UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Momentum-space entanglement and the gravity of entanglement in AdS/CFT McDermott, Michael

Abstract

In the first part of this thesis we explore the entanglement structure of relativistic field theories in momentum space. We discuss a Wilsonian path integral formulation and a perturbative approach. Using perturbation theory we obtain results for specific quantum field theories. These are understood through scaling and decoupling properties of field theories. Convergence of the perturbation theory taking loop diagrams into account is also discussed. We then discuss the entanglement structure in systems where Lorentz invariance is broken by a Fermi surface. The Fermi surface helps the convergence of perturbation theory and entanglement of modes near the Fermi surface is shown to be amplified, even in the presence of a large momentum cutoff. In the second part of this thesis we explore the connection between entanglement and gravity in the context of the AdS/CFT correspondence. We show that there are certain thermodynamic-like relations common to all conformal field theories, which when mapped via the AdS/CFT correspondence to the bulk are tantamount to Einstein's equations, to lowest order in the metric.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada