .6 64 40 0 . 5 1 600 134 39158 0146 4 337 90 8 0 .6 8 1 47 0 . 4 3 880 227 39159 0146 3 400 148 7 1 .0 32 23 0 .30 880 234 39 160 0146 2 90 120 27 2 .6 20 19 0 . 38 580 206 39 16 1 0146 3 61 68 2 1 .0 20 24 0 . 2 1 640 181 39162 0146 2 132 85 4 1 .9 17 17 0 .23 500 105 39 163 0146 5 200 203 3 1 . 1 18 2 1 0 . 25 480 243 39 164 0146 4 138 204 16 1 .0 20 18 0 . 76 460 380 39165 0146 3 186 37 3 0 .5 16 26 0 .24 420 190 39 166 0146 3 179 7 1 9 0 . 3 14 22 0 . 48 440 275 39 167 0146 4 650 304 134 2 . 4 14 1B 1 1 560 289 39 168 0146 5 145 240 116 2 . 1 23 22 0 .95 560 210 39169 0146 3 1080 520 255 4 .4 19 25 18 860 324 39 170 0146 4 420 57 6 0 . 4 23 40 0 .57 560 287 39 17 1 0146 3 580 48 7 0 . 2 2 1 37 0 . 94 4 60 304 39 172 0146 6 304 29 6 0 . 2 16 29 0 .52 560 143 39 173 014G 3 680 28 3 0 . 2 13 22 0 . 74 480 108 39 174 0146 3 245 3 1 3 0 . 2 14 23 0 . 32 360 123 39 175 .0146 2 196 26 2 0 . 2 14 25 0 . 34 620 117 39126 0146 2 180 34 8 0 .2 12 23 0 . 27 400 150 39 127 0146 3 139 27 6 0 . 2 13 17 0 . 17 500 107 39128 0146 2 328 35 6 0 . 2 13 28 0 . 43 500 173 39 129 0146 5 1040 142 10 1 . 1 20 29 1 .57 620 294 DDH 092 37427 0146 180 14 10 65 13 1 . 2 13 9 2 . 1 1 800 170 37428 0146 240 1520 134 6 2 . 7 15 15 2. 18 780 253 37429 0146 310 1530 362 9 5 8 17 22 1 . 05 860 500 37430 0146 820 1400 84 12 1 7 15 12 1 . 30 820 199 37431 0146 400 1460 77 6 1 . 1 15 12 1 . 52 1 160 15 37432 0146 230 1330 30 6 0 . 4 14 ' 1! 1 . 00 1060 13 37433 0146 690 1750 164 6 2 1 14 121 1 . 23 880 249 37434 0146 4 10 1440 32 8 0. 6 15 10 0. 75 840 165 37435 0146 76 880 76 20 1 . .2 15 12. 1. 45 800 201 37436 0146 3 10 1070 40 10 1 . 0 15 M'O. 64 1000 16 37437 0146 280 1280 1 14 10 1 . 7 14 1 1 1. 1.1 920 164 37438 0146 96 90O 49 10 1 . 0 14 10 0. 86 920 100 37439 0146 180 1200 43 1 1 1 . 5 14 10 .1. 70 660 150 37440 0146 56 2370 124 7 0. 9 48 32 2 . 83 1080 33 3744 1 0146 114 1360 31 7 0 6 28 14 1 . 65 1300 . 14 37442 0146 51 26 10 131 44 1 . 0 7 1 40 3 . 95 1060 50 37443 0146 4 1 2690 88 7 0 4 20 34 2 . 70 540 330 37444 0146 63 6250 67 10 0. 6 18 35 9 840 220 37445 0146 63 350O 160 12 0 8 16 35 3. 80 880 380 37446 0146 89 6150 124 30 0. 9 24 52 13 680 370 37447 0146 2 10 3240 180 37 1. 6 23 44 3. 99 740 282 37448 0146 430 3590 68 18 0. 5 29 45 12 680 4 10 37449 0146 80 2470 87 9 0. 4 91 46 2 . 97 720 450 37450 0146 160 3360 70 9 0. 3 102 5 1 8 880 287 37451 0146 600 3470 83 23 0. 5 98 45 9 1000 35 37452 0146 320 1900 78 9 0. 5 68 33 2 . 86 660 29 1 37453 0146 92 2570 50 6 0. 3 21 39 3. 50 740 340 37454 0146 74 2640 62 to 0. 4 20 32 3. 97 340 289 37455 0146 104 4100 68 15 0. 4 20 32 3 . 78 640 231 37456 0146 35 28BO 54 8 0. 3 23 38 3. 1 1 520 264 37457 0146 4 1 2370 63 6 0. 3 26 38 2 . 52 380 340 37458 0146 52 3040 47 8 0. 2 2 1 33 3. 38 *480 219 37459 0146 290 40OO 47 8 0. 2 17 26 3. 97 600 223 37460 0146 150 2710 38 7 0. 3 17 25 4 . 13 720 137 37461 0146 120 2980 79 12 O. 8 16 27 4 . 18 720 163 37462 0146 150 2720 25 6 0. 2 14 23 2. 50 720 122 37463 0146 50 4050 54 7 0. 4 18 25 8 640 224 37464 0146 74 5150 64 1 1 0. 6 2 1 26 10 720 180 37465 0146 53 8700 49 12 0. 5 17 23 14 780 153 37466 0146 102 3320 31 6 O. 3 16 25 8 lOOO 16 37467 0146 143 2050 27 8 0. 2 15 18 2 . 74 620 147 37468 0146 60 15BO 23 13 O. 2 12 12 2 . 41 840 95 37469 0146 8 1 1540 30 17 0. 2 11 9 1 . 59 760 82 37470 0146 390 2250 21 5 0. 2 13 14 2. 92 SOO 102 3747 1 0146 2 10 1800 18 5 0. 2 1 1 1 1 2 74 920 65 37472 0146 1 10 3050 14 4 0. 2 9 12 7 660 42 37473 0146 260 2250 21 5 0. 2 10 1 1 2 .51 840 50 37474 0146 95 2 1O0 26 13 0. 2 15 10 2. .53 1500 79 37475 0146 130 2730 23 B O. 2 12 13 3 03 980 81 37476 0146 130 5850 46 5 0. 3 4 1 33 10 1080 14 37477 0146 60 2070 21 5 0. 3 12 18 2 82 840 40 37478 0146 540 4750 76 5 0. 4 13 19 8 1000 1 1 37479 0146 133 60O0 38 6 0. 4 39 28 12 1120 18 37480 0146 270 2970 58 5 0. 5 38 28 3 .55 1200 17 3748 1 0146 72 2920 77 4 0. 5 53 37 3. 98 1360 22 37482 0146 170 2500 69 3 0. 4 51 32 3 03 1600 25 37483 0146 82 2600 63 5 0. 5 20 24 3 .54 130O 22 37484 0146 56 3420 68 7 0. 4 14 22 7 1000 2 1 37485 0146 240 2720 40 4 0. 3 12 16 6 920 1 12 37486 0146 240 2300 33 3 0. 2 1 1 14 3 .46 640 1 12 37487 0146 75 3560 60 6 0. 4 15 20 7 820 194 37488 0146 28 4250 78 9 0. 3 17 28 7 860 260 37489 0146 86 4200 140 7 1 3 14 23 8 860 193 37490 0146 93 1720 105 9 0 9 13 15 3 .01 70O 252 37491 0146 83 3200 83 9 0 .6 18 38 3 . 22 640 248 37492 0146 17 2 120 12 1 18 0 9 14 2 1 3 OO 580 250 37493 0146 94 1250 33 6 0 . 3 10 14 2 .OO 660 151 374 94 0146 2 10 2080 59 6 0 . 3 18 24 2 .97 500 230 37495 0146 120 3270 57 7 0 . 3 15 20 8 700 222 37496 0146 260 2620 34 6 0 . 4 13 17 3 . 20 740 105 37497 0146 220 1930 IB 3 0 . 2 1 1 13 2 .48 680 99 37498 0146 430 1220 21 6 0 . 2 12 13 2 .38 720 8 1 37499 0146 190 2300 33 6 0 . 2 55 26 2 .99 680 155 37500 0146 7 1 3400 64 7 0 . 2 96 48 10 1 120 25 39101 0146 3 10 2720 7 1 5 0 . 2 73 36 3 . 15 880 266 39 102 0146 230 2860 160 16 1 .9 19 28 3 .63 800 276 39103 0146 48 1920 20 9 0 .3 12 16 3 .97 720 1 11 39104 0146 1080 1350 23 10 0 .4 12 10 2 .57 880 233 39105 0146 800 1860 20 7 0 . 2 1 4 15 i . 86 940 1 i 1 39106 0146 140 1810 297 126 3 . 8 10 14 17 780 154 39107 0146 250 2470 339 145 4 .5 1 1 t 1 36 740 128 DDH 092 1 ) CONTINUED 39230 66 .84 17 . 18 3 .07 1 .33 3 .48 2 13 5 39232 54 .03 17 .59 3 .63 1 .05 16 .60 1 .04 5 39234 66 . 89 16 13 3 .44 1 86 2 93 3 87 3 39236 65 85 16 38 5 . 18 3 21 1 .74 2 62 3 39238 66 22 16 .25 5 .45 2 10 3 . 33 2 32 3 39240 66 06 15 .99 4 .37 2 59 3 .28 2. 89 3 39242 67 12 16 20 3 .47 1 56 2 61 3. 31 4 39244 64 . 93 17 .20 6 .51 1 .32 3 .44 0 48 5 39246 65. 70 16 82 5 .48 1 60 4 00 0 65 5 39248 67 65 17 15 2. 56 1 46 3 .4 1 2 26 4 39250 58 21 16 73 4 .60 2 .48 12 .70 0 05 4 39476 70 20 14 .34 4 . 62 1 08 0 . 11 1 52 5 39478 55 78 20 71 14 94 3 29 1 .54 1 16 3 39480 68 . 15 17 14 4 . .55 O 83 0 .31 4 41 3 39482 68 95 15 55 3 . 24 1 98 0 .48 3 18 4 39484 69 45 15 33 4 13 1 21 0 32 3 .09 4 39486 69 06 16 66 3 17 1 .61 1 .07 4 14 2 39488 67 33 17 32 3 91 1 . 15 3 . 38 2 98 3 39490 73 33 14 69 1 . 70 0 . 72 0 .65 0 74 5 6 7 901 58 56 15 77 a 7 1 4 .97 5 .56 2 50 2 67903 59 . 90 15 38 9 04 5 .07 3 .93 2 31 2 67905 57 05 14 89 a 90 7 .53 5 02 1 92 3 67907 60 49 15 48 7 .77 4 .86 2 .57 3 84 3 67909 7 1 35 13 . 29 0 98 1 .43 2 . 38 1 . 38 6 6791 1 70. 62 14 . 37 1 33 1 .40 3 .04 1 ,00 5 67913 68 31 14 . 12 1 . 29 1 .41 4 .51 1 81 6 67915 57 08 15 .07 a .27 6 .09 5 .81 2. .02 4 67917 59 48 16 .09 7 80 4 .99 4 .95 2 40 3 67919 61 52 15 . 33 6 .44 3 . 33 5 . 23 3 33 2 6792 1 68 09 17 .71 3 01 1 .30 2 . 7 1 1 . . 16 5 67923 6 1 35 16 .50 7 .04 3 .83 5 . 25 1 96 3 67925 6 1 65 15 .52 6 . 48 3 .20 5 27 3 08 2 67925 65 . 67 15 . 33 4 .94 2 .90 2 53 3 28 3 67927 66 27 17 . 24 6 94 1 .66 2 18 0 38 4 67929 65 78 16 . 37 3 . 58 1 .95 4 . 54 2 35 4 6793 1 67 . 19 17 .00 3 58 2 . 19 3 . 94 1 00 4 67933 69 34 16 94 3. .06 1 25 3 60 0 18 4 67935 57 65 14 91 9 43 2 . 39 9 .40 . 0. 82 3 67937 58 72 15 88 10 .96 7 . 45 2 . 40 0 09 3 67939 58 1 1 16 26 10 . 17 6 76 4 16 0 56 2 6794 1 62 89 15 73 8 92 5 .05 1 .44 0 17 4 67943 70 .44 15 .54 3 .02 1 .46 0 36 1. 22 6 67945 68 01 15 .45 2 22 1 .49 2 7 1 2 45 6 67947 67 77 3 .46 6 .94 2 .22 0 .38 0. 73 1 1 67949 75 17 18 66 3 30 0 .88 0 08 0. 27 1 67951 60 38 17 31 12 37 3 89 0 52 1 . 48 3 67953 69 33 17 91 3 . 16 1 .23 0 . 14 1 62 6 67955 68 80 17 49 4 99 0 .89 0 . 14 2 27 4 67957 68 35 17 95 7 81 1 15 0 05 0. 18 4 67959 68 93 17 32 6 . 40 O .90 0 .07 O. 84 4 67961 71 14 16 .60 4 26 0 86 0 .07 0. 94 4 67963 69 83 16 97 3 64 0 85 0 1 1 1. 93 5 67965 69 53 15 .92 3 .45 1 .56 0 51 3 . 48 3 67967 69 48 16 .94 3 .65 1 25 0 28 3. 05 4 67969 66 47 16 .88 5 58 2 . .50 0. 91 3. 10 3 67971 61 .48 16 .85 8 08 4 82 0 50 2 30 4 67973 65 . 25 16 .65 5 .24 3 . 15 2 1 1 2. 68 3 67975 58 19 20 .29 15 OO 1 . 27 0. 34 1 . 47 4 NIMG 73 .62 13 .55 2 .08 0 10 0 84 2 . 79 4 37235 66 . 72 17 .06 3 98 1 . 24 3 64 2. 66 3 20 0 .53 0 27 37458 59 25 16 79 0 .35 0. .74 37205 67 23 15 49 0 .54 0. 19 39265 66 68 16 75 0 .74 0. 24 37486 65 87 16 23 0 .51 0 18 39184 62 05 16 50 0 .58 0. 19 37448 56 53 16 53 0 .49 0 14 37500 47 .08 15 71 0 .45 0 16 37412 67 93 14 09 0 .43 0 . 17 37482 51 . 10 16 80 0 .48 0 16 37325 66 .93 17 79 0 .56 0 . 16 37352 60 38 16 86 0 26 0 17 37374 56 .00 16 70 1 .20 0. 32 37399 65 . 14 15 48 0 63 0 .22 39240 66 19 15 85 0 .50 0 15 39137 61 25 16 60 0 .47 0 14 37399 67 47 14 85 0 .64 0 . 17 37297 67 20 17 27 0 .57 0 . 14 37308 67 33 14 70 0 .30 0 13 37318 67 16 17 61 1 .08 0 19 37226 67 48 15 68 1 . 19 0. . 17 39132 60 70 16 27 0 97 0 15 39163 68 85 17 19 1 .23 0. . 17 39157 55 .93 14 24 0 .29 0. 13 39157 55 81 13 93 0 . 30 0. 12 67916 67 58 16 28 0 .32 0. 15 39173 62 65 16 03 1 . 17 0. 20 37419 68 98 13 13 1 .05 0. 20 37233 66 48 15 59 1 .09 0. 57 37431 69 . 11 16 64 0 .42 0. 16 37276 70 88 12 12 0 90 0. 22 37253 66 37 16 63 1 08 0. 63 67920 67 .53 16 59 0 . 76 0. 09 67969 66 . 44 16 50 0 69 0. 