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Abstract

Over the last few decades, there has been a growing interest in a measure-theore-

tical property of Gibbs distributions known as strong spatial mixing (SSM). SSM

has connections with decay of correlations, uniqueness of equilibrium states, ap-

proximation algorithms for counting problems, and has been particularly useful

for proving special representation formulas and the existence of efficient approx-

imation algorithms for (topological) pressure. We look into conditions for the

existence of Gibbs distributions satisfying SSM, with special emphasis in hard

constrained models, and apply this for pressure representation and approximation

techniques in Zd lattice models.

Given a locally finite countable graph G and a finite graph H, we consider

Hom(G ,H) the set of graph homomorphisms from G to H, and we study Gibbs

measures supported on Hom(G ,H). We develop some sufficient and other neces-

sary conditions on Hom(G ,H) for the existence of Gibbs specifications satisfying

SSM (with exponential decay). In particular, we introduce a new combinatorial

condition on the support of Gibbs distributions called topological strong spatial

mixing (TSSM). We establish many useful properties of TSSM for studying SSM

on systems with hard constraints, and we prove that TSSM combined with SSM

is sufficient for having an efficient approximation algorithm for pressure. We also

show that TSSM is, in fact, necessary for SSM to hold at high decay rate.

Later, we prove a new pressure representation theorem for nearest-neighbour

Gibbs interactions on Zd shift spaces, and apply this to obtain efficient approxima-

tion algorithms for pressure in the Z2 (ferromagnetic) Potts, (multi-type) Widom-

Rowlinson, and hard-core lattice gas models. For Potts, the results apply to ev-

ery inverse temperature except the critical. For Widom-Rowlinson and hard-core

lattice gas, they apply to certain subsets of both the subcritical and supercritical

regions. The main novelty of this work is in the latter, where SSM cannot hold.

ii



Preface

The thesis is split in two main parts (Part I and Part II), based on the following

three articles:

1. Representation and poly-time approximation for pressure of Z2 lattice mod-

els in the non-uniqueness region. Joint work with Stefan Adams, Brian Mar-

cus, and Ronnie Pavlov. Journal of Statistical Physics, 162(4), 1031-1067.

(See [1].)

2. The topological strong spatial mixing property and new conditions for pres-

sure approximation. Accepted for publication in Ergodic Theory and Dy-

namical Systems. (See [15].)

3. Strong spatial mixing in homomorphism spaces. Joint work with Ronnie

Pavlov. Submitted. (See [16].)

Part I (Chapter 2, Chapter 3, and Chapter 4) is mainly based on paper 2 and

paper 3. Part II (Chapter 5, Chapter 6, and Chapter 7) is mainly based on paper 1

and paper 2.

Some of the writing of this thesis was done while the author was visiting the

Simons Institute for the Theory of Computing at University of California, Berkeley.
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Chapter 1

Introduction

1.1 Preliminaries

The focus of this thesis is the study of spin systems through the view of two comple-

mentary areas: statistical mechanics and symbolic dynamics. Both share a common

ground with different emphasis, namely

• the study of measures on graphs (typically, a lattice such as the d-dimensio-

nal integer lattice Zd) where vertices take values on a set of symbols with

hard constraints, i.e. measures are not fully supported because some config-

urations of symbols are forbidden due to local restrictions; and

• the computation of thermodynamic quantities. In particular, we are inter-

ested in the development of techniques useful for representing and approxi-

mating topological entropy and its generalization, (topological) pressure.

Consequently, the main goal of this work is twofold. First, we aim to intro-

duce combinatorial and measure-theoretic conditions, establish connections among

them, and see how combinatorial aspects of hard constrained systems interact with

measure-theoretic mixing properties. Secondly, we use these insights to improve

results on representation and efficient approximation algorithms for pressure.

A classical example

A good example of a hard constrained system is the Zd hard-core lattice gas model.

In this model, every site x ∈ Zd is identified with a random variable ω̂(x) (a spin)

that takes values in the set of symbols A = {0,1}. In order to obtain a joint dis-

tribution ω̂ = (ω̂(x))x∈Zd representing an interplay between spins, we consider an

interaction or, more specifically, a nearest-neighbour (n.n.) interaction Φ. A n.n.

1



1.1. Preliminaries

interaction Φ is a function that associates some weight to configurations of sym-

bols supported on finite subsets of Zd , by considering local contributions in sites

and bonds. In the case of the hard-core lattice gas model with inverse tempera-

ture ξ > 0, given a finite subset A ⊆ Zd and a configuration ω ∈ A Zd
, the joint

distribution πω
A on A with exterior ω|Ac is given by

π
ω
A ( ω̂|A = α) = 1{α∈[ω|Ac ]} ·

exp(−ξ #1(α))

ZΦ
A,ω

, (1.1)

where α ∈ A A and ω|Ac denotes the restriction of ω to Ac. Here the n.n. inter-

action Φ implicitly determines #1(α) (the number of 1’s in the configuration α),

the set [ω|Ac ] (the set of “admissible” configurations), and the partition function

ZΦ
A,ω (a very relevant normalizing factor). By “admissible” configurations we re-

fer to α’s such that the new configuration α ω|Ac obtained from ω after replacing

ω|A by α does not violate any constraint. In the hard-core lattice gas model case,

where pairs of adjacent 1’s are forbidden, these configurations can be understood as

independent sets, a familiar concept in combinatorics and graph theory involving

local constraints. Notice that ω (in particular, the boundary configuration ω|
∂A)

has some influence over the distribution inside the volume A. A good part of our

research has to do with the study of the influence that boundaries have in the dis-

tributions πω
A for general systems.

The extension of these distributions to the infinite volume Zd is via (nearest-

neighbour) Gibbs measures, which are a particular kind of Borel probability mea-

sure µ such that for every finite A ⊆ Zd and ω ∈ A Zd
, Eµ (·|FAc)(ω) coincides

with πω
A µ-a.s. Here, Eµ (·|FAc)(ω) denotes the conditional expectation with re-

spect the product σ -algebra on A Ac
. The collection π = {πω

A }A,ω is usually known

as the Gibbs specification for Φ. Sometimes there is more than a single measure

µ for a given Gibbs specification π . In that case we talk about the existence of a

phase transition (see [35]), one of the central issues in statistical physics.

It is common to consider an inverse temperature parameter ξ > 0 to modu-

late the strength of interactions. Depending on ξ , the interaction ξ Φ can give

rise to multiple Gibbs measures (the supercritical regime) or just a single one (the

subcritical regime). The latter case, when there is no phase transition, is related

2
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with systems where the influence of boundaries decays with the distance. Several

classical lattice models, like the hard-core lattice gas model, exhibit these two be-

haviours for different regimes of ξ . Other instances that exhibit this phenomenon

are the (ferromagnetic) Potts model and the (multitype) Widom-Rowlinson model

(see [1]).

Pressure and topological entropy

The pressure of an interaction is a crucial quantity studied in statistical mechanics

and dynamical systems. In the former, it coincides (up to a sign) with the specific

Gibbs free energy of a statistical mechanical system (e.g. [35, Part III] and [70,

Chapter 3-4]). In the latter, it is a generalization of topological entropy and has

many applications in a wide variety of classes of dynamical systems, ranging from

symbolic to smooth systems (e.g. [13, 47, 76]).

The pressure of a Zd lattice model with translation-invariant n.n. interaction Φ

is defined as the asymptotic exponential growth rate of the partition function ZΦ
Bn

:

P(Φ) := lim
n→∞

logZΦ
Bn

|Bn|
, (1.2)

where ZΦ
Bn

denotes the partition function with free boundary (i.e. there is no inter-

action with the exterior) and Bn = [−n,n]d ∩Zd is an increasing sequence of boxes

that exhausts Zd as n→ ∞

Roughly speaking, the pressure tries to capture the complexity of a given sys-

tem by associating to it a nonnegative real number. This value can be represented

in several ways: sometimes as a closed formula, other times as a limit and, in the

cases of our interest, as the integral of a conditional probability distribution or as

the output of an algorithm.

Often, it is a difficult task to compute it. When d = 1, there is a closed-form ex-

pression for P(Φ) in terms of the largest eigenvalue of an adjacency matrix formed

from Φ (see [52, p. 99]). In contrast, when d ≥ 2 there are very few n.n. inter-

actions Φ for which P(Φ) is known exactly (e.g. Ising model [66], dimer model

[46], square ice-type model [54]). In fact, there are computability constraints for

approximating pressure that in general cannot be overcome. In [44] it was proven

3
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that, when d ≥ 2, the set of numbers that can arise as topological entropies for Zd

shifts of finite type (Zd SFT) coincide with the set of right-recursive enumerable

numbers. When d = 1, the closed-form expression mentioned above always gives

an efficient approximation algorithm.

A Zd SFT Ω can be understood as the support of a lattice model or also as

a particular case of a hard constrained Zd lattice model where the interaction Φ

is uniform, and it is the main object of study in the area known as multidimen-

sional symbolic dynamics. In this case, the topological entropy coincides with the

pressure and it is given by the formula

h(Ω) = lim
n→∞

log |LBn(Ω)|
|Bn|

, (1.3)

where LBn(Ω) is the set of all configurations with shape Bn that appear in Ω.

Despite the general computability constraints, one can still expect to be able

to approximate efficiently the topological entropy and pressure of some systems

(formally, to prove the existence of a polynomial time approximation algorithm),

and also hope to delineate the general characteristics of systems where this is pos-

sible. Part of of this work has to do with developing approximation techniques and

finding conditions for computing these quantities.

The process of calculating the pressure P(Φ) (or more particularly, the topo-

logical entropy h(Ω)) can be broken up into two steps: representation and approx-

imation. Since P(Φ) is usually defined in terms of integrals and/or limits that are

very hard or too slow to compute directly, it is useful to develop alternative for-

mulas to represent it in such a way that the new representation can be efficiently

approximated. In this regard, of particular interest is a correlation decay property

of Gibbs measures known as strong spatial mixing (SSM), which is a strengthening

of another property known as weak spatial mixing (WSM).

Spatial mixing properties

Let f : N→R be a function such that f (n)↘ 0 as n→ ∞. We say that a Zd lattice

model satisfies WSM with decay function f if for any finite A⊆Zd , B⊆A, β ∈A B,

4
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and any pair of admissible configurations ω1,ω2 ∈A Zd
,

∣∣πω1
A ( ω̂|B = β )−π

ω2
A ( ω̂|B = β )

∣∣≤ |B| f (dist(B,∂A)) , (1.4)

i.e. given a set B, the influence on the distribution ω̂|B of the boundary configura-

tions ω1|∂A and ω2|∂A decays with the graph distance from B to ∂A, according to

f . In other words, WSM implies asymptotic independence between the configura-

tion of a finite volume and the boundary configuration outside a large ball around

this volume.

On the other hand, a Zd lattice model satisfies SSM with decay function f if

for any finite A ⊆ Zd , B ⊆ A, β ∈ A B, and any pair of admissible configurations

ω1,ω2 ∈A Zd
,

∣∣πω1
A ( ω̂|B = β )−π

ω2
A ( ω̂|B = β )

∣∣≤ |B| f (dist(B,Σ∂A(ω1,ω2))) , (1.5)

where Σ∂A(ω1,ω2) = {x ∈ ∂A : ω1(x) 6= ω2(x)}.
The main difference between SSM and WSM is that SSM considers the dis-

tance of B to only the sites in the boundary Σ∂A(ω1,ω2) where ω1 and ω2 differ.

In this case, we can still have a decay of correlation if B is close to ∂A but the

disagreements between ω1 and ω2 are far apart.

WSM has direct connections with the nonexistence of phase transitions (see

[78]). SSM is a stronger version of WSM and is related with the absence of bound-

ary phase transitions [61].

There has been a growing interest (see [61, 79, 39, 33]) in SSM, due to its con-

nections with fully polynomial-time approximation schemes (FPTAS) for counting

problems which are #P-hard (e.g. approximation algorithms for counting indepen-

dent sets [79]; see also [6, 31]), and mixing time of the Glauber dynamics in some

particular systems (see [45, 28]). Of particular interest for us, is that it has also

proven to be useful for pressure representation and approximation (see [32, 58,

15]).

Examples of systems that satisfy these properties in some regime include the

Ising and Potts models (see [61, 40]), and even some cases where hard constraints

are considered, such as the hard-core lattice gas model (see [79]) and q-colourings

5
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(see [33]).

Combinatorial mixing properties

When dealing with hard constraints, we face the problem that sometimes two or

more configurations are not compatible. This is an extra difficulty when prov-

ing spatial mixing properties or a useful pressure representation, since many tools

(probability couplings, equivalences, etc.) have been developed only for the non-

constrained cases. By combinatorial mixing properties we refer to conditions on

the support Ω of a hard constrained system that allow us to “glue” together con-

figurations in an admissible way. Two relevant properties are strong irreducibility

and the existence of a safe symbol.

A Zd SFT Ω is strongly irreducible with gap g ∈ N if for any A,B ⊆ Zd such

that dist(A,B)≥ g, and for every α ∈LA(Ω) and β ∈LB(Ω),

α ∈LA(Ω),β ∈LB(Ω) =⇒ αβ ∈LA∪B(Ω), (1.6)

where αβ denotes the configuration obtained after combining the configurations α

and β into a single one. In simple terms, a Zd SFT Ω is strongly irreducible if any

two admissible (partial) configurations can be glued together in a (full) configura-

tion ω ∈Ω, provided their supports are sufficiently far apart.

Given a Zd SFT Ω⊆A Zd
, a safe symbol s ∈A for Ω is a symbol that can be

adjacent to any other symbol in A (think of 0 in the hard-core lattice gas model).

This property allows us to replace any symbol by s and preserve admissibility of

configurations while we modify them. The existence of a safe symbol has proven

to be useful to develop pressure representation and approximation theorems (see

[32, Assumption 1]). In addition, the existence of a safe symbol implies strong

irreducibility.

Strong irreducibility and the existence of a safe symbol are qualitatively dif-

ferent properties. The former is a global condition that involves the lattice as a

whole. On the other hand, the existence of a safe symbol is a local condition.

An interesting family of examples is the case of proper colourings of the lattice

(q-colourings), where given q colours the constraints impose that two adjacent ver-

tices cannot have the same colour. It is easy to check that the underlying Zd SFT

6
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does not contain any safe symbol. However, if we have enough colours the system

does satisfy a weaker combinatorial condition introduced in [58] called single site-

fillability (SSF). SSF is a local condition that also implies strong irreducibility and

has shown to be useful for having have pressure representation and approximation

theorems (see [58]).

Part of the work presented here involves pushing this even further and looking

for weaker combinatorial properties still useful for these purposes. Of particular

interest is the study of characteristics that hard constraints should satisfy in order

to be (to some extent) compatible with the SSM property.

Pressure representation

In [32, 58] it was proven that SSM (with decay function f (n) = Ce−γn) together

with some extra combinatorial properties are enough for having a pressure repre-

sentation and approximation algorithms for P(Φ). The basic idea was motivated

by the Variational Principle (see [47, Section 4.4]), given by the formula

P(Φ) = sup
µ∈M1,σ (Ω)

(
h(µ)+

∫
AΦdµ

)
, (1.7)

where Ω is the support of the Zd lattice model, M1,σ (Ω) denotes the set of all

shift-invariant (or stationary) Borel probability measures µ supported on Ω, and

AΦ is an auxiliary function defined as AΦ(ω) =−Φ

(
ω|{~0}

)
−∑

d
i=1 Φ

(
ω|{~0,~ei}

)
,

where~0 denotes the origin and {~ei}d
i=1 denotes the canonical basis of Zd . Here, the

quantity h(µ) is the measure-theoretic entropy of µ . Any measure that achieves the

supremum is known as an equilibrium state, which (under very mild conditions)

coincide with a Gibbs measures for Φ.

Given an equilibrium state µ , we have that P(Φ) = h(µ)+
∫

AΦdµ . It is known

that the measure-theoretic entropy h(µ) can be expressed as the integral with re-

spect to µ of the information function Iµ . The information function is defined µ-a.s.

as Iµ(ω)=− log µ

(
ω̂(~0) = ω(~0)

∣∣∣ω|P), where P denotes the lexicographic past

of the origin~0. In other words, given ω ∈A Zd
, Iµ(ω) is the negative logarithm of

the conditional probability of having the value ω(~0) at the origin, given that every

site in the lexicographic past coincides with ω . Then we can write h(µ) =
∫

Iµdµ

7
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and we have

P(Φ) =
∫

(Iµ +AΦ)dµ, (1.8)

for any equilibrium state µ . The idea in [32, 58] was to represent P(Φ) as the

integral of the same integrand, but with respect to a simpler measure ν , i.e.

P(Φ) =
∫

(Iµ +AΦ)dν . (1.9)

This can be regarded as a pressure representation. A pressure representation

becomes especially useful for approximating P(Φ) in the case ν is a periodic point

measure, i.e. a measure which assigns equal weight to each distinct translation of

a given periodic configuration ω ∈ A Zd
. Then

∫
(Iµ +AΦ)dν becomes a finite

sum. The terms in this sum corresponding to AΦ are easy to compute. In this way,

the problem of approximating P(Φ) reduces to approximate Iµ on a single peri-

odic configuration ω and its translates. We remark that to approximate Iµ(ω) is

equivalent to just approximate µ

(
ω̂(~0) = ω(~0)

∣∣∣ω|P), the conditional probability

of a single site taking some particular value. Then this new way to express P(Φ)

by-passes the need of computing the integral with respect to µ . A pressure rep-

resentation requires some assumptions on the measures µ and ν , and also on the

support Ω. In general, it may fail. For example, when considering 3-colourings in

Z2 (see [58]), the representation formula in Equation (1.9) is not always true.

Pressure approximation

Given a pressure representation as in Equation (1.9), the problem of approximating

P(Φ) reduces to know how to approximate Iµ efficiently. In [32] an approach was

given to approximate µ

(
ω̂(~0) = ω(~0)

∣∣∣ω|P), and therefore Iµ(ω), in polynomial

time in some region of the subcritical regime for the Zd hard-core lattice gas model.

This approach was based on the computational tree method developed by Weitz in

[79], which is a powerful technique in the binary case (i.e. |A | = 2). In [58], an

alternative method was develop for the Z2 case to approximate Iµ efficiently, based

on the transfer matrix method. Both approaches rely in the assumption that the

measures involved satisfy the SSM property (with exponential decay) plus some

combinatorial property on the support. We review this approach and also deal with
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the (a priori, radically different) case when the SSM property fails.

1.2 Results overview

The results are divided in two main parts:

I. Development of a robust framework for working with hard constrained sys-

tems in general graphs, and study measure-theoretic correlation decay prop-

erties on them.

II. Study of techniques for representing and efficiently computing pressure in

the uniqueness and non-uniqueness regions in Zd lattice models.

Part I: Combinatorial aspects of the strong spatial mixing property

There is a good amount of literature devoted to study the regimes where SSM holds

for particular systems. In particular, the Ising and Potts models [53, 80], the hard-

core lattice gas model [79], and q-colourings [31] have received special attention.

Given a locally finite countable graph G (the board), a finite set of symbols A ,

some hard constraints, and an interaction Φ, we can define very general systems

(Ω,Φ), where Ω is the configuration space, the subset of configurations not violat-

ing any constraint.

We develop a new framework for studying SSM in general hard constrained

spin systems. This is done in part through the introduction of a combinatorial

mixing property named topological strong spatial mixing (TSSM). A configuration

space Ω is TSSM with gap g∈N if for any subsets A, B, and S such that dist(A,B)≥
g (with respect to the graph distance in G ), and for every α ∈LA(Ω), β ∈LB(Ω),

and σ ∈LS(Ω),

ασ ∈LA∪S(Ω),σβ ∈LS∪B(Ω) =⇒ ασβ ∈LA∪S∪B(Ω). (1.10)

To develop the TSSM property we combine notions from combinatorics in

lattice models (like the existence of a safe symbol and SSF) and from symbolic

dynamics, in particular strong irreducibility. The result is a hybrid concept strictly

weaker than all the combinatorial properties used in [32] and [58], and strictly
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stronger than strong irreducibility (notice that if we take S = /0 in Equation (1.10)

we recover the definition of strong irreducibility).

We prove that, under certain hypotheses, if a system satisfies SSM, then its

support satisfies TSSM. As two of many applications, we show that the space of

4-colourings on the Z2 lattice does not satisfy SSM for any interaction Φ (see

Proposition 3.5.6; it has been suggested in the literature [74] that a uniform Gibbs

measure on this system should satisfy WSM), and that TSSM implies the existence

of periodic points in Zd shift spaces, for every d ∈N (see Proposition 3.4.3). Later,

in Part II, we use TSSM to generalize work in [32] and [58], giving conditions for

simple representation and efficient approximation of pressure.

One of the main ideas is that in order to have a measure-theoretic correlation

decay property like SSM, there may be some necessary combinatorial conditions

on the configuration space. We also explore a complementary question: given a

configuration space satisfying a particular combinatorial property, can we always

find a Gibbs specification satisfying SSM supported on it? In general, if a con-

figuration space just satisfies strong irreducibility, the answer is no. For example,

the space of 4-colourings on Z2 satisfies strong irreducibility, but no measure sup-

ported on it can satisfy SSM.

In [17], Brightwell and Winkler did a complete study of the family of disman-

tlable graphs, including several interesting alternative characterizations. Among

the equivalences discussed in that work, many involved a board G , a finite graph H

(the constraint graph, assumed to be dismantlable), and the set of all graph homo-

morphisms from G to H, which we denote here by Hom(G ,H). We call such a set

of graph homomorphisms a homomorphism space, and it can be understood as a

configuration space Ω. In this context, we should interpret the set of vertices V(H)

of H as the set of symbols A in some spin system living on vertices of G . The ad-

jacencies given by the set of edges E(H) of H indicate the pairs of symbols that are

allowed to be next to each other in G , and the edges that are missing can be seen

as hard constraints in our system (i.e. pair of spin values that cannot be adjacent in

G ). Examples of such systems are very common. If we consider G = Z2 and Hϕ ,

with V(Hϕ) = {0,1} and E(Hϕ) containing every edge but the loop connecting 1

with itself, then Hom(Z2,Hϕ) represents the support of the hard-core lattice gas

model in Z2, i.e. the set of independent sets in the square lattice.
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We are interested in combinatorial mixing properties that are satisfied by a

homomorphism space Hom(G ,H), i.e. properties that allow us to “glue” together

partial configurations in G . For example, the homomorphism space Hom(Z2,H),

where V(H) = {0,1} and H has a unique edge connecting 0 with 1, has only two

elements, both checkerboard patterns of 0s and 1s. This homomorphism space

lacks good combinatorial mixing properties since, for example, it is not possible

to “glue” two 0s together which are separated by an odd distance horizontally or

vertically. Note that this is not the case for Hom(Z2,Hϕ), where the only difference

is that Hϕ has in addition an edge connecting 0 with itself. A gluing property

of particular interest is strong irreducibility. In [17], dismantlable graphs were

characterized as the only graphs H such that Hom(G ,H) is strongly irreducible for

every board G .

In addition, we can consider a n.n interaction Φ that associates some “energy”

to every vertex and edge of a constraint graph H. From this we can construct

a Gibbs (G ,H,Φ)-specification π , which is an ensemble of probability measures

supported in finite portions of G . Specifications are a common framework for

working with spin systems and defining Gibbs measures µ . From this point it is

possible to start studying spatial mixing properties, which combine the geometry

of G , the structure of H, and the distributions induced by Φ. In [17], dismantlable

graphs were also characterized as the only graphs H for which for every board G

of bounded degree there exists a n.n. interaction Φ such that the Gibbs (G ,H,Φ)-

specification π has no phase transition (i.e. there is a unique Gibbs measure for

π).

We consider the problem of existence of strong spatial mixing measures sup-

ported on homomorphism spaces. First, we extend the results of Brightwell and

Winkler on uniqueness, by characterizing dismantlable graphs as the only graphs

H for which for every board G of bounded degree there exists a n.n. interaction

Φ such that the Gibbs (G ,H,Φ)-specification π satisfies WSM (with exponential

decay function; see Section 4.2). Then we give sufficient conditions (see Sec-

tion 4.3) on H and Hom(G ,H) for the existence of Gibbs (G ,H,Φ)-specifications

satisfying SSM (with exponential decay function). Since SSM implies WSM, a

necessary condition for SSM to hold in every board G is that H is dismantlable.

We exhibit examples showing that SSM is a strictly stronger property, in terms of
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combinatorial properties of H and Hom(G ,H), than WSM. In particular, there exist

dismantlable graphs H where SSM fails in Hom(G ,H), for some boards G .

To our knowledge, this is the first attempt to characterize the constraint graphs

H that are suitable for SSM to hold for general boards G . Related work was done in

[27], where the family of dismantlable graphs was related with rapid mixing of the

Glauber dynamics in finite boards with free boundary conditions. In contrast, we

demonstrate that the role of boundary conditions cannot be ignored when we are

looking for Gibbs specifications satisfying SSM in models with hard constraints.

Other combinatorial and measure-theoretic mixing properties have been con-

sidered in the literature of lattice models. We also explore the relationships be-

tween some of them. In Part II, we see how they are useful in some cases for

representation and approximation. In particular, in the context of stationary Zd

Gibbs measures µ satisfying SSM, we establish many useful properties that show

how TSSM on the support of µ is sufficient for a special pressure representation

and efficient approximation algorithms.

Part II: Representation and poly-time approximation for pressure

The main focus of Part II is to find simple representations of pressure and use this

to develop efficient (in principle) algorithms to approximate it, profiting from the

measure-theoretical and combinatorial mixing properties studied in Part l.

There is much work in the literature on numerical approximations for pressure

(see [7, 29]). We take a theoretical computer science point of view (see [50]): an

algorithm for computing a real number r is said to be poly-time if for every N ∈N,

the algorithm outputs an approximation rN to r, which is guaranteed to be accurate

within 1
N and takes time at most polynomial in N to compute. In that case, we

say that r is poly-time computable. One of our goals is to prove the existence of

poly-time algorithms for P(Φ) under certain assumptions on Φ and the support Ω.

Following the works of Gamarnik and Katz [32], and Marcus and Pavlov [58],

we provide extended versions of representation theorems of pressure in terms of

conditional probabilities and also conditions for more general approximation al-

gorithms. In [32], for obtaining such representation and approximation theorems,

they assumed the existence of a safe symbol, which is a very strong combinato-
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rial condition, together with SSM (and an exponential assumption on the decay

function of SSM for algorithmic purposes). Later, in [58], these assumptions were

replaced by more general and technical conditions in the case of representation,

and the SSF property, which generalized the safe symbol case both in the represen-

tation and in the algorithmic results. Here, making use of the theoretical machinery

developed in [58], we have relaxed those conditions even more by using the more

general property of TSSM.

Next, we continue the development of representing the pressure with a sim-

plified expression. We prove a new pressure representation theorem and differ-

ent techniques to tackle the problem of pressure approximation in supercritical

regimes, where long range correlations do not decay and therefore SSM cannot

hold. We considered three classical lattice models: the (ferromagnetic) Potts, (mul-

titype) Widom-Rowlinson, and hard-core lattice gas models. For Widom-Rowlin-

son and hard-core lattice gas, the techniques apply to certain subsets of both the

subcritical and supercritical regions, where the main novelty is in the latter. In

the case of the Potts model with q colours, we obtain a pressure representation

for any β > 0 and a poly-time approximation algorithm for any β 6= βc(q), where

βc = log(1+
√

q) denotes the critical inverse temperature.

To do this the main tools are coupling techniques in Markov random fields (see

[11]) and the relation of these models (in particular, Potts and Widom-Rowlinson)

with random-cluster models (see [42]). Two of the most exploited couplings were

the van den Berg and Maes coupling for Markov random fields inducing paths of

disagreement (see [11]), and the Edwards-Sokal coupling, relating the Potts model

with the bond random-cluster model (see [42]).

The pressure representation theorems developed in [32] and [58] were given

in terms of the information function Iµ , that depends on a stationary Gibbs mea-

sure µ for an interaction Φ. In order to have analogous representation formulas for

supercritical regimes, we had to modify the representation formula by introduc-

ing a closely related function Iπ , which depends only on the Gibbs specification

{πω
A }A,ω . This turned out to be necessary but at the same time natural, since pres-

sure depends only on the interaction and not on any particular Gibbs measure µ .

The results hold in every dimension d. Among other conditions, these results

require conditions on Ω and a convergence condition for certain sequences of finite-
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volume half-plane measures (different convergence conditions in the different re-

sults). In the case d = 2, if the convergence holds at exponential rate, then one

obtains a poly-time algorithm for approximating P(Φ). For d > 2, if the exponen-

tial convergence holds, one can deduce an algorithm for approximating P(Φ) with

sub-exponential but not polynomial rate. We remark that the finite-volume half-

plane measures mentioned above typically are constant on their bottom boundaries

and thus are related to wetting models (see [68, 73]).

In [32], the convergence condition is SSM of a Gibbs measure µ for the n.n.

interaction Φ. This condition is known to imply that there is a unique Gibbs mea-

sure for Φ and thus can be applied only in the uniqueness (subcritical) region of

a given lattice model. The convergence conditions in [58] are weaker but also ap-

ply primarily to this region. However, since our convergence condition depends

only on the interaction, one might expect that the pressure representation and ap-

proximation results can apply in the non-uniqueness region as well. Indeed, they

do. As illustrations, we apply these results to explicit subcritical and supercritical

sub-regions of three main classical lattice models in Z2. In particular, for the pres-

sure approximation results for these models, we establish the required exponential

convergence conditions (see Section 6.5). However, we believe that our results are

applicable to a much broader class of models, in particular satisfying weaker con-

ditions on Ω. We remark that the SSM condition of [32] is a much stronger version

of our condition, and so in this sense our results generalize some results of that

paper (in particular, for the Z2 hard-core lattice gas model).

In the case of the 2-dimensional Potts model, we obtain a pressure representa-

tion and efficient pressure approximation for all β 6= βc(q), where βc(q) = log(1+
√

q) is the critical value which separates the uniqueness and non-uniqueness re-

gions. Our proof in the non-uniqueness region generalizes a result from [22] for

q = 2 (i.e. the Ising model) and we closely follow their proof, which relies heav-

ily on a coupling with the bond random-cluster model and planar duality. For the

uniqueness region, our result follows from [4].

For the Widom-Rowlinson and hard-core lattice gas models, our results are not

as complete as in the Potts case, since the subcritical and supercritical regions for

these two models haven’t been completely determined. We also expect our results

can be improved, because they only apply to proper subsets of the currently known
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uniqueness/non-uniqueness regions.

For the Widom-Rowlinson model, in the supercritical region, we use a varia-

tion of the disagreement percolation technique introduced in [11], combined with

the connection between the Widom-Rowlinson model and the site random-cluster

model. In the subcritical region, we apply directly the results in [11].

For the hard-core lattice gas model, in the supercritical region, we combine

the coupling in [11] and a Peierls argument used by Dobrushin (see [26]). In the

subcritical region, we use a recent result on SSM for the hard-core lattice gas model

in Z2.

For the Potts model, we also extend the pressure representation, by a continuity

argument, to give an expression for the pressure at criticality (see Corollary 13). It

is of interest that there is an exact, explicit, but non-rigorous, formula for the pres-

sure at criticality due to Baxter (see [8]). So, our rigorously obtained expression

should agree with that formula, though we do not know how to prove this state-

ment. It seems that Baxter’s explicit expression gives a poly-time approximation

algorithm, but we cannot justify that our expression is poly-time computable.

1.3 Thesis structure

The thesis is split in mainly two parts.

Part I consists of Chapter 2, Chapter 3, and Chapter 4.

In Chapter 2, we give the basic notions of graph theory (Section 2.1), configu-

ration spaces (Section 2.2), and Gibbs measures (Section 2.3).

In Chapter 3, we define spatial mixing (Section 3.1) and combinatorial (Section

3.2) properties, we introduce the topological strong spatial mixing property (Sec-

tion 3.3), establish properties and characterizations of it, and relationships to some

measure-theoretic quantities (Section 3.4). Next, we provide connections between

measure-theoretic and combinatorial mixing properties (Section 3.6); in particular,

Theorem 3.6.5 provides evidence that TSSM is closely related with SSM. In Sec-

tion 3.5, we give several examples illustrating different types of mixing properties

in the context of Zd SFTs.

In Chapter 4, we introduce the necessary background for studying homomor-

phism spaces and dismantlable graphs (Section 4.1). After that, we explore the
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connections between dismantlability and WSM (Section 4.2). Then we introduce

the unique maximal configuration (UMC) property (Section 4.3) and show that this

property is sufficient for having a Gibbs specification satisfying SSM with arbi-

trarily high exponential decay of correlations (Section 4.4). We introduce a fairly

general family of graphs H, strictly contained in the family of dismantlable graphs,

such that Hom(G ,H) satisfies the UMC property for every board G (Section 4.5).

Theorem 4.6.3 provides a summary of relationships and implications among the

properties studied (we encourage the reader to take a quick look to it before a more

detailed reading). Later, we focus in the particular case where H is a (looped)

tree T and conclude that the properties on T yielding WSM for some measure on

Hom(G ,T ) coincide with those yielding SSM (Section 4.6). At the end of this

chapter, we provide examples illustrating the qualitative difference between the

combinatorial properties necessary for WSM and SSM to hold in homomorphism

spaces (Section 4.7).

Part II consists of Chapter 5, Chapter 6, and Chapter 7.

In Chapter 5, we introduce topological entropy (Section 5.1) and topological

pressure (Section 5.2). We discuss some variational principles and then we exhibit

some pressure representation theorems (Section 5.3).

In Chapter 6, we review the three specific Zd lattice models to which we apply

our main results (Section 6.1), and we review the bond random-cluster (Section 6.2)

model and site random-cluster model (Section 6.3), where Lemma 6.3.2 is a novel

result concerning the latter. Next, we review some spatial mixing and stochastic

dominance concepts (Section 6.4) and use this to help establish exponential con-

vergence results (Section 6.5).

In Chapter 7, we combine the pressure representation theorems and exponen-

tial convergence results in order to obtain efficient approximation algorithms for

pressure (Section 7.1).

Finally, in Chapter 8, we discuss possible future directions of research.
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Chapter 2

Basic definitions and notation

2.1 Graphs

A graph is an ordered pair G = (V,E) (or G = (V (G),E(G)) if we want to em-

phasize the graph G), where V is a finite set or a countably infinite set of elements

called vertices, and E is contained in the set of unordered pairs {{x,y} : x,y ∈V},
whose elements we call edges. We denote x ∼ y (or x ∼G y if G is not clear from

the context) whenever {x,y} ∈ E, and we say that x and y are adjacent. A vertex

x is said to have a loop if {x,x} ∈ E. The set of looped vertices of a graph G

will be denoted Loop(G) := {x ∈V : {x,x} ∈ E} and G will be called simple if

Loop(G) = /0. A graph G is finite if |G|< ∞, where |G| denotes the cardinality of

V (G), and infinite otherwise.

Fix n∈N. A path (of length n) in a graph G will be a finite sequence of distinct

edges {x0,x1},{x1,x2}, . . . ,{xn−1,xn}. A single vertex x will be considered to be a

path of length 0. A cycle (of length n) will be a path such that x0 = xn. Notice that a

loop is a cycle. A vertex y will be said to be reachable from another vertex x if there

exists a path (of some length n≥ 0) such that x0 = x and xn = y. For A1,A2 ⊆V , a

path from A1 to A2 is any path whose first vertex is in A1 and whose last vertex is

in A2. A graph will be said to be connected if every vertex is reachable from any

other vertex, and a tree if it is connected and has no cycles. A graph which is a tree

plus possibly some loops, will be called a looped tree.

For a vertex x, we define its neighbourhood N(x) as the set {y ∈V : y∼ x}. A

graph G will be called locally finite if |N(x)|< ∞, for every x ∈V . A locally finite

graph will have bounded degree if ∆(G) := supx∈V |N(x)|< ∞. In this case we say

that G is of maximum degree ∆(G). Given d ∈ N, a graph of maximum degree d

is d-regular if |N(x)|= d, for all x ∈V .

We say that a graph G′ = (V ′,E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and
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2.1. Graphs

E ′ ⊆ E. For a subset of vertices A⊆V , we define the subgraph of G induced by A

as G[A] := (A,E[A]), where E[A] := {{x,y} ∈ E : x,y ∈ A}.

2.1.1 Boards

A board G = (V ,E ) will be any simple, connected, locally finite graph with at

least two vertices, where V is the set of vertices (or sites) and E is the set of edges

(or bonds). We will use the letters x, y, etc. for denoting the vertices in a board.

Boards and configurations on them (see Section 2.2) will be the main playground

in this work.

Example 2.1.1. Given d ∈ N, we have the two following families of boards:

• The d-dimensional integer lattice Zd (see Subsection 2.1.2).

• The d-regular tree Td (also known as Bethe lattice).

Figure 2.1: A sample of the boards Z2 and T3.

Given a board G = (V ,E ), we can define a natural distance function between

vertices x,y ∈ V , namely

dist(x,y) := min{n : ∃ a path of length n s.t. x = x0 and xn = y}, (2.1)

which can be extended to sets A1,A2 ⊆ V as dist(A1,A2) = minx∈A1,y∈A2 dist(x,y).

We denote B b A whenever a finite set B ⊆ V is contained in a set A ⊆ V .

When denoting subsets of V that are singletons, brackets will usually be omitted,

e.g. dist(x,A) will be regarded to be the same as dist({x},A). Notice that if x ∈
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2.1. Graphs

A, then dist(x,A) = 0. Given A ⊆ V , we define its (outer) boundary as ∂A :=
{x ∈ V : dist(x,A) = 1} and its closure as A := A∪ ∂A. The inner boundary of

A will be the set ∂A := ∂Ac, i.e. the set of sites x in A which are adjacent to

some other site in Ac. Given n ∈ N, we call Nn(A) := {x ∈ V : dist(x,A)≤ n}
the n-neighbourhood of A, and ∂nA := Nn(A)\A, the n-boundary of A. Notice

that N0(A) = A, N1(x) = N(x)∪{x}, and ∂1(A) = ∂A. For A b V , we define its

diameter as diam(A) := maxx,y∈A dist(x,y).

