UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The relationship between student attitude toward grade 10 science and classroom learning environment variables Krynowsky, Bernie A.


The general problem was to investigate theoretical and empirical relationships between student attitude toward Grade 10 science and classroom learning environment variables and to use these findings interpretively to design a teaching/learning strategy which could be used to improve student attitudes. This investigation sought to answer three questions: 1. How is student attitude toward the subject science acquired, changed, and related to variables within a science classroom learning environment? A description of these associations was based upon an analysis of the writings of Ajzen and Fishbein (1980) and Haladyna et al. (1983). 2. What is the nature and strength of the empirical relationship between student attitude toward Grade 10 science and classroom learning environment variables? This determination was accomplished in two ways. The first way involved the possibility of obtaining a linear relationship between a dependent measure of student attitude toward Grade 10 science and a composite of independent learning environment variables. The second way involved the gathering and analysis of student ideas about this relationship using an interview technique. 3. How can the results of this study be used interpretively to improve student attitudes toward Grade 10 science? The focus here was to design a teaching/learning strategy which could be used by the classroom teacher in order to improve student attitudes based upon some of the theoretical and empirical relationships revealed in this study. In the first question it was found that the Haladyna model of variables that could influence student attitudes and the Ajzen and Fishbein view of attitude and attitude change could be interpreted and applied in an educational context to assist in the provision of a perspective on a problem in teaching practice -mainly how can learning environment variables be manipulated in an attempt to improve student attitudes. In the empirical question it was found that a linear relationship existed between measures of student attitude toward Grade 10 science and student beliefs about their classroom learning environment. A forward regression analysis revealed that three variables accounted for 28.9% of the measured variance in student attitude. These variables, in decreasing order of significance of contribution, were: a) Satisfaction (extent to which students are satisfied with the work of the class; b) Apathy (extent to which students care about the class); and c) Difficulty (extent to which students find the class difficult). Personal interviews of 16 Grade 10 science students revealed other learning environment variables which were related to student attitude toward Grade 10 science. These variables, in order of salience, were the: a) extent to which there are hands on activities, b) clarity and organization of teacher explanations, c) perceived usefulness of the science knowledge d) degree of difficulty of the subject and e) quality of interpersonal relationships in class. Interviews of teachers and students also provided additional suggestions as to how to promote more positive student attitudes. Some of the more frequently mentioned suggestions were: a) more labs and hands on activities, b) less teacher talk, c) more emphasis on the practical/social/personal aspects of science content, d) more teacher enthusiasm to promote science as a valuable activity, and e) to have as great a variety of science activities as possible. The third question involved design of a teaching/learning strategy based on a format for the application of theory to educational practice suggested by Joyce and Weil (1980). This strategy, which involved the manipulation of the learning environment in accordance with the Ajzen and Fishbein theory, was illustrated by a sample lesson from a unit of instruction developed by the researcher.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.