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Abstract

In this thesis, we investigated the physics of two- and three-dimensional ul-
tra cold Bose gases in the strongly interacting regime at zero temperature.
This regime can be experimentally accessed using a Feshbach resonance. We
applied a self-consistent diagrammatic approach to determine the chemical
potential of three-dimensional Bose gases for a wide range of interaction val-
ues. We showed that such strongly interacting Bose gases become unstable
towards the formation of molecules at a finite positive scattering length. In
fact, the interaction between atoms becomes effectively attractive and the
system looses its metastability before reaching the unitary limit. We also
found that such systems are nearly fermionized close to the instability point.
Near this critical point, the chemical potential reaches a maximum and the
contribution to the system energy due to three-body forces is estimated to be
only a few percent. We also studied the same system using a self-consistent
renormalization group method. This approach confirms the existence of an
instability point towards the formation of molecules as well as fermioniza-
tion. We showed that the instability and accompanying maximum are pre-
cursors of the sign change of the effective two-body interaction strength from
repulsive to attractive near resonance. In addition, we examined the physics
of two-dimensional Bose gases near resonance using a similar self-consistent
diagrammatic approach as the one introduced for three-dimensional Bose
gases. We demonstrated that a competition between three-body attractive
interactions and two-body repulsive forces results in the chemical potential
of two-dimensional Bose gases to exhibit a maximum at a critical scattering
length beyond which these quantum gases possess a negative compressibil-
ity. For larger scattering lengths, the increasingly prominent role played by
three-body attractive interactions leads to an onset instability at a second
critical value. The three-body effects studied for these systems are univer-
sal, fully characterized by the effective two-dimensional scattering length and
are, in comparison to the three-dimensional case, independent of three-body
ultraviolet physics.
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Chapter 1

Introduction

Ultra cold gases are an excellent test bed to explore the fundamentals of
many-body quantum physics. Since the first realization of a Bose-Einstein
condensate of ultra cold atoms in 1995 [5, 6], a large number of experiments
have been done to understand the complex behavior of these systems. This
is achieved by reducing the of these gases to nano Kelvins in order to sup-
press thermal fluctuations and reveal the quantum nature of these systems.
Ultra cold gases are quite unique as experimentalists have impressive con-
trol over the system Hamiltonian parameters. For example, the ability to
tune the strength of the atom-atom interaction has facilitated the explo-
ration of strongly interacting gases. Understanding such systems is of great
importance as strong interactions can generate complex states that cannot
be trivially inferred from the weakly interacting regime. Moreover, in this
regime the crucial role played by many-body physics requires the develop-
ment of novel theoretical frameworks. Consequently, exploring this regime
is extremely exciting.

While all physical properties of weakly interacting Bose gases were un-
derstood theoretically in the 1950’s [7–12], the physics of strongly correlated
Bose gases is still poorly understood. Such gases, where complex many-body
effects are important, can be produced using magnetic Feshbach resonances
[13]. Applying this technique, experimentalists are able to vary the strength
of the interaction between atoms and to access a strongly interacting regime
close to a Feshbach resonance. Although the realization of stable strongly
correlated Bose gases is limited by the large inelastic loss of atoms due to the
formation of molecules, these Bose gases can be held for about a few mili-
seconds [14] before losing stability. The physics of these strongly correlated
atomic gases remains to be fully understood. This is the main objective
of this thesis. In the next sections, we first briefly review the basic the-
ory of Feshbach resonances and the theory of dilute gases before presenting
our results pertaining to the unusual physics of two- and three-dimensional
strongly interacting Bose gases. Note that this is a rapidly developing sub-
ject with new data and theoretical attempts made after we finished the first
version of this thesis toward the end of summer 2013. As a result, there are
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1.1. Feshbach Resonances

some recent works that are not included in our review of previous studies.

1.1 Feshbach Resonances

Feshbach resonances are considered as an essential tool to control the in-
teraction strength between the atoms of a quantum gas. To explain this
phenomenon, we consider two molecular potentials Vopen and Vclosed which
are named as open channel and closed channel respectively. As depicted in
Fig. 1.1, at large inter-atomic distance, Vopen asymptotically tends to two
free atoms in the gas. This channel is called the open channel since the en-
ergy is very close to zero in collision between these two atoms. In contrast,
the closed channel can have few molecular bound states which are close to
the threshold of the open channel.

In magnetic Feshbach resonances, the energy difference between these
two channels could be controlled by applying a magnetic field if the magnetic
moments of channels are different. When the energy of one of the bound
states of the closed channel is approaching the scattering state in open chan-
nel, even a weak coupling between the atoms can cause the mixing between
two channels. On the other hand, scattering atoms spend a finite time as a
bound state and as a result, the effective interaction between the scattering
atoms could be very strong. Resonance happens when the energy of one
of the bound states is equal to the scattering atoms energy. The effective
interaction between atoms is described by a simple equation introduced in
Ref. [15] for s-wave scattering length a as a function of magnetic field B:

a(B) = abg

(

1− ∆

B −B0

)

(1.1)

where abg is the scattering length defined for open channel and is known as
the off-resonant value. B0 is the magnetic field where the resonance happens
and ∆ is the resonance width. On the positive side of the resonance, where
the energy of bound states of the closed channel is a little lower that the
energy of the atoms in open channel, the scattering state known as ”upper
branch” is a metastable state and atoms will form bound state in sufficiently
long time. The energy of these bound states is shown in Fig. 1.1. The bound
state energy is zero at the resonance. Away from resonance, the bound
state energy varies linearly with the magnetic field with slope δµ. But near
resonance, the strong mixing between two channels bends the molecular
state and the binding energy is given by:

2



1.1. Feshbach Resonances

Figure 1.1: Schematic picture of magnetic Feshbach resonance. When the
energy of the bound state of the closed channel approaches the energy of scat-
tering atoms in open channels, the effective interaction between the atoms
would be very high due to strong mixing of two channels. The positive
side of the resonance labeled by a > 0 is known as upper branch and it is
metastable. More discussions could be found in Ref. [16].
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1.2. Three-Dimensional Bose Gases

Eb =
−~

2

ma2
(1.2)

which is proportional to (B−B0)
2. The importance of near resonance regime

is the existence of universal properties. Here, the state can be described only
in terms of the scattering length independent of details of the interaction.

In this thesis, we are interested in physics of two- and three-dimensional
ultra cold gases initially prepared in the metastable upper branch near Fes-
hbach resonance. In the theoretical models presented in this thesis, the
interaction between atoms is solely contact and therefore corresponds to
the limiting case of a broad Feshbach resonance where the atomic (open)
channel dominates the physics.

1.2 Three-Dimensional Bose Gases

The experimental ability to vary the Hamiltonian parameters of ultra cold
atomic gases provides novel opportunities to create strongly interacting
systems exhibiting phenomena previously associated only with condensed
matter. In particular, the control over the magnitude and sign of the ef-
fective atom-atom interaction is achieved using Feshbach resonances [13].
In recent years, taking advantage of this tuning knob, a few experiments
have been carried out to understand the properties of Bose gases near res-
onance [14, 17–19]. As attractive Bose gases are unstable at low tempera-
tures, the primary focus of these experiments was to explore the properties
of a repulsive molecule-free Bose gas, commonly referred as “upper branch
physics”. The results of these experiments suggest that when a resonance
is approached from the side of small positive scattering lengths, Bose atoms
in the upper branch form a metastable condensate as they appear to equi-
librate on a short timescale compared to the one set by which atoms are
lost.

Meanwhile, on the theoretical front, even though the properties of quan-
tum degenerate gases far from resonance are well described by existing dilute
gas theories [7–12, 20], near resonance, very little is known. Very few theo-
retical works have tried to address the physics of Bose gases at large positive
scattering lengths. In fact, early numerical Monte Carlo simulations mainly
explored the physics of repulsive bosonic systems [21, 22]. More recently, nu-
merical energy minimization studies, conducted in a truncated Hilbert space
of experimental relevance, consistently pointed out the near fermionization
of Bose gases close to resonance [23–25]. By fermionization, we mean that

4



1.2. Three-Dimensional Bose Gases

the physical properties of the Bose gases, such as the momentum distribu-
tion and the spatial density resemble that of a Fermi gas. However, whether
the minimum of the restricted energy landscape still remains metastable
once the full Hilbert space is considered remains to be addressed.

The complexity of this topic to a large extent appears to be two-fold:
1) the role of few-body physics (two-body, three-body states etc) in

many-body systems. In other words, to what extent does the underlying
few-body physics influence the many-body correlations and which channel
dictates the many-body properties near resonance?

2) the effect of many-body background (condensate) on the few-body
structures. How are the few-body structures or multiple scatterings affected
by the presence of many other identical particles?

These two issues can be treated successfully and separately in the usual
dilute limit. For instance, in the leading order, one can neglect the effect of
finite-density background (condensed) atoms on multiple scatterings or un-
derlying few-body structures; the energy density can therefore be calculated
perturbatively by assuming the few-body scatterings are given by their prop-
erties in the vacuum and applying the low density expansion. The effects of
few-body structures on many-body physics can be explored perturbatively.
One can also further study the leading effect of quantum gases on two- and
three-body bound states because the many-body states in the dilute limit
are well-known. However, near resonance, these two issues are generically
entangled and ideally have to be addressed self-consistently, which usually
becomes very challenging.

In light of these theoretical challenges, and motivated by the recent ex-
perimental realizations of upper branch metastable condensates, we devel-
oped a novel non-perturbative self-consistent approach discussed in chapters
2 and 3 to explore the physics of long-lived condensates beyond the dilute
limit. Our work highlights that a quantum gas at a positive scattering length
near resonance is not always equivalent to a gas of effectively repulsive atoms.
This idea will be further developed in this thesis.

1.2.1 Current Experimental Status

Despite the clear need for a solid experimental understanding of a strongly
correlated bosonic fluid, fulfilling this task, in a cold atom context, has
proven extremely challenging. In contrast to Fermi gases [26, 27], for Bose
gases, difficulties arise as increasing the scattering length to very large pos-
itive values is accompanied by a catastrophic loss of atoms [28]. Neverthe-
less, using techniques requiring the gas to be probed for only a short time
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1.2. Three-Dimensional Bose Gases

compared to the time needed for the system to become unstable , a few
experimental groups succeeded in exploring Bose gases beyond the dilute
limit [14, 17–19]. We distinguish below two different regimes: the dilute
limit, and the strongly interacting regime.

Physically speaking the dilute limit is characterized by the inequality
na3 ≪ 1 where a is the s-wave scattering length and n the atomic density.
In this regime, the ground state energy density is

E

V
=

4π~2an2

m
(
1

2
+

64

15
√
π

√
n a3 + . . . ) (1.3)

where V is the volume of the system and m is the mass of the bosonic
atoms. The first term in Eq. (1.3) is the mean-field energy density while the
second term, the Lee-Huang-Yang (LHY) correction [8], describes the effect
of quantum fluctuations.

To the best of our knowledge, Ref. [17] is the first experimental work
which considered beyond-mean-field effects. The main focus of this experi-
ment was to probe the excitation spectrum of a gas of 85Rb atoms using a
spectroscopic technique. For a < 300a0, where a0 is the Bohr radius, their
findings agreed well with mean-field predictions. However, for larger scat-
tering lengths, their results deviated significantly from its mean-field value.
These measurements agreed somewhat qualitatively with the predicted Beli-
aev corrections [9]. This experiment was followed by the study of a Feshbach
resonance in a gas of 7Li [18]. This study mapped the Feshbach resonance
in a very large range of interaction strengths, and identified a region where
mean-field predictions were inapplicable. In turn, this experiment was fol-
lowed by a third one which carried out a quantitative measurement of the
thermodynamical equation of state of a strongly interacting Bose gas of
7Li [14]. Using density profile measurements, and assuming that all mea-
surements were done in the zero-temperature regime, this study found, for
scattering lengths between 700a0 and 2150a0, the equation of state to be
well described by LHY theory. Moreover, Ref. [14] probed physics beyond
the dilute limit, these results will be further discussed in the next section.
Finally, the most recent experiment used a fast-probing technique to investi-
gate local many-body equilibrium in a trapped gas of 85Rb atoms [19]. Using
radio-frequency spectroscopy, they measured the two-body contact, C2, an
extensive thermodynamical variable related to the derivative of the total en-
ergy of the system as a function of the scattering length and the ultra-violet
properties of the momentum distribution function. These universal contact
parameter has been first introduced for fermionic systems in Ref. [29] and
later on authors of Refs. [30, 31] utilized it to establish an exact expression
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1.2. Three-Dimensional Bose Gases

for the energy density. In this experiment, the contact measurements were
found to be larger than the mean-field predictions but not as large as the val-
ues predicted when LHY corrections were included. In addition, in regions
where beyond mean-field effects were expected, no measurable contribution
coming from three-body physics was found.

The strategy commonly used to access the strongly interacting limit con-
sists in preparing an equilibrated weakly interacting gas and to later ramp
up the interaction strength to the desired value. Consequently, as the scat-
tering length is increased, the dilute limit condition, na3 ≪ 1, stops being
fulfilled. Probing such a strongly interacting system is fairly complicated as,
near resonance, the timescales of recombination processes become compara-
ble to the equilibration time. Recombination process is a scattering event in
which three atoms interact and form a diatomic molecule and a free atom.
In this process, the binding energy is released into the kinetic energy of
the outgoing two-body bound state and the third atom which leads to im-
mediate trap loss. Hence, ramping up the scattering length cannot be done
adiabatically, and non-equilibrium effects must be taken into considerations.
The study presented in Ref. [14] considered these effects in order to extract
universal thermodynamical properties near unitarity (near Feshbach reso-
nance where the physics is universal and it only depends on the scattering
length). Under the assumption of universality, near resonance, the equation

of state should be given by µ ∝ ~2

mn2/3 as the only relevant length scale

should be the inter-atomic spacing n−1/3 where µ is the chemical potential.
This expression is identical, up to a multiplicative factor, to the equation
of state for a Fermi gas and can be written as µ = ξǫF where ǫF is the
Fermi energy at the same density. At large scattering length, due to the
gas metastability, the authors of this work deduced a lower bound for the
value of ξ by extrapolating their data at unitarity. They found ξ > 0.44(8)
meaning that the system is nearly fermionized.

1.2.2 Current Theoretical Understanding

In the last six decades, various theoretical frameworks were developed to
study three-dimensional Bose gases in the dilute limit. In this regime,
na3 ≪ 1, the average distance between the atoms is much larger than the
scattering length (corresponding, in this limit, to the interaction strength
between bosons). The mean-field description for these systems was devised
by Bogoliubov in 1947 [7] and the energy density is given by the first term of
Eq. (1.3). Later on, Lee, Huang and Yang [8] found the first correction to the
mean-field expression. In fact, the first corrections to the chemical potential,
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1.2. Three-Dimensional Bose Gases

condensate fraction, and energy density are all proportional to
√
na3, the

perturbation parameter in the dilute limit. It is worth noting that Beliaev,
using field theoretical methods, rederived LHY-type corrections and further
analyzed the excitation spectrum [9]. In addition, Wu [10], Sawada [11, 12]
and later Braaten et al. [20] succeeded in calculating the next order correc-
tions to the mean-field result.

Unfortunately, these corrections are only valid for a dilute gas, as beyond
this limit, na3 is not a small parameter. The perturbation method presented
in the previous section is then inapplicable as all terms of the expansion are
diverging. Therefore, one needs to define a whole new framework to study
the behavior of Bose gases near resonance where the scattering length is
extremely large.

In general, one can classify the scattering processes between atoms in
terms of (a) the order of perturbation in a given parameter (for example√
na3) or (b) the number of virtual atoms involved in these processes. In

(a), one takes into account all processes of the same perturbative order and
consequently the number of virtual particles involved is not fixed. On the
other hand, using the classification explained in (b), one takes into account
all processes involving a fixed number of virtual particles and sums over all
orders in the perturbative parameter of classification (a). Using this second
classification method, one can find the contribution of irreducible M -body
processes to the thermodynamical properties of a system beyond the dilute
regime. For example, in this case, the total energy density of the system is
written as

E

V
=

∞
∑

M=2

nM
0

M !
gM (n0, µ) (1.4)

where n0 is condensate density and gM is the irreducibleM -body interaction
potential. Consequently, classification (b) is not a perturbative approach and
we claim that the sum over the irreducible M -body processes is converging
rapidly (See Sec. 2.2 for more details). To verify this statement, we compare
the effect of the first and second terms of Eq. (1.4) on the self-consistent value
of the chemical potential. This approach is motivated by the observation
that, in the first order in perturbative parameter

√
na3, the dominating

part of the LHY correction comes from irreducible two-body interaction,
involving only two virtual particles, and that the combined effect of the
other processes, involving more than two virtual atoms, is less than one
percent. In addition, in the recent study in Ref. [32], using ǫ-expansion
near four dimensions, it was found that near resonance the physics of these
ultra cold gases is mainly dictated by two-body forces and the contribution

8



1.2. Three-Dimensional Bose Gases

of the scattering processes with more than two virtual particles involved in
the interaction is negligible when ǫ goes to zero. This study will be explained
in more detail in chapter 2.

Then, using the analytical expression of g2(n0, µ) in conjunction with
the number equation (which sets the number of particles in the system),
one can find a self-consistent equation for the chemical potential.

We present here the main features and predictions emerging from the
self-consistent framework at zero temperature explained above, and compare
these results with other existing theories. Within this self-consistent ap-
proach, we found, as a first salient result, that the system is nearly fermion-
ized as the maximum of the chemical potential is almost 93% 1 of the Fermi
energy (see chapter 2). This effect has also been identified in other theoreti-
cal studies, although the ratios of fermionization were different. In Ref. [23],
using the lowest order constrained variational method with a modified Jas-
trow wave function, they found in the dense limit that the chemical potential
is equal to 2.92ǫF , exceeding complete fermionization. By comparison, us-
ing a truncated Hilbert space variational method, Ref. [24] found that the
chemical potential saturates at a value of 0.8ǫF , while in Ref. [33], using
a renormalization group approach, the fermionization ratio near resonance
was found to be 0.66ǫF . Finally, more recently, a sophisticated variational
method found the Bose gas to be fermionized at 83% [25].

A clear advantage of the self-consistent approach discussed in chapters
2 and 3 is that it agrees in the dilute limit with LHY results. In fact,
99.96% of LHY corrections to the chemical potential are reproduced by only
taking into account all the irreducible two-body processes (i.e. scattering
processes involving only two virtual atoms). In Fig. 3.1(a), one sees that
the dashed line representing the chemical potential obtained from the mean-
field and LHY correction overlaps with the self-consistent results for small
an1/3. Note that in the atom-molecule field theory calculations presented
in Refs. [25, 33], the sign of the correction of order

√
na3 is opposite to the

LHY effect. However, in Ref. [25], the LHY effect is reproduced correctly in
their numerical simulation.