2.1.2 The d-dimensional integer lattice

The board of main interest will be the d-dimensional integer lattice Zd . Given

d ∈ N, we define Zd =
(
V (Zd),E (Zd)

)
to be the 2d-regular (countably infinite)

graph such that

V (Zd) = Zd , and E (Zd) =
{
{x,y} : x,y ∈ Zd ,‖x− y‖= 1

}
, (2.2)

with ‖x‖ = ∑
d
i=1 |xi| the 1-norm, for x = (x1, . . . ,xd) ∈ Zd . In a slight abuse of

notation, we will use Zd to denote both the set of vertices and the board itself.

A natural order on Zd is the so-called lexicographic order, where y 4 x (or

equivalently, x< y) iff y = x or yi < xi, for the smallest 1≤ i≤ d for which yi 6= xi.

Considering this order, we define the (lexicographic) past of Zd as

P :=
{

x ∈ Zd \{~0} : x4~0
}
, (2.3)

where~0 denotes the origin. Given y,z ∈ Zd such that y,z ≥~0 (here ≥ denotes the

coordinate-wise comparison of vectors), we also define the [y,z]-block as the set

By,z :=
{

x ∈ Zd :−y≤ x≤ z
}
, (2.4)

and the broken [y,z]-block as

Qy,z := By,z \P =
{

x<~0 :−y≤ x≤ z
}
. (2.5)

In addition, given n ∈N, we define the n-block as Bn := B~1n,~1n and the broken
n-block as Qn = Bn \P , where~1 denotes the vector (1, . . . ,1) ∈ Zd . Notice that
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2.1. Graphs

Bn = [−n,n]d ∩Zd . We also define the n-rhomboid as Rn := Nn({~0}).
In Zd we can also define an alternative notion of adjacency and therefore, an al-

ternative notion of boundary, inner boundary, closure, path, connectedness, etc., by

replacing the 1-norm ‖·‖with the ∞-norm ‖·‖∞, defined as ‖x‖∞ = maxi=1,...,d |xi|,
for x ∈ Zd . When referring to these notions with respect to the ∞-norm, we will

always add a ? superscript and talk about ?-adjacency x ?∼ y , ?-boundary ∂ ?A,

inner ?-boundary ∂
?A, ?-closure A?, ?-path, ?-connectedness, etc. Notice that two

vertices x and y are ?-adjacent if they are adjacent in a version of the d-dimensional

integer lattice Zd including in addition diagonal edges. We will denote this version

of the lattice by Zd,?.

2.1.3 Constraint graphs

A constraint graph H = (V,E) is a finite graph, where loops are allowed. The

main role of constraint graphs will be to prescribe adjacency rules for values of

vertices in a given board (see Subsection 2.2.1). A difference between boards and

constraint graphs is that the latter must be finite. Another one is that constraint

graphs are allowed to have loops. We will denote by H

�

= (V,E

�

) the constraint

graph obtained by adding loops to every vertex, i.e. E

�

= E∪{{u,u} : u ∈ V}
and Loop(H

�

) = V. We will use the letters u, v, etc. for denoting vertices in a

constraint graph.

Figure 2.2: The graphs Kn and K

�

n , for n = 5.

A constraint graph will be called complete if u ∼ v, for every u,v ∈ V such

that u 6= v. The complete graph with n vertices will be denoted Kn (notice that

Loop(Kn) = /0). A constraint graph will be called loop-complete if u ∼ v, for
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2.1. Graphs

every u,v ∈ V. Notice that the loop-complete graph with n vertices is K

�

n . The

graphs Kn and K

�

n are very important examples (see Example 2.3.1) of constraint

graphs, which relate to proper colourings of boards and unconstrained models,

respectively. Other relevant examples are the following.

Example 2.1.2. The constraint graph given by

Hϕ := ({0,1},{{0,0},{0,1}}) , (2.6)

shown in Figure 2.1.2, is related to the hard-core model (see Example 2.3.1).

Figure 2.3: The graph Hϕ .

Given n ∈ N, the n-star graph is defined as

Sn = ({0,1, . . . ,n},{{0,1}, . . . ,{0,n}}) . (2.7)

In addition, it will be useful to consider the constraint graphs

So
n = (V(Sn),E(Sn)∪{{0,0}}) , (2.8)

and S

�

n (see Figure 2.4). Notice that Hϕ = So
1.

Figure 2.4: The graphs S6, So
6, and S

�

6 .

22



2.2. Configuration spaces

2.2 Configuration spaces

Fix a board G = (V ,E ) and let A be a finite set of symbols called alphabet.
We endow A with the discrete topology and A V with the corresponding product

topology. We will call any closed subset Ω ⊆ A V a configuration space. The

elements in Ω will be called points and will be denoted with the Greek letters ω ,

υ , etc.

Two families of configuration spaces considered here are homomorphism spa-

ces (see Section 2.2.1) and Zd shift spaces (see Section 2.2.2).

Given A ⊆ V , a configuration will be any map α : A→ A (or equivalently,

α ∈ A A), denoted with lowercase Greek letters α , β , etc. The set A is called the

shape of α , and a configuration will be said to be finite if its shape is finite. Notice

that, in particular, a point is a configuration with shape V . For any configuration

α with shape A and B⊆ A, α|B denotes the sub-configuration of α occupying B,

i.e. the map from B to A obtained by restricting the domain of α to B. Given a

symbol a ∈A , aA will denote the configuration of all a’s on A.

Given a configuration space Ω, a configuration α ∈A A is said to be globally
admissible if there exists ω ∈Ω such that ω|A = α . The language L (Ω) of Ω is

the set of all finite globally admissible configurations, i.e.

L (Ω) :=
⋃

AbV

LA(Ω), (2.9)

where LA(Ω) := {ω|A : ω ∈Ω}, for A ⊆ V . Given A ⊆ V and a configuration

α ∈A A, we define the cylinder set

[α]Ω := {ω ∈Ω : ω|A = α} . (2.10)

We will say that [α]Ω has support A. When omitting the superscript Ω, we will

consider [α] to be the cylinder set for Ω = A V .

For A1 and A2 disjoint sets, α1 ∈A A1 , and α2 ∈A A2 , α1α2 will be the config-

uration on A1tA2 (here t denotes the disjoint union) defined by (α1α2)|A1
= α1

and (α1α2)|A2
= α2. In particular, [α1α2]

Ω = [α1]
Ω∩ [α2]

Ω.

Notice that α ∈A A is globally admissible iff α ∈LA(Ω) iff [α]Ω 6= /0.

23



2.2. Configuration spaces

2.2.1 Homomorphism spaces

A natural way to define a rich family of configuration spaces is by relating boards

and constraint graphs via graph homomorphisms.

Definition 2.2.1. A graph homomorphism α : G1→G2 from a graph G1 = (V1,E1)

to a graph G2 = (V2,E2) is a mapping α : V1→V2 such that

{x,y} ∈ E1 =⇒ {α(x),α(y)} ∈ E2. (2.11)

Given two graphs G1 and G2, we will denote by Hom(G1,G2) the set of all

graph homomorphisms α : G1→ G2 from G1 to G2.

Fix a board G and a constraint graph H. We will call homomorphism space
the set Hom(G ,H). In this context, the graph homomorphisms that belong to Ω =

Hom(G ,H) can be understood as points in a configuration space contained in A V ,

where A = V(H). Notice that a point ω ∈Ω is a “colouring” of V with elements

from V(H) such that x∼G y =⇒ ω(x)∼H ω(y). In other words, ω is a colouring

of G that respects the constraints imposed by H with respect to adjacency.

Example 2.2.1. For d ∈ N, two examples of homomorphism spaces are

• Hom(Zd ,Hϕ), the set of elements in {0,1}Zd
with no adjacent 1s, and

• Hom(Td ,Kq), the set of proper q-colourings of the d-regular tree.

2.2.2 Shift spaces in Zd

Fix the board to be Zd , for some d ∈N. For an alphabet A , we can define the shift
action σ : Zd ×A Zd → A Zd

given by (x,ω) 7→ σx(ω), where x ∈ Zd , ω ∈A Zd
,

and (σx(ω))(y) = ω(x+y), for y ∈ Zd . In this case, we call A Zd
the full shift and

we can consider the metric m(ω,υ) := 2− inf{‖x‖:ω(x)6=υ(x)}, for ω,υ ∈A Zd
, which

induces the product topology in A Zd
, i.e. (A Zd

,m) is a compact metric space.

We can also extend the shift action σ to configurations with arbitrary shapes,

i.e. given α ∈A A and x ∈ Zd , we define σx(α) ∈A A−x as the configuration such

that (σx(α))(y) = α(x+ y), for y ∈ A− x = {y− x : y ∈ A}.
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We are interested in configuration spaces Ω ⊆ A Zd
that are shift-invariant,

i.e. σx(Ω) = {σx(ω) : ω ∈Ω}= Ω, for all x ∈ Zd . In order to obtain such spaces,

given a family of finite configurations F⊆
⋃

AbZd A A, we define

ΩF :=
{

ω ∈A Zd
: σx(ω)|A /∈ F, for all Ab Zd , for all x ∈ Zd

}
. (2.12)

Here, Ω=ΩF⊆A Zd
is called a Zd shift space and it is the set of all points that

do not contain a translation of an element from F as a sub-configuration. Notice

that a Zd shift space Ω is always a shift-invariant set, i.e. σx(Ω) =Ω, for all x∈Zd .

In fact, a subset Ω ⊆ A Zd
is a Zd shift space iff it is shift-invariant and closed in

the product topology (see [56, Theorem 6.1.21] for a proof of the case d = 1. The

general case is analogous). More than one family F can define the same Zd shift

space Ω and, when Ω can be defined by a finite family F, it is said to be a Zd shift
of finite type (Zd SFT). A Zd SFT is a Zd nearest-neighbour (n.n.) SFT if F

can be partitioned in sets {Ei}d
i=1 such that each Ei contains configurations only

on shapes on edges of the form {~0,~0+~ei}, where ~e1, . . . ,~ed denote the canonical

basis. We will mostly restrict our attention to Zd n.n. SFTs. In such case, we call

F =
⊔d

i=1Ei a set of n.n. constraints and, given a set A ⊆ Zd and a configuration

α ∈A A, we say that α is feasible for F if for every x∈ A and for every i = 1, . . . ,d

such that {x,x+~ei} ⊆ A, we have that σ−x

(
α|{x,x+~ei}

)
/∈ Ei. Notice that the Zd

n.n. SFT induced by F is the set ΩF =
{

ω ∈A Zd
: ω is feasible for F

}
.

Notice that homomorphism spaces Hom(Zd ,H) are a particular case of Zd

n.n. SFTs, where additional symmetries are preserved besides translations (in

particular, any automorphism of Zd). For example, the homomorphism space

Ωd
ϕ = Hom(Zd ,Hϕ) can be also regarded as a Zd n.n. SFT. When d = 2, Ω2

ϕ it

is known as the hard square shift.
In some contexts, a feasible configuration α ∈A A is said to be locally admis-

sible and it is called globally admissible if in addition it extends to a point of Ω.

A globally admissible configuration is always locally admissible, but the converse

is false (see Section 3.5.7 for an example). In addition, notice that if a configura-

tion α ∈A A is globally (resp. locally) admissible, then α|B is also globally (resp.

locally) admissible, for any B⊆ A.

A point ω ∈A Zd
is periodic (of period k) in the ith direction if σk~ei(ω) = ω ,
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for k ∈N, and periodic if it is periodic in the ith direction, for every i = 1, . . . ,d. A

periodic point ω is a fixed point if σx(ω) = ω , for all x ∈ Zd . We define the orbit
of a point ω as the set O(ω) :=

{
σx(ω) : x ∈ Zd

}
. Notice that a point ω is periodic

iff |O(ω)|< ∞, and ω is a fixed point iff |O(ω)|= 1.

2.3 Gibbs measures

In this section we develop the Gibbs formalism, focusing on the case where the

configuration space is a homomorphism space or/and a Zd n.n. SFT. We will re-

fer to the conjunction of these two classes as invariant nearest-neighbour (n.n.)
configuration spaces.

2.3.1 Borel probability measures and Markov random fields

Given a set A ⊆ V , we denote by FA the σ -algebra generated by all the cylinder

sets [α] with support A, and we equip A V with the σ -algebra F = FV . A Borel
probability measure µ on A V is a measure such that µ(A V ) = 1, determined by

its values on cylinder sets of finite support.

For notational convenience, when measuring cylinder sets we just use the con-

figuration α instead of [α]. For instance, µ (α1α2|β ) represents the conditional

measure µ ([α1]∩ [α2]|[β ]). Given B⊆ A⊆ V and a measure µ on FA, we denote

by µ|B the restriction (or projection or marginalization) of µ to FB.

The support supp(µ) of a Borel probability measure µ is defined as the closed

set

supp(µ) :=
{

ω ∈A V : µ(ω|A)> 0, for all Ab V
}
. (2.13)

Given a configuration space Ω, we will denote by M1(Ω) the set of Borel

probability measures whose support supp(µ) is contained in Ω.

A measure µ ∈M1(Ω) is a Markov random field on G (G -MRF) if, for any

A b V , α ∈ A A, and B b V such that ∂A ⊆ B ⊆ V \A, and any β ∈ A B with

µ(β )> 0, it is the case that

µ (α|β ) = µ (α|β |
∂A) . (2.14)
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2.3. Gibbs measures

In other words, an MRF is a measure where every finite configuration con-

ditioned on a boundary configuration is independent of the configuration on the

“exterior”.

2.3.2 Shift-invariant measures

When G =Zd , a measure µ on A Zd
such that µ(σx(A))= µ(A), for all measurable

sets A ∈F and x ∈ Zd , is called shift-invariant (or stationary). In this context,

the support supp(µ) turns out to be always a Zd shift space (a closed and shift-

invariant subset of A Zd
). Given a Zd shift space Ω, M1,σ (Ω) denotes the set of

shift-invariant measures contained in M1(Ω). A measure µ ∈M1,σ (Ω) is ergodic
if for all shift-invariant A ∈F (i.e σx(A) = A, for all x ∈ Zd), it is the case that

µ(A) ∈ {0,1}, and measure-theoretic strong mixing, if for every nonempty sets

A,Bb Zd and any α ∈A A, β ∈A B,

lim
‖x‖→∞

µ ([α]∩σ−x([β ])) = µ (α)µ (β ) , (2.15)

i.e. for every ε > 0, there exists n ∈ N such that

‖x‖ ≥ n =⇒ |µ ([α]∩σ−x([β ]))−µ (α)µ (β )|< ε. (2.16)

If µ ∈M1,σ (Ω) is measure-theoretic strong mixing, then µ is ergodic (see [76]

for these and related notions). Given any point ω ∈A Zd
, we define the δ -measure

supported on ω as the measure

δω(A) =

1 if ω ∈ A,

0 otherwise,
(2.17)

for any A ∈F .

If ω is a periodic point with orbit O(ω) = {ω1, . . . ,ωk}, we define νω to be the

shift-invariant Borel probability measure supported on O(ω) given by

ν
ω :=

1
k
(δω1 + · · ·+δωk) . (2.18)
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2.3. Gibbs measures

Gibbs measures will be the main class of Borel probability measures studied in

this work. Before defining them, we need to introduce nearest-neighbour interac-

tions and Gibbs specifications.

2.3.3 Nearest-neighbour interactions

Let Ω be a configuration space for a board G = (V ,E ). We define the set of config-
urations on vertices as L v(Ω) :=

⋃
x∈V L{x}(Ω), and the set of configurations

on edges as L e(Ω) :=
⋃
{x,y}∈E L{x,y}(Ω). We will abbreviate

L v,e(Ω) := L v(Ω)∪L e(Ω). (2.19)

A nearest-neighbour (n.n.) interaction on Ω will be any real-valued function

Φ : L v,e(Ω)→ R (2.20)

that evaluates configurations in L v,e(Ω). We will always assume that

Φmax := sup
α∈L v,e(Ω)

|Φ(α)|< ∞. (2.21)

Constrained energy functions

Given a constraint graph H = (V,E), a constrained energy function will be any

pair (H,φ) such that φ is a real-valued function φ : V∪E→ R from vertices and

edges in H. Given a homomorphism space Ω = Hom(G ,H), a constrained energy

function φ induces naturally a n.n. interaction Φ in Ω by taking

Φ(α) =

φ (α(x)) if α ∈L{x}(Ω), x ∈ V ,

φ ({α(x),α(y)}) if α ∈L{x,y}(Ω), {x,y} ∈ E .
(2.22)

Example 2.3.1. Let q∈N and ξ > 0. Many constrained energy functions represent

well-known classical models.

• Ferromagnetic Potts (K

�

q ,ξ φ FP): φ FP
∣∣
V ≡ 0, φ FP({u,v}) =−1{u=v}.
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2.3. Gibbs measures

• Anti-ferromagnetic Potts (K

�

q ,ξ φ AP): φ AP
∣∣
V ≡ 0, φ AP({u,v}) =−1{u6=v}.

• Proper q-colourings (Kq,φ
PC): φ PC

∣∣
V∪E ≡ 0.

• Hard-core (Hϕ ,ξ φ HC): φ HC(0) = 0, φ HC(1) =−1, φ HC
∣∣
E ≡ 0.

• Multi-type Widom-Rowlinson (S

�

q ,ξ φ WR): φ WR(v) =−1{v 6=0}, φ WR
∣∣
E ≡ 0.

Usually, the parameter ξ is referred to as the inverse temperature.

All the previous models are isotropic, i.e. when G = Zd they have the same

interaction in every coordinate direction {~0,~ei}, for i = 1, . . . ,d.

Zd lattice energy functions

Given d ∈ N and the board G = Zd , we can define a n.n. interaction that eval-

uates configurations on edges according to their orientation. Given a set of n.n.

constraints F =
⊔d

i=1Ei, any real-valued function φ from A {~0} and A {~0,~ei} \Ei

(i = 1, . . . ,d) will be a Zd lattice energy function for F. A Zd lattice energy func-

tion φ for F induces naturally a n.n. interaction Φ on the Zd n.n. SFT ΩF by taking

Φ(α) =

φ

(
σ−x(α)|{~0}

)
if α ∈L{x}(Ω),

φ

(
σ−x(α)|{~0,~ei}

)
if α ∈L{x,x+~ei}(Ω),

(2.23)

for x ∈ Zd and i = 1, . . . ,d. Notice that in this case Φ is shift-invariant (i.e. the

value of a configuration on an edge is the same for any translation of it), which is

not a requirement in general. However, the shift-invariance of Φ fits naturally with

the shift-invariance of ΩF, so we will usually assume this in the context of Zd shift

spaces. Clearly, a shift-invariant n.n. interaction is defined by only finitely many

numbers (namely, the values defining φ ).

2.3.4 Hamiltonian and partition function

Let Ω⊆A V be an invariant n.n. configuration space (i.e. a homomorphism space

or a Zd n.n. SFT), and let Φ be a n.n. interaction. Given A b V , we define the
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2.3. Gibbs measures

Hamiltonian in A as H Φ
A : LA(Ω)→ R, where

H Φ
A (α) := ∑

x∈A
Φ

(
α|{x}

)
+ ∑
{x,y}∈E [A]

Φ

(
α|{x,y}

)
, (2.24)

for α ∈LA(Ω). We define the partition function of A as

ZΦ
A := ∑

α∈LA(Ω)

exp
(
−H Φ

A (α)
)
, (2.25)

and the free-boundary probability measure on A A given by

π
( f )
A (α) :=


exp(−H Φ

A (α))
ZΦ

A
if α ∈LA(Ω),

0 otherwise.
(2.26)

In addition, given ω ∈ Ω, we define the ω-boundary Hamiltonian in A as

H Φ
A,ω : {α ∈LA(Ω) : α ω|Ac ∈Ω}→ R, where

H Φ
A,ω(α) = ∑

x∈A
Φ

(
α|{x}

)
+ ∑
{x,y}∈E [A∪∂A]:{x,y}∩A 6= /0

Φ

(
(αω|Ac)|{x,y}

)
, (2.27)

and the ω-boundary probability measure on A A given by

π
ω
A (α) :=


exp(−H Φ

A,ω (α))
ZΦ

A,ω
if α ω|Ac ∈Ω,

0 otherwise,
(2.28)

where ZΦ
A,ω := ∑α:α ω|Ac∈Ω exp

(
−H Φ

A,ω(α)
)

.

Both, for π
( f )
A and πω

A , given B⊆ A and β ∈A B, we marginalize as follows:

π
∗
A(β ) = ∑

α∈A A: α|B=β

π
∗
A(α), (2.29)

where ∗ = ( f ) or ω . Notice that π∗A is a G [A]-MRF (here we use the assumption

that Ω is an invariant n.n. configuration space and Φ is a n.n. interaction).
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2.3. Gibbs measures

2.3.5 Gibbs specifications

The collection π = {πω
A : Ab V ,ω ∈Ω} will be called nearest-neighbour (n.n.)

Gibbs (Ω,Φ)-specification (or just Gibbs specification if Ω and Φ are under-

stood). If Φ≡ 0, we call the n.n. Gibbs (Ω,0)-specification π the uniform Gibbs
specification on Ω (see the case of proper q-colourings in Example 2.3.1).

Notice that a n.n. Gibbs specification π for a shift-invariant n.n. interaction Φ

on a Zd n.n. SFT Ω is always stationary, in the sense that π
σx(ω)
A−x (σx(α)) = πω

A (α),

for every α ∈A A and x ∈ Zd .

2.3.6 Nearest-neighbour Gibbs measures

A n.n. Gibbs (Ω,Φ)-specification π is regarded as a meaningful representation

of an ideal physical situation where every finite volume A in the space is in ther-

modynamical equilibrium with the exterior. The extension of this idea to infinite

volumes is via a particular class of Borel probability measures on Ω called nearest-

neighbour Gibbs measures, which are MRFs specified by n.n. interactions.

Definition 2.3.1. Given a n.n. Gibbs (Ω,Φ)-specification π , a nearest-neighbour
(n.n.) Gibbs measure for π is any measure µ ∈M1(Ω) such that for any Ab V

and ω ∈Ω with µ(ω|
∂A)> 0, we have ZΦ

A,ω > 0 and

Eµ(1[α]Ω |FAc)(ω) = π
ω
A (α) µ-a.s., (2.30)

for every α ∈LA(Ω).

Equation (2.30) is equivalent to what is known as the Dobrushin-Lanford-
Ruelle (DLR) equation. It is stated only for cylinder events [α]Ω in A, but this is

equivalent to the usual definition with general events A ∈F instead. Given a n.n.

Gibbs (Ω,Φ)-specification π , we will denote G(π) the set of n.n. Gibbs measures

for π . If Ω 6= /0, then G(π) 6= /0 (special case of a result in [26], see also [18] and

[70, Theorem 3.7 and Theorem 4.2]). Notice that every n.n. Gibbs measure µ is a

G -MRF because the formula for πω
A only depends on ω|

∂A.

Often there are multiple n.n. Gibbs measures for a single π . This phenomenon

is usually called a phase transition. There are several conditions that guarantee

31



2.3. Gibbs measures

uniqueness of n.n. Gibbs measures (i.e. |G(π)| = 1). Some of them fall into the

category of spatial mixing properties, introduced in the next chapter.

In the case Zd n.n. SFTs, a Gibbs measure for a stationary Gibbs specification π

may or may not be shift-invariant, but G(π) must contain at least one shift-invariant

measure (see [35, Corollary 5.16]).
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Chapter 3

Mixing properties

In this chapter we introduce some mixing properties of measure-theoretic and com-

binatorial type for a Gibbs (Ω,Φ)-specification π . In general terms, a mixing prop-

erty says that, either a measure or the support of it, does not have strong long-range

correlations. This last aspect will be relevant for obtaining succinct representations

of pressure, and when developing efficient algorithms for approximating it.

3.1 Spatial mixing properties

In the following, let f : N→ R≥0 be a function, referred as decay function, such

that f (n)↘ 0 as n→ ∞. We will loosely use the term “spatial mixing property” to

refer to any measure-theoretical property satisfied by π defined via a decay of cor-

relation between events (or configurations) with respect to the distance separating

the shapes they are supported on.

The first property introduced here, weak spatial mixing (WSM), has direct con-

nections with the nonexistence of phase transitions and has been studied in several

works, explicitly and implicitly (see [17, 78]). The next one, strong spatial mix-

ing (SSM), is a strengthening of WSM that also has connections with meaningful

physical idealizations (see [61, 45, 28]) and has proven to be useful for developing

approximation algorithms (see [79, 39, 33, 6, 31, 80]).

Definition 3.1.1. A Gibbs (Ω,Φ)-specification π satisfies weak spatial mixing
(WSM) with decay f if for any Ab V , B⊆ A, β ∈A B, and ω1,ω2 ∈Ω,

∣∣πω1
A (β )−π

ω2
A (β )

∣∣≤ |B| f (dist(B,∂A)). (3.1)

If a Gibbs (Ω,Φ)-specification π satisfies WSM, then there is a unique n.n.

Gibbs measure µ for π (see [78, Proposition 2.2]).
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3.1. Spatial mixing properties

We use the convention that dist(B, /0) =∞. Given two configurations α1 ∈A A1 ,

α2 ∈A A2 , and B⊆ A1∩A2, we define their set of B-disagreement as

ΣB(α1,α2) := {x ∈ B : α1(x) 6= α2(x)} . (3.2)

Considering this, we have the following definition, a priori stronger than WSM.

Definition 3.1.2. A Gibbs (Ω,Φ)-specification π satisfies strong spatial mixing
(SSM) with decay f if for any Ab V , B⊆ A, β ∈A B, and ω1,ω2 ∈Ω,

∣∣πω1
A (β )−π

ω2
A (β )

∣∣≤ |B| f (dist(B,Σ∂A(ω1,ω2))) . (3.3)

Notice that dist(B,Σ∂A(ω1,ω2))≥ dist(B,∂A), so SSM implies WSM.

Figure 3.1: The weak and strong spatial mixing properties.

We will say that a Gibbs specification π satisfies SSM (resp. WSM) if it sat-

isfies SSM (resp. WSM) with decay f , for some decay function f . For γ > 0, a

Gibbs specification π satisfies exponential SSM (resp. exponential WSM) with
decay rate γ if it satisfies SSM (resp. WSM) with decay function f (n) = Ce−γn,

for some C > 0. We say that a Gibbs specification π satisfies SSM for a class of
sets C if Definition 3.1.2 holds restricted to sets A ∈ C , for C a (possibly infinite)

family of finite sets.

Definition 3.1.3 (Total variation distance). Let K be a finite set and let X1 and

X2 be two K-valued random variables with probability distributions ρ1 and ρ2,

respectively. The total variation distance between X1 and X2 (or equivalently,
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3.1. Spatial mixing properties

between ρ1 and ρ2) is defined as

dTV(ρ1,ρ2) :=
1
2 ∑

x∈X
|ρ1(x)−ρ2(x)| . (3.4)

In the literature, it is also common to find the definition of WSM and SSM with

the expression
∣∣πω1

A (β )−π
ω2
A (β )

∣∣ replaced by the total variation distance of π
ω1
A

∣∣
B

and π
ω2
A

∣∣
B. The definitions here are, a priori, slightly weaker (so the results where

SSM is an assumption are also valid for this alternative definition), but sufficient

for our purposes.

Definition 3.1.4. A coupling of two probability measures ρ1 on a finite set K1 and

ρ2 on a finite set K1, is a probability measure P on the set K1×K1 such that, for

any A⊆ K1 and B⊆ K1, we have that

P(A×K1) = ρ1(A), and P(K1×B) = ρ2(B). (3.5)

Given a finite set K and two K-valued random variables X1 and X2 with prob-

ability distributions ρ1 and ρ2, respectively, it is well-known that dTV(ρ1,ρ2) is a

lower bound on P(X1 6= X2) over all couplings P of ρ1 and ρ2 and that there is a

coupling, called the optimal coupling, that achieves this lower bound.

Lemma 3.1.1 ([60, Lemma 2.3]). Let π be a Gibbs (Ω,Φ)-specification and f a

decay function such that for any Ab V , x ∈ A, β ∈A {x}, and ω1,ω2 ∈Ω,

∣∣πω1
A (β )−π

ω2
A (β )

∣∣≤ f (dist(x,Σ∂A(ω1,ω2))) . (3.6)

Then, π satisfies SSM with decay f .

Remark 1. The proof of Lemma 3.1.1 given in [60] is for MRFs µ satisfying ex-

ponential SSM on G = Zd , but its generalization to Gibbs specifications, arbitrary

decay functions, and more general boards is direct. We do not know if there is an

analogous lemma for WSM.

Example 3.1.1. Recall the constrained energy functions introduced in Example

2.3.1. The following Gibbs specifications satisfy exponential SSM (and therefore,

WSM).
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3.2. Combinatorial mixing properties

• (K

�

q ,ξ φ FP) on G = Z2, for any q ∈ N and small enough ξ (see [1, 11]).

• (K

�

q ,ξ φ AP) on G = Z2, for q≥ 6 and any ξ > 0 (see [40]).

• (Kq,φ
PC) on G = Td , for q ≥ 1+ δ ∗d, where δ ∗ = 1.763 . . . is the unique

solution to xe−1/x = 1 (see [34, 39]).

• (Hϕ ,ξ φ HC) on G with ∆(G )≤ d, for any ξ such that eξ < λc(d) := (d−1)(d−1)

(d−2)d

(see [79]).

• (S

�

q ,ξ φ WR) on G = Zd , for any q ∈ N and small enough ξ (see [1, 11]).

There are more general sufficient conditions for having exponential SSM (for

instance, see Subsection 3.6.1 or the discussion in [60]).

3.2 Combinatorial mixing properties

In this section we consider combinatorial properties for a configuration space Ω.

According to the way they are defined, we classify them as global or local.

3.2.1 Global properties

By a global property we understand any property of Ω that allow us to “glue”

together globally admissible configurations in a single point ω ∈Ω. The two prop-

erties introduced here have in common that they allow us to put together configu-

rations provided they are separated enough.

Definition 3.2.1. A Zd shift space Ω is topologically mixing if for any A,B b Zd

there exists a separation constant gA,B ∈ N such that for every α ∈A A, β ∈A B,

and any x ∈ Zd with dist(A,x+B)≥ gA,B,

[α]Ω, [β ]Ω 6= /0 =⇒ [α]Ω∩σ−x([β ]
Ω) 6= /0. (3.7)

Definition 3.2.2. A configuration space Ω is strongly irreducible with gap g ∈N
if for any A,Bb V with dist(A,B)≥ g, and for every α ∈A A, β ∈A B,

[α]Ω, [β ]Ω 6= /0 =⇒ [αβ ]Ω 6= /0. (3.8)
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3.2. Combinatorial mixing properties

In other words, in the context of Zd shift spaces, strong irreducibility means

that the separation constant gA,B from Definition 3.2.1 can be chosen to be uniform

in A and B.

Figure 3.2: A topologically mixing Z2 shift space.

Remark 2. Since a configuration space is a compact space, it does not make a

difference if the shapes of A and B are allowed to be infinite in the definition of

strong irreducibility.

3.2.2 Local properties

Now we introduce two local properties concerning constraint graphs and n.n. con-

straints, which will later be shown to have implications on the global properties

(like, for example, strong irreducibility) of invariant n.n. configuration spaces Ω

(homomorphism spaces and Zd n.n. SFTs, respectively).

The first property is the existence of a special symbol which can be adjacent to

every other symbol (including itself).

Definition 3.2.3. Given a constraint graph H, we say that s ∈ V is a safe symbol
if {s,v} ∈ E, for every v ∈ V. Analogously, given an alphabet A , a set of n.n.

constraints F, and the corresponding Zd n.n. SFT Ω = ΩF, we say that s ∈A is a

safe symbol for Ω if s{~0}δ is locally admissible for every configuration δ ∈A ∂{~0}.

Example 3.2.1 (A Zd n.n. SFT with a safe symbol). The constraint graph Hϕ has

a safe symbol (see Figure 2.1.2). In the support of the Zd hard-core lattice gas

model (the Zd n.n. SFT Ωd
ϕ ), 0 is a safe symbol for every d (see [32]).
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3.3. Topological strong spatial mixing

The following property was introduced in [58] in the context of Zd shift spaces,

and here we proceed to adapt it to the case of homomorphism spaces.

Definition 3.2.4. A homomorphism space Hom(G ,H) is single-site fillable (SSF)
(or we say that it satisfies single-site fillability) if for every site x ∈ V and B ⊆
∂{x}, any graph homomorphism β : G [B]→ H can be extended to a graph homo-

morphism α : G [B∪{x}]→ H (i.e. α is such that α|B = β ). Analogously, a Zd

n.n. SFT Ω is SSF if for some set of n.n. constraints F such that Ω = ΩF, for every

δ ∈A ∂{~0}, there exists a ∈A such that a{~0}δ is locally admissible.

Note 1. An invariant n.n. configuration space Ω is SSF iff every locally admissible

configuration is globally admissible (see [58] for the Zd n.n. SFT case).

In the definition of SSF above, the symbol a may depend on the configuration

α . Clearly, a Zd n.n. SFT containing a safe symbol satisfies SSF. Also, it is easy to

check that a Zd n.n. SFT Ω that satisfies SSF is strongly irreducible with gap g = 2

(see Proposition 3.3.3).

Example 3.2.2 (A Zd n.n. SFT that satisfies SSF without a safe symbol). The Zd

q-colourings n.n. SFT Hom(Zd ,Kq) has no safe symbol for any q ≥ 2 and d ≥ 1.

However, Hom(Zd ,Kq) satisfies SSF for q≥ 2d +1 (see [58]).

3.3 Topological strong spatial mixing

Now we introduce a property which is somehow a hybrid between the global and

local combinatorial properties from last section. Because of its close relationship

with topological Markov fields (see [20]), we prefer to use the word “topological”

for naming it. This condition will be relevant to give a partial characterization of

systems that admit measures satisfying SSM, and also to generalize results related

with pressure representation and approximation in Part II.

Definition 3.3.1. A configuration space Ω is topologically strong spatial mixing
(TSSM) with gap g ∈ N, if for any A,B,S b V with dist(A,B)≥ g, and for every

α ∈A A, β ∈A B, and σ ∈A S,

[ασ ]Ω, [σβ ]Ω 6= /0 =⇒ [ασβ ]Ω 6= /0. (3.9)
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3.3. Topological strong spatial mixing

Notice that TSSM implies strong irreducibility by taking S = /0 in Definition

3.3.1. The difference here is that we allow an arbitrarily close globally admissible

configuration on S in between two sufficiently separated globally admissible con-

figurations, provided that each of the two configurations is compatible with the one

on S individually. Clearly, TSSM with gap g implies TSSM with gap g+ 1. We

will say that a configuration space satisfies TSSM (resp. strong irreducibility) if it

satisfies TSSM (resp. strong irreducibility) with gap g, for some g ∈ N.

It can be checked that for a Zd n.n. SFT Ω,

Safe symbol =⇒ SSF =⇒ TSSM =⇒ Strong irred. =⇒ Top. mixing, (3.10)

and all implications are strict. See Section 3.5 for examples that illustrate the dif-

ferences among some of these conditions.

+

Figure 3.3: The topological strong spatial mixing property.

A useful tool when dealing with TSSM is the next lemma, which states that if

we have the TSSM property when A and B are singletons, then we have it uniformly

(in terms of separation distance) for any pair of finite sets A and B.

Lemma 3.3.1. Let Ω be a configuration space and g∈N such that for any x,y∈ V

with dist(x,y) ≥ g and S b V , we have that for every α ∈ A {x}, β ∈ A {y}, and

σ ∈ A S with [ασ ]Ω, [σβ ]Ω 6= /0, then [ασβ ]Ω 6= /0. Then, Ω satisfies TSSM with

gap g.

Proof. We proceed by induction. The base case |A|+ |B| = 2 is given by the hy-

pothesis of the lemma. Now, let’s suppose that the property is true for subsets

A,B b V such that |A|+ |B| ≤ n and let’s prove it for the case when |A|+ |B| =
n+1.

Given A,B,Sb V with dist(A,B)≥ g and |A|+ |B|= n+1, and given α ∈A A,
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3.3. Topological strong spatial mixing

β ∈A B, and σ ∈A S, we can write A = {x1, . . . ,xk} and B = {y1, . . . ,ym}, where

|A|= k, |B|= m, and k+m = n+1, for k,m≥ 1. Let’s consider A′ = A\{xk} and

B′ = B\{ym}, possibly empty sets (but not both empty at the same time, since we

can assume that |A|+ |B| > 2). Similarly, let’s consider the restrictions α ′ = α|A′
and β ′ = β |B′ . By the induction hypothesis, we have that [α ′σβ ]Ω, [ασβ ′]Ω 6= /0

(even in the case A′ or B′ being empty). Then, if we consider σ ′ = α ′σβ ′ on

S′ = A′ ∪ S∪B′, we can apply the property for singletons with α|{xk} and β |{ym},

and we conclude that /0 6= [α|{xk}σ ′ β |{ym}]
Ω = [ασβ ]Ω.

Proposition 3.3.2. Let Ω be a configuration space. The two following properties

are equivalent:

1. Ω satisfies TSSM with gap g.

2. For every Γb V and η ,η ′ ∈LΓ(Ω) with ΣΓ(η ,η ′) = {x1, . . . ,xk}, there ex-

ists a sequence η = η1,η2, . . . ,ηk+1 = η ′ ∈LΓ(Ω) such that ΣΓ(ηi,ηi+1)⊆
ΣΓ(η ,η ′)∩Ng(xi), for all 1≤ i≤ k.

Proof.

(1) =⇒ (2). Take η1 = η and ηk+1 = η ′. Suppose that for some i ≤ k we have

already constructed a sequence η1, . . . ,ηi ∈LA(Ω) such that

ΣA(η j,η j+1)⊆ ΣA(η ,η ′)∩Ng(x j),for all 1≤ j < i, and (3.11)

ΣA(η j,η
′)⊆ {x j, . . . ,xk},for all 1≤ j ≤ i. (3.12)

The base case i = 1 is clear. Now, let’s extend the sequence to i+1. Consider

the sets Ai = {xi}, Bi = ΣΓ(ηi,η
′)\Ng(xi), and Si = Γ\ΣΓ(ηi,η

′). Take the con-

figurations αi ∈ A Ai , βi ∈ A Bi , and σi ∈ A Si defined as αi := η ′|Ai
, βi := ηi|Bi

,

and σi := ηi|Si
= η ′|Si

. Since dist(Ai,Bi)≥ g, /0 6= [η ′]Ω ⊆ [αiσi]
Ω, and /0 6= [ηi]

Ω ⊆
[σiβi]

Ω, by TSSM, we can take ωi ∈ [αiσiβi]
Ω and consider ηi+1 := ωi|Γ ∈LΓ(Ω).

