- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Afferent nervous pathways involved in the neural intergration...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Afferent nervous pathways involved in the neural intergration of the respiratory and circlatory systems in fish Smith, John Clegg
Abstract
By superimposing an artificial water flow over the gills out of phase with the natural breathing movements of the fish, it has been possible to demonstrate that bradycardia and cardiorespiratory synchrony develop in response to decreased peripheral oxygen levels. Further evidence that peripheral and not central receptors are involved was furnished by injecting deoxygenated blood into the dorsal aorta; no effect on heart rate or breathing was observed. Bradycardia still develops in response to hypoxia at the respiratory surface even during the absence of branchial blood flow demonstrating that the circulatory system is not involved in this reflex. Numerous tastebud-like receptors have been found lining the anterior faces of the gill bars. These are innervated by the branchial branches of the vagus nerve. Stimulation of the cut central ends of these nerves results in responses similar to those obtained when environmental oxygen levels are decreased. It is suggested that these tastebud-like organs are the receptors and that the branchial branches of the vagus nerve form one afferent pathway for reflex bradycardia and cardiorespiratory synchrony. Other possible afferent pathways are suggested and the functional significance of the reflex is discussed.
Item Metadata
Title |
Afferent nervous pathways involved in the neural intergration of the respiratory and circlatory systems in fish
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1966
|
Description |
By superimposing an artificial water flow over the gills out of phase with the natural breathing movements of the fish, it has been possible to demonstrate that bradycardia
and cardiorespiratory synchrony develop in response to decreased peripheral oxygen levels. Further evidence that peripheral and not central receptors are involved was furnished by injecting deoxygenated blood into the dorsal aorta; no effect on heart rate or breathing was observed. Bradycardia still develops in response to hypoxia at the respiratory surface even during the absence of branchial blood flow demonstrating that the circulatory system is not involved in this reflex. Numerous tastebud-like receptors have been found lining the anterior faces of the gill bars. These are innervated by the branchial branches of the vagus nerve. Stimulation of the cut central ends of these nerves results in responses similar to those obtained when environmental oxygen levels are decreased. It is suggested that these tastebud-like organs are the receptors and that the branchial branches of the vagus nerve form one afferent pathway for reflex bradycardia and cardiorespiratory synchrony. Other possible afferent pathways are suggested and the functional significance of the reflex is discussed.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-09-19
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0302521
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.