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Abstract

Cyber-Physical Systems (CPSes) are being widely deployed in security-

critical scenarios such as smart homes and medical devices. Unfortunately,

the connectedness of these systems and their relative lack of security mea-

sures makes them ripe targets for attacks. Specification-based Intrusion

Detection Systems (IDS) have been shown to be e↵ective for securing CPSs.

Unfortunately, deriving invariants for capturing the specifications of CPS

systems is a tedious and error-prone process. Therefore, it is important to

dynamically monitor the CPS system to learn its common behaviors and

formulate invariants for detecting security attacks. Existing techniques for

invariant mining only incorporate data and events, but not time. However,

time is central to most CPS systems, and hence incorporating time in ad-

dition to data and events, is essential for achieving low false positives and

false negatives.

This thesis proposes ARTINALI : A Real-Time-specific Invariant iNfer-

ence ALgorIthm, which mines dynamic system properties by incorporating

time as a first-class property of the system. We build ARTINALI-based

Intrusion Detection Systems (IDSes) for two CPSes, namely smart meters

and smart medical devices, and measure their e�cacy. We find that the

ARTINALI-based IDS significantly reduces the ratio of false positives and

false negatives by 16 to 48% (average 30.75%) and 89 to 95% (average 93.4%)

respectively over other dynamic invariant detection tools. Furthermore, it

incurs about 32% performance overhead, which is comparable to other in-

variant detection techniques.
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Lay Summary

Cyber-physical systems (CPSes) constitute the core of Internet of Things

(IoT). Recently, they are increasingly deployed in many critical infrastruc-

tures. The rapid growth of IoT has led to deployment of CPSes without ad-

equate security. Researchers have demonstrated successful attacks against

CPSes used in smart grids, modern cars, unmanned aerial vehicles and smart

medical devices. Hence, it is imperative to develop techniques to improve

security of these systems. However, CPSes have constraints (such as real-

time requirements) that make building Intrusion Detection System (IDS)

for them challenging. In this thesis, we propose a technique (ARTINALI)

to dynamically monitor the CPS system to learn its common behaviors in

three important dimensions including data, event and time, and formulate

behavioral rules (aka invariants) for detecting security attacks. Furthermore,

we built ARTINALI-based IDSes for two important CPSes, namely smart

meters and smart medical devices and evaluated the e�cacy of the IDSes.
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Chapter 1

Introduction and Overview

1.1 Cyber-Physical Systems

Cyber-physical systems (CPSes) have been investigated as a key area of

research since they constitute the core of the Internet of Things (IoT). Re-

cently, they are increasingly deployed in many critical infrastructures. For

example, they are widely used in modern automotives to control di↵erent

parts of a car [10]. Millions of people throughout the world have implanted

medical smart devices such as pacemakers to help their hearts beat at a

regular rhythm [29]. Moreover, recent studies predict that global spending

on Unmanned Aerial Vehicles (UAVs), will exceed $94 billion over the next

ten years [53] and the number of Advanced Metering Infrastructures (AMIs)

in smart grids will exceed 800 million by 2020 [49].

The rapid growth of IoT has led to deployment of CPSes without ad-

equate security. These systems carry out critical tasks and hence, are po-

tential targets for cyber attacks. For instance, hackers are able to remotely

kill the engine of the smart car, and take control of the brakes [26], or cause

a drone to crash or go o↵ course[21, 24, 43, 47]. The U.S. Department of

Homeland Security investigated 24 cases of suspected cyber security attacks

in smart medical devices in 2014 alone[29, 33], and this number is expected

to increase. In addition, researchers have successfully discovered and demon-

strated a variety of attacks in smart meters for energy fraud purposes [45].

To make these systems secure, security mechanisms such as intrusion detec-

tion systems (IDS) are required.

1



1.2. Characterizing the CPS Attack Surface

1.2 Characterizing the CPS Attack Surface

A CPS consists of a cyber unit (i.e., embedded system), and a physical

unit connected by a communication channel. It also includes a control loop

which involves interactions between the cyber and physical domains. In

Figure 1.1, we characterized the attack surface of a CPS, and extended the

attacker entry points presented by previous work [9, 28, 34].

According to Figure 1.1, there are four likely entry points (marked as A,

B, C, D) for attackers to penetrate the system.

Type A attacks can be used to hide the real state of the physical process

in order to trick the controller program to make a wrong decision about

the next state of physical process, and to delay the detection of the attacks

before the actual damage to the system (like what happened in Stuxnet [11]).

Type C attacks can disrupt the system by directly compromising the

control commands that are issued by controller. These attacks can jam the

communication channel, or compromise the routing protocol. One example

of this type is Basal tampering attack, which transmits the malicious com-

mands to the smart insulin pump after crafting a DoS attack by jamming

the communication between controller and insulin pump [33, 41].

Type B include attacks that exploit the vulnerabilities in physical com-

ponents. For example, [47] developed a way for attacking drones equipped

with vulnerable MEMS gyroscopes using intentional sound noise causing

drones to loose control and crash.

Type D attacks aim to exploit the vulnerabilities in cyber unit to take

over the dynamics of physical process. For instance, recent work [48] inves-

tigated an attack to smart facial recognition systems caused by exploiting a

mis-classification bug (CVE-2016-1516) in the controller algorithm.

In this study, we focus on attacks that impact the physical processes

without exploiting vulnerabilities in the physical domain (type A, C and D

attacks). The reason is that many physical systems deal with legacy technol-

ogy and legacy components, that are not controlled by software, and their

behavior is essentially governed by the physical law. Hence, it is challenging

to identify the environment variables, map the environment changes on the

2



1.2. Characterizing the CPS Attack Surface

Figure 1.1: CPS attack surface

environment variables, and incorporate the laws of physics to define accept-

able behavior upon environmental changes [37]. Therefore, the behavior of

physical processes can be defined more precisely by specifications that are

specified by system developer or experts’ knowledge.

Adversarial Model : We assume the adversarial goal is to compro-

mise the functionality of CPS. This means that she either prevents a vital

functionality of the CPS from being executed (e.g., power consumption data

not being sent to the utility server in smart meter, or regular heartbeat not

being provided by a pacemaker), or functionalities being executed improp-

erly (e.g., insulin injection is resumed when it must be stopped in insulin

pump, or brake leads to acceleration in a smart car). The first group of

attacks targets the availability properties, while the second group targets

the integrity properties of the CPS. We assume that the adversary is capa-

ble to inject, drop or modify messages in the communication channels on

attack entry points A, C and D defined in previous section to change i) the

legal values of data variables in the code , ii) the normal execution path in

the control flow graph of the code, or iii) the normal timing behavior of a

particular function of the code, and hence impact the CPS functionality.

3



1.3. CPS Constraints

We do not consider denial of service (DoS) attacks or those threats that

compromise the privacy/confidentiality properties of the CPS, as these at-

tacks are generally addressed by other techniques including network security

measures and cryptographic methods.

1.3 CPS Constraints

In the following, we discuss the key characteristics and constraints that

security mechanisms must satisfy to be applicable to CPSes.

• C1. Real-time constraints: CPSes typically interact with their

environment in a real-time fashion. From a security point of view,

taking real-time requirements into account is vital for two reasons:

First, CPSes are decision making agents that need to make decisions in

real time, and to address the continuous operation capabilities; there-

fore, real-time availability is a necessity. This characteristic leads to

a stricter operational environment [8], in which any security solution

that modifies the controller program and changes its real-time behavior

is not acceptable for these systems. In other words, the performance

overhead imposed by security mechanism has to be small enough to

satisfy the CPS real-time constraints. Secondly, in a real-time sys-

tem, the operational correctness depends on both logical correctness,

and correct timing behavior [54]. This implies that the logical asser-

tions are not enough for verifying the correctness of these systems,

and hence incorporating time in their system model is essential to en-

able the security mechanism to check the system’s operations [15]. In

other words, reflecting the real-time constraints into the CPS model

is required to have a more predictive security mechanism.

• C2. Resource constraints : As a single thing in the ”Internet of

Things”, a CPS performs a single task on a single platform with limited

CPU, memory and computational power. It implies that these sys-

tems need a security solution that satisfies their resource constraints.

For instance, an important component of a security mechanism is the

4



1.3. CPS Constraints

model that represents the correct behavior of the CPS. This model

may occupy a large space in memory. However, CPSes have limited

memory capacity making existing IDSes inapplicable due to memory

overheads.

• C3. Unknown vulnerabilities : CPSes are new systems that may

have unknown vulnerabilities, and hence, they are inevitably exposed

to zero-day attacks. On the other hand, the physical system is more

susceptible to the vulnerabilities of the cyber system as the interaction

between the physical system and the cyber system increases. Thus,

CPSes require security solutions that rely on a system model rather

than a dictionary of attacks, to monitor both known and unknown

attacks.

• C4. Security-critical constraints : As many CPSes are deployed

in security-critical applications such as smart medical devices, they

need security mechanisms with minimum false negative rates. This is

important because any undetected attack in such life-critical systems

may have catastrophic consequences for the patient.

• C5. Large-scale deployment : CPSes are often deployed on a

large scale (e.g., smart meters), and hence need security mechanisms

with minimal false positives as false positives can aggregate within the

system and consume significant resources. Moreover, these systems are

deployed in mission-critical applications where shutting them down on

a false alarm is not a viable option.

• C6. No-human-in-the-loop : Most CPSes are autonomic systems,

which work without a human-in-the-loop, and need to provide non-

interrupted service. Thus, unlike the general computer systems, CPSs

cannot be interrupted frequently for upgrading and/or patching. This

implies that there is a substantial need for deployment of highly sen-

sitive security mechanisms that provide automated response against

security attacks. Particularly, this is essential for those CPSes that

5



1.4. Intrusion Detection Systems

are deployed in the security-critical applications such as pacemak-

ers, where any service interruption may be fatal for the pacemaker-

implanted patient, or those that are deployed on a large scale including

smart meters, where denying the service due to an attack may shut

down the entire smart grid [50].

1.4 Intrusion Detection Systems

Intrusion Detection Systems (IDSes) are the most popular security mecha-

nisms that have been widely used to monitor computer systems and detect

security attacks. Typical IDSes fall into one of three categories: Signature-

based, Anomaly-based, and Specification-based [20]. In the following, we first

introduce the existing IDSes used for computerized systems, then we explain

why they are not su�cient to secure CPSes (as illustrated in Table 1.1).

