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Abstract

The optimal method for Bayesian model comparison is the formal Bayes factor

(BF), according to decision theory. The formal BF is computationally troublesome

for more complex models. If predictive distributions under the competing models

do not have a closed form, a cross-validation idea, called the conditional predic-

tive ordinate (CPO) criterion can be used. In the cross-validation sense, this is a

“leave-out one” approach. CPO can be calculated directly from the Monte Carlo

(MC) outputs, and the resulting Bayesian model comparison is called the pseudo

Bayes factor (PBF). We can get closer to the formal Bayesian model comparison

by increasing the “leave-out size”, and at “leave-out all” we recover the formal

BF. But, the MC error increases with increasing “leave-out size”. In this study, we

examine this for linear and logistic regression models.

Our study reveals that the Bayesian model comparison can favour a different

model for PBF compared to BF when comparing two close linear models. So,

larger “leave-out sizes” are preferred which provide result close to the optimal BF.

On the other hand, MC samples based formal Bayesian model comparisons are

computed with more MC error for increasing “leave-out sizes”; this is observed

by comparing with the available closed form results. Still, considering a reason-

able error, we can use “leave-out size” more than one instead of fixing it at one.

These findings can be extended to logistic models where a closed form solution is

unavailable.
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Lay Summary

The purpose of the model comparison is to find a useful model among some possi-

ble models. There are different model selection methods available in the literature,

developed by the frequentist and Bayesian schools. The main goal of this thesis

is to examine a model selection method based on cross-validation as an alternative

to the formal Bayesian model comparison. We demonstrate the behavior of this

model comparison tool for both simple and complex models in the Bayesian con-

text. The major finding of the thesis suggests using a general version of the widely

used cross-validation approach, but with a larger “leave-out size” than one, to get

closer to the formal Bayesian model comparison.
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Chapter 1

Introduction

Statisticians build models to establish some relationship from the available data,

and that can be used to predict future data. There might be multiple possibili-

ties for building models from an available existing data set. Then, the next task

is to find the most useful model among the possible models using a model selec-

tion method. Model selection is very important in Statistics. Both frequentist and

Bayesian schools have developed many selection methods for model comparisons.

This thesis focuses on the Bayesian model selection methods.

1.1 Problem Statement
Some Bayesian model selection methods are available in the literature for com-

paring models (Gelfand and Dey, 1994). Among these, a popular choice is the

formal Bayesian comparison which simply uses the Bayes factor. As an optimal

model comparison tool, the Bayes factor is the desired model selection method in

Bayesian paradigm. But, calculation of the Bayes factor is not easy for complex

models. In that case, one can use alternatives to the Bayes factor that are eas-

ily computable. One of these alternatives is to use the cross-validation approach

based on the so-called conditional predictive ordinate criterion (discussed in detail

in Chapter 2); this can be computed easily from Monte Carlo posterior samples.

The cross-validation approach with “leave-out one” is widely used as an approxi-

mation of the formal Bayes factor (Geisser and Eddy, 1979), whereas the formal
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Bayes factor can be computed mathematically using this cross-validation approach

with “leave-out all”. Mathematically, increasing “leave-out sizes” will allow us

to compute more closely to formal Bayesian comparison than the commonly used

”leave-out one”. This mathematical closeness comes with a price, the Monte Carlo

error.

The cross-validation approach requires posterior samples to compute the (ap-

proximate) Bayes factors. As the cross-validation approach with “leave-out all”

requires more computations, the results come with more Monte Carlo error than

the “leave-out one”. In general, the Monte Carlo error increases with increasing

“leave-out sizes”. So, we have an optimization problem here. We want to exam-

ine how the cross-validation approach works to approximate the optimal formal

Bayesian comparison for some “leave-out sizes” from “leave-out one” to “leave-

out all”. Also, if possible we want to find a “leave-out size” at which we have closer

to formal Bayesian comparison than the “leave-out one” with only a little increase

in Monte Carlo error. According to this problem, we formulate the objectives of

our study in the next section.

1.2 Objectives
According to the problem statement, we can break down the objectives of this study

in several stages. We list those below:

1. At first, we want to find relevant pieces of literatures if any regarding this

issue.

2. Our second objective is to examine the model comparisons for simple models

(say based on normal distributions) where Monte Carlo is not needed. Then,

our objective is to examine how closely the Monte Carlo samples compute

the closed form results for the model comparison tools considered. For the

simple models, we also want to examine how rapidly does Monte Carlo error

“kills us” as “leave-out size” increases.

3. Our next objective is to examine how bad it is to not do an optimal formal

Bayesian model comparison. Here our interest is to examine whether it is

2



common/rare to see a switch in the winning model as “leave-out size” in-

creases.

4. Our final objective is to find a practical advice for more complex models

where we really need to use Markov chain Monte Carlo output. Particularly,

we want to examine whether we can look at different “leave-out sizes” and

report Monte Carlo error.

In general, our over-arching goal is to examine the cross-validation approach as an

alternative to the formal Bayesian model comparison. Also, we want to get some

interesting insight about ”leave-out size” (other than 1) for achieving a closer result

to the optimal solution with small Monte Carlo error. Especially, we want to exam-

ine this for more complex models when the formal Bayesian model comparisons

are hard to compute.

1.3 Organization of the Thesis Report
The general idea of the problem we are interested in and the objectives of our study

have been discussed in this Chapter. In Chapter 2 we formulate the problems more

mathematically and describe the model selection methods we use in this study.

A literature review of the model comparison tools is also given there. Chapter 3

focuses on the Bayesian model comparison of linear regression models; the closed

form and the Monte Carlo samples based results are documented, and we examine

those according to the objectives. We discuss the Bayesian model comparisons for

the generalized linear models, in particular, logistic regression models, in Chapter

4. Overall findings and some concluding remarks are discussed in brief in Chapter

5.
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Chapter 2

Bayesian Model Comparison

2.1 Introduction
Researchers collect data on some variables to study the effect of these variables

on some outcome of interest. Then the question arises of which variables are im-

portant to explain the variation in the outcome. Also, inclusion of interactions be-

tween the variables might be an interesting question to the researchers. These are

model selection problems and statisticians have proposed many approaches to deal

with the issue of model selection. Some popular and well-known model selection

methods are Akaike information criterion (AIC), Mallows CP, likelihood ratio tests

for nested models, stepwise selection procedures (backward or forward selection),

cross-validation, different types of Bayes factors (intrinsic, partial, pseudo, poste-

rior), Bayesian information criterion (BIC), and Bayesian model averaging. These

methods work in different ways. For example, some of these methods are just al-

gorithms for choosing a useful model (e.g. stepwise selection). Other methods are

based on the criteria to judge the quality of a model (e.g. AIC, BIC).

2.2 Classical View of Model Selection
We discuss the classical approach to model selection here. Suppose we want to

choose a model between two parametric models Mi, i = 1,2. These two models are

denoted by the joint density f (yyy|θθθ i;Mi) or likelihood L(θθθ i;yyy,Mi), i = 1,2. Here,
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θθθ i is a pi×1 parameter vector and yyy = (y1,y2, . . . ,yn) is a n×1 outcome vector.

Classical Neyman-Pearson theory is applied to nested models where models

are compared pairwise for model selection. Suppose, our hypotheses are Hi: data yyy

correspond to the model Mi, i= 1,2. For example, we set H1 as the null hypothesis.

Then, the likelihood ratio test can be used to compare these models by specifying

M1 and M2 as the reduced and full model, respectively. The reduced model is

nested within the full model. With the estimated parameter vectors θ̂θθ 1 and θ̂θθ 2 from

Models M1 and M2, the test statistic of the likelihood ratio test has the following

form:

λn =
L(θ̂θθ 1;yyy,M1)

L(θ̂θθ 2;yyy,M2)
. (2.1)

The null hypothesis H1 can be rejected if λn < c < 1, where 0 < c < 1 is a

constant. Also, under H1,−2logλn has an approximate χ2
p2−p1

distribution. Some-

times the reduced models are rejected though they are actually true, especially

when λn tends to be very small, i.e.,

lim
n→∞

Pr
(
selectM2|M1 True) = Pr(χ2

p2−p1
>−2logc

)
> 0.

However, how small turns out to be too small is dependent on the significance level

of the test, that is how much tolerance is considered for the probability of Type I

error. In general, the likelihood ratio test has a preference on the full model than

the reduced model at a smaller level of significance.

To deal with this problem, many penalization techniques of the log-likelihood

in the form of logL(θ̂θθ i;yyy,Mi)− k(n, pi) have been proposed so that the largest pe-

nalized log-likelihood wins. Here, k(n, pi)> 0 and this is a increasing function of

n and p implying more penalization for the big model than the nested small model.

Incorporating this, λn in equation 2.1 is extended to log(λn)+ k(n, p2) − k(n, p1).

Many model selection procedures, including AIC and BIC are different versions

of this expression. We need k(n, p2)− k(n, p1)→ ∞ as n→ ∞ for the selection of

the true underlying model consistently with increasing n. The most common form

for k(n, p) found in the literature is k(n, p) = α p. Akaike (1973) uses values of

α in the interval 1 ≤ α ≤ 2.5 whereas Aitkin (1991) suggests α = log2. How-

ever, these approaches produce some inconsistent result. Schwarz et al. (1978)
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suggests k(n, p) = (p/2) logn where k depends on n and eliminates inconsistency.

Some other versions are suggested by Nelder and Baker (1972), Hannan and Quinn

(1979) and Shibata (1980).

2.3 Bayesian View of Model Selection
We describe the choice of a model among a possible set of models in Bayesian

paradigm.

We begin with the Bayes factor, the formal Bayes approach to compare two

models. Different versions of the Bayes factor are also available in the literature.

One can consider reading Gelfand et al. (1992), Kadane and Lazar (2004), and their

attendant discussions. In addition, implementation of the asymptotic and exact

methods are described with examples in Gelfand and Dey (1994).

In a Bayesian model, we need to specify prior p(θθθ) in addition to the likeli-

hood specification. All the inference is made only from the posterior distribution

p(θθθ |yyy) ∝ L(θθθ ;yyy)× p(θθθ). Here θθθ are the parameters of interest, and L(θθθ ;yyy) =

f (yyy|θθθ) stands for the likelihood function. In the Bayesian paradigm, different ap-

proaches have been proposed for selection of models. Some of these are based on

posterior distributions and some others instead focus on predictive distributions.

The two model components might be not fixed in a Bayesian model selection

problem. Sometimes the likelihood L is held fixed, and only the prior p(θθθ) is var-

ied; this is used to check Bayesian robustness (Berger, 2013) by assessing how

sensitive the posterior is due to prior variation. Sometimes, the likelihood L is var-

ied. Now, the formal Bayesian model selection procedure follows in the following

subsection using Bayes factor.

2.3.1 General Version of Bayes Factor

We use the same notation as discussed in the classical approaches in section 2.2.

The sampling density for model M1 is f (yyy|θθθ 1,M1) and the competing model is M2

with sampling density f (yyy|θθθ 2,M2). There is no need to specify something common

between θθθ 1 and θθθ 2. For example, f (yyy|θθθ 1,M1) might be the density of a gamma

with parameters (θ11,θ12) and f (yyy|θθθ 2,M2) might be the density of a log-normal

with parameters (θ21,θ22).

6



Suppose, the prior distributions p1(θθθ 1) and p2(θθθ 2) are specified for θθθ 1 and θθθ 2.

Also, let the prior probability of Mi is wi, i = 1,2, with w2 = 1−w1. We consider

the comparison of M1 versus the alternative M2. Now, a Bernoulli random variable

M for the models taking values 0 and 1 is defined and the joint density for this

comparison can be written as:

p(yyy,θθθ 1,θθθ 2,M) = f (yyy|θθθ 1,M1) p1(θθθ 1)w1 I0(M)+ f (yyy|θθθ 2,M2) p2(θθθ 2)w2 I1(M).

We compute f (yyy|Mi), the predictive density for model, Mi, as

f (yyy|Mi) =
∫

f (yyy|θθθ i,Mi) pi(θθθ i)dθθθ i. (2.2)

Suppose yyyobs denotes the observed data. Using Bayes theorem, the posterior prob-

ability for model M1 can be written as

Pr(M = 0|yyyobs) =
w1 f (yyyobs|M1)

w1 f (yyyobs|M1)+w2 f (yyyobs|M2)
.

Now, the posterior odds of model M1 with respect to model M2 are

Pr(M = 0|yyyobs)

Pr(M = 1|yyyobs)
=

w1 f (yyyobs|M1)
w1 f (yyyobs|M1)+w2 f (yyyobs|M2)

w2 f (yyyobs|M2)
w1 f (yyyobs|M1)+w2 f (yyyobs|M2)

(2.3)

=
w1 f (yyyobs|M1)

w2 f (yyyobs|M2)

=
w1

w2
× f (yyyobs|M1)

f (yyyobs|M2)

= prior odds×BF,

where the Bayes factor (of model M1 with respect to model M2) denoted by BF , is

expressed as

BF =
f (yyyobs|M1)

f (yyyobs|M2)
. (2.4)

Thus, equation (2.3) demonstrates a relationship between the posterior odds, prior

odds w1/w2 and the Bayes factor. Jeffreys (1961) and Pettit and Young (1990) give

a scale for interpretation of the Bayes factor (of model M1 with respect to model

7



Table 2.1: Interpretation of the Bayes factor (BF) values

Value of Bayes factor Strength of evidence
< 100 Negative (supports M2)

100 to 101/2 Barely worth mentioning
101/2 to 101 Substantial
101 to 103/2 Strong
103/2 to 102 Very strong

> 102 Decisive

M2)[see Table 2.1].

The interpretation of the Bayes factor (BF) is straightforward and easily un-

derstandable for choosing between two models. Bayes factor does not require that

the two models being compared are nested. Also, model fitting is not required for

computing Bayes factor.

2.3.2 Criticisms of Bayes Factor

The Bayes factor has some limitations as a model comparison tool. One limitation

is related to the specification of a prior distribution. Depending on the locations

of the priors for θθθ 1 and θθθ 2, the Bayes factor may lead to change the decision on

which model is favoured. Even when the priors are proper, the Bayes factors have

non-robustness issues for the prior specification. Also, if the prior distribution

p(θθθ) is improper as a non-informative specification, then the density function f (yyy)

is improper as well. So, f (yyy|Mi) cannot be interpreted as the densities of these

models which in turn imply the non-interpretability of the Bayes factor ratio.

Another limitation is that the well-known Lindley’s paradox (Lindley, 1957)

may appear in the presence of an improper prior. Then, according to Lindley’s

paradox, it is unlikely that Model M2 will be chosen as the sample size n grows

large. Thus, the Bayes factor has a contradiction with the likelihood ratio test

which provides way too much support for the model under alternative (i.e. Model

M2). Smith and Spiegelhalter (1980) incorporate the idea of local Bayes factor

to overcome the ‘Lindley’s Paradox’ where non-decreasing prior probabilities are

assigned to an appropriate local neighbourhood of the parameters θθθ .
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2.3.3 Other Versions of Bayes Factor

The automatic Bayesian methods are suggested by some authors for model selec-

tion to cope with the improper prior related problems such as Lindley’s paradox,

Bayes factor dependency on prior specification and complexities in calculation and

interpretation of the Bayes factor. Note that in the automatic Bayesian methods,

users are not required to specify the hyperparameters; rather, there is an algorithm

to set the hyperparameters. Berger and Pericchi (1996) and Laud and Ibrahim

(1995) argue that the automatic methods are essential as in practice, proper (or sub-

jective) prior specification wouldn’t be feasible for a wide range of models that are

initially considered. On the other hand, Lindley (1997) argues that objective priors

(reference or non-informative priors are often improper) are not commonly used in

practice; the author also mentions the absence of sensible interpretation for model

selection in the presence of improper priors. However, this controversy of prior

specification continues. To overcome this critical activity, different methodologies

are proposed. In particular, the main reason to do this is to avoid the difficulties of

Bayes factor with improper or vague priors.