23 67933 69 .98 16 20 0 74 0. 19 27 0 59 0. 15 60 0. 54 0. 1 1 46 1 04 0. 32 22 1 . 12 0. 18 98 1 07 0. 22 26 0. 91 0. 22 r 15 0. 41 0. 17 02 0 42 0. 17 37 1 33 0. 18 18 0. 34 0 06 16 1 . 26 0. 17 08 0. 60 0. 10 84 0 48 0. 14 15 0. 50 0. 14 as 0. 47 0. 13 92 0. 40 0. 08 64 0 46 0. 20 91 0. 51 0. 13 27 0. 50 o. 18 47 0. 76 0. 2C 80 1 22 0. 31 82 0. 75 0. 24 62 0. 78 0. 26 27 0. 10 0. 01 96 0. 52 0. 18 73 9 .03 5 .22 4 .41 1 .30 3 .34 1 . 03 0. 1 51 3 82 2 .31 1 88 3 .75 3 .76 0. 56 0. 18 79 4 27 2 .08 3 . 19 2 19 3 .95 0. 52 0. 18 26 4 08 1 63 4 .58 2 54 3 .58 0. 80 O. 29 70 8 21 4 .98 2 .22 0 91 3 .99 1. 02 O. 14 79 9 .78 5 OO 7 .77 1 13 2 .45 0 97 0. 18 26 10 .89 12 .51 7 .65 0 .77 5 .29 o 99 0 21 31 1 .42 1 .80 4 .25 1 60 6 54 0 35 0. 15 57 8 64 9 . 14 7 .38 1 54 5 30 1. 05 O. 29 65 2 .21 1 .56 6 .30 O 37 4 .61 o. 43 O. 18 14 8 .17 3 .86 6 06 1, 27 2 .95 0. 96 0. 22 55 9 .57 5 .39 6 88 2 .56 2 .27 1. 11 0. 19 30 3 86 3 . 16 3 .33 1 .91 5 .68 0. 62 O. 16 88 4 29 2 .53 3 .31 2 .94 3 .46 0 57 O. 19 33 9 39 5 86 2 .72 1 .21 2 .09 1 . 12 0 14 72 3 03 2 11 2 .81 2 08 5 .72 0 .55 0. 15 53 4 46 1 .84 2 .21 0 66 5 .63 0 50 0 17 95 3 56 1 75 2 52 3 59 4 45 o 45 O. 10 48 2 98 2 41 5 02 0. 12 4 39 0. 41 O. 14 95 3 .46 2 46 1 .29 3 85 3 97 o. 56 O. 16 22 io .43 5 89 1 .74 0. 07 3 48 1. 11 O. 35 04 6 19 1 82 0. 89 0. 31 3. 84 0. 72 O. 09 OO 1 1 .62 10 .96 1 29 0. 62 3 69 1. 12 O. 22 71 11 63 11 35 1 27 0 51 3 71 1. 12 0. 23 71 3. 18 1 57 3. 31 3. ,79 2 .83 0 52 0. 12 33 8 .71 4 88 2 77 0 87 2 .61 0 95 o 21 86 1 01 1 33 3 87 2 19 6 .29 0 32 o. 15 73 4 Ol 1 94 2. 71 4 27 3 . 16 o 63 o. 18 94 3 06 1 .29 1 93 1 40 5 .44 0 .38 o 14 6/ 2 . 15 1 75 2 82 2 52 3 .95 0 35 0. 14 93 5. 13 1 88 3 52 0. 96 4 46 0 55 0. 15 49 3 35 1 .40 3 09 4 . 09 2 .82 0 52 o 15 88 5. 57 2 61 0 91 3 08 3 46 0 76 0. 18 87 3 08 1 . 63 2 72 0 11 4 .47 0 54 o. 11 ss- 1 0152 19 520 590 1 18 3. 6 31 36 2 .3 320 910 ss- 2 0152 240 680 100 97 0. 9 21 17 1 .8 880 155 ss- 3 0152 240 680 105 102 0. 4 20 17 1 .8 700 148 ss- 4 0152 90 313 165 103 0. 5 12 12 1 .9 640 160 ss- 5 0152 98 335 178 117 0. 5 13 13 2 . 1 640 187 ss- 6 0152 123 374 91 128 0. 6 15 14 2 .3 580 196 ss- 7 0152 106 402 270 159 1 . 1 17 16 2 .3 440 257 ss- 8 0152 91 339 213 1.14 0. 6 15 13 2 .2 620 186 ss- 9 0152 71 344 166 105 0. 3 1 1 12 1 .8 760 137 ss- 10 0152 220 365 145 127 0. 6 17 15 2 .9 780 140 ss- 1 1 0152 100 315 315 185 0. 8 14 17 2 .4 960 174 5S- 12 0152 31 228 302 226 0. 8 12 15 2 .3 620 450 ss- 13 0152 26 237 250 208 0. 7 14 14 2 . 5 760 400 ss- 14 0152 129 720 120 134 0. 6 15 18 1 .8 840 260 ss- 15 0152 190 610 121 170 0. 5 15 19 3 .8 660 274 ss- 16 0152 230 550 124 227 0. 5 16 19 5 8 640 257 ss- 17 0152 290 540 131 289 0. 6 18 26 7 .0 520 380 ss- 18 0152 390 710 130 206 0. 5 16 22 4 .9 600 400 55- 19 0152 260 370 124 346 0. 6 14 20 6 .0 380 224 ss- 20 0152 280 750 125 243 0. 5 17 24 6 . 3 560 338 ss- 21 0152 170 530 113 193 0. 4 16 19 2 .9 360 218 ss- 22 0152 180 570 120 190 0. 5 15 19 3 .5 480 255 ss- 23 0152 160 500 113 184 0. 4 15 18 3 .5 500 238 10% HCL EXT. NH40X EXT ID.NO LOCATION CA CU FE MO ODH 078 37226 0 0 0 .375 912 .585* 0 .424 40 . 100 37227 0 0 0. .234 595 164 0. 297 0 .0 37228 0 0 0 .250 2777 .433* 0. 318 0 .0 37229 0 0 0 .546 2817 . 1 12* 0 278 0 .0 37230 0 0 0 .500 3273 .405* 0. 221 0 .0 37231 0 0 0 937 595 . 164 0 .242 0 .0 37232 0 0 1 .951 13 .887 0 259 0 .0 37233 0 0 1 .561 1 1 .903 0 257 0 .0 37234 O 0 2 .279 15 .871 . 0 231 0 .0 37235 0 0 2 .341 1 1 .903 0. .240 0 .0 37236 0 0 2 . 154 21 .823 0. .233 0 .0 37237 0 0 2 .498 39 .678 0 .265 0 .0 37238 0 0 2 .279 1 1 .903 0 371 0 .0 37239 0 0 1 .717 1 1 .903 0. .246 0 o 37240 0 0 1 .467 1 1 .903 0 .225 0 .0 37241 0 0 2 .373 17 .855 0. .248 0 .0 37242 0 0 3 .434 67 .452 0. 382 0 .0 37243 0 0 2 .238 32 .890 0 313 0 .0 37244 0 0 1 . 190 40 .629 0 296 0 .0 37245 0 0 1 508 69 .649 0 222 0 .0 37246 0 0 1 .587 46 .433 0 . 186 0 .0 37247 0 0 3 .365 48 .368 0 .317 0 .0 37248 0 0 2 .349 50 .302 0 .482 0 .0 37249 0 0 2 . 777 42 .563 0 .573 0 .0 37250 0 0 2 .539 108 . 343 0 .406 0 .0 37201 0 0 1 .940 172 .973 0 .201 0 o 37 202 0 0 0 .782 12 1 .867 0 . 183 0 .0 37203 0 0 0 .861 68 . 796 0. 186 0 .0 37204 o 0 1 .111 78 .624 0 135 0 .0 37205 0 0 0 .626 39 312 0. 186 0 .0 37206 0 0 1 221 9 828 0. 142 0 0 37207 0 0 1 .721 39 .312 0 2 10 0 0 37208 0 0 1 . 768 27 518 0. 175 0 .0 37209 0 0 1 252 35 381 0. 37 1 0 0 37210 0 0 1 . 440 35 .381 0. 223 0 0 3721 1 0 0 1 .377 29. 484 0. 197 0. 0 37212 0 0 1 .596 15. 725 0. 240 0 0 37213 0 0 1 .017 23 587 o. 227 0 0 37214 0 0 4 068 1 1 794 0. 917 0 0 37215 0 0 2 159 27 518 0. 448 0 .0 37216 0 0 1 .596 31 450 0. 245 0 0 37217 0 0 2 285 23 587 0. 306 0. 0 37218 0 0 1 643 35 381 0. 186 0. 0 37219 0 0 2 285 31 450 0. 382 0 0 37220 0 0 2 175 23 587 0. 188 0. 0 37221 0 0 1 .502 35 381 0. 170 0. 0 37222 o 0 1 . 124 35. 710 0. 227 0. .0 37223 0 0 1 . 093 25. 790 0. 174 0. 0 37224 0 0 1 . 436 45 629 0. 201 0. 0 ID.NO LOCATION CA CU FE MO 37226 0 0 0. 0 0. 0 0. 0 0. 0 37227 O 0 36 446 104 . 712 0. 134 0 0 37228 0 o 36 446 157 068 0. 068 0. .0 37229 0 0 0. 0 171 728 0 038 0. 0 37230 0 0 18 223 167 . 539 0. 038 0. 0 37231 0 o o 0 1.15. 183 0 119 0 0 37232 0 o 0 O 4. 168 0 293 0 0 37233 0 0 o 0 4 . 188 0. 457 0. 0 37234 0 o 0. 0 4 . 188 0 276 0 0 37235 0 0 0 0 10 47 1 O. 174 0 0 37236 0 0 o 0 10 471 0 144 0 0 37237 0 0 0 0 16. 754 0 142 0 0 37238 0 o 0 0 8 . 377 O. 765 0 0 37239 0 o 0 0 O. 0 0. 0 o 0 37240 0 o o 0 12 565 0. 038 0 0 37241 O 0 0 0 0. O O. O o 0 37242 0 o o 0 25. 131 0 OI3 0 0 37243 0 0 21 868 20 888 0. 054 0 0 37244 0 0 2 1 868 16. 710 0. 172 o 0 37245 O 0 21 868 22 977 0. 056 0 0 37246 O 0 25 513 12 533 0 .064 0 .0 37247 0 0 2 1 . 868 10 444 0 043 0 0 37248 o o 18 223 41 775 0 032 o 0 37249 o 0 21 . 868 20 888 0 034 0 .0 37250 0 0 18 223 4 1 . 775 0. 077 0 0 37201 o 0 28 603 84 974 0 069 0 .0 37202 0 o 35 . 754 124 .352 0 .088 0 .0 37203 o 0 28 603 51 813 0 076 0 o 37204 0 o 25 028 45 596 0 .042 0 .0 37205 0 0 17 877 20 725 0 074 0 o 37206 o 0 0 .0 0 .0 0. 0 0 .0 37207 o o 25 .028 24 B70 0 076 0 o 37208 0 o 2 1 .453 10 363 0 069 0 .0 37209 0 0 28 603 10 363 0 164 o .0 37210 o o 28 603 8 .290 0 078 0 .0 3721 1 0 0 28 .603 16 .580 0 067 0 .0 37212 o 0 0 0 0 .0 0 .0 0 .0 37213 0 0 0 .0 0 .0 0 .0 0 .0 37214 0 0 17 877 8 . 290 0 .526 o .0 37215 o o 21 453 12 435 0 .072 o o 37216 0 0 32 . 179 10 .363 0 .069 0 .0 37217 o 0 35 . 754 12 435 0 .048 0 .0 37218 0 0 39 330 10 363 0 .021 0 .0 37219 o 0 42 .905 12 . 435 0 055 0 o 37220 0 0 57 207 a 290 0. .02 1 0. 0 37221 0 0 42 .905 16 580 0 084 0 .0 37222 0 0 18 223 12 . 565 0. 068 0 0 37223 0 0 14 579 12 . 565 0. 049 0. 0 37224 0 0 0 0 16 . 754 0. 059 0 .0 KCL03 EXT. HN03.HCL04 EXT ID.NO LOCATION CA CU FE MO 37226 0 0 0. 0 0. 0 0. 0 0. 0 37227 0 0 22 . 884 569. 839 1 . 121 86 . 300 37228 0 0 19. 070 925. 988* 1 . 578 185. 545 37229 0 0 83 . 909 169 1 . 709* 1 . 91 1 336. 570 37230 0 0 99. 166 747 . 913 1 . 205 47 . 465 37231 0 0 133. 492 1958. 82 1 • 1 . 454 107 . 875 37232' 0 0 400. 477 142 . 460 1 . 931 0. 0 37233 0 0 324 . 195 178 . 075 1 . 495 0. 0 37234 O 0 457 . 688 240. 401 1 . 205 0. 0 37235 0 0 404 . 291 169 . 17 1 1 765 0. 0 37236 O 0 350. 894 281 . 358 1 . 703 0. 0 37237 0 0 4 19 . 547 943. 796* 1 . 391 0. 0 37238 0 0 **•****#• 1 . 781 2 . 035 0. 0 37239 0 0 O. 0 O 6 O. 0 0. 0 37240 0 0 266 . 984 242. 181 3 904 0. 0 3724 1 0 0 0 0 0. 0 0. 0 0. 0 37242 0 0 572 . 1 10 1246. 522* 2 492 0. 0 37243 0 0 568 . 207 477 . 064 1 . 253 0. 0 37244 0 0 195. 801 532 . 1 10 1 . 232 22 . 936 37245 0 0 291 . 78 1 1211. 009* 2 259 27 . 523 37246 0 0 276 . 425 623 . 853 1 478 82 . 569 37247 0 0 560. 528 954 129< 2 177 91 . 743 37248 0 0 476 . 065 1064 220* 1 273 1 14 . 679 37249 0 0 633 474 743 . 1 19 0 .945 91 743 37250 0 0 69 1 . 062 1798 165* 1 745 137 615 37201 0 0 6 18 731 153 1 53 1 * 2 707 37 . 209 37202 0 0 510 453 144 1 440* 2 . 4 15 23 . 256 37203 0 0 464 048 1009 008* 2 311 23 256 37204 0 0 425 . 378 1603 .603* 2 . 186 60 . 465 37205 0 0 897 . 160 590 .991 2 . 207 0 .0 37 206 0 0 0 .0 0 .0 1 . 791 0 .0 37207 0 0 8O0 . 483 560 . 360 1 . 895 23 .256 37208 0 0 587 795 699 .099 0 .999 0 .0 37209 0 0 1005 .438 403 .604 1 .707 0 .0 37210 0 0 440 .846 345 .946 1 .916 0 .0 372 1 1 0 0 599 . 396 338 739 2 .041 0 .0 37212 0 0 0 .0 O .0 O .0 0 .0 37213 0 0 0 .0 0 0 0 .0 0 .0 37214 0 0 3287 .008* 135 . 135 1 .624 0 .0 37215 0 0 . 580 .060 4 14 .4 14 1 . 832 0 .0 37216 0 0 394 .441 378 . 378 1 770 23 .256 37217 0 0 630 . 332 486 .486 1 .770 55 .814 37218 0 0 386 .707 724 . 324 3 123 32 .558 37219 0 0 785 .015 5O0 .901 1 .583 23 . 256 37220 0 0 96 .677 515 3t5 1 645 41 .860 37221 0 0 533 656 666 .667 1 .478 55 .814 37222 0 0 488 . 200 420 . 256 1 .661 0 .0 37223 0 0 675 .089 644 .630 1 .412 21 . 575 37224 0 0 411 .919 673 . 122 1 . 495 496 .225 ID.NO LOCATION CA CU FE MO 37226 O 0 0 .0 0 .0 0.0 0.0__ 37227 0 0 14 .012 25 .056 0.089 0.0 37228 0 0 14 .012 29 .530 0.077 13.873 37229 0 0 17 .515 62 .640 0. 