- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Lateral inhibition and the area operator in visual...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Lateral inhibition and the area operator in visual pattern processing Connor, Denis John
Abstract
The static interaction of the receptor nerves in the lateral eye of the horsesoe crab, Limulus, is called lateral inhibition. It is described by the Hartline equations. A simulator has been built to study lateral inhibition with a view to applying it in a pre-processor for a visual pattern recognition system. The activity in a lateral inhibitory receptor network is maximal in regions of non-uniform illumination. This enhancement of intensity contours has been extensively studied for the case of black and white patterns. It is shown that the level of activity near a black-white boundary provides a measure of its local geometric properites. However, the level of activity is dependent on the boundary orientation. A number of methods for reducing this orientation dependence are explored. The activity in a lateral inhibitory network adjacent to a boundary can be modelled by an area operator. It is shown that the value of this operator along an intensity boundary provides a description of the boundary that is related to its intrinsic description — curvature as a function of arc length. Since the operator is maximal on an intensity boundary, this description has been called the ridge function for the boundary. A ridge function can also be obtained using a lateral inhibitory, network. The properties of this function are discussed. It is shown how ridge functions might be incorporated into a pattern recognition algorithm. A novel method for detecting the bilateral and rotational symmetries in a pattern is described.
Item Metadata
Title |
Lateral inhibition and the area operator in visual pattern processing
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1969
|
Description |
The static interaction of the receptor nerves in the lateral eye of the horsesoe crab, Limulus, is called lateral inhibition. It is described by the Hartline equations. A simulator has been built to study lateral inhibition with a view to applying it in a pre-processor for a visual pattern recognition system.
The activity in a lateral inhibitory receptor network is maximal in regions of non-uniform illumination. This enhancement of intensity contours has been extensively studied for the case of black and white patterns. It is shown that the level of activity near a black-white boundary provides a measure of its local geometric properites. However, the level of activity is dependent on the boundary orientation. A number of methods for reducing this orientation dependence are explored.
The activity in a lateral inhibitory network adjacent to a boundary can be modelled by an area operator. It is shown that the value of this operator along an intensity boundary provides a description of the boundary that is related to its intrinsic description — curvature as a function of arc length. Since the operator is maximal on an intensity boundary, this description has been called the ridge function for the boundary.
A ridge function can also be obtained using a lateral inhibitory, network. The properties of this function are discussed. It is shown how ridge functions might be incorporated into a pattern recognition algorithm. A novel method for detecting the bilateral and rotational symmetries in a pattern is described.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-07-16
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0103259
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.