The intrinsic Bayes factor, a version of the Bayes factor is proposed by Berger

and Pericchi (1996). To construct this, the data is needed to divide into two parts.

Those parts are regarded as training and test data. Then, to compute the Bayes

factor, one can consider the testing data as the data and the posterior distributions

using the training data as the prior. With yyy(l) and yyy(−l) as a training sample and a

test sample respectively, an intrinsic Bayes factor denoted by BFint , for the training

sample yyy(l) is defined as

BFint(l) =
f (yyy(−l)|yyy(l),M1)

f (yyy(−l)|yyy(l),M2)
. (2.5)

Here f (yyy(−l)|yyy(l)),Mi, i = 1,2 represents the marginal density of the testing sam-

ple. As a popular choice, a minimal training sample is used as a training sample.

But, a given data set usually has more than one minimal training sample. In that

case, one possible option might be to use the arithmetic or geometric averages of

the intrinsic Bayes factors that are computed using the available minimal training

samples of the data. Berger and Pericchi (1996) also discuss some versions of the
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intrinsic Bayes factor.

The average version of the intrinsic Bayes factor is a bad choice to use for

a large data set as we might ended up averaging over many minimal training sets

available for that data. Sometimes, due to difficulties with minimal training sample,

intrinsic Bayes factors fail to discriminate between competing models (O’Hagan,

1997). An alternative approach is the fractional Bayes factor (O’Hagan, 1995).

To illustrate this approach, let us denote a fraction b as the ratio of the size of the

training sample (u) to the size of the entire data set (v). The fractional Bayes factor,

denoted by BFf rac in this case, can be defined as

BFf rac =
M1(b,yyy)
M2(b,yyy)

, (2.6)

where

Mi(b,yyy) =
∫

f (yyy|θθθ i) pi(θθθ i)dθθθ i∫
f (yyy|θθθ i)b pi(θθθ i)dθθθ i

.

It is important to remember that the motivation for the fractional Bayes factor is

simply asymptotic (in u and v). O’Hagan (1997) shows that fractional Bayes fac-

tors have many similar properties to ordinary Bayes factors, like adherence to the

likelihood principle, and invariance to data transformation, which are not enjoyed

by intrinsic Bayes factors.

Berger and Pericchi (1998) introduces median intrinsic Bayes factor with two

different versions. In the first version, the authors use the median instead of the

mean (arithmetic or geometric) over the training data. Now, the median intrinsic

Bayes factor has the form

BFM
int = median[BFint(l)], (2.7)

where BFint(l) is defined in equation (2.5). The second version of the median

intrinsic Bayes factor has the form

BFRM
int =

median[ f (yyy(−l)|yyy(l),M1)]

median[ f (yyy(−l)|yyy(l),M2)]
. (2.8)

Berger and Pericchi (1998) argues that BFM
int and BFRM

int are stable compared to the
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intrinsic BF, they proposed earlier.

The posterior Bayes factor is defined by Aitkin (1991) which uses the the pos-

terior distribution pi(θθθ i|yyy) as a replacement of the prior distribution pi(θθθ i) in the

Bayes factor formulation (equation 2.4). However, this approach has some criti-

cisms related to double use of the data and use of posterior as prior. These criti-

cisms are discussed by many authors in the discussion of Aitkin (1991).

2.4 Predictive Distribution as Comparative Tool
In model selection, some particular forms of predictive distributions have been used

within the Bayesian approach for a long time. Box (1980) argues that conditional

on the model adequacy, the posterior distribution is utilized to estimate the model

parameters. On the other hand, the criticisms of the model given the existing data

can be obtained using the predictive distribution (Box, 1980). In addition, the

predictive distributions of two models will be comparable, not the posteriors while

examining those two models.

Many approaches to model selection have been suggested by using predictive

criteria instead of Bayes factors over the years since the 1970’s. The idea of a

pseudo Bayes factor arises by using cross-validation ideas (Geisser, 1975; Stone,

1974). Some predictive ideas are already incorporated in the discussed intrinsic

Bayes factors and posterior Bayes factors.

A predictive density emerges by averaging a likelihood defined in the sample

space with respect to the updated prior based on the data (that is the posterior).

Suppose the data yyy is a collection of conditionally (given θθθ ) independent univari-

ate observations y j, j = 1, . . . ,n. Also, suppose under Model Mi, y j has density

f (y j|θθθ i,Mi), i = 1,2, and let Jn denote the set {1, . . . ,n}, with S as an arbitrary

subset of Jn. We define the likelihood as:

L(θθθ i;yyys,Mi) =
n

∏
j=1

f (y j|θθθ i,Mi)
d j ,

where indicator function d j = 1 if j∈ S or d j = 0 if j 6∈ S. Similarly as section 2.3.1,

let pi(θθθ i), i = 1,2, be the prior density under Model Mi. Now, the formal condi-

tional density can be considered as
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f (yyys1
|yyys2

,Mi) =
∫

L(θθθ i;yyys1
,Mi) pi(θθθ i|yyys2

)dθθθ i (2.9)

=

∫
L(θθθ i;yyys1

,Mi)L(θθθ i;yyys2
,Mi) pi(θθθ i)dθθθ i∫

L(θθθ i;yyys2
,Mi) pi(θθθ i)dθθθ i

,

where S1 and S2 are arbitrary subsets of Jn. Equation (2.9) represents a predic-

tive density; here the joint density of yyys1
is averaged over the prior distribution of

θθθ i updated by the portion the data yyys2
. Equation (2.9) represents a general for-

mulation of predictive approach for Bayesian model selection. Using different

specifications for S1 and S2, we can obtain different predictive distributions used in

Bayesian model selection approaches found in the literature. We discuss some of

these approaches in next subsections.

2.4.1 Different Predictive Distribution Based Approaches

Several examples of density (2.9) can be obtained in the literature. All of these

examples vary in specification of the subsets S1 and S2 of Jn. We list some of these

examples here, which are discussed by Gelfand and Dey (1994).

(i) If S1 = Jn and S2 = φ , then f (yyys1
|yyys2

,Mi) becomes the standard marginal density

of the data. In this case, the denominator integral is not considered. Clearly,

this produces the general Bayes factor given in equation (2.4).

(ii) If S1 = {r} and S2 = Jn−{r}, then a cross-validation density results. This

leads to the conditional predictive ordinate criterion which eventually pro-

duces the pseudo Bayes factor. We discuss this approach in detail in the next

subsection.

(iii) If S1 is considered as a subset of Jn, usually some (> 1) elements of Jn and

S2 = Jn−S1, then we have an extended version of (ii) (Pena and Tiao, 1992).

For our study, we focus on this extension.

(iv) The choice S1 = Jn and S2 = Jn indicate posterior predictive density (Aitkin,

1991). Posterior Bayes factor is produced directly by using (iv).
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(v) Another choice is to specify S1 = Jn−S2 and S2 = {1, . . . , [ρn]}, where [] rep-

resents the greatest integer function. A proportion ρ of the observations n is

used for updating prior distribution whereas the observations (1−ρ)×n are

used for model selection.

(vi) If S1 = Jn− S2 and S2 is nothing but a minimal subset (Berger and Pericchi,

1996) with a proper density pi(θθθ i|yyys2
), then f (yyys1

|yyys2
,Mi) becomes proper.

Several versions of intrinsic Bayes factor can be developed from (vi).

Among the six different specifications of S1 and S2, (i) and (vi) are quite dif-

ferent in terms of asymptotic behavior than the rest of the specifications (ii)− (v).

The cardinality of S2 approaches infinity as sample size n→ ∞. We discuss condi-

tional predictive ordinate criterion noted in (ii) in detail in the next subsection as

this is our primary interest.

2.4.2 Conditional Predictive Ordinate Criterion and Pseudo Bayes
Factor

The conditional predictive ordinate criterion is obtained by specifying the subsets

of Jn as S1 = {r} and S2 = Jn−{r}. This specification yields the cross-validation

density f (yr|yyy−r,Mi) by putting the values of S1 and S2 in density (2.9) where

yyy−r = (y1,y2, . . . ,yr−1,yr+1, . . . ,yn) (Stone, 1974; Geisser, 1975). According to

Geisser (1980), this cross-validation density f (yr|yyy−r,Mi) is popularly known as

the conditional predictive ordinate (CPO) when evaluated at the observed yyyobs.

Also, Geisser and Eddy (1979) propose the product of these cross-validation den-

sities (or Bayesian predictive densities) ∏
n
r=1 f (yr|yyy−r,Mi) as a proxy for sampling

density f (yyy).

It should be noted that ∏
n
r=1 f (yr|yyy−r,Mi) is built by treating the yr’s as predic-

tively independent conditional on the parameters. This product is a compromise

between Bayesian and non-Bayesian methods in some ways. Firstly, the product

of the conditional predictive densities f (yr|yyy−r,Mi), r = 1, . . . ,n is used instead of

joint predictive density for the ease of the computational complexity. Secondly, the

conditional predictive density of yr depends on both the yyy−r and prior distribution

of θθθ i whereas the joint predictive density depends only on prior distribution. In ad-

dition, as we discussed earlier, the joint predictive density of yyy becomes improper if
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an improper prior distribution is used. These problems are addressed when instead

we use the joint cross-validation densities ∏
n
r=1 f (yr|yyy−r,Mi).

Using the idea of CPO, we can construct the Bayesian model selection tool,

pseudo Bayes factor of Model M1 with respect to Model M2 (denoted by PBF

here) as suggested by Geisser and Eddy (1979):

PBF =
∏

n
r=1 f (yr|yyy−r,M1)

∏
n
r=1 f (yr|yyy−r,M2)

. (2.10)

The log version of the equation (2.10) is used commonly for computational sim-

plicity which follows:

logPBF =
n

∑
r=1

log f (yr|yyy−r,M1)−
n

∑
r=1

log f (yr|yyy−r,M2). (2.11)

The cross-validation densities used to form the pseudo Bayes factor lead to an in-

teresting asymptotic approximation. Log pseudo Bayes factor can be approximated

to a quantity that is the summation of the logarithm of likelihood ratio test statistic

and a function of the parameters in two competing models for a large sample size

(n). We can write as n→ ∞, then

logPBF ≈ logλn +
p2− p1

2
.

Here λn represents the likelihood ratio test statistic and p1 and p2 are number

of parameters for Model M1 and M2. This asymptotic approximation leads to a

bridge between the Bayesian (pseudo Bayes factor) and non-Bayesian (likelihood

ratio test statistic) methods which strengthen the motivation of using pseudo Bayes

factor as a model comparison tool.

CPO criterion can be called as a criterion based on “leave-out one” in the

cross-validation sense. Hence, the pseudo Bayes factor is also based on “leave-

out one”. We tag these “leave-out one” as in the cross-validation (or predictive)

density f (yr|yyy−r,Mi), yr is conditional on all elements of yyy except yr (implying

leaving out yr). Only one element of yyy is considered as leave-out in this approach

for which the conditional cross-validation density is formed. From examples (i)

and (ii) of Bayesian predictive distribution based approaches discussed in subsec-
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tion 2.4.1, it is clear that, if we consider r = Jn, then Jn− r = φ which leads (ii)

to be turned into (i); this implies that with “leave-out all”, pseudo Bayes factor is

nothing but the formal Bayes factor. Now what happens in between, i.e., between

“leave-out one” and “leave-out all”? To give insight into this matter, we need to

extend the idea of CPO criterion for different “leave-out sizes” which is discussed

in the next subsection.

2.4.3 Extending the CPO Criterion

CPO criterion is defined for “leave-out one” case in the cross-validation sense

which is already discussed in the previous subsection. Now, we discuss the ex-

tension of CPO criterion with different leave-out options. That will enable us to

examine the model selection between the formal Bayes factor and the pseudo Bayes

factor.

The motivation for examining this is to explore that how well the Bayesian

model comparison using Bayes factor can be approximated by the extended CPO

criterion with different leave-out options. Suppose we write the log-likelihood of

the cross-validation densities for CPO for “leave-out one” with data yyy= (y1, . . . ,yn)

and Model Mi, i = 1,2 as

m(1) =
1
n

n

∑
r=1

log f (yr|yyy−r,Mi). (2.12)

For two leave-out points r and t, we can define

m(2) =
1
2

(
n
2

)−1 n

∑
r<t

log f (yyyr,t |yyy−(r,t),Mi), (2.13)

where yyyr,t =(yr,yt) and yyy−(r,t)=(y1, . . . ,yr−1,yr+1, . . . ,yt−1,yt+1, . . . ,yn). The mul-

tiplier
(n

2

)−1 is added to take average over all possible combinations of yyyr,t and

multiplier 1
2 is used for adjustment due to two leave-out points. Equation 2.13 can

be re-written as,

m(2) =

(
n
2

)−1 n

∑
r<t

1
2

{
log f (yyyr|yyy−(r,t),Mi)+ log f (yyyt |yyy−(r),Mi)

}
.
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In general, with k leave-out, the adjustment factor will be 1/k. Following the

pattern, for three leave-out points r, t and s we can define

m(3) =
1
3

(
n
3

)−1 n

∑
r<t<s

log f (yyyr,t,s|yyy−(r,t,s),Mi), (2.14)

and so on for increasing number of leave-out points up to the sample size n. If

we want to compare two models (1 and 2), the difference γk = m(k)
1 −m(k)

2 has a

similar form to the log Bayes factor; in a cross-validation sense of “leave-out k”,

this difference represents how much better/worse model 1 predicts than model 2.

We know that k = 1 corresponds to CPO criterion and k = n corresponds to

formal Bayesian model comparison using Bayes factors; both of these are already

discussed. The marginal density of the data is obtained from exp(nm(n)). Hence,

the log Bayes factor of M1 with respect to M2 is represented by n(m(n)
1 −m(n)

2 )

whereas the log pseudo Bayes factor of M1 with respect to M2 is represented by

n(m(1)
1 −m(1)

2 ). In this study, I wish to examine whether the log of extended pseudo

Bayes factor (PBF), n(m(k)
1 −m(k)

2 ), 1 ≤ k < n can be treated as approximation of

log Bayes factor when the real Bayes factor comparisons are desired but hard to

compute.

2.4.4 Computation of the Extended CPO Criterion

The CPO criterion is well used as it is easy to compute directly from Monte Carlo

(MC) or Markov chain Monte Carlo (MCMC) output. Suppose we know that the

elements of the data yyy are conditionally independent given the parameter vector

θθθ . Then using MCMC technique, Monte Carlo samples can be obtained from

the posterior distribution p(θθθ |yyy). After that, one can express the cross-validation

density (for “leave-out one” with k = 1) f (yr|yyy−r), r = 1, . . . ,n as a function of

posterior mean that is computed from the posterior with all data points (Newton

and Raftery, 1994). Then, we can express f (yr|yyy−r) as

f (yr|yyy−r) = E{ f (yr|θθθ)−1|yyy}−1. (2.15)

The right hand side of the equation (2.15) shows the posterior harmonic mean of

the likelihood, so Raftery et al. (2006) term it the ‘harmonic mean identity’. The
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authors suggest to approximate the cross-validation density f (yr|yyy−r) using the

sample harmonic mean of the likelihoods[
1
B

B

∑
q=1

1

f (yr|θθθ (q))

]−1

, (2.16)

where θθθ
(1),θθθ (2), . . . ,θθθ (B) are the B draws from the posterior distribution f (θθθ |yyy).