130 23.121 37230 O 0 22 .770 25 .056 0. 106 OO 37231 0 o 26 . 273 59 .060 0. 135 11.561 37232 0 0 38 .533 4 . 474 , 0. 101 0 0 37233 0 0 64 . 806 6 . 264 1 0 083 0.0 37234 0 0 50 . 794 8 .054 0. 101 0.0 37235 0 0 26 . 273 6 . 264 0.097 0.0 37236 0 0 17 .515 7 . 159 0. 102 0.0 37237 0 0 17 .515 26 .846 0. 123 0.0 37238 0 0 7706 .625* 0 .895 0.226 0 0 37239 0 0 0 .0 0 .0 0.0 0.0 37240 0 0 10 . 509 8 .054 0. 122 OO 37241 0 0 O .0 0 .0 0.0 0.0 37242 0 0 26 . 273 38 . 479 0.119 0.0 37243 0 0 35 . 996 16 .054 0.073 0 0 37244 0 0 28 . 796 15 . 162 0.074 OO 37245 0 0 23 . 397 32 .999 0.114 0 0 37246 0 0 25 . 197 19 .62 1 O. 109 0.0 37247 0 0 21 .597 29 .431 0. 1 16 oo 37248 0 0 16 . 198 31 . 2 15 0.090 oo 37249 0 0 37 . 795 22 . 297 0.085 0.0 37250 0 0 242 . 970 53 512 0. 102 0.0 37201 O 0 55 . 046 34 703 0 179 oo 37202 0 0 504 . 587 40. 183 0 169 oo 37203 0 0 275 229 27 397 0. 137 oo 37204 0 0 36 697 49. 315 0. 132 oo 37205 0 0 609. 174 15. 525 0.093 0.0 37206 0 0 0. O 0. 0 OO oo 37207 0 0 284 404 10. 046 0.074 oo 37208 0 0 233 027 14 . 612 0.116 0.0 37209 o 0 1467 . 890* 8. 219 0.083 0.0 372 lO 0 0 249. 541 8. 219 0.081 oo 3721 1 0 o 201 . 835 8. 219 0.098 o o 372 1Q o o 0 O 0. 0 0.0 0.0 37213 0 0 0. 0 O. 0 0.0 oo 37214 o o 678. 899 2 . 740 0. 1 10 0.0 37215 0 0 36. 697 10. 046 0.083 0.0 37216 0 0 45 872 8 2 19 0 058 0.0 37217 0 0 27 . 523 10. 046 0.092 0.0 37218 0 0 23 . 853 21 . 005 0 093 0.0 37219 0 0 18 . 349 10. 959 0.067 0.0 37220 0 o 20. 183 io. 959 0.08 1 0.0 3722 1 0 0 1 13. 761 13 . 699 0 081 o o 37222 0 0 280. 241 1 1 . 633 0.059 0.0 37223 0 0 476. 410 15. 213 0O65 o.o 37224 0 0 154 . 133 2 1 . 477 0.066 1 1 .561 10% HCL EXT. ID.NO LOCATION CA CU FE MO ro I 37251 0 0 1 . 127 174. . 123 0. 152 0. .0 37252 0 0 2 .031 65 .780 0. 207 0 0 37254 0 0 1 .936 58 .041 0. .203 0. 0 37255 0 0 0 .968 73 .519 0. 194 0. .0 37256 0 0 1 286 75 .453 0. 199 0. <3 37257 0 0 0 .968 54 . 172 0. 207 0 .0 37258 0 0 0 .984 54 . 172 0. 158 0 .0 37259 0 0 1 . 397 48 .368 0. 175 0 .0 37260 0 0 1 . 174 46 .433 0. 131 0. .0 37261 0 0 1 .778 27. .086 0. 123 0 .0 37262 0 0 1 .476 52 . 237 0. 158 0 .0 37263 0 0 1 .984 34 .825 0. 211 0 0 37264 0 0 1 .995 28 : 283 0. 146 0 0 37265 0 0 1 .788 24 . .242 0. 167 0 .0 37266 0 0 2 .217 56. 566 0. 150 0. 0 37267 0 0 1 .862 16 162 O. 188 0. 0 37268 0 0 1 .537 80 .808 0. 271 0 0 37269 0 0 1 . 389 109 .091 0. 282 0 0 37270 0 0 1 .567 46 .465 0. 251 0, 0 37271 0 0 1 .848 88 .889 O. 192 0. .0 37272 0 0 1 . 182 64 .646 0. 267 0. .0 37273 0 0 1 . 774 60 .606 0. 240 0 .0 37274 0 0 1 . 774 90 .909 0. 261 0. .0 37275 0 0 1 . 301 52 .525 0. 324 0 0 37276 0 0 1 .478 76 .768 0. 209 0. .0 37277 0 0 1 . 389 52 .525 0. 240 0 .0 37278 0 0 1 .508 50 .505 0. 292 0. .0 37279 0 0 1 .862 60 .606 0. 205 0. 0 37280 0 0 2 .542 96 .970 0. 330 0 0 37281 0 0 1 .626 1 17 . 172 0. .299 0 0 37282 0 0 1 .995 50 .505 0. .213 0 .0 NH40X EXT ID.NO LOCATION CA CU FE MO 37251 O o 18 . 223 87 . 729 O .030 0 ro 37252 O 0 0 .0 25 .065 0 .034 0 0 37254 0 0 0 O 27 . 154 0 043 O .0 37255 0 0 18 . 223 54 . 308 O .036 O 0 37256 O o 21 .868 27 . 154 0 .036 0 .0 37257 0 0 18 . 223 27 . 154 0 .041 0 0 37258 O 0 25 .513 29 . 243 0 028 0 .0 37259 O 0 21 .868 27 . 154 0 .034 O .0 37260 0 0 29 . 157 31 . 332 0 .013 O 0 37261 O 0 2 1 . 868 16 . 7 10 O .017 O .0 37262 0 0 32 . 802 27 . 154 0 .021 O .0 37263 0 0 29 157 22 .977 O .058 0 .0 37264 0 0 O .0 16 .516 0 .037 0 .0 37265 0 0 0 .0 20 .645 0 035 0 0 37266 O 0 0 .0 22 .710 0 031 0 0 37267 O 0 O O 12 . 387 0 050 0 0 37268 0 0 0 .0 33 .032 O .091 O .0 37269 0 0 0 .0 22 .710 0 .070 O .0 37270 0 o 0 .0 12 387 0 .079 O 0 37271 O o 23 259 28 903 O .037 0 0 37272 O o 0 .0 16 516 0 083 O 0 37273 0 o 0 .0 0 .0 0 0 0 0 37274 0 0 0 0 24 . 774 0 .035 0 .0 37275 O o 19 382 8 258 0 058 o 0 37276 O o O O 20 645 0 058 0 0 37277 0 0 0 0 12 387 0 097 o 0 37278 0 0 23 259 8 258 0 .058 0 0 37279 0 o 19 382 28 903 0 039 0. 0 37280 0 0 0 0 43 355 0 . 105 o 0 37281 0 0 0 0 43 355 0 .058 0. 0 37282 o 0 O 0 22 . 710 0 050 0 0 KCL03 EXT HN03:HCL04 EXT ID.NO LOCATION CA CU FE MO 37251 0 0 191 .962 1009 . 174* 1 .766 137 6f5 37252 0 0 395 . 44 1 899 .083* 1 .581 151 . 376 37254 0 0 0 .0 0 .0 0 .0 0 .0 37255 0 0 180 .444 899 .083* 1 .930 91 743 37256 0 0 383 .923 1229 . 357* 2 . 300 68 .807 37257 0 0 176 .605 588 .991 2 .608 82 .569 37258 0 0 191 .962 788 .991 2 . 7 10 45 .872 37259 0 0 0 .0 0 .0 0 .0 0 0 37260 0 0 161 .248 614 .679 2 . 7 10 321 101 37261 0 0 245 .711 348 624 2 .669 77 . 982 37262 0 0 245 711 647 706 2 382 45 872 37263 0 0 326. 335 460. 550 3 .121 45. 872 37264 0 0 365 . 824 54 1 401 2 320 28. 88 1 37265 0 0 281 107 295 798 2 793 24 067 37266 0 0 408 . 183 950 140* 2 105 601 685 37267 0 0 489 . 049 340. 616 2 . 148 72 . 202 37268 0 0 569 . 916 914 . 286* 2 .578 57 . 762 37269 0 0 469. 795 1039. 776* 2 320 1 10. 710 37270 0 0 558 . 364 394 . 398 3 050 312 . 876 37271 0 0 492 . 900 932 . 213* 2 105 72 . 202 37272 0 0 261 . 853 752. 94 1 1 847 173. 285 37273 0 0 0. 0 0. 0 0 0 0. 0 37274 0 0 238 . 749 699. 160 1 504 288 . 809 37275 0 0 608 . 424 367 . 507 1 . 547 57 . 762 37276 0 0 446 . 691 68 1 . 232 1 . 1 17 770. 157 37277 0 0 365. 824 591 . 597 1 . 976 86 . 643 37278 0 0 473. 646 555 742 1 . 504 96 . 270 37279 0 0 496 . 751 559. 328 2 . 062 144 . 404 37280 0 0 577 . 617 785. 210 1 . 762 33 . 694 37281 0 0 569. 9 16 932 . 213* 1 . 955 134 . 777 37282 0 0 427 . 437 684 . 818 1 . 310 144 . 404 ID.NO LOCATION CA CU FE MO 37251 0 0 35. 996 30. 323 0 121 0. 0 37252 0 0 25. 197 41 . 026 0. 133 0. 0 37254 0 0 0. 0 0. 0 0. 0 0. 0 37255 0 0 62 . 992 34 783 0. 140 0. 0 37256 0 0 2 19. 573 32 999 0. 120 0. 0 37257 0 0 50. 394 19 62 1 0 120 0. 0 37258 0 0 59. 393 24 972 0. 140 0. 0 37259 0 0 0. 0 0 0 0. 0 0. 0 37260 0 0 26 997 19 62 1 0 140 28 070 3726 1 0 0 4 1 395 1 1 594 0. 123 0. 0 37262 0 0 21 . 597 21 405 0 134 0 0 37263 O 0 26 997 14 270 0 150 0 Q— 37264 0 0 20 489 14 . 270 0 148 0 0 37265 0 0 27 .939 8 .027 0. 191 0 .0 37266 0 0 24 . 2 14 24 .080 0 132 20 050 37267 0 0 208 .615 26 . 756 0 125 0 .0 37268 0 0 540 . 163 23 . 188 0 167 0 .0 37269 0 0 447 .032 24 .972 0 . 155 0 .0 37270 0 o 335 . 274 8 .027 0 . 143 15 .038 37271 0 0 245 . 868 24 .972 0 . 1 19 0 .0 37272 0 0 234 .692 29 .431 0 . 1 19 0 .0 37273 0 0 0 0 0 .0 0 .0 0 .0 37274 0 0 22 352 15 . 162 0 089 0 .0 37275 0 0 424 680 8 027 0 095 0 0 37276 0 0 260 . 768 16 054 0 062 4 5 1 1 3 37277 0 0 204 . 890 13 378 0 0 I 2 0 . 0 37278 0 0 288 . 708 1 1 . 594 0 . 078 0 0 37279 0 0 335 . 274 1 1 594 0 .13 1 0 .0 37280 0 0 299 .884 18 . 729 0 . 109 0 .0 3728 1 0 0 311 .060 2 1 .405 0 .098 0 .0 37282 0 0 139 .697 15 . 162 0 .089 0 .0 10% HCL EXT. ID.NO LOCATION CA CU FE MO 37283 0 0 0 828 50. 505 0. 315 0 o 37284 0 0 1. 276 24. 335 0. 242 0. 0 37285 0 0 0 510 365. 019 0. 752 25. ,063 37286 0 0 1 356 1804. 816* 0. 610 0. 0 37287 0 0 1 .563 75. 032 0. 654 0 o 37288 0 0 1 .467 60. 837 0. 512 0 ,0 37289 0 0 1 180 466 413 0. 610 0. ,0 37290 0 0 0 .877 172 370 0 440 0. 0 37291 0 0 1 .914 70. 976 0. 468 0 0 37292 0 0 1 786 56. 781 0. 636 0 .0 37293 0 0 1 .914 68 .948 0. 571 0 .0 37294 0 0 1 .085 64. 892 0. 316 0 0 37295 0 0 1 .308 40 558 o. 403 0 .0 37296 0 0 1 .276 40. 558 o. 290 0 0 37297 0 0 1 .356 70. 976 0. 233 o 0 37298 0 0 1 . 164 64 892 0. 505 0 0 37299 0 0 1 037 89 227 0. 512 0 0 37300 0 0 1. 563 52. 725 0. 294 0 ,0 37301 0 0 0 .973 70. 976 0. 266 0 0 37302 0 0 1 .340 7S. 032 0. 261 0 0 37303 0 0 1 .228 87 199 0 405 0 .0 37265 0 0 1 .914 24 335 0. 200 0 0 37304 0 0 1 .401 105 312 0 268 o 0 37305 0 0 2 .024 42 .494 0 431 0 .0 37306 0 0 1 .557 46 . 189 0 283 0 0 37307 0 0 2 .024 66 513 0. 316 0 ,0 37308 0 0 1 .713 62 .818 0 403 0 .0 37309 o 0 1 .791 60 970 0. 353 0 0 37310 0 0 1 .635 88 684 o 403 0 0 3731 1 0 0 2 .258 64 .665 0 353 0. .0 37312 0 0 2 . 180 49. 885 0. 309 0 .0 NH40X EXT ID.NO LOCATION CA CU FE MO J J284 0 0 0 .0 12 .098 0 .038 0 c 37285 O 0 27 . 135 90 .737 0 . 112 0 .0 37286 0 0 6 .0 193 .573 0 .055 0 .0 37287 0 o 19 . 382 26 .213 0 187 0 .0 37288 0 0 0 .0 8 .066 0 080 0 .0 37289 0 0 19 . 382 50 . 4 10 0 .131 0 0 37290 0 0 23 259 32 262 0 078 0 0 37291 0 0 O 0 16 . 131 0 .038 0 0 37292 0 o 23 259 12 .098 0 048 0 0 37293 O 0 19 382 16 131 0 .053 0 .0 37294 O 0 19 . 392 8 .066 0 .063 0 0 37295 0 0 23 259 20 . 164 0 057 0 .0 37296 0 0 19 382 24 . 197 O .059 0 .0 37297 0 0 0 0 30 . 246 O 029 0 0 37298 O 0 0 O 20 164 0 067 0 .0 37299 0 0 19 382 26 213' 0 069 0 .0 3730O 0 0 0. 0 12 .098 0 .027 0 .0 37301' O 0 O O 26 2 13 0 027 0 o 37302 0 0 23 259 26 2 13 0 .025 0 .0 .37303 O 0 23 259 32\ . 262 0 059 0 .0 37304 0 0 17 . 563 46 458 0. 055 0 ,0 37305 0 0 28 . 101 44 . 599 0. 1 15 0. 0 37306 0 0 28. 101 9. 292 0. 066 0. 0 37307 o 0 28 . 101 27 . 875 0. 038 0. 0 37308 0 0 35. 126 14. 866 0. 363 0. 0 37309 o 0 35 . 126 22 . 300 0. 122 0. 0 37310 0 0 35. 126 83. 624 0. 049 0. 0 3731 1 0 0 42. 151 61 . 324 0. 031 0. 0 37312 0 0 52. 689 59. 466 0. 047 0. 