For negative bare interactions, there are two channels on the side of the
resonance where the scattering length goes to positive infinity, namely the
molecule channel and the atom channel, known as the upper branch. While
the molecule channel is lower in energy, one can prepare the Bose gas in
the upper branch at very small positive scattering length. Such an upper

1The value of ξ = 0.93 found in self-consistent diagrammatic approach for three-
dimensional Bose gases is for a range of three-body parameters relevant for cold atoms.
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1.2. Three-Dimensional Bose Gases

branch state can remain stable during a long time before collapsing to the
molecule channel. Using the self-consistent method one can show that, when
the scattering length is increased, the system will become unstable towards
the formation of molecules at the maximum of the chemical potential before
reaching the resonance point. Unfortunately, this approach does not offer
a complete picture of how molecules and atoms interact. Technically, this
instability appears in these calculations as the solution for the chemical
potential becomes complex. The imaginary part of the chemical potential
is interpreted as the hybridization of the molecule and atom channels. In
our study, this instability was first pointed out to be correlated with the
occurrence of a maximum in the chemical potential.

These highly non-trivial results were also obtained using a renormaliza-
tion group approach by looking at the running of the two-body coupling
constant at different energies (see chapter 3). This study shows that when
the resonance is approached from small positive scattering length in the up-
per branch, at a given scattering length, the effective interaction between
the atoms becomes attractive and the atomic and molecular channels hy-
bridize. We found the effective two-body interaction as a function of the
scattering length to be given by

g2 =
4π~2

m

1

1/a−
√

2mµ/~2
. (1.5)

One sees from the above expression that, when a is sufficiently large, the
second term in the denominator dominates, and g2 becomes negative. This
result is strikingly different from the picture commonly accepted by the
cold atom community where it is usually thought that, for negative bare
interactions, where scattering length is positive, the atoms repel each other.

A key concept we are going to focus on is the effective interaction be-
tween condensed atoms near resonance. The common belief is that although
the underlying short range resonance interaction has to be attractive, at low
energy scales the two-body interaction is effectively repulsive when the scat-
tering length a is positive. The argument runs as the following. The phase
shift due to a short range attractive potential is given as δ = − arctan ka
which yields δ = −ka when k is small. The phase shift approaches −π/2
when ka is much bigger than unity but much smaller compared to a/R∗,
R∗(≪ a) is the range of the attractive interaction. The low energy phase
shift δ = −ka turns out also to be the phase shift of any repulsive inter-
action with the same positive scattering length. And so the atoms interact
effectively repulsively if one is interested in the scatterings at small k. How-
ever, the phase shifts of a short range attractive potential and a repulsive

10



1.2. Three-Dimensional Bose Gases

interaction can become significantly different whenever ka is bigger than
unity; for instance, for a hard-core potential with radius R = a, δ = −ka
for all momenta, differing from the value of −π/2 for attractive potentials
when ka ≫ 1. Near resonance, a approaches infinity and the issue of the
effective interaction between condensed atoms becomes very subtle. Indeed,
near resonance we show that condensed atoms no longer interact with an
effective repulsive interaction even when the scattering lengths are positive,
a somewhat surprising conclusion to many.

In fact, in chapters 2 and 3 we showed that the behavior of the system is
set by the effective two-body interaction which becomes negative for suffi-
ciently large positive scattering length. The emergence of this instability is
a many-body effect which modifies the two-body physics. The effect of the
background (condensed) atoms on two-body bound state energy is to shift
the bound state channel by an amount proportional to the chemical poten-
tial for a range of scattering lengths we are interested in. In vacuum, the
energy of the bound state touches zero at resonance. However, adding the
effect of the background, one sees that the energy of the bound state now
touches zero at a finite and positive scattering length far before resonance.
At this point, the system becomes unstable and hybridization between the
molecule and atom channels occurs.

Finally, in chapter 2, the effects of the three-body interactions on the
chemical potential are also considered. These effects are obtained by taking
into account the second term, g3, in the energy expansion (Eq. (1.4)) 2. For
three-dimensional gases, including this three-body potential does not change
qualitatively the form of the solution. In fact, it only shifts the position of the
instability point. The effects of the three-body interaction were calculated
to be around a few percent near the instability point. compared with the
other studies cited earlier, the study presented in chapter 2 is the only work
that investigated the effect of Efimov physics beyond the dilute limit.

By Efimov physics, we mean the three-body physics of three-dimensional
Bose gases studied by Efimov. He showed that there are three-body bound
states on the both sides of the resonance. He predicted that near resonance,
there would be an infinite sequence of weakly three-body bound states with a
universal scaling behavior. Each successive Efimov state is weaker in binding
energy by a universal factor of 515 [34].

The self-consistent approach produces various interesting predictions. To

2In chapters 2 and 3, three-body recombination effects have been excluded in order
to explore the thermodynamics of a quasi-static upper branch condensate on a relatively
short timescale.
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summarize, using this method, one finds that an instability sets in at a posi-
tive critical scattering length beyond which the near-resonance Bose atomic
gas becomes strongly coupled to molecules, and loses its metastability. Near
this point of instability, the chemical potential reaches a maximum whose
value is interpreted as the fermionization ratio. In addition, where near-
resonance physics sets in, the effect of the three-body forces were estimated
in three dimensions to vary the value of the chemical potential by only a few
percent. These three-body forces were considered for a range of parameters
relevant for cold atoms.

Two of these predictions are consistent with current experimental find-
ings. In Ref. [14], the lower bound of the chemical potential was deduced to
be 0.44(8)ǫF . This result is in agreement with the self-consistent approach
which predicts a fermionization ratio of 93% near the instability point (see
chapter 2). Additionally, in a recent attempt to understand Bose-Einstein
condensates close to resonance, Ref. [19] used radio-frequency spectroscopy
to probe the effects of Efimov physics. In the accessible region beyond the
dilute limit, three-body effects were found to play no significant role. This
observation is consistent with the theoretical prediction obtained in chapter
2. In this study, three-body effects were estimated to be negligible compared
to two-body contributions in the dilute limit as well as at the point where
near-resonance physics fully sets in.

1.3 Two-Dimensional Bose Gases

Two-dimensional quantum many-body systems have been an interesting
topic for both condensed matter and nuclear physicists for many years. Af-
ter realization of confined quantum Bose gases to two-dimensional geome-
tries [35–38], the cold atom community also got attracted to this subject.
However, to this day, most of these experimental studies have investigated
these cold gases near the Berezinskii-Kosterlitz-Thouless phase transition
where quasi-condensates are destroyed by thermal fluctuations [39–41]. Nev-
ertheless, the fundamental properties of two-dimensional Bose gases near
absolute zero, where quantum fluctuations prevail thermal effects, have not
been completely explored yet. To be more specific, there have been a very
limited number of studies conducted on properties of 2D Bose gases near
the Feshbach resonance, both on theoretical and experimental aspects.

Two-dimensional Bose gases have two important advantages in compar-
ison with 3D Bose gases near resonance. The first advantage is the fact that
the ratio between elastic and inelastic collision cross sections could be in-
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1.3. Two-Dimensional Bose Gases

creased by a significant amount when atoms are confined to two-dimensional
geometries and as a result, the atom loss could be reduced [42]. The second
advantage is the universal nature of trimers (three-body bound states) and
few-body physics in these gases as two-body binding energy is the only rel-
evant energy scale of the spectrum. This universality implies that physics
of trimers in 2D is independent of short distance property of three-body
scatterings [43–46], in contrast to the physics of Efimov states in 3D where
the absolute energy scale is set by the ultraviolet physics of three-body in-
teractions [34].

Most of the previous studies on two-dimensional Bose gases are carried
out in the regime where the range of the repulsive interactions or the core
size of the hard-core bosons, a0, were much smaller than the average distance
between the particles [47–49]. Accordingly, the results of these works are

only applicable when
∣

∣

∣

1
ln(na20)

∣

∣

∣
(n is the density of bosons) is much smaller

than unity. This regime is known as the dilute limit of the two-dimensional
Bose gases. In our work presented in chapter 4, we focused on the physics
beyond the dilute limit for a 2D Bose gas prepared on the upper branch
and interacting via strong contact interaction. This setup could be obtained
experimentally by using Feshbach resonance and optical confinement (trap
geometry) [50–52]. To study 2D Bose gases near resonance, we introduced
a 2D effective scattering length a2D that is defined as the position of the
node in the wave function for two scattering particles and it is also identified
as the size of two-body bound state. In principle, this parameter could be
tuned to be larger than inter-atomic spaces and even be infinite.

We applied the same self-consistent approach introduced in Sec. 1.2 to
examine the contribution of two- and three-body interactions to physics of
2D Bose gases beyond the dilute limit. Our studies show that there is a com-
petition between three-body attractive interactions and two-body repulsive
interactions that determines the behavior of a Bose gas near resonance. We
also found that the energetics of these gases in large scattering lengths are
universal as they are fully characterized by the effective 2D scattering length.

Finally, we looked into the behavior of the chemical potential for a wide
range of interaction strengths. We found that the chemical potential first
increases with a2D but very quickly reaches a maximum at 1

ln(na22D)
= −0.135

beyond which the Bose gas develops a negative compressibility, where the
gas is unstable in size and finally shrinks to a droplet phase. Increasing a2D
further brings about an onset instability at 1

ln(na22D)
= −0.175. We identified

both critical values to be a direct consequence of the significant role played
by three-body attractive interactions.

13
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One might wonder how good is our truncation of diagrams by only keep-
ing two- and three-body interactions in our calculations. In Ref. [53], using
variational quantum Monte Carlo method, the physics of two-dimensional
Bose gases beyond dilute limit is investigated. In this study, the inverse com-

pressibility of the system is calculated for a wide range of
∣

∣

∣

1
ln(na20)

∣

∣

∣
and it is

shown that the compressibility becomes negative beyond 1
ln(na22D)

≃ −0.31.

The inverse compressibility becoming negative is interpreted as the appear-
ance of an instability in the system. This result is consistent with our
observation of the maximum point in the chemical potential beyond which
the compressibility is negative. The ratio of the contribution to the chemical
potential due to three-body interactions to the one due to two-body inter-
actions is negligible for very small scattering lengths, deep in dilute limit,
when the physics is mainly dictated by two-body interactions. This ratio
grows fast when the gas approaches the resonance, identifying the increas-
ingly prominent role played by three-body attractive interactions. Within
our approach, we can estimate the contributions from three-body interac-
tions to the two-body ones to be around 27% near the maximum of chemical
potential and 73% in the vicinity of the onset instability.

14



Chapter 2

Nature of Three-Dimensional
Bose Gases: Self-Consistent
Approach

2.1 Introduction

Recently, impressive experimental attempts have been made to explore the
properties of Bose gases near the Feshbach resonance [14, 17–19]. In these
experiments, it has been suggested that when approaching the resonance
from the side of small positive scattering lengths in the upper branch, Bose
atoms appear to be thermalized within a reasonably short time, well before
the recombination processes set in, and so to form a quasi-static condensate.
Furthermore, the life-time due to the recombination processes is much longer
than the many-body time scale set by the degeneracy temperature. This
property of Bose gases near resonance and the recent measurement of the
chemical potentials for a long-lived condensate by Navon et al. [14] motivate
us to make further theoretical investigations on the fundamental properties
of Bose gases at large scattering lengths.

The theory of dilute Bose gases has a long history, starting with the
Bogoliubov theory of weakly interacting Bose gases [7]. A properly regu-
larized theory of dilute gases of bosons with contact interactions was first
put forward by Lee, Huang, and Yang [8] and later by Beliaev [9, 54], who
developed a field-theoretical approach. Higher-order corrections were fur-
ther examined in later years [10, 12, 20]. Since these results were obtained
by applying an expansion in terms of the small parameter

√
na3 (here n is

the density and a is the scattering length), it is not surprising that, formally
speaking, each of the terms appearing in the dilute-gas theory diverges when
the scattering lengths are extrapolated to infinity. As far as we know, re-
summation of these contributions, even in an approximate way, has been
lacking 3. This aspect, to a large extent, is the main reason why a quali-

3Resummation is possible for two scattering atoms in a box of size L. The interaction

15



2.1. Introduction

tative understanding of Bose gases near resonance has been missing for so
long.

There have been a few theoretical efforts to understand the Bose gases at
large positive scattering lengths. The numerical efforts have been focused on
the energy minimum in truncated Hilbert spaces, which have been argued to
be relevant to Bose gases studied in experiments [23–25]. These efforts are
consistent in pointing out that the Bose gases are nearly fermionized near
resonance. However, there are two important unanswered questions in the
previous studies. One is whether the energy minimum found in a restricted
subspace is indeed metastable in the whole Hilbert space. The other equally
important issue is what is the role of three-body Efimov physics in the Bose
gases near resonance.

Below we outline a non-perturbative approach to study the long-lived
condensates near resonance. We have applied this approach to explore the
nature of Bose gases near resonance and to address the above issues. One
concept emerging from this study is that a quantum gas (either fermionic
or bosonic) at a positive scattering length does not always appear to be
equivalent to a gas of effectively repulsive atoms; this idea, which we believe
has been overlooked in many recent studies, plays a critical role in our
analysis of Bose gases near resonance.

Our main conclusions are fourfold: (a) energetically, the Bose gases close
to unitarity are nearly fermionized, i.e., the chemical potentials of the Bose
gases approach the Fermi energy of a Fermi gas with equal mass and den-
sity; (b) an onset instability sets in at a positive critical scattering length, be-
yond which the Bose gases appear to lose the metastability as a consequence
of the sign change of effective interactions at large scattering lengths; (c)
because of a strong coupling with molecules near resonance, the chemical
potential reaches a maximum in the vicinity of the instability point; (d) at
the point of instability, we estimate, via summation of loop diagrams, the
effect of three-body forces to be around a few percent.

Feature (a) is consistent with previous numerical calculations [23–25];
both (b) and (c) are surprising features, not anticipated in the previous
numerical calculations or in the standard dilute-gas theory [8, 54]. Our
attempt here is mainly intended to reach an in-depth understanding of the
energetics, metastability of Bose gases beyond the usual dilute limit as well
as the contributions of three-body effects. The approach also reproduces
quantitative features of the dilute-gas theory. In Sec. 2.2 and Appendices

energy should scale like 4πa
mL3 (1 + A a

L
+ ...) when a is much less than L (A is a constant)

but generically saturate at a value of the order of 1/2mL2 when a becomes infinite.
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2.2. Chemical Potential, Metastability and Efimov Effects

A-C, we outline our main calculations and arguments. In Sec. 2.3, we
present the conclusion of our studies.

2.2 Chemical Potential, Metastability and
Efimov Effects

The Hamiltonian we apply to study this problem is

H =
∑

k

(ǫk − µ)b†
k
bk + 2U0n0

∑

k

b†
k
bk

+
1

2
U0n0

∑

k

b†kb
†
−k +

1

2
U0n0

∑

k

bkb−k

+
U0√
Ω

√
n0

∑

k′,q

b†qbk′+q

2
b−k′+q

2
+H.c.

+
U0

2Ω

∑

k,k′,q

b†
k+q

2

b†−k+q

2

bk′+q

2
b−k′+q

2
+H.c. (2.1)

Here ǫk = |k|2/2m, and the sum is over nonzero momentum states. U0 is
the strength of the contact interaction related to the scattering length a via
U−1
0 = m(4πa)−1 −Ω−1

∑

k(2ǫk)
−1, and Ω is the volume. n0 is the number

density of the condensed atoms and µ is the chemical potential, both of
which are functions of a and are to be determined self-consistently. Above
Hamiltonian is generated by explicitly putting the momenta of some of the
creation and annihilation operators equal to zero. For some of the terms,
there are more than one way to set the momenta equal to zero. These choices
cause different numerical prefactors in front of the terms in the Hamiltonian.
For example, the second term in the Hamiltonian is produced by setting the
momentum of one of the creation and one of the annihilation operators equal
to zero. This term represents the interaction between one condensed atom
and one non-condensed atom as incoming particles and one condensed atom
and one non-condensed atom as outgoing particles. There are four different
ways to produce this term and therefore the numerical prefactor in front of
this term is 2 instead of 1/2.

The chemical potential µ can be expressed in terms of E(n0, µ), the
energy density for the Hamiltonian in Eq. (2.1), with n0 fixed [9, 55];

µ =
∂E(n0, µ)

∂n0
, E(n0, µ) =

∞
∑

M=2

gM (n0, µ)
nM
0

M !
, (2.2)
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2.2. Chemical Potential, Metastability and Efimov Effects

where gM (M = 2, 3, ...) are the irreducible M -body potentials that we will
focus on below (See Fig. 2.1). The density of condensed atoms n0 is further
constrained by the total number density n as

n = n0 −
∂E(n0, µ)

∂µ
, (2.3)

In the dilute limit, the Hartree-Fock energy density is given by Eq. (2.2),
with g2 = 4πa/m and the rest of the potentials gM ,M = 3, 4... set to zero.
The one-loop contributions to gM for M = 3, 4, ... in Figs. 2.2(c) and 2.2(d)
all scale like g2

√
na3, and their sum yields the well-known Lee-Huang-Yang

(LHY) correction to the energy density [8]. When evaluated in the usual
dilute-gas expansion, g2 as well as one-loop contributions formally diverge
as a becomes infinite. Below we regroup these contributions into effective
potentials g2,3... at a finite density n0 via resummation of a set of diagrams
in the perturbation theory. The approximation produces a convergent result
for µ.

Before proceeding further, we make the following general remark. In the
standard diagrammatic approach [9, 55], the chemical potentials can have
contributions from diagrams with L internal lines, S interaction vertices, and
X incoming or outgoing zero momentum lines, andX = 2S−L. For the nor-
mal self-energy (Σ11

4 ) and the anomalous counterpart (Σ02) introduced by
Beliaev, by classifying the diagrams Hugenholtz and Pines had shown that,
in general, the following identity holds [55] in the limit of zero energy and
momentum: µ = Σ11−Σ02. Normal self-energy describes processes in which
the number of particles out of the condensate is conserved (one incoming and
one outgoing non-condensed particle) and anomalous self-energy describes
the absorption of two non-condensed particles to condensate. Similarly, mu
describes the processes from condensate to condensate. Hugenholtz-Pines
theorem proves that for a general scattering process with different types of
internal vertices, zero-energy normal and anomalous self-energies and chem-
ical potential differ by the numerical factors and this numerical factor comes
from the number of different ways to connect the external lines of the di-
agram. For normal self-energy there are two ways to connect the external
lines to body of the diagram and for anomalous self-energy and the chemical
potential there is only one way to connect these lines. As a result, at low
energies Σ11 ≃ µ. Following a very similar calculation, we further find that

Σ11(n0, µ) = µ+ n0
∂µ

∂n0
, (2.4)

4To simplify the notation, in chapters 3, 4 and Appendices we denote Σ11 by Σ.
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2.2. Chemical Potential, Metastability and Efimov Effects

Figure 2.1: (a) Classification of M-body scattering processes: A diagram
give contribution to M-body potential if at most M virtual lines of the
diagram are cut at time t (dashed red line). All scattering processes are
time-ordered from left to right. (b) Sample of diagrams give contribution to
two- and three-body potentials.
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where µ = ∂E(n0, µ)/∂n0. The equality in Eq. (2.4) is effectively of a hydro-
dynamic origin. Following Eq. (2.4), the speed of Bogoliubov phonons [7]
vs can be directly related to an effective compressibility ∂n0/∂µ via mv2s =
Σ11 − µ = n0

∂µ
∂n0

, where the first equality is due to the Hugenholtz-Pines

theorem on the phonon spectrum 5. Note that hydrodynamic considerations
had also been employed previously by Haldane to construct the Luttinger-
liquid formulation for one-dimensional (1D) Bose fluids [56]. When na3 is
small, Eq. (2.4) leads to the well-known result, Σ11 = 2µ (see Appendix D).