These sample draws may come directly from the output of a standard MC or

MCMC implementation.

Equation (2.15) is very straightforward and easy to compute which leads us to

the computation of m(1) discussed in subsection 2.4.3. Also, this approach can be

extended for k > 1, i.e., for k = 2, k = 3 and so on. For example, for k = 2 we can

write:

f (yr,t |yyy−(r,t)) = E{[ f (yr|θθθ) f (yt |θθθ)]−1|yyy}−1, (2.17)

and this can be approximated as per equation (2.16):[
1
B

B

∑
q=1

(
1

f (yyyr|θθθ q)
.

1
f (yyyt |θθθ q)

)]−1

. (2.18)

We know that with increasing leave-out size, the model comparison using CPO

criterion (hence the pseudo Bayes factor) becomes closer to the model comparison

from formal Bayes factor. Moreover, Raftery et al. (2006) argue that finding formal

Bayes factor using this approach is hard due to Monte Carlo error. This implies that

the CPO criterion with a larger leave-out size is more vulnerable to Monte Carlo

error than with a smaller leave-out size.

2.5 Summary
There are many approaches to model comparison in both the frequentist and Bayesian

contexts. The Bayes factor is a well-known tool for Bayesian model comparison.

But, there are some criticisms for Bayes factor that arise due to prior specifica-

tion and other issues. Different versions of Bayes factors have been suggested to

address these criticisms. Predictive distribution based approaches such as pseudo
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Bayes factor based on CPO criterion are also popular in Bayesian model compar-

ison setting. From the cross-validation viewpoint, CPO criterion corresponds to

“leave-out one” and the extension of CPO criterion (“leave-out all”) leads to for-

mal Bayesian model comparison.
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Chapter 3

Bayesian Model Comparison for
Linear Regression Models

Linear regression models are very common in studying the effect of one or more

variables (explanatory variables) on a variable of interest (response variable). Dif-

ferent combinations of explanatory variables lead to different specifications of the

linear regression models. These models can be compared using the model compar-

ison techniques described in the previous chapter. Both the classical and Bayesian

approaches of model comparison can be applied. For example, one can use likeli-

hood ratio test which is a classical approach. Also, a Bayesian approach, say Bayes

factor can be applied for model comparison after specifying the linear regression

model in Bayesian context. In this chapter, we discuss the extended pseudo Bayes

factor (EPBF) utilizing the extended CPO criterion, a compromise between the

pseudo Bayes factor and the formal Bayes factor, as a model selection tool for lin-

ear regression models. Particularly our interest is to examine how the model selec-

tion behaves when we change the “leave-out size” in the extended CPO criterion. It

is well-known that different model comparison tools, for example, likelihood ratio

test, AIC, BIC, Mallow’s CP may not select the same model among a set of candi-

date models. For this reason, we hope to observe whether there is any agreement

or disagreement in between the pseudo Bayes factors and the formal Bayes factors

as model comparison tool.
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3.1 Bayesian Linear Regression Models
The Bayesian approach can be applied to estimate the parameters of the linear

regression model. We start our discussion with defining a linear regression model.

Suppose our response variable is yyy and we have a set of explanatory variables:

xxx1,xxx2, . . . ,xxxp. Here, yyy = (y1, . . . ,yn) is a vector of length n representing responses

for n observations and each of the xxxk’s, k = 1, . . . , p are vectors of length n as

well. Hence, the design matrix [of dimension n× (p+ 1)] in this case is XXX =

(111,xxx1,xxx2, . . . ,xxxp). The mean value of the response for the ith individual yi can be

described as,

E(Yi |βββ , XXX) = β0 +β1 xi1 + · · ·+βp xip, i = 1, . . . ,n, (3.1)

where xi1,xi2, . . . ,xip are the explanatory values for the ith individual and βββ =

(β0,β1, . . . ,βp)
ᵀ are unknown regression parameters. Suppose we denote xxxᵀi =

(1,xi1,xi2, . . . ,xip) as the ith individual’s row vector of explanatory variables. Then,

the mean value in equation (3.1) can be re-expressed as

E(Yi |βββ , XXX) = xxxᵀi βββ .

In linear regression setting, one assumption made is that the responses {Yi} are

independent conditional on the values of the parameters and the explanatory vari-

ables. Another assumption of equal variance is also made, that is, var(Yi |βββ , XXX) =

σ2. Now, the vector of all unknown parameters in this linear regression setting

becomes θθθ = {βββ ,σ2}. Also, we assume that the errors εi = yi−E(yi |βββ , XXX), i =

1, . . . ,n are independent of one another. The errors εi’s are distributed as normal

with mean 0 and variance σ2.

For a vector of n observations yyy, we can write (in matrix notation):

yyy |βββ , σ
2, XXX ∼ Nn(XXXβββ ,σ2I), (3.2)

with I as an n× n identity matrix. The vector of responses yyy has the multivariate

normal distribution of dimension n with mean vector XXXβββ and variance-covariance

matrix σ2I.
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From equation (3.2), the likelihood (joint density of yyy) as a function of βββ and

σ2 is given by,

L(θθθ ;yyy, XXX) = L(βββ , σ
2;yyy, XXX) ∝

n

∏
i=1

σ
−1 exp

{
− 1

2σ2 (yi− xxxᵀi βββ )2
}
. (3.3)

The likelihood L(θθθ ;yyy, XXX) is used for the estimation of the parameters θθθ in classical

setting. In Bayesian context, we need to specify prior distribution, say g(θθθ) for θθθ

and then make inference on the θθθ from the posterior distribution p(θθθ |yyy, XXX) which

has the following general form

p(θθθ |yyy, XXX) ∝ L(θθθ ;yyy, XXX) × g(θθθ). (3.4)

Different prior specifications, for example, a reference prior or a conjugate

prior lead to different posterior distributions. The posterior distribution of the pa-

rameters can be broken down into a marginal distribution of σ2 and a conditional

distribution of βββ given σ2; this intuition is helpful to make inference for βββ and σ2

respectively.

In the Bayesian linear regression setting, one might be interested in predict-

ing a future observation ỹ corresponding to a vector of values of the explana-

tory variables say x̃xx. From the equation (3.2) we can say that conditional on

θθθ = (βββ , σ2), ỹ is distributed as N(x̃xx
′
θθθ , σ2). Then, averaging the conditional den-

sity of ỹ, p(ỹ |θθθ , x̃xx) over the posterior distribution of the parameters θθθ we can

obtain the posterior predictive density of ỹ, p(ỹ |yyy) follows:

p(ỹ |yyy, x̃xx, XXX) =
∫

θθθ

p(ỹ |θθθ , x̃xx) p(θθθ |yyy, XXX)dθθθ . (3.5)

Having the posterior, and the posterior predictive distribution, the next thing is

to compute the extended CPO criterion discussed in the subsection 2.4.3 as a model

selection tool. The posterior predictive distribution formulated in equation (3.5)

can be used to obtain the cross-validation densities, and hence to compute the CPO

criterion.

Two types of unknown parameters to be estimated are included in θθθ : parame-

ters for the location (i.e., βββ to calculate mean of the responses) and parameter σ2 to
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calculate the variance of the responses. For simplicity, we initially assume that the

variance parameter σ2 is known. Now, θθθ reduces to βββ . We refer to this situation

as “Normal model with unknown mean and known variance”. At first, we examine

the behavior of model comparisons of such models using the extended CPO crite-

rion with different “leave-out sizes” which is discussed in section 3.2. We discuss

this as a building block to understand the general situation with both the βββ and σ2

unknown; this situation can be termed as “Normal model with unknown mean and

variance.” Behavior of model comparisons using the extended CPO criterion with

both the βββ and σ2 unknown is discussed later in section 3.3.

3.2 Normal Model with Unknown Mean and Known
Variance

In this section, we discuss the extended CPO criterion applied to linear regression

models with known variance of the responses. The likelihood of the responses

given in equation (3.3) can be re-expressed in matrix notation as

L(βββ ;yyy, XXX , σ
2) ∝ exp

{
− 1

2σ2 (yyy
ᵀyyy−2βββ

ᵀXXXᵀyyy+βββ
ᵀXXXᵀXXXβββ )

}
. (3.6)

Now, a prior distribution for βββ is needed to commence the Bayesian inference

through constructing the posterior distribution of βββ . The distribution of yyy is multi-

variate normal, and from the equation (3.6), we see that the βββ plays the same role

in the exponent looks like yyy; this gives an intuition that the multivariate normal

prior distribution for βββ is conjugate. Hence, let us consider the prior distribution

of βββ , p(βββ ) as multivariate normal (of dimension p+ 1) with mean vector βββ 0 and

variance-covariance matrix Σ0. The posterior distribution of βββ has the following

expression:

p(βββ |yyy, XXX , σ
2) ∝L(βββ ;yyy, XXX , σ

2)× p(βββ ) (3.7)

∝exp
{
− 1

2σ2 (yyy
ᵀyyy−2βββ

ᵀXXXᵀyyy+βββ
ᵀXXXᵀXXXβββ )

}
× exp

{
−1

2
(βββ ᵀ

Σ
−1
0 βββ −2βββ

ᵀ
Σ
−1
0 βββ 0 +βββ

ᵀ
0Σ
−1
0 βββ 0)

}
.
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After simplification, we can write

p(βββ |yyy, XXX , σ
2) ∝exp

{
−1

2

[
βββ
ᵀ
(

Σ
−1
0 +

XXXᵀXXX
σ2

)
βββ −2βββ

ᵀ
(

Σ
−1
0 βββ 0 +

XXXᵀyyy
σ2

)]}
(3.8)

=exp
{
−1

2
(βββ −µµµβββ )

ᵀVVV−1
βββ
(βββ −µµµβββ )

}
,

which is proportional to a multivariate normal density, with mean vector

µµµβββ = E[βββ |yyy, XXX , σ
2] =

(
Σ
−1
0 +

XXXᵀXXX
σ2

)−1(
Σ
−1
0 βββ 0 +

XXXᵀyyy
σ2

)
, (3.9)

and variance-covariance matrix

VVV βββ = Var[βββ |yyy, XXX , σ
2] =

(
Σ
−1
0 +

XXXᵀXXX
σ2

)−1

. (3.10)

From the formula of posterior mean E[βββ |yyy, XXX , σ2] in equation (3.9), it is evi-

dent that if the prior variance-covariance matrix Σ0 has elements with large magni-

tude (that is the precision matrix Σ
−1
0 has elements with small magnitude), then the

posterior mean approximately equals the least square estimate of βββ : (XXXᵀXXX)−1XXXᵀyyy.

Alternatively, if the variance of responses σ2 is very large, then the expectation is

approximately equals βββ 0, the prior mean.

Since the posterior distribution of βββ is multivariate normal, and the sampling

distributions of the yi’s are also normal, in this setting the predictive posterior dis-

tribution of a future observation, say ỹ, will be normal as well. So, to compute the

extended CPO criterion, we can directly use the closed form densities of the pre-

dictive posterior distribution as the cross-validation densities. Alternatively, if we

pretend that the predictive posterior formulation has no closed form solution, one

can approximate the cross-validation densities using the Monte Carlo (MC) sam-

ples from the posterior distribution of βββ . After that, the extended CPO criterion

can be computed as discussed in subsection 2.4.4. In general, having closed form

results, there is no need to use the MC based results. But, here our purpose is to

examine how well the MC based results approximate the closed form results since

in more difficult problems we must rely on such MC results. Hence, we use both
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the approaches discussed in next two subsections to compute cross-validation den-

sities and hence the extended CPO criterion or the extended pseudo Bayes factor

(PBF) as a model comparison tool.

3.2.1 Extended CPO Criterion using Closed Form Posterior
Predictive Distributions

The posterior predictive distribution of a new observation ỹ, p(ỹ |yyy) can be readily

obtained using the equation (3.5). As discussed in section 3.1, conditional on βββ , ỹ

is distributed as normal with mean x̃xx
′
βββ and variance σ2. Also, the posterior distri-

bution of βββ is multivariate normal with mean vector µµµβββ and variance-covariance

matrix VVV βββ . Now, p(ỹ |yyy) has the following expression:

p(ỹ |yyy) =
∫

βββ

φ(ỹyy; x̃xx
′
βββ , σ

2)φp+1(βββ ; µµµβββ ,VVV βββ )dβββ , (3.11)

where φ(ỹyy; x̃xx
′
βββ , σ2) and φp+1(βββ ; µµµβββ ,VVV βββ ) are the corresponding normal densities

for N(x̃xx
′
βββ , σ2) and Np+1(µµµβββ ,VVV βββ ). Simplifying the results, we can show that ỹ |yyy

is distributed as normal with mean x̃xx
′
µµµβββ and variance x̃xx

′
VVV βββ x̃xx+σ2. Such univariate

results can be extended to multivariate ones when we want to find the predictive

distribution of a vector of new observations.

A cross-validation density with “leave-out one”, say f (yr |yyy−r), r = 1, . . . ,n

with yyy−r = {y1, . . . ,yr−1,yr+1, . . . ,yn} can be computed from the posterior predic-

tive formulation (3.11) by setting ỹ = yr and yyy = yyy−r; this is the CPO criterion.

Then, as described in subsection 2.4.3, the log-likelihood of these cross-validation

densities (or CPO’s), denoted by m(1), can be computed for two models. The dif-

ference of m(1) in two competing models multiplied by the number of observations

n is known as the log pseudo Bayes factor. Using the value of log pseudo Bayes

factor (PBF), one can decide on one model over the other.

Similarly, cross-validation densities with “leave-out size” greater than one, can

be computed by substituting ỹ by the leave-out elements in the posterior predictive

formulation (3.11). Accordingly, we can compute the log extended pseudo Bayes

factor based on this extended CPO criterion and then compare the competing two

models. The procedure is already discussed in subsection 2.4.3.
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3.2.2 Extended CPO Criterion using Monte Carlo Samples

In general, how the MC samples from a posterior distribution can be used directly

to compute the CPO criterion is discussed in subsection 2.4.4. Suppose we have B

draws of βββ , say βββ
(1), . . . ,βββ (B) from the posterior distribution of βββ , p(βββ |yyy, XXX , σ2)

specified by equation (3.8). The CPO criterion or cross-validation density with

“leave-out one” can be approximated using (2.16). Log PBFs can be computed

using the approximated cross-validation densities to compare two linear regression

models in Bayesian context. Cross-validation densities in extended CPO criterion

with “leave-out two” can be approximated by equation (2.18). Similarly, cross-

validation densities for different “leave-out sizes” can be approximated; log EPBFs

computed using these approximated cross-validation densities can then be used as

to compare linear regression models.

We discuss the comparative behavior of the extended CPO criterion or the

EPBF in the next subsection for “Normal model with unknown mean and known

variance” setting with different “leave-out sizes”. Both the cases are considered:

when the extended CPO criterion is computed as a closed form solution using the

predictive posterior distribution, and when the extended CPO criterion is approxi-

mated using the MC samples from the posterior distribution of the linear regression

parameters.