0_ KCL03 EXT. ID.NO LOCATION CA CU FE MO 37284 0 0 194 .647 371 .041 1 .406 68 874 37285 0 0 109 .002 725 792 2 .088 0 0 37286 0 0 202 .433 1628 .958* 3 . 121 4? . 384 37287 0 0 291 .971 479 638 1 695 0 0 37288 0 0 2 14 . 1 12 510 407 1 .509 0 0 37289 0 0 155 7 18 633 .484 1 .302 79 470 37290 0 0 128 467 691 403 1 054 63 . 576 37291 O 0 272 .506 742 .082 1 . 488 42 .384 37292 0 0 303 .650 629 864 1 . 364 105 .960 37293 0 0 256 934 904 978* 1 240 84 768 37294 0 0 15 t 825 94 1 . 177* 0 992 169 536 37295 0 0 2 14 .112 642 534 1 633 211. 92 1 37296 0 0 327 .007 1 176 471* 1 57 1 1 16 556 37297 0 0 179 .075 923 .077* 0 992 52 980 37298 0 0 155 .718 707 692 1 364 68 874 37299 0 0 163 .504 792 760 1 282 26. 490 37300 0 0 186 .861 597 285 1 034 0. 0 37301 O o 1 16 .788 1303 167* 0 992 26 490 37302 0 0 155 718 1447 . 964* 1 447 63. 576 37303 0 0 155. 718 94 1 . 177* 1. 530 63. 576 37304 0 0 236 724 1288. 837 0. 900* 372 . 828 37305 0 0 464 .993 745 685* 1. 514 75 . 829 37306 0 0 287 450 579. 977* 0. 922* 63. 191 37307 0 0 380. 449 1288 837 0. 592* 157 . 978 37308 0 0 380 . 449 6720. 367 0 .867* 88 . 468 37309 0 0 321 268 957 422 0 933* 101 . 106 373.10 0 0 338 177 1509 .781 1. 558 290. 679 37311 0 o 549 .538 2209 .435 1 360 202 . 212 37312 0 0 845 .443 1583 429 1 .360 75. 829 HN03:HCL04 EXT. ID.NO LOCATION CA CU FE MO 37284 0 0 48 . 749 15 . 376 0 178 0 0 37285 0 0 2'2 633 25 . 325 0 195 0 .0 37286 0 o 20. 892 49 . 746 0 '214 0 .0 37287 0 0 20 892 17 . 185 0 131 0 0 37288 0 0 20 892 17 . 185 0 131 0 0 37289 0 0 34 820 27 . 134. 0. 195 0 0 37290 0 0 22 633 ' 2 1 . 707 0. 132 0 0 37291 0 0 22 633 22 .612 0. 1 12 0 0 37292 0 o 22 . .633 18 .994 0. 125 0 0 37293 0 0 24 . 374 33 465 0. 172 0 0 37294 0 o 15. 669 27 . 134 0 162 0 0 37295 0 o 26 1 15 26 230 0. 265 0 .0 37296 0 0 15 669 33 . 465 0. 190 0 0 37297 0 0 22 633 26 230 0. 160 0 0 37298 0 o 13. 928 19 . 898 . 0. 202 0 0 37299 0 0 17 4 10 2 1 . 707 0. 226 0 0 37300 0 0 13 928 18 .089 0. 1 19 0 0 37301 0 0 10 446 21 . 707 0. 1 12 0. 0 37302 0 0 13 928 25 325 0. 131 0 0 ^303 0 0 15. 669 25. 325 o. 155 0 0 37304 0 o 9. 101 30 . 839 0. 098 1 130 37305 0 0 9. 101 10 .884 0. 153 0 .0 37306 0 o 10. 922 7 256 0. 120 0 0 37307 0 0 10. 922 31 746 0. 089 0 0 37308 0 0 18. 202 10 .884 0. 074 0. 0 37309 0 0 10. 922 16 327 0. 077 0. 0 37310 0 0 9. 101 28 . 1 18 0. 072 0. 0 37311 0 0 14. 562 42. 630 0. 088 1. 507 37312 0 0 18. 202 23. 583 0. 061 0. 0 105. HCL EXT. ID.NO LOCATION CA CU 'FE MO 37313 0 0 2 .959 110 .855 0 .401 0.0 37314 0 0 7 .007* 109 007 0 .566 0.0 37315 0 0 7 .786* 64 .665 1 .874* 0.0 37316 0 0 3 .036 86 .836 0 .316 0.0 37317 0 0 1 .012 84 .988 0 . 174 0.0 37318 0 0 3 .426 90 .531 0 .288 0.0 37319 0 0 1 .090 184 .758 0 . 174 0.0 37320 0 0 3 .504 97 .921 0 .305 0.0 37321 0 0 1 .869 96 .074 0 .261 0.0 37322 0 0 1 .588 59 . 122 0 .218 0.0 37323 0 0 2 .211 64 .665 0 .475 0.0 37324 0 0 2 .354 25 . 335 0 .313 0.0 37325 0 0 3 .948 31 . 181 0 .280 0.0 37326 0 0 4 . 100 58 .465 0 . 157 o.o 37327 0 0 2 .809 70 . 158 0 . 179 0.0 37328 0 0 3 .492 42 .875 0 .291 0.0 37329 0 0 9 . 1 10* 52 .619 0 .302 0.0 37330 0 0 3 .720 1 169 . 306* 0 .461 0.0 37331 0 0 2 .885 56 .516 0 . 134 0.0 37332 0 0 O .683 52 .619 0 . 168 OQ NH40X EXT ID . NO LOCATION CA CU FE MO 37313 0 0 45 . 664 • 29. 733 0. 093 0.0 37314 0 0 17 . 563 55. 749 0. 049 00 37315 0 0 17 . 563 3. 717 0. 272 0.0 37316 0 0 17 . 563 96 . 632 0. 443 0.0 37317 0 0 17 . 563 65. 041 0. 033 0.0 37318 0 0 17 . 563 52 . 033 0. 044 0.0 37319 0 0 24 . 588 65. 041 0. 027 0.0 37320 0 0 21 . 076 42 . 74 1 0. 033 0.0 37321 0 0 21 . 076 48 . 316 0. 013 0.0 37322 0 0 24 . 588 29. 733 0. 009 0.0 37323 0 0 28. . 101 20. 441 0. 031 0.0 37324 0 0 25 .000 20. 633 0. 034 0.0 37325 0 0 35 .714 15. 006 0. 022 o.o 37326 0 0 35 .714 33. 763 0. 018 0.0 37327 0 0 32 143 45. 018 0. 022 0.0 37328 0 0 28. 571 18. 757 0. 034 0.0 37329 0 0 35. 714 22. 509 0. 027 0.0 37330 0 0 21 . 429 131 . 301 0. 074 0.0 37331 0 0 7 143 35. 639 0. 025 o.o 37332 0 0 17 . 857 30. 012 0. 060 o.o KCL03 EXT. ID.NO LOCATION CA CU FE MO O 0 727 .081 2062 139 2 .084 63 191 37314 0 0 1986 . 790 1583 .429 1 448 31 596 37315 0 0 5918 .098* 828 539 0 .922 56 872 373)6 O 0 1733 . 157 1 196 . 777 O 98 7 183 254 37317 0 0 405 813 883 774 0. 592* 75 829 37318 0 0 1310. 436 846 .950 1 . 382 101 106 373 19 0 0 253 633 1491 368 1 . 009 240. 127 37320 0 0 760. 898 828 539 0. 987 164 . 297 37321 0 0 608 719 1067 894 0. 69 1 * 189 . 574 37322 . 0 0 346 . 631 423 . 475* 0. 42 1 * 82 . 149 37323 0 0 355 . 086 846 . 950 0. 549* 101 . 106 37324 0 0 567 .488 558 290* 0 478* 324 006 37325 0 0 591 . 133 406 701* 0. 698* 188 . 513 37326 0 0 709 .359 647 025* 0. 889* 117. 820 37327 0 0 409 .852 1 146 158 1 . 338 206 . 186 37328 0 0 630 .542 924 322 1 . 314 153 166 37329 0 0 1694 580 680. 301* 0 746* 117 820 37330 0 0 591 . 133 2125. 939 1 . 362 223 . 859 37331 0 0 433 . 498 1386 482 0. 800* 265 096 37332 0 0 157 . 635 1 146 158 0. 848* 206 186 HNO 3 :HCL04 EXT. ID. NO LOCATION CA CU FE MO 37313 O 0 18 .202 32 .653 0 .074 0 .0 37314 0 0 131 .058 44 .444 0 . 101 0 .0 37315 0 0 136 .519 27 .211 0 . 127 0 .0 373 16 O 0 72 .810 45 .351 0 .057 0 .0 37317 0 0 23 .663 31 . 746 0 .098 0 .0 37318 0 0 21 .843 36 .281 0 .077 0 .0 37319 0 0 10 .922 45 .351 0 .057 0 .6 37320 0 0 12 .742 25 .397 0 .060 O .0 37321 0 0 18 .202 30 .839 0 . 104 0 .0 37322 0 0 9 . 101 9 .070 0 .077 0 .0 37323 0 o 9 . 101 21 .769 o .083 0 .0 37324 0 0 138 .728 53 .622 0 .251 27 .435 37325 0 0 64 .740 77 .838 0 . 205 32 .922 37326 O 0 162 .775 44 .973 0 . 160 4 1 . 152 37327 O 0 162 .775 32 .865 0 . 165 0 .0 37328 0 0 277 .457 44 .973 0 .223 0 .0 37329 0 o 231' .214 44 .973 0 148 0 .0 37330 0 0 577 . 1 10 30 .270 0 . 194 O .0 37331 0 0 532 .717 67 .459 0 .340 134 .431 37332 0 0 455 .029 25 . 946 0 . 285 21 .948 10% HCL EXT. NH40X. EXT 10.NO LOCATION CA CU FE MO 37333 0 0 0. 342* 196. 833 0. 398 0 .0 37334 0 0 0. 258* 146. 163 0. 224 0 0 37335 0 0 1. 063 142. 266 0. 492 0 .0 37336 0 0 1 093 136 .419 0. 380 0 .0 37337 0 0 0. 987 54 . 568 0. 407 0 ,0 37338 0 0 1. 442 74 . 056 0. 260 0 ,0 37339 0 0 0. 941 247 .503 0. 380 0 0 37340 0 0 4 . 403 95 493 0. 425 0 0 37341 0 0 6 377 64 312 0. 215 0 .0 37342 0 0 2 .505 165 652 0. 470 0 .0 37343 0 0 1 291 93 .544 0. 374 0 .0 37344 0 0 1 .630 119 .231 0 342 0 ,o 37345 0 0 2 .963 76 .923 0 502 0 .0 37346 0 0 0 .963 69 .231 0 338 0 .0 37347 0 0 0 830 63 .462 0 301 0 .0 37348 0 0 0 919 150 .000 0. 484 0 .0 37349 O 0 o .741 117 .308 0. 484 O .0 37350 0 0 1 481 50 OOO 0 342 0 .0 37351 0 0 2 .444 126 .923 0 425 0 .0 37352 0 0 2 .963 46 . 154 0. ,301 0 .0 37353 0 0 3 259 61 .538 0 406 0 .0 37354 0 0 3 .481 67 .308 0. 388 0 .0 37355 0 0 2 .074 61 .538 0 445 0 .0 37356 0 0 1 778 92 308 0 553 0 .0 37357 0 0 2 667 119 .231 0. 411 0 .0 37358 O 0 2 889 161 538 0 285 0 .0 37359 o 0 1 852 65 .385 0. 516 0 .0 37360 0 0 2 .370 80 .769 0 548 0 .0 37361 o 0 1 .852 176 .923 0. 457 0 .0 37362 0 0 2 .400 34 .615 0 .447 0 .0 37363 0 0 2 .074 82 .692 0 .511 0 .0 37364 0 0 2 .252 32 . 420 0 421 0 .0 37365 0 0 3 . 185 110 .608 0 374 0 .0 37366 0 0 3 .037 28 .605 0. 333 0, ,0 37367 0 0 2 .326 28 .605 o. 351 0 0 37368 0 0 2 .400 76 .281 0 .437 0 .0 37370 0 0 2 .370 43 .862 0 225 0 .0 37371 0 0 2 874 83 .909 0 495 0 .0 37372 o 0 2 .874 143 .027 0 ,423 0 .0 37373 o 0 2 .400 64 .839 0 401 0 .0 37374 o 0 2 .074 78 188 0. 464 0 0 37375 0 0 1 956 61 025 0. 428 0 0 37376 0 0 2 741 57 .211 o. 282 0 0 37377 0 0 2 667 70 .560 o. 315 0 0 37378 0 0 4 .889 80 .095 0 439 0 0 37379 0 0 3 .630 97 .259 0 374 0 0 37380 0 0 3 .437 78 . 188 0. 523 0 <2. ID.NO LOCATION CA CU FE MO 37333 0 0 14 . 286 58 148 0. 492 0. 0 37334 0 0 10. 714 93. 787 0. 101 0. ,0 37335 O 0 14 . 286 39. 390 0. 398 0. 0 37336 0 0 17 . 857 33. 763 0. 197 0. 0 37337 0 0 17 . 857 7 . 503 0. 492 0. 0 37338 0 0 21 . 429 24 . 385 0. 156 0. 0 37339 0 0 25. OOO 48 . 769 0. 291 0. 0 37340 0 0 25. OOO 16 . 882 0. 324 0. 0 3734 1 0 0 21 . 429 20. 633 0. 056 0. 0 37342 O 0 35. 714 30. 012 0. 402 0. 0 37343 0 0 35. 714 18 . 757 0. 436 0. 0 37344 0 0 7 .236 79 .630 0 . 160 0 .0 37345 0 0 io .854 20 . 370 0 . 129 0 .0 37346 0 0 18 089 68 .519 0 389 0 .0 37347 O 0 18 .089 27 .778 0 347 0 .0 37348 0 0 21 .707 44 .444 0. 445 0 0 37349 0 0 21 .707 40 .741 0 549 0 o 37350 0 0 21 .707 22 . 222 0 . 340 0 .0 37351 0 0 28 .943 55 . 556 O .412 0 .0 37352 O 0 10 .854 50 .000 0 . 249 O .0 37353 0 0 18 .089 61 .111 0 .214 0 .0 37354 0 0 14 .471 53 .704 O . 329 0 .0 37355 0 0 43 .414 22 . 222 0 .434 0 .0 37356 O 0 28 .943 59 . 259 O . 523 0 .0 37357 0 0 21 .707 40 .741 0 . 222 0 .0 37358 0 0 21 .707 96 . 296 0 .093 0 .0 37359 0 0 32 .561 48 . 148 0 . 289 0 .0 37360 0 0 32 . 561 77 . 778 0 267 0 .0 37361 o 0 28 .943 107 .407 0 . 345 0 .o 37362 o 0 28 .943 37 .037 0 423 0 .0 37363 0 0 28 .943 40 .741 0 . 467 0 .0 37364 o 0 21 525 36 .281 1 . 170* 0 .0 37365 0 0 17 .937 217 .687 0 .675 0 .0 37366 0 0 21 .525 18 .141 0 . 169 o .0 37367 o 0 25 . 