- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Combinatorial aspects of spatial mixing and new conditions...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Combinatorial aspects of spatial mixing and new conditions for pressure representation Briceño Domínguez , Raimundo José
Abstract
Over the last few decades, there has been a growing interest in a measure-theoretical property of Gibbs distributions known as strong spatial mixing (SSM). SSM has connections with decay of correlations, uniqueness of equilibrium states, approximation algorithms for counting problems, and has been particularly useful for proving special representation formulas and the existence of efficient approximation algorithms for (topological) pressure. We look into conditions for the existence of Gibbs distributions satisfying SSM, with special emphasis in hard constrained models, and apply this for pressure representation and approximation techniques in Z^d lattice models. Given a locally finite countable graph G and a finite graph H, we consider Hom(G,H) the set of graph homomorphisms from G to H, and we study Gibbs measures supported on Hom(G,H). We develop some sufficient and other necessary conditions on Hom(G,H) for the existence of Gibbs specifications satisfying SSM (with exponential decay). In particular, we introduce a new combinatorial condition on the support of Gibbs distributions called topological strong spatial mixing (TSSM). We establish many useful properties of TSSM for studying SSM on systems with hard constraints, and we prove that TSSM combined with SSM is sufficient for having an efficient approximation algorithm for pressure. We also show that TSSM is, in fact, necessary for SSM to hold at high decay rate. Later, we prove a new pressure representation theorem for nearest-neighbour Gibbs interactions on Z^d shift spaces, and apply this to obtain efficient approximation algorithms for pressure in the Z² (ferromagnetic) Potts, (multi-type) Widom-Rowlinson, and hard-core lattice gas models. For Potts, the results apply to every inverse temperature except the critical. For Widom-Rowlinson and hard-core lattice gas, they apply to certain subsets of both the subcritical and supercritical regions. The main novelty of this work is in the latter, where SSM cannot hold.
Item Metadata
Title |
Combinatorial aspects of spatial mixing and new conditions for pressure representation
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2016
|
Description |
Over the last few decades, there has been a growing interest in a measure-theoretical property of Gibbs distributions known as strong spatial mixing (SSM). SSM has connections with decay of correlations, uniqueness of equilibrium states, approximation algorithms for counting problems, and has been particularly useful for proving special representation formulas and the existence of efficient approximation algorithms for (topological) pressure. We look into conditions for the existence of Gibbs distributions satisfying SSM, with special emphasis in hard constrained models, and apply this for pressure representation and approximation techniques in Z^d lattice models. Given a locally finite countable graph G and a finite graph H, we consider Hom(G,H) the set of graph homomorphisms from G to H, and we study Gibbs measures supported on Hom(G,H). We develop some sufficient and other necessary conditions on Hom(G,H) for the existence of Gibbs specifications satisfying SSM (with exponential decay). In particular, we introduce a new combinatorial condition on the support of Gibbs distributions called topological strong spatial mixing (TSSM). We establish many useful properties of TSSM for studying SSM on systems with hard constraints, and we prove that TSSM combined with SSM is sufficient for having an efficient approximation algorithm for pressure. We also show that TSSM is, in fact, necessary for SSM to hold at high decay rate. Later, we prove a new pressure representation theorem for nearest-neighbour Gibbs interactions on Z^d shift spaces, and apply this to obtain efficient approximation algorithms for pressure in the Z² (ferromagnetic) Potts, (multi-type) Widom-Rowlinson, and hard-core lattice gas models. For Potts, the results apply to every inverse temperature except the critical. For Widom-Rowlinson and hard-core lattice gas, they apply to certain subsets of both the subcritical and supercritical regions. The main novelty of this work is in the latter, where SSM cannot hold.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2016-08-19
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0308675
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2016-09
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International