Non UBC
DSpace
Williams, Lauren
2019-07-22T08:49:26Z
2019-01-22T10:31
Recently James Martin introduced multiline queues, and used them to give a combinatorial formula for the stationary distribution of the multispecies asymmetric simple exclusion exclusion process (ASEP) on a circle. The ASEP is a model of particles hopping on a one-dimensional lattice, which was introduced around 1970, and has been extensively studied in statistical mechanics, probability, and combinatorics. In this article we give an independent proof of Martin's result, and we show that by introducing additional statistics on multiline queues, we can use them to give a new combinatorial formula for both the symmetric Macdonald polynomials P_{lambda}(x; q, t), and the nonsymmetric Macdonald polynomials E_{lambda}(x; q, t), where lambda is a partition. This formula is rather different from others that have appeared in the literature, such as the Haglund-Haiman-Loehr formula. Our proof uses results of Cantini-de Gier-Wheeler, who recently linked the multispecies ASEP on a circle to Macdonald polynomials. This is joint work with Sylvie Corteel and Olya Mandelshtam.
https://circle.library.ubc.ca/rest/handle/2429/71066?expand=metadata
59.0
video/mp4
Author affiliation: U.C. Berkeley
Banff (Alta.)
10.14288/1.0379935
eng
Unreviewed
Vancouver : University of British Columbia Library
Banff International Research Station for Mathematical Innovation and Discovery
Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Faculty
BIRS Workshop Lecture Videos (Banff, Alta)
Mathematics
Group theory and generalizations
Combinatorics
From multiline queues to Macdonald polynomials via the exclusion process
Moving Image
http://hdl.handle.net/2429/71066