- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Realizing high-energy physics in topological semimetals
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Realizing high-energy physics in topological semimetals Chen, Anffany
Abstract
The discovery of topological phases of matter has brought high-energy and condensed matter communities together by giving us shared interests and challenges. One fruitful outcome is the broadened range of possibilities to study high-energy physics in cost-effective table-top experiments. I have investigated scenarios in which influential high-energy ideas emerge in solid-state systems built from topological semimetals – gapless topological phases which have drawn intense research efforts in recent years. My Thesis details three proposals for realizing Majorana fermions, Adler-Bell-Jackiw anomaly, and holographic black holes in superconductor-Weyl-semimetal heterostructures, mechanically strained Weyl semimetal nanowires/films, and graphene flakes subject to strong magnetic fields, respectively. By analyzing the effects of realistic experimental conditions, I wish to demonstrate that these proposals are experimentally tangible with existing technologies.
Item Metadata
| Title |
Realizing high-energy physics in topological semimetals
|
| Creator | |
| Publisher |
University of British Columbia
|
| Date Issued |
2019
|
| Description |
The discovery of topological phases of matter has brought high-energy and condensed matter communities together by giving us shared interests and challenges. One fruitful outcome is the broadened range of possibilities to study high-energy physics in cost-effective table-top experiments. I have investigated scenarios in which influential high-energy ideas emerge in solid-state systems built from topological semimetals – gapless topological phases which have drawn intense research efforts in recent years. My Thesis details three proposals for realizing Majorana fermions, Adler-Bell-Jackiw anomaly, and holographic black holes in superconductor-Weyl-semimetal heterostructures, mechanically strained Weyl semimetal nanowires/films, and graphene flakes subject to strong magnetic fields, respectively. By analyzing the effects of realistic experimental conditions, I wish to demonstrate that these proposals are experimentally tangible with existing technologies.
|
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2019-07-23
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0380043
|
| URI | |
| Degree (Theses) | |
| Program (Theses) | |
| Affiliation | |
| Degree Grantor |
University of British Columbia
|
| Graduation Date |
2019-09
|
| Campus | |
| Scholarly Level |
Graduate
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International