- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Multi-dimensional invariant detection for cyber-physical...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Multi-dimensional invariant detection for cyber-physical system security : a case study of smart meters and smart medical devices. Raiyat Aliabadi, Maryam
Abstract
Cyber-Physical Systems (CPSes) are being widely deployed in security- critical scenarios such as smart homes and medical devices. Unfortunately, the connectedness of these systems and their relative lack of security measures makes them ripe targets for attacks. Specification-based Intrusion Detection Systems (IDS) have been shown to be effective for securing CPSs. Unfortunately, deriving invariants for capturing the specifications of CPS systems is a tedious and error-prone process. Therefore, it is important to dynamically monitor the CPS system to learn its common behaviors and formulate invariants for detecting security attacks. Existing techniques for invariant mining only incorporate data and events, but not time. However, time is central to most CPSes, and hence incorporating time in addition to data and events, is essential for achieving low false positives and false negatives. This thesis proposes ARTINALI : A Real-Time-specific Invariant iNfer- ence ALgorIthm, which mines dynamic system properties by incorporating time as a first-class property of the system. We build ARTINALI-based Intrusion Detection Systems (IDSes) for two CPSes, namely smart meters and smart medical devices, and measure their efficacy. We find that the ARTINALI-based IDS significantly reduces the ratio of false positives and false negatives by 16 to 48% (average 30.75%) and 89 to 95% (average 93.4%) respectively over other dynamic invariant detection tools. Furthermore, it incurs about 32% performance overhead, which is comparable to other invariant detection techniques.
Item Metadata
Title |
Multi-dimensional invariant detection for cyber-physical system security : a case study of smart meters and smart medical devices.
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2018
|
Description |
Cyber-Physical Systems (CPSes) are being widely deployed in security- critical scenarios such as smart homes and medical devices. Unfortunately, the connectedness of these systems and their relative lack of security measures makes them ripe targets for attacks. Specification-based Intrusion Detection Systems (IDS) have been shown to be effective for securing CPSs. Unfortunately, deriving invariants for capturing the specifications of CPS systems is a tedious and error-prone process. Therefore, it is important to dynamically monitor the CPS system to learn its common behaviors and formulate invariants for detecting security attacks. Existing techniques for invariant mining only incorporate data and events, but not time. However, time is central to most CPSes, and hence incorporating time in addition to data and events, is essential for achieving low false positives and false negatives.
This thesis proposes ARTINALI : A Real-Time-specific Invariant iNfer- ence ALgorIthm, which mines dynamic system properties by incorporating time as a first-class property of the system. We build ARTINALI-based Intrusion Detection Systems (IDSes) for two CPSes, namely smart meters and smart medical devices, and measure their efficacy. We find that the ARTINALI-based IDS significantly reduces the ratio of false positives and false negatives by 16 to 48% (average 30.75%) and 89 to 95% (average 93.4%) respectively over other dynamic invariant detection tools. Furthermore, it incurs about 32% performance overhead, which is comparable to other invariant detection techniques.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2018-04-26
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0366015
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2018-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International