- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Approximation of the formal Bayesian model comparison...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Approximation of the formal Bayesian model comparison using the extended conditional predictive ordinate criterion Hoque, Md Rashedul
Abstract
The optimal method for Bayesian model comparison is the formal Bayes factor (BF), according to decision theory. The formal BF is computationally troublesome for more complex models. If predictive distributions under the competing models do not have a closed form, a cross-validation idea, called the conditional predictive ordinate (CPO) criterion can be used. In the cross-validation sense, this is a ''leave-out one'' approach. CPO can be calculated directly from the Monte Carlo (MC) outputs, and the resulting Bayesian model comparison is called the pseudo Bayes factor (PBF). We can get closer to the formal Bayesian model comparison by increasing the ''leave-out size'', and at ''leave-out all'' we recover the formal BF. But, the MC error increases with increasing ''leave-out size''. In this study, we examine this for linear and logistic regression models. Our study reveals that the Bayesian model comparison can favour a different model for PBF compared to BF when comparing two close linear models. So, larger ''leave-out sizes'' are preferred which provide result close to the optimal BF. On the other hand, MC samples based formal Bayesian model comparisons are computed with more MC error for increasing ''leave-out sizes''; this is observed by comparing with the available closed form results. Still, considering a reasonable error, we can use ''leave-out size'' more than one instead of fixing it at one. These findings can be extended to logistic models where a closed form solution is unavailable.
Item Metadata
Title |
Approximation of the formal Bayesian model comparison using the extended conditional predictive ordinate criterion
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2017
|
Description |
The optimal method for Bayesian model comparison is the formal Bayes factor (BF), according to decision theory. The formal BF is computationally troublesome for more complex models. If predictive distributions under the competing models do not have a closed form, a cross-validation idea, called the conditional predictive ordinate (CPO) criterion can be used. In the cross-validation sense, this is a ''leave-out one'' approach. CPO can be calculated directly from the
Monte Carlo (MC) outputs, and the resulting Bayesian model comparison is called the pseudo Bayes factor (PBF). We can get closer to the formal Bayesian model comparison by increasing the ''leave-out size'', and at ''leave-out all'' we recover the formal BF. But, the MC error increases with increasing ''leave-out size''. In this study, we examine this for linear and logistic regression models.
Our study reveals that the Bayesian model comparison can favour a different model for PBF compared to BF when comparing two close linear models. So, larger ''leave-out sizes'' are preferred which provide result close to the optimal BF. On the other hand, MC samples based formal Bayesian model comparisons are computed with more MC error for increasing ''leave-out sizes''; this is observed by comparing with the available closed form results. Still, considering a reasonable error, we can use ''leave-out size'' more than one instead of fixing it at one. These findings can be extended to logistic models where a closed form solution is unavailable.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2017-08-28
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0354974
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2017-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International