The self-consistent approach outlined below is mainly suggested by an
observation that a subclass of one-loop diagrams [shown in Fig. 2.2(c)] yields
almost all contributions in the LHY correction (see below and Appendices
A and B). Resummation of these and their N -loop counterparts can be con-
veniently carried out by introducing the renormalized or effective potentials
g2,3 as shown in Figs. 2.2(a) and 2.2(b), where all internal lines represent,
instead of the noninteracting Green’s function G−1

0 (ǫ,k) = ǫ−ǫk+µ+iδ, the
interacting Hartree-Fock Green’s function, G−1(ǫ,k) = ǫ− ǫk−Σ11+µ+ iδ.
This approximation captures the main contributions to the chemical poten-
tial in the dilute limit because the renormalization of two-body interactions
is mainly due to virtual states with energies higher than µ where the Hartree-
Fock treatment turns out to be a good approximation (see Appendix D). The
self-consistent equation for µ can be derived by estimating g2,3,...(n0, µ) dia-
grammatically (see examples in Fig. 2.2). When neglecting g3,4,... potentials
in Eq. (2.2), one obtains

µ = n0g2(n0, µ) +
n2
0

4
g22(n0, µ)

∫

d3k

(2π)3
∂Σ11/∂n0

(ǫk +Σ11 − µ)2
,

n = n0 +
n2
0

4
g22(n0, µ)

∫

d3k

(2π)3
1− ∂Σ11/∂µ

(ǫk +Σ11 − µ)2
,

1

g2
=

m

4πa
+

1

2

∫

dk

(2π)3
(

1

ǫk +Σ11 − µ
− 1

ǫk
). (2.5)

Eqs. (2.4) and (2.5) can be solved self-consistently.
We first benchmark our results with the LHY correction or Beliaev’s

results for µ by solving the equations in the limit of small na3. We find
µ = 4π

m n0a(1 + 3
√
2π

√
n0a3 + ...), and the number equation yields an es-

5If we attribute the energy density to the zero-point energy of Bogoliubov phonons, for
an arbitrary scattering length, one can, using Eqs. (2.3) and (2.4), express the condensa-
tion density as n0 = n − 1/3π2(∂µ/∂ lnn0)

3/2m3/2. The long-wavelength dynamics thus
sets an upper bound on the value of ∂µ/∂ lnn0. The upper bound can be estimated to be
21/3ǫF , where ǫF = (6π2)2/3n2/3/2m is the Fermi energy defined for a gas of density n.
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Figure 2.2: Diagrams showing contributions to the total energy E(n0, µ).
The dashed lines are for k = 0 condensed atoms, thick solid internal
lines in (a) and (b) are for interacting Green’s functions G−1(ǫ,k) =
ǫ − ǫk − Σ11 + µ + iδ, and thin solid lines in (c) and (d) are for nonin-
teracting Green’s function G−1

0 (ǫ,k) = ǫ− ǫk+µ+ iδ. (a) The blue circle is
for g2(n0, µ); vertices here represent the bare interaction U0 in Eq. (2.1). (b)
(N = 1, 2, ...)-loop diagrams that lead to the integral equation for G3(−3η, p)
in Eq. (2.6). Note that the usual tree-level diagram violates the momentum
conservation and does not exist; the one-loop diagram has already been in-
cluded in g2(n0, µ) and therefore needs to be subtracted when calculating
g3(n0, µ). Arrowed dashed lines here as well as in (c) and (d) stand for out-
going condensed atoms, and the remaining dashed lines stand for incoming
ones. (c) and (d) The tree level and examples of one-loop diagrams that
yield the usual Lee-Huang-Yang corrections in the limit of small na3. The
self-consistent approach contains contributions from (c)-type diagrams but
not (d)-type ones (see further discussion in the text). Patterned green circles
also represent the sum of diagrams in (a), but with thin internal lines, or
the noninteracting Green’s function G0 lines. All vertices are time ordered
from left to right. 21
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timate n0/n = (1 −
√
2π
2

√
na3 + ...). The second terms in the parentheses

are of the same nature as the LHY correction. Comparing to Beliaev’s per-
turbative result for chemical potential, µ = 4π

m n0a(1 +
40
3
√
π

√
n0a3 + ...) [9],

and for the condensation fraction n0/n = 1− 8
3
√
π

√
na3 + ..., one finds that

the self-consistent solution reproduces 99.96%(= 9π
√
2/40) of the Beliaev’s

correction for the chemical potential, and 83.30%(= 3π
√
2/16) of the de-

pletion fraction in the dilute limit. Technically, one can further examine
g2(n0, µ) by expanding it in terms of a and Σ11 and then compare with the
usual diagrams in the dilute gas theory [9]. One indeed finds that g2(n0, µ)
in Eq. (2.5) effectively includes all one-loop diagrams with X = 3, 4, 5, ...
incoming or outgoing zero-momentum lines that involve a single pair of vir-
tually excited atoms [between any two consecutive scattering vertices; Fig.
2.2(c)]. The one-loop diagrams with X = 4, 5, ... incoming or outgoing zero-
momentum lines that involve multiple pairs of virtual atoms [Fig. 2.2(d)]
have been left out, but they only count for less than 0.04% of Beliaev’s
result 6.

Following the same line of thought, one can also verify that g2(n0, µ)
further contains (N = 2, 3, 4, ..)-loop contributions that only involve one pair
of virtual atoms; each two adjacent loops only share one interaction vertex
and are reducible. g3(n0, µ) included below, on the other hand, includes
(N = 2, 3, 4, ..)-loop contributions with S = 4, 5... interaction vertices that
only involve three virtual atoms; two adjacent loops share one internal line
instead of a single vertex [see Fig. 2.2(b)] and are irreducible, i.e., cannot
be expressed as a simple product of individual loops. Effectively, we take
into account all the virtual processes involving either two or three dressed
excited atoms in the calculation of the chemical potential µ by including
the effective g2,3 (defined in Fig. 2.2) in Eq. (2.2). The processes involving
four or more excited atoms only appear in g4,5... and are not included here;
at the one-loop level following the above calculations, the corresponding
contributions from the processes involving multiple pairs of virtual atoms
are indeed negligible.

A solution to Eq. (2.5) is shown in Fig. 2.3. An interesting feature
of Eq. (2.5) is that it no longer has a real solution once n1/3a exceeds the
critical value of 0.18, implying an onset instability; this is not anticipated
in the dilute-gas theory [8]. So as a approaches infinity, condensed atoms
with a chemical potential µ typically see each other as attractive rather

6Two diagrams in Fig. 2.2(d) correspond to the lowest-order contribution to the irre-
ducible renormalized g4.
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2.2. Chemical Potential, Metastability and Efimov Effects

than repulsive, resulting in molecules 7. Thus, beyond the critical point
the upper branch atomic gases become strongly coupled to the molecules
with a strength proportional to the imaginary part of µ. Consequently, we
anticipate that µ decreases quickly beyond the critical scattering length due
to the formation of molecules, leading to a maximum in µ in the vicinity of
the critical point 8.

A renormalization group approach based on atom-molecule fields was
also applied in a previous study to understand Bose gases near resonance9 [33].
Our results differ from theirs in two aspects. First, in our approach, an onset
instability sets in near resonance even when the scattering length is positive,
a key feature that is absent in that previous study. Second, when extrapo-
lated to the limit of small na3, the results in Ref. [33] imply a correction of
the order of

√
na3 to the usual Hartree-Fock chemical potential but with a

negative sign, opposite to the sign of LHY corrections. In a recent study [25],
a self-consistent mean-field equation was employed, leading to a similar con-
clusion as the approach in Ref. [33]; the approach does not yield the correct
sign of the LHY corrections. And so the onset instability pointed out in our
study, which is surprising from the point of view of dilute-gas theory, is also
absent there.

The chemical potential near the critical point can be estimated using
Eq. (2.5) and is close to 0.93ǫF , where ǫF = (6π2)2/3n2/3/2m is the Fermi
energy defined for a gas of density n. This is consistent with the picture
of nearly fermionized Bose gases suggested by the previous calculations and
experiments [14, 23–25, 33].

We now turn to the effect of g3(n0, µ) on the chemical potential by in-
cluding it in Eq. (2.2). We estimate g3 by summing up all N -loop diagrams
with X = 3 incoming or outgoing zero momentum lines, which are repre-

7One should thus expect an instability in a near-resonance Fermi gas as well. The
pairing dynamics previously emphasized in D. Pekker, M. Babadi, R. Sensarma, N. Zinner,
L. Pollet, M. W. Zwierlein, and E. Demler, Phys. Rev. Lett. 106, 050402 (2011) is
consistent with this conclusion. Molecule dynamics in a Bose-Einstein condensate was
also studied in L. Yin, Phys. Rev. A 77, 043630(2008). Although LHY corrections and
three-body forces were not taken into account in that random phase approximation, the
molecule formation discussed there appears to be consistent with our conclusion on the
loss of metastability.

8Interestingly, a maximum in the Bragg line shift at a finite wave vector was found
when the LHY correction is 0.22 in Ref. [17]. The maximum in µ in this paper occurs
when the LHY correction is 0.45.

9For field-theory-based approaches to the lower-branch unitary gases, see Y. Nishida
and D. T. Son, Phys. Rev. Lett. 97, 050403 (2006), P. Nikolic and S. Sachdev, Phys.
Rev. A 75, 033608 (2007) and M. Y. Veillette, D. E. Sheehy, and L. Radzihovsky, Phys.
Rev. A 75, 043614 (2007).
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Figure 2.3: (a) Chemical potential µ in units of the Fermi energy ǫF and
(b) condensation fraction as a function of n1/3a. Beyond a critical value
of 0.18 (shown as circles), the solutions become complex, and only the real
part of µ is plotted; the imaginary part of µ scales like ǫF (a/acr − 1)1/2

near acr. (However, the sharp transition would be smeared out if the small
imaginary part of G3 is included.) Dashed lines are the result of the Lee-
Huang-Yang theory, thin solid blue lines are the solution without three-body
effects (i.e. g3 = 0). Thick solid red lines are the solution with g3 included;
the momentum cutoff is Λ = 100n1/3. The inset is the relative weight of
three-body effects in the chemical potential as a function of Λn−1/3 at the
critical point.
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2.2. Chemical Potential, Metastability and Efimov Effects

sented in Fig. 2.2(b). All diagrams have three incoming or outgoing zero
momentum lines but with N = 2, 3, .. loops. The effect of three-body forces
due to Efimov states [34] was previously studied in the dilute limit [20]. The
deviation of the energy density from the usual universal structures (i.e., only
depends on na3 ) was obtained by studying the Efimov forces in the zero-
density limit. The contribution obtained there scales like a4, apart from
a log-periodic modulation [57], and again formally diverges as other terms
when approaching a resonance.

It is necessary to regularize the usual a4 behavior at resonance in the
three-body forces by further taking into account the interacting Green’s
function when calculating the N -Loop six-point correlators. Including the
self-energy in the calculation, we remove the a4 dependence that usually
appears in the Bedaque-Hammer-Van Kolck theory for the three-body in-
teractions [57]; when setting µ,Σ11 to zero, the equation collapses into the
corresponding equation for three Bose atoms in vacuum, which was previ-
ously employed to obtain the β function for the renormalization flow in an
atom-dimer field-theory model. The sum of loop diagrams in Fig. 2.2(b),
G3(−3η, p), satisfies a simple integral equation (m set to be unity; see Ap-
pendix C):

G3(−3η, p) =
2

π

∫

dqK(−3η; p, q)

× q2
√

3q2

4 + 3η − 1
a

[G3(−3η, q) − 1

q2 + 3η
],

K(−3η; p, q) =
1

pq
ln

p2 + q2 + pq + 3η

p2 + q2 − pq + 3η
, (2.6)

where we have introduced η = Σ11(n0) − µ. G3(−3η, 0) is plotted numeri-
cally in Fig. 2.4. Three-body potential g3(n0, µ) is related to G3(−3η, 0) via
g3(n0, µ) = 6g22ReG̃3(−3η, 0) where G̃3 is obtained by further subtracting
from G3 the one-loop diagram in Fig. 2.2(b) because its contribution has
already been included in g2(n0, µ). The structure of G3(−3η, 0) is particu-
larly simple at a = +∞, as shown in Fig. 2.4: It has a desired log-periodic
behavior reflecting the underlying Efimov states [34]. When 3η is close to an
Efimov eigenvalue Bn = B0 exp(−2πn/s0) [n = 1, 2, 3....,exp(2π/s0) = 515]
that corresponds to a divergence point in Fig. 2.4, the three-body forces are
the most significant. When 3η is in the close vicinity of zeros in Fig. 2.4,
the three-body forces are the negligible and Bose gases near resonance are
dictated by the g2 potential.
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2.3. Summary

When including the real part of g3(n0, µ) in the calculation of E(n0, µ),
we further get an estimate of three-body contributions to the energy density
and chemical potential µ. The contribution is non-universal and depends
on the momentum cutoff in the problem. For typical cold Bose gases, it
is reasonable to assume the momentum cutoff Λ in the integral equation
Eq. (2.6) to be 100n1/3 or even larger. Quantitative effects on the chemical
potential are presented in Fig. 2.3.

Note that G3(−3η, 0) also has an imaginary part even at small scatter-
ing lengths; this corresponds to the well-known contribution of three-body
recombination. The onset instability discussed here will be further rounded
off if the imaginary part of G3 is included. However, for the range of pa-
rameters we studied, both the real and imaginary parts of G3 appear to be
numerically small (see also Fig. 2.3); the energetics and instabilities near acr
are found to be mainly determined by the renormalized two-body interaction
g2(n0, µ).

2.3 Summary

In conclusion, we have investigated the energetics of Bose gases near reso-
nance beyond the Lee-Huang-Yang dilute limit via a simple resummation
scheme. We have also pointed out an onset instability and estimated three-
body Efimov effects that had been left out in recent theoretical studies of
Bose gases near resonance [23–25, 33]. In addition, we showed that the
Bose gases are nearly fermionized before an onset instability sets in near
resonance. The non-perturbative method presented above becomes exact in
the dilute limit if one only keeps the virtual processes involving two atoms.
In this limit, this approach reproduces 99.96% of the LHY result for the
chemical potential. Near resonance, it was established that the three-body
Efimov effect only contributes a few percent to the overall chemical po-
tential. Unless the contributions coming from M -body interactions are a
non-monotonic function of M , we believe the contributions from four-, five-
, etc. body interaction processes should be even smaller and hence negligible.

The recent study presented in Ref. [32] supports the above argument. In
this study, the authors combined ǫ-expansion method near four dimensions
with the self-consistent approach introduced in this chapter to investigate
the physics of Bose gases in higher dimensions. Using this technique, they
could estimate the full expression of the total energy density of the system
including all the M -body potentials. They found that near resonance, only
contribution from the one-loop diagrams are important and higher order
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2.3. Summary

loops contributions are suppressed by higher powers of ǫ. Moreover, they
showed that the two-body interaction potential has the main contribution
to the chemical potential of a Bose gas found by solving self-consistent equa-
tions, indicating the dominant role of two-body scattering events in higher
dimensions. This study implies that the contribution of M -body potentials
with M > 2 becomes less and less important when one goes to higher di-
mensions. On the other hand, in our study on two-dimensional Bose gases
presented in chapter 4 we have shown that three-body interaction plays an
important role in the physics of these gases beyond the dilute limit. But,
as mentioned in this chapter in three dimensions the contribution of these
scattering events is approximated to be around a few percent near the in-
stability point. So, we predict that the non-trivial results we found in this
chapter would remain qualitatively unchanged by adding the contribution
of M -body interaction potentials with M > 3.
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Chapter 3

Nature of Three-Dimensional
Bose Gases: Renormalization
Group Approach

3.1 Introduction

In this chapter, we make an attempt to understand the fundamental prop-
erties of Bose gases near Feshbach resonance via examining the intriguing
interplay between the few- and many-body physics in Bose gases at large
positive scattering lengths. For this purpose, we introduce a simple self-
consistent renormalization-group-equation approach to address both sides
of the coin. Many-body properties of a quantum gas are shown to influence
the renormalization flow of few-body running coupling constants resulting
in the change of the sign of the effective two-body interaction constants.
That in return completely dictates the many-body physics near resonance
and leads to peculiar features in the chemical potentials. We limit ourselves
to the resonances with a very short effective range.

The approach outlined in this chapter is an alternative to the more elab-
orated diagrammatic resummation mentioned in chapter 2. The two ap-
proaches yield almost identical results. In Sec. 3.2, we first carry out a
simple scaling argument, as a caricature of resonating Bose gases, illustrat-
ing the relevance of fermionization in Bose gases near resonance, and discuss
the limitation of the coarse grain procedure. We also remark on a close rela-
tion between the effective two-body interactions and Lee-Huang-Yang cor-
rections in Ref. [8]. In Secs. 3.3 and 3.4, we discuss the energetics of dimers
and trimers in condensates and explore the implications on the many-body
physics. Especially, we point out that in addition to the fermionization phe-
nomenon, an instability sets in at a positive critical scattering length as a
signature of formation of dimers in condensates. We also show this aspect is
a consequence of the sign-change of the renormalized two-body interactions
between the condensed atoms; the effect of the condensate on the two-body
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3.2. A Caricature

interaction constant is investigated via taking into account the self-energy
of dimers and via imposing an infrared boundary condition for the renor-
malization flow. In Sec. 3.5, we summarize the results of diagrammatic
resummation presented in chapter 2. In Sec. 3.6, we conclude our studies.