112 29 .025 0 .463 o .0 37368 0 0 21 .525 90 .703 o .832 0 .0 37370 0 0 17 .937 32 .653 0 .202 0 .0 37371 0 0 7 . 175 68 .934 0 .558 0 .0 37372 0 0 14 .350 90 . 703 0 .457 0 .0 37373 o 0 17 .937 36 . 281 0 .855 0 .0 37374 0 0 17 .937 47 . 166 1 .417* 0 .0 37375 0 0 10 .762 50 .794 1 . 125* 0 .0 37376 0 0 7 . 175 88 .889 o .547 0 0 37377 0 0 10 .762 43 .537 0 . 553 0 r\ • vy 37378 0 0 14 .350 52 .608 0 .697 0 o 37379 o 0 7 . 175 154 . 195 0 .346 0 .0 37380 0 0 14 . 350 29 .025 o .877 o .0 KCL03 EXT. HN03:HCL04 EXT. ID.NO LOCATION CA CU FE MO 37333 0 0 882 . 759 1 109. 185 3 632 70. 692 37334 0 0 78 818 1756. 211 1 . 553 164. 948 37335 0 0 488 . 670 1700. 751 4 . 1 10 176. 730 37336 0 0 315. 271 2403 236 • 4 . 182 141 384 37337 0 0 866 . 995 961 . 294 2 987 235. 64 1 37338 0 0 181 . 281 1441 . 94 1 2 509 88 . 365 37339 0 0 1576. 355 2625 073 4 062 164 948 37340 0 0 1300. 493 2070 480 4 .922 777 .614 3734 1 0 0 985. 222 1996 534 2 939 235 .641 37342 0 0 1497 537 3623 341 5 . 137 106 .038 37343 0 0 827 586 1220 . 104 2 581 29 .455 37344 0 0 734 366 1892 857 5 .043 371 .613 37345 0 0 624 .211 2321 .429 3 .305 320 .000 37346 0 0 881 239 1517 .856 3 .798 598 .709 37347 0 0 587 493 1 107 . 142 2 .897 144 .516 37348 0 0 1468 732 1517 .856 6 . 223 77 .419 37349 0 0 1211 .704 2410 .714 5 .536 77 . 4 19 37350 0 0 2349 971 982 . 143 3 .433 25 .806 37351 0 0 624 .211 2607 . 143 5 258 216 .77,4 37352 0 0 1028 113 12 14 . 286 4 .506 41 . 290 37353 0 0 1468 732 1750 .000 4 . 185 185 .806 37354 0 0 2496 .844 2053 572 4 .571 578 .064 37355 0 0 6021 801* 1392 857 4 .077 25 .806 37356 0 0 2937 463 232 1 .429 6 .223 129 .032 37357 0 0 1072 175 2946 .429 4 .292 51 .613 37358 0 0 1432 014 4285 715 4 .828 1 13 .548 37359 0 0 2423 407 15 17 .856 3 .326 92 .903 37360 0 0 2717 154 2000 .000 3 433 25 .806 3736 1 0 0 2276 535 4732 .14 1 5 .365 103 .226 37362 0 0 2643 718 982 . 143 2 . 747 387 .097 37363 0 0 1395 296 2053 . 572 4 .936 36 . 129 37364 0 0 1 312 1 166 .850 3 .322 142 .675 37365 0 0 0 .445 3093 .923 4 .053 713 .376 37366 0 0 0 .474 1096 . 132 3 367 193 .631 37367 0 0 1 166 1 166 .850 3 .012 214. .013 37368 0 0 0 .423 2033 . 150 2 .879 407 .643 37370 0 0 0 .394 1591 . 160 2 .702 1 12 . 102 37371 0 0 0 133* 1803 .315 3 .544 10 . 191 37372 0 0 0 .547 2828 . 729 3 .322 50 .955 37373 0 0 0 .219* 1 149 . 171 2 .658 896 .815 37374 0 0 0 452 1679 .559 3 .212 71 . 338 37375 0 0 0 .437 1166 .850 2 .769 433 . 121 37376 0 0 0 . 197*1626 .519 2 .990 2038 .217 37377 0 0 0 . 164* '1025 . 4 14 2 .481 188 .535 37378 0 o 0 .270*1520 .442 3 . 101 591 .083 37379 0 0 0 .062* 3889 .503 4 .828 315 .924 37380 0 0 0 . 186* 1591 . 160 2 .348 107 .006 ID.NO LOCATION CA CU FE MO 37333 0 0 813. 872 39 .784 0. 283 98. 765 37334 0 0 3421 966* 41 514 0. 399 373 . 114 37335 0 0 2996. 532* 38 054 0. 371 0. 0 37336 0 0 2589. 596* 45. 838 0. 319 27. 435 37337 0 0 1072. 833* 69. 189 0. 274 27. 435 37338 0 0 1442. 775* 82 . 162 0. 319 41 . 1S2 37339 0 0 1979. 191* 39. 784 0. 274 21 . 948 37340 0 0 2700. 579* 60. 541 o. 376 21 . 948 37341 O 0 3052 . 024* 131 . 459 1. 140* 30. 178 37342 0 0 1572 . 254* 25. 081 0. 257 96. 022 37343 0 0 2034 . 683* 47 . 568 0. 388 0. 0 3/344 0 0 33 .962 19 .626 0 .062 O .0 37345 0 0 41 .509 13 .084 0 . 102 0 .0 37346 0 0 39 .623 15 .888 0 .077 0 .0 37347 0 0 28 . 302 29 .907 0 .095 18 .617 37348 0 0 30 . 189 19 .626 0 086 0 .0 37349 0 0 56 .604 16 .822 0 .071 O .0 37350 O 0 33 .962 56 .075 0 079 29 .255 37351 O 0 28 .302 32 .710 0 . 101 0 .0 37352 0 0 22 .642 26 . 168 0 . 125 0 .0 37353 0 0 254 .717 20 .561 0 .208 0 .0 37354 0 0 18 .868 38 .318 0 . 130 0 .0 37355 0 0 56 .604 37 .383 0 .249 0 .0 37356 0 0 77 . 358 54 .206 0 .349 0 .0 37357 0 0 192 .453 23 .364 o .282 0 .0 37358 0 0 22 .642 42 .056 0 246 0 .0 37359 o 0 211 .321 67 . 290 0 296 0 .0 37360 o 0 160 377 46 ,729 0 183 31 915 37361 o 0 28 302 48 598 0 239 0 0 37362 0 0 233 .962 61 , 682 0. 234 0. 0 37363 o 0 128 .302 32 .710 0 189 0. 0 37364 o 0 5416 .570 30 .022 0 .260 0 .0 37365 0 0' 1536 .615 79 .470 0 .351 65 .327 37366 0 0 1421 .369 30 .905 0 .294 90 .452 37367 0 0 2919 .570 24 .724 0 .204 0 .0 37368 o 0 1382 .955 54 .746 0 . 195 27 .638 37370 0 o 998 .800 39 .735 0 . 306 0 .0 37371 0 0 1114 .046 37 .086 0 . 283 0 .0 37372 0 0 1690 . 277 70 .640 0 .238 0 .0 37373 o o 1440 577 30 022 0 .204 27 638 37374 0 0 4533 016 39 735 0 272 0 0 37375 o 0 3226. 893 28 256 0 249 30. 151 37376 0 0 1094 838 30 905 0. 215 125. 628 37377 o 0 1382. 955 33 .554 0. 249 15. 075 37378 o 0 1344 . 539 42 384 0. 257 25. 126 37379 0 0 188. 235* 88 300 0. 176 0. 0 37380 0 0 1575. 032 35. 320 0. 195 0. 0 10% HCL EXT NH40X EXT ID.NO LOCATION CA CU FE MO 37381 0 0 0 . 363* 2212 . 157* 0 532 641 .22 37382 0 0 0 .267* 690 .346 0. 450 244 .27 37383 0 0 0 .299* 533 .969 0 541 219. .84 37384 0 0 0 .244* 524 .434 0. .459 0 .0 37385 0 0 0 .296* 722 .949 0 .436 0 .0 37386 0 0 3 .536 136 .980 0 .504 0 .0 37387 0 0 1 .328 79 .905 0 .411 0 .0 37388 0 0 0 .952 209 .275 0 .438 0 .0 37389 0 0 0 .649 125 .565 0 411 0 .0 37390 0 0 1 .818 121 .760 0 222 0 .0 37391 0 0 1 .876 163 .615 0 389 0 .0 37392 0 0 4 .257 76 . 100 0. .307 0 .0 37393 0 0 5 .051 55 . 172 0 311 0 .0 37394 0 0 1 .039 123 .662 0. .362 0 .0 37395 0 0 0 .981 194 .055 0. .440 0 .0 37396 0 0 0 .534* 144 .590 0 458 0 .0 37397 0 0 2 .814 106 .540 0. 289 0 .0 37398 0 0 1 . 761 93 .222 0 311 0 .0 37399 0 0 1 .905 161 .712 0 167 0 .0 37400 0 0 1 .587 60 .880 0. 140 0 .0 37401 0 0 2 193 19 .025 0. 160 0 .0 37402 0 0 2 .309 28 . 537 0. 151 0 .0 37403 0 0 1 .660 36 . 147 0. 138 0 .0 37404 0 0 2 .424 57 .075 0. 173 0 .0 37405 0 0 1 .991 58 .022 0. 180 0 .0 37406 0 0 2 276 38 .681 0. 138 0 .0 37407 0 0 1 451 26 .374 0. 123 0 .0 37408 0 0 1 792 40 .440 0. 153 0 .0 37409 0 0 2 219 28 . 132 0. 148 0 .0 374 10 0 0 1 764 52 . 747 0. 155 0 .0 374 1 1 0 0 2 . .276 43. 956 0. 144 0. 0 374 12 0 0 2 133 36. .923 0. 138 0. 0 374 13 0 0 2 901 24 . 615 0. 182 0. 0 374 14 0 0 3. .200 38 681 0. 155 0. .0 374 15 0 0 2 . .731 42 . 198 0. 1 10 0. 0 374 16 0 0 2 873 56. 264 0. 138 0. 0 374 17 0 0 2 . 076 29. 890 0. 131 0. 0 374 18 0 0 2 . 489 38 . .681 0. 170 0. 0 37419 0 0 2 , 176 36. 923 0. 127 0. 0 37420 0 0 2 . 204 35. 165 0. 144 0. 0 3742 1 o 0 2 . 133 42. 198 0. 148 0. 0 37422 0 0 2 . 219 35. 165 0. 153 0. 0 37423 0 0 2 . 4 18 35. 165 0. 159 0. 0 37424 0 0 2 . 702 31 . 648 0. 180 0. 0 37425 0 G 2 , 702 28 . 132 0. 182 0. 0 ID.NO LOCATION CA CU FE MO 37381 0 o 17. 937 217 . 687 0. 295 676. 05 37382 0 0 17. 937 1 16. 100 0. 439 225. 3E 37383 0 o 21 . 525 94. 331 0. 747 101 . 40 37384 O o 17 . 937 130. 612 0. 765 0. 0 37385 0 0 22. 912 114 . 676 0. 515 O. 0 37386 0 0 22. 912 58. 248 0. 352 0. 0 37387 0 o 22. 912 32. 765 0. 631 0. 0 37388 O 0 22 912 101 . 934 0. 617 0. 0 37389 0 o 19 093 50. 967 0. 749 0. 0 37390 O o 15. 274 58. 248 0. 104 O. 0 37391 0 0 7. 637 72 . 810 0. 484 0. 0 37392 0 0 3. 819 47 . 327 0. 581 0. 0 37393 0 0 7. 637 40. 046 0. 499 0. 0 37394 0 0 15. 274 58. 248 0. 908 0. 0 37395 0 o 19. 093 69 170 1 . 975* 0. 0 37396 0 o 19. 093 80. .091 1 . 317* 0. 0 37397 O 0 26. .730 91 . .013 0. 318 0. 0 37398 0 0 1 1 . .456 65 .529 0. 370 0. .0 37399 O 0 7 637 182 025 0 .079 0 .0 37400 0 0 15 274 69. . 170 0 023 0. .0 37401 0 0 1 1 .456 47 327 0 .027 0 0 37402 0 0 19 093 36 .405 0 .023 0 .0 37403 o 0 22 . 912 54 .608 0 018 0 .0 37404 0 0 7 .637 45. .506 0 023 0 .0 37405 0 0 27 .965 . 27 . 149 0 .027 0 .0 37406 0 0 19 .975 21 .719 0 .041 0 .0 37407 0 0 19 .975 16 .290 0 .041 0 .0 37408 0 0 19 .975 19 .910 0 .034 0 .0 37409 0 0 19 .975 12 .670 0 .032 0 .0 37410 0 0 23 .970 21 .719 0 .034 0 .0 3741 1 0 0 19 .975 21 .719 0 .029 0 .0 374 12 0 0 19 .975 28 .959 0 .034 0 .0 37413 0 0 0 .0 25 . 339 0 .045 0 .0 37414 0 0 23 .970 27 . 149 0 .027 0 .0 37415 0 0 0 .0 16 .290 0 .034 0 .0 374 16 0 0 27 .965 36 . 199 0 .034 0 .0 374 17 o 0 19 .975 18 . 100 0 .023 0 .0 374 18 0 0 23 .970 18 . ioo 0 .025 0 .0 37419 o 0 19 .975 16 . 290 0 .01 1 0 .0 37420 0 o 19 .975 19 .910 0 .018 0 .0 37421 o o 0 .0 16 . 290 0 .023 0 .0 37422 o 0 19 .975 10 .860 0 .027 0 .0 37423 o o 19 .975 9 .050 0 .027 0 .0 37424 0 0 23 .970 21 .719 0 .025 0 .0 37425 0 0 0 .0 9 .050 0 .027 0 .0 KCL03 3 A ID.NO LOCATION CA CU FE MO 37381 0 0 0. 007* 654 . 144* 0. 576* 585 987 37382 0 0 o. 020* 1131. 491 1 . 395 509. 554 37383 0 0 0. 016* 1555. 801 1 . 440 509. 554 37384 0 0 0. 026*2864. 089 2 . 348 743. 949 37385 0 0 0 027 2536 . 807 1 . 830 880 73~4 37386 0 0 0. 055 . 3986 . 411 2 . 973 576. 671 37387 0 0 0. 0S2 1721 . 405 2 . 173 1048. 492 37388 0 0 0. 049 7066. 816 3. 545 576. .671 37389 0 0 0 028 2627 . 407 2 . 630 199 214 37390 0 0 0 023 3442 . 809 1 . 372 1001 311 3739 1 0 0 0. 031 3442 . 809 2 . 973 608 . 126 37392 0 0 0 098 1956 964 3 . 156 524 . 247 37393 0 0 0 129 1630 804 3. 431 1022 281 37394 0 0 0 1 13 2862 967 2 . 058 262 123 37395 0 0 0 176 1812 005 2 . 058 524 247 37396 0 0 0 .070 1594 564 2 . 401 503 . 277 37397 0 0 0 094 2500 566 3. 339 812 .582 37398 0 0 0 .078 1902 605 2 . 