3.2.3 Comparative Behavior of Extended CPO Criterion: Closed
Form Versus Monte Carlo Samples

The unknown regression parameters βββ correspond to the mean of the responses

whereas the variance of the responses σ2 is known in “Normal model with un-

known mean and known variance” which is already discussed in section (3.2).

Here, we examine how the extended CPO criterion, a model comparison tool be-

haves in real life scenario for both the situations: closed form and MC based solu-

tion with an illustrating example. We use a data file here named automobile that

is taken from the UCI Machine Learning Repository (Lichman, 2013). This data is

originally extracted from the 1985 Ward’s Automotive Yearbook.

Among the three types of entities contained in the original data file, we consider

only the specification of an automobile in terms of various characteristics, say
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length of the automobiles, height of the automobiles, etc. Particularly, we con-

sider the following five explanatory variables regarding the characteristics of the

automobiles:

• length,

• width,

• height,

• compression ratio, and

• horsepower

with log(price) as our response variable. We want to examine whether the log(price)

of the automobiles depend on the listed characteristics of the automobiles. There

are in total n = 195 non-missing observations for this automobile data. We

specify the models and priors for the regression parameters βββ below.

Model Specification

Three different models are considered; these models denoted by Model 1, Model

2, and Model 3 have different combinations of the explanatory variables. These

three models have the following specifications.

1. Model 1: Full Model (Model with all explanatory variables listed above)

with the formulation

l pricei =β0 +β1 lengthi +β2 widthi +β3 heighti +β4 comp.ratioi

+β5 horsepoweri + εi,

where i = 1,2, . . . ,195, l price denotes log(price) and comp.ratio indicates

compression ratio.

2. Model 2: Model which leaves only height out of the full Model.

3. Model 3: Model which leaves height and compression ratio out of the full

Model.
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We consider 2500 MC samples from the posterior distribution of the regression

parameters βββ (see equation (3.8)) for the MC based calculation of the extended

CPO criterion. We divide these into 10 batches of equal size 250. We consider the

log extended CPO and log extended pseudo Bayes factor calculation for each of

these batches. Also, we compute the closed form results for CPO. To assess how

well the MC based calculation approximates the exact answer we examine the de-

viation of the results found in 10 separate MC results from the closed form result.

All these are done for different “leave-out sizes” (from “leave-out 1” to “leave-out

all”). We consider 15 different “leave-out sizes”; these are 1, 5, 10, 30, 50, 80,

100, 120, 150, 170, 175, 180, 185, 190, and 195 (i.e., all). These sizes are taken

arbitrarily with more sizes near the “leave-out all”. In addition, while taking the

combinations of MC samples required for extended CPO calculation with differ-

ent “leave-out sizes”, we take all combinations if the total combinations are less

than 2000 and take only 2000 combinations randomly if the total combinations ex-

ceed 2000 (as the number of combinations increases drastically/exponentially with

“leave-out size”).

Prior Specification

For the regression parameters βββ , we consider multivariate normal prior with mean

vector 0 and variance-covariance matrix identity matrix I. We run a simple lin-

ear regression with the response and explanatory variables discussed above and

observe that the linear regression coefficients are within ±2 which makes the con-

sidered mean vector for prior reasonable. If the regression coefficients are bigger

than ±2, then this prior mean specification might not be useful.

We use the model and prior setup discussed above to obtain the results de-

scribed in the next subsection. We describe our findings for the three models

considered. We have three possible pairwise comparisons of these three models:

Model 1 versus Model 2, Model 1 versus Model 3, and Model 2 versus model 3.

At first, we describe the behavior of the extended CPO criterion for the three mod-

els separately and then extend to three model comparisons using the EPBF which

relies on the extended CPO criterion.
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3.2.4 Results

First we visualize the closed form results of log extended CPO values obtained

from Model 1, Model 2 and Model 3 (see Figure 3.1). The purpose of this visu-

alization is to display the log extended CPO values for different “leave-out sizes”

(smaller to larger) for all three models at the same time. We can observe the pat-

tern of the log extended CPO values over the increasing “leave-out sizes” from the

Figure 3.1.
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Figure 3.1: Comparison of closed form results for three models (unknown
mean but known variance)

All three models show quite a similar pattern with decreasing log extended

CPO values over the increasing leave-out size. We observe a smaller decrease in

log extended CPO values up to “leave-out 170” but a sharp decrease in an expo-

nential manner after “leave-out 170”. All three models have close log extended

CPO values, but the distance between the log extended CPO values increases with

increasing “leave-out sizes”, and the difference is clearly visible at “leave-out all”.

The relative position of the three models remains the same at each of the “leave-

out sizes”. This indicates the consistent pattern of these three models over different

“leave-out sizes”. The similarity of the closed form log extended CPO values for

three models can be concluded from Figure 3.1 except the “leave-out all” point.
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Such close models are interesting to examine the model comparison behavior

over different “leave-out sizes”. In closed form result, we have consistent pattern

for these three models at all “leave-out sizes”; but this may not be the case when

we must compute using MC samples. The bias related to the results obtained from

the MC samples increases with the increasing leave-out points. This bias is an im-

portant issue to investigate further. We need to compare the closed form results and

results based on MC samples to examine whether MC based results can replicate

the closed form results or there is a bias that distort the MC based results from the

closed form results. This will give us an intuition for the future when we have only

MC based results due to unavailability of the closed form results. Now, for the

Model 1 we observe the log extended CPO values from the closed form solutions

as well as from the MC samples with the setup described above in the Figure 3.2.

The green filled circles represent the closed form values at each “leave-out size”.
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Figure 3.2: Comparison of closed form results and MC based results for
Model 1 (unknown mean but known variance)

The MC based results (for 10 batches here) match the corresponding closed

form result up to “leave-out 120” (see Figure 3.2). The visible changes between

the results from MC samples and closed forms are observed at “leave-out 150” and

higher “leave-out sizes”. Compared to nearer “leave-out sizes”, at “leave-out all”

we see a sharp decrease in the log extended CPO value for the closed form result
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which is not the case for MC samples. Clearly, MC based results show an upward

bias from the closed form result. This is not only the case for Model 1 as we ob-

serve the same pattern for the other two models considered here. The closed form

result demonstrates the true values, and we observe substantive positive departure

of MC based results from these values at higher “leave-out sizes”.

Now we compare the three models pairwise. First compare Model 1 with

Model 2. For model comparison, we use the extended pseudo Bayes factor which

can be computed from the calculated extended CPO for the competing models. Fig-

ure 3.3 describes this comparison visually. The red filled circles denote the closed

form results whereas the 10 black circles represent MC results from 10 batches at

each “leave-out size”. We use the same specification for Figure 3.4 and Figure 3.5.
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Figure 3.3: Comparison of Model 1 and Model 2 (closed form results and
MC based results for “unknown mean and known variance” situation)

We observe some interesting results from Figure 3.3. As we have negative log

EPBFs at all “leave-out sizes”, the closed form log EPBFs suggest the choice of

Model 2 over Model 1 (hence the same choice). The strength of evidence increases

with increasing “leave-out sizes”. MC based results vary over the direction with

increasing “leave-out sizes”. All MC based results from 10 batches yield the same

choice of model (Model 2 over Model 1) for “leave-out sizes” less than 80 for this

particular data. But, from “leave-out size” 80, the choices of the model fluctuate
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for the MC based results obtained from 10 batches. This fluctuation is due to the

MC error. We need to quantify the MC error to examine how this increases for

increasing ‘leave-out sizes”.

For the smaller “leave-out sizes” (for example, 1, 5, 10) the closed form results

are near the center of the MC based results. For the larger “leave-out sizes” say

“leave-out 100” or more, the MC based results from most of the 10 batches have

a tend to have higher values than the corresponding closed form results, Hence

from Figure 3.3, it is clearly observed that the MC based results become positively

biased and more variable as the “leave-out size” increases. We have the interest

in whether it is possible to find a “leave-out size” where the EPBF is close to the

formal Bayesian comparison with smaller MC error which is discussed later.

Moreover, at “leave-out all”, the EPBF becomes a version of the formal Bayesian

comparison, that is, the Bayes factor. In Figure 3.3, the closed form result at “leave-

out all” indicates the value of the formal Bayes factor. MC based results from all 10

batches show positive bias from the formal Bayes factor value which implies that

we are very poorly computing real Bayesian model comparison with some positive

MC errors for MC based results.

Now we check the two other possible model comparisons: Model 1 versus

Model 3 and Model 2 versus Model 3. Closed form and MC based log EPBFs for

Model 1 versus Model 3 are displayed in Figure 3.4.

Figure 3.4 displays the similar pattern as Figure 3.3. Here we compare Model

1 with Model 3. As the comparison between Model 1 and Model 2, the closed

form results once again indicate the same choice of model over different “leave-out

sizes”, and the evidence is stronger with increasing “leave-out sizes”. Interestingly,

the change in log EPBFs between two different “leave-out sizes” is steeper for

comparison of Model 1 versus Model 3 than the comparison of Model 1 versus

Model 2. Based on the closed form results, Figure 3.4 suggests the choice of

Model 3 over Model 1.

As with the comparison between Model 1 and Model 2, the closed form results

are near the center of the MC based results from 10 batches for smaller “leave-out

sizes” for the comparison between Model 1 and Model 3. Figure 3.4 shows that

the MC based results become positively biased and more variable as the “leave-out

size” increases which is similar to Figure 3.3. The only distinction with the pre-
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Figure 3.4: Comparison of Model 1 and Model 3 (closed form results and
MC based results for “unknown mean and known variance” situation)

vious comparison is that from “leave-out 120”, the choices of the model fluctuate

for the MC based results obtained from 10 batches, whereas this fluctuation starts

from the “leave-out 80” in the comparison between Model 1 and Model 2.

Now, we move to the last comparison: Model 2 versus Model 3. The closed

form and MC based results for this comparison are displayed in Figure 3.5. Like the

previous two comparisons, the closed form results in this comparison indicate the

same choice of the model over different “leave-out sizes”. Similarly, the strength

of evidence increases with increasing “leave-out sizes”. The closed form results

displayed in Figure 3.5 suggest the choice of Model 3 over Model 2 as we have

negative log EPBF values at all “leave-out sizes” for this comparison. All MC

based results from 10 batches yield the same choice of model (Model 3 over Model

2) for “leave-out sizes” less than 100, and start to fluctuate from “leave-out size”

100 and higher. The same behavior of the MC based results at “leave-out sizes”

is observed in Figure 3.5 as in Figures 3.3 and 3.4. Once again, MC based results

become positively biased and more variable as the “leave-out size” increases might

be due to MC error.

In summary, all three model comparisons show us the same behavior of the

EPBF (computed from extended CPO criterion) as a model selection tool. The
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Figure 3.5: Comparison of Model 2 and Model 3 (closed form results and
MC based results for “unknown mean and known variance” situation)

close form results choose the model with a small number of parameters in all three

comparisons. Also, for closed form solutions, with larger “leave-out sizes”, the

EPBFs show larger difference among the competing models. MC based results de-

viate from the closed form results in all three comparisons in an increasing pattern

with the increasing “leave-out sizes”. The deviation is due to the MC error, and we

try to compute the contribution of MC error at different “leave-out sizes” which we

discuss in the following subsection.

3.2.5 Summarizing the Computations

From the discussion in the previous subsection, we came to know the variation of

the MC based results at different “leave-out sizes”. We compute the root mean

squared error (RMSE) of the MC based estimates of the log EPBFs at all consid-

ered “leave-out sizes” to get a measurement of the variation from the closed form

results. Note that, RMSE is a way of measuring how good the MC based estimates

of the log EPBFs compared to the closed form log EPBF. The smaller the RMSE,

the better way the MC based results are behaving in general. The RMSE of the

estimated log EPBFs for all three model comparisons are tabulated in Table 3.1.
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Table 3.1: Root mean squared errors of the estimated log EPBFs for all three
model comparisons

Leave-out size Model 1 vs. Model 2 Model 1 vs. Model 3 Model 2 vs. Model 3
1 0.178 0.166 0.153
5 0.190 0.136 0.142

10 0.103 0.143 0.092
30 0.161 0.202 0.121
50 0.203 0.279 0.137
80 0.303 0.351 0.166

100 0.385 0.755 0.558
120 0.396 0.626 0.710
150 0.800 0.862 1.099
170 1.130 1.291 1.126
175 0.879 1.391 0.711
180 1.088 1.689 0.915
185 1.545 2.527 1.615
190 1.374 4.369 3.474

all 2.274 6.292 4.182

Now, we can interpret the RMSE values from Table 3.1. For example, for

comparison of Model 1 with Model 2 at ”leave-out 100” the RMSE of the esti-

mated log EPBFs is 0.385 which implies that the model selections while using MC

based EPBFs instead of the corresponding closed form are erroneous by a factor

of exp(0.385) = 1.47 (which implies (exp(0.385)− 1)× 100 = 47 percent erro-

neous model comparisons by the MC samples). Similarly, while comparing Model

1 with Model 3, at ”leave-out 120” the RMSE of the estimated log EPBFs is 0.626

which leads to 87 percent of the erroneous decision on model comparisons using

MC based EPBFs relative to the corresponding closed form. We can interpret all

other RMSE values in a similar fashion.

For all three comparisons, the RMSE values of the estimated log EPBFs from

MC samples have the same pattern; the RMSE values increase with the increasing

“leave-out size” and these increase drastically at higher “leave-out sizes”. We can

use several cut-off values for the RMSE values to examine the level of error in

model comparison decision while using the MC based EPBFs relative to closed

form counterparts at different “leave-out sizes”. The RMSE values from Table 3.1
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are in logarithmic scale, and we consider three cut-off values for these values: log

1.25, log 1.5, and log 2 which correspond to 25, 50 and 100 percent erroneous

model selection when using the log EPBFs estimated from MC samples instead of

the closed form values. The comparative RMSE values for the MC based EPBFs

at the considered “leave-out sizes” with vertical lines through the cut-off values are

plotted in Figure 3.6.
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Figure 3.6: Root mean squared error of the log EPBFs from 2500 MC sam-
ples with three cut-offs (unknown mean but known variance)

If we consider the log 1.25 as the cut-off value, then from Figure 3.6 we observe

that up to “leave-out 30” the RMSE values lie below the cut-off value for all three

comparisons. The RMSE values are on the both sides of the cut-off value between

“leave-out 50” and “leave-out 80” whereas all the RMSE values exceed the cut-

off value at any “leave-out size” greater than or equal to 100. Similarly, up to

“leave-out 80” and “leave-out 120”, the RMSE values for all comparisons are less

than or equal to the cut-off values log 1.5 and log 2 respectively. Also, the RMSE

values for all comparisons are greater than the cut-off values log 1.5 and log 2 at

“leave-out size” 150 and higher.
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To reduce the errors in model selection via model comparisons using MC sam-

ples we need to increase either the number of batches or the MC samples as per the

MC rule. For our analysis, we have 2500 MC samples and 10 equal sized batches

with 250 MC samples. As we are computing RMSE values in logarithmic scale, if

we want error reduction by a factor k compared to the current level x, then we need

to increase the current MC sample size by a factor of (ln(x×k)/ ln(k))2. For exam-

ple, according to MC rule, at least 2500×(ln(6)/ ln(2))2 = 16705 MC samples are

needed if we want error reduction in model selection by a factor of 3 from the MC

based results at cut-off point log(2). In other words, the model comparison results

within RMSE value = log2 (or within 100% relative error) for 2500 MC samples,

will be within RMSE value = log4/3 (or within 33% relative error) for 16705 MC

samples. Then, the relative error reduces to one third with the increased MC sam-

ples. So, more MC samples will provide a correct model comparisons based on the

MC samples.

