- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- On the plastic deformation of tin single crystals
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
On the plastic deformation of tin single crystals Causey, Allan Robert
Abstract
The effects of a polycrystalline surface layer on the critical resolved shear stress, yield stress and the work hardening rate of tin single crystals has been investigated. The change in these parameters was found to be independent of the thickness of the layer. The results have been interpreted in terms of the inhibition of surface sources and the higher stress level required to initiate interior sources. An exploratory investigation of the flow mechanism in tin was undertaken. Tin single crystals oriented for slip on the (110) [001] slip system were deformed in the temperature range from room temperature to -80°C, with the lower limit of temperature being sensitively dependent on the strain-rate. Twinning was observed to be the mode of deformation below this lower limit. Strain-rate change tests at temperatures from -27°C to R.T. were performed in order to assess the activation energy and activation volume. On the basis of these values, the flow mechanism was postulated to be the non-conservative motion of jogs in screw dislocations.
Item Metadata
Title |
On the plastic deformation of tin single crystals
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1963
|
Description |
The effects of a polycrystalline surface layer on the critical resolved shear stress, yield stress and the work hardening rate of tin single crystals has been investigated. The change in these parameters was found to be independent of the thickness of the layer. The results have been interpreted in terms of the inhibition of surface sources and the higher stress level required to initiate interior sources.
An exploratory investigation of the flow mechanism in tin was undertaken. Tin single crystals oriented for slip on the (110) [001] slip system were deformed in the temperature range from room temperature to -80°C, with the lower limit of temperature being sensitively dependent on the strain-rate. Twinning was observed to be the mode of deformation below this lower limit. Strain-rate change tests at temperatures from -27°C to R.T. were performed in order to assess the activation energy and activation volume. On the basis of these values, the flow mechanism was postulated to be the non-conservative motion of jogs in screw dislocations.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-12-14
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0105980
|
URI | |
Degree (Theses) | |
Program (Theses) | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.