607 597 .641 37399 0 0 0 .039 3624 .010 1 . 372 943 .644 37400 0 0 0 .022 996 603 0. 309* 1205 .767 37401 0 0 0 076 684 .938* 0. 407* 812 .582 37402 0 0 0 .055 474 745* 0. 160* 692 .006 37403 0 0 0 . 102 761 .042* 0. 229* 1 153 . 342 37404 0 0 0 .041 1268 . 403 0. 274* 576 .671 37-105 0 0 458 . 728 0 .0 0 . 277 871 .716" 37406 0 0 924 .855 0 .0 0 .285 958 . 269 37407 0 0 554 .913 767 . 123* 0 .302 1 1 12 .829 37408 0 0 369 .942 730 .594* 0 .373 2349 .306 37409 6 0 554 .913 557 .078* 0 . 204 1854 . 7 15 374 10 0 0 451 .329 675 799* 0 294 1483 .772 374 1 1 0 0 636 . 301 0 .0 0 .277 927 .357 374 12 0 0 754 .682 0 .0 0 .288 1360 . 125 374 13 0 0 1420 .578 0 .0 0 . 309 587 .327 37414 0 0 1390 .983 0 .0 0 .260 741 .886 37415 0 0 873 .063 0 .0 0 .202 531 .685 37416 0 0 1080 . 231 0 .0 . 0 .285 445 . 132 374 17 0 0 628 .901 347 .032* 0 .075 247 .295 37418 0 0 924 .855 694 .064* 0 .234 309 . 1 19 374 19 0 0 813 .873 776 .256* 0 .239 494 .591 37420 0 0 924 .855 0 .0 0 . 192 1051 .005 3742 1 0 0 665 .896 0 .0 0 .245 587 .327 37422 0 0 754 .682 584 .475* 0 .266 908 .811 37423 0 0 7 10 .289 611 .872* 0 .260 989 . 181 37424 0 0 2278 .844 712 .329* 0 . 196 1051 .005 37425 0 0 902 .659 739 . 726* 0 388 247 .295 HN03:HCL04 EXT. ID.NO LOCATION CA CU FE MO 37381 0 0 9 .604* 31 .788 0 .066 25 . 126 37382 0 0 195 .919* 36 .203 0 .088 15 .075 37383 0 0 1 19 .088* 35 . 320 0 091 0 .0 37384 0 o 201 .681* 64 .459 0 179 22 .613 37385 0 0 171 .603 56 .671 0. 117 35 .971 37386 0 o 39 OOI 89 .728 0. 149 0 .0 37387 0 0 204 .753 51 .003 0. 161 23 .981 37388 0 0 224 .254 138 .843 0 149 0 .0 37389 0 0 187 .203 51 .948 0 155 0 .0 37390 0 0 19 . 500 58 .560 0 .083 19 . 185 37391 0 0 33 . 151 96 .340 0 199 0 .0 37392 0 0 198 .903 61 .393 0 219 38 .369 37393 0 0 585 .009 42 .503 0 201 14 .388 37394 0 0 2262 .035* 75 .561 0. 183 0 .0 37395 0 0 2223 035* 54 782 0. 149 0 .0 37396 0 0 347 . 105 73 672 0. 177 0 .0 37397 0 0 146 .252 56 671 0. 155 23 981 37398 0 0 54 .601 39 .669 0 138 0 .0 37399 0 0 27 . 300 81 .228 0 . 108 45 .564 37400 0 0 9 .750 35 .891 0 .061 35 .971 37401 0 0 23 .400 18 .890 0 050 28 .777 37402 0 0 21 .450 1 1 .334 o 029 23 .981 37403 0 o 31 200 17 .001 0. 035 52 .758 37404 0 o 37 051 24 .557 0. 039 23 .981 37405 0 0 28. 402 32 .845 0 091 260 .062 37406 0 0 30 .296 24 399 0. 123 148 .607 37407 0 0 22 722 22 .522 0. 163 191 .950 37408 0 0 11 .361 19 .707 0. 141 315 .789 37409 0 0 28 402 14 .076 0. 129 250 .774 37410 0 0 20 828 18 .768 0. 144 210 .526 3741 1 0 0 22 722 33 783 0. 137 145 .511 37412 0 0 32 189 46 921 o. 152 278 .638 37413 o 0 41 657 28 . 152 0 . 118 95 .975 37414 0 0 47 .337 24 .399 0 102 92 .879 37415 0 0 26 .509 30 .968 0 129 99 .071 37416 o 0 32 . 189 38 .475 0. 107 92 .879 37417 0 0 18 935 13 . 138 0. 043 46 .440 37418 0 0 28 .402 29 .091 0. 093 49 .536 37419 0 0 43 .550 28 . 152 0. 096 86 .687 37420 0 0 68 . 166 28 . 152 o. 086 154 .799 37421 0 0 53 018 29 091 0. 121 123. 839 37422 0 • 0 60. 592 22. 522 0. 103 92. 879 37423 0 0 28. 402 23 .460 0. 095 266. 254 37424 0 0 54 911 23 460 o. 101 222 .910 37425 0 0 22 722 24 399 0. 151 24 768 EXTRACTION-10%HCL ID.NO LOCATION CA CU FE MC 37426 0 0 2 .642 46. .532 0. 165 0 .0 37427 0 0 0 .833 53. 691 0. 317 0 .0 37428 0 0 0 .801 71 .588 0. 475 0 0 37429 0 0 1 . 121 102. .013 0. 697 0, .0 37430 0 0 1 .569 75 . 168 0. 349 0, .0 37431 0 0 1 . 153 76 .958 0, 296 0 0 37432 0 0 1 .249 60 .850 0. 232 0 .0 37433 0 0 1 .025 143 . 177 0. 321 0 0 37434 0 0 1 249 62 640 0, .220 0 0 37435 0 0 1 44 1 35. .794 0. 220 0 0 37436 0 0 1. 201 44 . 743 0. 211 0 0 37437 0 0 1 249 85. 906 0. 260 0 0 37438 0 0 0 833 93. 065 0. 203 0, 0 37439 0 0 1. 057 100. 224 0. 296 0 0 37440 0 0 1. .921 112. 752 0. 423 0, 0 37441 0 0 1 .057 53 691 0. 232 0, .0 37442 0 0 1. .665 193. 289 0. 423 0. 0 37443 0 0 1. 681 1 16. 331 0. 613 0. 0 37444 0 0 2 . 161 164. 653 0. 338 0 0 37445 0 0 1. .761 128. ,859 0. 401 0. 0 37446 0 0 2 . 763 248 848 0. 577 0 .6 37447 0 0 2 .633 140 .092 0 432 0, .0 37448 0 0 3 .576 162 .212 0. 491 0 .0 37449 0 0 3 .283 129 032 0. 577 0, .0 37450 0 0 3 .088 193 .548 0. .502 0 .0 37451 0 0 3 . 348 175. 115 0. 504 0 0 37452 0 0 3 .088 1 10. 599 0. 438 0. 0 37453 0 0 2 .796 149, 309 0 470 0, 0 37454 0 0 2 .568 132 719 0. 417 0. 0 37455 0 0 3 .446 165 .899 0. 423 0. 0 37456 0 0 2. . 763 160, .369 0. 618 0 .0 37457 0 0 3 .446 141 936 0. 598 0. .0 37458 0 0 2 .796 1 19, .816 0. 374 0 .0 37459 0 0 2 .958 193 548 0. 395 0. .0 37460 0 0 2 .633 1 19 816 0. 310 0 0 37461 0 0 2 .211 165 .899 0. 306 0. 0 37462 0 0 2 .064 160 369 o. 331 0, 0 37463 0 0 2 .536 152 .995 o. 363 0 .0 37464 0 0 2 .519 248 .848 0. 353 0, .0 37465 0 0 2 .048 377 .880 0. 395 0. 0 ID.NO LOCATION CA CU FE MO 37466 0 o 2. 358 157. 463 0. 387 0. 0 37467 0 o 2 440 80. 481 0. 345 0. o 37468 0 o 2 521 73, 483 0. 206 0. 0 37469 0 0 2 440 75. 232 0. 248 0. 0 37470 O 0 1 870 101 .476 0. 248 0. 0 37471 0 o 1 .952 87 .480 0. 184 0 0 37472 0 0 1 269 157 463 0. 201 O. 0 37473 O 0 1 529 94 .478 0. 166 0. 0 37474 0 0 2 . 375 87 .480 0. 190 0. 0 37475 0 0 1 757 108 475 0. 199 O. 0 37476 0 o 2 684 209. 951 0 310 0. 0 37477 0 0 1 139 87 .480 0 150 0 0 37478 0 0 2 033 197 704 0 .254 0 0 37479 0 0 2 . 440 194. ,205 0 265 0 0 37480 0 0 2 765 118 .972 0 .299 0 .0 37481 O o 2 .732 1 18 .972 0 .442 0 .0 37482 0 0 2 .960 78 .732 O 365 0 0 37483 0 o 1 .822 115 .473 0 .305 0 .0 37484 0 0 2 . 732 206 .452 0 .343 0 .0 37485 0 0 2 .472 136 .468 0 .217 0 .0 37486 0 0 1 .666 126 .872 ' 1 .346 0 .0 37487 0 0 2 .810 186 .784 2 .485 0 .0 37488 0 0 2 . 304 183 .260 2 406 0 .0 37489 O 0 1 797 197 .357 2 . 105 0 .0 37490 0 0 1 666 81 .057 2 . 169 0 .0 37494 0 0 2 . ,549 96 .916 3. 245 0 ,0 37495 o 0 2 . 304 114 537 2 20O 0 .0 37496 0 0 1 . 748 112 775 1 . 456 0 .0 37497 0 0 2 .222 1 19 824 0. 887 0 .0 37498 0 0 2 .614 74. 009 1. 203 0, 0 37499 0 0 2 .418 74 009 1 741 0 0 37500 0 0 2 94 1 149 .780 2. 754 0 0 39101 0 0 2 . 745 91 630 1 931 0 0 39102 0 0 3 30O 98 678 2 .090 0 0 39103 0 0 2 .320 91 .630 1 377 0 .0 39104 0 0 2 .647 89 .868 1 409 0 .0 39105 o 0 2 .402 84 582 1, 409 0 .0 39106 0 0 1 .797 79 .295 1. 235 0 0 39107 0 0 2 . 124 52 863 0. 887 0 0 EXTRACT 10N-NH40X ID.NO LOCATION CA CU FE MO 37427 0 0 22 . 776 35. 359 0. 026 0. 0 37428 0 0 26 . 572 51 . 271 0. 044 0. 0 37429 0 0 26. 572 56 . 575 0. 072 0. 0 37430 0 0 18 . 980 44 . 199 0. 044 0. 0 37431 0 0 30. 368 35. 359 0. 026 0. 0 37432 0 0 18. 980 26. 519 0. 022 0. 0 37433 0 0 22 . 776 91 . 934 0. 055 0. 0 37434 0 0 30. 368 35. 359 0. 031 0. 0 37435 0 0 26 . 572 35. 359 0. 035 0. 0 37436 0 0 22 . 776 24 . 751 0. 028 0. 0 37437 0 0 34 . 164 65. 414 0. 026 0. 0 37438 0 0 26 . 572 54 . 807 0. 01 1 0. 0 37439 O 0 22 . 776 72 . 486 0. 018 0. 0 37440 0 0 22 . 776 79. 558 0. 144 0. 0 3744 1 0 0 30. 368 28. 287 0. 022 0. 0 37442 0 0 30. 368 144 . 972 0. 144 0. 0 37443 0 0 26 . 572 28. 287 0. 515 0. 0 37444 0 0 22 . 776 205. 083 0. 131 0. 0 37445 0 0 22. 776 120. 221 0. 158 0. o 37446 0 0 45. 525 95 . 965 0. 867 0. o 37447 0 0 37 . 937 130. 861 0. 199 0. 0 37448 0 0 34. 143 90. 731 0. 481 0. 0 37449 0 0 64 493 62 .814 0 .330 0 0 37450 0 0 56. 906 164 013 0, 150 0 0 37451 0 0 37 937 139 ,586 0 . 117 0 .0 37452 0 0 45 .525 75 .027 0 .226 0 .0 37453 0 0 18 .969 106 .434 0 .303 0 .0 37454 0 0 18 .969 83 . 751 0 . 359 0 .0 37455 0 0 22 . 762 73 . 282 0 . 167 0 .0 37456 0 0 30 .350 59 . 324 0 .665 0 .0 37457 0 0 26 .556 59 . 324 0 .493 0 .0 37458 0 0 26 .556 61 .069 0 .255 0 .0 37459 0 0 22 .762 139 .586 0 . 171 0 .0 37460 0 0 26 .556 183 . 206 0 .063 0 .0 37461 0 0 22 .762 157 .034 0 . 240 0 .0 37462 0 0 30 .350 139 .586 0 . 199 0 .0 37463 0 0 30 .350 122 . 137 0 .238 0 .0 37464 0 0 22 .762 235 .551 0 . 142 0 .0 37465 0 0 26 .556 584 .515 0 . 188 0 .0 ID.NO LOCATION CA CU FE MO 37466 0 0 38 . 346 113 .413 0 .231 0 .0 37467 0 0 34 .512 66 . 303 0 .282 0 .0 37468 0 0 30 . 677 55 .834 0 .064 0 .0 37469 O 0 23 .008 52 . 345 0 .043 0 .0 37470 0 0 23 .008 80 .262 0 . 171 0 .0 37471 0 0 26 .842 69 .793 0 .032 0 .0 37472 0 0 23 .008 235 .551 0 .021 0 .0 37473 0 0 23 .008 90 .731 0 .017 0 o 37474 0 0 30 .677 83 .751 0 .032 0 .0 37475 0 0 34 .512 113 .413 0 .034 0 .0 37476 0 0 23 .008 270 .447 0 . 128 0 .0 37477 0 0 23 .008 139 .586 0 .026 0 .0 37478 o 0 23 .008 184 .951 0 .085 0 .0 37479 0 0 26 .842 314 .068 0 . 192 0 .0 37480 o 0 34 .512 73 . 282 0 .068 0 .0 37481 0 0 46 .016 95 .965 0 . 137 0 .0 37482 o 0 57 .520 43 .621 0 .096 0 .0 37483 0 0 23 .008 109 .924 0 .075 0 .0 37484 0 0 19 . 173 122 137 0 .243 0 .0 37485 0 0 19. 173 122 137 0 .049 0 .0 37486 o 0 39 482 92. ,650 0 .039 0 .0 37487 o 0 19. .741 138. 976 0 .240 0 .0 37488 o 0 23. 689 146. 102 0 459 0 o 37489 0 0 19. 741 258. 352 0 138 0, .0 37490 0 0 23. 689 64. 143 0. .232 0, 0 37494 0 0 27 . 637 74 . 833 o. 765 . 0. 0 37495 0 0 19. 74 1 1 15. 813 0. 162 0. 0 37496 0 0 19. 74 1 71 . 269 0. 055 0. 0 37497 o o O. O 80. 178 0. 013 0. o 37498 o 0 0. 0 26. 726 0. 011 0. 0 37499 0 0 19. 741. 71 . 269 0. 