3.2 A Caricature

3.2.1 Relevance of Fermionization: A Scaling Argument

The energetics of Bose gases near resonance can be qualitatively understood
via a coarse grain procedure which is more or less equivalent to the real
space renormalization transformation. The simplest implementation of this
is to first divide a quantum gas into N blocks each of which is of the size of
ξ × ξ × ξ where ξ = 1/

√
2mµ is the coherence length and µ is the chemical

potential. Because the chemical potential is a non-additive thermodynamic
quantity, it is natural to define it as the change of energy when adding an
additional atom to a particular block and the effect of other blocks is to
set an appropriate boundary condition. Therefore, the chemical potential
can be considered as the interaction energy between the added atom and
existing atoms in the block. If we further assume the interaction energy is
dictated by a pairwise one, then

µ = ǫ2(ξ, a;n)nξ
3 (3.1)

where ǫ2(L = ξ, a;n) is the characteristic interaction energy between two
atoms in the block and nξ3 is the number of atoms in the block with n
being the number density. This is a standard coarse grain procedure which
relates a microscopic quantity ǫ2(ξ, a;n) and a thermodynamic quantity,
the chemical potential µ. The estimate of ǫ2(ξ, a;n) itself is a full many-
body problem that is usually very difficult to carry out. In the dilute limit,
however, one can show that when two atoms interact in a box of size ξ,
the probability of being scattered by the third particle is negligible because
the mean free path l is proportional to 1/n4πa2 (a is the scattering length)
much longer than ξ. In fact,

ξ

l
∼ a

ξ
∼

√
na3 (3.2)

which is small in the low density dilute limit. So at least in this limit,
we can approximate ǫ2(L = ξ, a;n) as the energy of two interacting atoms
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3.2. A Caricature

ǫ2(L = ξ, a;n = 0) in an empty box of the size of the block. If we assume this
is also qualitatively correct even in the unitary limit, then we have a very
simple self-consistent equation; the only knowledge we need to solve this
equation is how two atoms interact in a box of size ξ at arbitrary scattering
length a. ǫ2(ξ, a; 0) for a contact resonance interaction can be worked out,
either by assuming two atoms are in a harmonic trap of harmonic length ξ or
in a block of size ξ. The asymptotic behaviors are universal up to numerical
prefactors. For two atoms in a block of size L,

ǫ2(L, a; 0) =

{

4πa
mL3 (1 + C1

a
L + ...) when a ≪ L;

C2
2mL2 when a ≫ L.

(3.3)

C1,2 are two positive prefactors depending on the details of the block and
are of little importance for our qualitative discussions here. It is important
to notice that at resonance, ǫ2(L = ξ, a = ∞; 0) is finite and scales like the
kinetic energy of an atom moving in an empty box of size ξ.

Substituting the results in Eq. (3.3) into Eq. (3.1), one obtains the
estimate of chemical potential. In the dilute limit,

µ =
4πan

m
(1 + C1

√
8πna3 + ...); (3.4)

the correction to the first Hartree-Fock term is the leading finite size cor-
rection to the interaction energy and belongs to the well-known Lee-Huang-
Yang effect. When a approaches infinity on the other hand, this simple
procedure leads to the prediction of fermionization. That is

µ =
1

2mξ2
=

C2nξ

2m
, or µ ∼ n2/3

2m
, (3.5)

which scales as the Fermi energy of a Fermionic quantum gas with the same
density and mass. Although crude, the coarse grain shown here points to
a phenomenon that was previously seen in a few numerical calculations.
Given that it is very simple, we consider it quite a success. The relevance of
fermionization to Bose gases near resonance was observed in a few theoretical
studies [23–25, 33].

This aspect of Bose gases near resonance is also an essential feature of
Tonks-Girardeau gases or hard-core bosons in one dimension [58, 59]. The
one-dimensional Bose fluids were later further studied using the Luttinger
liquid formulation [56].
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3.2. A Caricature

3.2.2 Running Two-Body Interaction Constants

But how good is the starting point that near resonance we can approximate
ǫ2(L, a;n) as the two-particle interaction in an empty box completely ne-
glecting the effect of many other identical particles? To address this, we
estimate ǫ2(L, a;n), the interaction of two atoms in a box of size L via
employing a more sophisticated approach, the real space renormalization
transformation (RSRT) which further takes into account the many-body ef-
fect on ǫ2(L, a;n). This approach indicates that fermionization cannot be
the whole story.

Consider, instead of ǫ2(L, a; 0) discussed above,

g2(L, a;n) = ǫ2(L, a;n)L
3 (3.6)

which is the effective strength of the short range two-body interaction. Again
we divide the length scales in RSRT into two regimes that are separated by
ξ: the short distance regime in which two- and few-body physics dominates
and the long wavelength regime where the many-body collective effect dom-
inates. ξ defines the interface where the microscopic few-body parameter g2
at shorter distance needs to match the macroscopic coarse grain condition.

So at scales smaller than ξ, we can employ the RSRT of the two-body
running coupling constant g2(L, a; 0) in vacuum to monitor the effective
interaction. This approximation could be done because the finite density
has very little effect in this regime i.e. g2(L, a;n) = g2(L, a; 0) + O(L/ξ).
At larger distances, because g2 defined here is subject to a thermodynamic
constraint of the chemical potential at L ∼ ξ, the effect of the condensate
on g2 or ǫ2 is to impose a boundary condition on the flow of g2(L, a;n) via
the coarse-grain condition in Eq. (3.1). And in this approach, the collective
physics at scales larger than ξ influences the flow solely through a simple
boundary condition.

Practically, since L defines the size of micro-blocks in the renormaliza-
tion procedure, it therefore defines the momentum cut-off via Λ = L−1. The
transformation from L to L′ is equivalent to rescaling the momentum from
Λ to Λ′ = L′−1. To obtain the running coupling constant, one can use the
standard momentum-shell renormalization procedure to track the transfor-
mation from the original g2 to the new g′2 when the Hilbert space or the
momentum cut-off is rescaled from Λ′ to Λ = Λ′ − δΛ (see Fig. 3.1).

The reduced two-body Hamiltonian we use for this illustration is

32



3.2. A Caricature

H2−body = H< +H> +H><

H< =
∑

k

ǫkb
†
kbk +

g2
2Ω

∑

k,k′

(b†kb
†
−kbk′b−k′ + h.c.)

H> =
∑

p

ǫpb
†
pbp +

g2
2Ω

∑

p,p′

(b†pb
†
−pbp′b−p′ + h.c.)

H>< =
g2
2Ω

∑

k,p

b†
k
b†−k

bpb−p + h.c.. (3.7)

Here b†
k
(bk) is the creation (annihilation) operator for a Bose atom with

momentum k and Ω is the volume. The sum in H< is over momenta |k|, |k′|
smaller than Λ and the sum in H> is over the states within the shell in Fig.
3.1, i.e. |p|, |p′| ∈ [Λ,Λ′]. H>< describes the off-shell scattering from low
momentum states with |k| < Λ into the high energy states with momenta
p within the shell and vice versa. This interaction can induce an effective
scattering between low momentum states (k,−k) and (k′,−k′), |k|, |k′| ≤ Λ,
via virtual states (p,−p) within the shell.

When rescaling, the states within the shell thus lead to an additional
contribution to the two-body interaction in H<. One can obtain the beta-
function for the renormalization equation diagrammatically. This calcula-
tion is very similar to the T-matrix calculation except one should restrict
to the virtual states within the shell between Λ′ and Λ = Λ′ − δΛ. The dia-
gram in Fig. 3.1 represents such an additional contribution to the effective
two-body interaction,

−iδg2(Λ
′) = i4g2(Λ′)

∫ ′

dp

(2π)3

∫

dǫ

2π
G0(ǫ,p)G0(−ǫ,−p),

G0(ǫ,p) =
1

ǫ− p2

2m + iδ+
. (3.8)

Here the momentum integral
∫ ′

is over the states within the shell shown in
Fig. 3.1, i.e. Λ′ > |p| > Λ.

After carrying out the energy and momentum integrals, one can easily
find the transformation for the two-body interaction constant

g2(Λ
′ − δΛ) = g2(Λ

′)− m

2π2
g22(Λ

′)δΛ +O(δΛ2). (3.9)
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3.2. A Caricature

Figure 3.1: a) Schematic of the renormalization of the low energy on-shell
scattering amplitude. An initial state (k,−k) on the inner sphere is first
scattered into off-shell high energy states (p,−p) represented by the shell
region between two outer momentum spherical surfaces (dashed) before fi-
nally being scattered back into (k′,−k′) on the inner sphere. Here the outer
dashed spherical surface is defined by Λ′ and the inner dashed one by Λ;
Λ ≤ |p| ≤ Λ′. b) The one-loop diagram that leads to the renormalization
equation below. The internal lines are for states within the shell region
described in a). Each vertex stands for the two-body interaction g2(Λ

′).
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The transformation of g2 under the real space rescaling can be obtained
by converting Λ to L−1. For a quantum gas with a finite density, we therefore
have (g̃2 = g2/L)

∂g̃2(L)

∂ lnL−1
=

m

2π2
g̃22(L) + g̃2(L),

g̃2(L = R∗) =
U0

R∗ , g̃2(L = ξ) =
µ

nξ
. (3.10)

The boundary condition at L = ξ is exactly the condition in Eq. (3.1),
i.e. at scale ξ the microscopic running coupling constant has to match the
thermodynamic constraint suggested by µ, assuming the main contribution
to µ is from the two-body interaction g2(L, a;n). At a very short distanceR∗,
the boundary condition is set by U0, the strength of the bare two-body short
range attractive interaction with range R∗. For the resonance phenomena
we are interested in, R∗ is always much smaller than a.

By contrast, in a vacuum the coupling constant g2 should flow to the
value of 4πa/m, the standard form of the two-body effective interaction, or

∂g̃2(L)

∂ lnL−1
=

m

2π2
g̃22(L) + g̃2(L),

g̃2(L = R∗) =
U0

R∗ , g̃2(L → ∞, a;n = 0) =
4πa

mL
. (3.11)

For a bare attractive two-body interaction with strength U0(< 0) and range
R∗, the boundary condition at L = ∞ in Eq. (3.11) establishes a well-
known relation between U0 and the scattering lengths a. g2 = Lg̃2(L) as the
solution to Eq. (3.11) can be expressed in terms of a,

g2(L, a;n = 0) =
4πa

m

1

1− 2a
πL

. (3.12)

Obviously, g2 appears to be repulsive only in the limit of long wavelength
when L ≫ a. At short distances R∗ < L ≪ a,

g2(L, a;n = 0) → −2π2L

m
(3.13)

is negative and independent of R∗ or a. Eq. (3.13) indicates a universal form
of the two-body running coupling constant that induces resonance scatter-
ings. This crossover from repulsive to attractive interactions happens at
L∗ ∼ a.
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One can further show that for a repulsive interaction that leads to the
same zero energy scattering length a, g2 also flows toward the value of 4πa/m
when L is much longer than the range of interaction. For instance for a
hard-core potential with a = R∗ where R∗ is the radius of the hard-core,
one obtains the same expression as Eq. (3.12) except that the range of L is
2a/π < L < ∞; and not surprisingly, g2 in this case is repulsive for arbitrary
length scales.

So only in the long wavelength limit, the attractive interaction with
positive scattering lengths yields the same physics as the repulsive ones
even though at short distances they are distinctly different. At the zero
energy, the effective interaction is 4πa/m, repulsive as long as a is positive
disregarding whether the bare interactions are repulsive or attractive. For a
long time, this has been a common belief in the field of cold atom physics.

As we will see below, this no longer holds near resonance when the
many-body renormalization effects due to condensed atoms are further taken
into account. The reason for this is that the low energy window where we
can approximate the resonance interaction as a repulsive one (which is of
order 1/ma2) gets so narrow that the effect of condensates on the two-body
coupling becomes particularly pronounced near resonance.

The renormalization-equation approach had been previously applied to
analyze the effective field theories for few-body scattering phenomena [60].
They were also successfully employed to identify the coupling constants and
quantum phases in the field theory models for the lower branch unitary gases
[61–63]. It was later employed to explore the physics of geometric resonances
and confinement induced scattering phenomena [64]. Our application to
Bose gases is perhaps another excellent example to demonstrate that the
simple and generic approach of renormalization can lead to some surprising
breakthroughs.

Eq. (3.10) is a RSRT equation which satisfies Eq. (3.1) and yields
an estimate of ǫ2(ξ, a;n) or g2. The boundary condition leads to a self-
consistent equation for µ. When expressing in terms of a using the solution
to Eq. (3.11), one finds

µ = n
4πa

m

1

1− 2
π

√
2mµa

. (3.14)

Again in the limit where a is much less than ξ, the equation yields the
Hartree-Fock energy plus the correction of Lee-Huang-Yang character;
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Figure 3.2: The solution to the self-consistent boundary condition,
Eq. (3.14). The solution is obtained by solving Y (x) = x2/(n1/3a) −
(2/π)x3 = 8π, where x2 = 2mµ/n2/3. From the top to bottom are Y (x) for
a < acr, a = acr and a > acr. At acr, the equation has only one solution
and above acr there are no real solutions.
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µ =
4πan

m
(1 +

4
√
2√
π

√
na3 + ...). (3.15)

Another solution of µ scales as 1/a2 consistent with the binding energy
of lower branch molecules and we do not consider here. In the unitary limit
however, the equation not only indicates fermionization but also suggests a
critical point beyond which there are no real solutions to the equation. This
is most obvious when a is infinity and g2 becomes negative. This property
of Eq. (3.14) is illustrated in Fig. 3.2. One can show that at the critical
point,

n1/3acr =
1

6
π1/3, µcr = 2π4/3n

2/3

m
; (3.16)

two real solutions merge into a single one. Beyond this point, the equation
yields a complex solution to the chemical potential.

The RSRT suggests an important feature that is absent in the sim-
plest coarse grain approach (Eqs. (3.1) and (3.3)). It turns out that near
resonance, there is a substantial modification of the underlying two-body
physics, i.e. dimer energetics and therefore the interaction energy between
condensed atoms ǫ2; it can no longer be justified to approximate ǫ2(ξ, a;n)
as the interaction energy in an empty box or at zero density. In fact as
shown below, the uplifted dimers (towards condensates) cause an instability
of atomic condensates when approaching the resonance from the molecular
side. The emergency of the imaginary part of the chemical potential be-
yond the critical point signifies a hybridization between atoms and molecules
which is missing in the simplest coarse grain argument. In the next section,
we further elaborate on this fascinating aspect of Bose gases near resonance.

3.3 Dimers and Trimers in a Condensate: The
Spectrum Flow

How are the dimers or trimers formed in the presence of a condensate or
of a quantum gas? In the context of quantum mixtures, there have been
a few attempts to answer this question: how are the few-body structures
affected by the presence of a Fermi surface [65–68]? Surprisingly, so far little
effort has been made to understand the dimers and trimers in the presence
of a condensate, partially because the background of a condensate is more
dynamical compared to that of a Fermi sea. Since this plays a critical role
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3.3. Dimers and Trimers in a Condensate: The Spectrum Flow

in the interplay between few- and many-body physics that interests us, here
we make an effort to estimate the effect.

It is possible to solve the two-body and three-body S-matrices in the
presence of the many-body effect due to the self-energy. Assuming the self-
energy of quasi-particles is Σ, 10 one finds that for two incoming atoms with
momentum p,−p scattered into p′,−p′ and with total frequency E,

G2(E;p,p′) = U0 + U0

∫

d3q

(2π)3
1

E − 2η − 2ǫq + iδ+
G2(E;q,p′) (3.17)

where η = Σ− µ. A diagrammatic representation is given in Fig. 3.3(a). In
the dilute limit, η = µ = 4πan/m; in general, Σ, µ and η are unknown and
need to be determined self-consistently later on. For now, we simply assume
that η is a given parameter (see Appendix D).

G2(E;p,p′) = G2(E) as a result of the short range interaction and note
that when η = 0 or in vacuum, G0

2(E = 0) = 4πa/m (superscript 0 indicates
the case of vacuum) and G0

2(E) = 4πa/m(1− ia
√
mE). One can then show

that in the presence of the condensate,

G2(E) = G0
2(E − 2η); (3.18)

the pole of G2(E) is shifted from the pole in vacuum by 2η. The pole defines
the dimer binding energy and so

ǫD = ǫ0D + 2η (3.19)

where ǫD and ǫ0D are the binding energy of dimers in the presence of a con-
densate and in vacuum, respectively. At a given positive scattering length,
the dimer spectrum flows (in the energy space) towards the zero energy
where the condensate lives as one increases the η.

One can also calculate the amplitude of three-body scatterings corre-
sponding to the processes described in Fig. 3.3(b). We consider a general
case where three incoming momenta are k1 = p/2 − q, k2 = p/2 + q and
k3 = −p, and outgoing ones are k′

1 = p′/2 − q′, k′
2 = p′/2 + q′ and

k′
3 = −p′. The scattering amplitude between theses states are then given

by A3(E;p,p′) where q and q′ do not enter explicitly; it represents the sum
of diagrams identical to Fig. 3.3(b).

It is more convenient to work with the reduced amplitude G3(E;p) =
A3(E;p, 0) where p′ is already taken to be zero. G3(E;p) itself obeys a

10As explained in chapter 2, Σ stands for Σ11
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3.3. Dimers and Trimers in a Condensate: The Spectrum Flow

simple integral equation as can be seen by listing the terms in the summation
explicitly. The diagrams in Fig. 3.3(b) yield (see Appendix E; the mass is
set to be one, i.e. m = 1),

1

4
G3(E, p) = −1

2
K(E − 3η; p, 0)

+
2

π

∫

dq
K(E − 3η; p, q)q2

√

3
4q

2 + 3η − E + iδ+ − 1
a

−1

q2 + 3η − E

+

(

2

π

)2 ∫

dqdq′

(

K(E − 3η; p, q)q2
√

3
4q

2 + 3η − E − 1
a

K(E − 3η; q, q′)q′2
√

3
4q

′2 + 3η − E − 1
a

× −1

q′2 + 3η − E

)

+ · · · (3.20)

where K(E − 3η; p, q) is the kernel defined as

K(E − 3η; p, q) =
1

pq
ln

p2 + q2 + pq + 3η − E

p2 + q2 − pq + 3η − E
, (3.21)

The sum of the above infinite series leads to the following integral equation
of G3 as

G3(E, p) = −2K(E − 3η; p, 0) +
2

π

∫

dq
K(E − 3η; p, q)q2
√

3
4q

2 + 3η − E − 1
a

G3(E, q).

(3.22)
When η = 0 as in vacuum, this equation is identical to an integral equa-
tion previously obtained in an atom-dimer model to study the renormalized
three-body forces [57]. Comparing to G3(E, p) in vacuum when η = 0, again
one finds that the energy of a trimer in a condensate ǫT is related to ǫ0T , its
vacuum value via

ǫT = ǫ0T + 3η. (3.23)

What Eq. (3.23) shows is a simple fact of a condensate. If all the finite
momentum atoms have a mean-field energy shift Σ − µ with respect to
condensed atoms, the energy of few-body bound states (with finite k com-
ponents) experiences the corresponding energy shifts. As a consequence,
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3.4. Sign Change of g2: A Consequence of Spectrum Flow

when ǫT = 0, we should expect that the three-body forces in a condensate
should be divergent. This was observed numerically in our study presented
in chapter 2; the three-body potential is divergent when 3η = −ǫn where ǫn
are the Efimov eigenvalues with n = 1, 2, 3, ....