Then, ΣΓ(ηi+1,η
′) ⊆ {xi+1, . . . ,xk} and ΣΓ(ηi,ηi+1) ⊆ ΣΓ(η ,η ′)∩Ng(xi), as we

wanted. Iterating until i = k, we conclude.

(2) =⇒ (1). Consider x,y ∈ V with dist(x,y) ≥ g, S b V , α ∈A {x}, β ∈A {y},

and σ ∈A S. Suppose that [ασ ]Ω, [σβ ]Ω 6= /0. It suffices to prove that [ασβ ]Ω 6= /0

and we conclude by applying Lemma 3.3.1. Let Γ= S∪{x,y} and take ω ∈ [ασ ]Ω,
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3.4. TSSM in Zd shift spaces

υ ∈ [σβ ]Ω 6= /0, and let η1 = ω|
Γ
, η3 = υ |

Γ
. W.l.o.g., suppose that ΣΓ(η1,η3) =

{x,y}. By (2), there exists a configuration η2 ∈LΓ(Ω) such that ΣΓ(η1,η2)⊆ {y}
and ΣΓ(η2,η3) ⊆ {x}. Therefore, η2|S = σ , η2|{x} = α1|{x} = α , and η2|{y} =
η3|{y} = β , so [ασβ ]Ω 6= /0. Notice that it is important that we took the order

x1 = y and x2 = x in the previous proof.

Remark 3. Property (2) in Proposition 3.3.2 is a stronger version of the gener-
alized pivot property (see [20]), related with connectedness of configurations’
spaces (see [17]).

Proposition 3.3.3. If an invariant n.n. configuration space Ω satisfies SSF, then it

satisfies TSSM with gap g = 2.

Proof. Since Ω satisfies SSF, every locally admissible configuration is globally

admissible. If we take g = 2, for all sets A,B,S b Zd such that dist(A,B) ≥ g

and for every α ∈ A A, β ∈ A B, and σ ∈ A S, if [ασ ]Ω, [σβ ]Ω 6= /0, in particular

we have that ασ and σβ are locally admissible. Since dist(A,B) ≥ g = 2, ασβ

must be locally admissible, too. Then, by SSF, ασβ is globally admissible and,

therefore, [ασβ ]Ω 6= /0.

3.4 TSSM in Zd shift spaces

Definition 3.4.1. Given a Zd shift space Ω and Γ⊆ Zd , a configuration η ∈A Γ is

called a first offender for Ω if η /∈L (Ω) but η |S ∈L (Ω), for every S ( Γ. We

define the set of first offenders of Ω as

O(Ω) :=
{

η ∈ ∪~0∈ΓbZd A
Γ
∣∣η is a first offender for Ω

}
. (3.13)

Note 2. When d = 1, a similar notion of first offender can be found in [56, Exercise

1.3.8], where it is used to characterize a “minimal” family F inducing a Z SFT Ω.

Proposition 3.4.1. Let Ω be a Zd shift space. Then Ω satisfies TSSM iff |O(Ω)|<
∞.

Proof. First, suppose that Ω satisfies TSSM with gap g, for some g ∈ N, and take

η ∈O(Ω) with shape ΓbZd such that~0∈Γ. By way of contradiction, assume that
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diam(Γ) ≥ g and let x,y ∈ Γ be such that dist(x,y) = diam(Γ). W.l.o.g., assume

that x 6= y. Then, for S = Γ \ {x,y} ( Γ and since η is a first offender, we have

that [η |{x} η |S]Ω, [η |S η |{y}]Ω 6= /0. Since dist(x,y) ≥ g, by TSSM, we have that

[η ]Ω = [η |{x} η |S η |{y}]Ω 6= /0, which is a contradiction. Then, diam(Γ) < g and,

since~0 ∈ Γ, we have that |O(Ω)|< ∞.

Now, suppose that |O(Ω)|< ∞ and take

g∗ = 1+ max
~0∈ΓbZd

{
dist(~0,y) : y ∈ Γ,A Γ∩O(Ω) 6= /0

}
< ∞, (3.14)

which is well defined. Consider arbitrary x,y∈Zd and SbZd , with dist(x,y)≥ g∗,

and take α ∈ A {x}, σ ∈ A S, β ∈ A {y} such that [ασ ]Ω, [σβ ]Ω 6= /0. W.l.o.g., by

shift-invariance, we can take x =~0. Now, by contradiction, assume that [ασβ ]Ω =

/0. Consider a minimal S′ ⊆ S such that [α σ |S′ β ]Ω = /0 but [α σ |S′′ β ]Ω 6= /0, for

all S′′ ( S′ (this includes the case S′ = /0, where the condition over S′′ is vacuously

true). It is direct to check that α σ |S′ β is a first offender with shape Γ = {~0,y}∪S′.

Then, since dist(~0,y) = dist(x,y)≥ g∗, we have a contradiction with the definition

of g∗. Therefore, thanks to Lemma 3.3.1, Ω satisfies TSSM with gap g∗.

Notice that Ω = ΩO(Ω). Considering this, we have the following corollary.

Corollary 1. Let Ω be a Zd shift space that satisfies TSSM. Then, Ω is a Zd SFT.

Note 3. If Ω⊆A Zd
is a Zd shift space that satisfies TSSM with gap g, then it can

be checked that Ω is a Zd SFT that can be defined by a family of configurations

F⊆A Ng .

The next lemma provides another characterization of TSSM for Zd n.n. SFTs.

Lemma 3.4.2. A Zd n.n. SFT Ω satisfies TSSM with gap g iff for all S⊆ Rg,

∀(α,σ ,β ) ∈A {~0}×A S×A ∂Rg : [ασ ]Ω, [σβ ]Ω 6= /0 =⇒ [ασβ ]Ω 6= /0. (3.15)

Proof. Let’s prove that if Ω satisfies Equation (3.15), then Ω satisfies TSSM with

gap g. W.l.o.g., by Lemma 3.3.1 and shift-invariance, consider x,y ∈ Zd with

dist(x,y)≥ g, x =~0, Sb Zd , and configurations α ∈A {x}, β ∈A {y}, and σ ∈A S

such that [ασ ]Ω, [σβ ]Ω 6= /0. Take ω ∈ [σβ ]Ω and consider α ′ = α , β ′ = ω|
∂Rg\S,

42



3.4. TSSM in Zd shift spaces

and σ ′ = σ |Rg∩S. Then, /0 6= [ασ ]Ω ⊆ [α ′σ ′]Ω and /0 6= [ω|Rg
]Ω ⊆ [σ ′β ′]Ω, so

[α ′σ ′β ′]Ω 6= /0, by Equation (3.15). Take υ ∈ [α ′σ ′β ′]Ω and notice that υ |
∂Rg

=

ω|
∂Rg

. Then, since Ω is a Zd n.n. SFT, we conclude that ω̃ = υ |Rg
ω|Zd\Rg

∈
[ασβ ]Ω, so [ασβ ]Ω 6= /0 and Ω satisfies TSSM. The converse is immediate.

3.4.1 Existence of periodic points

Proposition 3.4.3. Let Ω be a nonempty Zd shift space that satisfies TSSM with

gap g. Then, Ω contains a periodic point of period 2g in every direction.

Proof. Consider the hypercube Q= [1,2g]d∩Zd . Given `∈{0,1}d , denote Q(`)=

g`+
(
[1,g]d ∩Zd

)
⊆ Q. Notice that Zd =

⊔
x∈2gZd (x+Q) and Q =

⊔
`∈{0,1}d Q(`).

Then

Zd =
⊔

`∈{0,1}d

⊔
x∈2gZd

(x+Q(`)) =
⊔

`∈{0,1}d

W (`), (3.16)

where W (`) =
⊔

x∈2gZd (x+Q(`)). Notice that dist(x+Q(`),y+Q(`))≥ g, for all

` ∈ {0,1}d and x,y ∈ 2gZd such that x 6= y.

Consider `0, `1, . . . , `2d−1 an arbitrary order in {0,1}d . Let α0 ∈LQ(`0)(Ω) and

N ∈ N. By using repeatedly the TSSM property (in particular, strong irreducibil-

ity), we can construct a point ωN
0 ∈Ω with σ2gx(ω

N
0 )
∣∣
Q(`0)

= α0, for all x such that

‖x‖∞ ≤ N. By compactness of Ω, we can take the limit when N→ ∞ and obtain a

point ω0 ∈Ω such that σ2gx(ω0)|Q(`0)
= α0, for all x ∈ Zd .

Given 0 ≤ k < 2d − 1, suppose that there exists a point ωk ∈ Ω and αi ∈
LQ(`i)(Ω), for i = 0,1, . . . ,k, such that σ2gx(ωk)|Q(`i)

= αi, for all i ∈ {0,1, . . . ,k}
and x ∈ Zd . Notice that if k = 2d − 1, the point ω2d−1 is periodic of period 2g in

every direction. Then, since we have already constructed ω0, it suffices to prove

that we can construct ωk+1 from ωk.

Take αk+1 = ωk|Q(`k+1)
. Notice that αk+1 = σ−2gx(ωk)|2gx+Q(`k+1)

and that

σ−2gx(ωk) has the same property of ωk, i.e. σ2gy(σ−2gx(ωk))|Q(`i)
= αi, for all

i = 0,1, . . . ,k and y ∈ Zd .

Consider an arbitrary enumeration of Zd = {x0,x1,x2, . . .}, with x0 =~0. Let

ω0
k+1 = ωk and suppose that, given m ∈ N, there is a point ωm

k+1 such that

• σ2gx j(ω
m
k+1)

∣∣
Q(`i)

= αi, for all i ∈ {0,1, . . . ,k} and j ∈ N, and
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• σ2gx j(ω
m
k+1)

∣∣
Q(`k+1)

= αk+1, for all 0≤ j ≤ m.

Take A =
⊔m

j=0 2gx j +Q(`k+1), B = 2gxm+1 +Q(`k+1), and S =
⊔k

r=0W (`r).

Notice that dist(A,B) ≥ g. Then take ωm
k+1

∣∣
A ∈ A A, σ−2gxm+1(ωk)

∣∣
B ∈ A B, and

ωk|S ∈ A S. We have that ωm
k+1

∣∣
A ωk|S is globally admissible by the hypothesis

of the existence of ωm
k+1 and ωk|S σ−2gxm+1(ωk)

∣∣
B is globally admissible thanks to

the observation about σ−2gx(ωk). Then, ωm
k+1

∣∣
A ωk|S σ−2gxm+1(ωk)

∣∣
B is globally

admissible by TSSM. Notice that here S is an infinite set and the TSSM property is

for finite sets. This is not a problem since we can consider the finite set S′ = S∩Bn

and take the limit n→ ∞ for obtaining the desired point, by compactness.

Figure 3.4: Construction of a periodic point using TSSM.

Now, notice that any extension of ωm
k+1

∣∣
A ωk|S σ−2gxm+1(ωk)

∣∣
B is a point with

the properties of ω
m+1
k+1 . Taking the limit m→ ∞, we obtain a point with the prop-

erties of ωk+1. Since k was arbitrary, we can iterate the argument until k = 2d−1,

for obtaining the point ω2d−1 which is periodic of period 2g in every canonical

direction.

Note 4. It is known that for d = 1,2 a non-empty strongly irreducible Zd SFT

contains a periodic point. The case d = 1 is easy once one knows how to represent

a Z SFT as the space of infinite paths in a finite directed graph. For the case d = 2,

see [77, 55]. The case d ≥ 3 is still an open problem.

Proposition 3.4.4. Let Ω be a nonempty Zd shift space that satisfies TSSM with gap

g. Then, Ω contains a periodic point of periods k1 +g, . . . ,kd +g in the directions

~e1, . . . ,~ed , respectively, for every ki ≥ g. Moreover, the set of periodic points is

dense in Ω.
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Proof. We can modify the proof of Proposition 3.4.3, replacing the hypercube Q

by ∏
d
i=1 ([1,ki +g]∩Z) and the sub-hypercube Q(`0) by ∏

d
i=1 ([1,ki]∩Z). This

gives the first part of the statement. For checking density of periodic points, notice

that in the proof of Proposition 3.4.3, α0 ∈LQ(`0)(Ω) was arbitrary.

Remark 4. In particular, any globally admissible finite configuration with shape

S ⊆∏
d
i=1 ([1,ki]∩Z) with ki ≥ g, can be embedded in a periodic point of periods

k1 +g, . . . ,kd +g in directions~e1, . . . ,~ed , respectively.

It is well known that in the case of Z SFTs (d = 1) the mixing hierarchy col-

lapses, i.e. topologically mixing, strongly irreducible, and other intermediate prop-

erties, such as block gluing and uniform filling, are all equivalent (for example, see

[14]). In the nearest-neighbour case, we extend this to TSSM.

Proposition 3.4.5. A Z n.n. SFT Ω satisfies TSSM iff it is topologically mixing.

Proof. We prove that if Ω is topologically mixing, then it satisfies TSSM. The

other direction is obvious.

It is known that a topologically mixing Z n.n. SFT Ω is strongly irreducible

with gap g = g({0},{0}), where g({0},{0}) is the gap according to Definition

3.2.1. Consider arbitrary x,y ∈ Z and S b Z \ {x,y} with dist(x,y) ≥ g. Take

α ∈ A {x}, β ∈ A {y}, and σ ∈ A S with [ασ ]Ω, [σβ ]Ω 6= /0. W.l.o.g., by shift-

invariance, assume that x = 0 < y.

First, consider the open interval (x,y) and suppose that S∩(x,y) = /0. By strong

irreducibility, there is δ ∈L(x,y)∩Z(Ω) such that [αδβ ]Ω 6= /0. Consider ω ∈ [ασ ]Ω,

υ ∈ [σβ ]Ω, and τ ∈ [αδβ ]Ω. Then, ω|(−∞,x]∩Z τ|(x,y)∩Z υ |[y,∞)∩Z ∈ [ασβ ]Ω, so

[ασβ ]Ω 6= /0. Now, suppose that S∩ (x,y) 6= /0. Take r ∈ S∩ (x,y) and ω ∈ [ασ ],

υ ∈ [σβ ]. Then, ω|(−∞,r]∩Z υ |(r,∞)∩Z ∈ [ασβ ]Ω, and [ασβ ]Ω 6= /0. Finally, we

conclude using Lemma 3.3.1.

3.4.2 Algorithmic results

In general, given a Zd n.n. SFT Ω for d ≥ 2, it is algorithmically undecidable to

know if a given configuration is in L (Ω) or not (see [12, 69]). We present now

some algorithmic results related with TSSM. First, a lemma.
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Lemma 3.4.6. Let Ω be a nonempty Zd shift space that satisfies strong irreducibil-

ity with gap g. Then, for all Ab Zd , α ∈A A, and ω ∈Ω, α is globally admissible

iff there exists υ ∈Ω such that

υ |A = α, and υ |Zd\Ng(A) = ω|Zd\Ng(A) . (3.17)

Proof. This is a direct application of the definition of strong irreducibility for the

configurations α and ω|Zd\Ng(A), considering that dist
(
A,Zd \Ng(A)

)
≥ g.

Corollary 2. Let Ω ⊆ A Zd
be a nonempty Zd n.n. SFT that satisfies TSSM with

gap g. Then, there is an algorithm to check whether α belongs to LA(Ω) or not,

for every Ab Zd and α ∈A A, in time |A |O(|∂gA|).

Proof. By Proposition 3.4.3, there exists a periodic point in Ω of period 2g in every

direction. Then, by checking all the possible configurations in A [0,2g]d , we can find

a valid periodic point ω in time O(|A |(2g+1)d · d(2g+ 1)d |A |2). Given α ∈ A A,

by Lemma 3.4.6, we only need to check that α and ω|
∂Ng(A) can be extended

together to a locally admissible configuration on Ng(A). It can be checked in time

O(d|A||A |2) whether α is locally admissible or not. On the other hand, it can be

decided in time O
(
|A ||∂gA| ·d|∂gA||A |2

)
if there exists a configuration σ ∈A ∂gA

such that ασ ω|
∂Ng(A) is locally admissible. This is enough for deciding if α is

globally admissible or not. Thanks to the discrete isoperimetric inequality |∂A| ≥
2d|A| d−1

d (this follows directly from the discrete Loomis and Whitney inequality

[57]), we have that |A| = |A |O(|∂A|), and we conclude that the total time of the

algorithm is |A |O(|∂gA|).

Remark 5. It is worthwhile to point that, when d ≥ 3, there are no known explicit

bounds on the time for checking global admissibility in Zd n.n. SFTs that only

satisfy strong irreducibility.

Corollary 3. Let Ω ⊆ A Zd
be a nonempty Zd n.n. SFT that satisfies strong ir-

reducibility with gap g0. Then, for every g ≥ g0, there is an algorithm to check

whether Ω satisfies TSSM with gap g or not, in time eO(gd log |A |).

Proof. Given the set of n.n. constraints F such that Ω = ΩF, the algorithm would

be the following:
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1. Look for the periodic point provided by Proposition 3.4.3. If such point does

not exist, then Ω does not satisfy TSSM with gap g. If such point exists, let’s

denote it by ω . (This can be done in time eO(gd log |A |).)

2. Fix a shape S⊆ Rg \{~0} and then fix configurations α ∈A {~0}, β ∈A ∂Rg\S,

and σ ∈A S.

(a) Using strong irreducibility with gap g0, check whether [ασ ]Ω, [σβ ]Ω,

and [ασβ ]Ω are empty or not, by trying to embed ασ , σβ , and ασβ

in the periodic point ω in a locally admissible way (as in Corollary 2).

(This can be done in time O(|Rg+g0 |)eO(|Rg+g0 | log |A |) = eO(|Rg| log |A |).)

(b) If [ασ ]Ω = /0 or [σβ ]Ω = /0, continue.

(c) If [ασ ]Ω, [σβ ]Ω 6= /0, but [ασβ ]Ω = /0, then Ω does not satisfy TSSM

with gap g.

(d) If all the cylinders are nonempty, continue.

3. If after checking all the configurations we have not found α , σ , and β such

that [ασ ]Ω, [σβ ]Ω 6= /0, but [ασβ ]Ω = /0, then Ω satisfies TSSM with gap g

(by Lemma 3.4.2).

Then, since |Rn| ≤ (2n+1)d , the total time of this algorithm is eO(gd log |A |).

3.5 Examples: Zd n.n. SFTs

In this chapter we exhibit examples of Zd n.n. SFTs which illustrate some of the

mixing properties discussed in the previous sections.

3.5.1 A strongly irreducible Z2 n.n. SFT that is not TSSM

Clearly, the SSF property implies strong irreducibility (a way to see this is through

Proposition 3.3.3). As it is mentioned in Example 3.2.2, the q-colourings Z2 n.n.

SFT Hom(Z2,Kq) satisfies SSF iff q≥ 5. For the Z2 n.n. SFT Hom(Z2,K4), given

δ ∈ V4
∂{~0} (where V4 := V(K4) = {1,2,3,4}) defined by δ (~e1) = 1, δ (~e2) = 2,

δ (−~e1) = 3, and δ (−~e2) = 4, there is no a ∈ V4
{~0} such that aδ remains locally
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admissible, so Hom(Z2,K4) does not satisfy SSF. However, inspired by the SSF

property, we have the following definition.

Definition 3.5.1. Given N ∈ N, a Zd n.n. SFT Ω satisfies N-fillability if, for every

locally admissible configuration δ ∈ A T , with T ⊆ Zd \ [1,N]d , there exists α ∈
A [1,N]d∩Zd

such that αδ is locally admissible.

Remark 6. In the previous definition, since Ω is a Zd n.n. SFT, it is equivalent to

consider δ to have shape T ⊆ ∂ [1,N]d ∩Zd . In this sense, notice that 1-fillability

coincides with the notion of SSF (which only considers locally admissible configu-

rations on ∂{~0}).

Lemma 3.5.1. The Z2 n.n. SFT Hom(Z2,K4) satisfies 2-fillability.

Proof. Consider an arbitrary locally admissible configuration δ ∈ V4
T , with T ⊆

Zd \ [1,2]2. We want to check if there is α ∈ V4
[1,2]2∩Z2

such that αδ remains

locally admissible. W.l.o.g., we can assume that T = ∂ [1,2]2 ∩Z2, which is the

worst case. Given a locally admissible boundary δ ∈ V4
∂ [1,2]2∩Z2

and x ∈ [1,2]2∩
Z2, let’s denote by W δ

x the set of values a ∈ V4
{x} such that aδ remains locally

admissible. Notice that |W δ
x | ≥ 2, for every x ∈ [1,2]2∩Z2 and for every such δ .

W.l.o.g., assume that |W δ
x |= 2, W δ

(1,1) = {1,2}, and consider α ∈ V4
[1,2]2∩Z2

to be

defined.

First, suppose that W δ

(1,1)∩W δ

(2,2) 6= /0 or W δ

(2,1)∩W δ

(1,2) 6= /0. By the symmetries

of [1,2]2∩Z2 and the constraints, we may assume that 1 ∈W δ

(1,1)∩W δ

(2,2) and take

α(1,1) = α(2,2) = 1, α(2,1) ∈W δ

(2,1) \{1}, and α(1,2) ∈W δ

(1,2) \{1}. It is easy

to check that αδ is locally admissible.

On the other hand, if W δ

(1,1)∩W δ

(2,2) = /0 and W δ

(2,1)∩W δ

(1,2) = /0, w.l.o.g. we have

that W δ

(1,1) = {1,2} and W δ

(2,2) = {3,4}. We consider two cases based on whether a

diagonal and off-diagonal coincide or intersect in exactly one element:

• If W δ

(2,1) = {1,2} and W δ

(1,2) = {3,4}, we can take α(1,1) = 1, α(2,1) = 2,

α(1,2) = 3, and α(2,2) = 4.

• If W δ

(2,1) = {1,3} and W δ

(1,2) = {2,4}, we can take α(1,1) = 1, α(2,1) = 3,

α(1,2) = 2, and α(2,2) = 4.
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In both cases it can be checked that αδ is locally admissible. The remaining

cases are analogous.

Definition 3.5.2. Given N ∈ N, a set A ⊆ Zd is called an N-shape if it can be

written as a union of translations of [1,N]d ∩Zd , i.e. if there exists a set Γ ⊆ Zd

such that A =
⋃

x∈Γ

(
x+
(
[1,N]d ∩Zd

))
. A set is called a co-N-shape if it is the

complement of an N-shape. Notice that every shape is a 1-shape and co-1-shape.

Lemma 3.5.2. If a Zd n.n. SFT Ω satisfies N-fillability then, for any N-shape

A⊆ Zd and every locally admissible configuration δ ∈A T , with T ⊆ Zd \A, there

exists α ∈A A such that αδ is locally admissible.

Proof. Let A⊆Zd be an N-shape and δ ∈A T , for T ⊆Zd \A, a locally admissible

configuration. Consider a minimal Γ⊆Zd such that A=
⋃

x∈Γ

(
x+
(
[1,N]d ∩Zd

))
,

in the sense that
⋃

x∈Γ′
(
x+
(
[1,N]d ∩Zd

))
( A, for every Γ′ ( Γ. Take an arbitrary

x∗ ∈ Γ. By N-fillability, consider β ∈ A (x∗+([1,N]d∩Zd)) such that βδ is locally

admissible (notice that T ⊆ Zd \
(
x∗+[1,N]d

)
.

Now, take the set A′ =
⋃

x∈Γ\{x∗}
(
x+
(
[1,N]d ∩Zd

))
. Notice that A′ is also

an N-shape. By minimality of Γ, we have that /0 6= A\A′ ⊆
(
x∗+

(
[1,N]d ∩Zd

))
.

Define δ ′ = β |A\A′ δ and T ′ = (A\A′)∪T . Then, A′ is an N-shape and δ ′ ∈A T ′

is a locally admissible configuration, with T ′ ⊆ Zd \A′ as in the beginning, but

A′ ( A.

Now, given M ∈ N and iterating the previous argument, we can always find

α ∈A A∩BM such that αδ is locally admissible. Since M is arbitrary and A Zd
is a

compact space, then there must exist α ∈ A A such that αδ is locally admissible.

Definition 3.5.3. Given N ∈ N, a Zd shift space Ω is said to be N-strongly irre-
ducible with gap g if, for any A,Bb Zd with dist(A,B)≥ g and such that AtB is

a co-N-shape, we have

∀(α,β ) ∈A A×A B : [α]Ω, [β ]Ω 6= /0 =⇒ [αβ ]Ω 6= /0. (3.18)

Proposition 3.5.3. If a Zd n.n. SFT Ω satisfies N-fillability, then it is N-strongly

irreducible with gap g = 2.
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Proof. Let A,Bb Zd with dist(A,B)≥ 2 and such that AtB is a co-N-shape, and

take α ∈ A A, β ∈ A B such that [α]Ω, [β ]Ω 6= /0. Then consider δ = αβ ∈ A AtB

and W = (AtB)c. Notice that δ is a locally admissible configuration (α and β are

globally admissible and dist(A,B) ≥ 2), and W is an N-shape. Then, by Lemma

3.5.2, there exists η ∈ A W such that ω = ηδ is locally admissible. Then, ω is a

locally admissible point (therefore globally admissible) such that ω ∈ [αβ ]Ω.

Proposition 3.5.4. If a Zd shift space Ω is N-strongly irreducible with gap g, then

Ω is strongly irreducible with gap g+2N.

Proof. Let A,B b Zd with dist(A,B) ≥ g+ 2N, and α ∈ A A, β ∈ A B such that

[α]Ω, [β ]Ω 6= /0. Consider the partition Zd =
⊔

x∈NZd

(
x+
(
[1,N]d ∩Zd

))
, and the

sets

S1 :=
{

x ∈ NZd :
(

x+[1,N]d
)
∩A 6= /0

}
, (3.19)

S2 :=
{

x ∈ NZd :
(

x+[1,N]d
)
∩B 6= /0

}
. (3.20)

Consider A′ :=
⊔

x∈S1
x+
(
[1,N]d ∩Zd

)
and B′ :=

⊔
x∈S2

x+
(
[1,N]d ∩Zd

)
. No-

tice that A⊆ A′ and B⊆ B′. Take ω ∈ [α]Ω and υ ∈ [β ]Ω, and consider the config-

urations α ′ = ω|A′ and β ′ = υ |B′ . Then, we have that [α ′]Ω, [β ′]Ω 6= /0, A′∪B′ is a

co-N-shape and dist(A′,B′)≥ dist(A,B)−2N ≥ (g+2N)−2N = g so, by N-strong

irreducibility, we conclude that /0 6= [α ′β ′]Ω ⊆ [αβ ]Ω.

Corollary 4. If a Zd n.n. SFT Ω satisfies N-fillability, then it is strongly irreducible

with gap 2(N +1).

Corollary 5. The Z2 n.n. SFT Hom(Z2,K4) is strongly irreducible with gap g = 6.

We have concluded Hom(Z2,Kq) is strongly irreducible iff q ≥ 4 (the cases

k = 2,3 do not even satisfy the D-condition due to the existence of frozen config-

urations; see Definition 5.2.3 and [58]). On the other hand, Hom(Z2,Kq) satisfies

TSSM (in particular, SSF) iff q ≥ 5. In particular, TSSM fails when q = 4, as the

next result shows.

Proposition 3.5.5. The Z2 n.n. SFT Hom(Z2,K4) does not satisfy TSSM.
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3.5. Examples: Zd n.n. SFTs

Proof. Take g ∈ N, consider the sets A = {(−2g,0)}, B = {(2g,0)}, and S =

([−2g,2g]∩Z)×{−1,1}, and the configurations α ∈ V4
A, β ∈ V4

B, and σ ∈ V4
S

(see Figure 3.5) defined by α = 3A, β = 4B, and

σ((i, j)) =

1 if ( j = 1 and i ∈ 2Z) or ( j =−1 and i /∈ 2Z),

2 if ( j = 1 and i /∈ 2Z) or ( j =−1 and i ∈ 2Z).
(3.21)

Then, if we denote Ω=Hom(Z2,K4), it can be checked that [ασ ]Ω, [σβ ]Ω 6= /0.

However, for all ω ∈ [ασ ]Ω and υ ∈ [σβ ]Ω we have that ω((0,0)) = 3 6= 4 =

υ((0,0)). Therefore, [ασβ ]Ω = /0. Since g was arbitrary and dist(A,B) = 4g≥ g,

we conclude that Ω does not satisfy TSSM.

1 2 1 2 1 2 1 2 1 2 1 2 1

3

2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1

3 4 3 4 3 4 3 4 3 4 3 4 3

2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1

4

2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1

4 3 4 3 4 3 4 3 4 3 4 3 4

2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1

3 4

2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1

3 4 3 4 3 4 3 4 3 4 3 4

2 1 2 1 2 1 2 1 2 1 2 1 2

?

Figure 3.5: Proof that Ω = Hom(Z2,K4) does not satisfy TSSM nor SSM.

A by-product of the construction from the previous counterexample is the fol-

lowing result, which also illustrates how TSSM is related with SSM.

Proposition 3.5.6. Take Ω = Hom(Z2,K4) and let π be any n.n. Gibbs (Ω,Φ)-

specification. Then, π cannot satisfy SSM.

Proof. Let’s suppose that there is a n.n. Gibbs (Ω,Φ)-specification π for Ω =

Hom(Z2,K4) that satisfies SSM with decay function f . Take n0 ∈ N such that

f (n)< 1, for all n≥ n0. Consider the set Γ = ([−2n0 +1,2n0−1]∩Z)×{0}bZ2

and its boundary ∂Γ = ([−2n0,2n0]∩Z)×{−1,1}∪ {(−2n0,0)}∪ {(2n0,0)} =
A∪B∪S, where A, B, and S are as in Proposition 3.5.5. Take δ1,δ2 ∈V4

∂Γ defined

by δ1|S = δ2|S = σ (where σ is also as in Proposition 3.5.5), δ1|A = δ1|B = 3, and
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3.5. Examples: Zd n.n. SFTs

δ2|A = δ2|B = 4. It is easy to see that δ1 and δ2 are both globally admissible and,

in particular, there exists ω1,ω2 ∈Ω such that ωi|∂Γ
= δi, for i = 1,2. Now, if we

consider the configuration β = 3{(0,0)}, we have that

1 = |1−0|=
∣∣πω1

Γ
(β )−π

ω2
Γ
(β )
∣∣≤ f (2n0)< 1, (3.22)

which is a contradiction. Then, π cannot satisfy SSM.

Remark 7. It has been suggested (see [74]) that the uniform Gibbs specification

supported on Hom(Z2,K4) satisfies exponential WSM. Here we have proven that

SSM is not possible for any n.n. Gibbs specification supported on Hom(Z2,K4) and

for any rate, not necessarily exponential. The counterexample in Proposition 3.5.6

corresponds to a family of very particular shapes where SSM fails and not what we

could call a “common shape” (like Bn, for example), but is enough for discarding

the possibility of SSM if we stick to its definition. We also have to consider that this

family of configurations (and other variations, with different colours and different

narrow shapes) can appear as sub-configurations in more general shapes and still

produce combinatorial long-range correlations.

3.5.2 A TSSM Z2 n.n. SFT that is not SSF

The Iceberg model was considered in [19] as an example of a strongly irreducible

Z2 n.n. SFT with multiple measures of maximal entropy. Given M ≥ 2, and the

alphabet AM = {−M, . . . ,−1,+1, . . . ,+M}, the Iceberg model IM is defined as

IM :=
{

ω ∈A Z2

M : ω(x) ·ω(x+~ei)≥−1, for all x ∈ Zd , i = 1, . . . ,d
}
. (3.23)

In the following, we show that for every M ≥ 2, the Iceberg model satisfies

TSSM, but not SSF. In particular, this provides an example of a Z2 n.n. SFT

satisfying TSSM with multiple measures of maximal entropy.

It is easy to see that IM does not satisfy SSF, since +M and −M cannot be at

distance less than 3. In particular, we can take the configuration δ ∈A
∂{~0}

M given

by δ (~e1) = δ (~e2) = +M, and δ (−~e1) = δ (−~e2) = −M, which does not remain

locally admissible for any a ∈A
{~0}

M . On the other hand, IM satisfies TSSM, as it

is shown in the next proposition.
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Proposition 3.5.7. For every M ≥ 2, the Iceberg model IM satisfies TSSM with

gap g = 3.

Proof. Consider Lemma 3.3.1 and take x,y ∈ Z2 with dist(x,y) ≥ 3 and S b Z2.

Given α ∈A
{x}

M , and β ∈A
{y}

M , and σ ∈A S
M, suppose that [ασ ]IM , [σβ ]IM 6= /0.

Next, take ω ∈ [σβ ]IM and define a new point υ given by

υ(z) =


ω(z) if z ∈ S∪{y},

+1 if z ∈ (S∪{y})c and ω(x) ∈ {+1, . . . ,+M},

−1 if z ∈ (S∪{y})c and ω(x) ∈ {−M, . . . ,−1}.

(3.24)

It is not hard to see that υ is a valid point in [σβ ]IM . Now, let’s construct a

point τ ∈ [ασβ ]IM from υ .

Case 1: α(x) = ±1. W.l.o.g., suppose that α(x) = +1. Now, since [ασ ]IM 6= /0,

all the values of υ |
∂{x}∩S must belong to {−1,+1, . . . ,+M}. On the other hand,

since ∂{x}\S ⊆ (S∪{y})c, all the values in υ |
∂{x}\S belong to {−1,+1}. Then,

all the values in υ |
∂{x} belong to {−1,+1, . . . ,+M}, and we can replace υ |{x} by

+1 in order to get a valid point τ from υ such that τ ∈ [ασβ ]IM .

Case 2: α(x) 6= ±1. W.l.o.g., suppose that α(x) = +M. Then, all the values

in υ |
∂{x}∩S belong to {+1, . . . ,+M}. We claim that we can switch every −1 in

∂{x}\S to a +1. If it is not possible to do this for some site x∗ ∈ ∂{x}\S, then

its neighbourhood ∂{x∗} contains a site with value in {−M, . . . ,−2} and, in par-

ticular, different from +1 and −1. Then, ∂{x∗} necessarily intersects S (and not

{y}, because dist(x,y) ≥ 3). Then, a site in ∂{x∗}∩ S 6= /0 is fixed to some value

in {−M, . . . ,−2} and then the site x∗ must take a value in {−M, . . . ,−1}, given

σ . Therefore, x cannot take a value in {+2, . . . ,+M}, contradicting the fact that

[ασ ]IM 6= /0. Therefore, we can set all the values in υ |
∂{x}\S to +1. Let’s call that

point υ ′. Finally, if we replace υ ′(x) = +1 by +M, we obtain a valid point τ from

υ ′ such that τ ∈ [ασβ ]IM .

Then, we conclude that IM satisfies TSSM with gap g = 3, for every M ≥
2.

Remark 8. In particular, Proposition 3.5.7 provides an alternative way of checking
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the well-known fact that IM is strongly irreducible.

3.5.3 Arbitrarily large gap, arbitrarily high rate

Notice that the Iceberg model can be regarded as a Zd shift space where two types

(positives and negatives) coexist separated by a boundary of ±1s. Now we intro-

duce a variation of the Iceberg model that extends the idea of two types coexisting

to an arbitrary number of them. First, we will see that this variation gives a family

of Zd n.n. SFTs satisfying TSSM with gap g but not g− 1, for arbitrary g ∈ N.

Second, these models admits the existence of a n.n. Gibbs specification satisfying

exponential SSM with arbitrarily high decay rate, showing in particular (as far as

we know, for the first time) that there are systems that satisfy SSM and TSSM,

without satisfying any of the other stronger combinatorial mixing properties, like

having a safe symbol or satisfying SSF.

Given g,d ∈ N, consider the alphabet Ag = {0,1, . . . ,g} and the Zd n.n. SFT

defined by

Ω
d
g :=

{
ω ∈A Zd

g : |ω(x)−ω(x+~ei)| ≤ 1, for all x ∈ Zd , i = 1, . . . ,d
}
. (3.25)

Notice that Ωd
0 =

{
0Z

d
}

(a fixed point) and Ωd
1 =A Zd

1 (a 2 symbols full shift),

so both satisfy TSSM with gap g = 0 and g = 1, respectively. Also, notice that 1 is

a safe symbol for Ωd
2 (and therefore, by Proposition 3.3.3, it satisfies TSSM with

gap g = 2).

Proposition 3.5.8. The Zd n.n. SFT Ωd
g satisfies TSSM with gap g but not g−1.

Proof. First, let’s see that Ωd
g does not satisfy TSSM with gap g−1. In fact, recall

that TSSM with gap g−1 implies strong irreducibility with the same gap. However,

if we consider two configurations on single sites with values 0 and g, respectively,

they cannot appear in the same point if they are separated by a distance less or

equal to g−1, since the value of consecutive sites can only increase or decrease by

at most 1. Therefore, Ωd
g is not TSSM with gap g−1.

In order to prove that Ωd
g satisfies TSSM with gap g, by way of Lemma 3.3.1,

let x,y∈Zd with dist(x,y)≥ g, and SbZd\{x,y}. Given α ∈A
{x}

g , β ∈A
{y}

g , and

σ ∈A S
g , suppose that [ασ ]Ω

d
g , [σβ ]Ω

d
g 6= /0. We want to prove that [ασβ ]Ω

d
g 6= /0.
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Since [σβ ]Ω
d
g 6= /0, we can consider a point ω ∈ [σβ ]Ω

d
g . If ω(x) = α(x), we

are done. W.l.o.g., suppose that ω(x)< α(x) (the case ω(x)> α(x) is analogous).

We proceed by finding a valid point ω ′ such that ω ′|S = σ , ω ′(y) = β (y), and

ω ′(x) = ω(x)+1. Iterating this process |α(x)−ω(x)| times, we conclude. Notice

that the only obstruction to an increase by 1 of ω(x) are the values of neighbours

of x strictly below ω(x).