1.4.1 Signature-based detection

Signature-based detection techniques work by monitoring system behavior

and comparing the behavior against a database of signatures or attributes

from known malicious threats. The benefit of these techniques is that they

do not need a model of the system they are monitoring, and their limitation

is that they cannot detect zero-day attacks [38]. The latter is especially

important for CPSes as they are often di�cult to patch or upgrade in the

field. Therefore, signature-based IDSes are not a good match for CPSes as

they do not address constraints C3 and C6. In contrast, both anomaly-based

and specification-based techniques use a behavioral model of the system to

compare with suspicious behaviors, and can detect both known and unknown

attacks.

1.4.2 Anomaly-based detection

Anomaly-based techniques create a baseline profile of the legitimate system

behavior based on statistical methods by observing its operations at runtime,

enabling them to distinguish the incoming system activity as normal or

6



1.4. Intrusion Detection Systems

anomalous. Unfortunately, these techniques incur considerable overhead

to profile the system at runtime [20], and also su↵er from high rates of

false-positives, both of which deter their use in CPSes, which are often

resource constrained, and operate autonomously for long periods of time.

Accordingly, they are not viable for CPSes with respect to constraints C2,

C4 and C5.

1.4.3 Specification-based techniques

Specification-based techniques build a behavioral model for system by defin-

ing a set of rules (known as invariants) that lead to a decision regarding

whether a given pattern of activity is suspicious. Invariants are defined as

statements that describe the relationship among states of a program [4]. For

example, they can be used to state the relationship between two variables

that always hold true, over the entire run of a program. Invariants can be

either discovered by static analysis or dynamic analysis of the program, or

be provided by the system developer.

Static analysis-based techniques :Static analysis-based techniques are based

on source code and the specifications defined by the developer. Hence they

rely upon apriori knowledge of the systems’ specifications to detect attacks

[7]. Static analysis-based techniques are inherently conservative with low

false positives, as they only generate invariants that are rigorously provable.

These techniques analyze the program without executing the program, and

hence, they can not provide adequate information about the real-time behav-

ior of the system in its operational environment. Thus, static analysis-based

techniques are not able to provide a comprehensive model of real-time be-

havior and timing properties of system, which in turn, leads to high false

negatives [20]. Moreover, as these techniques need to access the source code,

they cannot statically verify many interesting properties of a program be-

cause of unavailable code (e.g., calls to compiled external libraries). As a

result, the invariants set that is generated by static analysis techniques needs

to be complemented by developer specifications to address certain external

conditions [4]. However, prior work [14, 39] have found that there is of-
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Table 1.1: The main deficiencies of current IDS techniques in addressing
CPS constraints

IDS Techniques C1 C2 C3 C4 C5 C6

Signature-based X X
Anomaly-based X X X
Specification-based (static analysis) X X
Invariant-based (dynamic analysis) X X

ten inconsistency between what developers describe their system does, and

what the system does in practice [14, 39]. These drawbacks make the static

analysis-based techniques insu�cient for CPSes with respect to constraints

C1 and C4.

Dynamic analysis-based techniques :Dynamic analysis-based techniques

provide an alternative way to understand the system by observing the run-

time behavior. They log the key points of the program to peek into the actual

program behavior at run-time[40], and infer a set of likely invariants. Unlike

static analysis-based techniques, these techniques do not need the source

code as they rely on data received from runs of program. Although they

instrument the code to collect data for analysis they do not need the code for

analysis step by itself. Using a su�ciently complete set of test cases, dynamic

analysis-based techniques are potentially able to infer invariants that cannot

be mathematically proved (e.g, time duration between two specific events

of the program), so there is no way for static analysis-based techniques to

find them. For these reasons, to address CPS constraints discussed in the

previous section, we selected dynamic analysis for mining likely invariants

in CPS systems.

There has been a significant amount of work on using dynamic analysis

to find likely invariants for program understanding, formal verification, de-

bugging and intrusion detection [12, 17, 19, 23, 27, 30, 31, 35, 40, 42, 55, 58].

These systems mine execution traces of the system for deriving invariants

on the data values of the system, the events or both. However, we find that

many of these systems incur significant false-positives and/or false-negatives,

when used in the context of an IDS, which makes them challenging to deploy
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for CPSes that are used in security critical infrastructures (C4) and/or on

a large scale (C5).

1.5 Overarching Goal and Research Questions

CPSes are targets of many security attacks. Reconfiguration and/or recovery

of such systems from attacks requires time, money, and human e↵ort. On

the other hand, as a result of what we discussed in previous section, the

existing IDSes for computer systems do not address the limitations and

constraints of CPSes. Therefore, the overarching goal of this thesis is to

understand the behavior of CPS systems in the absence of attacks, and use

this understanding to develop an IDS technique to improve the security of

CPS systems in an automated manner.

To achieve the overarching goal, we are interested in answering the fol-

lowing research questions:

RQ1. How can we build a specification-based IDS for CPS

systems with respect to their constraints?

• RQ1.1. How can we infer a multi-dimensional behavioral model for

CPS systems?

• RQ1.2. How can we leverage the multidimensional CPS model to build

an IDS that meets CPS constraints?

The most important component of a specification-based IDS for CPS

systems is the CPS model. A CPS model should include a set of specifica-

tions (invariants) that precisely describe the correct behavior of the system.

We addressed these research questions by proposing a technique to analyze

the normal behavior of the CPS along three dimensions: data, event, and

time, to generate a richer model for the system, and hence a more sensitive

IDS for the system.

9
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1.6 Contributions

This thesis introduces ARTINALI (A Real-Time-specific Invariant iNference

ALgorIthm) for mining likely invariants through dynamic analysis in CPS

systems, for specification-based IDSes. The main innovation in ARTINALI

is that it incorporates time as a first-class notion in the mined invariants, in

addition to the traditional data and event invariants. This is important for

two reasons. First, most CPSes have real-time constraints, and hence their

operational correctness depends on both logical correctness, and correct tim-

ing behavior [25, 54]. Hence, incorporating time is essential for detecting

many common security attacks in these systems. Secondly, CPSes have pre-

dictable timing behaviors to a first order of approximation, and hence lever-

aging this predictability leads to higher accuracy (i.e., lower false-positives

and negatives). However, incorporating time in dynamic invariant detection

techniques increases the complexity of the learning due to the much larger

state space that needs to be covered. To alleviate this issue, we break up

the problem of learning invariants along the three dimensions into problems

of learning invariants along two dimensions, namely data-events and events-

time, and then combine them into data-events-time invariants. To the best

of our knowledge, ARTINALI is the first dynamic invariant detection sys-

tem that mines invariants along the three dimensions of data, event, and

time, and uses the mined invariants for intrusion detection.

Our contributions are:

• Designed ARTINALI, an algorithm that generates a multi-dimensional

model for CPSes by mining invariants along the data, event and time

dimensions (Chapter 3).

• Built an ARTINALI-based IDS prototype, and used it in the context

of two CPS systems, namely i) advanced metering infrastructures, ii)

and smart artificial pancreas (Chapter 4).

• Evaluated our ARTINALI-based IDS prototype on the two CPS sys-

tems, in comparison with several existing state of the art dynamic

invariant detection techniques. We crafted 6 targeted attacks against
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two systems, and observed that ARTINALI-based IDS is able to detect

all of them while the other techniques could not detect even a single

attack (Chapter 5).

• Found that the ARTINALI-based IDS exhibits significantly lower false-

negatives and false-positives for arbitrary attacks emulated by fault

injection, compared to the other techniques. Furthermore, it incurs

about 32% performance overhead, which is comparable to other in-

variant detection techniques (Chapter 6).

1.7 Publications

The work in this thesis has been published in the following paper:

• Maryam Raiyat Aliabadi, and Karthik Pattabiraman. ”ARTINALI:

Dynamic invariant detection for Cyber-Physical System Security.” ACM

SIGSOFT Symposium on the Foundations of Software Engineering

(FSE2017).
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Chapter 2

Background and Motivation

Specification based techniques based on static analysis and formal specifi-

cations (generated by developer) have been proposed as a good fit for CPS

security [7, 37]. However, as we discussed in chapter 1-Section 1.4.3, static

analysis-based techniques have deficiencies that make them insu�cient for

addressing the CPS constraints (e.g., real-time constraints). On the other

hand, developers rarely write down specifications of their systems. As a re-

sult, many specification mining techniques based on dynamic analysis have

been appeared in previous work [17, 19, 23, 27, 30, 31, 35, 40, 42, 55, 58].

Mined specifications cannot replace formal specifications created by an ex-

pert since an invariant mined from program traces could be a false positive

[3]. However, as many CPS programs lack formal specifications, mined

specifications are necessary. As a result, dynamic analysis is substantially

important to mine invariants that can not be inferred through static analysis

or are not specified by system developers. For these reasons, we selected to

employ dynamic analysis to formulate CPS behavior with respect to their

constraints for specification-based IDSes.

In this Chapter, we first survey related work in the area of dynamic

analysis-based techniques and explain how our proposed technique di↵ers

from them. We then present a motivating example from smart meters to

illustrate why we need new types of invariants like the ones generated by

our technique to bridge the gap.

2.1 Related work

There has been a significant amount of work on using dynamic analysis to

model the behavior of software systems for program understanding, formal
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verification, debugging and intrusion detection [17, 19, 23, 27, 30, 31, 35, 40,

42, 55, 58]. These techniques can be categorized into four classes, based on

the models that they generate: i) data invariants, ii) event relationships, iii)

data and event relationships, and iv) time dependencies of events. Figure 2.1

shows the main dynamic analysis-based techniques, and where they fall along

the data, event and time axes.

Daikon was the first dynamic analysis-based technique to derive (likely)

invariants about data value relations [17], and falls into the first class of

techniques. Daikon can be placed on the data axis as it produces a model

for data constraints without taking into account the events or timing of the

system. DySy [13], which uses symbolic execution to derive invariants, is

another example of this class.

The second class captures the sequence of events within a progam’s ex-

ecution paths by inferring finite state machines from a set of traces. Rele-

vant examples include Perracotta [58] and Texada [31], both of which derive

temporal logic propositions, and capture sequences of events by tracking dy-

namic traces. These tools fall along the event axis since they only capture

the constraints on event relations independent of data or timing information.