What is the consequences of the spectrum flow or the energy shift due
to the condensate? The main consequence is that in a condensate, a dimer
crosses the zero energy, or the energy of condensed atoms at a positive
critical scattering length aD or ǫD = 0 when

2η(aD) =
1

ma2D
, (3.24)

where η itself is a function of aD. By contrast, in vacuum a dimer crosses
the zero energy or the scattering threshold at resonance or a = ∞. If we
simply apply the Hartree-Fock approximation Σ = 2µ = 8πan/m, we find
η = µ and

n1/3aD = (1/8π)1/3. (3.25)

Beyond this point, one has to take into account the hybridization between
atoms and molecules. The dimer formation in condensates was previously
studied in a random-phase approximation; those results are qualitatively
consistent with the picture painted here [69]. Pairing instability and for-
mation of molecules in the upper branch Fermi gas was emphasized in Ref.
[70].

Since it is necessary to have molecules below condensates for the con-
densed atoms to have effective repulsive interactions, the penetration of
dimers into the condensate implies a change of the sign of interactions, from
repulsive to attractive ones that can lead to a potential instability. Below
we further amplify this aspect.

3.4 Sign Change of g2: A Consequence of
Spectrum Flow

In a condensate, the low energy two-body interaction constant is renormal-
ized not only by the virtual scattering states as in vacuum but also by the
interactions with the condensed atoms. The latter effect is many-body in
nature. Below we focus on the particular many-body effect related to the
self-energy of virtual states and include this in the renormalization proce-
dure. The self-energy of non-condensed atoms is due to scatterings by the
condensate and depends on the interaction strength and density of atoms.
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= + + +...

a)

b)

+ + +...+

Figure 3.3: Diagrams for the calculations of dimer and trimer energy in a
condensate. a) is for two-atom channels. Each solid internal line here is for
a Green’s function of non-condensed atoms with the self-energy effect taken
into account, G−1(ǫ,k) = ǫ− ǫk − Σ+ µ+ iδ+. b) is the loop diagrams for
the three-atom channel.

We now apply a self-consistent renormalization group equation (RGE)
to investigate this issue. To study the coupling constant, we start with the
assumption that the self-energy and the chemical potential of non-condensed
particles are already given as Σ and µ. The simplest Hartree-Fock Green’s
function for virtual atoms is of the form

G(ǫ,p) =
1

ǫ− p2

2m − Σ+ µ+ iδ+
. (3.26)

We then calculate g02(Σ, µ), the zero energy effective interaction between
condensed particles for a given η = Σ − µ using a very similar procedure
as that in Sec. 3.2 except G0 in Eq. (3.8) now should be replaced with G
defined here. This replacement effectively takes in the multiple scatterings
by a condensate in two-body scattering processes shown explicitly in Fig.
3.3(c). The corresponding renormalization group equation (RGE) for the
running couple constant g̃2 = g2(Λ)Λh can be found to be,

∂g̃2(Λh)

∂ ln Λh
=

m

2π2
g̃22(Λh) + g̃2(Λh),

Λh = Λ−
√

2mη arctan
Λ√
2mη

, (3.27)
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3.4. Sign Change of g2: A Consequence of Spectrum Flow

where Λh is the dynamical length relevant to the renormalization transfor-
mation and depends on the many-body parameter η. When η = 0 as in
vacuum, g2 flows to the desired value of 4πa/m. With a finite η, we find
that g2 runs to the following value

g02 = lim
Λh→0

g̃2(Λh)

Λh
=

4πa

m

1

1−√
2mηa

(3.28)

as Λh becomes zero and all the k 6= 0 virtual states are included in the
renormalization transformation. The resultant g02 is the effective interaction
between condensed atoms after all non-condensed or virtual states are inte-
grated out. Eq. (3.28) was proposed in chapter 2 as an effective interaction
for condensed atoms. This is also fully consistent with the RSRT result
presented in Sec. II.

At first sight, the structure of Eq. (3.28) appears to be very similar to the
zero-density expression for the two-body running coupling constant g̃2(L) in
Eq. (3.12). However, the physical implication is entirely surprising. First
of all, g02 , the effective interaction between condensed atoms, now depends
on kη =

√
2mη; so it is now a function of Σ − µ, or the density of the gas,

reflecting a many-body effect. In the dilute limit,

g02 =
4πa

m
(1 +

√
8πna3 + ...); (3.29)

the first term stands for the Hartree-Fock energy and the second one yields
the Lee-Huang-Yang type correction to the energy density of Bose gases.

Most importantly, unlike in vacuum where the zero energy effective inter-
action constant 4πa/m is always positive as far as a, the scattering length,
remains positive, in condensates g02(Λ = 0) is positive only in the dilute limit
when

√
mηa ∼

√
na3 ≪ 1. When approaching the resonance, for a given

Σ− µ, the effective interaction between condensed atoms becomes negative
before a becomes infinity as indicated in Fig. 3.4. In other words, the pres-
ence of a condensate completely alters the flow of the coupling constant at
the low energy limit; it changes the sign of the effective interaction constant
near resonance.

The property of Bose gases near resonance is dictated by this change of
the sign of interactions. In fact as a precursor of this, pure atomic conden-
sates lose metastability as seen in chapter 2. Microscopically, the change of
sign of g02 is correlated with and driven by the molecules entering the conden-
sate. In the approximation employed here, the sign change occurs exactly
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3.4. Sign Change of g2: A Consequence of Spectrum Flow

when the molecules penetrate into the condensates at scattering length aD
(see Eq. (3.24)).

To further determine η or µ and Σ and understand the effect of the sign
change of g02 on the condensate, we should specify a boundary condition in
the RGE. The following steps have to be carried out. Once g02 is found as
a function of Σ and µ, one can apply it to calculate E(n0, µ), the energy
density of the system with n0 condensed atoms and non-condensed particles
at chemical potential µ. Following the general thermodynamic relations, the
chemical potential for the condensed particles µc should be

µc =
∂E(n0, µ)

∂n0
, E =

1

2
g02n

2
0. (3.30)

For the ground state we further require that the condensed atoms are in
equilibrium with the non-condensed reservoir at chemical potential µ:

µ = µc (3.31)

as first suggested by Pines and Hugenholtz [55]. One can verify that Eqs.
(3.28),(3.30) and (3.31) are identical to the corresponding self-consistent
diagrammatic equations employed in chapter 2. More explicitly, one finds
that for g02 ,

g02n0 +
n2
0

2

∂g02
∂η

∂Σ

∂n0
= µc (3.32)

One can view Eq. (3.30) and (3.31) as a boundary condition for g̃2(Λh)
in the RGE in Eq. (3.27) when Λh = 0 and if ∂Σ/∂n0 is given. To fi-
nally solve the equation self-consistently, one needs to supply Eq. (2.4) in
previous chapter to further determine that ∂Σ/∂n0 = 2η/n0 and the set of
equations produced in this way are identical to the set in chapter 2 derived
diagrammatically.

To illustrate the main features, we now make a few further simplifications
without losing the generality. One is that we neglect the n0-dependence in
Σ so that µc = g02n0. Second is that we further approximate n0 as n because
they are of the same order in the regime of our interest. We then have
a single parameter renormalization equation Eq. (3.27) with the following
boundary condition

g02 = lim
Λh→0

g̃2(Λh)

Λh
=

µ

n
. (3.33)
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Figure 3.4: a) g2 (in units of 4πa/m) as a function of kη =
√
2mη at a

given scattering length a; η = Σ − µ is a function of density and is equal
to 4πna/m in the dilute limit. Note that when akη =

√
8πna3 ≪ 1 or in

the dilute limit, g2 approaches its vacuum value of 4πa/m but deviates from
it substantially once kηa is of order of unity. At resonance when 1/a = 0,
g2 is negative for any arbitrary η implying attractive interactions between
condensed atoms. b) Illustration of the dimer energy (in units of n2/3/2m)
in the presence of a condensate (the upper curve). The dashed line indicates
dimers are no longer well defined because of the coupling to the continuum.
As a reference we also show the dimer energy in vacuum (the lower curve).
Note that in vacuum, the dimers reach zero energy right at resonance.
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3.4. Sign Change of g2: A Consequence of Spectrum Flow

Last, although η = Σ − µ in general should be βµ with β being an
unknown but smooth function of a, n0 and µ, in the dilute limit β = 1 (see
Appendix D). Eq. (2.4) in previous chapter implies that β varies between 1
in the dilute limit and 2/3 in the fermionized limit that interests us. So we
can neglect its variation by simply setting β = 1 for this part of discussion.
Eq. (3.27) and the boundary condition for the RGE in Eq. (3.33) now lead
the following single parameter self-consistent equation for µ,

µ

n
=

4πa

m(1−√
2mµa)

(3.34)

which, apart from a numerical prefactor in the denominator, is identical to
Eq. (3.14) which was obtained empirically. The numerical solution of this
is presented in Fig. 3.5.

Two essential features are shown in Fig. 3.5. First, the chemical poten-
tial reaches a maximum at acr as a precursor of the sign-change of two-body
interaction g02 near resonance. The value of the maximum is around 89%ǫF ,
very close to the values obtained in a constrained variational approach [24]
and in a diagrammatic resummation approach in chapter 2 (see Table 3.1
for details). Here ǫF = (6π2)2/3n2/3/2m is the Fermi energy for a gas with
the number density n.

Above the critical scattering length, the chemical potential develops an
imaginary part.

Imµ =
8

(3π)2/3
ǫF (

a

acr
− 1)1/2 (3.35)

when the scattering length a is increased slightly beyond the critical point
acr = 0.18n−1/3.

The drop in the chemical potential beyond the critical scattering length
acr implies a negative compressibility and hence an energetic instability.
This occurs at the same time as the chemical potential becomes complex
and an onset dynamic instability sets in. Therefore, a quantum gas com-
pletely loses its metastability beyond this critical point. The maximum in
the chemical potential and the correlated emergent dynamic instability re-
main to be probed within the current experimental time scales.

A different renormalization group approach based on an atom-molecule
model was also applied in a previous study to understand Bose gases near
resonance [33]. Our results differ from theirs in two aspects. First, in our ap-
proach, an onset instability sets in near resonance even when the scattering
length is positive, a feature that is absent in that previous study. Second,
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Figure 3.5: The numerical solution to the self-consistent equation Eq. (3.34).
The chemical potential (the real part) reaches the maximum (blue circle)
when n1/3a = 0.18; beyond this point the chemical potential develops an
imaginary part (dotted line). The dashed line is the chemical potential in
the Lee-Huang-Yang theory. The smooth contributions from the three-body
potential g3 (not shown here) were studied in the previous diagrammatic
calculations explained in chapter 2 and turn out to be around a few percent
of the effect shown here.
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when extrapolated to the limit of small na3, the results in Ref. [33] imply a
correction of the order of

√
na3 to the usual Hartree-Fock chemical potential

but with a negative sign, opposite to the sign of LHY corrections and/or our
results. The results of the self-consistent approach in Ref. [25] are similar
to the ones in Ref. [33] but differ from ours. In table 3.1, we make further
comparisons by listing the main features in different approaches.

Fermionized∗ LHY Efimov Max. in µ,
effect physics instability

Cowell et al., Yes No No No
2002[23] (2.92ǫF )

†

Song et al., Yes No No No
2009[24] (0.80ǫF )

Lee et al., Yes No†† No No
2010[33] (0.66ǫF )

Diederix et al., Yes No†† No No
2011[25] (0.83ǫF )

Borzov et al., Yes Yes Yes Yes†††

2012[2] (0.93ǫF )

Table 3.1: Comparison of different theory approaches.
* The lower bound of µ was measured to be around 0.44ǫF in the ENS
experiment [14].
† The value in the bracket indicates the estimated chemical potential; same
below. The estimated chemical potential 2.92ǫF exceeds the result for a
completely fermionized gas.
†† In the field theory approaches there, the signs of the correction of the
order of

√
na3 are opposite to the LHY effect. However, the LHY effect was

reproduced in the numerical program in Ref. [25].
††† This is seen both in the diagrammatic resummation and the RG approach
outlined here. Note that 0.93ǫF is for a range of three-body parameters
relevant to cold atoms.

3.5 Diagrammatic Resummation: A

Self-Consistent Approach

From a phenomenological point of view, it is quite appealing to generalize
the self-consistent coarse grain relation in Eq. (3.1) by further taking into
account the three-body effective interaction g3;
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µ = ng2(ξ, a;n) +
n2

2
g3(ξ, a;n) (3.36)

where g2,3(L, a;n) are the renormalized two- and three-body interaction con-
stants respectively at length scale L and ξ−1 =

√
2mµ. If one can calculate

these renormalized quantities, then one is able to obtain µ which includes
the effect of g3. We have proceeded further from here using the renormaliza-
tion group equations similar to what was discussed in Secs. 3.2 and 3.3; they
yield qualitatively the same results as the diagrammatic approach presented
in chapter 2. However, when benchmarking against the dilute gas theory,
the diagrammatics turn out to be numerically superior; the diagrammatic
resummation used in previous chapter reproduces 99.96% of Lee-Huang-
Yang corrections in the dilute limit. Here, we review the framework of the
diagrammatic calculations and briefly comment on the results.

In the diagrammatic approach, we first define the chemical potential of
non-condensed particles as µ and the number density of condensed atoms
as n0. The energy density can be calculated as E(n0, µ) (see below). Then
one should have the following set of self-consistent equations for a gas with
total number density n,

µc =
∂E(n0, µ)

∂n0

n = n0 −
∂E(n0, µ)

∂µ

µ = µc (3.37)

where µc is the chemical potential for the condensed atoms and has to be
equal to the chemical potential µ in equilibrium. We further introduce the
self-energy Σ of non-condensed atoms or virtual particles to facilitate the
calculation of E(n0, µ) that now explicitly depends on Σ(n0, µ). Thus, Eq.
(3.37) has to be further supplemented by

Σ(n0, µ) = µc(n0, µ) +
∂µc

∂ lnn0
(3.38)

which can be proven in the same fashion as the Pines-Hugenholtz theorem
[55]. Eq. (3.37) and (3.38) have been applied to obtain the chemical poten-
tial in 3D Bose gases near resonance in chapter 2.
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Calculations of E(n0, µ) for a given Σ(= η + µ) can be carried out dia-
grammatically. If we restrict ourselves to the virtual processes involving only
two or three excited atoms and truncate the Hilbert space accordingly, then
diagrammatically we only need to collect the diagrams which contribute to
the effective two- and three-body interaction constants g2,3. As far as the
chemical potential is concerned, this truncation turns out to be highly pre-
cise in the dilute limit (refer to Sec. 2.3). The result is listed below. The
mass m is set to be one:

E(n0, µ) =
1

2
n2
0g2(2η) +

1

3!
n3
0g3(3η)

g2(2η) = 4πa
1

1− 2
π

√
2ηa

g3(3η) = 6g22(3η)Re
2

π

∫

dq
K(−2η; 0, q)q2
√

3
4q

2 + 3η − 1
a

G
′

3(−3η, q)

(3.39)

where G
′

3(−3η, p) is a solution of the following integral equation

G
′

3(−3η, p) =
2

π

∫

dq
K(−3η; p, q)q2
√

3
4q

2 + 3η − 1
a

[
−1

q2 + 2η
+G

′

3(−3η, q)]. (3.40)

−1
2K(−3η; p, q) is again the one-particle Green’s function projected to the

S-wave channel; it is defined as

K(−3η; p, q) =
1

pq
ln

p2 + q2 + 3η + pq

p2 + q2 + 3η − pq
. (3.41)

The numerical solution to these self-consistent equations was shown in
chapter 2 and they are qualitatively the same as the solution to the self-
consistent RGE for g2 and we are not going to repeat here 11. Here we want
to make a few further comments on the resummation technique.

First, g2 defined this way is an effective two-body interaction renor-
malized by the condensate and includes a subset of N -body interactions

11There are two ways of estimating G3 which slightly differ from each other; the dif-
ference is due to singular behavior of the Green’s function at k = 0 in the Hatree-Fock
approximation as commented on in Appendix C. Here we evaluate G3 by first setting all
external lines to be the condensed atoms.
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defined in the vacuum. At the one-loop level, it yields the most dominating
contribution; the residue effects are from the irreducible N = 4, 6, ...-body
interactions which contains less than one thousandth of the total contribu-
tion.

Second, the three-body contribution in our self-consistent approach ap-
pears to be around a few percent and numerically insignificant. Since when
compared to g2, the contribution from g3 in the dilute limit as well as near
resonance is small, it is reasonable to conjecture that further inclusion g4,5,...
would not change our result presented here in a substantial way (refer to
Sec. 2.3). The truncation of the energy density expression at g3 should
be accurate enough for all the practical purposes of studying Bose gases
near resonance. We hope these statements can be tested in precision mea-
surements of chemical potentials as well as in future quantum Monte Carlo
simulations.

Third, the energy density expression in Eq. (3.39) becomes exact in
the limit where only the processes involving two or three virtual atoms are
allowed. Effectively, this is equivalent to truncating the Hilbert space and
including the correlations up to the trimer channel.

3.6 Summary

The RGE approach is instrumental to our understanding of the emergent
phenomena in quantum few- and many-body systems. The application to
Bose gases near resonance perhaps is another example of what a simple RGE
transformation can lead to. We have applied this approach to understand the
nature of Bose gases near resonance and found that energetically, the Bose
gases close to unitarity are nearly fermionized before an onset instability
sets in, i.e. the chemical potentials of the Bose gases approach that of
the Fermi energy of a Fermi gas with equal mass and density. Beyond the
instability point, the chemical potential has an imaginary part indicating
strong hybridization with molecules.

The model we have employed to study the Bose gases near resonance is
a short range attractive potential which has a range much shorter than the
inter-atomic distance of the gases or effectively a contact potential. This is
a very good approximation of real physical interactions between cold atoms.
If the potential is a short range but repulsive , then Bose gases are always in
the dilute limit because the scattering lengths are bounded by the range of
interactions, disregarding the strength of potential. For bosons interacting
with a repulsive potential but with a range comparable to the inter-particle
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distance, we should anticipate the physics in this limit to be very similar
to what happens in liquid 4He [54, 71–75]. The excitation spectrum should
develop roton minima that imply strong short range crystal correlations.
When the range of interactions is further increased, eventually there should
be a quantum transition to a crystal where all bosons are depleted from
the condensate. The physics of repulsive bosons and liquid 4He belong
to a different universality class which fundamentally differs from what we
described in this thesis, i.e. the properties of nearly fermionized Bose gases
near resonances with a contact interaction.
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Chapter 4

Nature of Two-Dimensional
Bose Gases

4.1 Introduction

Two-dimensional quantum many-body systems have been, for many years,
a subject of fascination for condensed matter and nuclear physicists alike.
More recently, this topic also caught the attention of the cold atom commu-
nity with the realization of quantum Bose gases confined to two-dimensional
geometries [35–38]. These experimental studies have so far explored these
systems at temperatures close to the Berezinskii-Kosterlitz-Thouless phase
transition [39–41]. They highlighted the loss of long-range order due to the
proliferation of vortices above the transition temperature, and the existence
of two-dimensional quasi-condensates with algebraic long-range order and
long wavelength thermal fluctuations below the transition. However, the
fundamental properties of two-dimensional Bose gases near absolute zero,
where quantum effects are dominant, have yet to be addressed. In partic-
ular, on both theoretical and experimental sides, very little work has been
carried out to study two-dimensional Bose gases near resonance. The main
purpose of this chapter is to provide new light on the properties of two-
dimensional Bose gases in this limit.

