UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Nature of Bose gases near Feshbach resonance : the interplay between few-body and many-body physics Mashayekhi, Mohammad S.

Abstract

In this thesis, we investigated the physics of two- and three-dimensional ultra cold Bose gases in the strongly interacting regime at zero temperature. This regime can be experimentally accessed using a Feshbach resonance. We applied a self-consistent diagrammatic approach to determine the chemical potential of three-dimensional Bose gases for a wide range of interaction values. We showed that such strongly interacting Bose gases become unstable towards the formation of molecules at a finite positive scattering length. In fact, the interaction between atoms becomes effectively attractive and the system looses its metastability before reaching the unitary limit. We also found that such systems are nearly fermionized close to the instability point. Near this critical point, the chemical potential reaches a maximum and the contribution to the system energy due to three-body forces is estimated to be only a few percent. We also studied the same system using a self-consistent renormalization group method. This approach confirms the existence of an instability point towards the formation of molecules as well as fermionization. We showed that the instability and accompanying maximum are precursors of the sign change of the effective two-body interaction strength from repulsive to attractive near resonance. In addition, we examined the physics of two-dimensional Bose gases near resonance using a similar self-consistent diagrammatic approach as the one introduced for three-dimensional Bose gases. We demonstrated that a competition between three-body attractive interactions and two-body repulsive forces results in the chemical potential of two-dimensional Bose gases to exhibit a maximum at a critical scattering length beyond which these quantum gases possess a negative compressibility. For larger scattering lengths, the increasingly prominent role played by three-body attractive interactions leads to an onset instability at a second critical value. The three-body effects studied for these systems are universal, fully characterized by the effective two-dimensional scattering length and are, in comparison to the three-dimensional case, independent of three-body ultraviolet physics.