3.3 Normal Model with Unknown Mean and Variance
We discuss the extended CPO criterion applied to linear regression models with

unknown mean and variance of the responses in this section. Compared to models

discussed in the previous section, we have an additional unknown parameter for

the variance of the responses. Accommodating this, now the likelihood of the

responses (3.6) have the following expression:

L(βββ , σ
2;yyy, XXX) ∝ σ

−n exp
{
− 1

2σ2 (yyy
ᵀyyy−2βββ

ᵀXXXᵀyyy+βββ
ᵀXXXᵀXXXβββ )

}
. (3.12)

Having specified the likelihood function, the next step is to specify the prior dis-

tribution for βββ and σ2. We have already learned from the section 3.2 that if σ2

is known, the multivariate normal prior distribution for βββ is conjugate. If σ2 ∼
inverse-gamma (a,b), that is

p(σ2) =
ba

Γ(a)

(
1

σ2

)a+1

exp
(
− b

σ2

)
, σ

2 > 0,
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then we can write the posterior distribution of σ2 with βββ known as

p(σ2 |yyy, XXX , βββ ) ∝ p(σ2)L(σ2;yyy, XXX , βββ ,)

∝

(
1

σ2

)a+1

exp
(
− b

σ2

)
σ
−n

× exp
{
− 1

2σ2 (yyy
ᵀyyy−2βββ

ᵀXXXᵀyyy+βββ
ᵀXXXᵀXXXβββ )

}
=

(
1

σ2

)a+ n
2+1

exp
{
− 1

σ2

[
b+

1
2
(
yyyᵀyyy−2βββ

ᵀXXXᵀyyy+βββ
ᵀXXXᵀXXXβββ

)]}
,

which is simply an inverse-gamma density, so that the conjugate prior for σ2 is:

{σ2 |yyy, XXX , βββ} ∼ IG
(

a− n
2
,

[
b+

1
2
(
yyyᵀyyy−2βββ

ᵀXXXᵀyyy+βββ
ᵀXXXᵀXXXβββ

)])
.

Now, we can factorize the joint conjugate prior of βββ and σ2 as

p(βββ , σ
2) = p(βββ |σ2) p(σ2) = N(µµµβββ ,σ

2VVV βββ ) × IG(a,b) = NIG(µµµβββ ,VVV βββ ,a,b)

(3.13)

=
ba

(2π)(p+1)/2|VVV βββ |1/2Γ(a)

(
1

σ2

)a+1+ (p+1)
2

× exp
[
− 1

σ2

{
b+

1
2
(βββ −µµµβββ )VVV

−1
βββ
(βββ −µµµβββ )

}]
(3.14)

∝

(
1

σ2

)a+ (p+1)
2 +1

× exp
[
− 1

σ2

{
b+

1
2
(βββ −µµµβββ )VVV

−1
βββ
(βββ −µµµβββ )

}]
,

where a,b > 0, and Γ(·) denotes the Gamma function. This prior is called the

normal-inverse-gamma prior and can be denoted as NIG(µµµβββ ,VVV βββ ,a,b) (Banerjee,

2008).

With the likelihood (3.12) and joint prior distribution (3.13), the joint posterior
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distribution of (βββ ,σ2) has the following expression

p(βββ , σ
2 |yyy, XXX) ∝σ

−n exp
{
− 1

2σ2 (yyy
ᵀyyy−2βββ

ᵀXXXᵀyyy+βββ
ᵀXXXᵀXXXβββ )

}
(3.15)

×
(

1
σ2

)a+ (p+1)
2 +1

× exp
[
− 1

σ2

{
b+

1
2
(βββ −µµµβββ )VVV

−1
βββ
(βββ −µµµβββ )

}]
.

As suggested by Banerjee (2008), to derive the joint posterior distribution

p(βββ , σ2 |yyy, XXX), we use the multivariate completion of squares identity with a sym-

metric positive definite matrix D:

uuuᵀDuuu−2ααα
ᵀuuu = (uuu−D−1

ααα)ᵀD(uuu−D−1
ααα)−ααα

ᵀD−1
ααα. (3.16)

An application of the identity (3.16) gives,

1
σ2

[
b+

1
2

{
(βββ −µµµβββ )VVV

−1
βββ
(βββ −µµµβββ )+(yyyᵀyyy−2βββ

ᵀXXXᵀyyy+βββ
ᵀXXXᵀXXXβββ )

}]
=

1
σ2

[
b∗+

1
2
(βββ −µµµ

∗)ᵀVVV ∗−1(βββ −µµµ
∗)

]
.

Using this, p(βββ , σ2 |yyy, XXX) in (3.15) can be re-written as

p(βββ , σ
2 |yyy, XXX)∝

(
1

σ2

)a∗+ (p+1)
2 +1

× exp
[
− 1

σ2

{
b∗+

1
2
(βββ −µµµ

∗)ᵀVVV ∗−1(βββ −µµµ
∗)

}]
,

(3.17)

which can be identified as a NIG(µµµ∗,VVV ∗−1,a∗,b∗) with

µµµ
∗ = (VVV ∗−1

β
+XXXᵀXXX)−1 (VVV−1

βββ
µµµβββ +XXXᵀyyy)

VVV ∗ = (VVV−1
βββ

+XXXᵀXXX)−1

a∗ = a+n/2

b∗ = b+
1
2

[
µµµ
ᵀ
βββ

VVV−1
βββ

µµµβββ + yyyᵀyyy−µµµ
∗ᵀVVV ∗−1

µµµ
∗
]
.

Having the joint posterior distribution of βββ and σ2 as NIG, and the sampling

distributions of the yi’s as normal, the predictive posterior distribution of any future

observations can be obtained as a closed form solution after some calculations.
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Hence, as the section 3.2, to compute the extended CPO criterion, we can directly

use the closed form densities of the predictive posterior distribution as the cross-

validation densities. Similarly, pretending the predictive posterior formulation has

no closed form solution, one can approximate the cross-validation densities using

the Monte Carlo (MC) samples from the joint posterior distribution of βββ and σ2 and

then extended CPO criterion can be computed as discussed in the previous section.

Once again, we use both the closed form and MC samples based approaches, and

these are discussed in next two subsequent subsections to compute the extended

pseudo Bayes factor (PBF) as a model comparison tool.

3.3.1 Extended CPO Criterion using Closed Form Posterior
Predictive Distributions: Unknown Variance Situation

Suppose we want to predict the outcome ỹyy for a future t× (p+1) matrix of regres-

sors X̃XX . These ỹyy are independent of yyy, and given βββ and σ2 known, we can write the

sampling distribution of ỹyy: ỹyy ∼ N(X̃XXβββ ,σ2It). Now, the predictive posterior distri-

bution of ỹyy, that is p(ỹyy, |yyy, X̃XX) can be obtained using the joint posterior distribution

of βββ and σ2 as

p(ỹyy |yyy, X̃XX) =
∫

βββ ,σ2
φt(ỹyy; X̃XXβββ ,σ2It),×φ

NIG
(p+1)(βββ ; µµµ

∗,VVV ∗−1,a∗,b∗)dβββ dσ
2 (3.18)

= MV St2a∗

(
X̃XX µµµ

∗,
b∗

a∗
(I + X̃XXVVV ∗X̃XXᵀ

)

)
,

where φt(ỹyy; X̃XXβββ ,σ2It) and φ NIG
(p+1)(βββ ; µµµ∗,VVV ∗−1,a∗,b∗) are the corresponding normal

and normal-inverse-gamma densities for N(X̃XXβββ ,σ2It) and NIG(µµµ∗,VVV ∗−1,a∗,b∗)

respectively. The final expression follows from the marginal distribution of yyy

with NIG prior distribution for (βββ ,σ2) which utilizes the well-known Sherman-

Woodbury-Morrison identity and some matrix identities.

As discussed for the “Normal model with unknown mean and known vari-

ance” situation in section 3.2, the cross-validation density with “leave-out one”,

say f (yr |yyy−r), r = 1, . . . ,n can be computed directly from the posterior predictive

formulation (3.18) by setting ỹyy = yr and yyy = yyy−r. Then, the log PBF can be com-

puted for a comparison of two available models using the CPO criterion. Similarly,

cross-validation densities with “leave-out size” greater than one, can be computed
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directly. Hence, we can compute the log EPBF based on this extended CPO crite-

rion and then compare the competing model pairs as described in section 3.2.

3.3.2 Extended CPO Criterion using Monte Carlo Samples:
Unknown Variance Situation

The purpose of calculating the extended CPO criterion using MC samples for the

“Normal model with unknown mean and known variance” situation is already dis-

cussed in section 3.2. However, instead of taking MC samples of βββ and σ2 from

their joint posterior distribution, it is preferable to factorize the joint posterior dis-

tribution of βββ and σ2 into a marginal posterior of σ2 and a conditional posterior

of βββ (given σ2) that is p(βββ , σ2 |yyy, XXX) = p(βββ |σ2, yyy, XXX)× p(σ2|yyy, XXX). Then, we

can take samples of σ2|yyy, XXX and βββ |σ2, yyy, XXX from p(σ2|yyy, XXX) and p(βββ |σ2, yyy, XXX)

respectively. Since, both the prior and posterior belongs to the same family of dis-

tribution, using equation (3.13), it can be shown that βββ |σ2, yyy, XXX ∼ N(µµµ∗,σ2VVV ∗−1)

and σ2|yyy, XXX ∼ IG(a∗,b∗). Thus B MC samples for (βββ ,σ2): (βββ ,σ2)(1), (βββ ,σ2)(2),

. . . ,(βββ ,σ2)(B) can be drawn from the posterior.

As discussed in subsection 3.2.2, the CPO criterion or cross-validation den-

sity with “leave-out one” and “leave-out two” can be approximated using (2.16)

and (2.18), and in general, cross-validation densities for different “leave-out sizes”

can be approximated. Accordingly, the log EPBFs can be computed using the

approximated cross-validation densities to compare two linear regression mod-

els in Bayesian context. Cross-validation densities in extended CPO criterion

with “leave-out two” can be approximated by equation (2.18). Similarly, cross-

validation densities for different “leave-out sizes” can be approximated; extended

log pseudo Bayes factors computed using these approximated cross-validation den-

sities can then be used as to compare linear regression models.

The comparative behavior of the extended CPO criterion or the EPBF for “Nor-

mal model with unknown mean and variance” setting with different “leave-out

sizes” is discussed in the next subsection for both the closed form and MC samples

based solution.
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3.3.3 Comparative Behavior of Extended CPO Criterion for
Unknown Variance Situation: Closed Form Versus Monte
Carlo Samples

In this subsection, we examine how the extended CPO criterion, a model compari-

son tool behaves in real life scenario for both the cases: closed form and MC based

solution with an illustrating example for “Normal model with unknown mean and

variance” setting. As the “Normal model with unknown mean and known variance”

situation discussed in subsection (3.2.3), we use the same data set, response vari-

able, explanatory variables and the same model setup. Since, we have additional

unknown parameter σ2 compared to subsection (3.2.3), only the prior specification

for the parameters needs some work.

Prior Specification: Unit Informative and g Priors

We need to specify the prior parameters µµµβββ , VVV βββ , a, and b. But, it is hard to find

representable values of these parameters for actual prior information, specifically

for µµµβββ and VVV βββ . Again, with increasing regressors, the construction of an informa-

tive prior distribution gets harder. For example, with p+1 regressors, the number

of prior correlation parameters is
(p+1

2

)
, and it increases quadratically in p.

Sometimes one can use the least squares estimates β̂ββ OLS as the prior mean for βββ

in the absence of precise prior information; then, no probability statements about

βββ can be made. Another idea is to use minimally informative prior as possible

when the prior distribution doesn’t represent the real prior information about the

parameters. To some extent, using this compared to an informative prior distribu-

tion, more “objective” result can be obtained from the posterior distribution. Kass

and Wasserman (1995) describes unit information prior as a weakly informative

prior. The amount of information in a unit information prior is just the informa-

tion contained in only a single observation. For example, (XXXᵀXXX)/σ2 denotes the

precision of β̂ββ OLS that can be thought of as the amount of information from n ob-

servations. Then, the unit information prior will set 1
σ2 VVV βββ = (XXXᵀXXX)/nσ2. Also,

using µµµβββ = β̂ββ OLS is suggested by Kass and Wasserman (1995). This specification

requires knowledge of yyy and hence cannot be a real prior distribution. However,

for this unit information prior, only a small amount of information in yyy is used.
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The idea of invariant parameter estimation to the scale change of the regressors

can be implemented for choosing priors of βββ . Suppose X̃XX = XXX H where XXX repre-

sents a set of regressors and H is a (p+ 1)× (p+ 1) matrix. Also, suppose the

posterior distributions of βββ and β̃ββ are obtained using XXX and X̃XX with same yyy. Then,

according to the invariance principle, both the posterior distributions of βββ and H β̃ββ

should be the same. We need to specify µµµβββ = 000 and σ2VVV βββ = k(XXXᵀXXX)−1, k > 0

to fulfill this condition. The choice of prior parameters with k = gσ2 reveals a

version of the well-known “g-prior” (Zenllner, 1986). Note that, with g = n, we

get the unit information prior discussed in the previous paragraph.

For the regression parameters βββ , we consider “g-prior” that is a multivariate

normal prior with mean vector µµµβββ = 0 and variance-covariance matrix σ2VVV βββ =

nσ2 (XXXᵀXXX)−1.

Using the prior specification discussed above and the model specification dis-

cussed in subsection 3.2.3, we obtain results that are described in the next subsec-

tion. As subsection 3.2.4, we describe our findings for the three models considered

with three possible pairwise comparisons of these three models. Once again, we

describe the behavior of the extended CPO criterion for the three models separately

and then extend to three model comparisons using the EPBF for “Normal model

with unknown mean and variance” situation.

3.3.4 Results

For “Normal model with unknown mean and variance” situation, first we visualize

the closed form results of log extended CPO values obtained from Model 1, Model

2 and Model 3 (see Figure 3.7) as discussed for “Normal model with unknown

mean and known variance” in subsection 3.2.4.

All three models exhibit the same pattern with decreasing log extended CPO

values over the increasing leave-out size with a sharp decrease in an exponential

manner after “leave-out 50”. Also, all three models have close log extended CPO

values. The relative position of the three models remains more or less the same at

each “leave-out size” though compared to other two models, Model 2 and Model

3 have a slightly higher log extended CPO values at smaller and higher “leave-out

sizes”. So, compared to the known variance case, from Figure 3.7 we observe that
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Figure 3.7: Comparison of closed form results for three models (unknown
mean and variance)

the strength of evidence changes for the considered models at different “leave-out

sizes”. We hope that this pattern will be more clearly observed when we compare

the models pairwise through log EPBFs as a model selection criterion.

Along the closed form results, we want to examine the strength of evidence for

these models at all “leave-out sizes” when we must compute using MC samples.

As we observed in the “known variance” situation, the strength of evidence might

be affected due to the bias related to the results obtained from the MC samples

that increase with the increasing leave-out points. Once again, we need to examine

further this bias issue. Also, as the “known variance” situation, we want to compare

the closed form results and results based on MC samples to check whether MC

based results can replicate the closed form results in “unknown variance” situation.