055 0. 0 37500 0 0 23. 689 80. 178 0. 328 0. 0 39101 0 0 23. 689 71 . 269 0. 066 0. 0 39102 0 0 23. 689 106. 904 0. 087 0. 0 39103 0 0 0. 0 121 . 158 0. 022 0. 0 39104 0 0 19. 741 112. 249 0. 026 0. 0 39105 0 0 19. 741 1 10. 468 0. 031 0. 0 39106 0 0 19. 741 39. 198 o. 017 0. 0 39107 o 0 19. 741 62 . 361 0. 011 0. 0 EXTRACTI0N-KCL03 ID.NO LOCATION CA CU FE MO 37427 0 0 291 . 572 0. 0 1 .612 331 .034 37428 0 0 298 861 0. .0 2 .407 468. 965 37429 0 0 437 . 358 0. .0 1 .397 882. 759 37430 0 0 379 .043 0 0 1 . 333 1655 172 37431 0 0 204 100 0 .0 1 .376 811 034 37432 0 0 218 679 0. .0 0 .559* 336 552 37433 0 0 174 .943 0 .0 1 .397 1544 .827 37434 0 0 335 . 307 0 .0 0 .688* 744 .827 37435 0 0 328 .018 687 604* 4 .621 182 .069 37436 0 0 364 465 .0 .0 1 .397 562 . 759 37437 0 0 437 . 358 0 .0 1 .548 800 OOO 37438 0 0 145. . 786 652 .342* 1 .720 242 .759 37439 0 0 218 .679 0 .0 2 . 192 369 .655 37440 0 0 7289 297* 0 .0 4 .084 165 .517 3744 1 0 0 204 . 100 O 0 1 . 720 248 276 37442 0 0 5466 .969* 0 .0 4 . 191 110 .345 37443 0 0 1501 . 594 0 .0 3 .439 93 .793 37444 0 0 1625 .513 0 .0 4 .836 154 .483 37445 0 0 743 .508 0 .0 4 .084 160 OOO 37446 0 0 759. . 193 O o 4 .565 210 526 37447 0 0 1366. . 548 0. .0 3 .304 548 348 37448 0 0 1594 . . 306 0 0 3 .913 558 , 140 37449 0 0 3036 . 772 0 0 2 .500 151 .775 37450 0 0 7743. . 770* 0 0 4 . 130 425 949 37451 O 0 1518 . 386 0 0 2 . 565 1468 788 37452 0 0 2201 . 660 0. 0 2 283 719. 706 37453 0 0 683. . 274 0 0 3 696 205. 630 37454 0 0 759. 193 0 0 3 .OOO 146. 879 37455 0 0 759. 193 0. .0 2 .065 181 . 151 37456 0 0 1328 588 0 0 3 . 152 73. 439 37457 0 0 1078. .055 0 0 2 935 78 335 37458 0 0 797 . 153 0. 0 3 .913 122. 399 37459 0 0 683 . 274 0. 0 2 .500 680. 539 37460 0 0 873 .072 0. 0 3 522 328 029 3746 1 0 0 493. . 476 0. .0 4 . 348 269. 278 37462 0 0 531 . 435 0 0 2 261 342 . 717 37463 0 0 789. 561 0 0 3. 152 127. 295 37464 0 0 531 .435 0 0 3 522 181 . 151 37465 0 0 531 . .435 0. 0 5. 652 156. 671 ID.NO LOCATION CA CU FE MO 37466 0 0 593 967 0. 0 3. 016 360. 947 37467 0 0 2635 .730 0. 0 2. 404 532. 544 37468 0 0 705. .336 0 0 1. 530 153. 846 37469 0 0 816 705 0 0 1. 268 136. 095 37470 0 0 787 .007 0 0 1. 639 857. 989 37471 O 0 415 777 0 0 1. 377 502. 959 37472 0 0 423 .202 0 0 4. 699 337. 278 37473 O 0 482 598 0 o 0. 765* 532 544 37474 0 0 1789 326 0 0 1 093 183 432 37475 0 0 608 817 0 .0 2 404 284 024 37476 0 0 660. 789 0 0 3 716 307. 692 37477 O 0 653 . .364 0. 0 5 .355 177 515 37478 O 0 430. 626 0 0 3 .016 1301 .776 37479 0 0 890. 951 0 0 6 . 120 355 .030 37480 0 0 1113 689 0 0 3 .060 414 .201 37481 0 0 8909. .512* 0. 0 4 . 153 177 515 37482 0 0 2301 . 624 o 0 3. 169 414. 201 37483 O 0 534 . .571 o 0 3 .322 183 .432 37484 O 0 445. .475 0 0 2 .754 147 .929 37485 0 0 504 . 872 0. 0 2 .295 473 .373 37486 0 o 999 .534 0 0 . 2 .050 413 .625 37487 0 0 492 .308 o .0 3 .344 107 .056 37488 0 0 775 .757 0 .0 2 .805 48 .662 37489 0 0 313 287 0 .0 3 .452 199 .513 37490 0 o 432 .634 0 .0 2 .265 180 .049 37494 0 0 1976 .689 0 0 2 .977 399 .027 37495 0 0 760 .839 0 .0 1 .834 194 .647 37496 o 0 522 . 144 0 .0 3 .020 433 .090 37497 0 0 447 .552 0 .0 2 .503 389 .294 37498 0 0 462 .471 0 .0 1 .402 656 .934 37499 0 0 5967 . 363* o .0 3 .452 340 .632 37500 0 0 6862 .469* 0 0 3 .020 170 .316 39101 0 0 3058 .275 0 .0 3 .020 457 .421 39102 0 0 1603 .729 0 .0 3 .366 394 . 160 39103 o 0 686 . 247 o .0 3 .560 150 .852 39104 0 0 1230 . 770 0 .0 2 .201 1002 .433 39105 o 0 2871 .794 0 .0 1 .942 1021 .897 39106 o 0 537 .063 0 .0 1 .942 175 . 182 39107 0 0 686 .247 0 .0 2 .546 486 .618 EXTRACTION-10WCL ID.NO LOCATION CA CU FE MO 39109 0 0 2 .091 14 .097 4 670 0 .0 391 10 0 0 2 .944 0 .0 0 .975* 0 :o 391 1 1 0 0 2 .706 0 .0 1 . 105* 0 .0 391 12 0 0 2 .854 16 .638 1 .040* 0 .0 391 13 0 0 2 .899 0 .0 0 .997* 0 .0 391 14 0 0 2 .706 0 .0 0 .997* 0 .0 391 15 0 0 0 0 0 .0 1 .040* 0 .0 391 1G 0 0 0 .0 0 .0 0 .0 0 .0 39 117 0 0 2 .602 0 .0 0 .758 0 .0 391 18 0 0 2 .453 0 .0 0 .715 0 .0 391 19 0 0 2 .007 0 .0 0 607 0 .0 39 120 0 0 1 .962 0 .0 0 633 0 .0 39 12 1 0 0 2 . 260 0 .0 0 . 769 0 0 39 122 0 0 1 992 0 .0 0 726 0 .0 39 123 0 0 2 .810 0 0 0 997* 0 .0 39 124 0 0 2 . 304 0 .0 0 769 0 .0 39125 0 0 0 966 0 .0 0 .271 0 .0 3915 1 0 0 2 .044 0 .0 0 881 0 .0 39 152 0 0 2 347 0 .0 0. .816 O .0 39153 0 0 2 . 165 13 .212 0 .709 0 .0 39 154 0 0 2 .574 0 .0 0 806 0 ,0 39155 0 0 2 .5 13 0 .0 0 . 799 0 .0 39156 0 0 2 .301 0 .0 0 692 0 •Pi EX TRACTION-NH40X ID . NO LOCATION CA CU FE MC 39 109 0 0 23. 689 3 563 0. 052 0 0 39 1 10 0 0 52 574 0 .0 0 025 0 0 39 1 1 1 0 0 35 .049 0 .0 0. .038 0 .0 39 1 12 0 0 35 .049 0 .0 0 031 0 0 39 1 13 0 0 35 .049 0 .0 0 034 0 0 391 14 0 0 35 .049 0 .0 0 03 1 0 0 39 1 15 0 0 2 1 .030 0 0 0 020 0 .0 391 16 0 0 0 .0 0 0 0 0 0 0 391 17 0 0 24 . 535 0 .0 0 .007 0 0 391 18 0 0 24 . 535 0 0 .0 009 0 0 39 1 19 0 0 21 .030 0 .0 'o. 002 0 0 39120 0 0 24 .535 0 .0 0. 002 0 0 39121 0 0 21 .030 0 0 0. 016 0 0 39122 0 0 24 .535 0 .0 0 020 0 .0 39123 0 0 28 .039 0 .0 0. 029 0 0 39124 0 0 24 .535 0 .0 0 .013 0. 0 39125 0 0 35 .049 0 .0 0 179 o 0 39 15 1 0 0 20 .938 0 .0 0 035 0 0 39152 0 0 17 .448 0 0 0 035 0 0 39 153 0 0 17 . 448 0 .0 0 042 0 0 39154 0 0 17 .448 0 0 0 .035 0 0 39 155 0 0 17 . 448 0 .0 0 042 0 0 39156 0 0 17 . 448 0 .0 0 024 0. 0 EXTRACTI0N-KCL03 ID.NO LOCATION CA CU FE MO 39109 O 0 537 . .063 164 . 760* 0 . 194* 9. 732 391 10 O 0 390. 381 58 974 0. 702 0.0 391 1 1 0 0 506 . 745 53 846 0. 672 0.0 391 12 0 0 52 1 760 123 . 077 0. 566 0.0 391 13 0 0 570. 557 128 205 0. 733 0.0 391 14 0 0 487 . 977 89 744 0. 794 0.0 391 15 0 0 450. 440 66 . 667 0. 859 0.0 39 1 16 O 0 0. 0 0. 0 0. 0 0.0 391 17 0 0 431 . 672 184 . 616 1 . 262* 0.0 391 18 0 0 465. 455 64 . ,103 1 . 628* 0 0 391 19 O o 356 . 598 51 . 282 1 . 751* 0.0 39120 O 0 412. 903 35. 897 1 669* 0.0 39121 0 0 401 . 642 46. 154 1 . 282* 0.0 39122 O 0 315. 308 64 . 103 0. 696 0.0 39123 O 0 570. 557 189. 744 0 662 0.0 39124 O 0 431 . 672 107 . 692 0. 855 0.0 39 125 O o 938 . 4 17 158 974 4 . 173' 0.0 39151 0 0 305 471 80 223 0. 096* 0.0 39152 O 0 4 17 229 62 . 396 0 904* 0.0 39 153 O o 283 . . 120 92 . 108 0 171* 0.0 39154 O 0 39 1 153 175. 302 0 4 18* 0.0 39155 0 0 484 . 284 297 . 122 0. 612* 0.0 39156 O o 402 . 328 0. 0 0. 337* 0.0 EXTRACTION- -HCL04 ID. NO LOCATION CA CU FE M0_ 39109 O 0 117. 315 11 . 215 0 ,081 4 944 391 10 O 0 26 .047 0 .0 0 .060 0.0 391 1 1 0 0 27 .907 0 .0 0 .078 0.0 39 1 12 O 0 27 .907 0 .0 0 .045 0.0 39 1 13 0 0 26 .047 0 .0 0 .060 0.0 391 14 0 0 27 .907 0 .0 0 .059 0.0 391 15 O 0 26 .047 O .0 0 .058 0.0 391 16 0 0 0 .0 O .0 0 O 0.0 391 17 0 0 26 .047 O .0 0 .077 0.0 391 IB 0 0 27 .907 O .0 0 .079 0.0 391 19 0 0 29 .767 0 0 0 .082 0 0 39120 O 0 29 . 767 0 o 0 .089 0.0 39121 0 0 27 .907 0 0 0 .066 0.0 39122 O 0 24 . 186 0 0 0 .076 0.0 39123 0 0 31 .628 0 0 0 .058 oo 39124 o o 27 .907 0 0 0 .060 0.0 39125 o 0 1600 .001* 0 0 0 432 0.0 39151 o 0 20 . 828 0 .0 0 .051 o:o 39152 0 0 20 .828 0 .0 0 .080 0.0 39153 o 0 1 1 .361 0 .0 0 .044 0.0 39 154 0 0 22 . 722 0 .0 1 0 .045 0.0 39 155 0 0 20 828 7 .888 . 0 .072 0.0 39156 0 0 17 .04 1 0 0 0 069 0.0 EXTRACTION- 10WCL I ID . NO CA CU FE MO 39 157 0 0 0 . 37 1 • 76 .631 0 . 230 0 .0 39158 0 0 0 .939 44 .922 0 .408 0 .0 39159 0 0 0 .391* 18 .497 0 .378 0 .0 39 1GO 0 0 0 . 787 0 .0 0 .206 0 .0 39 161 0 0 1 . 347 0 .0 0 .269 0 .0 39 162 0 0 0 . 238* 0 .0 0 . 157 0 .0 39163 ' 0 0 0 . 436* 0 .0 0 .494 0 .0 39164 0 0 2 . 6 19 0 .0 0 .520 0 .0 39 165 0 0 0 . 8 18 0 .0 0 322 0 .0 39 166 0 0 1 . 226 18 .497 0 . 247 0 .0 39 167 0 0 1 .317 26 . 424 0 . 206 0 .0 39 168 0 0 0 .500' 0 .0 0 . 125 0 .0 39 169 0 0 1 . 135 47 .564 0 . 200 0 .0 39 170 0 0 1 .665 42 . 279 0 .526 0 .0 39 1 7 1 0 0 1 .446 56 . 958 0 .422 6 .0 39 172 0 0 0 .959 3 1 .068 0 . 359 0 .0 39 173 o 0 0 . 87 1 188 . 997 0 . 333 0 .0 39174 0 0 0 . 738 36 . 246 0 .283 0 .0 39 175 0 0 0 . 723 25 . 890 0 .425 0 .0 39 1 26 0 0 1 . 1 15 0 .0 0 . t47 0 .0 39127 0 0 0 .877 0 .0 0 . 329 0 .0 39 128 0 0 0 .230* 3 16 .118 0 .444 0 .0 EXTRACTI0N-NH40X ID. NO LOCAIION CA CU FE MO 39 157 0 0 24 . 427 45 . 7 14 0 . 059 0. 0-39 158 0 0 0. 0 0 0 0 0 0. 0 39159 0 0 0. 0 0. 0 0. 0 0. 0 39 160 0 0 20. 938 0. 0 0. 017 0. 0 39 1.6 1 0 0 20. 938 0. 0 0. 03 1 0. 0 39 162 0 0 27 . 917 0. 0 o. 017 0. 0 39 163 0 0 24 . 427 0. 0 0. 026 0. 0 39 164 0 0 20. 938 0. 0 0. 024 0. 0 39165 0 0 31 . 407 0. 0 0. 240 0. 0 39 166 0 0 34 . 896 0. 0 0 063 0. 0 39 167 0 0 27 . 917 0. 0 0 024 0. 0 39168 0 0 31 . 407 0. 0 0 026 0. 0 39169 0 0 31 . 407 18 . 824 0. 026 0. 0 39170 0 0 38 . 386 0. 0 0. 677 0. 0 39126 0 0 31 . 544 0. 0 0. 018 0. 0 39127 0 0 42 . 059 0. 0 0. 150 0. 0 39 128 0 0 31 . 544 67 . 170 0. 222 0 0 EXTRACT ION-KCL03 ID.NO LOCATION CA CU FE MO 39157 0 0 134 . 109 172 331 2 249 o; ;o 39158 0 0 0 .0 O 0 0 0 0 0 39159 0 0 0 O O 0 0. 0 0 0 39160 0 0 137 . 835 80 . 223 3 . 213 0 0 39161 0 0 253 318 86 165 5. 522 0 0 39162 0 0 44 . 703 1 15. 877 2 . 530 O. 0 39163 O 0 70. .780 199. 072 3 253 0. 