- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Reference model based power smoothing for stand-alone...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Reference model based power smoothing for stand-alone hybrid PV-diesel micro grid Xu, Yize
Abstract
Photovoltaic (PV) generator generates clean energy but also brings active power fluctuation to the network. The thesis investigates the frequency stability issue of a MW level stand-alone hybrid micro grid which contains PV generator, diesel generator, storage unit and loads. The PV generator can only generate as much power as the sun provides. The resulting power mismatch between PV generation and load demand needs to be compensated. The slow responding diesel generator is designed to compensate for the steady state power mismatch. The battery, as the fast responding storage unit, is set to reject the power transients. A battery control method based on the micro grid frequency feedback and PV output feed-forward is presented to satisfy the requirement of active power compensation in transients. It will be shown that the method keeps the stand - alone micro grid frequency within a specified region and provides the diesel generators more margin of time to adjust their output for better diesel efficiency.
Item Metadata
Title |
Reference model based power smoothing for stand-alone hybrid PV-diesel micro grid
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2013
|
Description |
Photovoltaic (PV) generator generates clean energy but also brings active power fluctuation to the network. The thesis investigates the frequency stability issue of a MW level stand-alone hybrid micro grid which contains PV generator, diesel generator, storage unit and loads. The PV generator can only generate as much power as the sun provides. The resulting power mismatch between PV generation and load demand needs to be compensated. The slow responding diesel generator is designed to compensate for the steady state power mismatch. The battery, as the fast responding storage unit, is set to reject the power transients.
A battery control method based on the micro grid frequency feedback and PV output feed-forward is presented to satisfy the requirement of active power compensation in transients. It will be shown that the method keeps the stand - alone micro grid frequency within a specified region and provides the diesel generators more margin of time to adjust their output for better diesel efficiency.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2013-12-18
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0165713
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2014-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International