For the Model 1 we observe the log extended CPO values from the closed form

solutions as well as from the MC samples in the Figure 3.8. The red filled circles

represent the closed form values at each “leave-out size”.

Compared to “known variance” situation (up to “leave-out 120”), the MC based

results match the corresponding closed form result up to a smaller “leave-out sizes”

(“leave-out 50”) that can be observed from Figure 3.8. After “leave-out 50”, the
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Figure 3.8: Comparison of closed form results and MC based results for
Model 1 (unknown mean and variance)

changes between the results from MC samples and closed forms become visible

and at higher “leave-out sizes”, MC based results show an upward (exponentially

increasing) bias from the closed form result. This pattern is also observed for the

“known variance” situation discussed in subsection 3.2.4. Also, for this “unknown

variance” situation, the same pattern is observed for Model 2 and Model 3 as we

observe the same pattern for the other two models considered here. For three mod-

els, a substantive positive departure of MC based results from the closed form

values is observed at higher “leave-out sizes”.

We compare Model 1 with Model 2 now in the similar manner as discussed

in in subsection 3.2.4. The EPBF, computed from the extended CPO is used as a

model comparison tool. This comparison can be described from Figure 3.9 where

the red filled circles and black circles denote the closed form results and MC results

from 10 batches at each “leave-out size” respectively. Same specifications are used

for Figure 3.10 and Figure 3.11.

Figure 3.9 exhibits the same pattern in comparing Model 1 with Model 2 as

Figure 3.3 except the wider values of the MC based results. We observe negative

closed form log EPBFs at all “leave-out sizes” suggesting the choice of Model 2
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Figure 3.9: Comparison of Model 1 and Model 2 (closed form results and
MC based results for “unknown mean and variance” situation)

over Model 1 (hence the same choice) with increasing strength of evidence for

increasing “leave-out sizes”. However, MC based results vary over the direction

starting from early “leave-out sizes”, and have values with wider range at higher

“leave-out sizes”. As discussed before, the fluctuation from the closed form results

is due to the MC error. We will quantify the MC error to examine how this increases

with increasing ‘leave-out sizes”.

The closed form results are near the center of the MC based results at smaller

“leave-out sizes” (1, 5, and 10). For other “leave-out sizes”, the MC based re-

sults from most of the 10 batches have a tend to have higher values than the cor-

responding closed form results. As the “known variance” situation, Figure 3.9

demonstrates that MC based results become positively biased and more variable as

the “leave-out size” increases for “unknown variance” situation. MC based results

from most of the 10 batches show positive bias from the formal Bayes factor value

(closed form value at “leave-out all”) implying that using MC samples we are very

poorly computing real Bayesian model comparison with some positive MC errors.

Our goal is to examine the possibility of finding a “leave-out size” where the EPBF

is close to the formal Bayesian comparison with smaller MC error which is dis-
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Figure 3.10: Comparison of Model 1 and Model 3 (closed form results and
MC based results for “unknown mean and variance” situation)

cussed later.

Next we examine two other possible model comparisons: Model 1 versus

Model 3 and Model 2 versus Model 3. Figure 3.10 displays the closed form and

MC samples based log EPBFs for Model 1 versus Model 3.

Figure 3.10 displays similar pattern of choosing the smaller model as Figure 3.9

with increasing “leave-out sizes”. Compared to the comparison between Model 1

and Model 2, for the comparison between Model 1 and Model 3, the closed form

results indicate a change pattern in the choice of the model (changes direction at

“leave-out 80”) over different “leave-out sizes”. Up to “leave-out 50”, the closed

form log EPBF values are positive indicating the evidence of choosing Model 1

over Model 3 though this evidence decreases with increasing “leave-out sizes”.

Negative closed form log EPBF values at “leave-out 80” and higher “leave-out

sizes” suggest the choice of Model 3 over Model 1 and the strength of this evidence

increases with increasing “leave-out sizes” from “leave-out 80” and onwards. The

choice of model alters here for “unknown variance” situation which doesn’t alter in

the “known variance” situation though the pattern of stronger evidence of smaller

model with increasing “leave-out sizes” is prevalent in both situations.
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Figure 3.11: Comparison of Model 2 and Model 3 (closed form results and
MC based results for “unknown mean and variance” situation)

For “unknown variance” situation, the closed form results are near the center of

the MC based results from 10 batches at early “leave-out sizes” for the comparison

between Model 1 and Model 3 as the comparison between Model 1 and Model 2

(see Figure 3.10). Again, the MC based results become positively biased and more

variable as the “leave-out size” increases which is similar as previous comparison

(Figure 3.9) as well as the same comparison for “known variance” situation shown

in Figure 3.4. Compared to the “known variance” situation, the MC samples based

results have a wider range with large MC errors.

At last, we focus on the last comparison: Model 2 versus Model 3 in “unknown

variance” situation. The closed form and MC based results for this comparison are

displayed in Figure 3.11. Like the previous comparison displayed in Figure 3.10,

the closed form results in this comparison indicate the same pattern of choosing

bigger model (Model 2) at early “leave-out sizes” and smaller model (Model 3) at

higher “leave-out sizes”. The strength of evidence for bigger model decreases up to

“leave-out 120”, and changes of direction (evidence of smaller model) is observed

at “leave-out 120” and onwards. Hence, Figure 3.10 suggests the choice of Model

2 up to “leave-out 120” and Model 3 from “leave-out 150”. Compared to “known
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variance” counterpart, similar decreasing pattern in log EPBF values is observed

though direction of model choice changes in “unknown variance” situation. This

implies that possibly the magnitude of change in log EPBF values for increasing

“leave-out sizes” is greater for the “unknown variance” than the “known variance”

situation. The same behavior of the MC based results at all “leave-out sizes” is

observed in Figure 3.11 as Figure 3.9 and Figure 3.10 with wide range of values. As

previous, MC based results are positively biased and more variable as the “leave-

out size” increases that might be due to MC error.

In short, all three model comparisons show us the same behavior of the EPBF

(computed from extended CPO criterion) as a model selection tool. The close

form results have a tendency to choose the model with a small number of param-

eters in all three comparisons with increasing “leave-out sizes”. For comparisons

between Models 1 and 3 and Models 2 and 3, the values of log EPBF become

negative from positive at some “leave-out sizes” that indicates the change in the

evidence for model selection. Moreover, the MC based results have a wider range

of the “unknown variance” situation compared to the “known variance” situation,

and deviate from the closed form results in all three comparisons in an increasing

pattern with the increasing “leave-out sizes”. MC error might be responsible for

this deviation so that our intention is to compute the contribution of MC error at

different “leave-out sizes” which we discuss in the following subsection.

3.3.5 Summarizing the Computations for Unknown Variance
Situation

As “known variance” situation, we compute the root mean squared error (RMSE)

of the MC based estimates of the log EPBFs at all considered “leave-out sizes” to

examine the variation from the closed form results for “unknown variance” situa-

tion. The RMSE of the estimated log EPBFs for all three model comparisons are

tabulated in Table 3.2.

From Table 3.2 for comparison of Model 1 with Model 2 at “leave-out 10”, the

RMSE of the estimated log EPBFs is 0.863 which implies that model comparisons

using MC based EPBFs relative to the corresponding closed form are erroneous by

a factor of exp(0.863) = 2.37. Similarly, while comparing Model 1 with Model 3,

at “leave-out 120”, the RMSE of the estimated log EPBFs is 2.460 which leads to a
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Table 3.2: Root mean squared errors of the estimated log EPBFs for all three
model comparisons in unknown variance situation

Leave-out size Model 1 vs. Model 2 Model 1 vs. Model 3 Model 2 vs. Model 3
1 0.575 0.715 0.690
5 0.771 0.716 0.900

10 0.863 0.968 1.043
30 2.370 2.575 2.626
50 3.884 2.694 3.777
80 7.069 5.388 4.419

100 5.128 4.693 5.044
120 5.558 2.460 3.871
150 5.775 4.807 6.659
170 4.140 6.318 6.633
175 3.810 5.639 3.942
180 6.034 5.748 5.542
185 6.697 5.164 5.759
190 6.785 5.645 5.326

all 5.400 7.072 6.210

factor of 11.7 erroneous model comparisons while using MC based EPBFs relative

to the corresponding closed form. We can interpret all other RMSE values in a

similar fashion.

However, the RMSE values of the estimated log EPBFs increase with the in-

creasing “leave-out size” and these increase drastically at higher “leave-out sizes”

for three model comparisons. As the “known variance” situation, we use several

cut-off values (two here) for the RMSE values to examine the level of error in the

model selection that occur due to using the MC based EPBFs at different “leave-out

sizes”. The RMSE values from Table 3.1 are in logarithmic scale, and we consider

two cut-off values for these values: log 1.25, and log 2 which correspond to 25,

and 100 percent erroneous model selection while using the log EPBFs estimated

from MC samples instead of the closed form values. The RMSE values for the

MC based EPBFs at the considered “leave-out sizes” with vertical lines through

the cut-off values are plotted in Figure 3.12.

We are observing a lot of error in model selection for “unknown variance”

situation from Figure 3.6. If we consider the log 1.25 as the cut-off value, then we
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Figure 3.12: Root mean squared error of the log EPBFs from 2500 MC sam-
ples with three cut-offs (unknown mean and variance)

observe that no RMSE values lie below this cut-off value for all three comparisons.

The RMSE values for three model comparisons at “leave-out 1” lie under the log 2

cut-off value only and exceed the cut-off value at any “leave-out size” greater than

1. So, compared to “known variance” situation, we require larger MC samples or

more batches to get accurate model comparisons from the MC based results.

Also, according to the discussion of increasing MC sample sizes to get more

correct model comparisons based on the MC sample in subsection 3.2.4, we in-

crease the MC samples from 2500 to 25000 that is now we have 10 batches with

2500 MC samples. According to MC rule, we expect an error reduction from the

MC based model comparisons by a factor of 8.95 (based on the formulation in

subsection 3.2.4) with this 25000 MC samples compared to the 2500 MC samples.

This implies an expectation to have all the RMSE values less than log(8.95) = 2.19

in this Figure 3.12 that is up to “leave-out 30” below the cult-off value log(2) with

the 25000 MC samples. We plot the revised RMSE values considering 25000 MC

samples for three model comparisons in Figure 3.13.

As per our expectation, Figure 3.13 shows that all the RMSE values for three

model comparisons up to “leave-out 30” lie below the cut-off point log(2). In
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Figure 3.13: Root mean squared error of the log EPBFs from 25000 MC sam-
ples with three cut-offs (unknown mean and variance)

addition, we observe some RMSE values (up to “leave-out 10”) below the cut-off

point log(1.5). Hence, the MC results show a lot of improvement in error reduction

with the 25000 samples compared to the 2500 samples.

3.4 Summary
In this chapter, we discussed the Bayesian model comparison for linear regression

model with the extended CPO criterion as the model selection tool. Two linear re-

gression models are compared using extended pseudo Bayes factor (EPBF) which

is a compromise between the pseudo Bayes factor and the formal Bayes factor. We

consider 15 different “leave-out sizes” where the model comparisons at “leave-out

1” and “leave-out all” indicate pseudo Bayes factor and formal Bayes factor re-

spectively. Two different situations namely “normal model with unknown mean

and known variance” and “normal model with unknown mean and variance” are

considered for the Bayesian linear regression model and discussed in detail with

an example in sections 3.2 and 3.3. Since the closed form results are available,

we compare the MC based results with these to examine how much the model

comparison results deviate from the corresponding closed form ones in both the
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situations. We take a single MC sample and then create 10 equal-sized batches

from that sample. Model comparison results are computed for 10 batches. Three

linear regression models: Model 1, Model 2, and Model 3 are considered here that

contain five, four and three explanatory variables respectively. This implies that we

have three pairwise model comparisons.

There are several take-away messages from the closed form results obtained

in both the situations. One of these is the change in the evidence of the model at

different “leave-out sizes”. For “normal model with unknown mean and known

variance” situation, closed form results of the three model comparisons exhibit

same choice of models over different “leave-out sizes”. But, for the “normal model

with unknown mean and variance” situation, the choice of model changes at some

“leave-out size” for the comparisons between Model 1 and Model 3 and between

Model 2 and Model 3. This implies that the direction of evidence under the pseudo

Bayes factor and the formal Bayes factor is different in these comparisons though

pseudo Bayes factor is used as a proxy of the formal Bayes factor in the literature

(Gelfand and Dey, 1994). In addition, using the EPBF values at different “leave-

out sizes”, we can exactly specify the “leave-out size” up to which the evidence of

a specific model remains the same and changes hereafter. Another take-away mes-

sage from the closed form solutions is that for both the situations, the strength of

the evidence increases for the comparatively smaller model (regarding the number

of explanatory variables) among the two models compared in all the comparisons.

The MC samples based results show a rapid departure from the closed form

results with increasing “leave-out sizes” for all the model comparisons in both the

situations. The ranges of the MC results are much higher in the “normal model

with unknown mean and variance” situation compared to the other situation. We

compute RMSE of the MC samples based estimates of the log EPBFs for three

model comparisons to measure how well the MC samples based estimates approx-

imate the closed form log EPBF. With 2500 MC samples, MC based estimates

exhibit less than 25% error in model selection compared to the closed form results

for “leave-out size” 50 or smaller in “normal model with unknown mean and vari-

ance” situation. However, RMSE values of the MC samples based estimates of

the log EPBFs are too high in “normal model with unknown mean and variance”

situation. Error in the decision of model selection from the MC based results can

52



be reduced by increasing the number of MC samples.

This chapter focuses on Bayesian model comparisons for linear regression

model using extended CPO or EPBF as a model comparison tool. Both the closed

form and MC samples based results are available here. For the generalized linear

models, for example, logistic regression models, no closed form solutions are avail-

able, and model comparisons are examined using some form MC samples only. We

will discuss the Bayesian model comparisons for logistic regression models in the

next chapter.
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Chapter 4

Bayesian Model Comparison for
the Generalized Linear Models

We discussed the Bayesian model comparison for the linear regression models in

the previous Chapter. In this Chapter, we focus on the Bayesian model comparison

for the generalized linear models, for example, logistic regression models. Logistic

regression models are used in studying the effect of explanatory variables on a

nominal response variable (response is continuous for linear regression models).

As with linear regression models, both the classical and Bayesian model selection

methods can be applied to logistic regression models. For example, one can use

either a classical approach say AIC or any Bayesian approach. In this chapter, we

discuss the extended pseudo Bayes factor (EPBF) as a model selection method for

logistic regression models in Bayesian context. Our interest is to examine how the

model selection behaves when we change the “leave-out size” in the EPBF. From

the EPBF, we can get the pseudo Bayes factors (PBFs) as well as the formal Bayes

factors (BFs) depending on the “leave-out sizes”. We want to examine whether

there is any agreement or disagreement in between the PBFs and the formal BFs as

model selection methods.
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4.1 Bayesian Logistic Regression Models
We can apply the Bayesian approach to estimate the parameters of the logistic re-

gression models. In the classical approach, we only need the likelihood function

for estimation purposes. But, in Bayesian approach, in addition, we do require

a prior specification for parameters of the logistic regression model. The logistic

regression model constructs a model to predict the probability of the presence of

an indicator using the available explanatory variables. The log transformation of

the ratio of probabilities, known as log odds or logit, linearizes the relationship be-

tween the response and the explanatory variables. As the linear regression case, we

start our discussion with defining a logistic regression model. Our response vari-

able, say yyy has binary responses. Suppose the binary response variable represents

an indicator (0 =Absence, 1 =Presence) of an event. Also, suppose we have a set

of explanatory variables: xxx1,xxx2, . . . ,xxxp. Here, yyy = (y1, . . . ,yn) is a vector of length

n representing binary responses of interest for n observations.