0 39164 O o 301 . 746 124 791 2 . .851 O. 0 39165 O 0 186 263 175 . 302 0 .663* 0. 0 39166 0 0 428 . .405 148. 561 3 213 0. 0 39 167 0 0 186 . 263 460. 539 1 . 124 0. 0 39168 0 0 93 132 1 18. 849 4. 257 32 . 000 39 169 0 0 149 . 010 555 618 i 1 . 325 0. 0 39 170 0 0 7525 . 03 1' 347 . 632 5. 221 0. 0 3917 1 0 0 3395 618' 325 . 105' 2 . 723 0. 0 39 172 0 0 1439 447 268 . 682' 5. 817 0. 0 39 173 O o 848 905 456 . 759' 5 . 054 0. 0 39174 0 0 634 . 833 166. 583' 4 . 229 0. o 39 175 0 0 930. 104 158 . 522' 5 . 364 0. 0 39126 0 0 4G9 . 208 1 17 . 949 2 .972' 0 .0 39127 O 0 930 .910 292 .308 5 . 394' O .0 39128 0 0 93 .842 64 1 .026 4 . 723* 0 o EXTRACTI0N-HCL04 ID.NO LOCATION CA CU FE MO 39 157 0 0 143 .905 7 . 888 0 . 234 "0-0 39158 O 0 o .0 0 .0 0 .0 0.0 39159 O 0 0 O 0 .0 0 .0 0.0 39160 O 0 15 . 148 0 .0 0 . 144 0.0 39161 O 0 13 . 254 0 .0 0 . 296 0.0 39162 O 0 17 .041 0 .0 0 165 0.0 39163 O 0 0 O 10 518 O 181 0.0 39164 0 0 9 .467 0 .0 0 . 154 0.0 39165 0 0 17 .041 0 0 0 .090 0.0 39166 0 0 140 . 1 18 13 . 147 0 809* 0.0 39167 O 0 17 . 041 35. 497 0. 362 0.0 39168. 0 0 13 254 0. 0 0. 306 0.0 39169 0 0 15 148 512. 736* 4 . 468* 0.0 39170 0 0 4525. 441* IO. 518 0. 441 0.0 39171 0 0 3087 .060* 7 869 0. 364 o.o 39172 0 0 231 530 0. 0 0. 986* 0.0 39173 O 0 436. 706 13. 1 15 1 . 071* o.o 39174 0 0 681 . 412 O. 0 0. 707* 0.0 39175 o 0 560. 94 1 0. 0 0. 77 1* 00 39126 o 0 446 .512 0 .0 0. 283 0 0 39127 0 0 697 .675 13 793 0. 416 0.0 39128 0 0 26 .047 34 483 1 101* 0.0 EXTRACTION- 107.HCL EXTRACT ION-KCLOG ID.NO LOCATION CA CU FE MO 39129 0 0 0 .966 44 .367 0 .481 0 .0 39130 0 0 0 .922 49 .913 0 .466 0 .0 39 131 0 0 0 .666* 123 : 283 0 .435 0 .0 39132 0 0 1 .059 179 .564 0 .594 0 .0 39133 0 0 0 .817 99 . 163 0 .293 0 .0 39134 0 0 2 . 148 69 .682 0 .568 0 .0 39135 0 0 1 .558 120 .603 0 . 403 0 .0 3913G 0 0 2 . 148 131 . 323 0 . 747 0 .0 39 137 0 0 0 .908 251 . 926 0 .505 0 .0 39138 0 0 0 .598* 7 12 .898 0 . 308 0 .0 39 139 0 0 2 .754 75 .042 0 . 250 0 .0 39140 0 0 1 .437 329 .648 0 .439 0 .0 39 14 1 0 0 2 . 148 359 . 129 0 .371 0 .0 39 142 0 0 1 . 725 101 . 843 0 .36 1 0 .0 39143 0 0 1 .891 58 .962 0 .204 0 .0 39 144 0 0 1 .906 249 . 246 0 .286 0 .0 39145 0 0 1 .891 158 . 124 0 .371 0 .0 39 14G 0 0 2 . 270 125 . 963 0 .206 0 .0 39147 0 0 1 .574 37 .521 0 . 280 0 .0 39 148 0 0 1 .604 77 . 722 0 . 288 0 .0 39149 0 0 1 .997 16 .080 0 .265 0 .0 EXTRACTION- NH40X ID NO LOCATI ON CA CU FE MO 39129 0 0 31 . 544 0 .0 0 101 0 0 39 130 0 0 3 1 . 544 2 1 . 49'j 0 1 12 0 .0 39131 0 0 43 .513 . 25 . 765 0 .037 0 .0 39 132 0 0 43 .513 25 . 765 0 .074 0 .0 39133 0 0 39 . 887 28 . 34 1 0 .013 0 .0 39 134 0 0 39 . 887 33 . 494 0 .059 0 .0 39135 0 0 43 .513 51 . 530 0 048 0 .0 39 13G 0 0 47 . 139 25 . 765 0 . 144 0 o 39137 0 0 43 .513 25 7G5 0 . 129 0 .0 39 138 O 0 25 . 382 1 10 . 789 0 .055 0 .0 39139 0 0 18 . 130 25 . 765 0 061 0 .0 39140 0 0 18 . 130 54 10G 0 .083 0 .0 3914 1 0 0 2 1 . 756 82 .448 0 . 129 0 .0 39142 0 0 2 1 . 756 30 .918 0 . 122 0 .0 39143 0 0 18 . 130 15 . 459 0 .046 0 .0 39144 0 0 18 . 130 92 . 754 0 .096 0 .0 39145 0 0 21 . 756 79 .87 1 0 . 1 16 0 .0 39146 0 0 21 . 756 33 . 494 0 .044 0 .0 39147 0 0 2 1 .756 18 .035 0 .074 0 .0 39148 o 0 25 . 382 36 .07 1 0 .079 0 .0 39149 0 0 29 .008 12 . 882 0 .072 0 .0 ID.NO LOCATION CA CU FE MO 39129 0 0 157 . 654 723 .077 5. .089* 0 0 39130 O 0 259 003 7 12 . 82 1 4 . 926* 0 0 39131 0 0 91 . 272 320 . 256* 4 . 529 48 OOO 39132 O 0 251 . 911 427 . 863* 7 . 146 48 OOO 39133 0 0 149 686 458 607* 2 . 778 32 000 39134 O 0 474 . 615 0 .0 4 . 932 112. OOO 39135 0 0 332 . 231 O 0 3 . 926 32 . OOO 39136 0 0 1387 . 337 0 0 6 . 885 80. OOO 39137 0 0 474 . 615 484 . 228* 2 . 577 0. 0 39138 0 0 7 19 . 225 0 0 3. 865 0. 0 39139 0 0 3 103 . 253* 0. 0 5. 737 0. 0 39140 0 0 1223 . 04 7 0. 0 5. 939 48. 000 39141 O 0 463 . 6G3 0. 0 ; 5. 596 64 . 000 39142 0 0 339. 532 0. 0 6 . 865 32 . OOO 39143 0 0 339. 532 0. 0 5. 435 96. 000 39144 O 0 1058 . 757 0. O 6 . 442 48 . 000 39145 0 0 843. 355 0. 0 7. 690 48 . 000 39146 0 0 744 . 781 O. 0 3. 946 560. 000 39147 0 0 306 . 674 730. 185* 6. 482 128 . 000 39148 O 0 511. 124 0. 0 7 . 549 64. 000 39149 O 0 445. 408 599. 520* 6. 34 1 32 . 000 EXTRACTION-•HCL04 ID.NO LOCATION CA CU FE MO 39129 0 0 26 .047 22 .069 1 . 166* 0 .o 39130 0 0 27 .907 17 . 93 1 1 . 295* 0 .0 39131 0 0 58 .381 13 .605 0 .270 0 .0 39132 0 0 82 .098 21 . 769 0 .303 0 .0 39133 O 0 56 .556 19 .048 0 .201 o .0 39134 O 0 56 .556 57 . 143 0 . 384 o .0 39135 O 0 65 .678 141 .497 0 . 438 0 .0 39136 O 0 448 . B03 62 .585 0 . 376 o .0 39137 0 0 156 .899 20 .408 0 . 136 o .0 39138 O 0 246 .294 50 . 340 0 .214 0 .0 39.139 ' O 0 1988 .598* 34 .014 0 . 254 0 .0 39140 O 0 363 .056 57 . 143 0 .290 0 .0 3914 1 O 0 85 . 747 39 .456 0 . 335 0 .0 39142 0 0 94 .869 66 .667 0 .305 0 .0 39143 O 0 45 .610 43 .537 0 .254 o .0 39144 0 0 363 .056 62 .585 0 .255 0 .0 39145 o 0 328 .392 48 .980 0 . 294 0 .0 39146 0 0 120 . 4 10 91 . 156 0 . 222 i 19 .840 39147 0 0 7 1 . 152 34 .014 0 . 303 26 .631 39148 0 0 162 372 57 . 143 0 . 344 0 .0 39149 0 0 83 .922 32 .653 0 .277 0 .0 EXTRACTION-lOZHCL EXTRACT 10N-KCL03 ID.NO LOCATION CA CU FE MO 39150 0 0 1 . 377 184 925 0. 445 0.0 39176 0 0 1 . 771 188 997 0. 601 0.0 39177 0 O 1 . 697 90. 6 15 0. 353 0.0 39178 0 O 1 . 535 1 19 .094 0. 364 0.0 39179 0 0 1 . 328 126. .861 0. 279 0.0 39180 0 0 2 . 730 1 16 505 0. 690 0.0 39 18 1 0 0 1 . 461 1 16 .505 0. 263 0.0 39182 0 0 2 080 163 . 107 0. 335 0.0 39183 0 0 1 608 186 408 0. 366 0.0 39184 0 0 0. 989 165 .696 0 274 0.0 39 185 0 0 1 874 165 . 696 0 364 0.0 39 186 0 0 2 .597 113 .916 0 468 0.0 39187 0 0 1 682 100 .971 0 364 0.0 39188 0 0 1 682 113 .916 0 229 o.o 39189 0 0 1 859 67 .314 0 512 0.0 EXTRACT 10N-NH40X ID. NO LOCATION CA CU FE MO 39150 0 0 32 . 635 33 494 0. 090 o.o ID.NO LOCATION CA CU FE MO 39150 0 0 303 .023 0 .0 4 .066 176 • OOO 39 176 0 0 479 .815 0 .0 4 .848 204 . 724 39177 0 0 428 . 143 0 .0 2 .950 236 .220 39178 0 0 564 . 706 0 o 3 .507 7B . 740 39179 O 0 369 .089 0 .0 2 . 393 346 .457 39180 0 O 0 0 0 o 0 .0 O .0 39181 0 0 232 526 O .0 2 .888 1 to .236 39182 0 O 350 635 0 .0 4 .229 62 992 39183 0 0 328 489 0 o 5 013 283 464 39184 0 0 147 636 0 o 2 599 125 984 39185 0 0 498 . 270 O o 4 . 229 220 472 39186 0 0 575. 779 0. o 1 877 47 244 39187 0 0 2 10. 3B1 0 0 1 . 609 314 960 39188 0 0 273. 126 0. 0 0. 763» 236 220 39189 0 o O. O o. 0 0. 0 236 220 EXTRACT 10N-HCL04 ID.NO LOCATION CA CU FE MO 39150 0 O 67 503 73 469 0 236 26 .631 39176 0 O 154 . 353 103 607 1 .071' 237 .500 39177 O 0 205 . 177 76 .066 0 .803* 65 .625 39178 0 0 472 47 1 123 .279 0 .857* 62 .500 39179 0 0 152 47 1 86 557 0 .771* 231 250 39180 O 0 O O 0 O 0 .0 0 .0 39181 0 O 54 588 89 . 180 0 .803» 146 875 39182 0 0 56 471 112 787 0 .836* 37 .500 39183 0 0 86 .588 1 19 .344 1 007* 221 875 39184 O 0 30 . 118 94 426 0 354 37 500 39185 0 0 239 059 81 312 0 836* 143 750 39186 0 0 120 471 62 951 0. 289 0 0 39187 0 0 26 353 41 . 967 0. 094 350. 000 39188 0 0 22 588 57. 705 0. 091 162 . 500 39189 0 0 0. 0 0. 0 . 0. 0 0. 0 EXTRACTION-10%HCL ID.NO LOCATION CA CU FE Mn -p-OO I 39 19 1 0 0 1 245 29 530 0 230 0. O 39 192 0 0 1. 306 2 1 . 477 0. 525 0. 0 39 193 0 0 1 44 1 18 792 0 477 O. 0 39194 0 0 2 . 551 40. 268 0. 351 0. 0 39 195 0 0 1. 516 24 161 0 534 0. 0 39 196 0 0 2 . 776 0 0 0. 306 0. 0 39 197 0 0 1 080 0 0 0. 542 0. 0 30 198 0 0 2 881 24 161 0. 258 0 0 nn 199 0 0 0 597* 26 846 0 223 O 0 39200 0 0 1 . 44 1 0 0 0 310 0 0 39?0 1 0 0 0 780 18 792 0 156 0 0 39202 0 0 1 .095 37 .584 0 .633 0 .0 39203 0 0 2 . 236 18 . 792 0 . 456 0 .0 3920-1 0 0 1 170 26 .846 0 651 0 .0 39205 0 0 1 636 42 .953 0 . 466 0 0 EXTRACT 10N-KCL03 ID.NO LOCATION CU FE MO EXTRACTI0N-NH40X ID NO LOCATION CA CU FE MU 39191 0 0 40 835 0 .0 0 077 0 .0 39192 0 0 33 . 4 11 0 .0 1 463* 0 .0 39 193 0 0 40 835 0 0 0 936 0 0 39 194 0 0 29 . 698 0 0 0 077 0 0 39 195 0 0 22 274 0 0 0 355 0 0 39196 0 0 25 986 0 0 o. 202 0 0 39 197 0 0 33 4 1 1 0 0 0 559 0 0 39 198 0 0 29. 698 0 0 0 056 0 0 39 199 0 0 33 4 1 1 0 0 0 043 0 0 39200 0 0 33 4 11 0 0 0. 247 0 .0 39201 0 0 33 . 4 1 1 0 0 0 022 0 .0 39202 0 0 48 . 260 0 0 0. 624 0 0 39203 0 0 37 . 123 0 0 0 624 0 0 39204 0 0 51 . 972 0 0 0. 16 1 0 0 39205 0 0 48 . 260 0 0 0. 592 0 0 E X TRACT ION-HCL04 D.NO LOCATION CA CU FE MO 39191 0 0 254 .417 0 .0 0 . 153 0 .0 39192 0 0 5559 . 480* 0 .0 0 . 169 0 .0 39193 0 0 8103 .645* 0 .0 0 . 290 O .0 39194 0 0 563 .486 16 .054 0 .771* 0 .0 39195 0 0 582 .332 0 O 0 . 127 0 .0 39196 0 0 282 .685 0 .0 0 322 0. .0 39197 0 0 4240 . 28 1 • 0 .0 0. . 227 0. .0 39 198 0 0 124 382 13 . 378 0. 348 0. .0 39199 0 0 94 229 0 .0 0. 285 0, o 3920O 0 0 2280 330* 0 .0 0 280 0. o 39201 0 0 75. 383 0 O 0. 127 0. 0 39202 0 0 8480. 563* 9. 365 0. 792* 0. 0 39203 0 0 1865. 723* 9 . 365 0. 364 0. 0 39204 0 0 5069 . 492* 0. 0 0. 264 0. 0 39205 0 0 9422. 848* 0. O O 232 O r> 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0052443/manifest

Comment

Related Items