We introduce an auxiliary digraph of descending paths Dω,x = (Vg
ω,x,E

g
ω,x),

where V0
ω,x = {x}, E0

ω,x = /0, and, for n≥ 1,

Vn+1
ω,x = Vn

ω,x∪
⋃

y′∈∂Vn
ω,x,

ω(y′)=ω(x)−n

{y′}, (3.26)

En+1
ω,x = En

ω,x∪
⋃

y′∈∂Vn
ω,x,

ω(y′)=ω(x)−n

⋃
x′∈Vn

ω,x,

x′∼y′

{
(x′,y′)

}
. (3.27)

Notice that, since ω(x)< g, the recurrence stabilizes for some n< g, i.e. Vn
ω,x =

V
g−1
ω,x and En

ω,x = E
g−1
ω,x , for every n ≥ g. In particular, the sites that Dω,x reaches

are sites at distance at most g−1 from x, and the site y cannot belong to the graph.

Now, suppose that a site from S belongs to Dω,x. If that is the case, the value at x

of any point in [σ ]Ω
d
g would be forced to be at most ω(x) (since the graph is strictly

decreasing from x to S), which contradicts the fact that [ασ ]Ω
d
g 6= /0.

Then neither y nor any element of S belongs to Dω,x, so if we modify the values

of Dω,x in a valid way, we will still obtain a valid point ω ′ such that ω ′|S = σ and

ω ′(y) = β (y). Now, take the set D =V
g
ω,x ⊆Zd and consider the point ω ′ such that

ω
′∣∣

D = ω
′∣∣

D +1D, and ω
′∣∣
Zd\D = ω|Zd\D , (3.28)

where ω(D)+1D represents the configuration obtained from ω|D after adding 1 in

every site. We claim that ω ′ is a valid point. To see this, we only need to check

that the difference between values in the endpoints of an arbitrary edge is at most

1. If both endpoints are in D or in Zd\D, it is clear that the edge is valid since the

original point ω was a valid point, and adding 1 to both endpoints does not affect

the difference. If one endpoint is in x1 ∈ D and the other one is in x2 ∈ Zd\D,

then ω(x1) ≤ ω(x2), necessarily (if not, ω(x1) > ω(x2), and x2 would be part of
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the digraph of descending paths). Since |ω(x1)−ω(x2)| ≤ 1 and ω(x1) ≤ ω(x2),

then ω(x2)−ω(x1) ∈ {0,1}. Therefore, ω ′(x1)−ω ′(x2) = (ω(x1)+1)−ω(x2) =

1− (ω(x2)−ω(x1)) ∈ {1,0}, so |ω ′(x1)−ω ′(x2)| ≤ 1. Then, we conclude that

ω ′ ∈Ωd
g and ω ′|S = σ , ω ′(y) = β (y), and ω ′(x) = ω(x)+1, as we wanted.

The next result is a special case of a more general result, whose full proof will

be given in the following chapters.

Proposition 3.5.9. For any g,d ∈ N and γ > 0, there exists a n.n. Gibbs (Ωd
g ,Φ)-

specification that satisfies exponential SSM with decay rate γ .

Proof. This result follows from Proposition 4.4.2, Corollary 7, Proposition 4.6.2,

and from noticing that Ωd
g is a homomorphism space of the form Hom(Zd ,T ), with

T a looped tree.

Note 5. The ingredients of the proof of Proposition 3.5.9 can be easily adapted to

the Zd hard-core lattice gas model case.

3.6 Relationship between spatial and combinatorial
mixing properties

In this section we establish some connections between spatial and combinatorial

mixing properties. In particular, we show that TSSM is a property that arises natu-

rally for the support of Gibbs specifications satisfying (exponential) SSM, at least

when the decay rate is high enough.

3.6.1 SSM criterion

Let Ω be a Zd n.n. SFT and Φ a shift-invariant n.n. interaction. For the n.n. Gibbs

(Ω,Φ)-specification π , we define

Q(π) := max
ω1,ω2∈Ω

dTV

(
π

ω1

{~0}
,πω2

{~0}

)
. (3.29)

In the following, let pc(Zd) to denote the critical value of Bernoulli site per-

colation on Zd (see [41]). The following result is essentially in [11].
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Theorem 3.6.1. Let Ω be a Z2 n.n. SFT, Φ a shift-invariant n.n. interaction, and

π the corresponding n.n. Gibbs (Ω,Φ)-specification. Suppose that Ω has a safe

symbol. If Q(π)< pc(Z2), then π satisfies exponential SSM.

Proof. Take µ ∈ G(π). Since Ω has a safe symbol, µ is fully supported, i.e.

supp(µ) = Ω (very special case of [70, Remark 1.14]). Given a Z2-MRF µ , define

Q(µ) := max
δ1,δ2

dTV

(
µ(·|δ1)|{~0} , µ(·|δ2)|{~0}

)
, (3.30)

where δ1 and δ2 range over all configurations on ∂{~0} such that µ(δ1)µ(δ2) > 0.

Then, Q(µ)≤Q(π)< pc(Z2), so by [11, Theorem 1] and shift-invariance of Φ, µ

satisfies exponential SSM as a MRF (see [59, Theorem 3.10]). Finally, since µ is

fully supported, we can conclude that π satisfies exponential SSM.

3.6.2 Uniform bounds of conditional probabilities

We relate TSSM is closely related with bounds on elements of Gibbs specifications

satisfying SSM. We have the following lemma.

Lemma 3.6.2. Let G be a board of bounded degree ∆ and π a Gibbs (Ω,Φ)-

specification. Then, for every ω ∈Ω and Ab V ,

π
ω
A (ω|A)≥ exp(−4∆|A|(Φmax + log |A |)). (3.31)

Proof. Notice that

H Φ
A,ω(ω|A) = ∑

x∈A∪∂A
Φ(ω|{x})+ ∑

{x,y}∈E [A∪∂A]:{x,y}∩A 6= /0
Φ(ω|{x,y}) (3.32)

≤ (|A|+∆|A|)Φmax ≤ 2∆|A|Φmax, (3.33)

where we use that |{E [A∪∂A] : {x,y}∩A 6= /0}| ≤ ∆|A|. Similarly, H Φ
A,ω(ω|A)≥

−2∆|A|Φmax, so ZΦ
A,ω ≤ |A ||A| exp(2∆|A|Φmax). Therefore,

π
Φ
A,ω(ω|A) =

1
ZΦ

A,ω
exp(−H Φ

A,ω(ω|A)) (3.34)

≥ |A |−|A| exp(−2∆|A|Φmax)exp(−2∆|A|Φmax) (3.35)
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≥ exp(−4∆|A|(Φmax + log |A |)). (3.36)

Given a a Gibbs (Ω,Φ)-specification π , define the function cπ : Ω→ [0,1]

given by

cπ(ω) := inf
AbV

inf
x∈A

π
ω
A (ω|{x}), (3.37)

for ω ∈Ω, and denote

cπ := inf
ω∈Ω

cπ(ω) ∈ [0,1]. (3.38)

Notice that for a board G of bounded degree ∆ we have that, for every x ∈ V

and g ∈ N, |Ng(x)| ≤ ∆g+1. Considering this, we have the next proposition.

Proposition 3.6.3. Let π be a Gibbs (Ω,Φ)-specification, with G any board of

bounded degree ∆. Suppose that Ω satisfies TSSM with gap g. Then,

cπ ≥ exp(−5∆
1+g(Φmax + log |A |))> 0. (3.39)

Proof. Consider a point ω ∈ Ω, a set A b V , and a site x ∈ A. W.l.o.g., suppose

that A is connected. If not, let Cx be the connected component of A containing x,

and notice that πω
A (ω|{x}) = πω

Cx
(ω|{x}).

Define the set Ag,x to be the connected component of A∩Ng−1(x) containing x,

and let B := A∩∂Ag,x. Notice that B ⊆Ng(x) and |Ng(x)| ≤ ∆g+1. First, assume

that B = /0. If this is the case, then ∂Ag,x ⊆ Ac, so A ⊆Ng−1(x). Therefore, by

Lemma 3.6.2,

π
ω
A (ω|{x})≥ π

Φ
A,ω(ω|A) (3.40)

≥ exp(−4∆|A|(Φmax + log |A |)) (3.41)

≥ exp(−4∆
1+g(Φmax + log |A |)). (3.42)

where have used that |A| ≤ |Ng−1(x)| ≤ ∆g.

On the other hand, suppose that B 6= /0. By a counting argument, there must

exist β ∈A B such that πω
A (β )≥ |A |−|B|. In particular, this says that [βω|Ac ]Ω 6= /0.

Since [ω|Ac ω|{x}]Ω 6= /0 and dist(x,B)≥ g, we have [β ω|Ac ω|{x}]Ω 6= /0, by TSSM.
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Now, take ω ′ ∈ [β ω|Ac ω|{x}]Ω. Then, by the MRF property,

π
ω
A (ω|{x})≥ π

ω
A (ω

′∣∣
Ag,x

) (3.43)

≥ π
ω
A (ω

′∣∣
Ag,x
| ω ′
∣∣
B)π

ω
A (ω

′∣∣
B) (3.44)

= π
ω ′
Ag,x

(ω
′∣∣

Ag,x
)πω

A (β ) (3.45)

≥ exp(−4∆|Ag,x|(Φmax + log |A |))|A |−|B|. (3.46)

Notice that |Ag,x| ≤ ∆g and |B| ≤ ∆g, so

π
ω
A (ω|{x})≥ e−4∆1+g(Φmax+log |A |)|A |−∆g ≥ e−5∆1+g(Φmax+log |A |). (3.47)

Since ω , A, and x were all arbitrary, we conclude.

Proposition 3.6.4. Let π be a Gibbs (Ω,Φ)-specification that satisfies SSM with

decay function f and such that cπ > 0. Then, Ω satisfies TSSM with gap g =

min{n ∈ N : f (n)< cπ}.

Proof. Take n0 ∈N such that f (n)< cπ , for all n≥ n0 (recall that a decay function

is decreasing). We claim that Ω satisfies TSSM with gap n0. By contradiction,

and considering Lemma 3.3.1, suppose that there exist x,y ∈ V with dist(x,y) ≥
n0 and S b V , α ∈ A {x}, β ∈ A {y}, and σ ∈ A S such that [ασ ]Ω, [σβ ]Ω 6= /0,

but [ασβ ]Ω = /0. Take ω1 ∈ [ασ ]Ω and ω2 ∈ [σβ ]Ω. Notice that ω1 6= ω2 and

ω1|S = ω2|S = σ . Consider the set A = Nn0(x)\S. We have that π
ω1
A (α)≥ cπ and

π
ω2
A (α) = 0. Then,

cπ ≤ π
ω1
A (α) = |πω1

A (α)−π
ω2
A (α)| (3.48)

≤ f (dist(x,Σ∂A(ω1,ω2)))≤ f (n0)< cπ , (3.49)

which is a contradiction.

Notice that no assumption on the degree of the board was necessary in the proof

of Proposition 3.6.4.

Corollary 6. Let π be Gibbs (Ω,Φ)-specification that satisfies SSM, with G a

board of bounded degree. Then, Ω satisfies TSSM iff cπ > 0.
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Proof. The result follows directly from Proposition 3.6.3 and Proposition 3.6.4.

3.6.3 SSM with high decay rate

We have the following theorem.

Theorem 3.6.5. Let Ω⊆A Z2
be a Z2 n.n. SFT and let π be a n.n. Gibbs (Ω,Φ)-

specification that satisfies exponential SSM with decay function f (n) = Ce−γn,

where γ > 4log |A |. Then, Ω satisfies TSSM with gap

g = min
{

n ∈ N : γ−4log |A |> 1
n

log(4Cn)
}
. (3.50)

Proof. We will prove that cπ > 0 and then conclude by Proposition 3.6.4. Take

ω ∈ Ω, A b Z2, and x ∈ A. Our goal is to bound πω
A (ω|{x}) away from zero,

uniformly in ω , A, and x.

Let n ∈ N be such that

γ−4log |A |> 1
n

log(4Cn), (3.51)

and define An−1,x to be the connected component of A∩Nn−1(x) containing x, and

B := A∩∂An−1,x. Notice that B⊆ A∩∂Nn−1(x), |An−1,x| ≤ |Nn−1(x)| ≤ 2n2, and

|B| ≤ |∂Nn−1(x)|= 4n.

If B = /0, then ∂An−1,x ⊆ Ac, and by Lemma 3.6.2,

π
ω
A (ω|{x}) = π

ω
An−1,x

(ω|{x}) (3.52)

≥ exp(−4∆|An−1,x|(Φmax + log |A |)) (3.53)

≥ exp(−32n2(Φmax + log |A |)). (3.54)

Now, let’s suppose that B 6= /0. By a counting argument, there must exist β ∈
A B such that πω

A (β )≥ |A |−|B| and, in particular, [ω|Ac β ]Ω 6= /0.

By contradiction, let’s suppose that [ω|{x} ω|Ac β ]Ω = /0. Then, πω

A\{x}(β ) = 0.

On the other hand, since πω
A (β )≥ |A |−|B|, by taking weighted averages over con-

figurations on {x}, there must exist α ∈ A {x} such that πω
A (β |α) = πυ

A\{x}(β ) ≥
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3.6. Relationship between spatial and combinatorial mixing properties

|A |−|B|, for υ ∈ [α ω|Ac β ]Ω 6= /0. Notice that x /∈ B and dist(B,Σ∂A\{x}(ω,υ)) ≤
dist(B,x) = n. Then, we have that

|A |−|B| ≤
∣∣∣πω

A\{x}(β )−π
υ

A\{x}(β )
∣∣∣≤ |B|Ce−γn, (3.55)

by the MRF and SSM properties. Since B ⊆ ∂Nn−1(x), then |B| ≤ |∂Nn−1(x)|,
and

|A |−|∂Nn−1(x)| ≤ |A |−|B| ≤ |B|Ce−γn ≤ |∂Nn−1(x)|Ce−γn. (3.56)

Figure 3.6: Representation of the proof of Theorem 3.6.5.

By taking logarithms, −4n log |A | ≤ log(4n)+ logC− γn, so

γ ≤ 1
n

log(4Cn)+4log |A |= 4log |A |+o(1), (3.57)

which is a contradiction with the fact that γ > 4log |A | for sufficiently large n

(notice that the difference between γ and 4log |A | determines the size of |B| and its

distance to x). We conclude that
[

ω|{x} ω|Ac β

]Ω

6= /0. Therefore, by considering

ω ′ ∈ [ω|{x} ω|Ac β ]Ω 6= /0 and repeating the argument in the proof of Proposition
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3.6. Relationship between spatial and combinatorial mixing properties

3.6.3, we have that

π
ω
A (ω|{x})≥ π

ω ′
An,x

(ω
′∣∣

An,x
)πω

A (β ) (3.58)

≥ exp(−4∆|An,x|(Φmax + log |A |))|A |−|B| (3.59)

≥ exp(−32n2(Φmax + log |A |))|A |−4n. (3.60)

Since this lower bound is positive and independent of ω , A, and x, taking the in-

fimum we have that cπ ≥ exp(−32n2(Φmax + log |A |))|A |−4n > 0 and, by Corol-

lary 6, we conclude that Ω exhibits TSSM.

Notice that Proposition 3.5.9 gives us an alternative way to prove TSSM for Ω2
g,

since the decay rate γ can be arbitrarily large (in particular, larger than 4log(g+1))

and Theorem 3.6.5 applies.

Remark 9. Recall that TSSM implies strong irreducibility, so in view of the preced-

ing result SSM with high exponential rate implies strong irreducibility. In general,

it is not known whether SSM implies strong irreducibility.

Note 6. If π were a Zd Gibbs (Ω,Φ)-specification satisfying SSM with decay func-

tion f (n) = Ce−γnd−1
, we could modify the previous proof to conclude that Ω ex-

hibits TSSM for sufficiently large decay rate γ . The reason why exponential SSM is

not enough in this proof for an arbitrary d, is that only in Z2 the boundary of a ball

grows linearly with the radius. Consequently, the previous proof should work in

any board where the boundary of neighbourhoods grows linearly with the radius,

probably under a change of the bound for the decay rate γ .
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Chapter 4

SSM in homomorphism spaces

Given a board G , a constraint graph H, and a constrained energy function φ ,

we are interested in studying Gibbs (Hom(G ,H),Φ)-specifications, where Φ de-

notes is the induced n.n. interaction. Whenever we talk about a Gibbs (G ,H,φ)-

specification, we will understand that it is in the previous sense. Also, when talking

about cylinder sets [α]Ω, for Ω = Hom(G ,H), we will sometimes denote them by

[α]GH in order to emphasize the board and constraint graph.

One of the main purposes in this chapter is to understand the combinatorial

properties that constraint graphs H and homomorphism spaces Hom(G ,H) should

satisfy in order to admit the existence of Gibbs (G ,H,φ)-specifications π with

spatial mixing properties. The Gibbs (G ,H,φ)-specifications with a unique Gibbs

measure have been already studied and, to some extent, characterized in [17]. We

aim to develop a somewhat analogous framework and sufficiently general condi-

tions under which Gibbs specifications satisfy SSM.

4.1 Dismantlable graphs and homomorphism spaces

The next definition is a structural description of a class of graphs introduced in

[65], and heavily studied and characterized in [17].

Definition 4.1.1. Given a constraint graph H and u,v ∈ V such that N(u)⊆ N(v),

a fold is a homomorphism α : H→ H[V\{u}] such that α(u) = v and α|V\{u} is

the identity id|V\{u}.
A constraint graph H is dismantlable if there is a sequence of folds reducing

H to a graph with a single vertex (with or without a loop).

Notice that a fold α : H→ H[V \ {u}] amounts to just removing u and edges

containing it from the graph H, as long as a suitable vertex v exists which can
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4.1. Dismantlable graphs and homomorphism spaces

“absorb” u.

The following proposition is a good example of the kind of results that we aim

to achieve.

Proposition 4.1.1. Let H be a constraint graph. Then, H is dismantlable iff for

every board G of bounded degree and γ > 0, there exists a constrained energy

function φ such that the Gibbs (G ,H,φ)-specification satisfies exponential WSM

with decay rate γ .

See Proposition 4.2.1 for a proof of this result. As we remark there, it is es-

sentially due to Brightwell and Winkler [17]. One of our goals is to prove similar

statements in which “WSM” is replaced by “SSM.”

As in Proposition 4.1.1, it will be very common to have results where when a

property is satisfied for every board G , sometimes one can conclude facts about H.

Another simple example is the following.

Proposition 4.1.2. Let H be a constraint graph such that Hom(G ,H) satisfies SSF,

for every board G . Then, H has a safe symbol.

Proof. Let G = S|H| (the n-star graph with n = |H|) and let x ∈ V to be the central

vertex with boundary ∂{x} =
{

y1, . . . ,y|V|
}

. Write V = {v1, · · · ,v|V|} and take

β ∈ V∂{x} such that β (yi) = vi, for 1≤ i≤ |V|. Then, by SSF, there exists a graph

homomorphism α : G [∂{x}∪{x}]→ H such that α|
∂{x} = β . Since α is a graph

homomorphism, x ∼G yi =⇒ α(x) ∼H α(yi). Therefore, α(x) ∼H vi, for every i,

so α(x) is a safe symbol for H.

Notice that the converse also holds, i.e. if a constraint graph H has a safe

symbol, then Hom(G ,H) satisfies SSF, for every board G .

Summarizing, given a homomorphism space Hom(G ,H), we have the follow-

ing implications:

H has a safe symbol =⇒ Hom(G ,H) satisfies SSF (4.1)

=⇒ Hom(G ,H) satisfies TSSM (4.2)

=⇒ Hom(G ,H) is strongly irreducible, (4.3)
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4.2. Dismantlable graphs and WSM

and all implications are strict in general (even if we fix G to be some particular

board, like G = Z2). See Section 3.5 and [58, 15] for examples that illustrate the

differences among some of these conditions.

4.2 Dismantlable graphs and WSM

Dismantlable graphs are closely related with Gibbs measures, as illustrated by the

following proposition, parts of which appeared in [17].

Proposition 4.2.1 ([17]). Let H be a constraint graph. Then, the following are

equivalent:

1. H is dismantlable.

2. Hom(G ,H) is strongly irreducible with gap 2|H|+1, for every board G .

3. Hom(G ,H) is strongly irreducible with some gap, for every board G .

4. For every board G of bounded degree, there exists a n.n. Gibbs (G ,H,φ)-

specification that admits a unique n.n. Gibbs measure µ .

5. For every board G of bounded degree and γ > 0, there exists a n.n. Gibbs

(G ,H,φ)-specification that satisfies exponential WSM with decay rate γ .

The equivalence in Proposition 4.2.1 of (1), (2), (3), and (4) is proven in [17].

However, in that work the concept of WSM (a priori, stronger than uniqueness)

is not considered. Since WSM implies uniqueness, (5) =⇒ (4) is trivial. In the

remaining part of this section, we introduce the necessary background to prove

the missing implications, for which it is sufficient to show that (1) =⇒ (5) (see

Proposition 4.2.5). This and a subsequent proof (see Proposition 4.4.2) will have

a similar structure to the proof of (1) =⇒ (4) from [17, Theorem 7.2]. However,

some coupling techniques will need to be modified, plus other combinatorial ideas

need to be considered.

Given a dismantlable graph H, the only case where a sequence of folds reduces

H to a vertex without a loop is when H is a set of isolated vertices without loops.

In this case, we call H trivial (see [17, p. 6]). If v∗ ∈ V has a loop and there is a

sequence of folds reducing H to v∗, then we call v∗ a persistent vertex of H.
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4.2. Dismantlable graphs and WSM

Lemma 4.2.2 ([17, Lemma 5.2]). Let H be a nontrivial dismantlable constraint

graph and v∗ a persistent vertex of H. Let G be a board, A b V , and ω ∈
Hom(G ,H). Then there exists υ ∈ Hom(G ,H) such that

1. υ(x) = ω(x), for every x ∈ V \N|H|−2(A),

2. υ(x) = v∗, for every x ∈ A, and

3. ω−1(v∗)⊆ υ−1(v∗).

Now, given a constraint graph H, a persistent vertex v∗, and λ > 1, define φλ

to be the constrained energy function given by

φλ (v
∗) =− logλ , and φλ |V\{v∗}∪E ≡ 0. (4.4)

We have the following lemma.

Lemma 4.2.3. Let H be dismantlable constraint graph and let G be a board of

bounded degree ∆. Given λ > 1, consider the Gibbs (G ,H,φλ )-specification π , a

point ω ∈ Hom(G ,H), and B ⊆ A b V such that N|H|−2(B) ⊆ A. Then, for any

k ∈ N,

π
ω
A ({α : |{y ∈ B : α(y) 6= v∗}| ≥ k})≤ |H||B|∆|H|−1

λ
−k. (4.5)

Proof. Let’s denote Ω = Hom(G ,H) and K = N|H|−2(B). W.l.o.g., consider an

arbitrary configuration α ∈ VA such that α ω|Ac ∈ Ω (and, in particular, such that

πω
A (α)> 0). Denote ω1 = α ω|Ac . By Lemma 4.2.2, there exists ω2 ∈Ω such that

ω1|V \K = ω2|V \K , ω2(x) = v∗ for every x ∈ B, and ω
−1
1 (v∗)⊆ ω

−1
2 (v∗).

Notice that ω1|A ω|Ac , ω2|A ω|Ac ∈Ω and ω1|A\K = ω2|A\K . Now, given some

k ≤ |B|, suppose that α is such that |{y ∈ B : α(y) 6= v∗}| ≥ k. Then, by the defini-

tion of Gibbs specification and the fact that ω
−1
1 (v∗)⊆ ω

−1
2 (v∗),

πω
A

(
ω2|K

∣∣∣ω1|A\K
)

πω
A

(
ω1|K

∣∣∣ω1|A\K
) =

π
ω1
K (ω2|K)

π
ω1
K (ω1|K)

≥ λ
k. (4.6)

Therefore,

π
ω
A

(
α|K
∣∣∣α|A\K)= π

ω
A

(
ω1|K

∣∣∣ω1|A\K
)
≤ λ

−k. (4.7)
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4.2. Dismantlable graphs and WSM

Next, by taking weighted averages over all configurations β ∈LA\K(Ω) such

that

β α|K ω|Ac ∈Ω, (4.8)

we have

π
ω
A (α|K) = ∑

β

π
ω
A (α|K |β )π

ω
A (β )≤∑

β

λ
−k

π
ω
A (β ) = λ

−k. (4.9)

Notice that |K|=
∣∣N|H|−2(B)

∣∣≤ |B|∆|H|−1. In particular,

|LK (Ω)| ≤ |H||B|∆|H|−1
. (4.10)

Then, since α was arbitrary,

π
ω
A ({α : |{y ∈ B : α(y) 6= v∗}| ≥ k})≤ ∑

α|K :α∈LA(Ω),
|{y∈B:α(y)6=v∗}|≥k

π
ω
A (α|K) (4.11)

≤ |H||B|∆|H|−1
λ
−k. (4.12)

As mentioned before, we essentially use some coupling techniques from [17],

with slight modifications. We will use the following theorem.

Theorem 4.2.4 ([11, Theorem 1]). Given a n.n. Gibbs (G ,H,φ)-specification π ,

Ab V , and ω1,ω2 ∈Hom(G ,H), there exists a coupling ((α1(x),α2(x)),x ∈ A) of

π
ω1
A and π

ω2
A (whose distribution we denote by Pω1,ω2

A ), such that for each x ∈ A,

α1(x) 6= α2(x) iff there is a path of disagreement from x to Σ∂A(ω1,ω2), Pω1,ω2
A -a.s.

In general, by a path of disagreement from A to B, we mean that there is a

path P from A to B such that α1(y) 6= α2(y), for all y ∈ P. We denote this event by{
A

6=←→ B
}

.

Remark 10. The result in [11, Theorem 1] is for MRFs, but here we state it for

n.n. Gibbs specifications.

Proposition 4.2.5. Let G be a board of bounded degree ∆ and H a dismantlable

constraint graph. Then, for all γ > 0, there exists λ0 = λ0(γ, |H|,∆) such that for
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4.2. Dismantlable graphs and WSM

every λ > λ0, the Gibbs (G ,H,φλ )-specification π satisfies exponential WSM with

decay rate γ .

Proof. Let Ab V , B⊆ A, β ∈VB, and ω1,ω2 ∈Hom(G ,H). W.l.o.g. (since C can

be taken arbitrarily large in the desired decay function Ce−γn), we may suppose

that

dist(B,∂A) = n > |H|−2. (4.13)

By Theorem 4.2.4, we have

∣∣πω1
A (β )−π

ω2
A (β )

∣∣= ∣∣Pω1,ω2
A (α1|B = β )−Pω1,ω2

A (α2|B = β )
∣∣ (4.14)

≤ Pω1,ω2
A (α1|B 6= α2|B) (4.15)

≤ ∑
x∈B

Pω1,ω2
A (α1(x) 6= α2(x)) (4.16)

= ∑
x∈B

Pω1,ω2
A

(
x
6=←→ Σ∂A(ω1,ω2)

)
(4.17)

≤ ∑
x∈B

Pω1,ω2
A

(
x
6=←→ ∂A

)
(4.18)

≤ ∑
x∈B

Pω1,ω2
A

(
x
6=←→N|H|−2(∂A)

)
. (4.19)

When considering a path of disagreement P from x to N|H|−2(∂A), we can

assume that N|H|−2(P)⊆ A. Then, by Lemma 4.2.3,

π
ω
A ({α : |{y ∈ P : α(y) 6= v∗}| ≥ k})≤ |H||P|∆|H|−1

λ
−k. (4.20)

In addition, |P| ≥ n−|H|+2 and, for every y ∈ P, we have that α1(y) 6= α2(y),

so α1(y) and α2(y) cannot be both v∗ at the same time, and either α1|P or α1|P
must have |P|/2 sites different from v∗. In consequence,

Pω1,ω2
A

(
x
6=←→N|H|−2(∂A)

)
(4.21)

≤
∞

∑
k=n−|H|+2

∑
|P|=k

π
ω1
A

({
α1 : |{y ∈ P : α1(y) 6= v∗}| ≥ k

2

})
(4.22)

+
∞

∑
k=n−|H|+2

∑
|P|=k

π
ω2
A

({
α2 : |{y ∈ P : α2(y) 6= v∗}| ≥ k

2

})
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≤ 2
∞

∑
k=n−|H|+2

∑
|P|=k
|H|k∆|H|−1

λ
− k

2 (4.23)

≤ 2
∞

∑
k=n−|H|+2

∆(∆−1)k

(
|H|∆|H|−1

λ 1/2

)k

(4.24)

= 2∆

∞

∑
k=n−|H|+2

(
(∆−1)|H|∆|H|−1

λ 1/2

)k

. (4.25)

Figure 4.1: Decomposition in the proofs of Lemma 4.2.3 and Proposition 4.2.5.

Finally, we have

∣∣πω1
A (β )−π

ω2
A (β )

∣∣≤ ∑
x∈B

Pω1,ω2
A

(
x
6=←→N|H|−2(∂A)

)
(4.26)

≤ 2|B|∆
∞

∑
k=n−|H|+2

(
(∆−1)|H|∆|H|−1

λ 1/2

)k

, (4.27)

so, in order to have exponential decay, it suffices to take

(∆−1)2|H|2∆|H|−1
< λ , (4.28)

and we note that any decay rate γ is achievable by taking λ sufficiently large.
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Proof of Proposition 4.2.1. The implication (1) =⇒ (5) follows from Proposition

4.2.5. Since WSM implies uniqueness, we have (5) =⇒ (4). The implications

(4) =⇒ (3) =⇒ (2) =⇒ (1) can be found in [17, Theorem 4.1].

A priori, one would be tempted to think that the proof of Proposition 4.2.5

could give SSM instead of just WSM, since the coupling in Theorem 4.2.4 in-

volves a path of disagreement from B to Σ∂A(ω1,ω2) and not just to ∂A, just as

in the definition of SSM. One of our motivations is to illustrate that this is not

always the case (see the examples in Section 4.7), mainly due to combinatorial

obstructions. We will see that in order to have an analogous result for the SSM

property, H must satisfy even stronger conditions than dismantlability, which guar-

antees WSM by Proposition 4.2.1. One of the main issues is that our proof required

that dist(B,∂A) > |H|− 2, so B cannot be arbitrarily close to ∂A, which is in op-

position to the spirit of SSM.

Notice that, by Proposition 4.2.1, Hom(G ,H) is strongly irreducible for ev-

ery board G iff H is dismantlable. Clearly, the forward direction still holds if

“strongly irreducible” is replaced by “TSSM,” since TSSM implies strongly irre-

ducible. Later, we will address the question of whether the reverse direction holds

with this replacement.

For a dismantlable constraint graph H and a particular or arbitrary board G , we

are interested in whether or not Hom(G ,H) is TSSM and whether or not there exists

a Gibbs (G ,H,φ)-specification π that satisfies exponential SSM with arbitrarily

high decay rate. Here we restate Theorem 3.6.5 in the context of homomorphism

spaces, which shows that these two desired conclusions are related.

Theorem 4.2.6. Let π be a Gibbs (Z2,H,φ)-specification that satisfies exponential

SSM with decay rate γ > 4log |H|. Then, Hom(Z2,H) satisfies TSSM.

One of our main goals is to look for conditions on Hom(G ,H) suitable for

having a Gibbs specification that satisfies SSM. SSM seems to be related with

TSSM, as illustrated in the previous results. In the following section, we explore

some other properties related with TSSM.
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4.3. The unique maximal configuration property

4.3 The unique maximal configuration property

Fix a constraint graph H and consider an arbitrary board G . Given a linear order

� on the set of vertices V, we consider the partial order (that, in a slight abuse of

notation, we also denote by �) on VV obtained by extending coordinate-wise the

linear order� to subsets of V , i.e. given α1,α2 ∈VA, for some A⊆ V , we say that

α1 � α2 iff α1(x) � α2(x), for all x ∈ A. If α1(x) � α2(x) but α1(x) 6= α2(x), we

write α1(x) ≺ α2(x). In addition, if two vertices u,v ∈ V are such that u ∼ v and

u� v, we will denote this by u- v.

Definition 4.3.1. Given g ∈ N, we say that Hom(G ,H) satisfies the unique maxi-
mal configuration (UMC) property with distance g if there exists a linear order

� on V such that, for every Ab V ,

(M1) for every α ∈LA(Hom(G ,H)), there is a unique point ωα ∈ [α]GH such that

ω � ωα , for every point ω ∈ [α]GH , and

(M2) for any two α1,α2 ∈LA(Hom(G ,H)), ΣV (ωα1 ,ωα2)⊆Ng(ΣA(α1,α2)).

If Hom(G ,H) satisfies the UMC property, then for any α ∈LA(Hom(G ,H))

and β = α|B with B ⊆ A, it is the case that ωα � ωβ . This is natural, since we

can see the configurations α and β as “restrictions” to be satisfied by ωα and

ωβ , respectively. In addition, observe that condition (M2) in Definition 4.3.1 im-

plies that ΣV (ωα ,ωβ ) ⊆Ng(A \B). In particular, by taking B = /0, we see that if

Hom(G ,H) satisfies the UMC property, then there must exist a greatest element

ω∗ ∈ Hom(G ,H) such that ω � ω∗, for every ω ∈ Hom(G ,H), and ΣV (ωα ,ω∗)⊆
Ng(A), for every α ∈LA(Hom(G ,H)).

The following proposition establishes that the UMC property is related with

TSSM.

Proposition 4.3.1. Suppose that Hom(G ,H) satisfies the UMC property with dis-

tance g. Then, Hom(G ,H) satisfies TSSM with gap 2g+1.

Proof. Consider a pair of sites x,y ∈ V with dist(x,y) ≥ 2g + 1, a set S b V ,

and configurations α ∈ V{x}, β ∈ V{y}, and σ ∈ VS such that [ασ ]GH , [σβ ]GH 6= /0.

Take the corresponding maximal configurations ωσ , ωασ , and ωσβ . Notice that
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4.4. SSM and the UMC property

ΣV (ωασ ,ωσ ) ⊆Ng(x) and ΣV (ωσ ,ωσβ ) ⊆Ng(y). Since dist(x,y) ≥ 2g+ 1, we

can conclude that Ng(x)c∩Ng(y) = /0 and Ng(x)∩Ng(y)c = /0. Therefore,

ωσ |Ng(x)c∩Ng(y)c = ωασ |Ng(x)c∩Ng(y)c = ωσβ

∣∣
Ng(x)c∩Ng(y)c , (4.29)

and since Hom(G ,H) is a topological MRF (see [20]), we have

ωασ |Ng(x) ωσ |Ng(x)c∩Ng(y)c ωσβ

∣∣
Ng(y)

∈ Hom(G ,H), (4.30)

so [ασβ ]GH 6= /0. Using Lemma 3.3.1, we conclude.

4.4 SSM and the UMC property

Given a constraint graph H, a linear order � in V =
{

v1, . . . ,vk, . . . ,v|H|
}

such

that v1 ≺ ·· · ≺ vk ≺ ·· · ≺ v|H|, and λ > 1, define φ
�
λ

to be the constrained energy

function given by

φ
�
λ
(vk) =−k logλ , and φ

�
λ

∣∣
E ≡ 0. (4.31)

We have the following lemma.

Lemma 4.4.1. Suppose that Hom(G ,H) satisfies the UMC property with distance

g, for G a board of bounded degree ∆. Given λ > 1, consider the Gibbs (G ,H,φ�
λ
)-

specification π , a point ω ∈Hom(G ,H), and sets B⊆ Ab V . Then, for any k ∈N,

π
ω
A ({α : |{y ∈ B : α(y)≺ ωδ (y)}| ≥ k})≤ |H||B|∆g+1

λ
−k, (4.32)

where δ = ω|∂A.

Proof. Let’s denote Ω = Hom(G ,H). Consider an arbitrary configuration α ∈ VA

such that α ω|Ac ∈ Ω (so, in particular, πω
A (α) > 0). Take the set K = A∩Ng(B)

and decompose its boundary K into the two subsets A∩∂K and ∂A∩∂K. Consider

D = A∩ ∂K and name η = α|D. Since δη ∈ L∂A∪D(Ω), there exists a unique

maximal configuration ωδη . Clearly, α(x) � ωδη(x), for every x ∈ A. Moreover,

ωδη

∣∣
B = ωδ |B, since ΣV (ωδη ,ωδ )⊆Ng(D) and dist(B,D)> g, so Ng(D)∩B= /0.
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Now, suppose that α is such that |{y ∈ B : α(y)≺ ωδ (y)}| ≥ k, for some k ≤
|B|. Then,

∣∣{y ∈ B : α(y)≺ ωδη(y)
}∣∣ ≥ k and, by the (topological and measure-

theoretical) MRF property,

πω
A

(
ωδη

∣∣
K

∣∣∣α|A\K)
πω

A

(
α|K
∣∣∣α|A\K) =

π
ωδη

K

(
ωδη

∣∣
K

)
π

ωδη

K (α|K)
≥ λ

k. (4.33)

Therefore,

π
ω
A

(
α|K
∣∣∣α|A\K)≤ λ

−k. (4.34)

Next, by taking weighted averages over all configurations β ∈LA\K(Ω) such

that

β α|K ω|Ac ∈Ω, (4.35)

we have

π
ω
A (α|K) = ∑

β

π
ω
A (α|K |β )π

ω
A (β )≤∑

β

λ
−k

π
ω
A (β ) = λ

−k. (4.36)

Notice that |K| ≤ |Ng(B)| ≤ |B|∆g+1, so |LK (Ω)| ≤ |H||B|∆g+1
. Then, since α

was arbitrary,

π
ω
A ({α : |{y ∈ B : α(y)≺ ωδ (y)}| ≥ k})≤ ∑

α|K :α∈LA(Ω),
|{y∈B:α(y)≺ωδ (y)}|≥k

π
ω
A (α|K) (4.37)

≤ |H||B|∆g+1
λ
−k. (4.38)

Proposition 4.4.2. Suppose that Hom(G ,H) satisfies the UMC property with dis-

tance g, for G a board of bounded degree ∆. Then, for all γ > 0, there exists

λ0 = λ0(γ, |H|,∆,g) such that for every λ > λ0, the Gibbs (G ,H,φ�
λ
)-specification

π satisfies exponential SSM with decay rate γ .