The third class of techniques generate integration models that capture

the relationship between data and events. For example, the GK-Tail al-

gorithm merges temporal specifications and data invariants into Extended

Finite State Machine models [35]. It represents sequences of method invo-

cations that are annotated with data, and is hence limited to classifying

data invariants that arise among method calls. Quarry finds data invariants

at each program point, and then finds temporal relationships between the

invariants [30]. Neither technique considers timing information, however.

The fourth class consists of a single technique, Perfume, which is a spec-

ification mining tool designed for modelling system properties based on re-

source (time and storage) consumption [40]. It generates an integration

model of event relations and their time constraints. Although Perfume con-

siders time as a part of model, it does not consider the relationship between

data and time.

Overall, none of the current techniques consider the interplay among
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time, events and data in formulating invariants, which we believe is an es-

sential characteristic of CPS systems.

Figure 2.1: Scope of dynamic invariant detection techniques

2.2 A Motivating Example

We consider an example of a smart electric meter to illustrate why the ex-

isting dynamic analysis-based techniques are often insu�cient for capturing

the key properties of a CPS system. We also use this as a motivating exam-

ple to illustrate ARTINALI later.

We use an open-source smart meter called SEGMeter as one of the

testbeds for our implementation and our evaluations (see Chapter 4-Section 4.1.1).

SEGMeter is composed of two main components: the meter component and

a controller. The meter component is in charge of measuring and collect-

ing power consumption data coming through its serial ports, and storing

them in memory. The controller acts as the communication bridge between

the meter board and the server, and is in charge of passing server com-

mands to the meter board, as well as transmitting power consumption data
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to the server at specific time intervals. The Serial-Talker() function in

the controller program of the smart meter is in charge of receiving power

consumption data (at specific time intervals) and bu↵ering them for billing

calculation purposes. The Serial-Taker code is shown in Figure 2.2 (in

the Lua language).

Figure 2.2: A snippet of Serial-Talker code for the SEGMeter

Serial-Talker() has a Boolean argument seg-data, that takes values

true or false in pre-determined time intervals. The sequence of events that

are invoked in this function varies based on the value passed in argument

(seg-data). If true is passed (line 6 in Figure 2.2), then the program emits

the event send, followed by read. Alternatively, if false is passed to the

function (line 21 in Figure 2.2), then the program emits events receive and

write respectively.

We examined the invariants inferred by the di↵erent dynamic analysis-

based tools for this example. Daikon infers the values of variable seg-data

within Serial-Talker() during normal execution as the set {true, false},
namely seg-data:[true,false]. A typical temporal specification miner

such as Texada identifies the legal sequences of events, e.g., G(send !
XF read), which means that upon event send happening, it is always fol-

lowed by event read. The invariant inferred by Perfume (send ! receive,
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0.1, 1.2) complement the temporal invariant by adding time boundaries be-

tween events, i.e., send is followed by read within a time interval of 0.1 to

1.2 ms.

Assume that an adversary’s goal would be to perform energy fraud and

lower their energy bills. One possible attack would be for the attacker to

tamper with the synchronization between the send and receive modes in

the smart meter. As a result, a part of the energy usage would not be written

to the memory bu↵er which is used for future energy usage calculations and

billing. For instance, should the value false be passed to the function

instead of true, then it would lead to the execution of receive and write

instead of send and read; hence the billing information would be incorrect.

None of the above techniques can detect the attack as the incorrect

occurrence of sequences are triggered by legal values of seg-data occurring

at the wrong time ( e.g., seg-data (T1) = false). More specifically,

Daikon would notice a valid value for seg-data, Texada would notice a

normal sequence of receive and write events, and Perfume would also

observe valid time intervals between events receive and write within the

executed path. Thus, none of them would detect the attack. Even if all

three models are used jointly, they would still not detect the intrusion, as

the di↵erent models either capture the legal data values, or the legal sequence

of events with their time di↵erence, but not the interplay among them. This

interplay is essential for detecting the attack.

2.3 Summary

In this chapter, we surveyed the dynamic analysis-based techniques that

model the behavior of software systems. We categorized these techniques

into four classes, based on the models that they generate, and illustrated

where they fall along the data, event and time dimensions. Overall, none

of these techniques consider the relationship between data and time, as well

as interplay among time, events and data in formulating invariants, which

we believe are essential characteristics of CPS systems. We also brought

up a concrete attack example against a smart electric meter, and showed
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that none of the existing techniques would detect the attack. Even if all the

models generated by di↵erent techniques are used jointly, they would still

not detect the attack, as the di↵erent models either capture the legal data

values, or the legal sequence of events with their time di↵erence, but not the

interplay among them. This interplay is essential for detecting the attack,

and is the main gap in existing dynamic analysis-based techniques.
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Chapter 3

Approach

In this chapter, we introduce the security model that ARTINALI uses, and

we explain its design. We first define our multi-dimensional model and

the di↵erent classes of invariants. Next, we explain how to relate di↵erent

dimensions to generate real-time data invariants. Finally, we present the

ARTINALI workflow and algorithm.

3.1 Multi-dimensional model

We model a CPS in three dimensions, as follows:

Data refers to data values assigned to the variables of a program. It

includes neither the timing of processes, nor the sequence and concurrency

of processes.

Event refers to an action that a system takes to respond to an external

stimulus.

Time refers to real-time constraints, and includes both the constraints

on physical timing of various operations, and those where the system must

guarantee response within a specified time frame.

We model the security policy of a CPS by inferring the set of invari-

ants to be preserved during run time. An invariant, or interchangeably a

property, is a logical condition that holds true at a particular set of program

points. Like in prior work [17, 31, 58], we use the term invariants as a short-

cut for likely invariants, which are the properties that we observe to be true

across a set of dynamic execution traces. Corresponding to the dimensions

defined above, we define six major classes of invariants that form the basis

of the CPS model.
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• Data Invariant captures the expected range of values of selected data

variables during normal execution of program.

• Event Invariant captures common patterns in the system’s events such

as the order of the events’ occurrence.

• Time invariant captures the normal time boundaries (such as duration

or frequency) of an event.

• Data per Event(D|E) invariant captures the temporal relationship

between data and events. It allows the IDS to check the validity of

data invariants based upon events.

• Event per Time (E|T ) invariant captures the constraints over event

and time. It represents the boundaries of transition time from one

event to another in an event sequence.

• Data per Time (D|T ) invariant captures the relational constraints of

time and data invariants, or the data invariant as a function of time.

3.2 Event-data-time Interplay

In a CPS, an event is defined as an instance of an action that leads to a

change of condition [51] (e.g., message send/receive, sensor data reading, or

activating insulin injection). Events have three key features. First, they re-

flect interactions between system components and observations rather than

internal state. The second feature is the notion that events are separated

in space and time [15, 16, 51]. Thirdly, the locations in the code where

events are triggered are usually system calls that are accessible by attack-

ers. From a security perspective, events are important as they play the

role of an input channel for malicious communication with the CPS. For

instance, those points in which a new measurement is read from sensors, or

actuation commands are sent to physical components, are more vulnerable

to spoofing attacks [18].

Finding a direct relationship between time and data is challenging from

both the learning and detection perspectives. Since time is a continuous
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phenomenon, we cannot define a sharp time for transitions in data values

or changing states of the system; instead, a distribution of time values has

to be learned. As execution time variations might be caused by di↵erences

in input sets or di↵erent execution flows, rather than malicious activities,

the invariant inference technique should learn the normal time variations

of the system. On the other hand, the IDS has to distinguish legitimate

time variations from any time deviation that indicates an intrusion. To

overcome these challenges, we leverage the event-based nature of a CPS,

in which every event takes place in an unique time-frame. We discretize

the time by the events, and use these for learning invariants. After dis-

cretizing the time by events, we first examine the relationship between data

and event dimensions to produce invariants that integrate event information

with constraints on data values (D|E invariants). Secondly, we discover the

relational constraints over time and event dimensions to calculate the phys-

ical time boundaries of events, either independently (time invariants), or in

relation to each other (E|T invariants). Finally, we combine the result of

the previous steps to infer D|T invariants.

In the following discussion, we illustrate how we infer the D|T invariants

given the conditional probability of having data D given event E invariant

(P (D|E)), and given the conditional probability of having event E given

time T invariant (P (E|T )). It should be noted that we have represented

di↵erent classes of our likely invariants in the form of probability functions

to conceptually describe the process of how we infer real-time data invariants

(i.e., D|T invariants). We exploited the conditional independence of time T

and data D upon a given event Ej to derive equation 3.9. However, ARTI-

NALI does not calculate the probability of correctness for every invariant;

instead, it generates the invariants that hold true with a high probability

based on the above analogy.

Considering data D, event E and time T as random variables, equation

3.1 expresses the joint probability distribution of variables D, E and T . We

rewrite it to obtain equation 3.2. From these two equations, we then derive
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equation 3.3, which expresses the probability of having D and E, given T .

P (D,E, T ) = P (D,E|T ) · P (T ) (3.1)

P (D,E, T ) = P (D|E, T ) · P (E|T ) · P (T ) (3.2)

P (D,E|T ) = P (D|E, T ) · P (E|T ) (3.3)

Using the marginal probability mass function of D shown in equation

3.4, we formalize P (D|T ) (the probability of having D given T ) in equation

3.5 as the sum of the probabilities of data D and event Ej given time T for

all events Ej , which can then be rewritten as equation 3.6 (using equation

3.3).

P (D) =
X

P (D,Ej), 8Ej (3.4)

P (D|T ) =
X

P (D,Ej |T ), 8Ej (3.5)

P (D|T ) =
X

P (D|Ej , T ) · P (Ej |T ), 8Ej (3.6)

For example, assuming that at time T , event Ej occurs; and that upon

Ej occurring, then variable D gets assigned a specific value. This implies

that T is the cause of Ej , and that D is the e↵ect of Ej . Thus, variable D is

conditionally independent of time variable T given event Ej . Consequently,

D and T are conditionally independent, and P (D|Ej , T ) = P (D|Ej). Hence,

we can simplify the formulation of P (D|T ) as follows :

P (D|T ) =
X

P (D|Ej) · P (Ej |T ), 8Ej (3.7)

According to the event-based semantics of CPS, any given event takes

place in a unique time frame. This implies that two or more events cannot

take place at the same time T ; i.e., P (Ej |T ) > 0 ) P (Ei|T ) = 0, 8Ei 6= Ej .