Compared to three-dimensional Bose gases near resonance, which re-
ceived more attention in recent years [14, 17–19], two-dimensional gases
possess important advantages. First, the ratio between elastic and inelas-
tic collision cross sections can be significantly enhanced when atoms are
confined to two-dimensional traps [42]. Second, in two dimensions, trimers
and few-body structures are all universal as the absolute energy scale of the
spectrum is uniquely set by the two-body binding energy and is indepen-
dent of the short distance property of three-body interactions [43–46]. This
is distinctly different from the physics of Efimov states in three dimensions
as, in this case, the absolute energy scale is set by the ultraviolet physics of
three-boson scatterings [34].
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These advantages are related to the dramatic suppression of the low
energy effective interactions and phase shifts by coherent interference in
two-dimensional Bose gases. In fact, for an arbitrary repulsive interaction,
the low energy two-body scattering phase shifts are logarithmically small in-
dicating an asymptotically free limit. This aspect of scattering theory plays
a critical role in the physics of two-dimensional dilute Bose gases. Most pre-
vious works on two-dimensional Bose gases considered systems where the
range of the repulsive interactions or the core size of the hard-core bosons,
a0, were much smaller than the inter-particle distances [47–49]. Conse-
quently, the results of these studies are only applicable when 1

ln(na20)
(n is

the density of bosons) is much smaller than unity, a limit corresponding to
dilute gases in two dimensions. Here, we focus on the physics beyond the di-
lute limit to study two-dimensional Bose gases prepared on the upper branch
and interacting via a resonating contact interaction. Such a setup can be
achieved experimentally through a combination of Feshbach resonance and
optical confinement [50–52]. Theoretically, to study two-dimensional near-
resonance Bose gases, we introduce a two-dimensional effective scattering
length a2D. This new tuning parameter is formally defined as the position
of the node in the wave function for two scattering particles and is also
identified as the size of the two-body bound state. In general, a2D can be
tuned to values larger than the averaged inter-atomic distance and can even
be infinite.

Our study of two-dimensional Bose gases at large scattering lengths un-
veils that near resonance the properties of these gases are primarily dictated
by the competition between three-body attractive interactions and two-body
repulsive forces. We also show that the energetics of two-dimensional Bose
gases near resonance are universal as they only depend on the parameter
na22D. Finally, we investigate the behavior of the chemical potential for a
wide range of scattering lengths. We find that the chemical potential first in-
creases with a2D but very quickly reaches a maximum at 1

ln(na22D)
= −0.135

beyond which the Bose gas develops a negative compressibility. Increasing
a2D further brings about an onset instability at 1

ln(na22D)
= −0.175. We iden-

tify both critical values to result from the important role played by three-
body attractive interactions. In Ref. [53], using variational quantum Monte
Carlo method, the physics of two-dimensional Bose gases beyond dilute limit
was investigated. In this study, the inverse compressibility of the system is
calculated for large range of two-dimensional scattering lengths and it is
shown that the compressibility becomes negative beyond 1

ln(na22D)
≃ −0.31,

for large gas parameters. The vanishing of inverse of compressibility is in-
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terpreted as the onset of instability against cluster formation. This result
is consistent with our observation of the maximum point in the chemical
potential beyond which the compressibility is negative and the instability of
the system at the second critical point. Within our approach, we can esti-
mate the contributions from three-body interactions to the two-body ones
to be around 0.27 near the maximum of chemical potential and 0.73 in the
vicinity of the onset instability.

4.2 Self-Consistent Approach for

Two-Dimensional Bose Gases

To carry out this study of two-dimensional Bose gases, we employ a method
we previously developed to understand the physics of three-dimensional Bose
gases near resonance [2, 3] explained in chapter 2. In this approach, the
chemical potential of non-condensed particles, µ, and the density of con-
densed atoms, n0, are first introduced as given parameters. The Hamiltonian
describing such a condensate interacting with non-condensed atoms through
a short-range interaction is the same the three-dimensional Hamiltonian in
Eq.(2.1) except that three-dimensional volume, Ω, is now replaced by two-
dimensional area, S. Later, we will evaluate n0 and µ self-consistently as
a function of the two-dimensional scattering length, a2D, and of the total
density n.

Once the full system energy density E(n0, µ) is known, one can calcu-
late µc, the chemical potential for the condensed atoms, and n − n0, the
density of non-condensed atoms using the thremodynamical relations in-
troduced in chapter 2. In addition, in the ground state, one requires µc,
the chemical potential for the condensed atoms, to be equal to the chem-
ical potential µ. This equilibrium condition, first emphasized in Ref. [55],
yields a self-consistent equation. The evaluation of E(n0, µ) for a given µ
and n0 is usually carried out diagrammatically [9, 55]. To capture the role
of three-body interactions and to compare it with two-body contributions,
we restrict ourselves to the virtual processes involving only two or three
excited atoms. Truncating the Hilbert space accordingly, we can then sum
up all connected diagrams contributing to the energy density. Within this
truncation scheme, only the irreducible two- and three-body effective inter-
action potentials g2,3 appear in the final expression for E(n0, µ). In order
to implement the self-consistency condition and simplify the computation
of E(n0, µ), we introduce for the non-condensed or virtual atoms an addi-
tional parameter η = Σ − µ where Σ(n0, µ) is the self-energy. Physically, η
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4.2. Self-Consistent Approach for Two-Dimensional Bose Gases

can be understood as an energy shift due to the interaction between con-
densed and non-condensed atoms. Using the same series of diagrams as in
our study of three-dimensional Bose gases near-resonance, but carrying out
the calculations in two spatial dimensions, we obtain for the energy density

E(n0, µ) =
1

2
n2
0g2(2η) +

1

3!
n3
0Re (g3(3η))

with g2(2η) =
~
2

m

4π

ln B2
2η

, g3(3η) = 6g22(2η)g
∗
3(3η)

where g∗3(3η) =
~
2

m

∫

4qdq

2η + q2
G

′

3(−3η, q)

ln B2

3q2/4+3η

. (4.1)

g2,3 stand for, respectively, the renormalized two- and three-body interac-
tions in a condensate. We will discuss this point in more details below.
G

′

3(−3η, p) represents the three-atom off-shell scattering amplitude (corre-
sponding to the sum of all N-loop contributions with N = 1, 2, 3, ...). G

′

3 is
the solution to the following integral equation (see Appendix F for more de-
tails), where ~ and m were intentionally set to unity to improve readability,

G
′

3(−3η, p) =

∫

4qdq

ln B2
3q2/4+3η

1
√

(3η + p2 + q2)2 − (pq)2

×
( −1

2η + q2
−G

′

3(−3η, q)
)

. (4.2)

Note that in Eqs. (4.1) and (4.2), B2 = Λexp
(

4π~2

U0m

)

where Λ is an energy

cutoff related to the effective interaction range, R∗, via Λ = ~2

mR∗2 . As

B2 =
~2

ma22D
, g2,3 are uniquely determined by the parameter n~2

mB2
or na22D.

For repulsive interactions (or positive U0), B2 is larger than Λ and so
a2D is bounded from above by the interaction range R∗. When U0 is infi-
nite (hard-core potential), a2D is equal to the core size a0. For attractive
interactions (or negative U0), the case we focus on here, B2 is precisely the
dimer binding energy, and a2D is the size of the bound state and can well
exceed R∗. As a consequence, na22D, the fundamental tuning parameter for
E(n0, µ), can take values larger than unity. The gas can hence be tuned
away from the dilute limit12.

12For a quasi two-dimensional cold gas near Feshbach resonance, a2D is a function of l0,
the confinement radius along the perpendicular direction, and of the free space scattering

length a3D. For shallow 2D bound states, a2D =
√

π
0.915

l0 exp
(

−

√

π
2

l0
a3D

)

[50–52].
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Figure 4.1: The chemical potential, in units of ~2n
m , as a function of na22D.

The dashed (red) line is the solution of the self-consistent equation when only
two-body interactions are included. The full (blue) line is the solution when
both two- and three-body interactions are included. This figure highlights
that the behavior of the chemical potential is drastically altered by three-
body physics.
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Three-dimensional self-consistent equations were used in chapter 2 to
obtain the chemical potential of 3D Bose gases near resonance. These self-
consistent equations provided highly precise estimates for the chemical po-
tential in the dilute limit. Near resonance, this approach predicted a maxi-
mum in the chemical potential and an accompanied onset instability. These
features were fully consistent with the conclusions drawn from a renormaliza-
tion group equation approach in chapter 3. This first study concluded that
in three dimensions the dominating contribution to the chemical potential
came from irreducible two-body interactions; for cold atoms, the three-body
contribution was negligible. For two-dimensional Bose gases, the story is
very different: three-body interactions play here a much more important
role as can be seen on Fig. 4.1.

To analyze the contribution coming from the three-body effect, we first
solve self-consistent equations excluding the contribution of g3, and obtain
the chemical potential solely due to two-body interactions (see Fig. 4.1
dashed red line). Here, g2 is defined as the effective two-body interaction
renormalized by scattering events off condensed atoms and includes a subset
of N -body interactions defined in the vacuum13. Neglecting g3 interactions,
the self-consistent equations take the simple form

µ̃ =
4π

ln 1
2αµ̃

+
8π2

µ̃ ln3 1
2αµ̃

,
1

ñ0
= 1 +

2π

µ̃

1

ln2 1
2αµ̃

(4.3)

where µ̃ = mµ
~2n0

, ñ0 =
n0
n and α = n0a

2
2D

14. The solution of Eq. (4.3) in the
limit of small α is

µ =
n

m

4π~2

ln 1
α

(

1− 1

ln 1
α

[ln | lnα| − ln 4π + C] + ...

)

(4.4)

where C = ln 1
2 within this self-consistent approach. This solution, valid

in the dilute limit, agrees well with previous studies [47, 48, 76]. Another

solution with µ approaching ~2

ma22D
exists in this limit but is unstable. As α

or na22D is increased, the dilute gas solution approaches this higher energy
unstable solution, and at the critical value na22D = 1.42 × 10−2 the two

13In the dilute limit, g2 reproduces the most dominating contribution; the residue effects
are from the irreducibleN = 4, 6, ...-body interactions, and are parametrically smaller than
the contributions from g2, i.e. smaller by a factor of 1

ln(na2

2D
)
. See also similar discussions

on 3D cases in chapter 2.
14In obtaining this equation, we take into account Eq. (2.4) and set ∂η/∂µ = 1,

∂η/∂n0 = g2 and η = µ to simplify the structure.
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Figure 4.2: Three-body interaction g∗3 (defined in Eq. (4.1)) as a function of
the energy shift η = Σ − µ; η is determined self-consistently together with
µ. Inset: full and two-loop behavior of g∗3 for small η values (respectively,
full (blue) and dashed (red) lines). For 3η

B2
< 1, the numerical integration

over the momentum was done from 0 to 50
√
B2m
~

.

solutions coalesce into one. Beyond this point, no real solution to Eq. (4.3)
exists revealing the presence of an instability. The basic structure sketched
here, when three-body contributions are neglected, is qualitatively the same
as that of 3D Bose gases: µ is maximum when an onset instability sets in,
and for larger na22D develops an imaginary part implying the formation of
molecules.

4.3 Competing Three- and Two-Body
Interactions

We now turn our attention to the contribution of g3(3η). g3(3η) is obtained
by first numerically solving Eq. (4.2) for G

′

3(−3η, p) and then by carrying
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4.3. Competing Three- and Two-Body Interactions

out the integral involving G
′

3(−3η, q) in Eq. (4.1) (see Appendix G for more
details). The result of this procedure is shown in Fig. 4.2 where we plot
g∗3(3η). We chose to plot g∗3(3η) and not g3(3η) as the former is not cluttered
by trivial effects due to g22(2η). We identify two kinds of resonant scattering
processes defining the basic structure of g3(3η). The first one is a three-
body resonance between three condensed atoms with zero energy and a
dimer plus a non-condensed atom with total energy 3η − B2. Here 3η is
the mean-field energy shift due to the exchange interaction between the
non-condensed atom-dimer structure and the condensate. This leads to
the first peak (from left to right) at 3η = B2. The second process is a
three-body resonance between three condensed atoms and a trimer with

either binding energy B
(1)
3 or B

(2)
3 (or total energies 3η−B

(1)
3 or 3η−B

(2)
3 ).

This process produces the second and third peaks at 3η = B
(1,2)
3 . We find

numerically that B
(1)
3 = 1.296B2 and B

(2)
3 = 16.643B2. These energies are

fully consistent with the results of two previous few-body studies [43, 45].
Unlike in three dimensions where a logarithmically large number of Efimov
states exist, in two dimensions there are only two trimer states. Remarkably,
their energies are uniquely determined by B2 without involving an additional
three-body parameter, a fascinating feature emphasized in Refs. [43, 45].

The effect of three-body scatterings on the quantum gas is mainly de-
termined by the property of g3 when η is relatively small. We checked
numerically that in the limit of very small η, g3 can be well fitted by an
attractive interaction of the scaling form ~

4

2m2η
1

ln2
B2
2η

ln2
B2
3η

, capturing the

dominant two-loop contribution15 (see Fig. 4.2). Including the contribution
due to three-body physics in the evaluation of the chemical potential results
in two main effects. First, due to the attractive tail of g3 in the small η limit,
as shown in Fig. 4.3, the instability is shifted away from na22D = 1.42×10−2

and occurs at a much smaller value of na22D = 3.26× 10−3. At this new in-

stability point, the chemical potential is dramatically reduced, from 9.82~2n
m

to 0.601~2n
m when g3 is included. In other words, the three-body effective

interaction further destabilizes the quantum gas. The second and equally
important effect is that the inclusion of three-body interactions results in the
appearance of a maximum in the chemical potential at na22D = 0.604×10−3

before the onset instability occurs. The maximum value of the chemical

15A diagrammatic calculation similar to the one presented in chapter 2 suggests
that the leading N-loop contributions to g3 for small values of η/B2 are g

(N-loop)
3 =

CN
~
4

2m2η
1

ln2 B2

2η
lnN B2

3η

with N = 2, 3, 4...; the prefactor CN can be computed numerically.

For the most dominating two-loop contribution, C2 = −6.3× 103.
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potential is µmax = 1.45~2n
m and the condensation fraction at the maximum

is 91%.
Between the maximum and instability points, the quantum gas exhibits

a negative compressibility and can potentially collapse into a high density
phase. Although the fate of the Bose gases with negative compressibilities
and the details of the corresponding dynamics are beyond the scope of our
investigation, we speculate that in this regime a quantum gas eventually
evolves into the droplet matter discussed in Ref. [45]. In three dimensions,
the instability originated from a shift of the dimers due to scatterings off con-
densates and was a precursor of the sign change of the effective two-body
interaction g2 [3]. For two-dimensional Bose gases, the situation is com-
pletely different. Here, the instability is a consequence of the competition
between the repulsive two-body interaction (positive g2) and the attractive
three-body interaction (negative g3) in the low energy limit. For a two-
dimensional Fermi gas, the Pauli blocking effect was recently demonstrated
to lead to an instability at a finite scattering length [52].

We also plot in Fig. 4.3 the relative weight of the three-body to two-
body contributions to the chemical potential. As anticipated, the three-body
contribution is negligible in the dilute limit when na22D ≪ 1 but quickly
becomes important as na22D is increased. The prominent role played by
three-body scattering leads to a maximum in the chemical potential before
the instability point. At this maximum, the ratio between the three-body
and two-body contributions reaches 0.27. The shift of the instability is also
caused by the attractive three-body interactions.

4.4 Summary

In conclusion, we demonstrated that the properties of 2D Bose gases at
large scattering lengths or near resonance are dictated by three-body effects.
We showed that the contributions of trimer states are universal as they
only depend on the effective two-body scattering length a2D and not on the
short distance properties of three-body interactions; an aspect unique to
two-dimensional Bose gases. Our results also suggest the existence of strong
correlations in the three-atom channel near resonance. This feature remains
to be probed experimentally.

The important point is that, in this study, we only investigated the effects
of two- and three-body potentials and since three-body physics plays an
important role in two dimensions, we expect the contributions from n-body
potentials (n > 3) to be also important. However, since the similar physics
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Figure 4.3: Top panel: ratio between the contributions of three-body and
two-body interactions as a function of na22D (full red line), chemical potential
two-dimensional 2D Bose gases (full blue line). An additional metastable
solution (dashed blue line) also exists when g3 is included. The maximum

value of µ is 1.45~2n
m and occurs at na22D = 0.604 × 10−3. Bottom left

panel: condensation fraction n0/n as a function of na22D. Bottom right
panel: imaginary part of the chemical potential when taking into account the
contribution of all three-body recombination processes. Note that |Im µ| ≪
Re µ for all considered na22D, indicating the quasi-static nature of the Bose
gases. Hence, three-body recombination plays very little role in our energetic
analysis and can be safely neglected for the range of parameters considered.
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have been predicted using variational quantum Monte Carlo method in Ref.
[53], we expect that considering the contributions from n-body (n > 3)
scattring processes does not change the physics qualitatively.
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Chapter 5

Conclusion

In conclusion, we have studied the physics of two- and three-dimensional
ultra cold Bose gases near Feshbach resonance using a self-consistent frame-
work. Within this framework, once the full energy density of the system
as a function of chemical potential of non-condensed atoms and conden-
sate density is known, one can calculate the chemical potential of condensed
atoms and density of non-condensed particles. The self-consistent equation
is formed by satisfying the equilibrium condition in the ground state in
which the chemical potential of condensed atoms is equal to to the chemical
potential of non-condensed atoms.

In chapter 2, we estimated the full energy density of a three-dimensional
Bose gas using a diagrammatic method. In this method, we classified scat-
tering processes in terms of the number of virtual particles involved in the
process. We pointed out an onset instability toward formation of molecules
beyond the dilute limit and fermionization of the Bose gas near resonance.
This instability originates from a shift of the dimers due to scatterings off
condensates and is a precursor of the sign change of the effective two-body
interaction. This sign change is a strikingly different result from the picture
commonly accepted by the cold atom community where it is usually thought
that, for negative bare interactions where the scattering length is positive,
the atoms repel each other. In addition, we found that the effect of three-
body scattering processes is only a few percent to the chemical potential
close to instability point. In chapter 3, these highly non-trivial results were
obtained using a renormalization group approach by looking at the running
of the two-body coupling constant at different energies.

