UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Dynamic modeling of human jaw and laryngeal biomechanics Stavness, Ian Kent


Computational modeling is an important tool for studying the structure and function of human anatomy in biomedicine. In this thesis, a dynamic, anatomically accurate model of the human mandibular and laryngeal structures is presented. The complexities of the infra-mandibular anatomy are discussed along with previous approaches to jaw modeling and a detailed description of dynamic modeling techniques. Forward dynamic simulations, created with the model's comprehensive user-interface, are reported that show consistency with previously published jaw modeling literature. Laryngeal motion during swallowing was simulated and shows plausible upward displacement consistent with published recordings. Simulation of unilateral chewing was also performed with the model to study mastication mechanics. A novel open-source modeling platform, ArtiSynth, is described in the context of its use and extension in the construction and simulation of the biomechanical jaw and laryngeal model.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.