Given this assumption, we first rewrite equation 3.7 to obtain equation 3.8.

Then, we simplify it to obtain equation 3.9, which captures the relationship

between data D and time T by exploiting the relational constraints of both

data and time over the same event Ej which takes place at time T .
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P (D|T ) = P (D|E = Ej) · P (E = Ej |T ) +
X

P (D|Ei) · P (Ei|T ), 8Ei 6= Ej

(3.8)

P (D|T ) = P (D|E = Ej) · P (E = Ej |T ) (3.9)

In other words, for a given event Ej, a D|T invariant holds true (i.e.,

happens with a high probability) if and only if both the corresponding D|E
invariant and E|T invariant hold true.

3.3 ARTINALI Workflow

ARTINALI is a dynamic analysis-based technique that generates models of

dynamic system behavior, and proposes a multi-dimensional model based

on the design concepts introduced in the previous section. Figure 3.1 shows

the key blocks of ARTINALI’s workflow.

Figure 3.1: Work flow of ARTINALI

ARTINALI technique works at event granularity to mine invariants. In

order to generate logs for mining invariants, we manually instrument events
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and their associated data variables1. As we generate the CPS model for at-

tack detection, we capture all system calls (which are reachable by attackers)

as events. However, in ARTINALI, events are user-defined. Accordingly,

user can optionally customize the level of granularity by choosing another

type of events, or prune the space of events by specifying only the important

system calls based on the system’s requirements. We instrument the events’

program locations by inserting calls to the ARTINALI API functions that

we developed for collecting logs, before and after the event. During the run-

time, these functions collect data and time information associated with the

instrumented events in separate log files (DElog and TElog). The logged

information is used as the basis for mining invariants.

3.3.1 Block 1. ARTINALI D|E Miner

The ARTINALI D|E Miner learns invariants about the variable values, and

how these values relate to a particular event in the system using a three-

step process. First, the D|E Miner takes the logged information, and groups

them within each trace into distinct classes labeled with the events. It then

merges classes across the training traces. Second, within each class, using

the Frequent Item Set mining algorithm [22], it merges the data variables

while calculating the level of the confidence and support for every variable.

As in prior work [17], Support is the fraction of traces in which the variable

x within class Ej is seen, and confidence is the fraction of supported classes,

where variable x is assigned to the same value(s).

Finally, the D|E Miner infers the data invariants associated with each

class (event). D|E invariants are multi-propositional data invariants as they

all hold true within the same observed event (at the same time). The D|E
invariants are stated in the form of (Ei : d1 = [], d2 = [], ...dn = []), where

Ei denotes the name of (i)th event, and d1 � dn denote the range of con-

crete values of n data variables mapping to the event Ei. E.g, in our first

running example of smart meter, (receive: seg-data=false, command=nil,

status=time-out, len (partial)�0) represents the assigned values of selected

1This is similar to what almost all other invariant detection techniques do, with the
exception of DAIKON, which has an automated instrumentation engine.
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data variables during receive mode. Figure 3.2 shows sample DElog and

D|E invariants of motivating example.

We have chosen the above D|E invariant template as a common data

invariant template. However, ARTINALI D|E miner is extensible to all

templates that Daikon uses for data invariant inference. We avoid using

all Daikon templates for three reasons: First, data invariants inferred using

various templates are overlapped (e.g, 2  X  5, Y � 5, Y � X). Secondly,

the more number of invariants leads to a higher rate of false positives in

anomaly detection [6]. Thirdly, CPS has a limited memory capacity which

makes using a big IDS model challenging. Thus, a smaller set of rich and

stable invariants for CPS IDS model is more desired.

Figure 3.2: Sample DElog and respective D|E invariants with 100% confi-
dence
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Table 3.1: E|T and D|T Invariant Types

E|T Invariant Type

Type I Ei(t) ⌦ Ei(t+
1

Freqi
)

Type II Ej ⌦ Ei : �tjimax,�tjimin
Type III Ei : �timax,�timin

D|T Invariant Type
Type I dm(Ti  t  Tj) = []
Type II dm = [] ⌦ dn = [] : �tjimax,�tjimin

3.3.2 Block 2. ARTINALI E|T Miner

ARTINALI’s E|T Miner infers the E|T invariants in four steps. First, it

creates all consecutive event pairs within one trace annotated with their

time di↵erences. Second, it groups the pair of events that are labeled with

the same pair name. Third, ARTINALI’s E|T Miner looks for the pair-wise

events that are observed in the same order within training traces, and calcu-

lates their support. Finally, it merges the time variables within each class to

calculate the time boundaries of the paired events, as well as the frequency

and the average duration of every event execution. The E|T invariants are

classified into three types, as shown in Table 3.1. Type I indicates that

event Ei is repeated every 1
Freqi

seconds. Type II indicates that the pair

of events Ei and Ej are repeated in all traces in the same order, and their

time di↵erence is bounded within �tjimax and �tjimin. Type III indi-

cates the maximum and minimum duration of event Ei. For the example in

Section 2.2, invariant send ⌦ send :60.2, 59.9sec showing the frequency of

send occurrences in the system, and the invariant send ⌦ receive : 1.2, 1.5

representing the time boundary (between 1.5 and 1.2) as well as the logical

ordering of the events (i.e., send before receive), are both examples of E|T
invariants. We illustrated sample TElog and DurationLOG files that are fed

to E|T miner, and the respective E|T mined invariants in Figure 3.3.
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Figure 3.3: Sample TElog and DurationLOG files and respective E|T in-
variants.

3.3.3 Block 3. ARTINALI D|T Miner

According to the formulation described for D|T invariants, ARTINALI com-

bines the outputs of D|E and E|T miners to generate the real-time data in-

variants (D|T invariants). We define two types of data invariants (Table 3.1),

and we explain each type using the example in Section 2.2.

Type I represents the distribution of valid data values of variable dm

within time slot Ti  t  Tj . For example, seg-data(T1  t  T2) = true

means that the only valid value of variable seg-data is true during the time

interval T1  t  T2. Note that we di↵er here from Daikon data invariants

(e.g. seg-data=true,false), as they only express the valid values of data
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invariants without considering the time.

Type II captures the relationship of data invariants between two con-

secutive events. As explained in previous section, every two consecutive

events have a bounded time di↵erence (Ti +�tjimin  Tj  Ti +�tjimax).

As a result, the data invariants associated with those events have the same

time di↵erence. In other words, data invariant dj = [] holds true until

data invariant di = [] becomes true, while �tjimax and �tjimin spec-

ifies the time di↵erence boundaries between those data invariants. Fig-

ure 3.4 shows examples of two types of D|T invariants that ARTINALI

D|T Miner generates for our running example. For example, invariant

seg-data = true ⌦ seg-data = false : 1.2, 0.1sec; i.e., seg-data = true

holds true until seg-data is assigned value false, in a time interval ranging

between 0.1 and 1.2 seconds.

Figure 3.4: Representation of ARTINALI D|T invariants

3.3.4 Block 4. IDS Prototype

As explained in the previous sections, the ARTINALI Miners derive three

classes of invariants that comprise the final CPS model. The CPS model

not only satisfies the mined invariants but also admits the correct paths

within executions. It is used as an input to our IDS prototype for monitoring
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attacks. Our IDS prototype consists of two components: the Tracing module

and the Intrusion detector. The tracing module is in charge of collecting

the required information from the program’s execution and logging it. This

module is the same as the ARTINALI Logger that instruments the code and

collects logs, but with the di↵erence that it is deployed on the production

system. The collected information is fed to the intrusion detector, which

periodically processes the log file and checks it against the invariants derived

from the CPS model.

3.4 Summary

In this chapter, we introduced ARTINALI for mining likely invariants through

dynamic analysis in CPS systems, for specification-based IDSes. The main

innovation in ARTINALI is that it incorporates time as a first-class notion

in the mined invariants, in addition to the traditional data and event invari-

ants. This is important for two reasons. First, most CPSes have real-time

constraints, and hence their operational correctness depends on both logical

correctness, and correct timing behavior. Hence, incorporating time is essen-

tial for detecting many common security attacks in these systems. Secondly,

CPSes have predictable timing behaviors to a first order of approximation,

and hence leveraging this predictability leads to higher accuracy (i.e., lower

false-positives and negatives). However, incorporating time in dynamic in-

variant detection techniques increases the complexity of the learning due

to the much larger state space that needs to be covered. To alleviate this

issue, we break up the problem of learning invariants along the three di-

mensions into problems of learning invariants along two dimensions, namely

data-events and events-time, and then combine them into data-events-time

invariants. As a proof of concept, we have also built an ARTINALI-based

IDS prototype, that is fed by multi-dimensional model generated by ARTI-

NALI, and use it in the context of two CPS systems, namely i) advanced

metering infrastructures, ii) and smart artificial pancreas (Chapter 4).
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Chapter 4

Experimental Setup

This section first presents the details of two CPS platforms as case studies,

and then the experimental procedure for evaluating the IDS on the two

platforms.

4.1 Case Studies

We chose two CPS platforms as case studies to evaluate the e�cacy of the

invariants generated by ARTINALI and the other tools. Note that un-

like generic applications, there are few publicly available open-source CPS

platforms that are also security-critical. Furthermore, there is a significant

amount of e↵ort involved in setting up a CPS platform and generating exe-

cution traces from it.

4.1.1 Advanced Metering Infrastructure (AMI)

Advanced Metering Infrastructure (AMI) systems are deployed on smart

electric power grids. Smart meters are key components of AMI that provide

a two-way communication with the utility provider[44]. The large scale

deployment of smart meters and the discovery of many vulnerabilities in

these systems [49, 57], make them good candidates to evaluate our work.

According to Figure 4.1(a), a generic smart meter is composed of two main

components, namely the meter and the gateway (controller). The meter

component receives power consumption data (PCD) through analog front

end sensors, and stores them in the memory. The controller component

is the communication bridge between the meter and the utility provider’s

server, passing server commands to the meter, and sending consumption
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data back to the server at specific time intervals (more details in [49]).

Our testbed: We use SEGMeter [1], an open source smart meter to

evaluate our IDS prototype. SEGMeter is implemented using the Lua lan-

guage, and consists of 2500 lines of code (excluding libraries).

