- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- From multiline queues to Macdonald polynomials via...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
From multiline queues to Macdonald polynomials via the exclusion process Williams, Lauren
Description
Recently James Martin introduced multiline queues, and used them to give a combinatorial formula for the stationary distribution of the multispecies asymmetric simple exclusion exclusion process (ASEP) on a circle. The ASEP is a model of particles hopping on a one-dimensional lattice, which was introduced around 1970, and has been extensively studied in statistical mechanics, probability, and combinatorics. In this article we give an independent proof of Martin's result, and we show that by introducing additional statistics on multiline queues, we can use them to give a new combinatorial formula for both the symmetric Macdonald polynomials P_{lambda}(x; q, t), and the nonsymmetric Macdonald polynomials E_{lambda}(x; q, t), where lambda is a partition. This formula is rather different from others that have appeared in the literature, such as the Haglund-Haiman-Loehr formula. Our proof uses results of Cantini-de Gier-Wheeler, who recently linked the multispecies ASEP on a circle to Macdonald polynomials. This is joint work with Sylvie Corteel and Olya Mandelshtam.
Item Metadata
Title |
From multiline queues to Macdonald polynomials via the exclusion process
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-01-22T10:31
|
Description |
Recently James Martin introduced multiline queues, and used them to give a combinatorial formula for the stationary distribution of the multispecies asymmetric simple exclusion exclusion process (ASEP) on a circle. The ASEP is a model of particles hopping on a one-dimensional lattice, which was introduced around 1970, and has been extensively studied in statistical mechanics, probability, and combinatorics. In this article we give an independent proof of Martin's result, and we show that by introducing additional statistics on multiline queues, we can use them to give a new combinatorial formula for both the symmetric Macdonald polynomials P_{lambda}(x; q, t), and the nonsymmetric Macdonald polynomials E_{lambda}(x; q, t), where lambda is a partition. This formula is rather different from others that have appeared in the literature, such as the Haglund-Haiman-Loehr formula. Our proof uses results of Cantini-de Gier-Wheeler, who recently linked the multispecies ASEP on a circle to Macdonald polynomials. This is joint work with Sylvie Corteel and Olya Mandelshtam.
|
Extent |
59.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: U.C. Berkeley
|
Series | |
Date Available |
2019-07-22
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0379935
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International