UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Forced convection heat transfer from a cylinder in supercritical carbon dioxide Green, John Richard

Abstract

Heat transfer rates have been measured for forced flow of supercritical carbon dioxide normal to a horizontal heated cylinder. The 0.006 inch diameter cylinder was held at various constant temperatures by a feed-back bridge circuit. Free convection results are also included. The effects of bulk fluid temperature, bulk fluid pressure, and surface temperature were studied for a range of bulk fluid temperature and pressure of from 0.8 to 1.4 times the critical temperature and pressure for several free stream velocities from zero to three feet per second. The temperature difference between the heated cylinder and the bulk fluid was varied from 1 deg F to 320 deg F. Flow fields of all data runs were observed. Still photographs and high speed movies have been taken at operating conditions of interest. In a supercritical fluid the heat transfer rate increases smoothly and monotonically with increasing temperature difference, increasing velocity, and increasing pressure. In fluid with the bulk temperature below the pseudo-critical temperature the heat transfer coefficient shows large peaks when the cylinder temperature is near the pseudocritical temperature. Peaks are largest when the bulk fluid pressure is near the critical pressure. The heat transfer coefficient decreases with increasing temperature difference when the bulk fluid temperature is above the pseudo-critical temperature. The heat transfer rate noteably increases with increasing pressure only when vapour-like fluid is in contact with the heated cylinder. Supercritical forced flow has been compared to forced flow boiling. The supercritical case does not exhibit the characteristic strong maxima in heat transfer rate shown in forced flow nucleate boiling. Heat transfer rates at larger temperature differences are very similar in forced flow film boiling and supercritical forced flow heat transfer. With this horizontal, constant temperature cylinder, no "bubble-like" or "boiling-like" mechanisms of heat transfer were observed in supercritical free or forced convection. The flow field and heat transfer rate in free convection were found to be very unstable and sensitive to small temperature disturbances in the bulk fluid.

Item Media

Item Citations and Data

License

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Usage Statistics