4.1.2 Smart Artificial Pancreas (SAP)

Diabetic patients are migrating from the traditional glucose meter and

manual insulin injection systems to continuous glucose monitoring and au-

tonomous insulin delivery devices [33], which are referred to as Smart Ar-

tificial Pancreas (SAP). Since attacks to a SAP can threaten the patient’s

life, these systems are highly security-critical [41]. Hence, we selected SAP

as our second case study to evaluate ARTINALI. The main building blocks

of a generic SAP are a Continuous Glucose Monitor (CGM), an insulin

pump, and a controller (As illustrated in Figure 4.1(b)). These are com-

monly connected through a wireless network to form a real-time monitoring

and response loop. The CGM samples the patient’s blood glucose (BG)

levels on a regular basis and sends it to the controller. The insulin pump

is a wearable medical device that is used for automatic injection of insulin

through subcutaneous infusion. It may deliver insulin in two doses:bolus

and basal.Each type has specific injection time, rate, and dosage based on

the patient’s needs. The controller controls the closed loop in the SAP.

It receives the measured BG from CGM, and issues the suitable actuation

command for correcting the sugar level.

Our testbed: We used Open Artificial Pancreas System (OpenAPS)

[32], an open source SAP, as a second use case to evaluate our IDS prototype.

OpenAPS implements the controller component of a SAP in JavaScript, and

consists of 2000 lines of code (excluding libraries). We simulated a simple

CGM and an insulin pump to close the loop, as we did not have access to

a patient with a real insulin pump and glucose meter. OpenAPS provides

a set of test cases that take di↵erent BG values as input and process them

for calculating basal rate of insulin, which we use as a baseline for our

experiments.
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Figure 4.1: High level block diagram of (a) Smart meter and (b) Smart
Artificial Pancreas.

4.2 Experimental Procedure

Figure 4.2 shows the overall procedure that we follow. In addition to gen-

erating the CPS model using ARTINALI, we generate three other models

(invariants sets) using Daikon, Texada, and Perfume for comparison pur-

poses. We downloaded the latest versions of these tools from their respec-

tive websites [2–4]. We do not run the instrumentation front-end of Daikon

(i.e., Kvasir), as our goal was to generate data invariants based on the event

traces we logged. We choose these three tools to represent the first, sec-

ond and fourth classes of invariants as described in Chapter 2. We do not

choose the tools in the third category, namely GK-tail and Quarry, as we

use Daikon to find data invariants for the events that we identified in the

system. Therefore, the invariants generated by Daikon cover the third class

of invariants in our experiments (i.e., D|E invariants).

There are 22 system calls in SEGMeter’s code, and 4 system calls in

the OpenAPS code. We consider all of them as events. Tables 4.1 and 4.2

present the types of invariants and the number of invariants generated by

the three tools and ARTINALI for the SEGMeter and OpenAPS platforms

respectively. As can be seen, ARTINALI generates invariants in the Time,
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D|E, E|T , and D|T categories, while DAIKON, Texada and Perfume only

generate invariants in the D|E, Event and E|T categories respectively.

Because the format of the invariants generated by these other tools may

be di↵erent from that expected by our IDS, we wrote scripts to convert the

invariants to be in the format expected by the IDS interface. ARTINALI

directly generated invariants in the proper format. In case a tool did not

generate a certain kind of invariant (e.g., D|E), we leave that invariant file

blank. The generated invariant sets are all fed into the IDS as inputs, and

their e�cacy is evaluated on di↵erent platforms.

We divide the experiment into a training phase and a testing phase for

each system. We first obtain execution traces from the two platforms under

normal operation, and randomly divide them into a set of training traces

(train) and testing traces (test). We then choose di↵erent training set sizes

for each invariant detection system to optimize the false positive (FP) and

false negative (FN) ratios for that system. Finally, we evaluate the FP ratios

of the invariants using the test traces, and the FN ratios using the attack

models described in the next section.

Figure 4.2: Overall experimental process of running the IDS

The IDS is implemented in Python, and consists of about 1000 lines of

code. Since the IDS is run on the CPS platform, which is often resource
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Table 4.1: Types and number of inferred invariants for SEGMeter across
tools

Event T ime D|E E|T D|T
Daikon - - 24 - -
Texada 158 - - - -
Perfume - - - 158 -
ARTINALI - 12 24 37 24

Table 4.2: Type and number of inferred invariants for OpenAPS across tools

Event T ime D|E E|T D|T
Daikon - - 22 - -
Texada 57 - - - -
Perfume - - - 57 -
ARTINALI - 4 22 18 7

constrained, it is important to minimize its overheads. We measure the

IDS’s time and space overhead for the SEGMeter platform in Chapter 6-

Section 6.3.5 and Section 6.3.4. Because we run the OpenAPS platform in

a simulator, as we did not have access to its hardware, we do not measure

the IDS overheads on OpenAPS.

33



Chapter 5

Evaluation Against Targeted

Attacks

In this chapter, we discuss the potential targeted attacks and how we derive

them for SEGMeter and OpenAPS platforms. We then evaluate the IDS

seeded by ARTINALI and other tools against the attacks. Note that we

used attack trees based on prior attacks against similar systems to generate

the attacks to minimize bias and model realistic attacks. We found that

ARTINALI was able to detect all the attacks, while none of the other tools

do so. This is because all the attacks involved violations of the interplay

among data, events, and time.

5.1 AMI Attacks

Energy fraud is a major class of AMI attacks, and can result in Power Con-

sumption Data (PCD) loss and improper billing [36]. We came up with an

attack tree for energy fraud in AMI (shown in Figure 5.1), based on attacks

introduced in previous work [36, 44, 50, 57]. There are three major branches

in this tree, namely i) Measurement tampering, ii) Storage tampering, and

iii) Network tampering. Corresponding to each branch, we developed the

concrete attack actions as the leaves of the tree as follows.

5.1.1 Synchronization tampering (Blocks A1� A4)

Synchronization tampering attack occurs due to modification of the time of

send and receive modes in AMI. We found that the communication between

the AMI and the server is synchronized by a vulnerable function (get-data-
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5.1. AMI Attacks

Figure 5.1: Attack tree for AMI

timer()) in the controller unit. The controller frequently checks the time

with the sever to decide when to request for data measured by the meter. If

a malicious user delays the server commands, the controller will not receive

data in the expected time, which leads to data loss, and improper calculation

of final PCD.

5.1.2 Meter spoofing (Blocks B1� B5)

In a smart grid, AMIs communicate with the server using a unique name

or ID. The controller unit is able to be connected to more than one meter,

collects the PCDs, and send them along with the meter’s ID to the server. As

the controller cannot di↵erentiate between normal and abnormal messages,

it can be tricked by falsified inputs sent by an attacker instead of the meter.

This attack is called meter spoofing attack. We found that spoofing the

meter only requires the meter’s ID that is printed on the meter’s nameplate.

5.1.3 Message dropping (Blocks C1� C5)

An attacker may be able to drop the messages (i.e., a part of energy usage)

after bypassing the meter and removing the logged PCD history. A simple
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Table 5.1: ARTINALI invariants to detect the example attacks in AMI.

Attack Detecting Invariant

Synchronization tampering (1) send (T0+K · 60) ⌦ send (T0+(K+1) · 60), 8 k�0

Message dropping (2) recv (T1) ⌦ recv (T1+1)

Meter spoofing (3) node-name(T0+N · 60) = Node B, 8 N�0

way to mount this attack is to intercept the communication between the

meter and the controller, and control what tra�c to block and what to pass

through (e.g., through a firewall). Hence, the blocked tra�c would not be

included in PCD calculations.

5.2 Detection of AMI attacks

We ran the ARTINALI-based IDS on the example attacks, and found that

it detected all of them. Table 5.1 indicates the important invariants that are

derived by ARTINALI, which detect the attacks presented in the previous

section.

5.2.1 Synchronization tampering

As synchronization tampering attack modifies the timing of send and re-

ceive operations of SEGMeter, we picked events send and receive as rele-

vant events to explain this attack. We can see in row 1 of Table 5.1 that the

ARTINALI invariant captures the sequence of these events during normal

operation, i.e., send operation happens every 60 seconds, and receive is re-

peated every 1 second. Thus, this invariant detects the attack as the timing

of the events is violated by the attack.

5.2.2 Message dropping

If we assume the attacker drops one or more messages from meter, the

dropped messages will not be received at the expected time slots by the

controller. As a result, the frequency of receiving messages in controller will

change. This attack breaks the invariant number (2) in Table 5.1, which
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represents the time frequency of receive function which is 1003 milliseconds

(⇠= 1sec) within one full execution path. Thus this attack is also detected.

5.2.3 Meter spoofing

To detect meter spoofing attack, we selected two receive events (recvA and

recvB) from two di↵erent meters (node A and node B) that are connected

to the same controller, and analyzed the respective invariants. For example,

nodeName(T0+N*60) = Node B, 8 N �0 specifies that the valid value of

nodeName at T0 +N ⇤ 60 is Node B. If the identity of node A is stolen by

node B, it sends its messages every 60 seconds under the name nodeA. As a

result, variable nodeName attached to event recvB, becomes nodeA. Thus,

the invariant number (3) in Table 5.1 is violated.

5.3 SAP Attacks

Diabetic therapy tampering is one of the highest severity threats for patients,

as it can result in death or severe health complications. We developed

an attack tree for diabetic therapy tampering based on publicly available

reports of attacks on SAPs [33, 41], in Figure 5.2. We consider three classes

of attacks based on the tree.

5.3.1 CGM spoofing attack (Blocks A1� A4)

The CGM spoofing attack injects false into the communication channel be-

tween CGM and controller making the controller think that the glucose level

is either higher or lower than it actually is. There are two ways that CGM

spoofing can be accomplished. First, if the sensor data format is unknown,

then a replay attack can be used. In this case, a sensor value read in the

past can be re-sent (e.g., by a RF module [33]) to the controller. This would

cause the controller unit to indicate an outdated glucose level rather than

the actual one. Second, if the format of sensor data is known to hacker, she

can send the false data at random time intervals to mislead the controller.
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5.3. SAP Attacks

Figure 5.2: Attack tree for SAP

Table 5.2: ARTINALI invariants to detect example attacks in OpenAPS.