Proof. Let A b V , x ∈ A, β ∈ V{x}, and ω1,ω2 ∈ Hom(G ,H). W.l.o.g., we may

suppose that

dist(x,Σ∂A(ω1,ω2)) = n > g. (4.39)
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By Theorem 4.2.4, and similarly to the proof of Proposition 4.2.5, we have

∣∣πω1
A (β )−π

ω2
A (β )

∣∣≤ Pω1,ω2
A (α1(x) 6= α2(x)) (4.40)

= Pω1,ω2
A

(
x
6=←→ Σ∂A(ω1,ω2)

)
(4.41)

≤ Pω1,ω2
A

(
x
6=←→Ng(Σ∂A(ω1,ω2))

)
. (4.42)

When considering a path of disagreement P from x to Ng(Σ∂A(ω1,ω2)), we

can assume (by truncating if necessary) that P ⊆ A \Ng(Σ∂A(ω1,ω2)) and |P| ≥
n− g. By the UMC property, if we take δ1 = ω1|∂A and δ2 = ω2|∂A, we have

ΣV (ωδ1 ,ωδ2) ⊆ Ng(Σ∂A(ω1,ω2)) = Ng(Σ∂A(δ1,δ2)), so ωδ1

∣∣
P
= ωδ2

∣∣
P
=: θ ∈

LP(Hom(G ,H)). Since P is a path of disagreement, for every y ∈ P we have

α1(y) ≺ α2(y) � θ(y) or α2(y) ≺ α1(y) � θ(y). In consequence, using Lemma

4.4.1 yields

Pω1,ω2
A

(
x
6=←→Ng(Σ∂A(ω1,ω2))

)
(4.43)

≤
∞

∑
k=n−g

∑
|P|=k

Pω1,ω2
A (P is a path of disagr. from x to Ng(Σ∂A(δ1,δ2))) (4.44)

≤
∞

∑
k=n−g

∑
|P|=k

π
ω1
A

({
α1 : |{y ∈ P : α1(y)≺ θ(y)}| ≥ k

2

})
(4.45)

+
∞

∑
k=n−g

∑
|P|=k

π
ω2
A

({
α2 : |{y ∈ P : α2(y)≺ θ(y)}| ≥ k

2

})

≤ 2
∞

∑
k=n−g

∑
|P|=k
|H|k∆g+1

λ
− k

2 ≤ 2∆

∞

∑
k=n−g

(
(∆−1)|H|∆g+1

λ 1/2

)k

. (4.46)

Then, by Lemma 3.1.1, exponential SSM holds whenever

(∆−1)2|H|2∆g+1
< λ , (4.47)

and any decay rate γ may be achieved by taking λ large enough.

Notice that here λ0 is defined in terms of γ , |H|, ∆ and g. In the WSM proof, g

implicitly depended on |H|, but here the two parameters could be, a priori, virtually
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4.5. UMC and chordal/tree decomposable graphs

independent.

4.5 UMC and chordal/tree decomposable graphs

4.5.1 Chordal/tree decompositions

Definition 4.5.1. A simple constraint graph H is said to be chordal if all cycles of

four or more vertices have a chord, which is an edge that is not part of the cycle

but connects two vertices of the cycle.

Definition 4.5.2. A perfect elimination ordering in a simple constraint graph

H = (V,E) is an ordering v1, . . . ,vn of V such that H[vi∪ ({vi+1, . . . ,vn}∩N(vi))]

is a complete graph, for every 1≤ i≤ n = |H|.

Proposition 4.5.1 ([30]). A simple constraint graph H is chordal iff it has a perfect

elimination ordering.

Definition 4.5.3. A constraint graph H = (V,E) will be called loop-chordal if

Loop(H) = V and H′ = (V,E\{{v,v} : v ∈V}) (i.e. H′ is the version of H without

loops) is chordal.

Proposition 4.5.2. Given a loop-chordal constraint graph H = (V,E), there ex-

ists an ordering v1, . . . ,vn of V such that H[vi∪ ({vi+1, . . . ,vn}∩N(vi))] is a loop-

complete graph, for every 1≤ i≤ n = |H|.

Proof. This follows immediately from Proposition 4.5.1.

Proposition 4.5.2 can also be thought of as saying that a graph G = (V,E) is

loop-chordal iff Loop(G) =V and there exists an order v1 ≺ ·· · ≺ vn such that

vi - v j ∧ vi - vk =⇒ v j ∼ vk. (4.48)

Proposition 4.5.3. A connected loop-chordal graph G is dismantlable.

Proof. Let v1, . . . ,vn be the ordering of V given by Proposition 4.5.2 and take v ∈
N(v1). Clearly, v ∈ {v2, . . . ,vn} and then we have G[v1∪ ({v2, . . . ,vn}∩N(v1))] =

G[N(v1)] is a loop-complete graph and v ∈ N(v1). Therefore, N(v1) ⊆ N(v) and
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4.5. UMC and chordal/tree decomposable graphs

there is a fold from G to G[V \ {v1}]. It can be checked that G[V \ {v1}] is also

loop-chordal, so we apply the same argument to G[V \ {v1}] and so on, until we

end with only one vertex (with a loop).

CT

JT
1

T
2

T
3

J
1

J
2

Figure 4.2: A chordal/tree decomposition.

We say that a constraint graph H = (V,E) has a chordal/tree decomposition
or is chordal/tree decomposable if we can write V = CtTt J such that

1. H[C] is a nonempty loop-chordal graph,

2. T = T1 t ·· · tTm and, for every 1 ≤ j ≤ m, H[T j] is a tree such that there

exist unique vertices r j ∈T j (the root of T j) and c j ∈C such that {r j,c j} ∈E,

3. J = J1t ·· · t Jn and, for every 1 ≤ k ≤ n, H[Jk] is a connected graph with a

unique vertex ck ∈ C such that {u,ck} ∈ E, for every u ∈ Jk, and

4. E[T : J] = E[T j1 : T j2 ] = E[Jk1 : Jk2 ] = /0, for every j1 6= j2 and k1 6= k2.

Notice that, for every k, the vertex ck ∈ C is a safe symbol for H[{ck}∪ Jk].
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4.5. UMC and chordal/tree decomposable graphs

4.5.2 A natural linear order

Given a chordal/tree decomposable constraint graph H, we define a linear order �
on V as follows:

• If w ∈ J and t ∈ T, then w≺ t.

• If t ∈ T and c ∈ C, then t ≺ c.

• If w ∈ Jk and w′ ∈ Jk′ , for some 1≤ k < k′ ≤ n, then w≺ w′.

• If t ∈ T j and t ′ ∈ T j′ , for some 1≤ j < j′ ≤ m, then t ≺ t ′.

• Given 1≤ k ≤ n, we fix an arbitrary order in Jk.

• Given 1≤ j ≤ m and t1, t2 ∈ T j, then

– if dist(t1,r j)< dist(t2,r j), then t1 ≺ t2,

– if dist(t1,r j)> dist(t2,r j), then t2 ≺ t1, and

– for each i, we arbitrarily order the set of vertices t with dist(t,r j) = i.

• If c1,c2 ∈ C, then c1 and c2 are ordered according to Proposition 4.5.2.

Proposition 4.5.4. If a constraint graph H has a chordal/tree decomposition, then

H is dismantlable.

Proof. W.l.o.g., suppose that |H| ≥ 2 (the case |H| = 1 is trivial). Let G be an

arbitrary board. In the following theorem (Theorem 4.5.6), it will be proven that if

H is chordal/tree decomposable, then Hom(G ,H) satisfies the UMC property with

distance |H|−2. Therefore, by Proposition 4.3.1, Hom(G ,H) satisfies TSSM with

gap 2(|H|− 2)+ 1 and, in particular, Hom(G ,H) is strongly irreducible with gap

2|H|+ 1. Since the gap is independent of G , we can apply Proposition 4.2.1 to

conclude that H must be dismantlable.

Proposition 4.5.5. If a constraint graph H has a safe symbol, then H is chordal/tree

decomposable.

Proof. This follows trivially by considering C = {s}, T = /0 and J = V\{s}, with

s a safe symbol for H.
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4.5. UMC and chordal/tree decomposable graphs

We show that chordal/tree decomposable graphs H induce combinatorial prop-

erties on homomorphism spaces Hom(G ,H).

Theorem 4.5.6. Let H be a chordal/tree decomposable constraint graph. Then,

Hom(G ,H) has the UMC property with distance |H|−2, for any board G .

Before proving Theorem 4.5.6, we introduce some useful tools. From now on,

we fix Hom(G ,H) and x1,x2, . . . to be an arbitrary order of V . We also fix the

linear order � on V as defined above. For i ∈ {1, . . . , |H|}, define the sets Di :=
{(ω1,ω2,x) ∈ Hom(G ,H)×Hom(G ,H)×G : vi = ω1(x)≺ ω2(x)}, and consider

D(`)=
⋃`

i=1 Di, for 1≤ `≤ |H|, and D :=D(|H|). Notice that D|H|= /0. In addition,

given (ω1,ω2,x) ∈ D, define the set

N−(ω1,x) := {y ∈ N(x) : ω1(y)≺ ω1(x)}, (4.49)

and the partition

N−(ω1,x) = N−≺(ω1,ω2,x)tN−�(ω1,ω2,x)tN−=(ω1,ω2,x), (4.50)

where

N−≺(ω1,ω2,x) := {y ∈ N−(ω1,x) : ω1(y)≺ ω2(y)}, (4.51)

N−�(ω1,ω2,x) := {y ∈ N−(ω1,x) : ω1(y)� ω2(y)}, and (4.52)

N−=(ω1,ω2,x) := {y ∈ N−(ω1,x) : ω1(y) = ω2(y)}. (4.53)

Let P : D→ D be the function that, given (ω1,ω2,x) ∈ D, returns

1. (ω1,ω2,y), if N−≺(ω1,ω2,x) 6= /0,

2. (ω2,ω1,y), if N−≺(ω1,ω2,x) = /0 and N−�(ω1,ω2,x) 6= /0, or

3. (ω1,ω2,x), if N−≺(ω1,ω2,x) = N−�(ω1,ω2,x) = /0,

where y is the minimal element in N−≺(ω1,ω2,x) or N−�(ω1,ω2,x), respectively.

Here the minimal element y is taken according to the previously fixed order of

V . We chose y to be minimal just to have P well-defined; it will not be oth-

erwise relevant. Notice that if (ω1,ω2,x) ∈ D` and P(ω1,ω2,x) 6= (ω1,ω2,x),
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4.5. UMC and chordal/tree decomposable graphs

then P(ω1,ω2,x) ∈ D(`− 1). This implies that every element in D1 must be

a fixed point. Moreover, for every (ω1,ω2,x) ∈ D, the (|H| − 2)-iteration of P

is a fixed point (though not necessarily in D1), i.e. P
(
P |H|−2(ω1,ω2,x)

)
=

P |H|−2(ω1,ω2,x).

We have the following lemma.

Lemma 4.5.7. Let (ω1,ω2,x) ∈ D be such that P(ω1,ω2,x) = (ω1,ω2,x). Then,

there exists u ∈ V such that ω1(x)≺ u, and the point ω̃1 defined as

ω̃1(y) =

u if y = x,

ω1(y) if y 6= x,
(4.54)

is globally admissible. In particular, ω1 ≺ ω̃1.

Proof. Notice that if (ω1,ω2,x) is a fixed point, N−(ω1,x) = N−=(ω1,ω2,x). We

have two cases:

Case 1: N−(ω1,x) = /0. If this is the case, then ω1(y) � ω1(x), for all y ∈ N(x).

Notice that ω1(x)≺ ω2(x)� v|H|, so ω1(x)≺ v|H|. Then we have three sub-cases:

Case 1.a: ω1(x) ∈ Jk for some 1 ≤ k ≤ n. Since {v,ck} ∈ E for all v ∈ Jk, we can

modify ω1 at x in a valid way by replacing ω1(x) ∈ Jk with u = ck.

Case 1.b: ω1(x) ∈ T j for some 1≤ j ≤ m. Since ω1(y)� ω1(x), for all y ∈ N(x),

but ω1(x) ∈ T j and T j does not have loops, we have ω1(y) � ω1(x), for all y ∈
N(x). Call t = ω1(x). Then, there are three possibilities: t = r j, dist(t,r j) = 1, or

dist(t,r j)> 1.

If t = r j, then ω1(y) = c j for all y ∈N(x), where c j � r j is the unique vertex in

C connected with r j. Since c j must have a loop, we can replace ω1(x) by u = c j �
ω1(x) in ω1.

If dist(t,r j) = 1, then ω1(y) = r j for all y∈N(x), and, similarly to the previous

case, we can replace ω1(x) by u = c j � ω1(x) in ω1.

Finally, if dist(t,r j)> 1, then ω1(y) = f � t, for all y ∈ N(x), where f ∈ T j is

the parent of t in the r j-rooted tree H[T j]. Then, since dist(t,r j) > 1, there must

exist h ∈ T j that is the parent of f , so we can replace ω1(x) by u = h in ω1.
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Case 1.c: ω1(x) ∈ C. If this is the case, and since ω1(x) ≺ v|H|, there must exist

1 ≤ i < |C| such that ω1(x) = ci and N(ci)∩{ci+1, . . . ,c|C|} is nonempty. Now,

ω1(y) � ω1(x), for all y ∈ N(x), so ω1(y) ∈ {ci}∪
(
N(ci)∩{ci+1, . . . ,c|C|}

)
, for

all y ∈ N(x). Since H[{ci}∪
(
N(ci)∩{ci+1, . . . ,c|C|}

)
] is a loop-complete graph

with two or more elements, then we can replace ω1(x) by any element u ∈ N(ci)∩
{ci+1, . . . ,c|C|} in ω1.

Case 2: N−(ω1,x) 6= /0. In this case, ω1(x)≺ ω2(x) and, since

N−(ω1,x) 6= /0 and N−(ω1,x) = N−=(ω1,ω2,x), (4.55)

there must exist y∗ ∈ N(x) such that ω1(y∗)≺ ω1(x) and ω1(y∗) = ω2(y∗). Notice

that in this case, ω1(x) cannot belong to T, because ω1(x) ≺ ω2(x) and both are

connected to ω1(y∗); this would imply that, for some 1 ≤ j ≤ m, either (a) T j

does not induce a tree, or (b) more than one vertex in T j is adjacent to a vertex

in C. Therefore, we can assume that ω1(x) belongs to C (and therefore, since

ω2(x)� ω1(x), also ω2(x) belongs to C).

We are going to prove that, for every y ∈ N(x), we have ω1(y)∼ ω2(x), so we

can replace ω1(x) by ω2(x) in ω1. Since ω1(y) = ω2(y), for every y ∈ N−(ω1,x),

we only need to prove that ω1(y) ∼ ω2(x), for every y ∈ N(x) such that ω1(y) �
ω1(x).

Take any y ∈N−=(ω1,ω2,x). Then, ω2(y) = ω1(y)- ω1(x) and ω2(y)- ω2(x),

so ω1(x) ∼ ω2(x), since H is loop-chordal. Consider now an arbitrary y ∈ N(x)

such that ω1(y) � ω1(x). If ω1(y) = ω1(x), we have ω1(y) = ω1(x) ∼ ω2(x), so

we can assume that ω1(y) � ω1(x). Then, ω1(x) - ω1(y) and ω1(x) - ω2(x), so

ω1(y) ∼ ω2(x), again by loop-chordality of H. Then, ω1(y) ∼ ω2(x), for every

y ∈ N(x), and we can replace ω1(x) by u = ω2(x) in ω1, as desired.

Now we are in a good position to prove Theorem 4.5.6.

Proof of Theorem 4.5.6. Fix an arbitrary set Ab V and α ∈LA(Hom(G ,H)). We

proceed to prove the conditions (M1) (i.e. existence and uniqueness of a maximal

point ωα ) and (M2).

Condition (M1). Choose an ordering x1,x2, . . . of V \A and, for n ∈ N, define

An :=A∪{x1, . . . ,xn}. Let α0 :=α and suppose that, for a given n and all 0< i≤ n,
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we have already constructed a sequence αi ∈LAi(Hom(G ,H)) such that αi|Ai−1
=

αi−1 and β (xi)� αi(xi), for any β ∈LAi(Hom(G ,H)) such that β |Ai−1
= αi−1.

Next, look for the globally admissible configuration αn+1 such that αn+1|An
=

αn and β (xn+1)�αn+1(xn+1), for any β ∈LAn+1(Hom(G ,H)) such that β |An
=αn.

Iterating and by compactness of Hom(G ,H), we conclude the existence of a unique

point ω̂ ∈
⋂

n∈N[αn]
G
H .

We claim that ω̂ is independent of the ordering x1,x2, . . . of V \A.

By contradiction, suppose that given two orderings of V \ A we can obtain

two different configurations ω̂1 and ω̂2 with the properties described above. Take

x ∈ V \A such that ω̂1(x) 6= ω̂2(x). W.l.o.g., suppose that ω̂1(x)≺ ω̂2(x). Then we

have that (ω̂1, ω̂2,x) ∈ D and P |H|−2(ω̂1, ω̂2,x) is a fixed point for P . W.l.o.g.,

suppose that P |H|−2(ω̂1, ω̂2,x) = (ω̂1, ω̂2, x̃), where x̃ ∈ V \A (note that x̃ is not

necessarily equal to x). By an application of Lemma 4.5.7, ω̂1(x̃) can be replaced

in a valid way by a vertex u ∈ V such that ω̂1(x̃) ≺ u. If we let n be such that

x̃ = xn for the ordering corresponding to ω̂1, we have a contradiction with the

maximality of ω̂1, since we could have chosen u instead of ω̂1(xn) in the nth step

of the construction of ω̂1.

Therefore, there exists a particular ω̂ common to any ordering x1,x2, . . . of

V \A. We claim that taking ωα = ω̂ proves (M1). In fact, suppose that there

exists ω ∈ [α]GH and x∗ ∈ V \A such that ω̂(x∗)≺ω(x∗). We can always choose an

ordering of V \A such that x1 = x∗. Then, according to such ordering, β � ω̂|A1

for any β ∈ LA1(Hom(G ,H)) such that β |A = α . In particular, if we take β =

α ω|{x∗}, we have a contradiction.

Condition (M2). Notice that if (ω ′1,ω
′
2,y) = P(ω1,ω2,x), then x = y or x ∼ y.

In addition, since the (|H| − 2)-iteration of P is a fixed point, if (ω ′1,ω
′
2,y) =

P |H|−2(ω1,ω2,x), then dist(x,y) ≤ |H| − 2. In order to prove condition (M2),

consider two configurations α1,α2 ∈LA(Hom(G ,H)), and the set ΣV (ωα1 ,ωα2).

We want to prove that

ΣV (ωα1 ,ωα2)⊆N|H|−2(ΣA(α1,α2)). (4.56)

W.l.o.g., suppose that α1 6= α2 and take x ∈ ΣV (ωα1 ,ωα2) 6= /0. It suffices to

check that dist(x,ΣA(α1,α2))≤ |H|−2. Suppose for the sake of contradiction that
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dist(x,ΣA(α1,α2)) > |H| − 2 and let (ω ′α1
,ω ′α2

,y) = P |H|−2(ωα1 ,ωα2 ,x). Notice

that, by definition of P , y also belongs to ΣV (ωα1 ,ωα2), and since dist(x,y)≤ |H|,
we have y /∈ ΣA(α1,α2). Then, there are two possibilities: (a) y ∈ A \ΣA(α1,α2),

or (b) y ∈ V \A.

If y ∈ A\ΣA(α1,α2), then ωα1(y) = α1(y) = α2(y) = ωα2(y), and that contra-

dicts the fact that y ∈ ΣV (ωα1 ,ωα2).

If y ∈ V \ A and, w.l.o.g., ωα1(y) ≺ ωα2(y), we can apply Lemma 4.5.7 to

contradict the maximality of ωα1 .

4.6 The looped tree case

A looped tree T will be called trivial if |T | = 1 and nontrivial if |T | ≥ 2. We

proceed to define a family of graphs that will be useful in future proofs.

0 1 2 n n+1. . .

Figure 4.3: The n-barbell graph Bn.

Definition 4.6.1. Given n∈N, define the n-barbell graph as Bn = (V (Bn),E(Bn)),

where

V (Bn) = {0,1, . . . ,n,n+1} , (4.57)

and

E(Bn) = {{0,0},{0,1}, . . . ,{n,n+1},{n+1,n+1}} . (4.58)

Notice that a looped tree with a safe symbol must be an n-star (see Equation

(2.7)) with a loop at the central vertex, possibly along with other loops. The graph

Hϕ can be seen as a very particular case of a looped tree with a safe symbol. For

more general looped trees, we have the next result.

Proposition 4.6.1. Let T be a finite nontrivial looped tree. Then, the following are

equivalent:

(1) T is chordal/tree decomposable.

(2) T is dismantlable.
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(3) Loop(T ) is connected in T and nonempty.

Proof. We have the following implications.

(1) =⇒ (2): This follows from Theorem 4.6.3, which is for general constraint

graphs.

(2) =⇒ (3): Assume that T is dismantlable. First, suppose Loop(T ) = /0. Then,

in any sequence of foldings of T , in the next to last step, we must end with a graph

consisting of just two adjacent vertices vn−1 and vn, without loops. However, this

is a contradiction, because N(u)( N(v) and N(v)( N(u), so such graph cannot be

folded into a single vertex. Therefore, Loop(T ) is nonempty.

Next, suppose that Loop(T ) is nonempty and not connected. Then, T must

have an n-barbell as a subgraph, for some n ≥ 1. Therefore, in any sequence of

foldings of T , there must have been a vertex in the n-barbell that was folded first.

Let’s call such vertex u and take v ∈V with N(u)⊆N(v). Then, v is another vertex

in the n-barbell or it belongs to the complement. Notice that v cannot be in the n-

barbell, because no neighbourhood of vertex in the n-barbell (even restricted to the

barbell itself) contains the neighbourhood of another vertex in the n-barbell. On

the other hand, v cannot be in the complement of n-barbell, because v would have

to be connected to two or more vertices in the n-barbell (u and its neighbours), and

that would create a cycle in T . Therefore, Loop(T ) is connected.

(3) =⇒ (1): Define C := Loop(T ). Then C is connected in T and nonempty.

Then, if we denote by T its complement V \C and define J = /0, we have that V can

be partitioned into the three subsets CtTt J, which corresponds to a chordal/tree

decomposition.

Corollary 7. Let T be a finite nontrivial looped tree. Then, the following are

equivalent:

(1) T is chordal/tree decomposable.

(2) Hom(G ,T ) has the UMC property, for every board G .

(3) Hom(G ,T ) satisfies TSSM, for every board G .

(4) Hom(G ,T ) is strongly irreducible, for every board G .
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4.6. The looped tree case

(5) T is dismantlable.

Proof. By Theorem 4.6.3, we have (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5). The

implication (5) =⇒ (1) follows from Proposition 4.6.1.

Sometimes, given a constraint graph H, if a property for homomorphism spaces

holds for a certain distinguished board or family of boards, then the property holds

for any board G . For example, this is proven in [17] for a dismantlable graph H

and the strong irreducibility property, when G ∈ {Td}d∈N. The next result gives

another example of this phenomenon.

Proposition 4.6.2. Let T be a finite looped tree. Then, the following are equivalent:

(1) Hom(G ,T ) satisfies TSSM, for every board G ..

(2) Hom(Z2,T ) satisfies TSSM.

(3) There exist Gibbs (Z2,T,φ)-specifications which satisfy exponential SSM

with arbitrarily high decay rate.

Proof. We have the following implications.

(1) =⇒ (2): Trivial.

(2) =⇒ (1): Let’s suppose that Hom(Z2,T ) satisfies TSSM. If T is trivial, then

Hom(G ,T ) is a single point or empty, depending on whether the unique vertex in T

has a loop or not. In both cases, Hom(G ,T ) satisfies TSSM, for every board G . If

T is nontrivial, then Loop(T ) must be nonempty. To see this, by contradiction, first

suppose that T is nontrivial and Loop(T ) = /0. Take an arbitrary vertex u ∈ V (T )

and a neighbour v ∈ N(u). Notice that Hom(Z2,T ) is nonempty, since the point

ωu,v defined as

ω
u,v(x) =

u if x1 + x2 = 0 mod 2,

v if x1 + x2 = 1 mod 2,
(4.59)

is globally admissible. Now, if we interchange the roles of u and v, and consider the

(globally admissible) point ωv,u, we have ωu,v((0,0))= u and ωv,u((2g+1,0))= u,

for an arbitrary g ∈N. However, if this is the case, Hom(Z2,T ) cannot be strongly
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4.6. The looped tree case

irreducible with gap g, for any g (and therefore, cannot be TSSM), because

[
ω

u,v|(0,0) ω
v,u|(2g+1,0)

]Z2

T
= /0. (4.60)

A way to check this is by considering the fact that both T and Z2 are bipartite

graphs. Therefore, we can assume that Loop(T ) 6= /0.
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Figure 4.4: A “channel” in Hom(Z2,T ) with two incompatible extremes.

Now, suppose that Loop(T ) 6= /0 and Loop(T ) is not connected in T . If this

is the case, T must have an n-barbell as an induced subgraph, for some n ≥ 1.

Then, we would be able to construct configurations in L (Hom(Z2,T )) as shown
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4.6. The looped tree case

in Figure 4.4. Note that vertices in the n-barbell can reach each other only through

the path determined by the n-barbell, since T does not contain cycles. In Figure 4.4

are represented the cylinder sets [ασ ]Z
2

T (top left), [σβ ]Z
2

T (top right) and [ασβ ]Z
2

T

(bottom), where:

1. α is the vertical left-hand side configuration in red, representing a sequence

of nodes in the n-barbell that repeats 0 but not n+1,

2. β is the vertical right-hand side configuration in red, representing a sequence

of nodes in the n-barbell that repeats n+1 but not 0, and

3. σ is the horizontal (top and bottom) configuration in black, representing

loops on the vertices 0 and n+1, respectively.

It can be checked that [ασ ]Z
2

T and [σβ ]Z
2

T are nonempty. However, the cylin-

der set [ασβ ]Z
2

T is empty for every even separation distance between α and β ,

since α and β force incompatible alternating configurations inside the “channel”

determined by σ . Therefore, Hom(Z2,T ) cannot satisfy TSSM, which is a contra-

diction.

We conclude that Loop(T ) is nonempty and connected in T , and by Proposition

4.6.1 T is chordal/tree decomposable. Finally, by Proposition 7, we conclude that

Hom(G ,T ) satisfies TSSM, for every board G .

(3) =⇒ (2): This follows from Theorem 4.2.6.

(1) =⇒ (3): Since Hom(G ,T ) satisfies TSSM for every board G , Hom(G ,T ) has

the UMC property for all board G (see Corollary 7). In particular, Hom(Z2,T ) has

the UMC property. Then, (3) follows from Proposition 4.4.2.

We have the following summary.

Theorem 4.6.3. Fix a constraint graph H.

• Then,

H has a safe symbol ⇐⇒ Hom(G ,H) is SSF, for all G

=⇒ H is chordal/tree decomposable

86



4.7. Examples: Homomorphism spaces

=⇒ Hom(G ,H) has the UMC property, for all G

=⇒ Hom(G ,H) satisfies TSSM, for all G

=⇒ Hom(G ,H) is strongly irreducible, for all G

⇐⇒ H is dismantlable.

• Let G a fixed board. Then,

Hom(G ,H) has the UMC property =⇒ Hom(G ,H) satisfies TSSM

=⇒ Hom(G ,H) is strongly irreducible.

• Let G a fixed board with bounded degree. Then,

Hom(G ,H) has the UMC property =⇒ For all γ > 0, there exists a Gibbs

(G ,H,φ)-specification that satisfies

exponential SSM with decay rate γ

⇓

H is dismantlable =⇒ For all γ > 0, there exists a Gibbs

(G ,H,φ)-specification that satisfies

exponential WSM with decay rate γ.

Proof. The first chain of implications and equivalences follows from Proposition

4.1.2, Proposition 4.5.5, Theorem 4.5.6, Proposition 4.3.1, Equation (4.3), and

Proposition 4.2.1. The second one, from Proposition 4.3.1 and Equation (4.3). The

last one, from Proposition 4.4.2, Proposition 4.2.1, and the fact that SSM always

implies WSM.

4.7 Examples: Homomorphism spaces

Proposition 4.7.1. There exists a homomorphism space Hom(G ,H) that satisfies

TSSM but not the UMC property.

Proof. The homomorphism space Hom(Z2,K5) satisfies TSSM (in fact, it satisfies
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4.7. Examples: Homomorphism spaces

SSF) but not the UMC property. If Hom(Z2,K5) satisfies the UMC property, then

there must exist an order≺ and a greatest element ω∗ ∈Hom(Z2,K5) according to

such order (see Section 4.3). Denote V (K5) = {1,2, . . . ,5} and, w.l.o.g., assume

that 1 ≺ 2 ≺ ·· · ≺ 5. Then, because of the constraints imposed by K5, there must

exist x ∈ Z2 such that ω∗(x)≺ ω∗(x+(1,0)). Now, consider the point ω̃ such that

ω̃(x) = ω∗(x+(1,0)) for every x ∈ Z2, i.e. a shifted version of ω∗ (in particu-

lar, ω̃ also belongs to Hom(Z2,K5)). Then ω(x) ≺ ω∗(x+(1,0)) = ω̃(x), which

contradicts the maximality of ω∗.

Note 7. We are not aware of a homomorphism space Hom(G ,H) that satisfies the

UMC property with H not a chordal/tree decomposable graph.

a b

c d

Figure 4.5: A dismantlable graph H such that Hom(Z2,H) is not TSSM.

Proposition 4.7.2. There exists a dismantlable graph H such that

1. Hom(Z2,H) does not satisfy TSSM.

2. There is no constrained energy function φ such that the Gibbs (Z2,H,φ)-

specification satisfies SSM.

3. For every board of bounded degree G and γ > 0, there exists a constrained

energy function φ such that the Gibbs (G ,H,φ)-specification satisfies expo-

nential WSM with decay rate γ .

Proof. Consider the constraint graph H = (V,E) given by V = {a,b,c,d}, and

E = {{a,a},{b,b},{c,c},{a,b},{a,c},{b,d},{c,d}} . (4.61)
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4.7. Examples: Homomorphism spaces

It is easy to check that H is dismantlable (see Figure 4.5).

By Proposition 4.2.1, we know that (3) holds. However, if we consider the

configurations α and β (the pairs bb and cc in red, respectively) and the fixed

configuration σ (the diagonal alternating configurations adad · · · in black) shown

in Figure 4.6, we have that [ασ ]Z
2

H , [σβ ]Z
2

H 6= /0, but [ασβ ]Z
2

H = /0, and TSSM cannot

hold. This construction works in a similar way to the construction in the proof

((2) =⇒ (1)) of Proposition 4.6.2.
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Figure 4.6: Two incompatible configurations α and β (both in red).

Now assume the existence of a Gibbs (Z2,H,φ)-specification π satisfying SSM

with decay function f . Call A⊆ Z2 the shape enclosed by the two diagonals made

by alternating sequence of a’s and d’s shown in Figure 4.7 (in grey), and let xl

and xr be the sites (in red) at the left and right extreme of A, respectively. If we

denote by σ the boundary configuration of the a and d symbols on ∂A\{xr}, and

α1 = b{xr} and α2 = c{xr}, it can be checked that [σα1]
G
H , [σα2]

G
H 6= /0. Then, take

ω1 ∈ [σα1]
G
H , ω2 ∈ [σα2]

G
H , and call B = {xl} and β = bB.
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d

d

d
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. .

 .

d

a
a

. .
 .

Figure 4.7: A scenario where SSM fails for any Gibbs (Z2,H,φ)-specification.
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Notice that, similarly as before, the symbols b and c force repetitions of them-

selves, respectively, from xr to xl along A. Then, we have that π
ω1
A (β ) = 1 and

π
ω2
A (β ) = 0. Now, since we can always take an arbitrarily long set A, suppose that

dist(xl,xr)≥ n0, with n0 such that f (n0)< 1. Therefore,

1 = |1−0|=
∣∣πω1

A (β )−π
ω2
A (β )

∣∣ (4.62)

≤ |B| f (dist(B,Σ∂A(ω1,ω2)))≤ f (n0)< 1, (4.63)

which is a contradiction.

Proposition 4.7.3. There exists a dismantlable graph H and a constant γ0 > 0,

such that

1. the set of constrained energy functions φ for which the Gibbs (Z2,H,φ)-

specification satisfies exponential SSM is nonempty,

2. there is no constrained energy function φ for which the Gibbs (Z2,H,φ)-

specification satisfies exponential SSM with decay rate greater than γ0,

3. Hom(Z2,H) satisfies SSF (in particular, Hom(Z2,H) satisfies TSSM), and

4. for every γ > 0, there exists a constrained energy function φ for which the

Gibbs (Z2,H,φ)-specification satisfies exponential WSM with decay rate γ .

Moreover, there exists a family {Hq}q∈N of dismantlable graphs with these

properties such that |Hq| → ∞ as q→ ∞.

Proof. By Theorem 3.6.1, we know that if π is such that Q(π) < pc(Z2), then π

satisfies exponential SSM, where pc(Z2) denotes the critical value of Bernoulli site

percolation on Z2 and Q(π) is defined as

Q(π) = max
ω1,ω2

dTV

(
π

ω1

{~0}
,πω2

{~0}

)
. (4.64)

Given q ∈N, consider the graph Hq as shown in Figure 4.8. The graph Hq con-

sists of a complete graph Kq+1 and two other extra vertices a and b, both adjacent

to every vertex in the complete graph. In addition, a has a loop, and a and b are not

adjacent. Notice that Hq is dismantlable (we can fold a into b and then we can fold
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every vertex in Kq+1 into a), and a is a persistent vertex for Hq. Since Hq is dis-

mantlable, by Proposition 4.2.1, for every γ > 0, there exists a constrained energy

function φ for which the Gibbs (Z2,H,φ)-specification satisfies exponential WSM

with decay rate γ .

Take π to be the uniform Gibbs specification on Hom(Z2,H) (i.e. Φ≡ 0). The

definition of πω

{~0}(u) implies that, whenever πω

{~0}(u) 6= 0 for u ∈ V,

1
q+2

≤ π
ω

{~0}(u)≤
1

q−1
. (4.65)

Notice that πω

{~0}(a) = 0 iff b appears in ω|
∂{~0}. Similarly, πω

{~0}(b) = 0 iff a

or b appear in ω|
∂{~0}, and for u 6= a,b, πω

{~0}(u) = 0 iff u appears in ω|
∂{~0}. Since

|∂{~0}|= 4, at most 8 terms vanish in the definition of Q(π) (4 for each ωi, i= 1,2).

Then, since |Hq|= q+3 and q≥ 1,

dTV

(
π

ω1

{~0}
,πω2

{~0}

)
=

1
2 ∑

u∈V

∣∣∣πω1

{~0}
(u)−π

ω2

{~0}
(u)
∣∣∣ (4.66)

≤ 1
2

(
8

1
q−1

+(q+3)
∣∣∣∣ 1
q−1

− 1
q+2

∣∣∣∣)≤ 6
q−1

. (4.67)

K
q+1

b

a

10

25

4 3

Figure 4.8: The graph Hq, for q = 5.

Then, if q > 1+ 6
pc(Z2)

, we have that Q(π)< pc(Z2), so π satisfies exponential

SSM. Since pc(Z2)> 0.556 (see [10, Theorem 1]), it suffices to take q≥ 12. In par-
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ticular, the set of constrained energy functions Φ for which the Gibbs (Z2,Hq,φ)-

specification satisfies exponential SSM is nonempty if q > 12.

Now, let π be an arbitrary Gibbs (Z2,Hq,φ)-specification that satisfies SSM

with decay function f (n) =Ce−γn, for some C and γ that could depend on q and φ .

For now, we fix q and an arbitrary φ .

Consider a configuration like the one shown in Figure 4.9. Define Ṽ = V \
{0,a,b}, Ẽ = E[Ṽ], and let H̃q = Hq[Ṽ]. Notice that H̃q is isomorphic to Kq.

Construct the auxiliary constrained energy function φ̃ : Ṽ∪ Ẽ→ (−∞,0] given by

φ̃(u) = φ(u)+φ(u,0)+φ(u,b), for every u ∈ Ṽ (representing the interaction with

the “wall” · · ·0b0b · · · ), and φ̃ ≡ φ |Ẽ. The constrained energy function φ̃ induces

a Gibbs (Z, H̃q, φ̃)-specification π̃ that inherits the exponential SSM property from

π with the same decay function f (n) =Ce−γn. It follows that there is a unique (and

therefore, stationary) n.n. Gibbs measure µ for π̃ , which is a Markov measure with

some symmetric q× q transition matrix M with zero diagonal (see [35, Theorem

10.21] and [21]).
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Figure 4.9: A Markov chain embedded in a Z2 Markov random field.

Let 1 = λ1 ≥ λ2 ≥ ·· · ≥ λq be the eigenvalues of M. Since tr(M) = 0, we

have that ∑
q
i=1 λi = 0. Let λ∗ = max{|λ2|, |λq|}. Then, since λ1 = 1, we have that

1≤ ∑
q
i=2 |λi| ≤ (q−1)λ∗. Therefore, λ∗ ≥ 1

q−1 .

