The Open Collections site will be undergoing maintenance 8-11am PST on Tuesday Dec. 3rd. No service interruption is expected, but some features may be temporarily impacted.
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Modulation of Kv1.5 slow inactivation by external cations
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Modulation of Kv1.5 slow inactivation by external cations Kwan, Daniel Cheuk Hang
Abstract
Slow inactivation is an intrinsic biophysical property of voltage-gated potassium (Kv) channels that results in a non-conducting state under physiological conditions. It limits the amount of current through Kv channels and affects cellular excitability. However, the molecular basis of slow inactivation is not well understood. In this thesis investigation, the modulation of slow inactivation in the human Kvl .5 channel by extracellular Zn²⁺, protons (H⁺), Ni²⁺, and other divalent-cations was studied using standard voltage clamp techniques. Zn²⁺, H⁺, and Ni²⁺ accelerated slow inactivation and caused a current inhibition in Kvl.5 expressed in HEK-293 and mouse ltk cells. The current inhibition was hypothesized to result from the binding of Zn²⁺, H⁺, and Ni²⁺ to the turret histidine residue (H463) which in turn promoted a slow inactivation process involving the outer pore mouth arginine residue (R487). The current inhibition induced by Zn²⁺, H⁺, and Ni²⁺ was attenuated either by increasing extracellular [K⁺] or by mutating H463 to glutamine (H463Q) or R487 to valine (R487V). Unitary current analysis revealed H⁺ and Ni²⁺ did not change the single channel current at +100 mV or the single channel conductance between 0 and +100 mV, but the number of blank (null) sweeps recorded with depolarizing pulses lasting up to 1 s was increased. The proportion of null sweeps correlated well with the extent of inhibition of macroscopic Kvl .5 current by external H⁺. A model incorporating two modes of gating was employed to describe the transitions between the active sweeps (mode A) and the null sweeps (mode U), and external H⁺ was proposed to inhibit Kv 1.5 current by promoting mode U gating. Consistent with this model was the finding that external K⁺ antagonized mode U gating induced by external H⁺. Channels were observed to switch from mode U back to mode A during prolonged depolarizations (> 6 s), and the delay in opening (first latency) was correlated with the dwell time in a depolarization-induced slow inactivated state. Together, the results suggest that Zn²⁺, H⁺, and Ni²⁺ inhibit Kvl .5 current by promoting a slow (P/C- type) inactivation process proceeding from closed states.
Item Metadata
Title |
Modulation of Kv1.5 slow inactivation by external cations
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2006
|
Description |
Slow inactivation is an intrinsic biophysical property of voltage-gated potassium (Kv) channels that results in a non-conducting state under physiological conditions. It limits the amount of current through Kv channels and affects cellular excitability. However, the molecular basis of slow inactivation is not well understood. In this thesis investigation, the modulation of slow inactivation in the human Kvl .5 channel by extracellular Zn²⁺, protons (H⁺), Ni²⁺, and other divalent-cations was studied using standard voltage clamp techniques. Zn²⁺, H⁺, and Ni²⁺ accelerated slow inactivation and caused a current inhibition in Kvl.5 expressed in HEK-293 and mouse ltk cells. The current inhibition was hypothesized to result from the binding of Zn²⁺, H⁺, and Ni²⁺ to the turret histidine residue (H463) which in turn promoted a slow inactivation process involving the outer pore mouth arginine residue (R487). The current inhibition induced by Zn²⁺, H⁺, and Ni²⁺ was attenuated either by increasing extracellular [K⁺] or by mutating H463 to glutamine (H463Q) or R487 to valine (R487V). Unitary current analysis revealed H⁺ and Ni²⁺ did not change the single channel current at +100 mV or the single channel conductance between 0 and +100 mV, but the number of blank (null) sweeps recorded with depolarizing pulses lasting up to 1 s was increased. The proportion of null sweeps correlated well with the extent of inhibition of macroscopic Kvl .5 current by external H⁺. A model incorporating two modes of gating was employed to describe the transitions between the active sweeps (mode A) and the null sweeps (mode U), and external H⁺ was proposed to inhibit Kv 1.5 current by promoting mode U gating. Consistent with this model was the finding that external K⁺ antagonized mode U gating induced by external H⁺. Channels were observed to switch from mode U back to mode A during prolonged depolarizations (> 6 s), and the delay in opening (first
latency) was correlated with the dwell time in a depolarization-induced slow inactivated state.
Together, the results suggest that Zn²⁺, H⁺, and Ni²⁺ inhibit Kvl .5 current by promoting a slow (P/C-
type) inactivation process proceeding from closed states.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-02-03
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0100432
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.