Attack Detecting invariant

CGM spoofing (1) read (t) ⌦ read (t+5)

Stop basal injection (2) (120  BG 485) ⌦ (0.9  basal.rate  3.5) : 1.99, 0.464

Resume basal injection (3) BG  75 ⌦ basal.rate=0 : 1.99, 0.464

5.3.2 Basal tampering (Blocks B1� B5)

The basal tampering attack may be accomplished in two di↵erent scenarios.

The attacker may issue a command for i) stopping the basal injection (e.g.,

basal.rate = 0) when it is required for patient, or ii) resume the basal

injection (basal.rate > 0) when it has to be stopped. These attacks may

be mounted using a software radio board that fully controls the SAP [33,

41], and transmits the malicious commands to the pump. To accomplish

the attack, the attacker needs to spoof the PIN number of the controller,

and the format of transmission packets - both of these can be done by an

eavesdropping attack.
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5.4 Detection of example attacks in SAP

We mounted the attack examples on the SAP system we considered (i.e.,

OpenAPS), and found that the ARTINALI-based IDS is able to detect all

of them. There are four events in the SAP, namely 1) send(BG) or sending

blood glucose by CGM , 2) read(BG) or reading BG by the controller , 3)

send(basal.rate) or sending basal rate to pump by the controller, and 4)

recv(basal.rate) or receiving basal rate by pump. We used these events as

the basis for mining 51 invariants for OpenAPS’s IDS model. Due to space

constraints, we do not present all inferred invariants, but only those that

detect the example attacks (Table 5.2).

5.4.1 CGM spoofing attack

We selected read(BG) in controller as the relevant event, and analyzed the

inferred invariants for this event to analyze CGM spoofing attack. Under

normal conditions, the transmission of measured Blood Glucose (BG) to

CGM occurs at deterministic, periodic times (e.g., every five minutes). This

property is represented in our model as time frequency of event read(BG),

that is read(t) ⌦ read(t+5). Using the above property, it would be possible

to detect malicious sensor reading from any external source that performs

replay attack or transmits wrong data at random time intervals to the con-

troller as the frequency of reading data by controller would change.

5.4.2 Basal tampering attack

As previously explained, the basal tampering attack may be accomplished

in two di↵erent scenarios: i) stop basal injection (basal.rate = 0) when

it is required, and ii) resume basal injection (basal.rate > 0) when it is

not required. These attacks break the invariants shown in Table 5.2. The

invariant number (2) indicates that if BG is higher than the normal range,

the patient needs insulin (i.e., basal.rate > 0). However, the stop insulin

injection attack makes the basal.rate value to be 0, which breaks invariant

number (2). Similarly, the invariant number (3) in Table 5.2 shows that
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for low BG ranges (e.g., BG = 45), the patient does not need insulin (i.e,

basal.rate must be 0), but resume basal injection attack sends a command

(basal.rate > 0) to the SAP to inject insulin. As a result, invariant number

(3) is violated.

5.4.3 Summary

Thus, we see that the ARTINALI-based IDS is able to detect all six attacks

that we considered (3 for AMI, and 3 for SAP). On the other hand, none of

the other three systems (i.e., DAIKON, Texada, and Perfume) detect even a

single one of the attacks. This is because all the attacks involved violations

of the interplay among data, events and time
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Chapter 6

Evaluation Against Arbitrary

Attacks

In the previous chapter, we evaluated the IDS based on ARTINALI on

targeted attacks. However, evaluation of security techniques using a small

number of targeted (hand-crafted) attacks might not be su�cient for CPS

systems for two reasons. First, CPSes are new systems for which there are

few real attacks - hence they need protection from zero-day or unknown

attacks. This is especially the case for security-critical CPSes such as smart

medical devices. Secondly, unlike general computer systems, CPSes can be

di�cult to upgrade and patch frequently, and hence, they need resilient

IDSes against arbitrary attacks. Therefore, in this chapter, we evaluate the

e�cacy of invariants generated by ARTINALI and the other three invariant-

detection techniques for the CPS platforms using arbitrary attacks.

6.1 Arbitrary Attack Model

We use fault injection (i.e., mutation testing) to emulate arbitrary attacks.

Fault injection has been used to study the e↵ects of attacks in previous work

[49]. Note that these are not complete attacks, but rather form the building

blocks of attacks. We deploy di↵erent types of mutation in the program’s

code, as follows.

• Data mutations, which change the runtime values of data variables in

the code;

• Branch flipping, which change the normal execution flow of the pro-

gram by flipping branch conditions;
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• Artificial delay insertion, which modify the normal timing behavior of

the program.

Each of the above categories emulate di↵erent security issues. By per-

forming data mutations, an attacker can change critical data in the program

to their advantage. Such attacks can be accomplished by exploiting memory

corruption vulnerabilities or race conditions in the program. For instance,

[48] investigated an attack to smart facial recognition systems caused by

exploiting a mis-classification bug (CVE-2016-1516) in the controller algo-

rithm through input data mutation. Likewise, branch flipping can lead to

illegitimate control flow paths being taken in the program, to accomplish the

attacker’s ends. Such attacks can occur due to code injection or semantic

vulnerabilities. As an example, [10] indicated that how attacker is able to

change the sequence of actions in a smart car through exploiting the bu↵er

overflow vulnerability in the telematics of car. Finally, artificial delays can

allow attackers to change the timing of the system’s actions, and delay es-

sential functions, or cause other functionality to be suppressed, again to

their advantage. Synchronization tampering attack is one example of such

attacks [36]. Through these mutations, we can emulate a wide variety of at-

tacks, without a predefined target, thus avoiding bias and allowing modeling

of hitherto unknown attacks.

We performed 156 and 125 code mutations for SEGMeter and OpenAPS

respectively. We manually seeded each of these mutations in the source code

of the respective systems, by randomly sampling the corresponding program

points in the program’s code. While this could have been automated by a

fault injection tool (e.g., LLFI [5]), the languages in which the two systems

were implemented, JavaScript and Lua, were not supported by existing tools.

So we had to perform mutations manually. However, we attempted to choose

the program points randomly before performing the experiment to avoid

biasing our evaluation.

After mutating the code, we can observe one of four outcomes.

• Crash, in which the program is aborted (exception);

• Hang, in which the program goes into an infinite loop or deadlocks;
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Figure 6.1: Fault injection impact(%): (a) data mutation in SEGMeter, (b)
branch flip in SEGMeter, (c) artificial delay in SEGMeter, (d) data mutation
in OpenAPS, (e) branch flip in OpenAPS, (f) artificial delay in OpenAPS

• SDC (Silent Data Corruption), in which the outcome of the program

is di↵erent from a fault-free execution;

• No corruption, in which the outcome of the program does not show

any observable impact with respect to fault masking or non-triggering

faults. Internal states might however be corrupted.

Note that in the context of this study, we are interested only in SDC

and No corruption outcomes, as the Crash and Hang outcomes can easily

be detected without an IDS. Therefore, we need an IDS for the SDC and No

corruption outcomes which comprise about 85% of the outcomes on average

(according to Figure 6.1).

6.2 Evaluation Metrics

Accuracy: We use three metrics to measure the e↵ectiveness of our IDS

from the accuracy point of view.
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• False Negative ratio (FN), which is the ratio of attacks that were un-

detected by the IDS to the total number of attacks;

• False Positive ratio (FP), which is the ratio of execution traces that

were (incorrectly) reported as attacks to the total number of normal

traces;

• F-Score(�), which is a computation of the harmonic mean of the true

positive ratio (TP), FP and FN2.

The variations of the argument � in F-Score(�) allow us to weigh the

above metrics di↵erently [46], and obtain di↵erent trade-o↵ between FP and

FN ratios based on the system requirements. A value of � > 1 weighs FNs

higher, while a value of � < 1 weighs FPs higher. A value of � = 1 weighs

them both equally. We hypothesize that FPs are more important in smart

meters, as a false-alarm leads to added cost to the utility provider who needs

to deploy service personnel to investigate the false alarm. An occasional FN

may be acceptable in smart meters as the consequence is only a loss of

revenue. In the OpenAPS, on the other hand, even a single FN can be fatal

to the patient, while a FP may be acceptable if there are other checks in

place to filter out FPs (e.g., patient intervention). Hence, for SEGMeter, we

select F-Score(0.5), and for OpenAPS, we choose F-score(2) as our reference

metric.

Overheads: In addition to the accuracy, we also measure the memory

and performance overheads of the IDS.

Memory overhead is defined as the actual memory usage of the IDS. It

depends on the size of IDS, the number of invariants that account for the

CPS model, and the complexity of invariants (e.g., the invariant Ej ⌦ Ei :

�tjimax,�tjimin carries more information than the invariant Ej ⌦ Ei, and

is hence more complex).

Performance overhead is the increase in execution time as a result of

running the CPS on the target platform. This metric reflects the overhead

of both the tracing module and the intrusion detector. Since CPSes run

2
F � Score(�) = (1+�2)⇥TP

(1+�2)⇥TP+�2⇥FN+FP
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continuously for long periods of time, we measure the performance overhead

per cycle, where a cycle refers to one full execution of the main loop of the

CPS (both the SEGmeter and OpenAPS consist of a single main loop that

runs continuously).

6.3 Research Questions (RQs)

We ask the following RQs corresponding to the evaluation metrics.

RQ1. How do we choose the training set size to obtain the best F-Score(�)

for each tool?

RQ2. What is the FN ratio incurred by the IDS using the invariants derived

by ARTINALI and the other tools ?

RQ3. What is the FP ratio incurred by the IDS using the invariants derived

by ARTINALI and the other tools?

RQ4. What is the memory overhead of the IDS when using the invariants

derived by ARTINALI and the other tools?

RQ5. What is the performance overhead of the IDS when using the invari-

ants derived by ARTINALI and the other tools?

6.3.1 RQ1. F-Score

As mentioned in Chapter 4, we obtain two sets of traces from each system,

namely train and test. In this RQ, we ask what should be the optimal

training set size for each system in order to maximize the corresponding

F-Score values. To answer this question, we obtain a total of 40 training

traces, and 50 test traces for each system. We then vary the training set size

from 5 to 40, in increments of 5. We then run each of the invariant detection

tools including ARTINALI on the same training set to derive invariants. We

then measure the FP, FN, and F-Score values (0.5, 1, 2) for each invariant

detection tool and system, as a function of the training set size.
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Figures 6.2, 6.3, 6.4 and 6.5 show the distribution of the amount of

false positives (FP), false negatives (FN) and the F-Score computed with

� = 0.5, 1, 2 in relation to the amount of training traces for SEGMeter, corre-

sponding to each of the four invariant detection tools, including ARTINALI.