Since M is stochastic, M~1 =~1 and, since M is primitive, λ∗ < 1 (see [63,

Section 3.2]). W.l.o.g., suppose that |λ2| = λ∗ and let ~̀ be the left eigenvector

associated to λ2 (i.e. ~̀M = λ2~̀). Then ~̀ ·~1 = 0, because λ2~̀ ·~1 = (~̀ ·M) ·~1 =

~̀ · (M ·~1) = ~̀ ·~1, so (1−λ2)~̀ ·1 = 0. Then, ~̀ ∈
〈
~e2−~e1,~e3−~e1, . . . ,~eq−~e1

〉
R, so

we can write ~̀= ∑
q
k=2 ck(~ek−~e1), where {~ek}q

k=1 denotes the canonical basis of Rq

and ck ∈R. We conclude that λ n
∗ ~̀= ~̀ ·Mn =∑

q
k=2 ck(~ek−~e1) ·Mn =∑

q
k=2 ck(Mn

k•−
Mn

1•), where Mn
i• is the vector given by the ith row of M.
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Consider j ∈ {1, . . . ,q} such that ~̀ j > 0. Then, λ n
∗ = ∑

q
k=2

ck
~̀ j
(Mn

k j−Mn
1 j) and

∣∣Mn
k j−Mn

1 j

∣∣= ∣∣∣µ ( j{0}
∣∣∣k{−n}

)
−µ

(
j{0}
∣∣∣1{−n}

)∣∣∣ (4.68)

≤
∣∣∣µ ( j{0}

∣∣∣k{−n}
)
−µ

(
j{0}
∣∣∣k{−n},1{n}

)∣∣∣ (4.69)

+
∣∣∣µ ( j{0}

∣∣∣k{−n},1{n}
)
−µ

(
j{0}
∣∣∣1{−n},k{n}

)∣∣∣ (4.70)

+
∣∣∣µ ( j{0}

∣∣∣1{−n},k{n}
)
−µ

(
j{0}
∣∣∣1{−n}

)∣∣∣ (4.71)

≤ 3Ce−γn, (4.72)

by the exponential SSM property of π̃ and using that µ
(

j{0}
∣∣k{−n}) is a weighted

average ∑m∈Ṽ µ
(

j{0}
∣∣k{−n},m{n}

)
µ
(
m{n}

∣∣k{−n}), along with a similar decompo-

sition of µ
(

j{0}
∣∣1{−n}). Therefore, λ n

∗ ≤ 3C(q− 1)max
k

|ck|
|~̀ j|

e−γn. By taking loga-

rithms and letting n→ ∞, we conclude that γ ≤− logλ∗ ≤ log(q−1). Then, since

φ was arbitrary, there is no constrained energy function φ for which the Gibbs

(Z2,Hq,φ)-specification satisfies exponential SSM with decay rate greater than

γ0 := log(q−1).

Finally, it is easy to see that if q≥ 4, Hom(Z2,H) satisfies SSF. Therefore, by

Proposition 3.3.3, Hom(Z2,Hq) satisfies TSSM (with gap g = 2).
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Representation and poly-time
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Chapter 5

Entropy and pressure

In the context of Zd shift spaces, we consider (topological) pressure and its particu-

lar case, topological entropy. The two appear in several subjects and both somehow

try to capture the complexity of a given system by associating to it a nonnega-

tive real number. Furthermore, and as an additional motivation, sometimes these

quantities can help us to distinguish between systems that are not isomorphic (or

conjugate) in the sense described below.

5.1 Topological entropy

A natural way to transform one Zd shift space to another is via a particular class of

maps compatible with the shift action called sliding block codes.

Definition 5.1.1. A sliding block code between two Zd shift spaces Ω1⊆A Zd

1 and

Ω2 ⊆A Zd

2 is a map J : Ω1→Ω2 for which there is N ∈ N and j : LBN (Ω1)→A2

such that

J(ω)(x) = j(σx(ω)|BN
), (5.1)

for all x ∈ Zd and ω ∈ Ω1. A conjugacy is an invertible sliding block code, and

two Zd shift spaces Ω1 and Ω2 are said to be conjugate (denoted Ω1 ∼= Ω2) if there

is a conjugacy from one to the other.

Example 5.1.1. Given N ∈ N and a Zd shift space Ω ⊆ A Zd
, a natural sliding

block code is the higher block code JN : Ω→
(
A BN

)Zd

defined by

JN(ω)(x) = σx(ω)|BN
. (5.2)

We call the image JN(Ω), a higher block code representation of Ω. Notice

that the alphabet of JN(Ω) is a subset of A BN .
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5.1. Topological entropy

Two Zd shift spaces are often regarded as being the same if they are conju-

gate. Properties preserved by conjugacies are called conjugacy invariants. For

example, the property of being a Zd SFT is a conjugacy invariant: if a Zd shift

space Ω is conjugate to an SFT, then Ω itself is a Zd SFT. The topologically mix-

ing and strong irreducibility properties are invariants, too (see Subsection 3.2.1).

Another important invariant, and one of the main objects of study in this work, is

the following.

Definition 5.1.2. The topological entropy of a Zd shift space Ω is defined as

h(Ω) := inf
n

log |LBn(Ω)|
|Bn|

= lim
n→∞

log |LBn(Ω)|
|Bn|

. (5.3)

Topological entropy is a conjugacy invariant, i.e. if Ω1 ∼= Ω2, then h(Ω1) =

h(Ω2). The limit always exists because {|LBn(Ω)|}n is a (coordinate-wise) sub-

additive sequence and a well-known multidimensional extension of Fekete’s sub-

additive lemma applies (see [5]). Notice that topological entropy can be regarded

as the exponential growth rate of globally admissible configurations on Bn.

It is important to point out that for every Zd SFT there is a Zd n.n. SFT higher

block code representation, which makes Zd n.n. SFTs a sufficiently rich family to

study. For this reason, from now on we restrict our attention to Zd n.n. SFTs.

Example 5.1.2 (TSSM is not a conjugacy invariant). Given A = {0,1,2} and the

family of configurations F= {00,102,201}, consider the Z SFT Ω = ΩF. It can be

checked that Ω is strongly irreducible with gap g = 3. However, Ω is not TSSM. In

fact, given g ∈ N, consider S = {x ∈ Z : 0 < x < 2g,x odd} and the configurations

σ = 0S, α = 1{0}, and β = 2{2g}. Then, [ασ ]Ω, [σβ ]Ω 6= /0, because ασ can be

extended with 1s in Z\(S∪{0}) and σβ can be extended with 2s in Z\(S∪{2g}).
However, [ασβ ]Ω = /0, since the 1 in α forces any point in [ασ ]Ω to have value

1 in ((0,2g)∩Z) \ S, but the 2 in β forces any point in [σβ ]Ω to have value 2 in

((0,2g)∩Z)\S. Therefore, since g was arbitrary, Ω is not TSSM for any gap g.

Now, if we define Ω′ := β1(Ω), where β1 is the higher block code with N = 1

(see Example 5.1.1), then Ω′ is a Z n.n. SFT conjugate to Ω (Ω∼=Ω′), and therefore

strongly irreducible (which is a conjugacy invariant). Then, by Proposition 3.4.5,

we have that Ω′ is TSSM, while Ω is not.
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5.1. Topological entropy

This example can be extended to any dimension d by considering the con-

straints F in only one canonical direction. In other words, TSSM is not a conjugacy

invariant for any d.

When Ω is a Zd n.n. SFT, there is a simple algorithm for computing h(Ω)

when d = 1, because h(Ω) = logλM, for λM the largest eigenvalue of the adjacency

matrix M of the edge shift representation of Ω [58]. However, for d ≥ 2, there is

in general no known closed form for topological entropy. Only in a few specific

cases a closed form is known (e.g. dimer model [46], square ice-type model [54]).

Example 5.1.3. For Ω1
ϕ =Hom(Z,Hϕ), it is easy to see that h(Ω1

ϕ) = logϕ , where

ϕ = 1+
√

5
2 = 1.61803 . . . is the golden ratio. On the other hand, for d≥ 2, no closed

form is known for the value of h(Ωd
ϕ).

For d ≥ 2, one can hope to approximate the value of the topological entropy

of a Zd n.n. SFT, whether by using its definition and truncating the limit or by

alternative methods. A relevant fact to remember (see 3.4.2) is that, for d ≥ 2, it is

algorithmically undecidable to know if a given configuration is in L (Ω) or not. In

this sense, it is useful to define an alternative, still meaningful, set of configurations.

Given a set of n.n. constraints F and A b Zd , we will denote L l.a.
A (F) the set of

locally admissible configurations in A. Considering this, we have the following

result.

Theorem 5.1.1 ([29, 44]). Given a finite set of n.n. constraints F,

h(ΩF) = inf
n

log
∣∣L l.a.

Bn
(F)
∣∣

|Bn|
= lim

n→∞

log
∣∣L l.a.

Bn
(F)
∣∣

|Bn|
, (5.4)

i.e. the topological entropy h(Ω) of the Zd n.n. SFT Ω = ΩF can be computed by

counting locally admissible configuration rather than globally admissible ones.

Since counting locally admissible configurations is tractable, it can be said that

Theorem 5.1.1 already provides an approximation algorithm for the topological

entropy of a Zd n.n. SFT. Formally, a real number h is right recursively enu-
merable if there is a Turing machine which, given an input n ∈ N, computes a

rational number r(n) ≥ h such that r(n)↘ h as n→ ∞. Given Theorem 5.1.1 and
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5.1. Topological entropy

the fact that such limit is also an infimum, we can see that h(Ω) is right recursively

enumerable for any Zd n.n. SFT Ω. In fact, the converse is also true due to the

following celebrated result from M. Hochman and T. Meyerovitch.

Theorem 5.1.2 ([44]). The class of nonnegative real right recursively enumerable

numbers is exactly the class of topological entropies of Zd n.n. SFTs.

A real number h is computable if there is a Turing machine which, given

an input n ∈ N, computes a rational number r(n) such that |h− r(n)| < 1
n . For

example, every algebraic number is computable, since there are numerical methods

for approximating the roots of an integer polynomial. This is a strictly stronger

notion than right recursively enumerable (for more information, see [50]). It can

be shown that, under extra assumptions (e.g. mixing properties) on a Zd n.n. SFT

Ω, the topological entropy h(Ω) turns out to be computable.

Theorem 5.1.3 ([44]). If a Zd n.n. SFT Ω is strongly irreducible, then h(Ω) is

computable.

Moreover, the difference |h− r(n)| can be thought as a function of n, intro-

ducing a refinement of the classification of entropies by considering the speed of

approximation. A relevant case for us is when the time to compute an approxima-

tion r(n) such that |h− r(n)|< 1
n is bounded by a polynomial in 1

n .

Example 5.1.4 ([67, 32]). The topological entropy h(Ω2
ϕ) of the hard square shift

Ω2
ϕ is a computable number that can be approximated in polynomial time.

In Example 5.1.4, which is basically a combinatorial result, the proofs from

[67] and [32] are almost entirely based on probabilistic and measure-theoretic tech-

niques. This motivates the following definition, which is a notion of entropy for

shift-invariant Borel probability measures.

Definition 5.1.3. The measure-theoretic entropy of µ ∈M1,σ (A Zd
) is defined

as

h(µ) := lim
n→∞

−1
|Bn| ∑

α∈A Bn

µ(α) log(µ(α)), (5.5)

where 0log0 = 0.
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5.2. Topological pressure

A fundamental relationship between topological and measure-theoretic entropy

is the following.

Theorem 5.1.4 (Variational Principle [64]). Given a Zd n.n. SFT Ω,

h(Ω) = sup
µ∈M1,σ (Ω)

h(µ) = max
µ∈M1,σ (Ω)

h(µ). (5.6)

Remark 11. The measure(s) that achieve the maximum are called measures of
maximal entropy (m.m.e.) for Ω. Notice that if µ is an m.m.e. for Ω, then

h(Ω) = h(µ).

5.2 Topological pressure

Now we proceed to define topological pressure of a continuous function f ∈C (Ω),

which can be regarded as a generalization of topological entropy.

Definition 5.2.1. Given a Zd n.n. SFT Ω and f ∈ C (Ω), the topological pressure
of f on Ω is

PΩ( f ) := sup
µ∈M1,σ (Ω)

(
h(µ)+

∫
f dµ

)
. (5.7)

In this case, the supremum is also always achieved and any measure µ which

achieves the supremum is called an equilibrium state for Ω and f . Notice that

in the special case when f ≡ 0, and thanks to Theorem 5.1.4, P(0) coincides with

the topological entropy h(Ω), and equilibrium states are the same as measures of

maximal entropy.

Note 8. The preceding definition is a characterization of topological pressure in

terms of a variational principle, but can also be regarded as its definition (see [70,

Theorem 6.12]). Informally, topological pressure can be thought as an exponential

growth rate, where the configurations are “weighted” by the given function f . This

idea is formalized for a more particular case in the next paragraphs.

We define the pressure of a shift-invariant n.n. interaction Φ on a Zd n.n. SFT

Ω.
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5.2. Topological pressure

Definition 5.2.2. Given a Zd n.n. SFT Ω and a shift-invariant n.n. interaction Φ

on Ω, the pressure of Φ is defined as

PΩ(Φ) := lim
n→∞

1
|Bn|

logZΦ
Bn
. (5.8)

The pressure coincides (up to a sign) with the specific Gibbs free energy of Φ,

a more common name in statistical mechanics. We write P(Φ) (resp. P( f )) instead

of PΩ( f ) (resp. PΩ( f )) if Ω is understood. If Φ is induced by a Zd lattice energy

function φ , we can also define an analogous version ẐΦ
Bn

of the partition function

ZΦ
Bn

over locally admissible configurations in Bn rather than globally admissible

ones, by extending H Φ
Bn

in the obvious way, i.e.

ẐΦ
Bn

:= ∑
α∈L l.a.

Bn (F)

exp
(
−H Φ

Bn
(α)
)
. (5.9)

Notice that ẐΦ
Bn
≥ ZΦ

Bn
. The following result (analogous to Theorem 5.1.1)

states that in the normalized limit, both quantities coincide.

Theorem 5.2.1 ([70, Theorem 3.4], see also [29, Theorem 2.5]). Given a set of

n.n. constraints F, a Zd lattice energy function φ , and the corresponding Zd n.n.

SFT ΩF and n.n. interaction Φ on ΩF,

PΩF
(Φ) = lim

n→∞

1
|Bn|

logẐΦ
Bn
. (5.10)

One can ask whether is necessary to take increasing sequences of n-blocks Bn

in the previous definitions instead of any other sequence of sets increasing to Zd .

Given a sequence of sets {An}n with An b Zd , we say that {An}n tends to infinity
in the sense of van Hove, denoted An ↗ ∞, if |An| → ∞ as n→ ∞ and, for each

x ∈ Zd ,

lim
n→∞

|An4(x+An)|
|An|

= 0, (5.11)

where 4 denotes the symmetric difference. It is well-known (see [70, Corollary

3.13]) that for any sequence such that An ↗ ∞, we can replace Bn by An in the
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5.2. Topological pressure

definition of pressure, i.e.

P(Φ) = lim
n→∞

1
|An|

logZΦ
An
. (5.12)

In order to discuss connections between the definition of P(Φ) and topological

pressure for functions f ∈ C (Ω), we need a mechanism for turning an interaction

(which is a function on finite configurations) into a continuous function on the

infinite configurations in Ω. We do this for the special case of n.n. interactions Φ

as follows. Define the (continuous) function AΦ : Ω→ R, given by

AΦ(ω) :=−Φ

(
ω|{~0}

)
−

d

∑
i=1

Φ

(
ω|{~0,~ei}

)
. (5.13)

A version of the Variational Principle states that the pressure of an interaction

has a variational characterization in terms of shift-invariant measures. We state the

variational principle below for the case of a n.n. interaction Φ.

Theorem 5.2.2 (Variational Principle [47, 64, 70]). Given a n.n. interaction Φ on

a Zd n.n. SFT Ω, we have that P(Φ) = P(AΦ), i.e.

P(Φ) = sup
µ∈M1,σ (Ω)

(
h(µ)+

∫
AΦdµ

)
. (5.14)

In particular, if µ is an equilibrium state for AΦ, then

P(Φ) = h(µ)+
∫

AΦdµ. (5.15)

The following property will be useful.

Definition 5.2.3. A Zd n.n. SFT Ω satisfies the D-condition if there exist sequences

of finite subsets {An}n, {Sn}n of Zd such that An↗ ∞, An ⊆ Sn, |An|
|Sn| → 1, and for

any α ∈LAn(Ω), and β ∈LB(Ω), with Bb Sc
n, we have that [α]Ω∩ [β ]Ω 6= /0.

Given a Zd n.n. SFT Ω, a shift-invariant n.n. interaction Φ on Ω, and the

corresponding Gibbs (Ω,Φ)-specification π , we can relate equilibrium states for

AΦ and shift-invariant n.n. Gibbs measures for π . In fact, if Ω satisfies the D-
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5.3. Pressure representation

condition,

µ is an equilibrium state for AΦ and Ω ⇐⇒ µ ∈ G(π)∩M1,σ (Ω). (5.16)

The “only if” direction is always true in the n.n. case (see [70, Theorem 3]).

Another relevant consequence of the D-condition is the following.

Proposition 5.2.3 ([70, Remark 1.14]). Let Ω be a Zd n.n. SFT, Φ a shift-invariant

n.n. interaction on Ω, and π the corresponding Gibbs (Ω,Φ)-specification. If Ω

satisfies the D-condition, then supp(µ) = Ω, for every µ ∈ G(π).

Note 9. Notice that strong irreducibility implies the D-condition. In [70, Remark

1.14] a property even weaker than the D-condition is shown to imply supp(µ) = Ω.

5.3 Pressure representation

We fix the following elements:

• A Zd n.n. SFT Ω that satisfies the D-condition,

• a shift-invariant n.n. interaction Φ on Ω,

• the corresponding n.n. Gibbs (Ω,Φ)-specification π , and

• µ ∈ G(π)∩M1,σ (Ω).

Given a set Sb Zd\{~0}, define pµ,S : Ω→ [0,1] to be

pµ,S(ω) := µ

(
ω|{~0}

∣∣∣ω|S) . (5.17)

Notice that pµ,S(ω) is a value that depends only on ω|S∪{~0}.
When dealing with pressure representation, it is useful to consider an order

in the lattice. Recall the definitions of lexicographic order ≺ and past P from

Subsection 2.1.2. Given n ∈ N, define the set Pn := P ∩Bn, and let

pµ(ω) := lim
n→∞

pµ,Pn(ω), (5.18)
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5.3. Pressure representation

which exists µ-a.s. by Lévy’s zero-one law (see [47, Theorem 3.1.10]). In other

words, pµ is the µ-probability of taking the value ω(~0) at the origin conditioned

on boxes growing to the lexicographic past P .

The information function Iµ is µ-a.s. defined as

Iµ(ω) :=− log pµ(ω). (5.19)

It is well-known (see [35, p. 318, Equation (15.18)] or [51, Theorem 2.4, p.

283]) that the measure-theoretic entropy of µ (in fact, this is true for any shift-

invariant measure, not necessarily an equilibrium state) can be expressed as

h(µ) =
∫

Iµdµ. (5.20)

Therefore, since µ is an equilibrium state for AΦ, Equation (5.20) implies that

P(Φ) =
∫ (

Iµ +AΦ

)
dµ, (5.21)

so the pressure can be represented as the integral with respect to µ of a function

determined by an equilibrium state µ and Φ.

5.3.1 A generalization of previous results

For certain classes of equilibrium states and Gibbs measures, sometimes there are

even simpler representations for the pressure. A recent example of this was given

by D. Gamarnik and D. Katz in [32, Theorem 1], who showed that if in addition π

satisfies the SSM property and Ω has a safe symbol s, then

P(Φ) = Iµ

(
sZ

d
)
+AΦ

(
sZ

d
)
. (5.22)

Here, sZ
d ∈A Zd

is the fixed point which is s at every site of Zd . Notice that

Iµ

(
sZ

d
)
+AΦ

(
sZ

d
)
=
∫ (

Iµ +AΦ

)
dδsZd , (5.23)

where δsZd is the δ -measure supported on sZ
d
. They used this simple representa-

tion to give a polynomial time approximation algorithm for P(Φ) in certain cases
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(the hard-core model, in particular; see Example 5.1.4). Later, B. Marcus and R.

Pavlov [58] weakened the hypothesis and extended their results for pressure repre-

sentation, obtaining the following corollary.

Corollary 8 ([58]). Let Ω be a Zd n.n. SFT, Φ a shift-invariant n.n. interaction on

Ω, and π the corresponding n.n. Gibbs (Ω,Φ)-specification such that

• Ω satisfies SSF, and

• π satisfies SSM.

Then,

P(Φ) =
∫ (

Iµ +AΦ

)
dν , (5.24)

for every ν ∈M1,σ (Ω).

Corollary 8 relied on a more technical theorem from [58, Theorem 3.1]. To

review this theorem, we first need a couple of definitions.

We denote

lim
S→P

pµ,S(ω) (5.25)

if there exists L ∈ R such that for all ε > 0, there is n ∈ N (that may depend on ω)

such that

Pn ⊆ SbP =⇒ |pµ,S(ω)−L|< ε. (5.26)

If such L exists, L = pµ(ω) by definition. In addition, given the equilibrium

state µ , we define

cµ := inf
ω∈Ω

inf
SbZd\{~0}

pµ,S(ω), (5.27)

and, for ν ∈M1,σ (Ω),

c−µ (ν) := inf
ω∈supp(ν)

inf
SbP

pµ,S(ω). (5.28)

Recall from Equation 3.38 the definition of cπ . It can be checked that c−µ (ν)≥
cµ = cπ . Considering all this, we have the following theorem.

Theorem 5.3.1 ([58]). Let Ω be a Zd n.n. SFT and Φ a shift-invariant n.n. in-

teraction on Ω. Consider µ an equilibrium state for AΦ, and ν ∈M1,σ (Ω) such

that
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A1. Ω satisfies the D-condition,

A2. limS→P pµ,S(ω) = pµ(ω) uniformly over ω ∈ supp(ν), and

A3. c−µ (ν)> 0.

Then, P(Φ) =
∫ (

Iµ +AΦ

)
dν .

Considering Theorem 5.3.1 and the TSSM property, we have the following

generalization of Corollary 8.

Corollary 9. Let Ω be a Zd n.n. SFT, Φ a shift-invariant n.n. interaction on Ω,

and π the corresponding n.n. Gibbs (Ω,Φ)-specification such that

• Ω satisfies TSSM, and

• π satisfies SSM.

Then,

P(Φ) =
∫ (

Iµ +AΦ

)
dν , (5.29)

for every ν ∈M1,σ (Ω).

Proof. This follows from Theorem 5.3.1: (A1) is implied by TSSM, since TSSM

implies the D-condition; (A2) is implied by SSM (see [58, Proposition 2.14]); and

(A3) is implied by TSSM (see Proposition 3.6.3), considering that c−µ (ν)≥ cπ .

Corollary 10. Let Ω ⊆ A Z2
be a Z2 n.n. SFT, Φ a shift-invariant n.n. inter-

action on Ω, and π the corresponding n.n. Gibbs (Ω,Φ)-specification. Suppose

that π satisfies exponential SSM with decay rate γ > 4log |A |. Then, P(Φ) =∫ (
Iµ +AΦ

)
dν , for every ν ∈M1,σ (Ω).

Proof. This follows from Theorem 3.6.5 and Corollary 9.

Notice that, in contrast to preceding results, no mixing condition on the support

is explicitly needed in Corollary 10.

105



5.3. Pressure representation

5.3.2 The function π̂ and a new pressure representation theorem

With the exception of Theorem 5.3.1, all the previous pressure representation re-

sults involved the SSM property, and therefore they are bound to fail when there

is a phase transition (i.e. multiple equilibrium states). Here we show that in such

case, and assuming some extra conditions, the pressure can still be represented as

the integral of a function similar to Iµ +AΦ, with respect to any shift-invariant

measure ν . This will turn out to be useful for approximation of pressure when ν is

an atomic measure supported on a periodic configuration (see Chapter 7).

Given a n.n. Gibbs (Ω,Φ)-specification π , for Ω a Zd n.n. SFT and a shift-

invariant n.n. interaction Φ on Ω, we introduce some useful functions from Ω to

R. First, given~0 ∈ Ab Zd and ω ∈Ω, we define πA : Ω→ [0,1] to be

πA(ω) := π
ω
A (ω|{~0}). (5.30)

Recall that, for y,z ∈ Zd such that y,z ≥~0, we have defined the set Qy,z as

{x <~0 : −y ≤ x ≤ z}. Now, given y,z ≥~0 and ω ∈ Ω, define πy,z(ω) := πQy,z(ω)

and, given n ∈ N, abbreviate πn(ω) := π~1n,~1n(ω). Considering this, we also define

the limit π̂(ω) := limn→∞ πn(ω), whenever it exists. If such limit exists, we will

also denote Iπ(ω) := − log π̂(ω), in a similar fashion as the information function

Iµ .

It is not difficult to prove that under some mixing assumptions, namely the D-

condition and the SSM property, one has that the original information function Iµ

for an equilibrium state µ coincides with Iπ in Ω. This new definition provides a

generalization of previous results, since Iµ may not be defined in the same points

as Iπ .

We say that

lim
y,z→∞

πy,z(ω) = π̂(ω), (5.31)

if for all ε > 0, there is k ∈ N such that

y,z≥~1k =⇒ |πy,z(ω)− π̂(ω)|< ε. (5.32)
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In addition, we introduce the bound

cπ(ν) := inf
ω∈supp(ν)

inf
~0∈AbZd

πA(ω). (5.33)

Notice that, by shift-invariance, cπ(ν) = infω∈supp(ν) cπ(ω). We leave it to the

reader to verify that cπ(ν)≥ cµ(ν), for any µ ∈ G(π)∩M1,σ (Ω). In particular, by

Proposition 3.6.3, if Ω satisfies TSSM, cπ(ν)> 0, for any ν ∈M1,σ (Ω).

Definition 5.3.1. A Zd n.n. SFT Ω satisfies the square block D-condition if there

exists a sequence of integers {rn}n≥1 such that rn
n → 0 as n→ ∞ and, for any finite

set Bb Bc
n+rn

, α ∈LBn(Ω) and β ∈LB(Ω), we have that [α]Ω∩ [β ]Ω 6= /0.

This condition is a strengthened version of the D-condition. Notice that, as

for the standard D-condition, strong irreducibility also implies the square block the

D-condition.

The pressure representation results in [58, Theorems 3.1 and 3.6] are not ade-

quate for the application to the specific models we consider here (see Section 6).

Instead we will use the following result, whose proof is adapted from the proof

of [58, Theorem 3.1], as well as an idea of [58, Theorem 3.6]. In contrast to the

results of [58], this result makes assumptions on the Gibbs specification rather than

an equilibrium state.

Theorem 5.3.2. Let Ω⊆A Zd
be a Zd n.n. SFT, Φ a shift-invariant n.n. interaction

on Ω, and π the corresponding n.n. Gibbs (Ω,Φ)-specification. Suppose that, for

ν ∈M1,σ (Ω),

B1. Ω satisfies the square block D-condition,

B2. limy,z→∞ πy,z(ω) = π̂(ω) uniformly over ω ∈ supp(ν), and

B3. cπ(ν)> 0.

Then,

P(Φ) =
∫

(Iπ +AΦ)dν . (5.34)
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Proof. Given n ∈ N, let rn be as in the definition of the square block D-condition

and consider the sets Bn and Λn := Bn+rn . We begin by proving that

1
|Bn|

(logZΦ
Bn
+ logπ

ω
Λn
(ω|Bn

)+H Φ
Bn
(ω|Bn

))→ 0, (5.35)

uniformly in ω ∈ Ω. For this, we will only use the square block D-condition. We

fix n ∈ N, ω ∈ supp(ν), and let mn := |Λn|− |Bn|. Let Cd ≥ 1 be a constant such

that for any Ab Zd , the total number of sites and bonds contained in A is bounded

from above by Cd |A|. Then,

π
ω
Λn
(ω|Bn

)≥ π
ω
Λn
(ω|

Λn
) (5.36)

=
exp(−H Φ

Λn,ω
(ω|

Λn
))

∑α∈A Λn :α ω|
Λc

n
∈Ω exp(−H Φ

Λn,ω
(α))

(5.37)

≥
exp(−H Φ

Bn
(ω|Bn

)−CdmnΦmax)

∑β∈LBn (Ω) exp(−H Φ
Bn
(β ))|A |Cdmn exp(CdmnΦmax)

(5.38)

=
exp(−H Φ

Bn
(ω|Bn

))

ZΦ
Bn

exp(−Cdmn(2Φmax + log |A |)). (5.39)

Now, if τmax achieves the maximum of πω
Λn
(ω|Bn

τ) over τ ∈A Λn\Bn , then

π
ω
Λn
(ω|Bn

) = ∑
τ∈A Λn\Bn

π
ω
Λn
(ω|Bn

τ) (5.40)

≤ |A |mnπ
ω
Λn
(ω|Bn

τmax) (5.41)

= |A |mn
exp(−H Φ

Λn,ω
(ω|Bn

τmax))

ZΦ
Λn,ω

(5.42)

≤ |A |mn
exp(−H Φ

Bn
(ω|Bn

)+CdmnΦmax)

∑β∈LBn (Ω) exp(−H Φ
Bn
(β ))exp(−CdmnΦmax)

(5.43)

≤
exp(−H Φ

Bn
(ω|Bn

))

ZΦ
Bn

exp(Cdmn(2Φmax + log |A |)), (5.44)

where the square block D-condition has been used in Equation (5.43). Therefore,

θ
−mn ≤ π

ω
Λn
(ω|Bn

)ZΦ
Bn

exp(H Φ
Bn
(ω|Bn

))≤ θ
mn , (5.45)
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5.3. Pressure representation

where θ := exp(Cd(2Φmax+ log |A |)). Since mn
|Bn| → 0, we have obtained Equation

(5.35). We use Equation (5.35) to represent pressure:

P(Φ) = lim
n→∞

logZΦ
Bn

|Bn|
= lim

n→∞

∫ logZΦ
Bn

|Bn|
dν (5.46)

= lim
n→∞

∫ − logπω
Λn
(ω|Bn

)−H Φ
Bn
(ω|Bn

)

|Bn|
dν . (5.47)

(Here the second equality comes from the fact that
logZΦ

Bn
|Bn| is independent of ω ,

and the third from Equation (5.35).) Since ν is shift-invariant, it can be checked

that

lim
n→∞

∫ −H Φ
Bn
(ω|Bn

)

|Bn|
dν =

∫
AΦdν , (5.48)

and so we can write

P(Φ) =
∫

AΦdν− lim
n→∞

∫ logπω
Λn
(ω|Bn

)

|Bn|
dν . (5.49)

It remains to show that

lim
n→∞

∫ − logπω
Λn
(ω|Bn

)

|Bn|
dν =

∫
Iπdν . (5.50)

Fix ω ∈ supp(ν) and denote c := cπ(ν). We will decompose πω
Λn
(ω|Bn

) as a

product of conditional probabilities. By (B2), for any ε > 0, there exists k = k(ε)

so that for y,z ≥~1k, |πy,z(ω)− π̂(ω)| < ε for all ω ∈ supp(ν). For x ∈ Bn−1, we

denote B−n (x) := {y ∈ Bn−1 : y≺ x}. Then, we can decompose πω
Λn
(ω|Bn

) as

π
ω
Λn
(ω|Bn

) = π
ω
Λn

(
ω|

∂Bn

)
∏

x∈Bn−1

π
ω
Λn

(
ω|{x}

∣∣∣ω|B−n (x)∪∂Bn

)
(5.51)

= π
ω
Λn

(
ω|

∂Bn

)
∏

x∈Bn−1

πy(x),z(x)(σx(ω)), (5.52)

where y(x) :=~1n+ x and z(x) :=~1n− x, thanks to the MRF property and station-

arity of the Gibbs specification.
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5.3. Pressure representation

Let’s denote Rn,k :=Bn\Bn−k. Then, Bn = ∂BntBn−k−1tRn−1,k, and we have

c|∂Bn|+|Rn−1,k| ∏
x∈Bn−k−1

πy(x),z(x)(σx(ω))≤ π
ω
Λn
(ω|Bn

) (5.53)

≤ ∏
x∈Bn−k−1

πy(x),z(x)(σx(ω)). (5.54)

Taking − log(·), we have that

0≤− logπ
ω
Λn
(ω|Bn

)− ∑
x∈Bn−k−1

− logπy(x),z(x)(σx(ω)) (5.55)

≤ (|∂Bn|+ |Rn−1,k|) log
(
c−1) . (5.56)

So, by the choice of k, for x ∈ Bn−k−1,

∣∣πy(x),z(x)(σx(ω))− π̂(σx(ω))
∣∣< ε, (5.57)

and since πy(x),z(x)(σx(ω)), π̂(σx(ω))≥ c > 0, by the Mean Value Theorem,

∣∣− logπy(x),z(x)(σx(ω))− Iπ(σx(ω))
∣∣< εc−1. (5.58)

It follows from (B2) that π̂ is the uniform limit of continuous functions on

supp(ν). In addition, π̂(ω) ≥ c > 0, for all ω ∈ supp(ν). Therefore, we can

integrate with respect to ν and obtain∣∣∣∣∫ − logπy(x),z(x)(σx(ω))dν−
∫

Iπ(ω)dν

∣∣∣∣< εc−1. (5.59)

We now combine the previous equations to see that∣∣∣∣∫ − logπ
ω
Λn
(ω|Bn+1

)dν−
∫

Iπ(ω)dν |Bn−k−1|
∣∣∣∣ (5.60)

≤ |Bn−k−1|εc−1 +(|∂Bn|+ |Rn−1,k|) log
(
c−1) . (5.61)

Notice that, for a fixed k, limn→∞

|∂Bn|+|Rn−1,k|
|Bn| = 0 and limn→∞

|Bn−k−1|
|Bn| = 1.
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5.3. Pressure representation

Therefore,

−εc−1 +
∫

Iπ(ω)dν ≤ liminf
n→∞

∫ − logπω
Λn
(ω|Bn

)

|Bn|
dν (5.62)

≤ limsup
n→∞

∫ − logπω
Λn
(ω|Bn

)

|Bn|
dν (5.63)

≤
∫

Iπ(ω)dν + εc−1. (5.64)

By letting ε → 0, we see that

lim
n→∞

∫ − logπω
Λn
(ω|Bn

)

|Bn|
dν =

∫
Iπ(ω)dν , (5.65)

completing the proof.
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Chapter 6

Classical lattice models and
related properties

6.1 Three Zd lattice models

In this chapter we introduce three families of classical lattice models (see also

Example 2.3.1). The first one will be the Potts model, which can be regarded as a

generalization of the Ising model by considering more than two types of particles.

The second one, the Widom-Rowlinson model, is also a multi-type particle system

but with hard-core exclusion between particles of different type. The third one is

the classical hard-core lattice gas model.

Recall the definition of Gibbs (G ,H,φ)-specifications in the context of homo-

morphism spaces from Chapter 4, where G denotes a board, H a constraint graph,

and φ a constrained energy function. In the context of Zd lattice models, besides

A, B, etc., we will sometimes use the uppercase Greek letters Λ, ∆, Θ to denote

subsets of the lattice.

6.1.1 The (ferromagnetic) Potts model

Given d,q ∈ N and β > 0, the Zd (ferromagnetic) Potts model with q types and
inverse temperature β is given by the Gibbs (Zd ,K

�

q ,βφ FP)-specification πFP
β

,

where

φ
FP∣∣

V ≡ 0, and φ
FP({u,v}) =−1{u=v}. (6.1)

We will denote the alphabet V(K

�

q ) of the Potts model with q types by AFP,q =

{1, . . . ,q}, ΩFP = Hom(Zd ,K

�

q ) its support (assuming d and q are understood),
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6.1. Three Zd lattice models

and Φβ the induced n.n. interaction.

The Zd (ferromagnetic) Potts model is given by the Gibbs specification πFP
β

={
πω

β ,Λ : ω ∈ΩFP,Λb Zd
}

, where neighbouring sites preferably align to each other

with the same type or “colour”.

Notice that when q = 2, we recover the classical ferromagnetic Ising model.

Theorem 6.1.1 ([9]). For the Z2 (ferromagnetic) Potts model with q types and in-

verse temperature β , there exists a critical inverse temperature βc(q) := log(1+
√

q) such that uniqueness of Gibbs measures holds for β < βc(q) and for β > βc(q)

there is a phase transition.

6.1.2 The (multi-type) Widom-Rowlinson model

Given d,q ∈ N and ζ > 0, the Zd (multi-type) Widom-Rowlinson model with q

types and activity ζ is given by the the Gibbs (Zd ,S

�

q ,− log(ζ )φ WR)-specifica-

tion πWR
ζ

, where

φ
WR(v) =−1{v6=0}, and φ

WR∣∣
E ≡ 0. (6.2)

We will denote the alphabet V(S

�

q ) of the Widom-Rowlinson model with q

types by AWR,q = {0,1, . . . ,q}, ΩWR = Hom(Zd ,S

�

q ) its support (assuming d and

q are understood), and Φζ the induced n.n. interaction.

The Zd (multi-type) Widom-Rowlinson model is given by the Gibbs specifi-

cation πWR
ζ

=
{

πω

ζ ,Λ
: ω ∈ΩWR,Λb Zd

}
, where neighbouring sites are forced to

align to each other with the same type or “colour” or with the central symbol 0.

Theorem 6.1.2 ([71], see also [38]). For the Z2 (multi-type) Widom-Rowlinson

model with q types and activity ζ , uniqueness of Gibbs measures holds for suffi-

ciently small ζ and there is a phase transition for sufficiently large ζ .

6.1.3 The hard-core lattice gas model

Given d ∈ N and λ > 0, the Zd hard-core lattice gas model with activity λ is

given by the Gibbs (Zd ,Hϕ ,φ
HC
λ

)-specification πHC
λ

, where

φ HC(0) = 0, φ HC(1) =−1, and φ HC
∣∣
E ≡ 0. (6.3)
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6.1. Three Zd lattice models

We will denote the alphabet V(Hϕ) of the hard-core model by AHC = {0,1},
ΩHC = Hom(Zd ,Hϕ) its support (assuming d is understood), and Φλ the induced

n.n. interaction.

The Zd hard-core lattice gas model is given by the Gibbs specification πHC
λ

={
πω

λ ,Λ : ω ∈ΩHC,Λb Zd
}

, where neighbouring sites cannot be both 1.

Theorem 6.1.3 ([36, Theorem 3.3]). For the Z2 hard-core lattice gas model with

activity λ , uniqueness of Gibbs measures holds for sufficiently small λ and there is

a phase transition for sufficiently large λ .

In fact, a major open problem is the uniqueness of the phase transition point

for the Z2 hard-core lattice model.

For both the Potts and Widom-Rowlinson models we will also distinguish a

particular type of particle or colour in the alphabet. W.l.o.g., we can take the type

q in AFP,q or AWR,q \ {0}, respectively. Given this colour, we will denote by ωq

the fixed point qZ
d
. For the hard-core lattice gas model, we will consider the two

special points ω(e) and ω(o), given by

ω
(e)(x) :=

0 if ∑i xi is even,

1 if ∑i xi is odd,
(6.4)

and ω(o) = σ~e1(ω
(e)).

Notice that the Potts, Widom-Rowlinson, and hard-core lattice gas models have

a safe symbol (any a∈AFP,q, 0∈AWR,q, and 0∈AHC, respectively). In particular,

we have that the supports of the three models satisfy the square block D-condition,

and cπ > 0 for π the corresponding n.n. Gibbs specification.