Suppose βββ = (β0,β1, . . . ,βp)
ᵀ are unknown regression parameters and xxxᵀi =

(1,xi1,xi2, . . . ,xip) represents the ith individual’s row vector of explanatory vari-

ables. The design matrix [of dimension n×(p+1)] in this case is XXX =(111,xxx1,xxx2, . . . ,

xxxp). The response variable for the ith individual indicates the presence or absence

of the event for that subject by setting yi = 1 and yi = 1 respectively. If p(xxxi) rep-

resents the probability that the event is present for subject i, and the ith individual’s

set of the explanatory values are contained in xxxᵀi , then the logistic regression model

can be written as:

logit p(xxxi) = log
[

p(xxxi)

1− p(xxxi)

]
= β0 +β1 xi1 + · · ·+βp xip = xxxᵀi βββ , i = 1, . . . ,n.

(4.1)

Now, we can express the probability p(xxxi) of the presence of the event as

p(xxxi) = Pr(yi = 1|xxxi) =
exxxᵀi βββ

1+ exxxᵀi βββ
.

As the response is binary, the likelihood contribution from the ith observation can
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be written using a Bernoulli likelihood expression:

Li(βββ ;yyy, XXX) = [p(xxxi)]
yi [1− p(xxxi)]

(1−yi)

=

[
exxxᵀi βββ

1+ exxxᵀi βββ

]yi
[

1− exxxᵀi βββ

1+ exxxᵀi βββ

](1−yi)

.

The individuals are assumed to be independent from each other, and hence the

likelihood function over the n individuals has the following expression:

L(βββ ;yyy, XXX) =
n

∏
i=1

Li(βββ ;yyy, XXX) =
n

∏
i=1

[
exxxᵀi βββ

1+ exxxᵀi βββ

]yi
[

1− exxxᵀi βββ

1+ exxxᵀi βββ

](1−yi)

. (4.2)

We can utilize the likelihood function (4.2) to estimate the unknown parameters

βββ in classical inference. Also, we need to specify the prior distribution, say g(βββ )

for βββ for the unknown parameters βββ so that we can compute the posterior distri-

bution p(βββ |yyy, XXX) to obtain the Bayesian inference of those parameters. A general

expression of the posterior follows:

p(βββ |yyy, XXX) ∝ L(βββ ;yyy, XXX) × g(βββ ). (4.3)

The posterior in the equation (4.3) has no closed form expression. But, we

can take realizations from the expression in equation (4.3) to obtain a valid empir-

ical guess about the posterior distribution in a Bayesian manner, and hence make

inference for the parameters. There are many proposed approaches available in

the literature which includes the Metropolis−Hastings (MH) method, many latent-

variable schemes that facilitate Gibbs sampling, etc. and so on to obtain Markov

chain Monte Carlo (MCMC) samples from the posterior.

We use one of these approaches in this study which is efficient enough and

popularly known as the ‘Pólya−Gamma approach’ (Polson et al., 2013). If we

parameterize the binomial likelihoods (say 4.2) by the log odds, then the assump-

tion in the ‘Pólya−Gamma approach’ is that the likelihood is expressed as a mix-

ture of normals. It can be noted that the Pólya−Gamma distribution is a subset

of the class of infinite convolutions of gamma distributions (Polson et al., 2013),

and generalization of the Pólya distributions (Barndorff-Nielsen et al., 1982). The
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‘Pólya−Gamma approach’ is implemented in a R package called BayesLogit

which utilizes an accept/reject sampler based on the alternating-series method that

is proposed by Devroye (1986). This sampler is very efficient and requires ex-

ponential and inverse-Gaussian draws only; also, the bound of the probability of

accepting a proposed draw is uniformly bounded below at 0.99919 (Polson et al.,

2013). Also, no tuning is needed which makes this a reliable black box sampling

routine in all situations with the logit link, even in complex hierarchical models.

As per the claim from Polson et al. (2013), ‘Pólya−Gamma approach’ is nearly

efficient as the independence MH sampler for simple logistic models with no hier-

archical structure, and most efficient in all other cases.

We can directly use the MCMC samples from the posterior distribution of βββ to

approximate the cross-validation densities as no closed form densities of the pre-

dictive posterior distribution are available for Bayesian logistic regression models.

Then, as discussed in Chapter 3 for the linear regression models, we can com-

pute the extended conditional predictive ordinate (CPO) criterion. However, in

the absence of the closed form results, we can’t make a comparison between the

closed form and posterior samples based results for the Bayesian logistic regres-

sion models. But, motivated from examining how well the closed form results can

be approximated by the posterior samples for the linear regression models in the

Chapter 3, we can rely on such MCMC samples based results. Then the estimated

extended CPO criterion can be used to compute the extended pseudo Bayes fac-

tor (PBF) to compare the Bayesian logistic regression models for model selection

purpose.

4.2 Extended CPO Criterion using MCMC Samples for
Logistic Regression Models

We describe the computation of the extended CPO criterion directly from the pos-

terior MC/MCMC samples in the subsection 2.4.4 of the Chapter 2. According

to that, at first we draw B realizations of βββ , say βββ
(1), . . . ,βββ (B) from the expres-

sion of the posterior distribution of βββ , p(βββ |yyy, XXX) in equation (4.3). Then, having

B posterior samples of βββ , as the linear regression models, the CPO criterion or

cross-validation density for logistic regression models with “leave-out one” can be
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computed approximately using (2.16). After that, we can compute log PBFs us-

ing the approximated cross-validation densities to compare two logistic regression

models in Bayesian context. Again, cross-validation densities in extended CPO cri-

terion with “leave-out two” can be approximated by using the formulation in equa-

tion (2.18). Similarly, cross-validation densities for different “leave-out sizes” can

be approximated; log EPBFs computed using these approximated cross-validation

densities can then be used as to compare logistic regression models in Bayesian

context as the linear regression models discussed in Chapter 3.

We discuss the behavior of the extended CPO criterion or the EPBF in the next

section for Bayesian logistic regression models with different “leave-out sizes” in

a real life scenario.

4.3 Examining the Behavior of Extended CPO criterion:
A Practical Example

Here, we attempt to examine how the extended CPO criterion, a Bayesian model

comparison tool, behaves with an illustrative example. We use a well-known data

here named birthwt which is available in the R package MASS. The location of

the data collection is Baystate Medical Center, Springfield, Mass (Venables and

Ripley, 2002). The aim of collecting the data was to investigate whether some

factors related to mother are responsible for low child birth weight. From this

specific data we consider the following five explanatory variables:

• smoke: mothers’ smoking status during pregnancy (1 = Yes, 0 = No),

• ui: presence of uterine irritability for mothers (1 = Yes, 0 = No),

• ht: hypertension status of mothers (1 = Yes, 0 = No),

• lwt: mothers’ weight at last menstrual period (in pounds), and

• ptl: mothers’ previous premature labours (numbers).

We have three binary, one continuous (lwt), and one count (ptl) explanatory vari-

ables. Our binary response variable is low which is simply an indicator of birth

weight less than 2.5 kg (1 = Yes, 0 = No). We want to fit a logistic regression
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to model the probability that a child is born with low birth weight with respect to

factors related to the mother of that child. There are 189 non-missing observations

for this birthwt data. We specify the models considered for comparisons and

priors for the regression parameters βββ below.

4.3.1 Model Specification

Two models are considered here, and these are denoted by Model 1 and Model 2

with different combinations of the explanatory variables. If p denotes the proba-

bility that a child is born with low birth weight (low = 1), then these two models

have the following specifications.

1. Model 1: Big Model or Full Model (Model with all explanatory variables

listed above) with the formulation

log
(

pi

1− pi

)
= β0 +β1 smokei +β2 uii +β3 hti +β4 lwti +β5 ptli,

where pi denotes the probability that ith child is born with low birth weight, i=

1,2, . . . ,189. All explanatory variables represent the binary status of differ-

ent factors related to the mother of the ith child.

2. Model 2: Small Model (Model which leaves only ptl out of the full Model).

Previously, for linear regression models discussed in Chapter 3, we consider

2500 MC samples from the posterior distribution of the regression parameters

βββ . MC samples are taken independently whereas MCMC scheme provides sub-

sequent dependent samples. Hence, we consider a large number of MCMC sam-

ples (100000) from the posterior distribution of the regression parameters βββ for the

computation of the extended CPO criterion in the Bayesian logistic regression set-

ting. We divide those into 10 batches of equal size 10000. As the linear regression

models, we consider the log extended CPO and log extended pseudo Bayes factor

calculation for each of these batches at different “leave-out sizes” (from “leave-

out 1” to “leave-out all”). For logistic regression models, we consider 11 different

“leave-out sizes”; these are 1, 5, 10, 30, 50, 80, 100, 120, 150, 170, and 189 (i.e.,

all). Also, to calculate extended CPO calculation with different “leave-out sizes”,
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we take all combinations if the total combinations are less than 2000 and take only

2000 combinations randomly if the total combinations exceed 2000.

4.3.2 Prior Specification: Weakly Informative Prior

We use the efficient ‘Pólya−Gamma approach’ for generating MCMC samples

from the posterior distribution (4.3) for Bayesian logistic regression models. How-

ever, the ‘Pólya−Gamma approach’ incorporates the normal prior for the parame-

ters only. Different prior specifications for the parameters of the logistic regression

model are also available in the literature. For example, a weakly informative prior

is suggested by Gelman et al. (2008).

A weakly informative prior is a minimally informative prior as possible, and

mostly used when there is a doubt that the prior distribution might not represent the

real prior information about the parameters. Gelman et al. (2008) propose a weakly

informative prior on the scaled explanatory variables. Scaling is an important issue

for the logistic regression models as different scaling can render the exponentia-

tion of the parameter coefficients (the odds ratios) very different. Hence, the ex-

planatory variables need standardization, and one such application can be found in

Raftery (1996) for Bayesian generalized linear models.

Two proposals are made by Gelman et al. (2008). For binary explanatory variables,

a shift is suggested so that their means are 0s and ranges are 1s. Shifting and scal-

ing for the non-binary explanatory variables are suggested in a way so that their

mean and standard deviation become 0 and 0.5 respectively. With this scaling, the

continuous variables have the same scale as the symmetric binary variables in the

interval [−0.5,0.5] with standard deviation 0.5. In our ‘Pólya−Gamma approach’

to Bayesian logistic regression models, we use this scaling on the explanatory vari-

ables. Also, we have normal prior distribution: β j ∼ N(µ j,σ
2
j ), j = 0,1, . . . , p

for the regression parameters βββ . With this prior, the posterior distribution of the

parameters of the logistic regression model 4.3 can be rewritten as
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p(βββ |yyy, XXX) ∝

n

∏
i=1

[
exxxᵀi βββ

1+ exxxᵀi βββ

]yi
[

1− exxxᵀi βββ

1+ exxxᵀi βββ

](1−yi)

(4.4)

×
p

∏
j=0

1√
2πσ j

exp

[
−1

2

(
β j−µ j

σ j

)2
]
.

Now, we need to specify the hyperparameters for the inference of the param-

eters βββ using equation (4.4). We use independent normal prior distributions with

mean 0 and variance log(5) for all the parameters in the logistic regression model

except the intercept term. This implication comes from two suggestions. Firstly,

we consider the epidemiological idea of prior construction using the odds ratio

(Greenland, 2006). The value of odds ratio = 5 is considered as a meaningful

upper bound of the possible odds ratio. We consider this as the variance of the

individual parameters. The second suggestion comes from Gelman et al. (2008)

that recommends 5 as the upper bound for the absolute difference in the logit prob-

ability. If we consider the variance of the individual normal priors as log(5), then

both the suggestions can be taken into account.

For the intercept, we consider a normal prior with mean 0 and a higher variance

than the other variances (hyperparameters) taken into account for the other param-

eters. Gelman et al. (2008) documents that a change of 5 in the input implies the

change in the probability either from 0.01 to 0.5, or from 0.5 to 0.99 for logistic

regression which indicates that a change of 10 leads to the change in the prob-

ability from 0.01 to 0.99. According to this concept, for the intercept we use a

normal prior with mean 0 and variance log(10). Such specification allows that on

an average, the expected probability of success is within the bound [0.01,0.99].

We discuss the results in the next subsection using the prior specification above

and the model specification in subsection 4.3.1. As the results for model compar-

isons for the linear regression models in Chapter 3, we describe our findings for

model comparison for the two models considered for different “leave-out sizes”

using the EPBF.

61



4.3.3 Results

We do not have closed form model comparison results for Bayesian logistic regres-

sion models which we examined for Bayesian linear regression models. Model

comparison results based on the MCMC samples between Model 1 and Model 2

for different “leave-out sizes” is displayed in Figure 4.1 as discussed in subsec-

tion 4.3.1. Here, the black triangles represent the log EPBF values from 10 differ-

ent batches of size 10,000 and the red dots represent the mean log EPBF values

obtained from those 10 batches at each “leave-out size”.
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Figure 4.1: Comparison of big Model vs. small Model in Bayesian logistic
regression

Figure 4.1 represents how the model comparisons behave while comparing

Model 1 and Model 2 using the log EPBFs. As we have positive log EPBFs

at all “leave-out sizes” except some batches at some small and large “leave-out

sizes”, the computed log EPBFs from the MCMC samples suggest the choice of

the big Model (Model 1) over the small Model (Model 2) at all “leave-out sizes”.

From the estimated mean log EPBFs at each “leave-out size”, this pattern is ob-

servable. As the results found for the linear regression models in the Chapter 3,

the strength of evidence increases with increasing “leave-out sizes” for the logistic

regression models. So, a pattern of the strength of evidence for a specific model

over the increasing “leave-out sizes” is observed in both the linear and logistic re-
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gression model comparisons. However, the pattern suggests a stronger evidence

for the small Model over the big Model in linear regression cases but the reverse

(big Model over the small Model) for logistic regression cases though these are

data-driven decisions.

From Figure 4.1 it is clear that, MCMC based results vary over the direction at

some “leave-out sizes” (for “leave-out sizes” 10, 30, 50 and 150 and above). Monte

Carlo (MC) error might be responsible for this fluctuation. If possible, quantifying

the MC error will allow us to examine how this increases for increasing ‘leave-out

sizes”.

For the smaller “leave-out sizes” (for example, 1, 5, 10), the MCMC based

model comparison results (log EPBF values) from 10 batches are close to the es-

timated mean of the model comparison results of those batches. For the larger

“leave-out sizes”, say “leave-out 100” or more, the MCMC based results from the

10 batches tend to be more spread (more in the right direction) from their mean

value. Hence from Figure 4.1, we can say that as the “leave-out size” increases,

the MCMC samples might produce more and more variable and probably posi-

tively biased model comparison results for the Bayesian logistic regression mod-

els. In Figure 4.1, the EPBF at “leave-out all” indicates the computed formal Bayes

factor using MCMC samples. From the theoretical perspective, this is our optimal

model selection criterion. However, the Figure 4.1 suggests that we are very poorly

computing real Bayesian model comparison with some positive MCMC errors for

logistic regression model comparison.

