- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Contingent and pharmacologic tolerance to the anticonvulsant...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Contingent and pharmacologic tolerance to the anticonvulsant effects of antiepileptic drugs Mana, Michael Joseph
Abstract
The development of tolerance to anticonvulsant drug effects has traditionally been studied in terms of pharmacological variables associated with the drug itself ; for example, the dose or the schedule of administration. This type of tolerance is referred to as pharmacologic drug tolerance. In contrast, we have demonstrated that the development of tolerance to ethanol's anticonvulsant effect is contingent upon the adminstration of convulsive stimulation during periods of ethanol exposure; we refer to this as contingent drug tolerance. The purpose of the first two experiments in the present thesis was to extend the phenomenon of contingent tolerance to the anticonvulsant effects of three clinically relevant antiepileptic drugs: carbamazepine (CBZ), diazepam (DZP), and sodium valproate (VPA). In Experiment 1, kindled rats that received an injection of CBZ (70 mg/kg, IP), DZP (2 mg/kg, IP), or VPA (250 mg/kg, IP) 1 hr before each of 10 bidaily (one every 48 hr) convulsive stimulations displayed a significant amount of tolerance to the drugs' anticonvulsant effects on the tolerance test trial ; in contrast, there was no evidence of tolerance in the rats from the three vehicle control groups. In Experiment 2, the development of tolerance to the anticonvulsant effects of CBZ, DZP, and VPA, administered on a bidaily basis, was shown to be contingent upon the administration of convulsive stimulation during the periods of drug exposure. Kindled rats in the three drug-before-stimulation groups rapidly developed tolerance to the anticonvulsant effects of CBZ, DZP, and VPA; in contrast, there was no evidence of tolerance i n the respective drug-afterstimulation groups, despite the fact that they had the same drug history. The purpose of the final three experiments was to compare contingent and pharmacologic tolerance to the anticonvulsant effects of DZP. Experiment 3 replicated earlier demonstrations of pharmacologic tolerance to DZP's anticonvulsant effect; kindled rats that received chronic DZP (2 mg/kg, every 8 hr, for 10 days) developed tolerance to the drug's anticonvulsant effect even though they did not receive convulsive stimulation during the periods of drug exposure. In Experiment 4, the rate of dissipation of pharmacologic and contingent tolerance to DZP's anticonvulsant effect was compared. Pharmacologic tolerance gradually dissipated over the 16-day retention interval ; in contrast, there was no evidence of dissipation of contingent tolerance after 16 days of drug withdrawal. These data suggest that different physiological changes are responsible for pharmacologic and contingent tolerance to DZP's anticonvulsant effect. This conclusion was supported by the results of Experiment 5, in which a single injection of the benzodiazepine receptor antagonist RO 15-1788 24 hr prior to a tolerance-retention test trial significantly reduced the expression of pharmacologic tolerance, but not contingent tolerance, to DZP's anticonvulsant effect. The results of these five experiments make two general points. First, concurrent convulsive stimulation can have an important effect on the development of tolerance to the anticonvulsant effects of antiepileptic drugs. And second, there are significant differences in the physiological changes responsible for the development and the dissipation of contingent and pharmacologic tolerance to DZP's anticonvulsant effect. Because traditional theories do not address these differences, a new model of contingent and pharmacologic tolerance is presented.
Item Metadata
Title |
Contingent and pharmacologic tolerance to the anticonvulsant effects of antiepileptic drugs
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1990
|
Description |
The development of tolerance to anticonvulsant drug effects
has traditionally been studied in terms of pharmacological
variables associated with the drug itself ; for example, the dose
or the schedule of administration. This type of tolerance is
referred to as pharmacologic drug tolerance. In contrast, we
have demonstrated that the development of tolerance to ethanol's
anticonvulsant effect is contingent upon the adminstration of
convulsive stimulation during periods of ethanol exposure; we
refer to this as contingent drug tolerance.
The purpose of the first two experiments in the present
thesis was to extend the phenomenon of contingent tolerance to
the anticonvulsant effects of three clinically relevant
antiepileptic drugs: carbamazepine (CBZ), diazepam (DZP), and
sodium valproate (VPA). In Experiment 1, kindled rats that
received an injection of CBZ (70 mg/kg, IP), DZP (2 mg/kg, IP),
or VPA (250 mg/kg, IP) 1 hr before each of 10 bidaily (one every
48 hr) convulsive stimulations displayed a significant amount of
tolerance to the drugs' anticonvulsant effects on the tolerance
test trial ; in contrast, there was no evidence of tolerance in
the rats from the three vehicle control groups. In Experiment 2,
the development of tolerance to the anticonvulsant effects of
CBZ, DZP, and VPA, administered on a bidaily basis, was shown to
be contingent upon the administration of convulsive stimulation
during the periods of drug exposure. Kindled rats in the three
drug-before-stimulation groups rapidly developed tolerance to the
anticonvulsant effects of CBZ, DZP, and VPA; in contrast, there
was no evidence of tolerance i n the respective drug-afterstimulation
groups, despite the fact that they had the same drug
history.
The purpose of the final three experiments was to compare
contingent and pharmacologic tolerance to the anticonvulsant
effects of DZP. Experiment 3 replicated earlier demonstrations
of pharmacologic tolerance to DZP's anticonvulsant effect;
kindled rats that received chronic DZP (2 mg/kg, every 8 hr, for
10 days) developed tolerance to the drug's anticonvulsant effect
even though they did not receive convulsive stimulation during
the periods of drug exposure. In Experiment 4, the rate of
dissipation of pharmacologic and contingent tolerance to DZP's
anticonvulsant effect was compared. Pharmacologic tolerance
gradually dissipated over the 16-day retention interval ; in
contrast, there was no evidence of dissipation of contingent
tolerance after 16 days of drug withdrawal. These data suggest
that different physiological changes are responsible for
pharmacologic and contingent tolerance to DZP's anticonvulsant
effect. This conclusion was supported by the results of
Experiment 5, in which a single injection of the benzodiazepine
receptor antagonist RO 15-1788 24 hr prior to a tolerance-retention
test trial significantly reduced the expression of
pharmacologic tolerance, but not contingent tolerance, to DZP's
anticonvulsant effect.
The results of these five experiments make two general
points. First, concurrent convulsive stimulation can have an
important effect on the development of tolerance to the
anticonvulsant effects of antiepileptic drugs. And second, there
are significant differences in the physiological changes
responsible for the development and the dissipation of contingent
and pharmacologic tolerance to DZP's anticonvulsant effect.
Because traditional theories do not address these differences, a
new model of contingent and pharmacologic tolerance is presented.
|
Genre | |
Type | |
Language |
eng
|
Notes |
[title page not included]
|
Date Available |
2011-02-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0100681
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.