Similarly, Figures 6.6, 6.7, 6.8 and 6.9 show the distribution of the amount

of false positives (FP), false negatives (FN) and the F-Score computed with

� = 0.5, 1, 2 in relation to the amount of training traces for OpenAPS, cor-

responding to each of the four invariant detection tools. As expected, as the

amount of training traces increases, the FP ratio decreases, since a broader

set of invariants are extracted; thus a lower amount of legitimate actions

are flagged as potential attacks. A consequence is that more attacks are

undetected (FN increases), as a more restricted set of invariants can lead

to some attacks being undetected. Overall, an increase in the amount of

training traces lead to an increase of the F-Score at first, then it stabilizes,

at which point an optimal amount of training traces have been found (for a

given values of �).

Tables 6.1 and 6.2 show the optimal amount of training traces (optimal

F-Score) for each invariant detection tool, for SEGMeter and OpenAPS re-

spectively. Recall that we choose F-Score(0.5) for SEGMeter and F-Score(2)

for OpenAPS, and hence these are the F-score values we choose for the op-

timal number of traces. For example, in SEGMeter, a training set size of

20 results in the maximum value of the F-Score(0.5) value of ARTINALI,

whereas for OpenAPS, a training set size of 15 results in the maximum value

of F-Score(0.5). Likewise, we compute the optimal training set sizes for the

three other tools on both platforms. These are the values of the training

set sizes we use for deriving the invariants for each tool in the rest of this

section. In other words, we find the best configuration of each tool on each

platform, and generate invariants using this configuration for comparing the

corresponding IDSes .
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Table 6.1: Optimal training set size for maximum F-Score(0.5) for SEGMe-
ter across tools, and the corresponding FP and FN ratios.

Daikon Texada Perfume ARTINALI

F-Score(0.5) 0.721 0.78 0.813 0.898
Num of traces 30 30 35 20
FP (%) 23 15 15 12
FN (%) 57 60 38 2.3

Table 6.2: Optimal training set size for maximum F-Score(2) for OpenAPS
across tools, and the corresponding FP and FN ratios.

Daikon Texada Perfume ARTINALI

F-Score(2) 0.604 0.62 0.686 0.952
Num of traces 30 20 15 15
FP (%) 21 16 22 13.5
FN (%) 61 61 39 2

Figure 6.2: FN, FP and F-Score variations based on number of training
traces for SEGMeter’s IDS seeded by Daikon invariants.
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Figure 6.3: FN, FP and F-Score variations based on number of training
traces for SEGMeter’s IDS seeded by Texada invariants.

Figure 6.4: FN, FP and F-Score variations based on number of training
traces for SEGMeter’s IDS seeded by Perfume invariants.
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Figure 6.5: FN, FP and F-Score variations based on number of training
traces for SEGMeter’s IDS seeded by ARTINALI invariants.

Figure 6.6: FN, FP and F-Score variations based on number of training
traces for OpenAPS’s IDS seeded by Daikon invariants.
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Figure 6.7: FN, FP and F-Score variations based on number of training
traces for OpenAPS’s IDS seeded by Texada invariants.

Figure 6.8: FN, FP and F-Score variations based on number of training
traces for OpenAPS’s IDS seeded by Perfume invariants.
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Figure 6.9: FN, FP and F-Score variations based on number of training
traces for OpenAPS’s IDS seeded by ARTINALI invariants.

6.3.2 RQ2. False Negatives

In this section, we compare the variation in the FN ratio incurred by the IDS,

using invariants extracted by ARTINALI and the other tools. Tables 6.1 and

6.2 also show the FN ratios for each tool for the SEGMeter and OpenAPS

systems respectively. We observe that overall, ARTINALI was able to detect

around 97.5% of attacks, which means it has an average FN ratio of 2.5%.

In contrast, in Perfume, Texada and Daikon the FN ratio was respectively

38.5%, 60.5% and 59% on average, across the two platforms. Thus, the

ARTINALI-based IDS reduces the ratio of false negatives by 89 to 95% over

other dynamic invariant detection tools.

Figure 6.10 and Figure 6.11 illustrate the FN ratio of the IDS for the

three category of attacks (code mutations), as well as the aggregated FN

ratio, for each tool, in both SEGMeter and OpenAPS. We discuss the FN

ratio for each attack category below:

Data mutations: ARTINALI exhibits the lowest FN rate for data mu-

tations (2 to 3%). This is followed by Daikon, which provides a much lower

FN ratio in data mutation attacks (15% in SEGMEeter and 17% in Ope-
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Figure 6.10: FN(%) of IDS for SEGMeter for di↵erent attack types across
the tools. Error bars are shown for the 95% confidence interval.

Figure 6.11: FN(%) of IDS for OpenAPS for di↵erent attack types across
the tools. Error bars are shown for the 95% confidence interval.
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nAPS) than Perfume (53% in SEGMEeter and 78% in OpenAPS) and Tex-

ada (52% in SEGMEeter and 87% in OpenAPS). This is because DAIKON

focuses on data invariants, while Texada and Perfume do not include data

invariants in their model. However, the Daikon data model does not include

other properties like ARTINALI does, resulting in much higher FNs than

ARTINALI.

Branch flipping: Among the other three tools, ARTINALI has the

lowest FN rate for branch flipping attacks (1%). Perfume, Texada and

ARTINALI exhibit a lower FN ratio compared to Daikon for branch flipping

attacks. As these attacks impact the order and sequence of the events in an

execution instance, and Daikon does not have event invariants, it shows less

sensitivity.

Artificial delay: Again, ARTINALI has a much lower FN ratio (2-3%)

than all three tools for artificial delay attacks, followed by Perfume. This

is because they both include time in their model. Nevertheless, Daikon and

Texada are still able to detect attacks that impact data variables or alter

the execution flow of the program.

Overall, the results support our hypothesis that a more comprehensive

invariant model, such as ARTINALI, which can find invariants and their

constraints along three dimensions, can detect a significantly larger amount

of attacks (and hence has fewer FNs).

6.3.3 RQ3. False Positives

In this section, we compare the FP ratio incurred by our IDS when using

the invariants derived by ARTINALI against the invariants generated by

the other tools (Daikon, Perfume and Texada). The results are shown in

Table 6.1 and 6.2 for the SEGMeter and OpenAPS systems respectively.

We can observe that in both CPSes, the use of the ARTINALI-generated

invariants lead to significantly less false positives compared to the invariants

generated by the other tools. More precisely, ARTINALI provides a 20%

to 48% improvement of the FP ratio for SEGMeter, and a 16% to 39%

improvement of the FP ratio for OpenCPS, over the other tools.
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These results can be explained by the fact that ARTINALI leverages the

correlations among data, event and time dimensions during correct system

behavior to generate more stable invariants. ARTINALI infers event invari-

ants that precisely describe the ordering of events in a sequence within an

execution flow, and then associates data and time constraints to the events

within every path (D|E and E|T ). Therefore, during normal operation, the

system is unlikely to follow the same path with di↵erent associated data and

time values in a given execution, which in turn, reduces the probability of

false positives. Although the IDS uses the same traces for all tools, none of

these tools other than ARTINALI look at the relational constraints of both

data and time along the events’ paths, resulting in a higher ratio of false

positives.

While the FP ratio for the ARTINALI-based IDS is lower than the other

tools, it is still high for both platforms. To reduce the FP ratio, one can

deploy multiple variants of the code and switch to a di↵erent variant when

an attack is detected. If the invariant is not violated in the second version,

it may be a false positive. Another solution is to remove invariants that

exhibit high FP ratios [6], but this may also increase the FN ratio. We defer

a detailed treatment of FP ratio reduction to future work.

6.3.4 RQ4. Memory Overhead

We measured the memory consumption of our IDS running on the SEG-

Meter platform, using the invariants generated by di↵erent tools. We also

calculated the number of invariants that ARTINALI and the other tools

inferred for both platforms. Our results are shown in Table 6.3 (“Memory

usage” row). Generally, invariants that involve two or more dimensions (e.g.,

E|T invariants) carry more information than the invariants of one dimen-

sion (e.g., event invariants), and hence are more complex. We observe that

the memory usage grows as the number and complexity of invariants in-

creases. For example, the IDS consumes the maximum memory usage (3.94

MB) when it uses the Perfume-generated invariants, which straddle two di-

mensions, and have the maximum number of invariants (158 - Table 4.1).
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Table 6.3: Memory and performance overhead of IDS, seeded by ARTINALI
and the other tools, running on SEGMeter.

Daikon Texada Perfume ARTINALI
Memory usage (MB) 1.24 3.21 3.94 2.96

Tracing overhead(%) 22.6 13.4 18.8 23.3
Detector overhead(%) 4.7 10.3 13.3 8.3
Overall overhead(%) 27.3 23.7 32.08 31.6
Full cycle execution(s) 60.94 60.94 60.94 60.94
IDS execution time(s) 16.63 14.45 19.57 19.25

Overall, we find that the memory consumption of the IDS with ARTINALI-

generated invariants is lower than those with Perfume or Texada-generated

invariants, but higher than those with Daikon-generated invariants. How-

ever, the memory usage for all tools is much lower than the available memory

in SEGMeter (16 MB).

6.3.5 RQ5. Performance Overhead

In this section, we discuss the performance overhead of our IDS running

on the SEGMeter platform, which consists of an embedded microcontroller

(Broadcom BCM3302 V2.9 240MHz CPU and 16 MB RAM) running Linux.

Recall that the IDS consists of two components, namely tracing module

and intrusion detector module. Table 6.3 (middle part) shows the overheads

of the two modules separately for each tool. Each of these measurements

is an average of the overhead of 10 execution traces for each tool, where an

execution trace is defined as one complete execution of the meter’s main loop.

We find that ARTINALI and Perfume have the highest aggregate overhead,

followed by Daikon, and then Texada. The di↵erence in the overhead is due

to the di↵erence in the tracing module, which needs to collect both event and

data/time information for ARTINALI and Perfume, compared with Texada

(events only), and Daikon (data only).