As the linear regression models, we have the interest in whether it is possible to

find a “leave-out size” where the EPBF is close to the formal Bayesian comparison

with smaller MCMC error which is discussed in the next subsection.

4.3.4 Summarizing the Computations

We can examine how well the posterior samples (MC or MCMC) can approximate

the closed form model comparison results given that the closed form results are

available. We have already done this for the linear regression models in Chapter

3. But, we do not have the same setup for the logistic regression models due to

unavailability of the closed form results. Hence, to examine how well the posterior
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MCMC samples compute the model selection criterion EPBF, we focus on the

estimated mean and standard error of the log EPBFs obtained from 10 batches of

MCMC samples with size 10000. We plot the estimated error bars for the 10 log

EPBFs at each of the “leave-out sizes” in Figure 4.2.
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Figure 4.2: Error bar plot of the estimated log EPBFs for Bayesian logistic
regression

Figure 4.2 has a very straightforward interpretation about the behavior of the

MCMC samples. It is observed that the width of the error bars for the estimated

log EPBFs increases with the “leave-out sizes” except “leave-out 5”. So, the stan-

dard error of the estimated log EPBFs increases with “leave-out sizes” except that

“leave-out size” implying higher variability among the estimated log EPBFs from

10 batches at larger “leave-out sizes”. For example, at “leave-out 1”, the standard

error of the estimated log EPBFs is 0.0148 with estimated mean 0.1697 whereas

at “leave-out 150”, the standard error is 0.1384 with estimated mean 0.5586, and

at “leave-out all”, the standard error is 0.2835 with estimated mean 0.8313. The

standard error of the estimated log EPBFs increases rapidly for the larger “leave-

out sizes” that are close to the “leave-out all” than the smaller “leave-out sizes”.

The higher variability in the estimated log EPBFs for “leave-out 5” might be due

to random chance.
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We are not surprised by this overall findings as we have already observed higher

variability among the estimated log EPBFs obtained from MC samples for linear

regression models discussed in Chapter 3. The same thing happens here. Also,

being independently drawn samples, MC samples are less vulnerable to the MC

errors than the dependent MCMC samples. However, we have had a direct formu-

lation of improving the model selection results by increasing a specific number of

MC samples for the linear regression models discussed in Chapter 3. We can not

do it here as no closed form solution is available for model comparison using EPBF

for logistic regression models. Still, we can generalize the findings of the Chapter

3 in MC error reduction.

For our analysis, we have 100000 MCMC samples and 10 equal sized batches

with 10000 MCMC samples. Either increasing the total MCMC samples from

100000 or the number of batches with 10000 MCMC samples each will improve

the result by reducing the error in model selection for sure. As a compromise

between the pseudo Bayes factor and the formal Bayes factor, the EPBF allows

us to choose “leave-out sizes” greater than one with some errors. From the Fig-

ure 4.2, we can think of “leave-out sizes” up to 80 with small variability (and

hence small error) among the estimated log EPBFs. Then, we can get close to

the estimated optimal formal Bayesian comparisons (“leave-out all”) more than

the estimated pseudo Bayes factors (“leave-out 1”). Also, with increasing pos-

terior MCMC samples, we can go further closer to the estimated optimal formal

Bayesian comparisons i.e., the Bayes factors by using larger “leave-out sizes”.

4.4 Summary
We discussed the Bayesian model comparison for the logistic regression models

with the extended CPO criterion or the extended pseudo Bayes factor (EPBF) as

the model comparison method in Chapter 4. It is an extension of the application

of the extended CPO criterion or EPBF for the linear regression models discussed

in Chapter 3 to the generalized linear models. Two logistic regression models are

compared at 11 different “leave-out sizes”. Without any closed form results, we

only rely on the MCMC based results to compute the EPBF for model comparison.

Model comparison results are computed for each 10 equal-sized batch of MCMC
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samples. Two logistic regression models: Model 1 and Model 2 are considered

with five and four explanatory variables respectively.

The MCMC samples based results obtained from 10 batches show a greater

variability from their mean result with increasing “leave-out sizes”. The standard

error of the estimated log EPBFs gets bigger with increasing “leave-out sizes”,

and this poses the requirement of more MCMC samples to obtain a less variable

result. Error in the decision of model selection from the available only MCMC

based results can be reduced by increasing the number of MCMC samples.

This chapter focuses on Bayesian model comparisons for generalized linear

regression models, particularly logistic regression models using extended CPO or

EPBF as a model selection method. Motivated by the findings in Chapter 3 for

linear regression models, we generalize the findings here to select generalized lin-

ear models using EPBF as a model selection method. We hope that the EPBF can

be applied for comparing other types of models where no closed form results are

available.
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Chapter 5

Discussions and Conclusions

We try to document our overall findings comparatively in this Chapter. Also, we

state some possible further investigations.

5.1 Discussions
We have examined how a model selection method, the extended conditional predic-

tive ordinate (CPO) criterion or the extended pseudo Bayes factor (EPBF), behaves

for linear regression models and generalized linear regression models, with illus-

trative examples in Chapter 3 and Chapter 4 respectively. Two real life data sets

were used in the illustrative examples. We discuss the overall findings here.

We have closed form expressions for the posterior distributions and the pre-

dictive distributions for the linear regression models in the Bayesian setting with a

conjugate prior setup. This empowered us to compare the model selection results

obtained from the closed form with the results obtained using the Monte Carlo

(MC) samples from the posterior distribution of the linear regression model pa-

rameters (as if no closed form expressions are available). Two different situations

were considered for linear regression models: variance of the error is (i) known

and (ii) unknown. In the second situation, there was an unknown scale parameter

in addition to the unknown location parameters (regression coefficients).

We considered three linear regression models to be compared that produce

three pairwise model comparisons. We computed the extended CPO criterion
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for the individual models using the closed form and the MC samples setting for

both the situations. The posterior MC samples were divided into 10 equal-sized

batches to examine the deviation of the results from the closed form results for

those batches. For known variance situation, the MC based results matched the

corresponding closed form results up to a large “leave-out size” (‘leave-out 120”

for all three models with 195 data points), and then started to deviate from the

closed form results at larger “leave-out sizes”, especially at close to “leave-out

all”. For unknown variance situation, the MC based results matched the corre-

sponding closed form results up to “leave-out 50” for three models. Hence, it can

be said that the MC error is getting bigger at the smaller “leave-out sizes” for the

unknown variance situation than the known variance situation. Empirical results

from the considered data suggest that we can use the “leave-out size” consider-

ably larger than one without too much concern for either situation while using the

cross-validation approach, even when we do not have the closed form results.

However, this result is not general as we have evidence from one data set only.

If we observe the similar pattern from other data, then the generalization can be

established. Also when working with MC samples, based on the evidence, it is

recommended to avoid the “leave-out sizes” close to “leave-out all” for high devi-

ation from the closed form results due to MC error.

We have observed a decrease in the log extended CPO value for the closed form

results at larger “leave-out sizes”. The result obtained for “leave-out all” is different

than the “leave-out 1” with a decreasing pattern for increasing “leave-out sizes”.

Also, the direction of the MC error can be examined from the results. The MC

based results posed a substantive positive departure from the corresponding closed

form results for all three models at larger “leave-out sizes” indicating a trend of

upward bias with increasing “leave-out sizes” close to “leave-out all”. Both the

situations exhibited this pattern, and the MC error was a bit worse for the unknown

variance situation than the known variance situation.

For logistic regression models, we relied on the MCMC samples from the pos-

terior to compute the extended CPO criterion for the individual models as we did

not have the closed form expressions for the posterior distribution of the unknown

parameters. We have used the mean result of the 10 batches as a proxy of the closed

form results for both the models considered. As expected, the extended CPO crite-
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rion computed from 10 batches of MCMC samples increasingly deviate from their

mean result for individual models with increasing “leave-out sizes”. The deviations

are pretty small at smaller “leave-out sizes”. So, we have the similar overall find-

ings for the simple linear regression models (simple models) and the generalized

linear models (non-simple models) regarding the cross-validation approach with

different “leave-out sizes”. In both cases, we can use “leave-out size” greater than

one with a small increase in the MC errors.

Next, we focus on the winning models that come through model comparison

using the extended pseudo Bayes factor (EPBF) as a model selection method for

both the linear and logistic regression models. For linear regression models, we

had three pairwise model comparisons for the three considered models. For known

variance situation, the computed log EPBs in close form setting confirmed the com-

paratively smaller models regarding the parameters as the winning models in those

three pairwise comparisons. However, this was not the case for the unknown vari-

ance situation where the winning model changed for two pairwise comparisons.

The comparatively smaller model was the winning model in the other model com-

parison. For the model comparisons with the differing winning model, the compar-

atively large model win up to a “leave-out size”, and after that small model starts

to win and keep the trend in the same direction up to “leave-out all”.

We can conclude two important findings from these results. At first, a general

trend is observed in both the situations: the strength of the evidence for the smaller

model is increasing with increasing “leave-out sizes”. Also, in the presence of the

closed form results, we have the computed optimal Bayesian model comparison

or the Bayes factor value which is nothing but the EPBF at “leave-out all”. Now,

we can safely say that the winning models are different for the EPBF at “leave-

out 1” and “leave-out all”, at least for our model comparisons. So, the so-called

approximation of the formal Bayes factor, the PBF has a different winning model

here compared to the one found through the computed formal Bayes factor (EPBF

at “leave-out all”). Hence, the importance of using “leave-out sizes” other than one

is observed to get a closer optimal Bayesian model comparison.

For logistic regression models, the strength of the evidence for the big model

increased with the increasing “leave-out sizes”. As the closed form results of the

linear regression models, the mean log EPBF value of the 10 MCMC batches
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showed a particular pattern with the increasing “leave-out sizes”. We can report

the general finding from both the cases as a trend of selecting a model over in-

creasing “leave-out sizes” which sometimes lead to change in the winning model

for the comparison of two close models.

Finally, we want to summarize the computations from the posterior samples

when the closed form expressions of the posteriors are unavailable. The summaries

will focus on the possible error reduction and guide us to find a “leave-out size” that

produces the closest possible formal Bayesian model comparison with a smaller

increase in the MC error.

For the linear regression model comparisons, we formulated a mathematical ex-

pression to find the sample size required to obtain a specific amount of improve-

ment by reducing MC errors. We used root mean squared error (RMSE) to measure

the MC errors for the linear regression models in the Bayesian setting. For exam-

ple, for the known variance situation, 2500 MC samples ensured that the MC sam-

ples based result would have less than 25% error in selecting the winning model up

to “leave-out 30”. Increasing the MC sample size with the exact formula given in

Chapter 3 would allow us to lower the error percentage in model selection as well

as the consideration of the larger “leave-out sizes”.

For the unknown variance situation, we can use the same formulation but keep-

ing in mind that a reasonably large MC sample is required in the presence of the

unknown variance parameter. For the logistic regression models, no such exact

formulation is available as we do not have the closed form posteriors. We com-

puted the standard error of the estimated log EPBFs at different “leave-out sizes”

to measure how much MC error prone the MCMC samples based model selections

were. High variability (due to high MC errors) was observed at larger “leave-out

sizes” implying the use of more MCMC samples to obtain a less variable model

selection result for the larger “leave-out sizes”. Also, being a dependent sample,

an MCMC sample of a large size is required for the logistic regression models

compared to the size of the independent MC samples used in the linear regression

model comparisons. A general take-away message from both the linear and logis-

tic regression models is to use a reasonably large sample from the posterior for the

cross-validation approach with a desired ‘leave-out size” so that one can have the

model comparison result close to the formal Bayesian model comparison which is
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mathematically optimal.

We also attempt to find the sources of variation for the MC errors. We con-

sidered 10 different splits of 2000 combinations of MC or MCMC samples for the

computation of the extended CPO or the EPBF at different “leave-out sizes”. Then,

we have two sources of variation for the MC error. Some error might come due

to the batches, and the random splits might contribute to some error. For both the

linear and logistic regression models, we computed the contribution of these two

sources in the overall MC error at different “leave-out sizes”. We found that both

the sources have more or less similar contribution to the overall MC error at all

“leave-out sizes” without no clear pattern. So, neither the batches nor the splits are

the dominating source of the MC errors with the current setup.

5.2 Further Scope
In this study, we consider 10 equal-sized batches for all MC and MCMC based

results. Also, 2000 combinations of these posterior samples are considered in the

calculation of the extended CPO or the EPBF for different “leave-out sizes” when

the total number of combinations exceed 2000. One further extension of this study

might be to examine the effect of the number of the batches with equal and un-

equal (decreasing/increasing) sizes as well as the number of combinations on the

model comparisons. A set of some combinations can be examined for this purpose.

Examining the decomposition of the overall MC error for the variable number of

batches and number of combinations might be a good idea to explain the sources

of the MC error in detail.

We use two different data sets for constructing linear and logistic regression

models. The model comparison results utilize those data and consider different

“leave-out sizes” accordingly. However, it might be a good idea to look for the

relative “leave-out sizes” of a specific data and try to generalize findings for the rel-

ative “leave-out sizes” with an application on data with the number of data points

from very small to very big. For example, “leave-out 5” for a data set with data

points 100 is very different than the “leave-out 5” with data points 1000 regarding

the percentage of “leave-out sizes”. We expect the MC/MCMC based model com-

parison results for these will be different too. Thus, the relative “leave-out sizes”
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can be examined for different types of simple and non-simple models with varying

data points as a potential further scope of this study.

Only logistic regression models are considered as an example of non-simple

models. One can use this methodology for comparing other different non-simple

models such as nonlinear models, mixture models, hierarchical models, etc. Also,

model selection is very sensitive and important for the causal inference problems.

That might be a good application to utilize the extended CPO or the EPBF as a

model selection method in causal inference problems to select a useful model.

5.3 Conclusions
The Bayes factor is the desired model selection method in the Bayesian setting

because it is optimal. Due to computational issue for the non-simple models, in

particular, with no closed form posterior, some other predictive approaches say

cross-validation approach with “leave-out 1”, popularly known as pseudo Bayes

factor is used as an approximation. Mathematically, the Bayes factor can be com-

puted from the cross-validation approach with “leave-out all”. However, then the

Bayes factor is computed with more MC error at “leave-out all” than the “leave-

out 1”. In this study, we set our objective to find a “leave-out size” that produces

a closer Bayesian model comparison with a small increase in the MC error for the

non-simple models where the closed form results are unavailable.

We start with the comparison of simple models, say the linear regression mod-

els. Since the closed form results are available, we compare those with the MC

samples based results (hypothetically assuming unavailability of the closed forms).

MC samples based results produce a good agreement with the corresponding closed

form results implying the usability of the MC samples in the absence of the closed

forms. We observe that the winning model changes for different “leave-out sizes”

with a pattern for some pairwise linear regression model comparisons; this puts

a contradiction of using cross-validation approach with “leave-out 1” as it has a

different winning model compared to “leave-out all”. However, some “leave-out

sizes” that are greater than one can produce a closer Bayesian model comparison

possibly with some MC error. We can reduce this MC error by increasing the size

of the MC samples.
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For the logistic regression models, the MCMC samples based results are re-

liable as per the behavior of the MC samples as a proxy of the closed forms in

the linear regression models. Increasing sample size will decrease the MC error

for the logistic regression models too. The use of the cross-validation approach

with “leave-out sizes” more than one produces closer Bayesian model comparison

which is evident from both the linear and logistic regression models. Different

other non-simple models can be examined to generalize our findings from this

study.
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