The Potts and Widom-Rowlinson models have interpretations in terms of a

random-cluster representation. The Potts model is related to a random-cluster

model on bonds (via the so-called Edwards-Sokal coupling), while the Widom-

Rowlinson is naturally related to a random-cluster model on sites.

From now on, when talking about Gibbs specifications for the Potts, Widom-

Rowlinson, and hard-core lattice gas models, we will distinguish them (in a slight

abuse of notation) by the subindex corresponding to the parameter β , ζ , or λ of the

model, i.e. πω

β ,Λ should be understood as a probability measure in the Potts model,
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6.2. The bond random-cluster model

πω

ζ ,Λ
in the Widom-Rowlinson, and πω

λ ,Λ in the hard-core lattice gas model, and πβ ,

πζ and πλ will denote the corresponding Gibbs specifications. Also, we will write

π
β

Λ
, π̂β , and Iβ

π for the functions πΛ, π̂ , and Iπ in the Potts model, and short-hand

notations when Λ = Qn or Qy,z such as

π
β
n (ω) = π

ω

β ,Qn
(ω|{~0}). (6.5)

The analogous notation will be used for the Widom-Rowlinson and hard-core

lattice gas cases, but using the parameters ζ and λ , respectively.

6.2 The bond random-cluster model

We will make use of the bond random-cluster model. One the main results, Part 1

of Theorem 6.5.1, is proven using arguments based on this model. This model is

a two-parameter family of dependent bond percolation models (on a finite graph).

We are mainly interested in finite subgraphs of Z2.

Fix a set of sites Λ. Let E 0(Λ) denote the set of bonds with both endpoints

in Λ (i.e. if e = {x,y} is a bond, then both x and y belong to Λ), and E 1(Λ)

the set of bonds with at least one endpoint in Λ. We will consider configurations

w ∈ {0,1}E i(Λ), for i = 0,1. We speak of a bond e as being open if w(e) = 1, and

as being closed if w(e) = 0.

We describe the model with boundary conditions indexed by i = 0,1. We will

give special attention to the case d = 2. A set A⊆ Z2 is simply lattice-connected
if A and Ac are both connected.

Definition 6.2.1. Given a finite simply lattice-connected set Λ, and parameters p∈
[0,1] and q > 0, we define the free (i = 0) and wired (i = 1) bond random-cluster
distributions on E i(Λ) (i = 0,1) as the measures ϕ

(i)
p,q,Λ that to each w ∈ {0,1}E i(Λ)

assigns probability proportional to

ϕ
(i)
p,q,Λ(w) ∝

{
∏

e∈E i(Λ)

pw(e)(1− p)1−w(e)

}
qki

Λ
(w) =

(
p

1− p

)#1(w)

qki
Λ
(w), (6.6)

where #1(w) is the number of open bonds in w, and k0
Λ
(w) and k1

Λ
(w) are the
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6.2. The bond random-cluster model

number of connected components (including isolated sites) in the graphs (Λ,{e ∈
E 0(Λ) : w(e) = 1}) and (Z2,E 0(Z2 \Λ)∪{e ∈ E 1(Λ) : w(e) = 1}), respectively.

Notice that when q = 1, we recover the ordinary Bernoulli bond percolation

measure ϕp,Λ, while other choices of q lead to dependence between bonds. For

given p and q, one can also define bond random-cluster measures ϕ
(i)
p,q on Z2 as a

limit of finite-volume measures ϕ
(i)
p,q,Λ (i = 0,1).

Theorem 6.2.1 ([36, Lemma 6.8]). For p ∈ [0,1] and q ∈N, the limiting measures

ϕ
(i)
p,q = lim

n→∞
ϕ
(i)
p,q,Λn

, i ∈ {0,1}, (6.7)

exist and are shift-invariant, where {Λn}n is any increasing sequence of finite sim-

ply lattice-connected sets that exhausts Z2.

General bond random-cluster measures on {0,1}Z2
can be defined using an

analogue of the DLR equation (see [42, Definition 4.29]). For q ≥ 1, there is a

value pc(q) that delimits exactly the transition for existence of an infinite open

cluster for these measures. It is known (see [42, p. 107] and [24]) that for q ≥ 1

and p 6= pc(q), there is a unique such measure which we denote by ϕp,q, and that

coincides with ϕ
(0)
p,q and ϕ

(1)
p,q. It was recently proven (see [9]) that pc(q) =

√
q

1+
√

q ,

for every q≥ 1.

Let p = 1− e−β . The free Edwards-Sokal coupling P(0)
p,q,Λ (see [42]) is a

coupling between the free-boundary Potts measure π
( f )
β ,Λ and ϕ

(0)
p,q,Λ. The wired

Edwards-Sokal coupling P(1)
p,q,Λ is a coupling between π

ωq

β ,Λ and ϕ
(1)
p,q,Λ. Notice

that pc(q) = 1− e−βc(q).

These couplings are measures on pairs of site configurations and corresponding

bond configurations. The projection to site configurations is the free-boundary/ωq-

boundary Potts measure, and the projection to bond configurations is the free/wired

bond random-cluster measure, respectively.

Theorem 6.2.2 ([42, Theorem 1.13]). Let ΛbZ2 be a finite simply lattice-connec-

ted set, q ∈ N, and let p ∈ [0,1] and β > 0 be such that p = 1− e−β . Then:

1. Given w ∈ {0,1}E 1(Λ), the conditional measure P(1)
p,q,Λ

(
·
∣∣AFP,q

Λ×{w}
)

on

AFP,q
Λ is obtained by putting random colours on entire clusters of w not
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6.2. The bond random-cluster model

connected with Z2 \Λ (of which there are k1
Λ
(w)− 1) and colour q on the

clusters connected with Z2 \Λ. These colours are constant on given clus-

ters, are independent between clusters, and the random ones are uniformly

distributed on the set AFP,q.

2. Given α ∈AFP,q
Λ, the conditional measure P(1)

p,q,Λ

(
·
∣∣∣{α}×{0,1}E 1(Λ)

)
on

{0,1}E 1(Λ) is obtained as follows. Consider the extended configuration α =

αq∂Λ and an arbitrary bond e = {x,y} ∈ E 1(Λ). If α(x) 6= α(y), we set

w(e) = 0. If α(x) = α(y), we set

w(e) =

1 with probability p,

0 otherwise,
(6.8)

the values of different w(e) being (conditionally) independent random vari-

ables.

The couplings can be used to relate probabilities and expectations for the Potts

model to corresponding events and expectations in the associated bond random-

cluster model. A main example is a relation between the two-point correlation

function in the Potts model and the connectivity function in the bond random-

cluster model (see [42, Theorem 1.16]).

By considering a displaced version of Z2, namely 1
2
~1+Z2 (the dual lattice),

we can define a notion of duality for bond configurations w. Notice that every

bond e ∈ E (Z2) (if we think of bonds as unitary vertical and horizontal straight

segments) is intersected perpendicularly by one and only one dual bond e∗ ∈
E (1

2
~1+Z2), so there is a clear correspondence between E (Z2) and E (1

2
~1+Z2).

We are mainly interested in wired bond random-cluster distributions on the set of

sites B̃n := [−n+1,n]2∩Z2. Given n ∈N, if we consider the set of bonds E 1(B̃n),

it is easy to check that there is a correspondence e 7→ e∗ between this set and the set

of bonds from 1
2
~1+Z2 with both endpoints in [−n,n]2∩

(
1
2
~1+Z2

)
, which can be

identified with the set E 0(Bn). Then, given a bond configuration w ∈ {0,1}E 1(B̃n)

we can associate a dual bond configuration w∗ ∈ {0,1}E 0(Bn) such that w∗(e∗) = 0

iff w(e) = 1. Considering this, we have the following equality.
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6.3. The site random-cluster model

Proposition 6.2.3 ([42, Equation (6.12) and Theorem 6.13]). Given n ∈ N, p ∈
[0,1], and q ∈ N,

ϕ
(1)
p,q,B̃n

(w) = ϕ
(0)
p∗,q,Bn

(w∗), (6.9)

for any bond configuration w ∈ {0,1}E 1(B̃n), where B̃n = [−n + 1,n]2 ∩Z2 and

p∗ ∈ [0,1] is the dual value of p, which is given by

p∗

1− p∗
=

q(1− p)
p

. (6.10)

The previous duality result can be generalized to more arbitrary shapes and

it has also a counterpart from free-to-wired boundary conditions, instead of from

wired-to-free.

The unique fixed point of the map p 7→ p∗ defined by Equation (6.10) is
√

q
1+
√

q

and, as mentioned before, is known to coincide with the critical point pc(q) for

the existence of an infinite open cluster for the bond random-cluster model (see [9,

Theorem 1]). It is easy to see that p > pc(q) iff p∗ < pc(q).

6.3 The site random-cluster model

In a similar fashion to the bond random-cluster model, we can perturb Bernoulli

site percolation, where the probability measure is changed in favour of configura-

tions with many (for q> 1) or few (for q< 1) connected components. The resulting

model is called the site random-cluster model.

Definition 6.3.1. Given ΛbZ2, and parameters p∈ [0,1] and q> 0, the wired site
random-cluster distribution ψ

(1)
p,q,Λ is the probability measure on {0,1}Λ which to

each θ ∈ {0,1}Λ assigns probability proportional to

ψ
(1)
p,q,Λ(θ) ∝

{
∏
x∈Λ

pθ(x)(1− p)1−θ(x)

}
qκΛ(θ) = ζ

#1(θ)qκΛ(θ), (6.11)

where ζ = p
1−p , #1(θ) is the number of 1’s in θ , and κΛ(θ) is the number of

connected components in {x ∈ Λ : θ(x) = 1} that do not intersect ∂Λ.
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6.3. The site random-cluster model

The free site random-cluster measure ψ
(0)
p,q,Λ is defined as in Equation (6.11)

by replacing κΛ(θ) with the total number of connected components in Λ. However,

we will not require that measure in this work. In any case, taking q= 1 gives the or-

dinary Bernoulli site percolation ψp,Λ, while other choices of q lead to dependence

between sites, similarly to the bond random-cluster model.

Proposition 6.3.1. Given a set Λb Z2, and parameters ζ > 0 and q ∈N, consider

the (multi-type) Widom-Rowlinson model with q types distribution and monochro-

matic boundary condition π
ωq

ζ ,Λ
. Now, let f : AWR,q

Λ→{0,1}Λ be defined site-wise

as

( f (α))(x) =

0 if α(x) = 0,

1 if α(x) 6= 0,
(6.12)

for α ∈AWR,q
Λ and x ∈ Λ, and let p = ζ

1+ζ
. Then,

f∗π
ωq

ζ ,Λ
= ψ

(1)
p,q,Λ, (6.13)

where f∗π
ωq

ζ ,Λ
(·) := π

ωq

ζ ,Λ
( f−1(·)) denotes the push-forward measure on {0,1}Λ.

The requirement that κΛ(·) does not count connected components that intersect

the inner boundary of Λ in the site random-cluster model, corresponds to the fact

that non 0 sites adjacent to the monochromatic boundary ωq
∣∣
∂Λ

in the Widom-

Rowlinson model must have the same colour q.

For q = 2, Proposition 6.3.1 is proven in [43, Lemma 5.1 (ii)], and the proof

extends easily for general q. Proposition 6.3.1 can be regarded as a coupling be-

tween π
ωq

ζ ,Λ
and ψ

(1)
p,q,Λ, because a push-forward measure can be naturally coupled

with the original measure.

It is important to notice that ψ
(1)
p,q,Λ is itself not an MRF: given sites on a “ring”

C, the inside and outside of C are generally not conditionally independent, because

knowledge of sites outside C could cause connected components of 1’s in C to

“amalgamate” into a single component, which would affect the conditional dis-

tribution of configurations inside C (the same for the bond random-cluster model

ϕ
(1)
p,q,Λ). The following lemma shows that in certain situations, when conditioning

on a cycle C labeled entirely by 1’s, this kind of amalgamation does not occur.
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6.3. The site random-cluster model

Lemma 6.3.2. Let /0 6= Θ ⊆ Λ b Z2 be such that Λc ∪Θ
?

is connected. Take

∆ := ∂ ?Θ∩Λ. Consider an event A ∈FΘ and a configuration τ ∈ {0,1}Σ, where

Σ⊆ Λ\Θ
?
. Then,

ψ
(1)
p,q,Λ(A|1

∆
τ) = ψ

(1)
p,q,Λ(A|1

∆0Λ\Θ?

). (6.14)

Proof. W.l.o.g., we may assume that A is a cylinder event [θ ] with θ ∈ {0,1}Θ (by

linearity) and Σ = Λ\Θ
? (by taking weighted averages).

Now, Σ = Λ\Θ
? can be written as a disjoint union of ?-connected components

Σ = K1 t ·· · tKn. For every i, ∂ ?Ki ⊆ Λc ∪Θ
? (in fact, ∂ ?Ki ⊆ Λc ∪∆). Since

Λc∪Θ
? is connected and Λ is finite, for every site in ∂ ?Ki there is a path to infinity

that does not intersect Ki.

Then, by application of a result of Kesten (see [48, Lemma 2.23]), ∂ ?Ki is

connected, for every i. In addition, we have that Λ = Θt∆tΣ and ∂ ?Ki ⊆ Λc∪∆.

We claim that

κΛ(υ) = κΛ(υ |
Θ

1∆0Σ)+
n

∑
i=1

κKi(υ |Ki
) = κΛ(υ |

Θ
1∆0Σ)+κΣ(τ), (6.15)

for any υ ∈ {0,1}Λ such that υ |
∆
= 1∆ and υ |

Σ
= τ .

To see this, given such υ , we exhibit a bijection r between the connected com-

ponents of υ that do not intersect ∂Λ and the union of: (a) the connected compo-

nents of υ |
Θ

1∆0Σ that do not intersect ∂Λ, and (b) the connected components of

υ |Ki
that do not intersect ∂Ki, for all i. Namely, if C⊆Λ is a connected component

of υ , then r is defined as follows

r(C) =

C∩Θ
? if C∩Θ

? 6= /0,

C if C ⊆ Σ.
(6.16)

In order to see that r is well-defined, note that if C intersects Θ
? and Σ, the

set C∩Θ
? is still connected since ∂ ?Ki is connected and υ |

∆
= 1∆. To see that r

is onto, observe that if C′ is a connected component of υ |
Θ

1∆0Σ, then there is a

unique component C of υ such that C∩Θ
?
=C′, due again to the fact that ∂ ?Ki is

connected. And r is clearly injective because two distinct connected components
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6.3. The site random-cluster model

cannot intersect.

Finally, we conclude from Equation (6.15) that

ψ
(1)
p,q,Λ(θ | 1

∆
τ) =

ζ #1(θ1∆τ)qκΛ(θ1∆τ)

∑υ∈{0,1}Λ: υ |
∆
=1∆,υ |

Σ
=τ ζ #1(υ)qκΛ(υ)

(6.17)

=
ζ #1(θ1∆)+#1(τ)qκΛ(θ1∆0Σ)+κΣ(τ)

∑υ∈{0,1}Λ: υ |
Σ
=τ ζ #1(υ(Θ)1∆)+#1(τ)qκΛ(υ(Θ)1∆0Σ)+κΣ(τ)

(6.18)

=
ζ #1(θ1∆)qκΛ(θ1∆0Λ\Θ?

)

∑θ̃∈{0,1}Θ ζ #1(θ̃1∆)qκΛ(θ̃1∆0Λ\Θ?
)
= ψ

(1)
p,q,Λ(θ |1

∆0Λ\Θ?

), (6.19)

as we wanted.

Figure 6.1: A ?-connected set Θ (in black), ∆ = ∂ ?Θ∩Λ (in dark grey), and Λc (in
light grey) for Λ = Qy,z.

Remark 12. We claim that if /0 6= Θ ⊆ Λ b Z2 are such that Λc is connected, Θ

is ?-connected and Θ
? ∩ ∂Λ 6= /0, then Λc ∪Θ

?
is connected, which is the main

hypothesis of Lemma 6.3.2. This follows from the easy fact that the ?-closure of a

?-connected set is connected.
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6.4 Additional properties

6.4.1 Spatial mixing properties

We now introduce some extra concepts related with spatial mixing.

Definition 6.4.1. ([4, p. 445]) A Zd-MRF µ satisfies the ratio strong mixing
property for a class of sets C if there exists C,γ > 0 such that for any Λ ∈ C , any

∆,Θ⊆ Λ and δ ∈A ∂Λ with µ(δ )> 0,

sup
{∣∣∣∣ µ(A∩B|δ )

µ(A|δ )µ(B|δ )
−1
∣∣∣∣ : A ∈F∆,B ∈FΘ,µ(A|δ )µ(B|δ )> 0

}
≤C ∑

x∈∆,y∈Θ

e−γdist(x,y). (6.20)

Proposition 6.4.1. Let π be a n.n. Gibbs specification with Ω = A Z2
, the full

shift. Consider µ ∈ G(π) that satisfies the ratio strong mixing property for the

class of finite simply lattice-connected sets. Then, π satisfies exponential SSM for

the family of sets {Qy,z}y,z≥0.

Proof. Fix y,z ≥ 0 and the corresponding set A = Qy,z b Z2. Let B ⊆ A, β ∈A B,

and ω1,ω2 ∈Ω. Consider

1. the sets Θ := Σ∂A(ω1,ω2) and Λ := A∪Θ,

2. an arbitrary point ω̃ ∈Ω such that ω̃|
∂A\Θ = ω1|∂A\Θ (= ω2|∂A\Θ),

3. the configuration δ̃ = ω̃|
∂Λ

, and

4. the events A := [β ] ∈FB and Bi := [ωi|Θ] ∈FΘ, for i = 1,2.

Notice that Λ is a finite simply lattice-connected set. Since supp(µ) = A Zd
,

we can be sure that µ(ω1|∂A)µ(ω2|∂A)µ(δ̃ )> 0. Then,

∣∣πω1
A (β )−π

ω2
A (β )

∣∣= |µ (β |ω1|∂A)−µ (β |ω2|∂A)| (6.21)

=
∣∣∣µ (A∣∣∣[δ̃ ]∩B1

)
−µ

(
A
∣∣∣[δ̃ ]∩B2

)∣∣∣ (6.22)

=

∣∣∣∣∣µ(A∩B1|δ̃ )
µ(B1|δ̃ )

−µ(A|δ̃ )+µ(A|δ̃ )− µ(A∩B2|δ̃ )
µ(B2|δ̃ )

∣∣∣∣∣ (6.23)
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≤

∣∣∣∣∣ µ(A∩B1|δ̃ )
µ(B1|δ̃ )µ(A|δ̃ )

−1

∣∣∣∣∣+
∣∣∣∣∣1− µ(A∩B2|δ̃ )

µ(B2|δ̃ )µ(A|δ̃ )

∣∣∣∣∣ (6.24)

≤ 2C ∑
x∈B,y∈Θ

e−γdist(x,y) (6.25)

≤ |B|2C ∑
y∈Θ

e−γdist(B,y). (6.26)

W.l.o.g., we can assume that |Θ|= 1 (see Lemma 3.1.1). Therefore, by taking

C′ = 2C, we conclude that

∣∣πω1
A (β )−π

ω2
A (β )

∣∣≤ |B|2K ∑
y∈Θ

e−γdist(B,y) = |B|C′e−γdist(B,Σ∂A(ω1,ω2)). (6.27)

Remark 13. The proof of Proposition 6.4.1 seems to require some assumption on

the support of µ (in particular, for the existence of ω̃ in the enumerated item list

above). Fully supported (i.e. supp(µ) = A Z2
) suffices, and is the only case in

which we will apply this result (see Corollary 11), but the conclusion probably

holds under weaker assumptions.

Given y,z≥ 0, we define the past boundary of Qy,z as ∂↓Qy,z := ∂Qy,z∩P , i.e.

the portion of the boundary of Qy,z included in the past, and the future boundary
of Qy,z as the complement ∂↑Qy,z := ∂Qy,z \P . Clearly, ∂Qy,z = ∂↓Qy,zt∂↑Qy,z.

Proposition 6.4.2. Let π be a Gibbs specification satisfying exponential SSM with

parameters C,γ > 0. Then, for all n ∈ N, y,z≥~1n, and a ∈A ,∣∣∣πω1
Qn
(a{~0})−π

ω2
Qy,z

(a{~0})
∣∣∣≤Ce−γn, (6.28)

uniformly over ω1,ω2 ∈Ω such that ω1|P = ω2|P .

Proof. Fix n∈N, y,z≥~1n, a∈A , and ω1,ω2 ∈Ω such that ω1|P = ω2|P . Then,∣∣∣πω1
Qn
(a{~0})−π

ω2
Qy,z

(a{~0})
∣∣∣ (6.29)

=

∣∣∣∣∣∣∣πω1
Qn
(a{~0})− ∑

υ∈ [ω2|Qc
n ]

Ω

π
υ
Qn
(a{~0})πω2

Qy,z
(υ |Qy,z\Qn

)

∣∣∣∣∣∣∣ (6.30)
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≤ ∑
υ∈ [ω2|Qc

n ]
Ω

∣∣∣πω1
Qn
(a{~0})−π

υ
Qn
(a{~0})

∣∣∣πω2
Qy,z

(υ |Qy,z\Qn
) (6.31)

≤ ∑
υ∈[ω2|Qc

n ]
Ω

Ce−γn
π

ω2
Qy,z

(υ |Qy,z\Qn
) =Ce−γn, (6.32)

since for any υ ∈
[

ω2|Qc
n

]Ω

, we have that Σ∂Qn(ω1,υ)⊆ ∂↑Qn, and

dist(~0,Σ∂Qn(ω1,υ))≥ dist
(
~0,∂↑Qn

)
= n. (6.33)

6.4.2 Stochastic dominance

Suppose that A is a finite linearly ordered alphabet. Then for any set L (in our

context, usually a set of sites or bonds), A L is equipped with a natural partial

order � which is defined coordinate-wise: for θ1,θ2 ∈ A L, we write θ1 � θ2 if

θ1(x) � θ2(x) for every x ∈ L. A function f : A L→ R is said to be increasing if

f (θ1)≤ f (θ2) whenever θ1� θ2. An event A is said to be increasing if its indicator

function 1A is increasing.

Definition 6.4.2. Let ρ1 and ρ2 be two probability measures on A L. We say that

ρ1 is stochastically dominated by ρ2, writing ρ1 ≤D ρ2, if for every bounded

increasing function f : A L→ R we have ρ1( f ) ≤ ρ2( f ), where ρ( f ) denotes the

expected value Eρ( f ) of f according to the measure ρ .

Recall from Section 6.2 the bond random-cluster model on finite subsets of Z2

with boundary conditions i = 0,1, and the bond random-cluster measure ϕp,q on

Z2 (see page 116).

Theorem 6.4.3 ([36, Equation (29)]). For any p ∈ [0,1], q ∈ N, and ∆⊆ Λb Z2,

ϕ
(0)
p,q,∆ ≤D ϕ

(0)
p,q,Λ and ϕ

(1)
p,q,Λ ≤D ϕ

(1)
p,q,∆. (6.34)

In particular, if p < pc(q), we have that, for any Λb Z2,

ϕ
(0)
p,q,Λ ≤D ϕp,q ≤D ϕ

(1)
p,q,Λ, (6.35)
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where ≤D is with respect to the restriction of each measure to events on E 0(Λ).

Connectivity decay for the bond random-cluster model

The following result was a key element of the proof that βc(q) = log(1+
√

q) is the

critical inverse temperature for the Potts model. We will use this result in a crucial

way.

Recall that for p < pc(q), ϕp,q is the unique bond random cluster measure with

parameters p and q.

Theorem 6.4.4 ([9, Theorem 2]). Let q ≥ 1 and p < pc(q) =
√

q
1+
√

q . Then, the

two-point connectivity function decays exponentially, i.e. there exist constants

0 <C(p,q),c(p,q)< ∞ such that for any x,y ∈ Z2,

ϕp,q(x↔ y)≤C(p,q)e−c(p,q)‖x−y‖2 , (6.36)

where {x↔ y} is the event that the sites x and y are connected by an open path

and ‖ · ‖2 is the Euclidean norm.

Stochastic dominance for the site random-cluster model

Lemma 6.4.5. Given Λ b Zd and parameters p ∈ [0,1] and q > 0, we have that

for any x ∈ Λ and any τ ∈ {0,1}Λ\{x},

p1(q)≤ ψ
(1)
p,q,Λ(θ(x) = 1|τ)≤ p2(q), (6.37)

where p1(q) := pq
pq+(1−p)q2d and p2(q) := pq

pq+(1−p) . In consequence,

ψp1(q),Λ ≤D ψ
(1)
p,q,Λ ≤D ψp2(q),Λ. (6.38)

(Recall that ψp,Λ denotes Bernoulli site percolation.)

Proof. This result is obtained by adapting the discussion on [42, p. 339] to the

wired site random-cluster model case. See also [43, Lemma 5.4] for the case q =

2.
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Stochastic dominance for the Potts model

As before, let q∈AFP,q denote a fixed, but arbitrary, choice of a colour. Let ΛbZd

and consider g : AFP,q
Λ→{+,−}Λ be defined by

(g(α))(x) =

+ if α(x) = q,

− if α(x) 6= q.
(6.39)

The function g makes the non-q colours indistinguishable and gives a reduced

model (these models are sometimes called fuzzy Potts models). We say α ' α ′ if

g(α) = g(α ′). This relation defines a partition of AFP,q
Λ, and unions of elements

of this partition form a sub-algebra of AFP,q
Λ which can be identified with the

collection of all subsets of {+,−}Λ. Let π
+
β ,Λ := g∗π

ωq

β ,Λ be the push-forward mea-

sure, which is nothing more than the restriction (or projection) of π
ωq

β ,Λ to {+,−}Λ.

Chayes showed that the FKG property holds on events in this reduced model.

Proposition 6.4.6 ([23, Lemma on p. 211]). For all β > 0 and Λ b Z2, π
+
β ,Λ

satisfies the following properties:

1. For increasing subsets A,B⊆ {+,−}Λ, π
+
β ,Λ (A|B)≥ π

+
β ,Λ(A).

2. If A is decreasing and B is increasing, then π
+
β ,Λ (A|B)≤ π

+
β ,Λ(A).

3. If ∆⊆Λ and A is an increasing subset of {+,−}∆, then π
+
β ,∆(A)≥ π

+
β ,Λ(A).

Proof.

1. This is contained in [23, Lemma on p. 211].

2. This is an immediate consequence of (1).

3. This is a standard consequence of (1): let B = [+∂∆]ΩFP . Since g−1(B) is

a single configuration, namely q∂∆, we obtain from the Markov property of

π
ωq

β ,Λ that π
+
β ,∆(A) = π

+
β ,Λ (A|B). From (1), we have π

+
β ,Λ (A|B) ≥ π

+
β ,Λ(A).

Now, combine the previous two statements.

Remark 14. The preceding result immediately applies to π
ωq

β ,Λ for events in AFP,q
Λ

that are measurable with respect to {+,−}Λ, viewed as a sub-algebra of AFP,q
Λ.
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Volume monotonicity for the Widom-Rowlinson model with 2 types

For the classical Widom-Rowlinson model (q = 2), Higuchi and Takei showed that

the FKG property holds. In particular,

Proposition 6.4.7 ([43, Lemma 2.3]). Fix q = 2 and let ∆ ⊆ Λ b Zd and ζ > 0.

Then,

π
ζ

Λ
(ωq)≤ π

ζ

∆
(ωq). (6.40)

However, this kind of stochastic monotonicity can fail for general q (see [36,

p. 60]).

6.5 Exponential convergence of πn

In this section, we consider the Potts, Widom-Rowlinson, and hard-core lattice

gas models and establish exponential convergence results that will lead to pressure

representation and approximation algorithms for these lattice models.

Recall that for the Potts model, π
β
y,z(ω) = πω

β ,Qy,z
(ω|{~0}) and, in particular,

π
β
n (ω) = πω

β ,Qn
(ω|{~0}), with similar notation for the Widom-Rowlinson and hard-

core lattice gas models.

6.5.1 Exponential convergence in the Potts model

Theorem 6.5.1. For the (ferromagnetic) Potts model with q types and inverse tem-

perature β > 0, there exists a critical parameter βc(q)> 0 such that for β 6= βc(q),

there exists C,γ > 0 such that, for every y,z≥~1n,∣∣∣πβ
n (ωq)−π

β
y,z(ωq)

∣∣∣≤Ce−γn. (6.41)

Proof. In the supercritical region β > βc(q), our proof very closely follows [22,

Theorem 3], which treated the Ising model case. We fill in some details of their

proof, adapting that proof in two ways: to a half-plane version of their result (the

quantities in Equation (6.41) are effectively half-plane quantities) and to the gen-

eral Potts case. For the subcritical region β < βc(q), the proposition will follow

easily from [4, Theorem 1.8 (ii)].
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Part 1: β > βc(q). Let P−?
∂Qn

denote the event that there is a ?-path of − from~0

to ∂Qn, i.e. a path that runs along ordinary Z2 bonds and diagonal bonds where

the colour at each site is not q (in our context below, the configuration on the past

boundary of Qn will be all q and thus a ?-path of− from~0 to ∂Qn cannot terminate

on ∂↓Qn). Note that P−?
∂Qn

is an event that is measurable with respect to the sub-

algebra {+,−}Λ, for any finite set Λ containing Qn, introduced in Section 6.4.2

(recall that this sub-algebra corresponds to the reduced Potts model).

By decomposing π
β
y,z(ωq) into probabilities conditional on P−?

∂Qn
and (P−?

∂Qn
)c ,

we obtain

π
β
n (ωq)−π

β
y,z(ωq) (6.42)

= π
ωq

β ,Qn
(q{~0})−π

ωq

β ,Qy,z
(q{~0}) (6.43)

= π
ωq

β ,Qy,z
(P−?

∂Qn
)
(

π
ωq

β ,Qn
(q{~0})−π

ωq

β ,Qy,z
(q{~0}|P−?

∂Qn
)
)

+(1−π
ωq

β ,Qy,z
(P−?

∂Qn
))
(

π
ωq

β ,Qn
(q{~0})−π

ωq

β ,Qy,z
(q{~0}|(P−?

∂Qn
)c)
)
. (6.44)

We claim that the expression in Equation (6.42) is nonnegative. To see this,

observe that the events [q{~0}], [q∂Qn ], and [q∂Qy,z ] may be viewed as the events

[+{
~0}], [+∂Qn ], and [+∂Qy,z ] in the sub-algebra {+,−}Qy,z of the reduced model, as

discussed in Section 6.4.2. Now, apply Proposition 6.4.6 (part 3) and Remark 14.

We next claim that

π
ωq

β ,Qy,z
(q{~0}|(P−?

∂Qn
)c)≥ π

ωq

β ,Qn
(q{~0}). (6.45)

To be precise, first observe that ω ∈ (P−?
∂Qn

)c iff ω contains an all-q path in

Qn from ∂P ∩{x1 < 0} to ∂P ∩{x1 > 0}. So, (P−?
∂Qn

)c can be decomposed into

a disjoint collection of events determined by the unique furthest such path from
~0. Using the MRF property of Gibbs specifications, it follows that we can regard

each of these events as an increasing event in {+,−}Qm . Now, apply Proposition

6.4.6 and Remark 14. The reader may notice that here we have essentially used the

strong Markov property (see [37, p. 1154]).

Thus, the expression in Equation (6.44) is nonpositive. This, together with the
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fact that π
ωq

β ,Qn
(q{~0}|P−?

∂Qn
) = 0, yields

0≤ π
β
n (ωq)−π

β
y,z(ωq)≤ π

ωq

β ,Qy,z
(P−?

∂Qn
)π

ωq

β ,Qn
(q{~0})≤ π

ωq

β ,Qy,z
(P−?

∂Qn
). (6.46)

So, it suffices to show that supy,z≥~1n π
ωq

β ,Qy,z
(P−?

∂Qn
) decays exponentially in n.

Fix y,z ≥~1n and let m > n such that~1m ≥ y,z. By Proposition 6.4.6 (part 2 and

part 3) and Remark 14,

π
ωq

β ,Qy,z
(P−?

∂Qn
)≤ π

ωq

β ,Qm
(P−?

∂Qn
) (6.47)

= π
ωq

β ,Bm
(P−?

∂Qn
|qP)≤ π

ωq

β ,Bm
(P−?

∂Qn
)≤ π

ωq

β ,Bm
(P−?

∂Bn
). (6.48)

So, it suffices to show that supm>n π
ωq

β ,Bm
(P−?

∂Bn
) decays exponentially in n. Re-

call the Edwards-Sokal coupling P(1)
p,q,Bm

for the Gibbs distribution and the corre-

sponding bond random-cluster measure with wired boundary condition ϕ
(1)
p,q,Bm

(see

Section 6.2).

W.l.o.g., let’s suppose that n is even, i.e. n = 2k < m, for some k ∈ N. We

consider the following two events in the bond random-cluster model, as in [23,

Theorem 3]. Let Rn be the event of an open cycle in B2k \Bk that surrounds Bk.

Let Mn,m be the event in which there is an open path from some site in Bk to

∂Bm. The joint occurrence of these two events forces the Potts event (P−?
∂Bn

)c in the

coupling: Rn∩Mn,m ⊆ (P−?
∂Bn

)c (here, technically, we are identifying these events

with their inverse images of the projections in the coupling).

Then, by the coupling property,

π
ωq

β ,Bm

(
(P−?

∂Bn
)c
)
= P(1)

p,q,Bm

(
(P−?

∂Bn
)c
)

(6.49)

≥ P(1)
p,q,Bm

(
(P−?

∂Bn
)c
∣∣∣Rn∩Mn,m

)
P(1)

p,q,Bm
(Rn∩Mn,m) (6.50)

= ϕ
(1)
p,q,Bm

(Rn∩Mn,m) , (6.51)

so

π
ωq

β ,Bm
(P−?

∂Bn
)≤ 1−ϕ

(1)
p,q,Bm

(Rn∩Mn,m)≤ ϕ
(1)
p,q,Bm

(Rc
n)+ϕ

(1)
p,q,Bm

(Mc
n,m). (6.52)
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Therefore,

sup
m>n

π
ωq

β ,Bm
(P−?

∂Bn
)≤ sup

m>n
ϕ
(1)
p,q,Bm

(Rc
n)+ sup

m>n
ϕ
(1)
p,q,Bm

(Mc
n,m). (6.53)

The first term on the right hand side of Equation (6.53) is bounded from above

as follows:

ϕ
(1)
p,q,Bm

(Rc
n)≤ ϕ

(1)
p,q,B̃m+1

(Rc
n) (6.54)

≤ ∑
x∈∂Bk,y∈∂B2k

ϕ
(0)
p∗,q,Bm+1

(x↔ y) (6.55)

≤ ∑
x∈∂Bk,y∈∂B2k

ϕp∗,q(x↔ y), (6.56)

where B̃m = [−m+ 1,m]2 ∩Z2 and p∗ denotes the dual of p and the inequalities

follow from Proposition 6.2.3 and Theorem 6.4.3.

If p > pc(q), then p∗ < pc(q), and by Theorem 6.4.4, the first term on the right

side of Equation (6.53) is upper bounded by 64C(p∗,q)n2 exp(−c(p∗,q)n/4), since

|∂Bk||∂B2k| ≤ 64n2 and ‖x− y‖2 ≥ k− 1 ≥ n
4 , for all x ∈ ∂Bk and y ∈ ∂B2k. So,

the first term on the right side of Equation (6.53) decays exponentially.

As for the second term, in order for Mn,m to fail to occur, there must be a closed

cycle in Bm\Bk and in particular a closed path from Lm,n :=Bm\Bk∩{x1 < 0,x2 =

0} to Rm,n := Bm \Bk∩{x1 > 0,x2 = 0} in Bm. Thus,

ϕ
(1)
p,q,Bm

(Mc
n,m)≤ ϕ

(1)
p,q,B̃m+1

(Mc
n,m) (6.57)

≤ ∑
x∈Lm,n,y∈Rm,n

ϕ
(0)
p∗,q,Bm+1

(x↔ y) (6.58)

≤ ∑
x∈Lm,n,y∈Rm,n

ϕp∗,q(x↔ y), (6.59)

where the last inequality follows by Proposition 6.2.3 and Proposition 6.4.3. By

Theorem 6.4.4, this is less than

∑
i=n, j=n

C(p∗,q)e−c(p∗,q)(i+ j) ≤C(p∗,q)
(

e−c(p∗,q)n 1
1− e−c(p∗,q)

)2

(6.60)
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=
C(p∗,q)

(1− e−c(p∗,q))2 e−2c(p∗,q)n. (6.61)

Thus, the 2nd term on the right side of Equation (6.53) also decays exponen-

tially. Thus, supm>n π
ωq

β ,m(P
−?
∂Bn

) decays exponentially in n. Thus, by Equation

(6.47), supm>n π
ωq

β ,m(P
−?
∂Qn

) also decays exponentially in n, as desired.

Part 2: β < βc(q). Recall from Section 6.4 the notions of strong spatial mixing

and ratio strong mixing property. We will use the following result.

Theorem 6.5.2 ([4, Theorem 1.8 (ii)]). For the Z2 (ferromagnetic) Potts model

with q types and inverse temperature β , if 0 < β < βc(q) and exponential decay

of the two-point connectivity function holds for the corresponding bond random-

cluster model, then the unique µ ∈G(πFP
β
) satisfies the ratio strong mixing property

for the class of finite simply lattice-connected sets.

Corollary 11. For the Z2 Potts model with q types and inverse temperature 0 <

β < βc(q), the Gibbs specification πFP
β

satisfies exponential SSM for the family of

sets {Qy,z}y,z≥0.

Proof. This follows immediately from Theorem 6.4.4, Theorem 6.5.2, and Propo-

sition 6.4.1.

Then, since exponential SSM holds for the class of finite simply lattice-connec-

ted sets when β < βc(q), the desired result follows directly from Proposition 6.4.2.

This completes the proof of Theorem 6.5.1.

6.5.2 Exponential convergence in the Widom-Rowlinson model

Recall that for Bernoulli site percolation in Z2 there exists a critical value pc(Z2)

(or just pc), known as the percolation threshold, such that for p < pc, there is no

infinite cluster of 1’s ψp,Z2-almost surely and, for p > pc, there is such a (unique)

cluster ψp,Z2-a.s. Similarly, one can define an analogous parameter p?c for the Z2,?

lattice, which satisfies pc + p?c = 1 (see [72]).