In chapter 4, we investigated the properties of two-dimensional ultra cold
gases at large scattering lengths emphasizing the role played by three-body
scattering processes. Within this diagrammatic approach, we showed that
the physics of these gases near resonance is primarily dictated by the com-
petition between three-body attractive interactions and two-body repulsive
forces. This competition results in the chemical potential of Bose gases
to exhibit a maximum at a critical scattering length beyond which these
quantum gases have a negative compressibility. Furthermore, we showed
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that for larger scattering lengths, the increasingly prominent role played by
three-body forces leads to an onset instability at a second critical point.
We also showed that the contributions of trimer states are universal as they
only depend on the effective two-body scattering length and not on the
short distance properties of three-body interactions; an aspect unique to
two-dimensional Bose gases.

In the future, it would be interesting to answer this obvious question on
how it is possible to experimentally detect the peculiar behavior of the chem-
ical potential in these two- and three-dimensional Bose gases, i.e. whether
there exists a spectrometry that one can apply to accurately map out the
value of the chemical potential near resonance. Another question is whether
the behavior of Fermi gases close to Feshbach resonances [70, 77] can also
be understood within this novel formalism. In addition, one can investigate
the physics of n-body scattering processes for n > 3 both in two and three
dimensions. In three dimensions, the question is whether these higher-body
interactions are negligible compared to two-body potential. However, in
two dimensions, although we already know that these contributions should
be important and comparable to two-body potential contribution, one can
examine whether the physics is changing qualitatively or quantitatively.
The other interesting future direction could be studying the physics of two-
and three-dimensional Bose gases beyond instability point where our self-
consistent framework is not able to explore this regime.
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Appendix A

Solving Self-Consistent Eq.
(2.5) in the Dilute Limit

We apply Eq. (2.5) to calculate the leading-order correction beyond the
mean-field theory. We notice that the equations for g2 and µ are arranged
in such a way that the next-order correction can be obtained by applying
the results from the lowest-order approximation to the right-hand side. In
the lowest-order approximation, we find Σ = 8πn0a and µ = 4πn0a; this
leads to a correction to g2 as

g2 = 4πa+
(4πa)2

2

∫

d3k

(2π)3

(

1

ǫk
− 1

ǫk + µ

)

= 4πa
(

1 +
√

8πn0a3
)

. (A.1)

Similarly, from the relation ∂Σ
∂n0

= 8πa and ∂Σ
∂µ = 0, we can get the correction

for the chemical potential µ as,

µ = 4πan0 +
(4πa)3 n2

0

2

∫

d3k

(2π)3
1

(ǫk + µ)2

= 4πan0

(

1 + 3
√

2πn0a3
)

(A.2)

and the depletion fraction

np

n
=

n0

4
g22

∫

d3k

(2π)3
1

(ǫk + µ)2
=

√

π

2
n0a3. (A.3)

For a comparison we list the results from the dilute-gas theory,

µBeliaev = 4πn0a

[

1 +
40

3

√

1

π
n0a3

]

, (A.4)

(

np

n

)

Beliaev

=
8

3

√

1

π
n0a3. (A.5)
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Appendix A. Solving Self-Consistent Eq. (2.5) in the Dilute Limit

Our self-consistent approach produces 9
√
2π

40 (= 99.96%) of Beliaev’s result

for the chemical potential, and 3
√
2π

16 (= 83%) for the depletion fraction.
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Appendix B

A Comparison Between the
Self-Consistent Approach
and the Dilute Gas Theory
in Three Dimensions

In the following, we show explicitly that our self-consistent equation corre-
sponds to a subgroup of diagrams [in Fig. 2.2(c)] in the usual dilute gas
theory. The two-body T -matrix used in the dilute-gas theory [represented
by the green circles in Figs. 2.2(c) and 2.2(d)] are obtained using the non-
interacting Green’s function G−1(ǫ, k) = ǫ− ǫk+µ+ i0+; in the dilute limit,
we can expand the T -matrix as

t(ω,Q) = 4πa

[

1 + 4πa

∫

d3k

(2π)3

(

1

ω − Q2

4 − k2 + 2µ + i0+
+

1

k2

)

+ · · ·
]

,

(B.1)
where ω and Q are the total energy and momentum of the incoming atoms.
The contribution from the first two diagrams in Fig. 2.2(c) are

E(c1) ≃ t(0, 0)n2
0

2
≃ 2πan2

0

[

1 + 4πa

∫

d3k

(2π)3

(

1

−k2 + 2µ + i0+
+

1

k2

)]

E(c2) ≃ 2
t2(0, 0)n2

0

2

∫

d3k

(2π)3

(

1

−k2 + 2µ+ i0+

)2

2n0t(µ− ǫk, 0) (B.2)

≃ 2πan2
0

[

(4πa) (16πn0a)

∫

d3k

(2π)3

(

1

−k2 + 2µ + i0+

)2
]

. (B.3)

For the leading-order correction beyond the mean-field theory, it suffices to
set t(µ− ǫk, 0) ≃ 4πa in Eq. (B.3) and in higher-order diagrams. Similarly,
we can get the contributions from the higher-order diagrams in this series,
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and the sum is

E(c) ≃ 2πan2
0

[

1 + 4πa

∫

d3k

(2π)3

(

1

−k2 + 2µ+ i0+
+

1

k2

)]

+ 2πan2
0(4πa)

∞
∑

m=1

(16πan0)
m
∫

d3k

(2π)3

(

1

−k2 + 2µ + i0+

)m+1

(B.4)

≃ 2πan2
0

[

1 + 4πa

∫

d3k

(2π)3

(

1

−k2 + 2µ− 16πn0a
+

1

k2

)]

. (B.5)

We see that the energy given by the diagrams in Fig. 2.2(c) is exactly the
same as the one used in our self-consistent equation, e.g., g2n

2
0/2, where g2

should be expanded as Eq. (A.1) in the dilute limit.
Next, we can sum up the rest of the one-loop diagrams that are not

included in the self-consistent equations; they represent the lowest-order
contributions to four- and six-body forces and so on. In the dilute limit,
these diagrams [as shown in Fig. 2.2(d)] can be summed as

E(d) = − (4πan0)

∫

d3k

(2π)3

∞
∑

m=2

1

2

(2m− 2)!

m! (m− 1)!

(

4πan0

2ǫk − 2µ + 16n0πa

)2m−1

.

(B.6)

Indeed, we can recover Beliaev’s result by summing up one-loop diagrams
in Figs. 2.2(c) and 2.2(d) as

∂

∂n0

(

E(c) + E(d)

)

= 4πn0a

+ 4πa

∫

d3k

(2π)3





(ǫk − µ+ 6πn0a)
√

(ǫk − µ+ 8πan0)
2 − (4πan0)

2
− 1 +

4πn0a

k2





= 4πn0a

[

1 +
40

3

√

1

π
n0a3

]

= µBeliaev (B.7)
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Appendix C

Including Three-Body Forces
in the Self-Consistent
Equations in Three
Dimensions

We now calculate the amplitude of three-body scatterings corresponding to
the processes described in Fig. 2.2(b). First, we consider a general case
where the three incoming momenta are k1 = p/2 − q, k2 = p/2 + q, and
k3 = −p, and the outgoing ones are k′

1 = p′/2 − q′, k′
2 = p′/2 + q′, and

k′
3 = −p′. The scattering amplitude between these states is then given

by A(E − 3η;p,p′), which represents the sum of diagrams identical to Fig.
2.2(b) except that the external lines carry finite momenta.

For the estimate of three-body contributions of g3, we first treat the sum
of diagrams in Fig. 2.2(b) as the limit of A(E−3η;p,p′) when p and p′ ap-
proach zero and the total frequency E is set to zero. It is therefore more con-
venient to work with the reduced amplitude G3(E−3η;p) = A(E−3η;p, 0),
where p′ is already taken to be zero. G3(E − 3η;p) itself obeys a simple
integral equation, as can be seen by listing the terms in the summation ex-
plicitly. Indeed, when E is further set to zero, we find that the diagrams in
Fig. 2.2(b) yield

G3(−3η, p) =
2

π

∫

dq
K(−3η; p, q)q2
√

3
4q

2 + 3η − 1
a

−1

q2 + 3η
(C.1)

+

(

2

π

)2 ∫

dqdq′
K(−3η; p, q)q2
√

3
4q

2 + 3η − 1
a

K(−3η; q, q′)q′2
√

3
4q

′2 + 3η − 1
a

−1

q′2 + 3η
+ · · · ,

(C.2)

where K(−3η; p, q) is the kernel defined in chapter 2. The sum of the above
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infinite series leads to the following integral equation of G3 :

G3(−3η, p) =
2

π

∫

dq
K(−3η; p, q)q2
√

3
4q

2 + 3η − 1
a

−1

q2 + 3η

+
2

π

∫

dq
K(−3η; p, q)q2
√

3
4q

2 + 3η − 1
a

G3(−3η, q). (C.3)

Note that G3(−3η, 0) defined above includes a diagram [the leftmost one in
Fig. 2.2(b)] that has already been included in g2. To avoid overcounting,
we subtract the first diagram in Fig. 2.2(b) from G3 as

g3 = 6g22Re



G3(−3η, 0) − 2

π

∫

dq
K(−3η; 0, q)q2
√

3
4q

2 + 3η − 1
a

−1

q2 + 3η



 . (C.4)

Alternatively, one can also carry out a direct summation of the diagrams
in Fig. 2.2(b). It leads to a result that numerically differs very little from the
estimation obtained above via an asymptotic extrapolation. For instance, a
direct evaluation of those diagrams yields

G3(−3η, 0) =
2

π

∫

dq
K(−2η; 0, q)q2
√

3
4q

2 + 3η − 1
a

−1

q2 + 2η
(C.5)

+

(

2

π

)2 ∫

dqdq′
K(−2η; 0, q)q2
√

3
4q

2 + 3η − 1
a

K(−3η; q, q′)q′2
√

3
4q

′2 + 3η − 1
a

−1

q′2 + 2η
+ · · ·

(C.6)

The only difference between Eqs. (C.6) and (C.2) is that the frequencies
appearing in the first kernel K(E; 0, q) in the integrands and in the last
denominators are now −2η instead of −3η.

One can easily verify that the sum can be written in the following com-
pact form:

G3(−3η, 0) =
2

π

∫

dq
K(−2η; 0, q)q2
√

3
4q

2 + 3η − 1
a

[
−1

q2 + 2η
+G

′

3(−3η, q)], (C.7)

where G
′

3(−3η, p) is a solution of the following integral equation:

G
′

3(−3η, p) =
2

π

∫

dq
K(−3η; p, q)q2
√

3
4q

2 + 3η − 1
a

[
−1

q2 + 2η
+G

′

3(−3η, q)] (C.8)
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Note that G
′

3(−3η, p) defined here describes an off-shell scattering between
three incoming atoms with momenta p/2 − q, p/2 + q, and −p and three
condensed atoms. As a consequence of the Hartree-Fock approximation we
have employed here, G3(−3η, 0) is not equal to G

′

3(−3η, 0). G3(−3η, 0) and
G

′

3(−3η, 0) can be obtained numerically.
Finally, after subtracting the leftmost one-loop diagram in Fig. 2.2(b)

we again find the three-body contribution to be:

g3 = 6g22Re



G3(−3η, 0) − 2

π

∫

dq
K(−2η; 0, q)q2
√

3
4q

2 + 3η − 1
a

−1

q2 + 2η



 . (C.9)

Now we can include the three-body forces
g3n3

0
6 in a set of differential

self-consistent equations similar to Eq. (2.5). We solve the equation numer-
ically, and the results are shown in Fig. 2.3, where in the inset we show the
momentum cutoff Λ dependence in the chemical potential. In our numer-
ical program, we further use the approximation ∂Σ

∂n0
= 2g2,

∂Σ
∂µ = 0, and

Σ11 = βµ (β = 2) to simplify the numerical calculations (see Appendix D).
We have tested other types of approximation schemes for the self-energy,
such as Σ11 = 8πan0 or Σ11 = 2g2n0. We find that the chemical poten-
tial and the value of the critical point na3cr are insensitive to approximation
schemes.
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Appendix D

Single Parameter Limit

Here we explain the single parameter limit, where the physics of two- and
three-dimensional Bose gases could be described by a single parameter, µ.
We determine this limit by looking at the behavior of the two-body interac-
tion potential. Three-dimensional g2 is written as:

g−1
2 = U−1

0 − i

∫

dω

2π

d3k

(2π)3
G(ω,k)G(−ω,−k), (D.1)

where G(ω,k)−1 = ω − ǫk − Σ + µ + iδ+ is the interacting Green’s func-
tion. Here, Σ is the self-energy of non-condensed particles which in general
is a function of momentum and frequency. The self-energy is almost flat for
momenta smaller than 1/a while after this point it decays to zero. Further-
more, we can supplement the above equation with the following relation to
regulate ultraviolet divergency in three dimensions:

1

U0
=

1

4πa
− 1

Ω

∑

k

1

2ǫk
. (D.2)

And after a little bit calculation, we can write:

g−1
2 =

1

4πa
− 1

π2

∫

dk
Σ

k2 + 2Σ− 2µ
+

1

π2

∫

dk
µ

k2 + 2Σ − 2µ
. (D.3)

One can look at the two integrals in the above equation separately. The
first integral does not have ultra-violet divergency, since Σ decays to zero
for large momenta. So, the main contribution comes from low energy limit
of the integral and since Σ is equal to 2µ for small momenta, this integral
could be considered as a single variable function of µ. Similarly, there is no
ultraviolet divergency for second integral and again the physics is determined
by low energy limit. Above calculation shows that two-body interaction is
a function of only a and µ. In chapter 2, we found that the instability point
happens for relatively small value of scattering length. This results the self-
energy to be independent of momenta for a wider range which make above
estimation of integrals more reasonable. In addition, we assume Σ to be
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independent of momentum in our calculations in this thesis. In this regime,
the above equation could be evaluated exactly and the result is:

g2(2µ) =
4π

1
a −√

2mµ
. (D.4)

One can also look at three-body interactions in three dimensions and as
it mentioned before in chapter 2, g3 is a function of the ultra-violet cut off as
well as a and µ. But since the contribution of the three-body forces to the
energy of the system is approximated to be around few percent, our results
remain robust.

Similar arguments could be used for a two-dimensional Bose gas. The
single parameter approximation is still valid in this dimension. In addition,
since three-body forces are universal in two-dimensions, our calculation is
robust for such systems.

79



Appendix E

Two- and Three-Body
Scattering Amplitudes in a
Condensate in Three
Dimensions

In the following, we show the explicit calculation of the three-atom scat-
tering amplitude G3, and E(n0, µ) for a given Σ(= η + µ) by adding the
diagrams with a minimum number of virtual particles involved. The model
Hamiltonian could be written as:

H =
∑

k

(ǫk − µ)b†kbk + 2U0n0

∑

k

b†kbk

+
1

2
U0n0

∑

k

b†
k
b†−k

+
1

2
U0n0

∑

k

bkb−k

+
U0√
Ω

√
n0

∑

k′,q

b†qbk′+q

2
b−k′+q

2
+ h.c.

+
U0

2Ω

∑

k,k′,q

b†
k+q

2

b†−k+q

2

bk′+q

2
b−k′+q

2
+ h.c., (E.1)

where the sum is over non-zero momentum states. U0 is the strength of the
contact interaction which is related to scattering length a as:

1

U0
=

m

4πa
− 1

Ω

∑

k

1

2ǫk
, (E.2)

where Ω is the volume. Taking into account only two- and three-body in-
teractions, the energy density could be written as:

E(n0, µ) =
1

2
n2
0g2(2η) +

1

3!
n3
0g3(3η), (E.3)
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where g2 and g3 are irreducible two- and three-body potentials respectively.
g2 could be found by writing the Bethe-Salpeter equation as:

g2(2η)
−1 = U−1

0 − i

∫

dω

2π

d3k

(2π)3
G(ω,k)G(−ω,−k), (E.4)

where G(ω,k)−1 = ω− ǫk − η+ iδ+ is the interacting Green’s function. So,
the two-body potential could be obtained as:

g2(2η) =
4π

1
a −√

2mη
(E.5)

Similarly, g3 could be estimated by summing up all N-loop diagrams with
3 incoming and outgoing lines which are depicted in Fig. 3.3(b). We consider
a general case where three incoming momenta are k1 = p/2−q, k2 = p/2+q
and k3 = −p, and outgoing ones are k′

1 = p′/2 − q′, k′
2 = p′/2 + q′ and

k′
3 = −p′. The scattering amplitude between these states is then given by

A3(E;p,p′). At the tree-level, the effective three-particle interaction is:

Γ(0) =
f0

E − ωin − ωout − ǫp+p′ − η + iδ+
, (E.6)

where ωin and ωout are frequencies of lines with momenta k3 and k′
3 respec-

tively. Furthermore, f0 is the product of the perturbation factor fp, vertex
factor fv and symmetry factor fs which will be explained later.

To keep the notation simple, we set m = 1 from now on. We consider on-
shell limit and substitute ωin and ωout by p2/2+η and p′2/2+η respectively.
To project into the S-wave channel, we take the average over all directions,

Γ
(0)

=
−f0
2pp′

ln

(

p2 + p′2 + pp′ + 3η − E

p2 + p′2 − pp′ + 3η − E

)

≡ −f0
2

K(E − 3η; p, p′), (E.7)

where we have defined the kernel K as:

K(E − 3η; p, p′) =
1

pp′
ln

(

p2 + p′2 + pp′ + 3η − E

p2 + p′2 − pp′ + 3η − E

)

(E.8)

The perturbation factor, fp, comes from the expansion, in perturbation
theory, of the evolution operator exp(−iHintt). The diagrams with l vertices
could be written as:

1

l!
(VA + VB)

l, (E.9)
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where VA and VB stand for interaction terms corresponding to different types
of vertices namely A and B. For example, for a diagram with 2 vertices of
type A and one vertex of type B, fp is the factor in front of the V 2

AVB

term in the numerator of the above equation divided by l!. In the vacuum
case, where all the vertices are the same and all the lines can have non-zero
momenta, fp is simply equal to (1/l!).

The vertex factor, fv, is defined as the product of the factors in front of
g2 for different vertices shown in the Hamiltonian. For the vacuum case, all
the vertices have 1/2 factor and fv is equal to (1/2)l .

The last factor is the symmetry factor, fs which shows the number of
identical diagrams generated for a given number of vertices. For the vacuum
case, fs = l!× 4l where l! shows the number of permutations of vertices and
4l is the number of different ways of connecting vertices (2 for incoming lines
and 2 for outgoing lines).

