UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Rheological and colloidal properties of commercial brewing yeast suspensions Speers, Robert Alexander

Abstract

A three part study was carried out to examine rheological, colloidal and floe microstructural aspects of industrial brewing yeast strains. Following a review of the literature, the rheological properties of four yeast strains (two flocculent ale and lager types and their non-flocculent variants) were examined. In related colloidal studies, orthokinetic flocculation rates of these strains as well as their cell surface charge were determined. Floc microstructure was characterized using both light and scanning electron microscopy. In a summary chapter, the cell floc model (a modification of Hunter's elastic floc model) was used to the explain the rheological and colloidal behaviour of brewing yeast suspensions. Flow behaviour studies of the commercial yeast suspensions suspended in a calcium-containing sodium acetate buffer revealed that yeast flocculent characteristics had an important influence on their suspension flow behaviour. As cell concentrations increased, suspension flow properties become increasingly non-Newtonian and could be described by the Casson model at low rates of shear and the Bingham model at shear rates above 100 s⁻¹. The cell floc model was proposed to explain the Bingham flow behaviour of these csuspensions. The Bingham yield stress in these suspensions was believed to be a function of the orthokinetic capture coefficient, cell volume and the energy to break up doublet cells. Increasing temperature tended to lower the Bingham yield stress in lager strains and increase the yield stress in ale strains. A semi-empirical explanation for the viscosity increase of deflocculated cell suspensions and the estimation of pseudo-capture coefficients was presented. Furthermore, studies of the flow behaviour of yeast strains suspended in decarbonated ale and lager beer revealed that: 1) suspensions of flocculent strains show higher yield stress values than their non-flocculent variants, 2) ale strain suspensions tended to have higher yield values than the lager strains and 3) yeast dispersed in beer had higher yield stress values than when suspended in buffered calcium suspensions. This last observation was believed to reflect the influence of ethanol on the cell binding process which has important implications for future measurements of yeast flocculation. Colloidal studies revealed for the first time, that the orthokinetic rate of flocculation of brewing yeast cells could be modelled by a first order equation, as predicted by fundamental colloid theory. While subject to considerable variation, measured rate constants led to the calculation of orthokinetic capture coefficients. Yeast cell zeta potential values generally agreed with literature data but could not be employed in the DLVO model of colloid flocculation to explain measured orthokinetic capture coefficient values. Examination of the cell zeta potential data indicated that the data had non-normal distributions. SEM examination of the four industrial yeast strains suggested that a number of distinct structures mediated cell-to-cell interaction and that intra-strain differences occurred. These findings, along with the observation of non-normal surface charge distributions, indicated that these industrially pure strains had undergone substantial variation. Treatment of the flocculent cells with pronase tended to reduce cell-to-cell contacts. In the summary chapter the cell floe model was employed to describe the rheological behaviour of the yeast suspensions. Estimation of the force needed to separate doublet yeast cells were made using critical shear rate data (i.e., the point at which Bingham flow begins). This estimate was similar to that reported for single antibody bonds and may be due to the presence of lectin-like structures on the yeast cell wall.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.