In addition to the performance overheads, the IDS execution time should

be lower than the execution time of the system’s cycle, or else it will be
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unable to keep up with the system. We measure the raw execution times of

a full cycle in Table 6.3 (last part). As can be seen from the table, the entire

cycle takes about 60 seconds (1 minute). However, the execution of the IDS

for each tool takes less than 20 seconds even in the worst case (for Perfume),

which is only a third of execution time of the full cycle. Therefore, the IDS

is not a bottleneck in any of the four systems, and is easily able to keep up

with the system.

Note that the invariant mining process takes place o✏ine, and hence

does not contribute to the performance overhead of the IDS running on the

CPS platform. Nonetheless, we measured the time to mine invariants using

ARTINALI, on a standard desktop system (Intel core i7 processor with 32

GB RAM, running Linux). We found that the time ranges from 8 to 96

seconds in SEGMeter, and from 6 to 36 seconds in OpenAPS. This is a

very reasonable cost in most systems. Though this overhead may be higher

for larger systems, invariant mining is a one-time process and needs to be

redone only when the code is updated.

6.4 Summary

In this chapter, we evaluated the IDS prototype seeded by ARTINALI and

other three invariant-detection techniques for two CPS platforms using ar-

bitrary attacks and using accuracy and overhead metrics. We used a model-

based fault injection technique to emulate the building blocks of real attacks.

Overall, the results support our hypothesis that a more comprehensive in-

variant model, such as ARTINALI, which can find invariants and their con-

straints along three dimensions, can detect a significantly larger amount of

attacks (and hence has fewer FNs). Moreover, we observed that in both

CPSes, the use of the ARTINALI-generated invariants lead to significantly

less false positives compared to the invariants generated by the other tools.

We have also found that the memory consumption and performance over-

head of the IDS with ARTINALI-generated invariants is lower than those

with Perfume or Texada-generated invariants, but higher than those with

Daikon-generated invariants. However, the memory usage for all tools is
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much lower than the available memory in SEGMeter. We also measured the

raw execution times of a full cycle of the IDS for each tool, and observed

that it takes less than 20 seconds even in the worst case (for Perfume), which

is only a third of execution time of the full cycle (60 seconds) . Therefore,

the IDS is not a bottleneck in any of the four systems, and is easily able to

keep up with the system.
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Chapter 7

Discussion

In this chapter, we first examine the threats to the validity of our experi-

ments, followed by reflections on ARTINALIs generalizability.

7.1 Threats to Validity

An external threat to the validity is the limited number of CPS platforms

considered (two). However, as we have mentioned, finding CPS platforms

that are publicly available and security critical is a challenge. We have at-

tempted to mitigate this threat by choosing two fairly diverse platforms,

with various time constraints, and di↵erent IDS optimization goals. We

acknowledge that these platforms exhibit somewhat simple behaviors - how-

ever, many CPSes fall into this category [15].

An internal threat to validity is in our evaluation of the e�cacy of the

invariants for attack detection through fault injection experiments. While

not necessarily representative of all security attacks, fault injection allows us

to emulate the behavior of potential attackers without biasing the evaluation

towards known vulnerabilities (at the time of the evaluation). We have

attempted to mitigate this threat by using mutation operators that were

used for emulating attacks in prior work [5].

Another external threat to validity is that the IDSes based on specifi-

cation mining techniques are vulnerable to malicious traces during train-

ing/test phases, and ARTINALI is not an exception. We have attempted

to reduce the threat in the training phase by inferring the invariants o✏ine.

During the testing phase, our IDS and CPS are executed on separate pro-

cesses, and hence the intrusion detector module of IDS is isolated from the

attacks that may compromise the CPS itself. However, protecting the trac-
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ing module of IDS (that is located on CPS) against attacks is a challenging

problem. We assumed that the IDS is the root of trust for now, but in

the future, we plan to deploy trusted computing base strategies for the IDS

(e.g., secure enclaves), so that the attacker cannot attack the IDS directly.

Finally, a construct threat to validity is the evaluation metrics used for

measuring e�cacy. FP and FN ratios have however been used in a lot of

prior work on intrusion detection, as have F-scores, and hence we do not

believe this is a significant threat. Another potential construct threat is

the choice of tools we use for comparing with ARTINALI, but we mitigated

this to an extent by first systematically classifying the space of invariant

detection techniques, and then choosing the tools in each category.

7.2 Generalizability of ARTINALI

ARTINALI relies upon two features, namely event-based semantics, and con-

ditional independence of time and data (Section ). Events are operations

that involve interaction with the outside world. Event-based semantics im-

plies that every event takes place in a unique time frame, and hence, there

is no concurrency among event executions. Secondly, ARTINALI assumes

an event occurs at a specific time interval, and subsequently, data variables

are assigned to specific values. Thus, the time and data corresponding to a

particular event, are conditionally independent regardless of the dependency

among events. These two features are a common paradigm for CPSes, and

hence ARTINALI can be generalized to other CPS platforms such as pace-

makers and unmanned aerial vehicles.

However, ARTINALI is not applicable to non-CPS platforms for two

reasons. First, the non-concurrency of events does not hold in non-CPS

platforms such as mobile phones. Secondly, CPS events have limited func-

tionality, and hence inferring invariants for each event is straightforward.

Unlike CPSes, in general realtime systems, tasks can be of unbounded com-

plexity. Furthermore, general purpose computers with full preemptive (i.e.,

non-realtime) operating systems have a large space of potential behaviors,

which makes it challenging to learn invariants for them.
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Chapter 8

Conclusions and Future

Work

8.1 Summary

Cyber-physical systems (CPSes) are becoming increasingly subject to secu-

rity attacks due to their interconnectedness and relative lack of protection.

In this thesis, we attempt to use dynamic invariant detection techniques to

build intrusion detection systems for CPSes. Our key insight is that time

is a first class constraint in CPS systems, and hence we incorporate time

into the invariants, in addition to data and events. We devise an e�cient

algorithm for learning invariants over the three dimensions of data, events

and time, and implement it in a tool called ARTINALI. We demonstrate the

use of ARTINALI on two CPS platforms for intrusion detection. We find

that ARTINALI has significantly lower false negatives and false positives

than other dynamic invariant detection tools, while incurring comparable

performance and memory overheads.

The most important aspect of this work is providing insights regarding

overcoming CPS constraints such as real-time constraints and resource con-

straints, for security developers. Many security solutions rely on a model

for the correct behavior of the system they are monitoring. We hypothe-

sized that a more comprehensive model leads to a higher coverage against

security attacks. Our results support this hypothesis for ARTINALI, which

incorporates real-time constraints along three dimensions into the model,

and hence is able to detect a significantly larger amount of attacks.

On the other hand, the complete system model may be large, and check-
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ing it requires more resources. Unlike the other specification mining tech-

niques (such as Daikon that infers the relationship among all data variables

at the entry and exit point of all method calls in the program), ARTI-

NALI only captures system calls (which are located on the attack surface)

as events to generate the CPS model for attack detection, and hence does

not model those parts of the code that are not security-critical. Our result

shows that even a selective model, that requires significantly less resources

than the complete model, may provide reasonable security coverage. In

other words, approximate security solutions are e↵ective for CPSes and pro-

vide high enough coverage while requiring significantly less resources. Such

techniques may be integrated with CPS software and hence, make it easier

to build security solutions that meet the CPS requirements.

In addition, ARTINALI works at event granularity to mine invariants.

In spite the fact that ARTINALI captures all system calls as events for

security purposes, in ARTINALI, events are user-defined. This flexibility

enables users to optionally customize the level of granularity by choosing

another type of events, or prune the space of events by specifying only the

important ones based on the system’s requirements.

Moreover, ARTINALI is a specification mining technique that has been

primarily developed for CPS security space. However, as it generates a

multi-dimensional model including many rich properties of correct real-time

behavior of a program, it is applicable in a broader context other than se-

curity. More particularly, it can be used for software reliability purposes, in

a wide assortment of tasks, such as non-malicious bug detection, software

testing, data structure repair, and debugging of applications. Furthermore,

ARTINALI-generated invariants can be useful for supporting program evo-

lution and comprehension as well.

8.2 Future work

There are three potential directions in which this thesis can be extended in

the future.
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8.2.1 Extending the Generalizability of ARTINALI

In this thesis, we focused on two families of CPS platforms including smart

meters and smart artificial pancreases as case studies. Although we expect

the same technique to apply to similar CPS platforms, it would be interesting

to examine the generalizability of ARTINALI to more complex CPS plat-

forms such as unmanned aerial vehicles (i.e., drones). We define complexity

as the total number of source lines of code and having more diverse function-

alities (i.e., multiple operational modes). Prior work [23, 47] has shown there

are significant challenges in modeling the behavior of drones. For instance,

drones operate in various flight modes with di↵erent level of autonomy, and

in non-autonomous modes, they show more uncertainty not only in the tim-

ing behavior but also in the functional behavior. Hence, generating system

model for non-autonomous modes in these systems is a challenge. Moreover,

drones behave di↵erently in various flight states (including landing, taking

o↵, hovering, etc). Therefore, designing an CPS model for the entire system

that reflects the properties of each state precisely is challenging.

8.2.2 Optimizing ARTINALI for the Scalability

In this thesis, we found that ARTINALI-based IDSes impose acceptable

overheads on our CPS platforms. However, the resource constraints of a

CPS platform with larger code size may degrade the scalability of our tech-

nique as the resource utilization of IDS increases. According to our ex-

perimental results, a large fraction of IDS overhead is due to the tracing

module collecting online information about the system. Prior work [52] has

found there is a tradeo↵ between attack coverage and the amount of data

collected during tracing. Hence, a potential future direction is to optimally

deploy the tracing with respect to IDS goals including coverage and scala-

bility, and CPS constraints including memory usage, performance overhead

and computational power overhead.
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8.2.3 Extending ARTINALI for Attack Diagnosis

In this thesis, we proposed a multi-dimensional invariant mining technique

for attack detection in CPSes. However, once an attack is detected, it needs

to be mitigated, and attack diagnosis bridges the gap between attack detec-

tion and mitigation. Attack diagnosis is a promising approach to carrying

out a propagation analysis from source of attacks (cyber vulnerabilities)

to the corresponding e↵ects on the physical system [56]. Such analysis is

useful to rank the scope and severity of the cyber attacks and thereby, pri-

oritize among various mitigation mechanisms to be selected with respect to

CPS constraints. A potential future direction is to incorporate the dynamic

invariants generated by ARTINALI for attack diagnosis and mitigation.
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