So, in general the prefactor appearing in Γ(n) where n is the number of
loops (n = l − 2) would be

fn = 2(n+2); (E.10)

and f0 = 4.
Γ(1) could be written in terms of the kernel defined above as:

Γ(1) = 8

∫

d3k

(2π)3
(−1

2
K(E−3η; p, k))g2(E−3η− k2

2
; k)(−1

2
K(E−3η; k, p′)),

(E.11)
where the integral over internal frequency has been taken. g2(ω;Q) has the
following form in 3D:

g2(ω;Q) =
4π

1
a −

√

Q2

4 − ω
, (E.12)

where the above equation reduces to Eq. (E.5) in the limit of zero energy and
momentum. The effective three-body interaction then could be obtained by
summing over Γ(n)s:
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Γeff = −2K(E − 3η; p, p′)

+
4

π

∫

dkk2
K(E − 3η; p, k)

1
a −

√

3k2

4 − E + 3η
×K(E − 3η; k, p′)

− 8

π2

∫

dkk2
∫

dk′k′2
K(E − 3η; p, k)

1
a −

√

3k2

4 − E + 3η
× K(E − 3η; k, k′)

1
a −

√

3k′2

4 −E + 3η

× K(E − 3η; k′, p′) + . . . (E.13)

The sum of the above infinite series leads to the following integral equa-
tion for scattering amplitude A3:

A3(E; p, p′) = −2K(E−3η; p, p′)− 2

π

∫

dkk2
K(E − 3η; p, k)

1
a −

√

3k2

4 − E + 3η
A3(E; k, p′)

(E.14)
One then obtains the reduced scattering amplitude G3(E;p) = A3(E;p, 0)
in Eq. (3.22).

For the calculation of g3 for condensates, one has to exclude the tree level
diagram that no longer exists because of momentum conservation. The sum
of the rest of the infinite series leads to the following integral equation for
the scattering amplitude A3(E; p, p′),

A3(E; p, p′) =
2

π

∫

dk
K(E − 3η; p, k)k2

1
a −

√

3k2

4 − E + 3η

(

2K(E−3η; k, p′)−A3(E; k, p′)

)

(E.15)
The above scattering amplitude could then be applied to calculate the

scatterings between condensed atoms when setting E, p and p′ to be zero
in the above equation but with two further modifications. The first change
is the numerical factor in front of the effective interactions. This factor in
the condensate case is 1/4 of the factor in the vacuum case, because there
is a 2 × 2 factor for changing the external legs of the external vertices for
non-zero incoming momenta. So we will get the same integral equation,
but the first term in the bracket of the integrand of Eq. (E.15) would be
substituted by 1/2K.

The second change would be in the shift of the energy. If we set the
momentum of external legs to zero from the beginning, in the on-shell limit
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there is no shift of the energy for ωin and ωout in our diagrammatic calcula-
tions. So, the energy of the first and the last kernel in all the terms of the
Eq. (E.13) other than the tree-level term would be E−2η in the condensate
case. Subtracting the one-loop contribution which has already been counted
in the renormalized g2 and taking into account the above two modifications,
we obtain g3

16.

16As mentioned before in chapter 3, there are two ways of estimating G3 which slightly
differ from each other; the difference is due to singular behavior of the Green’s function
at k = 0 in the Hartree-Fock approximation as commented on in Appendix C. Here we
evaluate G3 by first setting all external lines to be the condensed atoms.
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Appendix F

Two- and Three-Body
Scattering Amplitudes in a
Condensate in Two
Dimensions

Two-body effective interaction could be obtained by using Dyson’s equation
in the following closed form:

−ig2(E;Q) = −iU0

+

∫

dω

2π

d2k

(2π)2
g2(E;Q)U0G(ω,Q/2+ k)G(E − ω,Q/2− k).

(F.1)

where G(ω,k)−1 = ω − ǫk − η + iδ+ is the interacting Green’s function, U0

is the attractive bare interaction strength and η = Σ− µ .
So, two-body scattering amplitude could be written as:

g2(E;Q)−1 = U−1
0

− i

∫

dω

2π

d2k

(2π)2
G(ω,Q/2 + k)G(E − ω,Q/2− k), (F.2)

After integration over frequency and momentum space one obtains:

g2(E;Q)−1 = U−1
0 +

1

4π
log(| Λ

Q2/4− E − 2η
|) + i

4

≡ 1

4π
log(| B2

Q2/4− E − 2η
|) + i

4
, (F.3)

where Λ is the ultra-violet energy cutoff. Here B2, two-body bound state
energy is defined to be:
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B2 = Λe
4π
U0 . (F.4)

a2D =
√

~2/mB2, the effective two-dimensional scattering length is in-
troduced as the size of two-body bound state. Λ is set by the interaction
range R∗, via Λ = ~2

mR∗2 .
For repulsive interactions (U0 > 0), B2 is larger than Λ. As a result, a2D

can not exceed form range of interaction, and for a short range interaction
the system is always in the dilute regime. By increasing U0, the range of
a2D becomes more restricted from below and at an extreme limit when U0

goes to infinity, a2D is exactly equal to the range of interaction R∗. This
limit is known as the hard-core limit. For attractive interactions (U0 < 0),
which is the case we are interested in, B2 is smaller than Λ. This condition
sets the lower-bound of the 2D scattering length equal to the range of the
interaction. So, a2D could be arbitrary large and potentially the system can
go beyond the dilute limit and approach resonance.

For two-dimensional Bose gases, the imaginary part of the two-body
effective interaction is independent of the total energy of the incoming scat-
tering particles. As a result, the imaginary part exists even for zero total
energy. This unique property of the two-dimensional gases is due to the fact
that two-dimensional density of states is independent of energy. The real
part of the g2 is:

Re(g2(E;Q)) =
4π

log(| B2
Q2/4−E−2η

|)
. (F.5)

Three-body scattering amplitude, g3, could be estimated by summing up
all N-loop diagrams with three incoming and outgoing lines. We consider a
general case where three incoming momenta are k1 = p/2−q, k2 = p/2+q
and k3 = −p, and outgoing ones are k′

1 = p′/2 − q′, k′
2 = p′/2 + q′ and

k′
3 = −p′. The scattering amplitude between theses states is then given by

A3(E;p,p′). For tree level diagram with no loop, the effective three-particle
interaction is:

Γ(0) =
f0

E − ωin − ωout − ǫp+p′ − η + iδ+
, (F.6)

where ωin and ωout are frequencies of lines with momentum k3 and k′
3 re-

spectively. Furthermore, as in Appendix E f0 is the product of perturbation
factor fp, vertex factor fv and symmetry factor fs which will be defined
later.
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Although this diagram does not exist when we set the momenta of ex-
ternal lines to zero (the reason is that in this case, the momentum of the
internal line also has to be zero due to the conservation of the momentum
at each vertex which makes this diagram trivial), it is the building block
of the scattering processes with more number of loops. Since eventually we
set the momenta of external lines equal to zero in order to find the effective
interaction between condensed particles, the angle between these momenta
is not well-defined. So, we project Γ(0) to s-wave channel by taking the av-
erage over all solid angles. In addition, for on-shell particles, ωin and ωout

are substituted by p2/2 + η and p′2/2 + η respectively. η could be under-
stood as the energy shift due to interaction of condensed and non-condensed
particles.

Γ
(0)

=
1

2π

∫ ∞

0
dθ

f0
E − p2 − p′2 − 3η − pp′cosθ + iδ+

(F.7)

after doing the integration over angle we have:

Γ
(0)

=
−f0

√

(E − p2 − p′2)2 − (pp′)2
≡ −f0

2
K(E − 3η; p, p′), (F.8)

where the kernel K is defined as:

K(E; p, p′) =
2

√

(E − p2 − p′2)2 − (pp′)2
. (F.9)

To obtain the numerical factor in front of each diagram, it is important
to remark that each of the terms in the Hamiltonian (2.1) corresponds to
different vertices in the scattering diagrams (See Fig. F.1). These vertices
differ by the number of the condensed atoms (dashed lines) involved in the
interaction. In addition, each diagram is the depiction of different terms
produced by expanding the exponential of the interacting Hamiltonian in
perturbation theory. For example, considering only two kinds of vertices,
the l − th order term could be written as:

1

l!
(HA +HB)

l, (F.10)

where HA and HB are interaction terms corresponding to different types
of vertices A and B. The perturbation factor, fp is the numerical factor in
front of each term of the above equation. As an example, consider a diagram
with s vertices of type A and l − s vertices of type B. fp is the factor in
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Figure F.1: Different types of the interaction vertices between condensed and
non-condensed atoms which corresponds to different terms of the Hamilto-
nian (2.1).
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front of Hs
AH

l−s
B term. The perturbation factor for this example could be

written in terms of combination factors as following:

fp =
1

l!
C l
sC

l−s
l−s =

1

s!(l − s)!
. (F.11)

In general, if we have s1 vertices of type A1, s2 vertices of type A2 and
so on until sm vertices of type Am, the perturbation factor would be:

1

s1!× s2!× ...× sm!
(F.12)

In the vacuum case, where all the momenta could be non-zero, all the
vertices are the same and the perturbation factor is simply equal to 1/l!.

As mentioned before in chapter 2, Hamiltonian (2.1) is generated by
explicitly putting the momenta of some of the creation and annihilation op-
erators equal to zero. For some of the terms, there are more than one way
to set the momenta equal to zero. These choices cause different numerical
prefactors in front of the terms in the Hamiltonian. For example, the second
term in the Hamiltonian is produced by setting the momentum of one of the
creation and one of the annihilation operators equal to zero. This term rep-
resents the interaction between one condensed atom and one non-condensed
atom as incoming particles and one condensed atom and one non-condensed
atom as outgoing particles. There are four different ways to produce this
term and therefore the numerical prefactor in front of this term is 2 instead
of 1/2. The vertex factor, fv, is defined as the product of these prefactors
for all the vertices involved in the scattering processes. Since for the vacuum
case, all the vertices have the same prefactor of 1/2, fv is equal to (1/2)l.

The last factor is the symmetry factor, fs which shows the number of
different ways of connecting legs of these vertices. For the vacuum case,
fs = l!× 4l where l! is the number of permutations of vertices and 4l is the
different ways of choosing lines of each vertex (2 for incoming lines and 2 for
outgoing lines). For the condensate case, finding the symmetry factor is a
little tricky. Since only solid lines corresponding to non-condensed particles
are connecting the vertices, the symmetry factor in this case depends on the
number of the solid lines in each vertex. Again, suppose we have s1 vertices
of type A1, s2 vertices of type A2 and so on until sm vertices of type Am. The
number of permutation of the similar vertices would be s1!× s2!× ...× sm!
which cancels out fp for the condensate case. In addition, different vertices
have different ways of connecting their legs to other vertices. This numbers
for vertex type A is one and for vertex types of B, C, D and E is two and
for vertex type F is four (see Fig. F.1). Note that if you multiply these
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factors by the prefactors in front of each vertex, you would get 2 except for
vertex types of B and C when you get 1. Since there is only one vertex
of type B and one vertex of type C in any three-body diagram, fn for the
condensate case is equal to:

fn = fp × fv × fs = 2l−2 = 2n (condensate case) (F.13)

where l is the number of vertices and n is the number of the loops in each dia-
gram. Similarly, for the vacuum case the numerical factor could be obtained
as:

fn = fp × fv × fs = 2l = 2n+2 (vacuum case). (F.14)

Note that numerical factor found for the vacuum case is bigger than the
numerical factor for the condensate case by the factor of 4. This difference
is due to the exchange of the external legs of the diagrams. In the vacuum
case, the external legs has non-zero momentum and could be interchanged.
This produces the extra factor. Finally, f0 = 4 in the vacuum case.

The contribution from the 1-loop diagram, Γ(1), to the effective interac-
tion between condensed atoms in vacuum case could be written in terms of
kernel defined above as:

Γ(1) = 8

∫

d2k

(2π)2
(−1

2
K(E−3η; p, k))g2(E−3η− k2

2
; k)(−1

2
K(E−3η; k, p′)),

(F.15)
where the integral over internal frequency has taken and g2(ω;Q) is obtained
before in Eq. (F.5) in two dimensions. Here, 8 is the numerical factor found
in the vacuum case. Note that the shift of energy is 3η everywhere which
corresponds to the case where we set the momenta p and p′ to zero at the
end, vacuum case. The effective three-body interaction in the vacuum case
is obtained by summing over Γ(n)s:

A3(E; p, p′) =

∫

d2q

(2π)2
K(E; p, q)g2(E − ǫq; q)

(

2K(E − ǫq; q, p
′)−A3(q, p

′)
)

(F.16)
The reduced amplitude is defined by setting the outgoing momentum to

zero, G3(E; p) = A3(E; p; p′ = 0). So, the integral equation for G3 would
be:
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G3(E; p) =

∫

dq
4q

log(| B2
3q2/4−E

|)
1

√

(E − p2 − q2)2 − (pq)2

( 4

|E − q2| −G3(q)
)

(F.17)
The three-body irreducible potential could be found as:

g3 = (6/4)g22(0; 0)Re(G∗
3(0; 0)) (F.18)

where G∗
3(0; 0) has obtained by subtracting the one-loop contribution from

G3(0; 0) defined above to prevent over-counting this diagram. The division
by 4 in the last equation is due to the fact that the factors in the vacuum
case are 4 times bigger than the factors in the condensate case because of
exchange factor of 2 external legs in the vacuum case.

The alternative scheme is to set the external momenta p and p′ to zero
from the beginning. In this case, the shift of the energy for the first and
the last kernel in any order of the loops would be 2η. In this scheme, the
three-body irreducible potential is

g3 = 6g22(0; 0)Re(

∫

4qdq

2η + q2
1

log(| B2
3q2/4+3η

|)
G′

3(−3η; q)) (F.19)

where G′
3(−3η; p) is obtained from following integral equation:

G′
3(−3η; p) = 4

∫

dq
q

log(| B2
3q2/4+3η

|)
1

√

(3η + p2 + q2)2 − (pq)2

×
( −1

2η + q2
−G′

3(−3η; q)
)

(F.20)

Note that in the second scheme we don’t need to subtract the one-loop
contribution because it starts from two-loop diagram. Although the solu-
tions for two schemes are very close to each other, we focus on the second
scheme in our studies which is more accurate.
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Numerical Method to Find
The Three-Body Interaction
Potential in Two Dimensions

Here we explain the numerical method we used to solve the integral equation
of three-body scattering amplitude for a two-dimensional Bose gas showed
in Eq. (F.20). First, we only keep the real part of g2 and later we also take
into account the imaginary part of the two-body interaction potentials.

The integral equation for G′
3 derived in Eq. (F.20) could be rewritten

as:

G′
3(y, z) = a(y, z) +

∫

G′
3(y, x)K(x, y, z)dx

= a(y, z) +
∑

i

Ki(y, z)G
′
3i(y)∆x (G.1)

where we have introduced following dimensionless variables:

3η

B2
≡ y,

p√
B2

≡ z,
q√
B2

≡ x (G.2)

and following functions:

a(y, z) =

∫

dx
4x

log(3x2/4 + y)

1
√

(y + x2 + z2)2 − (xz)2
1

2y/3 + x2

K(x, y, z) =
4x

log(3x2/4 + y)

1
√

(y + x2 + z2)2 − (xz)2
(G.3)

Furthermore, we discretized the x direction in the second line of the Eq.
(G.1). By discretizing the space in z direction, the integral equation could
be written in discrete space:
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G′
3j(y) = aj(y) +

∑

i

Kji(y)G
′
3i(y)∆x

∑

i

δjiG
′
3i(y) = aj(y) +

∑

i

Kji(y)G
′
3i(y)∆x (G.4)

So, finally we can derive aj(y) in the following equation:

aj(y) =
∑

i

(δji −Kji(y)∆x)G′
3i(y)

aj(y) ≡
∑

i

MjiG
′
3i(y) (G.5)

This gives a matrix-form equation for G′
3i as:

a(y) = MG′
3(y)

G′
3(y) = M−1a(y). (G.6)

Numerically, G′
3(y) is calculated by inverting the matrix M and multi-

plying that by vector a(y).
In general, we need to consider the imaginary part of the two-body poten-

tial as well. This part could be obtained using following simple expression:

1

ln(34q
2 + 3η − iδ+)

=
1

ln(34q
2 + 3η)

+ iπδ(
3

4
q2 + 3η − 1) (G.7)

This imaginary term gives correction to the real part of the integral
equation and results in g3 being complex. The imaginary part of g3 is
related to the rate of three-body recombination process. Here, we first show
the full expression for the two-loop contribution to g3 and then determine
the matrix-form equation for real and imaginary part of G′

3.
The full expression for the two-loop contribution to three-body interac-

tion potential is:
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B2 g2-loop3 = 96g22

∫

zdz

2/3y + z2
−xdx

2/3y + x2
1

√

(y + x2 + z2)2 − (xz)2

×
(

1

ln(3z2/4 + y)

1

ln(3x2/4 + y)

− π2δ(
3

4
x2 + y − 1)δ(

3

4
z2 + y − 1) +

2iπδ(34 z
2 + y − 1)

ln(34x
2 + y)

)

(G.8)

where the correction to the real part of g2-loop3 due to imaginary term in g2
is:

B2 ℜ∆g2-loop3 =

(

2

3

)2

g22

(

1

−2/3y + 4/3

)2 3× 96π2

√

(−5y + 8)2 − (4(1 − y))2)

(G.9)

and the imaginary part of g2-loop3 has the following form:

B2 ℑ∆g2-loop3 = −4

3
96π g22

1

−2/3y + 4/3

∫

xdx

2/3y + x2
1

ln(3x2/4 + y)

× 1
√

(y + 4/3(1 − y) + x2)2 − x2 4/3(1 − y)
(G.10)

Similarly, one can add the imaginary part of g2 in the integral equation
and separate real and imaginary parts to get a system of equations for real
and imaginary parts of G′

3 as:

ℜ[G′
3] = (M +BM−1B)−1(a−BM−1a∗)

ℑ[G′
3] = (M +BM−1B)−1(a∗ +BM−1a) (G.11)

where in addition to a and M functions which have been defined earlier, we
introduce the following functions:

a∗(y, z) =
4

3

2π
√

(z2 + 4/3− 1/3y)2 − (4/3 − 4/3y)z2
1

−2/3y + 4/3

B(x, y, z) = 4π
x

√

(y + z2 + x2)2 − (xz)2
δ(x −

√

4/3(1 − y))√
3(1− y)

∆x.(G.12)
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The system of these equations can be solved numerically. By inserting
the real and imaginary parts of G′

3 and g2 in Eq. (F.19), one can obtain the
real and imaginary parts of three-body potentials as:

ℜ[g3(y)] = −6

(

4π

ln(2/3y)

)2(
∫

4x dx

2/3y + x2

(

1

ln(3x2/4 + y)
ℜ[G′

3(y, x)]

+ πδ(3x2/4 + y − 1)ℑ[G′
3(y, x)]

))

(G.13)

ℑ[g3(y)] = −6

(

4π

ln(2/3y)

)2(
∫

4x dx

2/3y + x2

(

1

ln(3x2/4 + y)
ℑ[G′

3(y, x)]

− πδ(3x2/4 + y − 1)ℜ[G′
3(y, x)]

))

(G.14)

Eq. (G.14) gives the imaginary part of three-body potential which is
related to the three-body recombination process rate. We have estimated
this imaginary contribution and we found that for the range of interest,
ℑ[g3(y)] is always much smaller than ℜ[g3(y)] (see Fig. 4.3). As a result,
we did not consider this effect in our self-consistent calculations to find the
chemical potential of the Bose gas.
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