Theorem 6.5.3. For the Widom-Rowlinson model with q types and activity ζ , there

exist two critical parameters 0 < ζ1(q) < ζ2(q) such that for ζ < ζ1(q) or ζ >

131



6.5. Exponential convergence of πn

ζ2(q), there exists C,γ > 0 such that, for every y,z≥~1n,∣∣∣πζ
n (ωq)−π

ζ
y,z(ωq)

∣∣∣≤Ce−γn. (6.62)

Proof. As in Theorem 6.5.1, we split the proof in two parts.

Part 1: ζ > ζ2(q) := q3
(

pc
1−pc

)
. Fix n ∈ N and y,z ≥~1n. Notice that, due to the

hard constraints of the Widom-Rowlinson model, and recalling Proposition 6.3.1,

π
ζ
y,z(ωq) = π

ωq

ζ ,Qy,z
(q{~0}) = ψ

(1)
p,q,Qy,z

(1{~0}), (6.63)

where p = ζ

1+ζ
, and the same holds for π

ζ
n (ωq). Then, it suffices to prove that∣∣∣ψ(1)

p,q,Qn
(1{~0})−ψ

(1)
p,q,Qy,z

(1{~0})
∣∣∣≤Ce−γn, (6.64)

for some C,γ > 0.

Notice that ~0 ∈ Qn ⊆ Qy,z =: Λ. Fix any ordering on the set Λ. From now

on, when we talk about comparing sites in Λ, it is assumed we are speaking of

this ordering. For convenience, we will extend configurations on Qn and Λ to

configurations on Λ by appending 1Λ\Qn and 1∂Λ, respectively.

We proceed to define a coupling Pn,y,z of ψ
(1)
p,q,Qn

and ψ
(1)
p,q,Λ, defined on pairs

of configurations (θ1,θ2) ∈ {0,1}Λ×{0,1}Λ. The coupling is defined one site at

a time, using values from previously defined sites.

We use (τ t
1,τ

t
2) to denote the (incomplete) configurations on Λ×Λ at step t =

0,1, . . . , |Qn|. We therefore begin with τ0
1 = 1Λ\Qn and τ0

2 = 1∂Λ. Next, we set

τ1
1 = τ0

1 and form τ1
2 by extending τ0

2 to Λ \Qn, choosing randomly according to

the distribution ψ
(1)
p,q,Λ

(
·
∣∣1∂Λ

)
. At this point of the construction, both τ1

1 and τ1
2

have shape Λ\Qn. In the end, (τ |Qn|
1 ,τ

|Qn|
2 ) will give as a result a pair (θ1,θ2), both

with shape Λ.

At any step t, we use W t to denote the set of sites in Λ on which τ t
1 and τ t

2

have already received values in previous steps. In particular, W 1 = Λ \Qn. At an

arbitrary step t of the construction, we choose the next site xt+1 on which to assign

values in τ
t+1
1 and τ

t+1
2 as follows:

(i) If possible, take xt+1 to be the first site in ∂ ?W t that is ?-adjacent to a site
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y ∈W t for which (τ t
1(y),τ

t
2(y)) 6= (1,1).

(ii) Otherwise, just take xt+1 to be the smallest site in ∂ ?W t .

Notice that at any step t, W t is a ?-connected set, and that it it always possible

to find the next site xt+1 for any t < |Qn| (i.e. the two rules above give a well

defined procedure).

Now we are ready to augment the coupling from W t to W t∪{xt+1} by assigning

τ
t+1
1

∣∣
{xt+1} and τ

t+1
2

∣∣
{xt+1} according to an optimal coupling of ψ

(1)
p,q,Qn

(·|τ t
1)
∣∣∣
{xt+1}

and ψ
(1)
p,q,Qy,z

(· | τ t
2)
∣∣∣
{xt+1}

, i.e. a coupling which minimizes the probability that,

given (τ t
1,τ

t
2), θ1(xt+1) 6= θ2(xt+1). Since Pn,y,z is defined site-wise, and at each

step is assigned according to ψ
(1)
p,q,Qn

(·|τ t
1) in the first coordinate and ψ

(1)
p,q,Qy,z

(· | τ t
2)

in the second, the reader may check that it is indeed a coupling of ψ
(1)
p,q,Qn

and

ψ
(1)
p,q,Qy,z

. The key property of Pn,y,z is the following.

Lemma 6.5.4. θ1(~0) 6= θ2(~0) Pn,y,z-a.s. iff there exists a path P of ?-adjacent sites

from~0 to ∂Qn, such that for each site y ∈ P, (θ1(y),θ2(y)) 6= (1,1).

Proof. Suppose, for a contradiction, that θ1(~0) 6= θ2(~0) and that there exists no

such path. This implies that there exists a cycle C surrounding ~0 (when we in-

clude the past boundary as part of C) and contained in Qn such that for all y ∈ C,

(θ1(y),θ2(y)) = (1,1). Define by I the simply lattice-?-connected set of sites in the

interior of C and, let’s say that at time t0, xt0 was the first site within I defined ac-

cording to the site-by-site evolution of Pn,y,z. Then, (τ t0
1 (x

t0),τ t0
2 (x

t0)) cannot have

been defined according to rule (i) since all sites ?-adjacent to xt0 are either in I (and

therefore not yet defined by definition of xt0), or in C (and therefore either not yet

defined or sites at which θ1 and θ2 are both 1).

Therefore, (θ1(xt0),θ2(xt0)) was defined according to rule (ii). We therefore

define the set D := Λ \W t0−1 ⊇ I, and note that ~0 and xt0 belong to the same

?-connected component Θ of D. We also know that τ
t0−1
1

∣∣∣
∂ ?D

= τ
t0−1
2

∣∣∣
∂ ?D

=

1∂ ?D, otherwise some unassigned site in D would be ?-adjacent to a 0 in either

τ
t0−1
1

∣∣∣
∂ ?D

or τ
t0−1
2

∣∣∣
∂ ?D

, and so rule (i) would be applied instead. We may now

apply Lemma 6.3.2 (combined with Remark 12) to Θ and Λ in order to see that
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ψ
(1)
p,q,Qn

(θ1|Θ |τ
t0−1
1 ) and ψ

(1)
p,q,Qy,z

(θ2|Θ |τ
t0−1
2 ) are identical. This means that the op-

timal coupling according to which τ
t0
1 (x

t0) and τ
t0
2 (x

t0) are assigned is supported on

the diagonal, and so τ
t0
1 (x

t0) = τ
t0
2 (x

t0), Pn,y,z-almost surely. This will not change

the conditions under which we applied Lemma 6.3.2, and so inductively, the same

will be true for each site in I as it is assigned, including~0. We have shown that

θ1(~0) = θ2(~0), Pn,y,z-almost surely, regardless of when~0 is assigned in the site-by-

site evolution of Pn,y,z. This is a contradiction, and so our original assumption was

incorrect, implying that the desired path P exists.

Given an arbitrary time t, let

ρ
t
1(·) := ψ

(1)
p,q,Qn

(·|τ t−1
i )

∣∣∣
{xt}

and ρ
t
2(·) := ψ

(1)
p,q,Λ(·|τ

t−1
i )

∣∣∣
{xt}

(6.65)

be the two corresponding probability measures defined on the set {0,1}{xt}. Note

that at any step within the site-by-site definition of Pn,y,z, Lemma 6.4.5 implies that
ζ

ζ+q3 ≤ ρ t
i (1), where ζ = p

1−p and i = 1,2. Now, w.l.o.g., suppose that ρ t
2(0) ≥

ρ t
1(0). Then, an optimal coupling Qt of ρ t

1 and ρ t
2 will assign Qt({(0,0)}) =

ρ t
1(0), Qt({(0,1)}) = 0, Qt({(1,0)}) = ρ t

2(0)− ρ t
1(0), and Qt({(1,1)}) = 1−

ρ t
2(0). Therefore,

Qt({(1,1)}c) = ρ
t
2(0)≤

q3

ζ +q3 . (6.66)

Next, define the map h : {0,1}Qn×{0,1}Qn →{0,1}Qn given by

(h(θ1,θ2))(x) =

1 if (θ1(x),θ2(x)) 6= (1,1),

0 if (θ1(x),θ2(x)) = (1,1).
(6.67)

By Equation (6.66), h∗Pn,y,z (the push-forward measure) can be coupled against

an i.i.d. measure on {0,1}Qn which assigns 1 with probability q3

ζ+q3 and 0 with

probability ζ

ζ+q3 , and that the former is stochastically dominated by the latter. This,

together with Lemma 6.5.4, yields∣∣∣ψ(1)
p,q,Qn

(1{~0})−ψ
(1)
p,q,Qy,z

(1{~0})
∣∣∣≤ Pn,y,z(θ1(~0) 6= θ2(~0)) (6.68)

≤ ψ q3

ζ+q3 ,Qn
(~0 ?←→ ∂Qn), (6.69)
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where {~0 ?←→ ∂Qn} denotes the event of an open ?-path from ~0 to ∂Qn. Since

we have assumed ζ > q3
(

pc
1−pc

)
and pc + p?c = 1, we have q3

ζ+q3 < p?c . It follows

by [2, 62] that the expression in Equation (6.69) decays exponentially in n. This

completes the proof.

Part 2: ζ < ζ1(q) := 1
q

(
pc

1−pc

)
. Observe that, by virtue of Proposition 6.4.2, it

suffices to prove that πWR
ζ

satisfies exponential SSM. By considering all cases of

nearest-neighbour configurations at the origin, one can compute

Q(πWR
ζ

) = max
ω1,ω2∈ΩWR

dTV(π
ω1

ζ ,{~0}
,πω2

ζ ,{~0}
) =

qζ

1+qζ
. (6.70)

By Theorem 3.6.1, we obtain exponential SSM when

ζ <
1
q

(
pc

1− pc

)
= ζ1(q). (6.71)

Uniqueness of Gibbs states in this same region was mentioned in [38, p. 40],

by appealing to [11, Theorem 1] (which is the crux of Theorem 3.6.1).

Remark 15. In the case q= 2, it is possible to give an alternative proof of Theorem

6.5.3 (Part 1) using the framework of the proof of Theorem 6.5.1 (Part 1). The

arguments through Equation (6.47) go through, with an appropriate redefinition of

events and use of Proposition 6.4.7 for stochastic dominance. One can then apply

Lemma 6.4.5 to give estimates based on the site random-cluster model. (In contrast

to Theorem 6.5.1 (Part 1), this does not require the use of planar duality). So far,

this approach is limited to q = 2 because we do not know appropriate versions of

Proposition 6.4.7 for q > 2.

6.5.3 Exponential convergence in the hard-core lattice gas model

Our argument again relies on proving exponential convergence for conditional

measures with respect to certain “extremal” boundaries on Qn, but these now will

consist of alternating 0 and 1 symbols rather than a single symbol (recall from Sec-

tion 6.1 that ω(o) is defined as the configuration of 1’s in all even sites and 0 in all

odd sites).
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Theorem 6.5.5. For the Z2 hard-core lattice gas model with activity λ , there exist

two critical parameters 0 < λ1 < λ2 such that for any 0 < λ < λ1 or λ > λ2, there

exist C,γ > 0 such that, for every y,z≥~1n,∣∣∣πλ
n (ω

(o))−π
λ
y,z(ω

(o))
∣∣∣≤Ce−γn. (6.72)

Proof. As in the previous two theorems, we consider two cases.

Part 1: λ > λ2 := 468. Our proof essentially combines the disagreement percola-

tion techniques of [11] and the proof of non-uniqueness of equilibrium states for the

hard-core lattice gas model due to Dobrushin (see [26]). We need enough details

not technically contained in either proof that we present a mostly self-contained

argument here. From [11, Theorem 1] and an averaging argument (as in the proof

of Proposition 6.4.2) on ∂↑Qn induced by a boundary condition on Qy,z, we know

that for any y,z≥~1n,∣∣∣πλ
n (ω

(o))−π
λ
y,z(ω

(o))
∣∣∣≤ Pn,y,z

(
~0

6=←→ ∂↑Qn

)
(6.73)

for a certain coupling Pn,y,z of πω(o)

λ ,Qn
and πω(o)

λ ,Qy,z

∣∣∣
Qn

. We do not need the structure of

Pn,y,z here, but instead note the following: a path of disagreement for the boundaries

ω(o)
∣∣
∂Qn

and ω(o)
∣∣
∂Qy,z

implies that in one of the configurations, all entries on the

path will be “out of phase” with respect to ω(o), i.e. that all entries along the

path will have 1 at every odd site and 0 at every even site rather than the opposite

alternating pattern of ω(o). Then, if we denote by Tn the event that there is a path

P from~0 to ∂↑Qn with 1 at every odd site and 0 at every even site, it is clear that

Pn,y,z

(
~0

6=←→ ∂↑Qn

)
≤ π

ω(o)

λ ,Qn
(Tn)+π

ω(o)

λ ,Qy,z
(Tn). (6.74)

Since y,z ≥~1n are arbitrary (in particular, y and z can be chosen to be~1n), it

suffices to prove that supy,z≥~1n πω(o)

λ ,Qy,z
(Tn) decays exponentially with n. Define the

set

Θy,z = {θ ∈ {0,1}S?y,z : θ is feasible and θ |∂ ?Qy,z = ω
(o)|∂ ?Qy,z}. (6.75)
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For any θ ∈Θy,z, we define Σ~0(θ) to be the connected component of

ΣQy,z(θ ,ω
(o)) = {x ∈ Qy,z : θ(x) 6= ω

(o)(x)} (6.76)

containing the origin~0. Since Tn ⊆ {Σ~0(θ)∩ ∂↑Qn 6= /0}, our proof will then be

complete if we can show that there exist C,γ > 0 so that, for any n and y,z≥~1n,

π
ω(o)

λ ,Qy,z
(Σ~0(θ)∩∂↑Qn 6= /0)≤Ce−γn. (6.77)

To prove this, we use a Peierls argument, similar to [26].

Fix any y,z≥~1n and for any θ ∈Θy,z, define Σ~0(θ) as above, and let K(θ) to be

the connected component of {x ∈ S?y,z : θ(x) = ω(o)(x)} containing ∂ ?Qy,z. Clearly,

Σ~0(θ) and K(θ) are disjoint, K(θ) 6= /0 and, provided θ(~0) = 0, Σ~0(θ) 6= /0. Then,

define Γ(θ) := Σ~0(θ)∩∂K(θ)⊆Qy,z. We note that for any θ ∈Θy,z with θ(~0) = 0,

we have that θ |
Γ(θ) = 0Γ(θ), since adjacent sites in Σ~0(θ) and K(θ) must have the

same symbol by definition of Σ~0(θ), and adjacent 1 symbols are forbidden in the

hard-core lattice gas model. Therefore, every x ∈ Γ(θ) is even.

We need the concept of inner external boundary for a connected set Σ b Z2.

The inner external boundary of Σ is defined to be the inner boundary of the

simply lattice-connected set consisting of the union of Σ and the union of all the

finite components of Z2\Σ. Intuitively, the inner external boundary of Σ is the inner

boundary of the set Σ obtained after “filling in the holes” of Σ. Notice that the set

Γ(θ) corresponds exactly to the inner external boundary of Σ~0(θ). In addition, by

[25, Lemma 2.1 (i)], we know that the inner external boundary of a finite connected

set (more generally a finite ?-connected set) is ?-connected. Thus, Γ(θ) ⊆ Qy,z is

a ?-connected set C? that consists only of even sites and contains the origin~0, for

any θ ∈Θy,z with θ(~0) = 0.

Then, for C?⊆Qy,z, we define the event EC? := {θ ∈Θy,z : Γ(θ) =C?}, and will

bound from above πω(o)

λ ,Qy,z
(EC?), for every C? such that EC? is nonempty. We make

some more notation: for every such a set C?, define O(C?) (for ‘outside’) as the

connected component of (C?)c containing ∂ ?Qy,z, and define I(C?) (for ‘inside’) as

Qy,z \ (C? ∪O(C?)). Then C?, I(C?), and O(C?) form a partition of Q?
y,z. We note

that there cannot be a pair of adjacent sites from I(C?) and O(C?) respectively,
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since they would then be in the same connected component of (C?)c. We also note

that for every θ ∈ EC? , C?⊆ Σ~0(θ)⊆ C?∪ I(C?) and K(θ)⊆O(C?), though the sets

need not be equal, since Σ~0(θ) or K(θ) could contain “holes” which are “filled in”

in I(C?) and O(C?), respectively.
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Figure 6.2: A configuration θ ∈ EC? . On the left, the associated sets Σ~0(θ) and
K(θ). On the right, the sets I(C?) and O(C?) for Γ(θ) = C?.

Choose any set C? such that EC? 6= /0. For each θ ∈ EC? and x ∈ C?, using the

definition of C? and the fact that K(θ)⊆O(C?), there exists x0 ∈ {~e1,−~e1,~e2,−~e2}
for which x− x0 ∈ O(C?). Fix an x0 which is associated to at least |C?|/4 of the

sites in C? in this way. Then, we define a function s : EC? → {0,1}Q?
y,z that, given

θ ∈ EC? , defines a new configuration s(θ) such that

(s(θ))(x) =



θ(x− x0) if x ∈ I(C?),

θ(x) if x ∈ O(C?),

1 if x ∈ C? and x− x0 ∈ O(C?),

0 if x ∈ C? and x− x0 ∈ I(C?).

(6.78)

Informally, we move all 1 symbols inside I(C?) in the x0-direction by 1 unit

(even if those symbols were not part of Σ~0(θ)), add new 1 symbols at some sites in

C?, and leave everything in O(C?) unchanged.

It should be clear that s(θ) has at least |C?|/4 more 1 symbols than θ did. We
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make the following two claims: s is injective on EC? , and for every θ ∈ EC? , s(θ) ∈
Θy,z. If these claims are true, then clearly πω(o)

λ ,Qy,z
(s(EC?)) ≥ λ |C

?|/4πω(o)

λ ,Qy,z
(EC?),

implying that

π
ω(o)

λ ,Qy,z
(EC?)≤ λ

−|C?|/4. (6.79)

Firstly, we show that s is injective. Suppose that θ1 6= θ2, for θ1,θ2 ∈ EC? .

Then there is a site x at which θ1(x) 6= θ2(x). If x ∈ O(C?), then (s(θ1))(x) =

θ1(x) 6= θ2(x) = (s(θ2))(x) and so s(θ1) 6= s(θ2). If x ∈ I(C?), then (s(θ1))(x+

x0) = θ1(x) 6= θ2(x) = (s(θ2))(x+ x0), and again s(θ1) 6= s(θ2). Finally, we note

that x cannot be in C?, since at all sites in C?, both θ1 and θ2 must have 0 symbols.

Secondly, we show that for any θ ∈ EC? , s(θ) is feasible. All that must be

shown is that s(θ) does not contain adjacent 1 symbols. We break 1 symbols in

s(θ) into three categories:

1. shifted, meaning that the 1 symbol came from shifting a 1 symbol at a site in

I(C?) in the x0-direction,

2. new, meaning that the 1 symbol was placed at a site x ∈ C? such that x−x0 ∈
O(C?), or

3. untouched, meaning that the 1 symbol was at a site in O(C?) (⊇ ∂ ?Qy,z).

Note that untouched 1 symbols cannot be adjacent to C?: θ contains all 0

symbols on C?, and so since C? ⊆ Σ~0(θ), a 1 symbol adjacent to a symbol in C?

would be in Σ~0(θ) as well, a contradiction since Σ~0(θ)⊆ C?∪ I(C?), and so Σ~0(θ)

and O(C?) are disjoint.

Clearly, shifted 1 symbols cannot be adjacent to each other, since there were

no adjacent 1 symbols in θ in the first place. All new 1’s were placed at sites in

C?, and all sites in C? are even, so new 1 symbols cannot be adjacent to each other.

Untouched 1’s cannot be adjacent for the same reason as shifted 1’s. We now

address the possibility of adjacent 1 symbols in s(θ) from different categories. A

shifted or new 1 in s(θ) is on a site in C? ∪ I(C?), and an untouched 1 cannot be

adjacent to a site in C? as explained above, and also cannot be adjacent to a site in

I(C?), since I(C?) and O(C?) do not contain adjacent sites. Therefore, shifted or

new 1’s cannot be adjacent to untouched 1’s. The only remaining case which we
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need to rule out is a new 1 adjacent to a shifted 1. Suppose that (s(θ))(x) is a new 1

and (s(θ))(x′) is a shifted 1. Then by definition, x′−x0 ∈ I(C?) and x−x0 ∈O(C?).

We know that I(C?) and O(C?) do not contain adjacent sites, so x− x0 and x′− x0

are not adjacent, implying that x and x′ are not adjacent. We’ve then shown that

s(θ) is feasible and then, since ∂ ?Qy,z ⊆ O(C?), s(θ) ∈ Θy,z, completing the proof

of Equation (6.79).

Recall that every set C? which we are considering is ?-connected, occupies

only even sites, and contains the origin ~0. Then, given k ∈ N, it is direct to see

that the number of such C? with |C?|= k is less than or equal to k · t(k), where t(k)

denotes the number of site animals (see [49] for the definition) of size k (the first k

factor comes from the fact that site animals are defined up to translation, and here

given a site animal of size k, exactly k translations of it will contain the origin~0).

We know that for every ε > 0, there exists Cε > 0 such that t(k) ≤Cε(δ + ε)k for

every k, where δ := limk→∞ (t(k))1/k ≤ 4.649551 (see [49]).

If Σ~0(θ)∩∂↑Qn 6= /0, then Σ~0(θ) has to intersect the top, right, or bottom bound-

ary of Qn. W.l.o.g., we may assume that Σ~0(θ) intersects the bottom boundary of

Qn. Then, every horizontal segment in the bottom half of Qn must intersect Σ~0(θ)

and, therefore, at least one element of its inner external boundary, namely Γ(θ).

Then,

Σ~0(θ)∩∂↑Qn 6= /0 =⇒ |Γ(θ)| ≥ n. (6.80)

Therefore, taking an arbitrary ε > 0, we may bound πω(o)

λ ,Qy,z
(Σ~0(θ)∩∂↑Qn 6= /0)

from above:

π
ω(o)

λ ,Qy,z
(Σ~0(θ)∩∂↑Qn 6= /0)≤ ∑

C?:|C?|≥n
λ
−|C?|/4 ≤

∞

∑
k=n

kCε(δ + ε)k ·λ−k/4, (6.81)

which decays exponentially in n as long as λ > (δ + ε)4, independently of y and

z. Since ε was arbitrary, λ > 468 > δ 4 suffices for justifying Equation (6.77),

completing the proof.

Part 2: λ < λ1 := 2.48. It is known (see [75]) that when d = 2 and λ < 2.48, πHC
λ

satisfies exponential SSM. Then, by applying Proposition 6.4.2, we conclude.
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Chapter 7

Algorithmic implications

In this chapter we combine previous results (in particular, pressure representation

theorems) in order to compute pressure efficiently.

By a poly-time approximation algorithm to compute a number r, we mean

an algorithm that, given N ∈N, produces an estimate rN such that |r− rN |< 1
N and

the time to compute rN is polynomial in N. In that case, we regard this algorithm

as an efficient way to approximate r and we say that r is poly-time computable.

One of our goals is to prove that, under certain assumptions on Φ and the

support Ω, PΩ(Φ) is poly-time computable.

7.1 Previous results

First, we give some previously known algorithmic results related with pressure

approximation.

Proposition 7.1.1 ([32]). Consider the Zd hard-core lattice gas model with activity

λ . If

λ < λc(T2d) :=
(2d−1)2d−1

(2d−2)2d , (7.1)

then, there is an algorithm to compute P(Φλ ) to within 1
N in time poly(N).

Note 10. The value λc(T2d) corresponds to the critical activity of the hard-core

model in the 2d-regular tree T2d . This model satisfies exponential SSM if λ <

λc(T2d). It is also known that the partition function of the hard-core model with

λ < λc(T2d) in any finite board G of maximum degree ∆(G )≤ 2d can be efficiently

approximated (for these and more results, see the fundamental work of D. Weitz in

[79]).

141



7.2. New results

Proposition 7.1.2 ([58, Proposition 4.1]). Let Ω be a Zd n.n. SFT, Φ a shift-

invariant n.n. interaction on Ω, and π the corresponding n.n. Gibbs (Ω,Φ)-

specification such that

• Ω satisfies SSF, and

• π satisfies exponential SSM.

Then, there is an algorithm to compute PΩ(Φ) to within 1
N in time eO((logN)d−1).

In particular, if d = 2, PΩ(Φ) is poly-time computable.

7.2 New results

The following result is based on a slight modification of the approach used to prove

Proposition 7.1.2, but we include here the whole proof for completeness.

Proposition 7.2.1. Let Ω be a Zd n.n. SFT, Φ a shift-invariant n.n. interaction on

Ω, and π the corresponding n.n. Gibbs (Ω,Φ)-specification such that

• Ω satisfies TSSM, and

• π satisfies exponential SSM.

Then, there is an algorithm to compute PΩ(Φ) to within 1
N in time eO((logN)d−1).

In particular, if d = 2, PΩ(Φ) is poly-time computable.

Proof. Given ε > 0 and the values of the n.n. interaction Φ, the algorithm would

be the following:

1. Look for a periodic point ω ∈Ω, provided by Proposition 3.4.3. W.l.o.g., ω

has period 2g in every coordinate direction, for some g ∈ N. This step does

not need the gap of TSSM explicitly, and it does not depend on ε .

2. Take νω the shift-invariant atomic measure supported on the orbit of ω .

From Corollary 9, we have that

P(Φ) =
∫ (

Iµ +AΦ

)
dν (7.2)
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=
1

(2g)d ∑
x∈[1,2g]d∩Zd

(
− log pµ(σx(ω))+AΦ(σx(ω))

)
, (7.3)

for any µ an equilibrium state for Φ. We need to compute the desired ap-

proximations of pµ(ω), for all ω = σx(ω) and x ∈ [1,2g]d ∩Zd . We may

assume x =~0 (the proof is the same for all x).

3. For n = 1,2, . . . , consider the sets Wn = Rn \Pn and ∂Wn = SntVn, where

Sn = ∂Wn∩P and Vn = ∂Wn \P .

4. Represent pµ(ω) as a weighted average, using the MRF property,

pµ(ω) = ∑
δ∈A Vn : µ(ω|Sn δ )>0

µ

(
ω|{~0}

∣∣∣ω|Sn
δ

)
µ(δ ). (7.4)

Figure 7.1: Decomposition in the proof of Proposition 7.2.1.

5. Take δ ∈ argmaxδ µ

(
ω|{~0}

∣∣∣ω|Sn
δ

)
and δ ∈ argminδ µ

(
ω|{~0}

∣∣∣ω|Sn
δ

)
,

over all δ ∈ A Vn such that µ(ω|Sn
δ ) > 0 (or, since TSSM implies the D-

condition, such that ω|Sn
δ ∈L (Ω)). Then,

µ

(
ω|{~0}

∣∣∣ω|Sn
δ

)
≤ pµ(ω)≤ µ

(
ω|{~0}

∣∣∣ω|Sn
δ

)
. (7.5)
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6. By exponential SSM, there are constants C,γ > 0 such that these upper and

lower bounds on pµ(ω) differ by at most Ce−γn. Taking logarithms and con-

sidering that µ

(
ω|{~0}

∣∣∣ω|Sn
δ

)
≥ cµ > 0, a direct application of the Mean

Value Theorem gives sequences of upper and lower bounds on log pµ(ω)

with accuracy e−Ω(n), that is less than ε for sufficiently large n.

For δ ∈ A Vn , the time to compute µ

(
ω|{~0}

∣∣∣ω|Sn
δ

)
is eO(nd−1), because this

is the ratio of two probabilities of configurations of size O(nd−1), each of which

can be computed using the transfer matrix method from [60, Lemma 4.8] in time

eO(nd−1). Thanks to Corollary 2, the necessary time to check if ω|Sn
δ ∈L (Ω) or

not is eO(nd−1). Since
∣∣A Vn

∣∣ = eO(nd−1), the total time to compute the upper and

lower bounds is eO(nd−1)eO(nd−1) = eO(nd−1).

Remark 16. In the previous algorithm it is not necessary to know explicitly the

gap g of TSSM or the constants C,γ > 0 of the decay function f (n) =Ce−γn from

exponential SSM.

Corollary 12. Let Ω⊆A Z2
be a Z2 n.n. SFT, Φ a shift-invariant n.n. interaction

on Ω, and π the corresponding n.n. Gibbs (Ω,Φ)-specification. Suppose that π

satisfies exponential SSM with decay rate γ > 4log |A |. Then, PΩ(Φ) is poly-time

computable.

Proof. This follows from Theorem 3.6.5 and Proposition 7.2.1.

Notice that, in contrast to preceding results, no mixing condition on the support

is explicitly needed in Corollary 12.

Now we present a new algorithmic result for pressure representation, specially

useful when SSM fails. We make heavy use of the representation and convergence

results from the previous chapters.

Theorem 7.2.2. Let Ω be a Zd n.n. SFT that satisfies the square block D-condition,

Φ a shift-invariant n.n. interaction on Ω, and π the corresponding n.n. Gibbs

(Ω,Φ)-specification. Let ω ∈ Ω be a periodic point such that cπ(ν
ω) > 0. In

addition, suppose that there exists C,γ > 0 such that, for every y,z≥~1n,

|πn(ω)−πy,z(ω)| ≤Ce−γn over ω ∈ O(ω). (7.6)
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Then,

PΩ(Φ) =
1

|O(ω)| ∑
ω∈O(ω)

Iπ(ω)+AΦ(ω), (7.7)

and, when d = 2, PΩ(Φ) is poly-time computable.

Proof. Notice that supp(νω) = O(ω) ⊆ Ω, since Ω is shift-invariant and ω ∈ Ω.

Now, since |πn(ω)−πy,z(ω)| ≤Ce−γn over ω ∈ supp(νω), we can easily conclude

that limy,z→∞ πy,z(ω) = π̂(ω) uniformly over ω ∈ supp(νω). This, combined with

Ω satisfying the square block D-condition and cπ(ν
ω)> 0, gives us

PΩ(Φ) =
∫

(Iπ +AΦ)dν
ω =

1
|supp(νω)| ∑

ω∈supp(νω )

Iπ(ω)+AΦ(ω), (7.8)

thanks to Theorem 5.3.2.

For the algorithm, it suffices to show that there is a poly-time algorithm to

compute π̂(ω), for any ω ∈ O(ω).

By Equation (7.6), there exist C,γ > 0 such that |πn(ω)− π̂(ω)| < Ce−γn.

Since |∂Qn| is linear in n when d = 2, by the modified transfer matrix method

approach from [60, Lemma 4.8], we can compute πn(ω) in exponential time Keρn

for some K,ρ > 0. Combining the exponential time to compute πn(ω) for the ex-

ponential decay of |πn(ω)− π̂(ω)|, we get a poly-time approximation algorithm

to compute PΩ(Φ): namely, given N ∈ N, let n be the smallest integer such that

Ce−γ(n+1) < 1
N . Then, πn+1(ω) is within 1

N of π̂(ω) and since 1
N ≤Ce−γn, the time

to compute πn+1(ω) is at most

Keρ(n+1) = (KeρCρ/γ)
1

(Ce−γn)ρ/γ
≤ (KeρCρ/γ)Nρ/γ , (7.9)

which is a polynomial in N.

Corollary 13. The following holds:

1. For the Z2 (ferromagnetic) Potts model with q types and inverse temperature

β > 0,

PΩFP(Φβ ) = Iβ

π (ωq)+2β . (7.10)
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2. For the Z2 (multi-type) Widom-Rowlinson model with q types and activity

ζ ∈ (0,ζ1(q))∪ (ζ2(q),∞),

PΩWR(Φζ ) = Iζ

π(ωq)+ logζ , (7.11)

where ζ1(q) := 1
q

(
pc

1−pc

)
and ζ2(q) := q3

(
pc

1−pc

)
.

3. For the Z2 hard-core lattice gas model with activity λ ∈ (0,λ1)∪ (λ2,∞),

PΩHC(Φλ ) =
1
2

Iλ
π (ω

(o))+
1
2

logλ , (7.12)

where λ1 = 2.48 and λ2 = 468.

Moreover, for the three models in the corresponding regions (except in the case

when β = βc(q) in the Potts model), there is a poly-time approximation algorithm

for pressure, where the polynomial involved depends on the parameters of the mod-

els.

Proof. The representation of the pressure given in the previous statement for the

Z2 Potts model with q types and inverse temperature β 6= βc(q), the Z2 Widom-

Rowlinson model with q types and activity ζ ∈ (0,ζ1(q))∪ (ζ2(q),∞), and the Z2

hard-core lattice gas model with activity λ ∈ (0,λ1)∪ (λ2,∞), is a direct conse-

quence of Theorem 7.2.2, by virtue of the following facts:

• Recall that the corresponding Z2 n.n. SFT Ω for the Potts, Widom-Rowlin-

son, and hard-core lattice gas model has a safe symbol, respectively, so Ω

satisfies the square block D-condition and cπ(ν)> 0, for any shift-invariant

ν with supp(ν)⊆Ω, in each case.

• If we consider the δ -measure νωq = δωq , both in the Potts and Widom-

Rowlinson cases (in a slight abuse of notation, since the Potts and Widom-

Rowlinson σ -algebras are defined in different alphabets), and the measure

ν = νω(o)
= 1

2 δ
ω(e) + 1

2 δ
ω(o) in the hard-core lattice gas case, we have that

in all three models, for the range of parameters specified, except for when

β = βc(q) in the Potts model, there exists C,γ > 0 such that, for every
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y,z≥~1n,

|πn(ω)−πy,z(ω)| ≤Ce−γn, over ω ∈ supp(ν), (7.13)

thanks to Theorem 6.5.1, Theorem 6.5.3, and Theorem 6.5.5, respectively.

(Notice that Iλ
π (ω

(e)) = AΦ(ω
(e)) = 0.)

This proves Equation (7.10), Equation (7.11), and Equation (7.12), except in

the Potts case when β = βc(q). To establish this case, first note that it is easy

to prove that P(Φβ ) is continuous with respect to β . Second, if β1 ≤ β2, then

π
β1
n (ωq) ≤ π

β2
n (ωq). This follows by the Edwards-Sokal coupling (see Theorem

6.2.2) and the comparison inequalities for the bond random-cluster model (see [3,

Theorem 4.1]).

As an exercise in analysis, it is not difficult to prove that if am,n ≥ 0, and each

am+1,n ≤ am,n and am,n+1 ≤ am,n, then limm limn am,n = limn limm am,n = a, for some

a≥ 0.

Now, consider the sequence am,n := π
βc(q)+ 1

m
n (ωq). By stochastic dominance

(see Proposition 6.4.6), am,n is decreasing in n. By the previous discussion (i.e.

Edwards-Sokal coupling and comparison inequalities), it is also decreasing in m.

Therefore, and since am,n≥ 0, we conclude that limm limn am,n = limn limm am,n = a,

for some a. Then, we have that

P(Φβc(q)) = lim
m

P(Φ
βc(q)+ 1

m
) (7.14)

= lim
m
− log lim

n
π

βc(q)+ 1
m

n (ωq)+2
(

βc(q)+
1
m

)
(7.15)

=− log lim
m

lim
n

π
βc(q)+ 1

m
n (ωq)+2βc(q) (7.16)

=− log lim
n

lim
m

π
βc(q)+ 1

m
n (ωq)+2βc(q) (7.17)

=− log lim
n

π
βc(q)
n (ωq)+2βc(q) (7.18)

= Îβc(q)
π (ωq)+2βc(q). (7.19)

(To prove that limm π
βc(q)+ 1

m
n (ωq) = π

βc(q)
n (ωq) is straightforward.) Finally, the

algorithmic implications are also a direct application of Theorem 7.2.2.
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Remark 17. The algorithm in Theorem 7.2.2 seems to require explicit bounds on

the constants C and γ , so that given N ∈ N, we can find an explicit n such that

Ce−γ(n+1) < 1
N . Without such bounds, while there exists a poly-time approximation

algorithm, we do not always know how to exhibit an explicit algorithm. However,

for all three models, for regions sufficiently deep within the supercritical region (i.e.

β , ζ , or λ sufficiently large), one can find crude, but adequate, estimates on C and

γ and thus can exhibit a poly-time approximation algorithm. This is the case for the

hard-core lattice gas model, where our proof does allow an explicit estimate of the

constants for any λ > 468. On the other hand, in the regions specified in Corollary

13 within the subcritical region, all three models satisfy exponential SSM and then

using [60, Corollary 4.7], one can, in principle, exhibit a poly-time approximation

algorithm (even without estimates on C and γ).
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Chapter 8

Conclusion

The current plan is to extend our research in the following directions:

1. We would like to develop a characterization of constraint graphs H for which

Hom(G ,H) satisfies TSSM, for every board G . In addition, it would be

interesting to understand the constraint graphs H for which, for every board

of bounded degree G , there always exist a constrained energy function φ

such that the Gibbs (G ,H,φ)-specification satisfies (exponential) SSM.

2. We would like to make progress in determining regimes where SSM holds

in classical models. There is already some progress in this direction (see

[79, 39]), but not everything is completely understood. For example, it is not

known whether the uniform 5-colourings model in Z2 satisfies SSM or not.

3. In [32], Gamarnik and Katz gave a representation theorem and an approx-

imation algorithm for surface pressure, which is a first order correction of

pressure. Their result relied on the existence of a (unique) Gibbs measure

satisfying SSM and a safe symbol. We plan to generalize their result, by

relaxing the combinatorial hypothesis and also extending both representa-

tion and approximation of surface pressure to the supercritical regime in Zd

lattice models.

4. We would like to develop new pressure approximation techniques, by finding

more connections between pressure representation/approximation and recent

algorithmic developments for approximate counting. In particular, we would

like to explore alternative tools outside the scope of SSM and also SSM for

the case of non-binary models, where computational tree methods are not

well-understood.
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Chapter 8. Conclusion

5. It is not known any hard constrained model satisfying SSM, but not TSSM.

In which cases is TSSM a necessary condition for SSM to hold? In which

cases is TSSM a sufficient condition for the existence of a measure with

SSM?
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